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Abstract

Optomechanical (OM) system is formed by an optical or microwave cavity contain-
ing a movable mechanical element that can support collective oscillational modes.
It is a rapidly growing field showing great potential in precision measurement of
small displacements, forces, electrical charges, and magnetic fields.

The coupling between light and mechanical element in OM system could be
dispersive, dissipative or both at the same time. Dispersive coupling results in
position dependence of the cavity eigen-modes while in dissipative coupling the
cavity linewidth is position dependent. Detection of weak classical forces via dis-
persive coupling has a long history. However, recent studies show that dissipative
coupling can also allow force sensing beyond the standard quantum limit (SQL).

In this thesis, we have mainly focused on the detection of weak classical force
using dissipatively coupled OM system. First, we study the effects of laser phase
noise (LPN) associated with the cavity drive on the detection of a weak force on a
free test mass. Our results show that for an optimum choice of various parameters,
one can realize force sensing below SQL even in the presence of LPN.

The analysis is further extended by introducing a parametric amplifier (PA)
in the system and driving it with a noisy pump. The presence of PA improves
force sensitivity much better than SQL. However, LPN associated with PA pump
strongly affects force sensing. Interestingly, we find that for an optimum choice of
different parameters, force sensitivity better than SQL can still be realized.

We also investigate the effects of Kerr medium on force sensing of an OM oscil-
lator. Our analysis show that the presence of Kerr medium improves force sensing
beyond SQL. Moreover, increasing the strength of Kerr non-linearity not only
improves force sensitivity but also increases the measurement bandwidth. Kerr
medium also leads to the robustness of the system against thermal fluctuations.

In our final theoretical proposal, we present an optical detection technique
based on dissipative OM coupling for the detection of weak magnetic field. Our
analysis suggest measurement of magnetic field upto sub-nano-Tesla level at room

temperature while working in the bad-cavity regime.
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Chapter

Introduction

1.1 Brief History of Optomechanics

Radiation pressure results from the transfer of momentum from light to a solid
object upon reflection, absorption or emission. The concept of radiation pressure
was first introduced by J. Kepler in 1619 in order to explain why the tail of a
comet always points away from the Sun. In 1873, J. C. Maxwell introduced his
electromagnetic theory in the form of Maxwell equations which also predicted the
fact that light carries momentum [1]. Later in 1900, a Russian physicist Prof. P.
N. Lebedev for the first time experimentally demonstrated the effects of radiation
pressure on material objects [2]. His experiment verified with high confidence
that for electromagnetic radiation of power P at normal incidence, the associated
momentum can be written as p = %(1 + p), where p is the reflectivity of the
illuminated surface and ¢ is the speed of light. In an independent experimental
work, E. F. Nichols and G. F. Hull in 1901 also measured radiation pressure [3].

It may be noted that radiation pressure force associated with light is extremely
faint. For instance, 1 watt laser at normal incidence on a perfectly reflecting mir-
ror exerts approximately 6 nN of force. This is the reason, why it took so long to
observe the mechanical effects of light in laboratory. However, technological ad-
vancements during past few decades have made it possible to study and maneuver
the mechanical effects of light which eventually opened new avenues in the field
of physics.

An optical cavity with a mechanical oscillator can be coupled to radiation

pressure force to form an optomechanical (OM) device [4-6]. These devices are

1



Chapter 1: Introduction

rich in the context of observing and controlling the mechanical effects of light
and lead to the study of various novel effects like cooling of mechanical oscillator
to its quantum-mechanical ground state [7-10], generation of slow light [11-13],
quantum state transfer |[14H17|, gravitational wave interferometery [18-20] and
many more [21,[22]. The size of OM systems range from nanometer /femtogram
scale for on-chip phononic and photonic crystals to kilometer/kilogram scale of
large Michelson interferometer for the detection of gravitational waves.

Optomechanics also brings about the interesting idea of observing quantum
effects on macroscopic scale. For example, entanglement which is a characteris-
tic trait associated with quantum systems can be observed between macroscopic
oscillator and optical field of the cavity. The idea was theoretically proposed by
Vitali et al. [23] and also observed experimentally by Palomaki et al [24].

The field of optomechanics emerged due to the development of early gravita-
tional wave detectors in late 1970s. Quantum mechanics entered into the picture
when it was realized that the measurement of position of the end mirrors of the
interferometer cannot be made with arbitrary precision. Rather, vacuum fluc-
tuations of the optical field set a limit on sensitivity of position measurements.

Therefore, it could also result in mechanical oscillations on quantum scale [25-30].

1.2 Precision Measurement via Optomechanics

Early research in OM systems was primarily based on the detection of gravitational
waves. However, as the research continued, soon it was realized that OM systems
have great potential in precision measurement. Since then OM systems advanced
the art of precision measurement. Measurement of small displacement [31-35],
force [36-44], torque [45], electrical charge [46], magnetic field [47-49] can be

made with remarkable sensitivity.

1.2.1 Force Sensing

The coupling between the optical and mechanical degrees of freedom in optome-
chanical systems could be dispersive, dissipative or both at the same time. In

dispersively coupled OM systems, displacement of the mechanical oscillator (MO)

2
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K Ym
Ein(D) e “m
ﬁ AVAVAY
Cour (t) 0
«—X (t) —_—

Figure 1.1: Schematics of a Fabry-Pérot cavity with a fixed and movable mirror.
Here w,, and 7, represent frequency and damping of MO respectively while w,

and k represent frequency of the cavity and optical decay rate, respectively.

modulates the eigen-modes of the optical cavity. A simple example of dispersive
coupling is a standard Fabry-Pérot interferometer (FPI) with one movable mirror
that provides an additional mechanical degree of freedom as shown in Fig. .

The detection of a weak classical force using dispersive OM system to reduce
quantum noise and surpass the standard quantum limit (SQL) has a long history.
For instance, it has been shown that the force sensitivity can be improved by using
a squeezed vacuum [27,/40,50]. In another scheme, the idea of OM speed meter was
proposed to monitor clasical force on a test mass which results in measurement
sensitivity better than SQL [36,139]. In an interesting study, it was shown that
the use of Kerr cell in interferometric gravity-wave detector counters the radiation
pressure induced fluctuations. The performance of such interferometers greatly
surpass SQL [51]. Tt may be noted that SQL fundamentally arises due to the
Heisenberg uncertainty principle. By definition, SQL of a measurement error is
the limit mean square value of the estimate for one observable calculated from the
measurement results of its conjugate observable [52].

A lot of work has been done in dispersively coupled OM system, however, it has
its own constraints e.g. requirement of side-band resolved regime for ground state
cooling |7,8] which is not always feasible particularly in the case of low mechan-
ical frequencies. However, such requirements are not necessary for dissipatively
coupled OM cavities [53-57].

In dissipative coupling, the displacement of the mechanical oscillator modulates

the decay rate of the optical cavity. The dissipation in this case does not lead to

3
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(a) MSI GM (b) Equivalent FPI
S
M i x| oM
I i T i i Cin
1 : 1 : A
1 3 T —
\ M- J' N N
I \EES ,2/ 111 Cout
d o Bttt d = --
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Figure 1.2: (a) Michelson Sagnac Interferometer (as a generalize mirror GM) works

as an input mirror of the Fabry-Pérot cavity. (b) The effective Fabry-Pérot cavity.

decoherence or absorption of light, rather it results in loss-less coupling between a
continuous optical wave and a mode of the optical cavity. This coupling enables
the optical cavity to perform as a perfect transducer.

The idea of dissipative coupling was first proposed theoretically by Elste et
al [53] and studied in different systems [45]54,55,57-60]. Dissipatively coupled
OM systems enables ground state cooling of mechanical oscillators without re-
quiring the resolved-side-band condition [53-57,59-62]. There are a variety of
interesting physical effects which were discussed with dissipative coupling for ex-
ample, the normal mode splitting [56}/60,/61], electromagnetically induced trans-
parency [56,/60], and the squeezing of the output light [63,/64]. Various optome-
chanical systems were studied for dissipative coupling based on Febry-Pérot In-
terferometer [45)|58-60] and Michelson-Sagnac Interferometer (MSI) [54}55,|57]
among many others. In a recent study, it was also shown that purely dissipative
coupling in a bad cavity regime results in strong reduction of the backaction and
suppression of the squeezing ability of the system [65]. A practical realization is
shown in Fig. based on MSI with a movable membrane M which acts as a
compound mirror (GM) [54,55,57]. The position of M and transmission of the
beam splitter B.S sensitively affects the overall transmission of GM. The com-
pound mirror GM along with a perfect mirror M; forms an effective FPI whose

linewidth now sensitively depends upon the position of the membrane.
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1.2.2 Force Sensing via Dissipatively Coupled System

In a recent study, it was shown that the dissipative coupling in an OM system
can be used for the measurement of a classical force on a free particle having
sensitivity better than the Standard Quantum Limit (SQL) |42]. Moreover, the
sensitivity of a classical force on a free particle was found to be comparable with
that of the dispersive OM system, however, it has a much wider measurement
bandwidth. The idea of force measurement in a dissipative system was further
extended with the use of parameteric amplifier (PA) [43]. It was shown that the
presence of PA allows much better force sensitivity (surpassing the SQL) over a
wide range of detection frequencies even in the presence of mechanical damping
and thermal noise. It was also shown that an increase in the parametric gain
reduces the effects of mechanical damping and thermal noise. The presence of PA

also makes the system more robust against thermal noise.

1.2.3 Effects of Laser Phase Noise (LPN) on Force Sensing

The optical field of a single mode laser oscillating far above threshold is in a state
that is very close to the coherent state. The intensity of the field is almost free from
fluctuations due to intrinsic saturation, however, the phase of the field fluctuates
randomly in time. If we perform successive measurements, the state of the field
appears to be a mixture of coherent states.

Typically, the effects of phase noise associated with the laser are ignored. How-
ever, it has profound impact on many applications for example, entanglement gen-
eration in a correlated spontaneous emission laser (CEL) is highly sensitive to the
phase fluctuation [66,/67]. Moreover, ground state cooling and OM entanglement
are strongly affected by LPN [68-70].

The spectral density of a laser operating far above threshold, can be approx-
imated well by a Lorentzian function [71,72]. However, by taking a Lorentzian
line shape overestimate the effects of LPN. For instance, in an earlier study by
Diési 73], a white noise model was proposed for LPN which suggested no possi-
bility of ground state cooling contrary to the experimental findings of low phonon

numbers. Later, a more realistic model was proposed by Rabl et al. [74], which
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suggest the experimental feasibility of optical ground-state cooling and coherent
operations in OM systems. Following the same approach as discussed in Ref. [74]
for noise model, we assume ¢(t) to be a zero mean Gaussian noise process, the

correlation function can be written as
] I dw —iw(s—s")
{6(s)o(s)} = [ 5-Ss(w)e : (1.1)

where {} represents average over different noise values. For each experimental
setup the frequency noise spectrum S, d-)(w) is specific. In our case the noise spec-
trum is given as [74]

2T

Sl = T

(1.2)

where T'; represents the laser linewidth and ~, ! represents the finite correlation
time of the LPN. In the limiting case of 7. — oo, white noise model is recovered.

In this thesis, we incorporate LPN in dissipatively coupled OM system and
investigate its effects on force measurement. First we consider the system pre-
sented in Ref. [42] for dissipative coupling and introduce LPN associated with
the laser that drives the system. The effects of LPN are investigated, our results
show that LPN strongly affects the sensitivity of force measurement [75]. Next,
we consider dissipatively coupled system with a parametric amplifier (PA) as dis-
cussed in Ref. [43]. We introduce LPN in the drive laser of PA and investigate its
effects on force sensing. In this case again, LNP strongly affects the measurement

sensitivity [76]. Detailed analysis is presented in Chapter [2/and Chapter .

1.2.4 Effects of Kerr Medium on Force Sensing

The presence of Kerr cell in an optical cavity results in a nonlinear phase shift
which is proportional to the intensity of light [77]. The effects of Kerr cell has
been studied in the context of quantum-non-demolition (QND) measurement of
photon number operator [78,/79]. It has also been shown that use of Kerr cell in
an interferometric gravity-wave-detector counters the radiation pressure induced
fluctuations which results in performance of such interferometer greatly surpassing

SQL [51]. The presence of strong Kerr non-linearity inside an optical cavity also in-
6
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hibits normal mode splitting (NMS) due to photon blockade mechanism [80]. The
increase in Kerr nonlinearity results in progressive decreases in NMS. Therefore,
Kerr medium can be used to coherently control the micro-mirror’s dynamics. Kerr
medium can also enhance stationary entanglement in OM system [81]. Another
interesting feature which can be observed in OM cavity in the presence of Kerr
medium is optical bistability of intracavity intensity [82]. This effect can be used
in design and development of all-optical switches and high sensitivity sensors [83].

In view of all these interesting features of Kerr medium in OM systems, we have
studied its effects on force sensing using a dissipative OM system. For dissipative
OM system, we have considered the system proposed by Vyatchanin et al. [42]. We
then introduced an optical Kerr media inside the cavity and studied its effects on
force sensing capability of a MO. The presence of Kerr media not only improved
the measurement sensitivity below SQL but also made the system more robust

against the thermal noise. A detailed analysis is presented in Chapter

1.2.5 Magnetic Field Sensing via Dissipatively Coupled
System

The precision measurement of weak magnetic field has gained a lot of interest due
to its practical application in various fields like geology, material characterization
and medicine [84]. Magnetometers based on superconducting quantum interfer-
ence devices (SQUID) operating at cryogenic temperatures, magnetostrictive mag-
netometers and atomic magnetometers provides remarkable sensitivity [85-89]. In
recent studies, the magnetic field sensors based on OM cavity were also proposed,
they have small size, high sensitivity and operational capability at room temper-
ature [47,49]. In another study, a technique based on optomechanical induced
transparency (OMIT) was proposed for the detection of weak magnetic fields [4§].

In this thesis, we also present an optical detection technique for measuring
weak magnetic field which can work at room temperature. We use a dissipatively
coupled OM system that can be realized in a Michelson-Sagnac interferometer
(MSI) with a movable membrane [53}55] as shown in Fig. (1.2)). The transmissivity

of this system when operating close to the dark port condition, sensitively depends
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upon the position of the movable mirror/membrane. Thus, the linewidth of the
cavity sensitively depends upon the position of the membrane. When current is
applied to the membrane in the presence of magnetic field, the position of the
membrane changes which in turn changes the linewidth of the cavity. Therefore,
by observing the spectrum of the output field, magnetic field upto sub-nano-Tesla

levels can be measured. Detail of the scheme is presented in Chapter [5

1.3 Thesis Structure

The contents of the rest of this thesis are divided into five chapters.

Chapter 2: Focuses on the effects of laser phase noise (LPN) on the detection
of a weak classical force that acts on a free particle in a dissipative optomechanical
(OM) system. In this chapter, the effect of mechanical damping and thermal noise
on force sensing in the presence of LPN have also been investigated.

Chapter 3: The presence of PA in a dissipatively coupled OM system improves
force sensitivity much better than the standard quantum limit (SQL) over a wider
range of detection frequency [43]. This chapter deals with the effects of LPN
associated with the pump laser that drives the parametric amplifier (PA). The
effects of LPN on force sensing on a free test mass have been discussed here.

Chapter 4: Optical Kerr medium has the ability to transform amplitude
fluctuations in the initial coherent state into phase fluctuations [90] and therefore
can result in the improvement of the detection of weak force. In this chapter, the
effects of Kerr medium on the detection of a weak classical force acting on an OM
oscillator have been discussed in dissipatively coupled OM system. The influence
of Kerr medium on thermal fluctuations has also been considered in this chapter.

Chapter 5: An optical detection technique is proposed for the detection of
weak magnetic field which is based on dissipatively coupled OM system. Our
proposal suggests measurement of weak magnetic field upto sub-nano-Tesla levels
at room temperature.

Chapter 6: In this chapter, we summarize all of our results in detail and

conclude the thesis.



Chapter 2

Effects of Laser Phase Fluctuation on
Force Sensing in a Dissipatively Coupled
Optomechanical System

2.1 Introduction

Dissipatively coupled optomechanical (OM) systems have gained considerable at-
tention due to its ability of cooling the mechanical oscillator to its ground state
without requiring the good cavity regime [53|. Later, it was also considered for nor-
mal mode splitting [60,91], optomechanical induced transparency [60] and squeez-
ing of the output light [63]. The dissipative coupling has been demonstrated
experimentally for several interesting systems like silicon nitride membrane in a
cavity-enhanced Michelson-Sagnac interferometer for optomechanical cooling [55],
photonic crystal split-beam nanocavity for the detection of nanoscale sources of
torque [45] and others. In a recent study, it was shown that dissipative coupling
in an optomechanical systems can be used for the measurement of a classical
force on a free mass having sensitivity better than the Standard Quantum Limit
(SQL) [42]. Moreover, the sensitivity of a classical force on a free mass was found
to be comparable with that of the dispersive OM system however, it has a much
wider measurement bandwidth.

In this chapter, we study the effects of laser phase noise (LPN) on the detec-
tion of a weak classical force that acts on a free mass in a dissipatively coupled
OM system [42,54]. We also investigate the effect of mechanical damping and
thermal noise on force measurement in the presence of LPN. Typically, the effects

of phase noise associated with the laser are ignored. However, it has profound
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impact on many applications for example, the effects of LPN has been studied for
entanglement generation in a correlated spontaneous emission laser (CEL) and it
was found that entanglement generation is highly sensitive to the phase fluctua-
tion |66L/67]. Ground state cooling and OM entanglement in presence of LPN was
also considered in some earlier studies [68-70]. They have discussed the feasibil-
ity of ground state cooling in OM systems and the strong effects of LPN on OM
entanglement.

In section [2.2] we present our model and solve the equations of motion using
quantum Langevin equation formalism. In section [2.3] we find an expression for
the output quadrature of the field and calculate the noise spectral density. In
section [2.4] we study the effect of mechanical damping and thermal noise on the
force sensitivity in the presence of phase fluctuation. In section we summarize

our results.

2.2 Theory and Model

We consider an optomechanical system in which a free mass m is dissipatively
coupled to a cavity field with eigenfrequency w, [42,92]. For the realization of
dissipative coupling, we consider a system which is based on a Michelson-Sagnac
Interferometer (MSI) as proposed by Xuereb et al. [54] as shown in Fig. (L.2).
The schematic diagram shows an interferometer that contains a generalized input
mirror GM which itself is an interferometer and provides the necessary dissipative
coupling for the Fabry-Perot interferometer. The mirror M is perfectly reflecting
and d is the distance between the beam splitter and the end mirror. Under the
assumption that the size of GM is much smaller than d, the reflectance and
transmittance of GM are constant without having any dependence on spectral
frequency. The GM demonstrates pure dissipative coupling because the spatial
shift of M changes only the relaxation rate of the cavity and not its eigenfrequency.
This feature of MSI is discussed in detail in Ref. [42,54]. The movable mirror M can
be considered as a free mass at the time scale much smaller than the oscillation
period. For a free particle, potential energy is zero, its momentum and kinetic

energy are conserved. The cavity is pumped resonantly with a strong coherent
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light of frequency w, = w,. We assume that the pump laser has phase fluctuation
o(t) = [ H(t')dt" with zero mean value. The Hamiltonian of the system is given
by

2
H = hw,le+ 2p_m + [ hwb' (w)b(w)dw

— iR [Cfcme—i[wpt+¢<t>l_cT ceilont+o®)]] (2.1)

Here k = k,(1 + nz) represents the position dependent photon decay rate, k, is
the decay rate for + = 0 and n = K,/kK,, where k., is the dissipative coupling
constant between the cavity field and the free particle. The first term represents
the free energy of the cavity field, the second term represents the energy of the free
particle, the third term represents the bosonic bath and the fourth term repre-
sents the cavity-bath interaction which gives attenuation of the pump photons and
associated quantum noise. In order to incorporate the effects of LPN associated
with the drive laser, we follow the noise model of Rabl et al. [74] as discussed in
section (|1.2.3)).

In the presence of an external weak force F,, acting on the free mass with zero

mean value the Heisenberg’s equations of motion for the system are given by

. p

= = 2.2
b= (2.2a)
p= Zm?z” fo [cfeppeortto®] _ ot ceilonttel) L (2.2b)
¢= —<§ +itwo)e + Vhcime oL, (2:2¢)

The output field of the system can equally be obtained by the input output

formalism [90] and is given by

Cout = —Cin + \/EQ (23)

11
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with the frame rotating at the instantaneously fluctuating frequency (w, + gb)

Egs. (2.2a)-(2.2¢) takes the following form:

= —(g —id)e + vRcim, (2.42)
) h Few

g L VR gy P (2.4b)
m 2m m

These operators can be represented as a sum of large mean value and small
fluctuating terms such that ¢ = ¢+ dc, ¢jn = Cin + 0Cin, Cout = Cout + OCout, P =
D+ 0p,x =T+ 0x, where

, d
8Cin = —/b(w)e‘l(”_“”)t—w (2.5)

o’

represents the fluctuating part of the input drive and the corresponding correla-

tions are defined as

[b(w), b ()] = 2m6(w — '), (2.6a)

[6cin(t), ok, ()] = o(t —t). (2.6D)

We assume the steady-state displacement of the free particle to be T = 0. In
steady state, © = 0, p = mZ = 0 and ¢ = 0, under this condition Eqgs. and
lead to the solution p = 0, ¢ = (2/vko)Cin, Cour = Cin. We also assume the
input field to be real i.e., ¢;,, =€}, = \/m , where P is the power of input field.
In the first order approximation, we obtain the linearized equations of motion for

fluctuating operators such that

¢ = —250 - U/Zocx + VEoOCin + ide, (2.7a)
Seout = e + y/Rgde + V-, (2.7h)
. 277,77\/% + Ro t Fey

= °[(8¢in — dch,) — 2 (8¢ — . 2.
T Sy [(dcin — Oc}y,) 5 (0c —dc")] + - (2.7¢)

12



Chapter 2: Effects of Laser Phase Fluctuation on Force Sensing

In frequency domain these equations can be written as

Ko + 21w 1N/ KoC . 214/KoC -
OCout+ = | ——=— | by — ————twx, + —— 01, 2.8
Cout (Ho — 21w> + Ko — 21w Wy + Ko — 21w 2 (2:82)
hncy /Ko C\/Ko [+ : J
o=— by~ L) ( -2 @
* mw? (ke — 2iw) {w ( PO 2 o+t 0 mw? (2.8b)
where ¢, = gb(wo + w) represents the Fourier amplitude of the corresponding
operator.

It is interesting to note that in the presence of LPN, the output field given by
Eq. still carries the information about the speed iwz,, of the probe mass in
frequency domain. However, an additional term due to LPN also appears in this
case. Similarly, the probe’s displacement equation given by Eq. also carries

an additional noise term due to LPN.

2.3 Detection of Classical Force in the Presence
of Laser Phase Noise

Next we consider the detection of classical force acting on the free test mass in the
presence of phase fluctuations associated with the laser driving the system. In or-
der to do that we write the input and output fields in terms of their amplitude and
phase quadrature. Thus, A;, = (b++bT_) /V/2 and py, = (b+—bT_) /iv/2 represent the
amplitude and phase quadratures of input field while A,,; = (0cours + 5clut_) /2
and pout = (0Cours — 5cout )/iv/2 represent amplitude and phase quadratures of
the output field. The input quadratures are related with b+(bT_) while output
quadratures are related with 5cout+(5cout ). By using Egs. and , we

obtain following expressions for the quadratures of the output filed:

. 2_2 . p—
A= </<;O +21w> [A _ 2mpe - IN2601C fex

Ko — 21w m (k2 + 4w 2>pm Ko + 21w mw

iV26KC <¢+ b ) V2K, K, <¢+ i (ZL) ]7 (2.9a)

Ko + 2iw 2mw (k2 + 4w?)

Pout = <ﬂ> { in + X_C (64 + - )] (2.9D)

Ko — 2tw o
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In order to write the above equations in much simplified form, we define following

parameters:

Pr2 e S
@ K2 + 4w?’ mr, | o9k e

s = =

Fsqr’ VRE+ dw?’

V2K, " 2 V2K, w 2
M, = KQ—Z@’B Q, M, = KQ—I—ZGZ’BU—Q (2.10)
4w Ko P 4w Ko P

Here P is the dimensionless power parameter and is related to the input power
as P = %%”P and fs represents the signal force normalized to SQL of force
Fsqr. By using the above mentioned parameters, the output quadrature given by
Eqgs. and can be written in a much simplified form as given by the
following relations:

Aout = (M) [Am — Qpin +\/2Q /. + ic <M1¢5+ + Mﬁ—)} , (2.11a)

Ko — 21w

o = (220 [ e (22 (8.46) | (2.111)
It is clear from Eq. that the amplitude quadrature of the output field
contains shot noise (1st term), back action (2nd term), force signal (3rd term)
and the LPN term (4th term). While the phase quadrature of the output field
given by Eq. has information regarding input phase quadrature (1st term)
and LPN (2nd term). It is also clear from Eqs. and that our results
reduces to the same results as discussed in Ref. [42] in the absence of LPN. It is
also interesting to note that in the limit 2w/k, << 1 (i.e., the bad cavity regime)
and in the absence of LPN and external force, Eqs. and reduce
to Ay ~ Ay + \/ﬁ[%(Zw/ﬁoy — 1]pin and pous = pin- The reduction in back
action is evident in the amplitude quadrature. This feature of MSI tuned at pure
dissipative coupling regime has been discussed in detail in Ref. [65].

In order to achieve optimum detection strategy, it is better to define a gener-

alized output field quadrature such that

07 = Ayt 080 + Poys sin 6, (2.12)

14



Chapter 2: Effects of Laser Phase Fluctuation on Force Sensing

where 6 represents the reference phase in homodyne detection that can be opti-
mized to achieve better sensitivity. It may be pointed out that the local oscillator
is produced by splitting off a part of the input laser, as a result, it also contains
the laser phase noise. In order to incorporate its effects, we follow the same ap-
proach as discussed by Abdi et al., [69] and consider all the detected quantities in
a frame rotating at randomly fluctuating instantaneous frequency i.e., (w, + <;5)
The correlation function for d¢;,(t) — dci (t)e™o+®(® in the rotating frame is still
given by Eq. .

On substituting output quadratures from Eqgs. and in
Eq. , we obtain our generalized output quadrature in terms of fluctuating
input field quadratures (A;n, pin), fluctuating phase (gbi) and SQL normalized
signal force (fs). The fluctuating input field quadratures and fluctuating phase
terms in the generalized output quadrature represents the Fourier component of

noise and is found to be

e Bl A B tan 6y
N = W[ﬁ‘f’ ( \/6"'—\/@)]9171
. 2M1 + Z(MQ — M1>tan0 . 2M2 -+ Z(MQ — Ml)tane . }:|

(2.13)

When fy < fs, the force signal is detectable and when f; = 1, the signal is at
SQL [40]. Tt is interesting to note that the homodyne angle 6 can be optimized to
eliminate the back action term completely from the noise spectrum [93H97]. This

can be done by taking

Pr?
tanf,,; = —2—. 2.14
an Yopt K2 + 4w? ( )

The single-sided spectral density of noise can be calculated by using the stan-

dard relation [40]

L S (w)d(w — ') =

5 [(In@) @) + (A fv@)], (215

DN | —

assuming the spectral densities of the input field quadratures to be Syu,, = 5,,, =1

n

with no cross-correlation i.e, Sy = 0 and for the laser phase fluctuation we use

inPin
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Sy (dB)

2W/ Ko

Figure 2.1: Here light shaded lines show noise spectrum in the presence of phase
fluctuations while dark shaded lines show the case of no phase fluctuation. The
horizontal line corresponds to SQL. Here solid , dashed and dotted lines correspond
to P = 3,9 and 27, respectively. Here m = 100 ng, k, = 2r MHz, n = 4.182 x 108
m~!, I'; = 10 Hz, v, = 200 Hz.

Eq. (1.2)). The noise spectral density is found to be

11 tan @\
= 5l (Ve )

2l 5[ KoQ 4 9 Q
1+t 0) —4,] —————tanf ;|.
1+ w?/~2 { 40?2 + HOP( + tan” ) P(r2 + 4w?) at

(2.16)

From Eq. it is clear that by selecting the optimum homodyne angle ac-
cording to Eq. , the back action term can be eliminated completely.

Next, we present the results of our numerical simulation. It may be noted that
throughout our calculations, we use m = 100 ng, k, = 27 MHz, A = 1064 nm and
n = 4.182 x 10® m~! which are the same as discussed in Ref. [43]. Figure
shows a comparison of noise spectrum Sy in the absence and presence of laser
phase noise. The dark shaded lines correspond to the case when there is no phase
fluctuation while the light shaded lines correspond to situation when the effects of
phase fluctuation are incorporated into the system. The dotted lines, dashed lines
and solid lines correspond to power parameter P = 27, 9, 3 respectively. Other
parameters are I, = 10 Hz and ~, = 200 Hz. It is interesting to see that SQL

can still be achieved for a wide range of detection frequencies even in the presence
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Figure 2.2: Contour plot of noise spectrum Sy against laser linewidth I'; and noise
correlation parameter .. Here the line at Sy = 0 dB corresponds to SQL and the
region below this line gives better than SQL sensitivity. Here the power parameter

P =6 and all the other parameters are the same as in Fig. [2.1}

of laser phase noise provided the power levels are kept low as clearly shown by
light shaded continuous and dashed lines. To get an insight of this situation, we
consider the noise spectrum Sy given by Eq. which contains a shot noise
term, back-action term and laser phase noise term. For an optimum angle at
2w/k, = 1, Eq. reduces to tanf,, = P/2 = () which results in complete
elimination of the back-action from the noise spectrum. The braces {} term in
Eq. (2.16)), which is related to the phase noise, reduces to (1/2k,)[P +8/P], which
shows clear dependence of phase noise on the input power P. The phase noise
increases in both cases i.e., when power level is either very large or very small.
However, there exists an intermediate power range in which below SQL sensitivity
can be achieved. That is why, we have both upper and lower bound on the power
levels (See also Fig. (2.3))).

In figure we present a contour plot which shows the effect of laser linewidth
and finite correlation time on noise spectrum. The contour at Sy = 0 dB rep-
resents SQL. The positive values of the contour correspond to above SQL and

negative values of the contour correspond to below SQL. It is clear from the re-
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14}
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20/ Ko

Figure 2.3: Contour plot of noise spectrum Sy against P and 2w/k,. The dark
shaded region (in red) corresponds to below SQL sensitivity. Here I'; = 10 Hz and
7. = 200 Hz. All the other parameters are the same as in Fig. H

sults that the laser linewidth and the correlation time must be selected in a manner
to remain in the negative portion of the contour to obtain below SQL measure-
ment. The contour is plotted at the optimum homodyne phase value of 2w/k, = 1
for power parameter P = 6.

In order to get further insight, next we show contour plot of noise spectrum
against the input power parameter P and the detection frequency 2w/k, (See
Fig. ) Only the dark shaded region in Fig. corresponds to below SQL
sensitivity. Here the laser linewidth and noise correlation parameter are considered
to be I = 10 Hz and v, = 200 Hz, respectively. It is clear from the contour plot
that the power levels for which below SQL sensitivity can be achieved range from
0.95 to 11.5. Thus for higher power level force sensitivity below SQL cannot be
achieved. This is also evident from Fig. u (where the light dotted line is at

power level of 27).
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2.4 Force Detection on Free Mass in the Pres-
ence of Phase Fluctuations, Damping and
Thermal Noise

In this section, we consider the effect of mechanical damping of the free particle and
its interaction with the thermal environment in presence of LPN. The equations

of motion in this case are as follows

¢ = —(g —id)c + vRcin, (2.17a)
h m F€$

P e, et — cl o — 2P 4 £ 4+ e (2.17b)
2m m m m

Here ~,, represents the mechanical damping rate and & is the thermal noise cou-
pling of the free particle with zero mean value. In this case, the displacement of

the free particle and the output field in frequency domain evolve in the following

way:
Ko + 21w N\/KoC . 2i7/KoC -
Ocout+ = | =% | |b+ — 5 WTe + — 5 —¢1 |, 2.18
Cout (Ho—22w> { - /<c0+22wwx * /<;o—l—22w¢+] (2.182)
hijey/Ko
e Ry
m(w + ivm) (Ko — 2iw)
h7762/€0 ] y fe:c +€
- ). 2.18b
2mw(w + 19m) (Ko — 2iw) (¢+ +é ) mw(w + Ym) ( )

Following the same procedure as we did in section [2.3 the amplitude and phase

quadratures of the output field can be written as

o+ 21 [ \/2 o , . , .
Aout = (H—M) Azn - me + —Quelﬂ +1c <M1¢+ =+ M2¢*) :| )

Ko — 2iw B B FSQL
(2.19a)
o+ 20 [ M! — M! i .
PO ACR L PR 7 (Flet e (64 +9)], (2.19b)
Ko — 2iw ) | 2
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where (Q and P are the same parameters as defined in Eq. (2.10]) while the param-
eter B, M| and M} are defined as

B = (1+4iym/w),
VIRQ _ie? [2Q

M =
! 4w B \ kP’
V26,Q e [2Q
M, = . 2.20
2 w B KoP (2.20)

For a generalized quadrature 67 as defined earlier, the noise fy in this case is

given by the following relation

-8 T A, tan 6 ;
v = G—B[ + (—\/—@Jrai) in + g
V2 V@ B VQ BFsqr
iE{ 2M; +i(M5 — M{)B tan Qé N 2MS + (M5 — M{)Btan6 . H
V@ ’ V@ I
(2.21)
For random thermal force &, the correlation function is defined as
(E(W)E(Q)) =ArmKpTd(w + Q) (2.22)

and the corresponding noise spectrum can be written as Sy, = 4mmKgT7,,, where
Kp is the Boltzmann constant, 7" is the temperature of the environment and ~,,
is the mechanical damping of the oscillator. The noise spectrum Sy in this case

is given by the following:

|BI* |BI*

1 8Tm KTy,
Sy = _—+{Q+—tan29— B+ B~ tané’}——
by 2[ 0 0 ( )

Fsor

2
2T | B|*¢? V2k,Q 2Q sin(f — 6)
+ { < W /{oP (tan@cosﬁ— —|B| ))

(1+w?/72) @

2
+ 4/ 2% (tanGsmﬂ%—W))

2
+ \/Z_KOQ 2Q (tan O cos 5+ sin(f — 9) )>

|B|
+ ji (tanesinﬁ = —Cos(ér 5))> H (2.23)
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Figure 2.4: A comparison of noise spectrum: (dark solid line) without phase
fluctuation, (light solid line) with phase fluctuation and (dotted line) with both

damping and phase fluctuations. Here P = 3, 2w,/k, = 1, I, = 10 Hz, . = 200
Hz, Y /Ko = 1077 and T = 0 K.
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Figure 2.5: Effects of damping on noise spectrum: horizontal line refers to SQL,

solid line corresponds to 7,,/k, = 0, dotted line corresponds to 7,,/k, >~ 0.1 and

the dashed line corresponds to 7,,/k, ~ 1. All the other parameters are the same
as in Fig. 1)

Here |B| = /1 +w?/92; § = tan'(k,/2w) and § = tan~! (7, /w). In Eq. (2.23)

the first term represents the photons shot noise, the second term corresponds to
the radiation back pressure, third term gives the contribution of thermal noise
and the last term corresponds to laser phase fluctuation noise. It may be noted

that in the presence of mechanical damping, contribution from the radiation back
action cannot be eliminated completely for any choice of optimum homodyne

phase. However, minimum value of back action can be achieved by selecting the
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20/ Ko

Figure 2.6: Effects of temperature on noise spectrum: solid, dashed and dotted
lines correspond to 7' = 0 mK, 200 mK and 500 mK, respectively. Here 7,,/k, =
107° and all the other parameters are the same as in Fig. (2-4).

homodyne phase 6 such that

Pk2
tan 0, — o . 9.24
A bon = (3 T aR)(1 1 12 (2:24)

It may be noted that for ~,, = 0, this result reduces to Eq. .

Figure shows a comparison of the noise spectrum in absence of phase
fluctuation (dark solid line), with phase fluctuation (light solid line) and when
both damping and phase fluctuation are present (dotted line). The temperature
is taken to be at T = 0 K. Clearly there is no significant effect of damping on
the noise spectrum for ~,,/k, = 107>, In order to further explore the effects of
mechanical damping on noise spectrum consider Fig. which shows the noise
spectrum for different values of mechanical damping. It is clear that as long as
Ym /Ko << 1, the effects of mechanical damping is negligible. However, when ~,, is
of the order of k,, the noise spectrum is then significantly affected by mechanical
damping as shown by the dashed line in Fig. .

Next we discuss the force sensitivity on the free particle when thermal fluc-
tuations are also incorporated along with damping and phase fluctuations. Fig-
ure shows the effects of finite temperature on noise spectrum. Here solid,
dashed and dotted line corresponds to 7' = 0 mK, 200 mK and 500 mK, respec-

tively. The mechanical damping is assumed to be 7,,/k, = 107°. It is clear that
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Figure 2.7: A Contour plot representing the force sensitivity as a function of 2w/,
and P. Here I'; = 10 Hz, 7. = 200 Hz and ~,,/k, = 107°. The largest contour
corresponds to T' = 0 mK. By increasing the temperature the contours become
smaller and vanishes for T' > 460 mK, as a result no measurement at SQL is

possible.

below SQL sensitivity can still be achieved in the presence of finite temperature
however, force sensitivity decreases due to the increase in the temperature of the
environment.

Figure shows a contour plot of noise spectrum Sy against 2w/k, and
P. The size of the contour decreases due to an increase in the temperature and
eventually vanishes when T" approaches 460 mK. In this figure the largest contour
corresponds to 7' = 0 K and it spans input power range of 0.95 < P < 11.5 while
the allowed detection frequency range for this case is about 0.55 < 2w/k, < 1.68.
It is interesting to note that the largest contour in Fig. which corresponds
to T = 0 mK is almost similar to the contour shown in Fig. (2.3). The slight

difference appears due to the non-zero value of mechanical damping.
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2.5 Summary

In summary, our results show that the sensitivity of the force detection strongly
depends upon the laser phase fluctuation. However, force measurement better
than SQL can still be achieved with a wider frequency range for laser linewidth
I'; of few tens of Hz and noise correlation parameter . of few hundreds of Hz.
We also considered the effect of mechanical damping and thermal noise in the
presence of phase fluctuations. The mechanical damping doesn’t affect the force
measurement, substantially as long as 7, is much smaller than w. Temperature
of the environment greatly reduces the measurement sensitivity however, better
then SQL measurement is still possible for temperature 7' < 460 mK if I'; = 10 Hz
and 7, = 200 Hz. In the presence of laser phase fluctuation and thermal noise,
the magnitude of input power of the laser also influences the force measurement
sensitivity. Our results show that below SQL measurement can neither be achieved
for very low power levels nor for very high power levels. For laser power parameter
P < 0.95, below SQL measurement is not possible while the upper level bound
on power level P depends upon the value of I';, 7. and 7. Thus an optimum
choice of various parameters involved in the system play an important role for

force measurement in the presence of LPN, damping and thermal noise.
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Chapter

Force Sensing in a Dissipative
Optomechanical System in the Presence
of Parametric Amplifier’s Pump Phase
Noise

3.1 Introduction

The idea of dissipative coupling for the detection of weak force signal that acts on
a free test mass was proposed by Vyatchanin et al. [42]. This scheme provides the
possibility of detecting a classical force with sensitivity better than the SQL. The
proposal was further extended with the introduction of a degenerate parametric
amplifier (PA) into the system. It was shown that the presence of PA allows much
better force sensitivity (as compared to the case when it is not present) even in the
presence of mechanical damping and thermal noise [43]. In both of these studies,
the effect of phase fluctuations associated with the driving laser field were ignored.
In Chapter [2| we incorporated the phase fluctuation associated with the drive laser
and thoroughly studied its effects on free mass force sensing in a dissipative OM
system. It was shown that the sensitivity of force detection strongly depends upon
LPN.

In this chapter, we study the effects of phase noise associated with the pump
laser which drives the parametric amplifier (PA) on the detection of a weak clas-
sical force acting on a free test mass in a dissipative OM system. In order to
incorporate the pump phase noise associated with PA in our system, we follow
the noise model as proposed by Rabl et al. [74]. Our scheme can be realized by

considering pure dissipative coupling setup based on a modified Michelson-Sagnac
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interferometer [54]. The relative strength of the dispersive and dissipative coupling
can be tuned so that the purely dissipative-coupling regime becomes experimen-
tally feasible as demonstrated by Sawadsky et al. [55]. The parametric amplifier
can be introduced in this setup with a separate pump as proposed by Ref. [62].
The paper is organized as follows. In section we present our model and solve
the equations of motion using quantum Langevin equation formalism. We find an
expression for the output quadrature of the field and calculate the noise spectral
density. In section [3.3] we present results of our numerical calculations. Finally,

in section we suminarize our results.

3.2 Theory and Model

We consider an optomechanical (OM) system with a degenerate parametric am-
plifier PA [43/62] where a free test mass m is dissipatively coupled to a cavity
field with eigen-frequency w,. The potential energy of the free mass is zero and
its momentum and kinetic energy are conserved. The cavity is driven resonantly
with a strong coherent light of frequency w; = w, and amplitude ;. A pump laser
field of frequency w, = 2w; interacts with the PA and produces an output field at
frequency w; inside the cavity. We assume that the pump laser driving the PA has
phase fluctuation ¢(t) = [ ¢(t')dt’ with zero mean value. The Hamiltonian of the

system in rotating frame at frequency w; is given by

~

2
H = h(w, —w)cle+ 2p— +ihV/2k[g(c" — ¢)
m

+ e — o +inG(cf?e? — P, (3.1)

where k = k,(1 + nz) represents the position dependent photon decay rate and
K = K, when # = 0. The parameter n = K.,/Kk,, Where k., is the dissipative
coupling constant between the cavity field and the free test mass. The parameter
0 is associated with the laser which drives PA and is given by 0 = 60, + ¢(t),
where 0, is the reference phase and ¢(t) is the fluctuating phase. The amplitude
of the field is related to the input power as g, = \/m The first term in the
Hamiltonian represents the free energy of the cavity field, while the second term

represents the energy of the free mass. The third term represents the coupling of
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cavity field with the input laser and input vacuum noise represented by ¢;,. The
last term represents the interaction between the cavity field and PA.

Here it may also be notted that, the cavity is driven with a laser of frequency
w; while the PA is driven by a separate pump with frequency w, = 2w;. In
practice, due to the power broadening in PA laser pump, the noise bandwidth
associated with PA is much bigger than the laser that drives the cavity. Under
this assumption, we can neglect the effects of the laser phase noise which drives
the cavity against the effects of PA pump phase noise as discussed by Farman
et al. [98]. For phase noise model, we follow the same approach as presented in
section [1.2.3] in Chapter [I}

In the presence of an external weak force F,, acting on the free mass with zero
mean value, the Heisenberg equations of motion for the system are given by the

following:

p

T ==, (3.2a)
m
A/ 2K,
= ——Z i 5 n [Zfl(CT - C) + CTCin - CInC] + Fexa (32b)
¢ =2k,(1+ gx)(el + Cin) + 2GcTe? — ko(1 4 nx)e. (3.2¢)

Here we assume that the steady-state displacement of the free particle to be zero
i.e., zy = 0. Under this condition the steady-state momentum and cavity field are
found to be

\/2%0&

PR (Ko + 2Ge'). (3.3)

ps:O7 Cs =

If we assume the deterministic part of the phase 6, = 0, the steady-state value
of the cavity field becomes ¢, = v/2k,e1(k, — 2G)~1, which is exactly the same
as given in Ref [43] with the stability requirement of x, > 2G. The equations of
motion for the operators given by Egs. — can be represented as a sum
of large mean value and small fluctuating terms such that x = x,+dx, p = p,+0p

and ¢ = ¢, + dc. In the first order approximation, the linearized equations of
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motion are given by

0 = @, (3.4a)
m
op = —mn%[al(&& —d¢) + cs(Cin — c;rn)] + F.., (3.4b)
| co1da .
3¢ = —R,0c — (Ko + 2G) 5 + 2G(dc" + icsd) + V2R oCin, (3.4c)

By taking the Fourier transform of these operators, the cavity field and position

fluctuation in frequency domain are found to be

1
(Ko —iw)? — 4G?

de(w) = {\/2_%0(50 — W) Cin(w)

+ 26V 2k0c! (—w) — (Ko — 1w + 2G) (K, + 2G)

X 05”529”(“) . 2305 {(no — i) d(w) — 2(;(/5(—&))}} , (3.52)

5 (w) thny/kocs 4G — iw
z(w) =
\/imuﬂ Ko — w + 2G

imGc®  k, —2G T, .
+ mw? kK, —iw + 2G [gb(w) + gb(—w)]

(Cin - Cjn)

e

mw?’

(3.5b)

The output field of the system and its fluctuation can equally be obtained by the

input output formalism [90] and are given by

Cout = —Cin + V 2KC, (3.6a)

St (W) = —Cin(w) + V2ro0c(w) + V2hy ’7;5 Sx(w). (3.6b)

On substituting Eqgs. (3.5al) and (3.5b)) in Eq. (3.6b)), the fluctuating output field

of the system is found to be

\/2_0 s 4G+ . 2 o\"vo — .
Ocou(w) = = znc /{0(— iw iWZ)GM(W) * (Kofi('éZ)Q —ujl)G? —1en(@)
4Gk, o () - 20,GV/2k, [ (Ko — iw)p(w) — 2Gq§(—w)} .
(Ko —iw)? — 4G22 ™ w[(ko — iw)? — 4G?]

(3.7)

Equation (3.7]), which is one of the main result of the paper clearly shows that the
output field which contains information regarding the force signal and speed of the

test mass depends upon the phase fluctuations associated with the laser driving
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PA. Next, we define the input amplitude and phase quadratures as X;,(w) =

\/Li[cm(w) + ¢! (—w)] and Y, (w) = %[cm(w) — ¢! (—w)]. Similarly, the output

field’s amplitude and phase quadratures are defined as X, (w) = \/ii[dcout(w) +
el

out

dCout(w) and ¢ cl

out

out

(—w)] and Y,ut(w) = #5[5cout(w) —écl ,(—w)]. On substituting the values of
w), the output quadratures of the field are tound to be
h d f the field found to b

Ko tiw +2G — fex(w)
Kou = Ko — tw — 2G {Xm + KX+ 2KUFSQL(w)
- {bs 6} - anfo 4o}, (3.5)
Ko +iw — 2G . .
Your = m {Yén + M3{¢+ + ¢}] ) (3.8b)

where ¢, = (ﬁ(j:w) while the parameters U, K, Fsor, M1, My and Mj are the
same as given in Appendix [A]

The first term in Eq. is the photons shot noise, while the second term
is the radiation back action term, the third term is the external force signal nor-
malized to Fsor, and the last two terms arise due to the PA’s pump phase noise.
Equation shows that the phase quadrature of the output field also contains
the phase noise terms in addition to the back-action term. It may be noted that
in the absence of PA (i.e., G = 0), Eqgs. , reduce to the same results as
discussed in Ref. [43]. We can also define a generalized quadrature of the output
field as Zyut(w) = Xout(w) cos @ + Your(w) sin g, where ¢ represents the homodyne
phase angle determined by the local oscillator that can be optimized for better sen-

sitivity. By using Eq. (3.8a) and Eq. (3.8b]), we obtained the following expression

for the generalized quadrature:

o +iw+2G 1.
Zout(w) = % {Xm cos p + (K cos p + 7 Sin gp) Yin
+ V2KU Jea cos — My cosp X (¢ — ¢_)
FsqL
M3 . . .
+ (—M200590+73m90)(¢++¢7) ; (3.9)

where A = E:‘;ﬁ% It is clear from Eq. 1} that it contains information

about the weak force signal that can be detected by using homodyne detection of
the quadrature Z,,,(w) of the output field from the cavity. Using the correlation
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functions of the input vacuum noise

(X () Xin(2)) = (Vin ) ¥in (©)) = 2700 + ), (3.100)

(Xin()Yin( D) = (¥in(0) Xin (©)) = 270 (0 + ), (3.10D)

the spectrum of the fluctuations in the quadrature Z,,,(w) of the output field can

be written as [43]
2t (@)3(w + Q) = %{(Zm(w)zout(sm b Zod ) Za(@))]. (3.11)

Finally, we obtain the following expression for the spectrum of the output field:

2
sm(w)zzAKcos%p{i+i{K+taw} + rsaw+nl. 612

AK 4K A 2K
where f, = SF%;WL) is the spectrum of the external signal force normalized by the

spectral density of SQL of force. When f, = 1, the signal is said to be at SQL.

Spr(w) is the noise spectrum of PA’s drive and is given by

20 M;s tan ¢ / / M?: tan ¢
S = — My — My + —FF s My, — My + ——
fi) 1+°;—§H T }{ R
Mt / Myt
b AMy - My SRERENL gy P RY (3.13)
A A
where M;, M, and M; are defined as
M{ _ 205Gﬁ |
—w(ko — iw + 2G)
M, = 1GKcs(ko — 2G) ’
—/Fow(4G + iw)
, 2icsG /Ko
M, = . 3.14
5 —w(ky —iw — 2G) (3:-14)

In Eq. (3.12)), the first term is the photon shot noise, the second term is the
radiation back action noise, the third term is the noise associated with the phase
fluctuation of PA’s pump and the last term is the force signal. For the detection

of force signal, the Fourier component of the noise should be smaller than the SQL

normalized signal term. Hence the first three terms in Eq. (3.12)) represent the
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single sided spectral density of the noise i.e.,

tan ¢
A

}2] + L), (3.15)

Swlw) = =1+ {K o

T UK

by this definition when Sy(w) = f; = 1, the noise level is said to be at SQL.
Moreover, the homodyne phase angle ¢ can also be optimized at some frequency
W, to get rid of the back action term [93,94,96,97]. The optimum homodyne
angle o is given by

JR2(16G2 + w?)
wil(ko — 2G)* + W3]’

tan Qo = —AK = (3.16)

where J = % is dimensionless power parameter and is proportional to the input
power (See Appendix. Thus, on substituting Eq. into Eq. , the back
action term can be completely eliminated at w = w,. It may also be noted that
when phase noise is zero, our result reduces to that of Huang et al. [43]. If we
further simplify our system by assuming that the gain of PA is also zero i.e., G = 0,

our results reduces to that of Vyatchanin et al. [42].

3.3 Results and Discussion

Next, we present the results of our numerical simiulation. Throughout in our
calculations, we consider m = 100 ng, k, = 27 MHz, A = 1064 nm and n =
4.182 x 10® m~! which are the same as discussed in Ref. [43]. In our analysis, we
also keep the system in the stable regime i.e., G/k, < 1/2. The power parameter
J can be written as J = J,(1 — 2G/k,) "2, where J, refers to the power parameter
in the absence of PA (See Appendix . In Fig. , the dotted line shows the
noise spectrum Sy when gain of PA is zero i.e. G = 0, the noise spectrum Sy
is below the SQL line and is approximately -3 dB around the homodyne phase
WYopt 18 optimized at w/k, = 1. This is the case which has been discussed in detail
in Ref [42]. When gain of the parametric amplifier is non-zero i.e., G/k, = 0.2
(dashed line), the noise spectrum drops to -9 dB around the homodyne phase.
Thus, the presence of PA greatly improves the force sensitivity as discussed in

detail in Ref. [43]. Next we consider the effect of phase fluctuations associated with
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Figure 3.1: Here the dotted line shows noise spectrum in the absence of PA,
the dashed line corresponds to the noise spectrum when PA is used for the force
detection and the solid line represents the noise spectrum in presence of phase
fluctuations associated with the pump driving the PA. The horizontal line corre-
sponds to SQL. Here J, = 1, G/k, = 0.2, T, = 100 Hz, 7. = 500 Hz and the

homodyne angle is set at w/k, = 1.

the pump laser which drives PA. The solid line in Fig. corresponds to the case
when pump phase fluctuation is non-zero i.e., I'y = 100 Hz and ~. = 500 Hz. The
result clearly shows that Sy is still below SQL line however, with less sensitivity
and smaller bandwidth. It is clear that the phase noise associated with PA pump
considerably reduces the sensitivity for below SQL measurement. Here the power
parameter .JJ, = 1 and the homodyne phase defined by Eq. , is optimized at
w/ke = 1 in all the three cases.

To further elaborate the effects of PA’s pump phase noise, consider Fig.
which shows a contour plot of the noise spectrum Sy against the laser linewidth
I'; and the noise correlation parameter .. The contour at Sy = 0 (as shown by
white line) is at SQL while the region below this contour (dark shaded region)
corresponds to below SQL regime. In order to achieve sensitivity below SQL, the
values of I'; and 7. should be selected in the dark shaded region.

Next, Fig. shows contour plots of the noise spectrum Sy against the
parametric gain G/k, and the detection frequency w/k,. The solid line refers to
the case when phase fluctuation is zero and the sensitivity is at SQL. By increasing

the parametric gain such that 0 < G/k, < 0.5, the range of detection frequency
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Figure 3.2: Contour plot of the noise spectrum Sy against laser linewidth I'; and

noise correlation parameter .. Here Sy = 0 dB (contour shown by white line)

corresponds to SQL and the region below this contour (the darkest one) gives

better than SQL sensitivity. Here J, = 0.25 and other parameters are the same

as in Fig. .

increases and then start decreasing and eventually approaches to the limiting value
of w/k, = 1. The detection frequency range is maximum when parametric gain
is around 0.15 < G//k, < 0.3. We can have below SQL sensitivity for almost any
value of the parametric gain (between 0 < G/k, < 0.5) and for each value of the
parametric gain we have certain width of detection frequency range. However, our
results show that when phase noise is also incorporated, the range of detection
frequency and parametric gain for which SQL can be beaten is reduced. This is
shown by dot-dashed, dashed and dotted contours in Fig. . Depending upon
the values of I'; and 7., we have different size of contours and therefore, limited
freedom in selecting various parameters for achieving below SQL sensitivity. Thus
measurement sensitivity is determined by the laser linewidth and noise correlation
parameter.

Figure shows contour plots of the noise spectrum Sy against the para-
metric gain G/k, and the power parameter J,. The homodyne phase is optimized

at w/k, = 1. The solid line corresponds to the case when pump phase noise is
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Figure 3.3: Contour plots of noise spectrum Sy against parametric gain G/k, and
detection frequency w/k,. Here all the contours are at SQL. The solid contour
corresponds to the case when phase fluctuation of the PA’s pump is zero. The
dotted, dashed and dot-dashed contours correspond to (I, = 50 Hz, . = 1000
Hz), (I, = 100 Hz, 5. = 500 Hz) and (I'; = 150 Hz, . = 300 Hz), respectively.
Here J, = 0.25 and all the other parameters are the same as in Fig. .

zero. By increasing the parametric gain the minimum power required to achieve
SQL decreases. However, when phase fluctuation of the PA’s pump is not zero,
we have both upper and lower bound on the power parameter for below SQL
measurement. For instance, when I} = 100 Hz and ~. = 500 Hz (dashed con-
tour), then for G/k, = 0.2 the power range allowed for below SQL sensitivity is
0.18 < J, < 1.18. And for I'y = 50 Hz and v, = 1000 Hz (dotted contour) at
G/k, = 0.2 the allowed power range for below SQL sensitivity is 0.21 < .J, < 0.71.
Similarly, for T, = 150 Hz and 7. = 300 Hz (dot-dashed contour) at G/k, = 0.2,
below SQL sensitivity can be achieved for 0.17 < J, < 1.7. Thus the presence of
phase noise not only limits the parametric gain but also affects the power range
for below SQL sensitivity.

Figure shows contour plots of the noise spectrum Sy against the power
parameter J, and the detection frequency w/k,. The parametric gain is G/k, =

0.2. The solid line corresponds to the case when pump phase noise is zero. By
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Figure 3.4: Contour plots of noise spectrum Sy against the parametric gain G/,
and power parameter J,. Here all the contours are at SQL. The solid contour
corresponds to the case when phase fluctuation of the PA’s pump is zero. The
dotted, dashed and dot-dashed contours correspond to (I = 50 Hz, 7. = 1000
Hz), (I'; = 100 Hz, v, = 500 Hz) and (I'; = 150 Hz, v, = 300 Hz), respectively.

Here the homodyne phase is optimized at w/k, = 1 and all the other parameters

are the same as in Fig. 1)

increasing the input power the detection frequency range decreases but in a very
slow fashion for instance, at power level of J, = 3, the detection frequency is in
the range of 0.6 < w/k, < 1.4. Tt is also interesting to note that for J, = 0.25,
the detection frequency range is 0.25 < w/k, < 1.32 (which can also be verified
from Fig. at G/k, = 0.2). However, when phase fluctuation of the PA’s
pump is not zero, not only the detection frequency range is reduced but the range
of power level is also reduced for below SQL measurement. For instance, when
[, = 100 Hz and 7. = 500 Hz (dashed contour), then for G/k, = 0.2 the power
range allowed for below SQL sensitivity is 0.18 < J, < 1.18 at detection frequency
of w/k, = 1. Furthermore, for I'; = 50 Hz and ~. = 1000 Hz (dotted contour), the
allowed power range for below SQL sensitivity is 0.21 < J, < 0.71 at G/k, = 0.2
and w/k, = 1. Similarly, for I = 150 Hz and ~, = 300 Hz (dot-dashed contour),
below SQL sensitivity can be achieved for 0.17 < J, < 1.7. All these results are

consistent with Fig. (3.4)). The power range for below SQL sensitivity is maximum
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W/ Ko

Figure 3.5: Contour plots of noise spectrum Sy against power parameter .J, and
detection frequency w/k,. All the contours are at SQL. The solid contour corre-
sponds to the case when phase fluctuation of the PA’s pump is zero. The dotted,
dashed and dot-dashed contours correspond to (I'; = 50 Hz, . = 1000 Hz),
(I'; = 100 Hz, 7. = 500 Hz) and (I} = 150 Hz, 7. = 300 Hz) respectively. Here

G/ko, = 0.2 and all other parameters are the same as in Fig. (3.1]).

for the detection frequency in the neighborhood of optimum phase as back-action
is minimum around that phase.

Figure shows the plot of noise spectrum against the detection frequency
for different choices of various parameters. The dot-dashed curve shows the noise
spectrum when I'; = 500 Hz, v. = 1 KHz, J, = 1 and the optimum angle is set
at w/k, = 2. For dashed curve, I, = 1 KHz, 7. = 5 KHz, J, = 10 and the
optimum angle is set at w/k, = 7. For solid curve, I'; = 2 KHz, 7. = 10 KHz,
J, = 15 and the optimum angle is w/k, = 9. The parametric gain in all the
three cases is G/k, = 0.2. It may be noted that by increasing the laser linewidth
and noise correlation parameter, below SQL measurement is possible, however,
it require higher values of input power and the optimum angle is shifted towards
higher values of the detection frequency. It follows from above discussion that
depending upon the values of I'; and ~., below SQL sensitivity can be achieved for

specific range of input power J,, detection frequency w/rk, and parametric gain
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Figure 3.6: Plot of the noise spectrum Sy against the detection frequency w/k,.

For dot-dashed curve, I'; = 500 Hz, 7. = 1 KHz, J, = 1 and the optimum angle
is set at w/k, = 2. For dashed curve, Iy = 1 KHz, v, = 5 KHz, J, = 10 and the

optimum angle is set at w/k, = 7. For solid curve, I'; = 2 KHz, 7. = 10 KHz,

J, = 15 and the optimum angle is set at w/k, = 9. The parametric gain in all the
three cases is G/k, = 0.2.

G /K,. Thus, the presence of LPN (associated with the PA pump) limits the choice

of selection of various parameters for below SQL measurement.

3.4 Summary

To summarize the results in this chapter, we have considered the effect of phase
fluctuations associated with the laser driving PA in a dissipatively coupled op-
tomechanical system on force sensing. Our results show that the sensitivity of the
force detection strongly depends upon the laser phase fluctuation associated with
PA’s pump. However, force measurement better than SQL can still be achieved
with a wider frequency range provided an optimum choice of various parameters
is made. As an example, for any particular value of the gain within 0 < G < 0.5,
there exists a certain range of the laser linewidth I'; and noise correlation parame-
ter v, in which below SQL measurement is possible. And for below SQL sensitivity
at that particular value of G, I'; and ~,, there exist a certain range of input power
level and detection frequency. Thus in case of LPN of PA pump, we have limited

choice in the selection of various parameters for below SQL measurement.
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Chapter I

Effects of Kerr Medium on Force Sensing
in a Dissipative Optomechanical System

4.1 Introduction

In this chapter, we study the effects of the Kerr medium on the detection of a weak
classical force acting on an OM oscillator which is coupled purely dissipatively. The
presence of Kerr medium inside an OM cavity can lead to very interesting effects
such as controlling the normal mode splitting (NMS) due to photon blockade [80],
enhancement of OM entanglement [81] and bistability of the OM system [82,[83].
In an earlier study, it has been shown that the use of Kerr cell in interferometric
gravity-wave detector counters the radiation pressure induced fluctuations. The
performance of such interferometers greatly surpass SQL [51]. We are therefore
interested to see the effects of optical Kerr medium on force sensing in a dissipative

OM system.

4.2 Theory and Model

We consider an optomechanical (OM) system where the oscillator of mass m and
frequency w,, is dissipatively coupled to a cavity field having eigenfrequency w,.
The cavity is driven by a strong coherent light of frequency w; and amplitude
g;. We assume an optical Kerr medium is present inside the OM cavity with
anhormonicity parameter x. For the realization of dissipative coupling, we consider
the Michelson-Sagnac Interferometer (MSI) configuration as shown in Fig. in
Chapter 1. An interesting feature of this system is that it can be tuned to operate

in pure dissipative coupling regime. This can be done by properly adjusting the
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position of the membrane and the reflectivity of the beam splitter as discussed in
detail by Xuereb et al. [54]. The Hamiltonian of the system in rotating frame at
frequency wy is given by

2 Loy 5 P
H = hA,clc+ —mw?a? + ——
2 2m

+ i 2k[g (¢ = ¢) + e — ¢! ] + hxef?e?, (4.1)

where A, = w, —w; and k = Kk,(1+nx), represents the position dependent photon
decay rate and kK = k, when x = 0. The parameter 7 is related to the dissipative
coupling strength as g, = nk,T.pr, Where ., = \/m is the zero-point
fluctuation of the oscillator. The amplitude of the field is related to the input
power as g = \/m The first term in the Hamiltonian represents the free
energy of the cavity field, while the second and third term represent the energy
of the oscillator. The fourth term represents the coupling of cavity field with the
input laser while the input vacuum noise is represented by c¢;,. The last term
represents the interaction between the cavity field and the Kerr medium with
X = 3hw?Re[x®)]/2€V,, where ¢ represents the dielectric constant of the medium,
V. is the volume of the cavity and y® is the third order nonlinear susceptibility
of the medium.

In the presence of an external weak force F, with zero mean value acting on
the oscillator, the Heisenberg equations of motion for the system are given by the

following;:

. b
= = 4.2
T o (4.2a)

thnv/2k,
=

(e’ — ¢) + cteim — ¢ ] — mw? e — yp + €+ Fra, (4.2b)

¢ = —iA,c+ V2K (1 + g:p)(el + Cin) — 2ixc ¢ — Ko(1 4+ nx)e. (4.2¢)

In the steady-state, the solution of Eqs. (4.2a)-(4.2¢) yields

\/25361 Y 2/§oihn€l(cs - C:)

N s —
ks + 1A 2mw2,

bs = 07 Cs = , (43)

where r, = Ko(1 + nz,), A = A, + 2YN, and N, = |c,|?. It may be noted that

both x, and N, are not only related to each other but also satisfies third order
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equation and can have three roots, as a result, it can display multistable behavior.
The steady-state photon density Ny must be real and positive, while the steady
state position z, of the oscillator must be real. It is also clear from Eq. , when
A =0 = ¢, = ¢} which leads to x5 = 0. The operators given by Egs. -
can be represented as a sum of large mean value and small fluctuating terms such
that © = x5 + dx = 0x, p = ps + dp = dp and ¢ = ¢5 + dc. In the first order

approximation, the linearized equations of motion are given by the following:

i @7 (4.4a)
m
hna/2
op = _MTRO[Q@CT — 50) + cicin — Csc;‘fn)]
_ mw?ﬂ(sx — ’ym(5p + é- + Fema (44b)

6¢ = —[ks +i(A, + 4xN,)]|6c — 2ixc2dc!

(Konxs/2 4+ 1A)esndx
+ 2 +V2K4c (4.4c)

Equations (4.4a))-(4.4c|) and their Hermitian conjugate constitute a system of four

first order coupled equations which can be written as

ft) = Af(t) + <), (4.5)
where f(t) and ((¢) are column vectors and their transposes are given by

A/ 2k,
C(t)T = (0, %[csczn—c:cm} + &+ Fopy V/2KsCin, 2/{80371), (4.6)

while matrix A is given by

0 1/m 0 0
—mw2,  —Ym W —iW
A= : (4.7)
—c1/vV2 0 —Ky  —2ixc?
—ci/V2 0 2ixe® =k}

where ¢; = v2nc,(konzs/2 +iA) /(1 + nag/2), K1 = ks + i(A + 2xN,) and W =
V2k,hne; /2. The solution of Eq. 1D is f(t) = M(t)f(0) + fot/ M) ¢(t —t)dt',
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where M (t) = e?*. The system reaches its steady-state value and remains stable
as t — oo only if the real parts of all the eigenvalues of the matrix A are negative
such that M (oco) = 0. The stability conditions for the system can be obtained by

employing the Routh-Hurwitz criterion [99], and are given by

Sy = 2V2mk[(ks + Ym)? + A(A + AN, + V2mymw?, —iW (e — ¢;) > 0,
Sp = iW(ers] — i) — 2Wx (36, + c2er) + VEMWR, (62 + A(A + 4xN,)] > 0,
Sy = [iW(e1—¢})+ V2, {K2+ A(A+4xNy)} + 2\/§/ismw72n} S

— V2m2(2k4 + Ym)?S: > 0. (4.8)

Throughout our numerical analysis we restrict to the stable regime. All the pa-
rameters chosen in this work have been verified to satisfy the stability conditions
given by Eq. .

Next we take the Fourier transform of the operators given by Eqs. —.
As a result, fluctuations in the position of oscillator and cavity field in frequency

domain are found to be

duf) = 20| = 2 {8l ) = 8e) + €in() — )}
) + )] (4.92)
elw) = V2RsCin(w) — 2@;§Z§15f§;;u) + cﬁx(w)/\/ﬁ’ (4.9b)
where Z7'(w) = m(w? — w? — iwyy,) is the susceptibility of the mechanical

oscillator. Defining the input amplitude and phase quadratures as X;,(w) =
\%[cin(w) + ¢! (—w)] and Y, (w) = %[cm(w) — ¢! (—w)]. Similarly, for the field
inside the cavity, the amplitude and phase quadratures are defined as X (w) =
\%[(50(@ +dct(—w)] and Y (w) = %[(50((#) —dcf(—w)]. By using these definitions,

Eq. (4.9b)) can be written in terms of quadratures of the field as follows
a1 (w) X (w) +ib (W)Y (w) = c1(w)dz + V2K { Xin(w) + 1Yin(w)}, (4.10)

where a;(w) = k1 +i(2xc? — w) and by (w) = a;(w) — 4ixc?. By solving Eq. (4.10))

along with its Hermitian conjugate, we obtain the following expressions for the

41



Chapter 4: Effects of Kerr Medium on Force Sensing

quadratures of the cavity field:

(w)

i [0 + VIR ({01(0) + i)} X0 ()
— Z{bl W)

bi ()} V() )| (4.11a)
(o @1(02() + VIR (o (0) — a5 (~0) X (@)
)

—z{m(w + ai(—w) (@) (4.11b)

where

az(w) = ar(w)bi(—w) + aj(—w)bi (W),
az(w) = bi(w)c] +bj(—w)ey,

as(w) = aj(w)e] — aj(—w)e. (4.12)

The position fluctuation can also be written in terms of input amplitude and phase

quadrature as

00(w) = Zegp(w)| = a5(w)Xin + a6(w)Yin + E(@) + fralw)],  (413)

where a5(w) and ag(w) are as follows,

as(w) = ihn\/ﬁ_o[cs_cz _1_61\/2_’%(@1;@20)_
)

cs + c 51\/2_1{5(CL1(0J + CLT(—W))} (4 14)
) , .

as(w

Y

ai(—w))]

ag(w) = h\/—[

and Z_(w) = m(2; —w? —iwlesy) is the effective susceptibility of the oscillator
in the presence of Kerr medium with effective mechanical frequency Q2 = w?, +
Re[K (w)] and effective mechanical damping I'erf = v, — Im[K (w)]/w. Here the
parameter K (w) is defined as K (w) = ihne;\/koas(w)/[maz(w)]. It may be noted
that A = 0 leads to K (w) = 0 and eventually Z.;f(w) = Z(w). In Eq. (4.13), the
first two terms arise due to the input vacuum noise, the third term represents the
contribution of the thermal noise and the last term is due to the external force.

In the absence of dissipative coupling and external force, the oscillator follows
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Brownian motion, and the spectral density is Lorentzian centered at frequency w,,
with full width of ,, at half maximum.

Using Eq. for fluctuating output field and defining the fluctuat-
ing quadrature of the output field as Xou(w) = [cow(w) + ¢ (—w)]/v2 and
Yot (W) = [cour(w) — ¢} ,(—w)]/iv/2, we obtain the following expressions for the
amplitude and phase quadrature of the output field:

Xalt0) = VB (@) + LD 50 0) X, (), (4.150)
Vo) = VERY () + VI = D) v, ) (4.15b)

On substituting Eqgs. (4.11a]), (4.11b)) and (4.13)) into Eqgs. (4.15a]) and (4.15b)), the

output quadratures of the field are found to be

Xouwt(w) = h1(w) Xin(w) + ho(w)Yin(w) + hs(w) {E(w) + fex(w)}, (4.16a)

Your(w) = ha(w) Xin(w) + hs(w)Yin(w) + he(w) {E(w) + fea (W)}, (4.16b)

where the parameters hy(w), ha(w), h3(w), hy(w), hs(w) and he(w) in Eqgs. (4.16a))
and (4.16b|) are defined in Appendix

It may be noted that in the absence of Kerr medium the shot noise and thermal

noise are present only in the amplitude quadrature of the output field as can be

seen in Ref. [42,43]. However, Eqs. (4.16a)) and (4.16b)) show that in the presence

of Kerr medium, both quadratures contain the shot noise, back action, thermal
noise and external force signal. This interesting feature arises due to the fact that
the optical Kerr medium transforms amplitude fluctuations in the initial coherent
state into phase fluctuations [90]. We can also define a generalized quadrature of
the output field as Zyy(w) = Xout(w) cos ¢ + Y, (w) sin ¢, where ¢ represents the

homodyne phase angle determined by the local oscillator that can be optimized

for better sensitivity. By using Eqgs. (4.16a]) and (4.16b]), we obtained the following
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expression for the generalized quadrature:

Zou(w) = [hl (w) cos ¢ + hy(w) sin 90} Xin(w)
+  [ha(w) cos ¢ + hs(w) sin @] Vi, (w)

+  [hs(w) cos @ + hg(w) sin ] [§(w) + feu(w)]. (4.17)

Equation shows that the generalized quadrature contains information about
the weak force signal. It can be detected by using homodyne detection of the
quadrature Z,,;(w) of the output field from the cavity. In order to elliminate the
back-action noise [93,94,97], the homodyne phase ¢ can be optimized by setting
tan Qo = —ha(w)/hs(w). We assume the input light is in a coherent state and MSI
operates in its dark port condition. Under this assumption Sx,, = Sy,, = 1 and
there is no correlation between X, and Y;, [40,54]. Using these correlations and
Eq. in Chapter , the spectral density of the fluctuation in the quadrature

Zout(w) of the output field can be written as

Sout(@) = = [Ssn(w) + Spa(w) + Sia(w) + Sex(w)], (4.18)

N —

where S, Spe, Sin and S, represent the spectral density of shot noise, back
action, thermal noise and external signal force respectively. The thermal noise
contribution is given by Sy, = ({(w)é(W)) = 4rmKpT,,0(w + w') while Sy, and

Spa are given by

Sunlw) = hy(w) cos ¢ 4 hy(w) sin @ |?
" | hz(w)cosp + hg(w)sing|
ha(w) cos ¢ + hs(w) sin |
= . 4.1
Sta(w) hs(w) cos ¢ + hg(w) sin ¢ (4.19)

In order to detect the force signal below SQL, the Fourier component of the
noise should be smaller than SQL normalized signal term i.e. Sy, + Spq + Sin <
Sex/Ssq- Thus the noise term can be written as

1

SN(CU) = S l
sq

(Ssh + Sta + Stn), (4.20)
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Figure 4.1: Noise spectrum Sy against detection frequency w/k,. Here, red (dot-
dashed), green (dashed) and blue (solid) line shows noise spectrum for A, =
xNs = 0, A, = —2xNy = —0.3k, and “xNs/k, = 0.15, A, = 07, respectively.
The solid straight line corresponds to the oscillator’s SQL of force. Here we used
P =1 watt and T'= 0.1 K.

where Sy;; = 2mh,/(Q%,, — w?)? +I'2, w? (in units of N2/Hz) is the SQL of force
q eff eff

for the mechanical oscillator. In the special case, when A = 0, we have Sy, =

2mhy/ (w2, — w?)? +72w?. The noise level is said to be at SQL when Sy = 1.

4.3 Results and Discussion

Next, we present the results of our numerical simiulation. We use the parameters
m = 100 ng, K, = 27 MHz, w,,/k, = 0.2348, X = 1064 nm, n = 4.182 x 108
m~! and v,,/k, = 107° as discussed in Ref. [43]. In Fig. (4.1)), we have plotted
the noise spectrum Sy of the output field against the detection frequency w/k,
for three different cases: (i) when the cavity is driven resonantly in the absence
of Kerr medium i.e., A, = xNg = 0 (dot-dashed curve), (ii) when the cavity is
driven resonantly in the presence of Kerr medium i.e., A, = 0, yNs/k, = 0.15
(solid curve) and (iii) when the cavity is detuned in the presence of Kerr medium
such that A, = —2xN; = —0.3k, (dashed curve). Clearly, when the cavity is
driven resonantly in the presence of Kerr medium, it not only improves the force
sensitivity but also the detection frequency range as compared to the case when
Kerr medium is not present (please see solid and dot-dashed curves). The presence

of Kerr medium makes the system more sensitive to the power P, detuning A, and
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Figure 4.2: Contour plot of noise spectrum Sy against detection frequency w/k,
and detection phase ¢/m. Here, red (dot-dashed), green (dashed) and blue (solid)
contour correspond to A, = yNg = 0, A, = —2yNy = —0.3x, and “xNg/k, =
0.15, A, = 07, respectively. All the contours are at SQL i.e., Sy = 0 dB. All the
other parameters are the same as in Fig. .

the strength of Kerr non-linearity xyN,;. The stability condition given by Eq.
must be fulfilled for various choices of parameters to keep the system stable. As we
discussed earlier, Eq. shows that when A = A, 4+ 2y N, # 0, the steady-state
amplitude of the cavity field ¢, and the steady state position of the oscillator x,
are related to each other and can show multistable behavior for some values of
various parameters. An interesting case arises when the system is driven in such
a way that A, = —2x N which leads to A = 0. In this case, the system remains
stable and gives improved force sensitivity with a wider detection frequency range
as compared to the case when A, = yN; = 0 (as shown by the dashed curve in
Fig. (4.1))).

In order to get further insight regarding the role of Kerr medium in the system,
we have also calculated the intra-cavity photon number Ny = |c4|? for three differ-
ent cases as discussed in Fig. (4.1)). The photon numbers obtained for case (i), (ii)
and (iii) are 2.71 x 10", 2.13 x 10" and 2.71 x 10" respectively. For A = 0, the
photon number remains the same. However, for A # 0, the intra-cavity photon

number decreases in the presence of Kerr medium. Moreover, non-zero value of A
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Figure 4.3: Contour plot of noise spectrum Sy against detection frequency w/k,
and input power P. Here we use A, = —2xN; = —0.3k,. The solid line (in red
color) represents Sy at SQL while the dark shaded region (in green color) is the

region where Sy is below SQL.

also results in a slight shift in the oscillators resonance frequency which is evident
from Fig. .

Figure shows contour plots of Sy against detection frequency w/k, and
homodyne detection phase ¢/m for the three cases as discussed in Fig. (4.1]). Here
all the contours are at SQL i.e., Sy = 0 dB. All the parameters are the same as
in Fig. . Again we have dot-dashed contour for A, = YN, = 0, solid contour
for A, =0, xNs/k, = 0.15, and dashed contour for A, = —2xN, = —0.3k,. The
contours show that for each case there is a particular value of homodyne phase at
which the range of detection frequency is maximum. For instance, the dot-dashed
curve has maximum detection frequency range at ¢/m ~ —0.03. For the solid
contour the range is maximum for ¢/7 ~ 0.035 and for the dashed curve it is
around ¢ /7 &~ 0.15.

Figure shows a contour plot of Sy against detection frequency w/k, and
input power P. Here we consider A, = —2yN, = —0.3k, i.e., A = 0. The system
remains stable under this condition as discussed earlier. The homodyne phase is
set at ¢/m = 0.15 while all the other parameters are the same as in Fig. (4.1).
The solid contour (red line) is at SQL ie. Sy = 0 dB while the dark shaded
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Figure 4.4: Contour plot of the noise spectrum Sy against w/k, and yN,/k,. The
solid line (in red color) is at SQL i.e. Sy = 0 dB, while the dark shaded region

(in green color) is the region where Sy is below SQL.

area (green color) corresponds to the region where the noise spectral density is
below SQL. It is clear from Fig. , by increasing the input power, the range of
detection frequency increases in the region where w > w,, while there is a decrease
in the range of detection frequency for w < w,,. The overall effect of high input
power results in wider detection frequency range in the region where w > w,,.
Figure (4.4) shows the contour plot of the noise spectrum Sy against the
detection frequency w/k, and the strength of the Kerr non-linearity xN,/k,. Here
again we consider A, = —2x N, while the homodyne phase is set at ¢ /7 = 0.12. All
the other parameters are the same as in Fig. (4.1). The solid contour (red line)
in Fig. is at SQL while the dark shaded area (green color) represents the
region where the noise spectral density is below SQL. Here we have two different
choices for detection frequency (i) when the detection frequency is greater than the
oscillator’s frequency i.e., w > w,, and (ii) when the detection frequency is smaller
than the oscillator’s frequency i.e., w < w,,. For w > w,,, maximum detection
frequency range can be achieved for 0.35 < xNs/k, < 0.5 while for w < w,, there
is a slight decrease in the detection frequency range when the Kerr non-linearity
is increased. Thus, an optimum choice of Kerr non-linearity is required in order

to get large detection frequency range for below SQL sensitivity.
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Figure 4.5: Contour plot of Sy against w/k, and T for A, = xN; = 0 (dot-dashed
contour), A = A, + 2xN; = 0 (dashed contour) and for A, = 0, xN;/k, = 0.15
(solid contour). All contours are at SQL i.e. at Sy = 0 dB. The solid and dashed
contours show that the presence of Kerr media reduces the effects of temperature

on force sensitivity. All the other parameters are the same as in fig. 1}
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Figure 4.6: Noise spectrum Sy against the detection frequency w/k, for A, =
XNs = 0 (dot-dashed contour), A, = —2xN; = 0.3k, (dashed contour) and for
A, =0, xNs/ko, = 0.15 (solid contour). Here we used w,,/k, =~ 0 and all the other
parameters are the same as in fig. .

Next, we show how the temperature affects the force sensitivity of the oscillator.
Consider Fig. which shows a contour plot of Sy against w/k, and T. All
the contours are at SQL, i.e., at Sy = 0 dB. The dot-dashed, dashed and solid
contours corresponds to A, = YNy, = 0, A = A, +2xyN, = 0 and A, = 0,
XNs/k, = 0.15, respectively. It is clear from dashed and solid contours in Fig.
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Figure 4.7: Noise spectrum Sy against the detection frequency w/k, for A, =
XNs = 0 (dot-dashed curve), A, = —2xN, = 0.3k, (dashed curve) and for A, = 0,
xNs/k, = 0.15 (solid curve). Here we used v,,/k, ~ 1077, Q,, ~ 10°, P =
100 mW, T'= 5 K and all the other parameters are the same as in fig. .

that the influence of temperature on force sensitivity is reduced in the presence of
Kerr media which is quite interesting. Thus, the force sensitivity of the oscillator
becomes more robust against the temperature in the presence of Kerr media.

Upto this point, we have discussed the force sensitivity of the mechanical os-
cillator. An interesting case arises when the frequency of mechanical oscillator is
much smaller than the cavity line-width i.e. w,, << k,. Under this condition,
the mechanical oscillator can be considered as a free mass. Figure shows
the noise spectrum of the free mass in the absence and presence of Kerr medium.
The dot-dashed and solid curve represents the noise spectrum when the system
is driven resonantly in the absence and presence of Kerr medium, respectively.
The dashed curve represents the noise spectrum when both the Kerr medium and
detuning are present such that A, = —2yN, = 0.3k,. Figure shows that
force sensitivity is much better with a wider range of detection frequency in the
presence of Kerr medium for a free test mass as well.

In Fig. ,We have plotted the noise spectrum against the detection frequency
for a different set of experimental parameters. The mechanical quality factor
Qm ~ 10° and mechanical damping v, /k, ~ 107 [100,101]. Here the laser power
is assumed to be P = 100 mW and the temperature 7' = 5 K. In the absence of

Kerr medium, below SQL measurement is not possible as shown by the dot-dashed
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curve. However, the presence of Kerr medium enables below SQL sensitivity as
shown by the dashed and solid curve. It may be noted that quality factor in
the range 10" — 10° has already been reported for silicon-nitride membrane [100-
102]. From experimental point of view, higher quality factor with low input power
provide more flexibility on base temperature. Moreover, Kerr medium further

enhances robustness against thermal noise.

4.4 Summary

To summarize the work presented in this chapter, we have considered the effects
of Kerr medium in a dissipative OM system for force sensing of a mechanical
oscillator. Our results show that the presence of the Kerr media improves the
force sensitivity of the oscillator. The presence of Kerr media can also introduce
system instability for some values of various parameters. However, the instability
can be avoided if the system is driven by a blue detuned laser in such a way that
A, = —2xN,. If this condition is fulfilled, then there exist an optimum range
of values for the Kerr non-linearity which leads to better force sensitivity below
SQL with a wider range of detection frequency. Our results also show that by
increasing the input power, force sensitivity and detection frequency range also
increases. Moreover, the presence of Kerr media improves the robustness of the
force sensitivity of the oscillator below the SQL against the thermal noise. It may
also be noted that when frequency of the mechanical oscillator is much smaller
than the cavity line-width i.e. /k, = 0, in this case the mechanical oscillator can
be considered as a free mass. Our results show that better force sensitivity over a
wide range of detection frequency can also be achieved for a free test mass in the

presence of Kerr medium.
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Chapter

Measurement of weak magnetic field via
dissipatively coupled opto-mechanical
system

5.1 Introduction

Optomechanical (OM) systems have proven its capability of providing potential
applications in precision measurements. They can be used to achieve sensitivity
beyond the standard quantum limit in gravitational wave detectors [18,[103H106],
as a quantum speed meter [36},[39,42], torque sensor [45], magnetometer [47,/48]
and in precision measurement of electric charge [46].

In previous chapters, we discussed the detection of weak force signal via dis-
sipative OM system. In this chapter, we present an optical detection technique
for measuring weak magnetic field which can work at room temperature. We use
a dissipatively coupled OM system that can be realized in a Michelson-Sagnac
Interferometer (MSI) with a movable membrane [53-55]. MSI can be considered
as a compound mirror as the position of the movable membrane sensitively affects
the transmissivity of MSI when it operates close to the dark port condition. Un-
der this condition, the compound MSI mirror along with a perfect mirror forms
an effective Fabry-Perot Interferometer (FPI) whose linewidth depends upon the
position of the membrane. In addition, when current is applied to the membrane
in the presence of a magnetic field, it leads to the magnetic coupling of the mem-
brane which directly affects the linewidth of the effective FPI. As a result, the
output spectrum of the field is affected and therefore, enables measurement of

weak magnetic field.
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Rest of the chapter is organized as follows: In section [5.2], we present our model
and solve the equations of motion. We find an expression for the output quadrature
of the field and calculate the spectral density. In section we present results of

our numerical calculations. Finally, in section [5.4] we conclude our results.

5.2 Theory and Model

We consider an optomechanical system where a mechanical resonator of effective
mass m and resonance frequency w, is dissipatively coupled to a cavity field with
eigen-frequency w,. The cavity is driven with a strong coherent light of frequency
w; = w, and amplitude ;. In a frame rotating at input laser frequency w;, the

Hamiltonian of the system is given by

2

- 1
H = (2]9—m + §mw72nw2) + h(w, — wy)cle

+ i 2k[g (¢ —¢) + e — ¢! ] + (Bu, (5.1)

where the first term describes the energy of the mechanical oscillator (MO) with
x and p being the position and momentum operators satisfying the commutation
relation [z, p] = th. The second term is the free energy of the cavity field. The
third term represents the coupling of cavity field with the input laser and input
vacuum noise represented by c¢;,. The last term represents the magnetic coupling of
the MO where ( is the current coefficient or magnetic coupling coefficient. It may
also be noted that k = k,(1+nx) represents the position dependent photon decay
rate or half linewidth of the cavity and &, is the photon decay rate when x = 0. It
is related to the dissipative coupling strength g, as g, = z.,rdr/dx where x,,; =
\/71/2Twm is the zero point fluctuation of the membrane. Therefore, g, = NkoT.p¢
represents the dissipative coupling constant between the cavity field and MO which
depends upon 7. The parameter 7 is an experimental parameter and is related to
the power reflectivity of the membrane and beam-splitter asymmetry [55]. The
amplitude of the field is related to the input power P as ¢, = \/W .

The schematics of the system is shown in Fig. . It is assumed that the

current is passing through the movable membrane M of MSI and the whole system
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Figure 5.1: The schematics of the system. (a) A Michelson-Sagnac interferometer,
containing the membrane M through which current i is flowing. The membrane
is displaced from its mean position due to radiation pressure and external mag-
netic field B. (b) Equivalent Fabry-Perot interferometer whose right mirror have

transmission depending upon the decay rate k.

is placed in a magnetic field. The mean position of the membrane changes due to
magnetic coupling of the membrane. The entire setup is equivalent to a Fabry-
Perot Interferometer (FPI) with the variable optical decay rate i.e., kK = k,(1+nz),
where x is the displacement of the membrane. The displacement of the membrane
can be controlled by the application of current in the presence of a magnetic
field. Thus the right mirror of the effective FPI has an optical transmissivity that
depends upon the current in the presence of magnetic field.

The Heisenberg equations of motion for the system when the cavity mode is

resonantly pumped by the input laser (i.e., w, = w;) are given by the following:

=2, (5.2a)

m
hn/2k,
—%[él(ﬁ —c)+ ctein — cjnc] — mwglx — (B —Ymp +E&, (5.2b)

¢ =2ko(1 + g:c)(é?l + cin) — Ko(1 + nz)c, (5.2¢)

where 7, is the mechanical damping rate and ¢ is the zero mean value thermal
noise which describes the coupling of MO to the thermal environment. It follow

immediately from Egs. ((5.2al)-(5.2¢) that in steady-state, the position, momentum
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and cavity field must fulfill the following self consistent equations:

B (B  V26,(1 4z /2)g
ps =0, 13 =——"—, ¢ = : (5.3)
mw2, Ko(l + nxy)

The operators given by Eqgs. (5.2a)-(5.2c) can be represented as a sum of large

mean value and small fluctuating terms such that z = z, + dx, p = ps + dp and
¢ = ¢, + dc. In the first order approximation, the linearized equations of motion

are given by

& (5.4a)

m
hny/2
5p = —#[5,(66 —6¢) + co(cin — )] — mw oz — ydp+ €, (5.4b)

RoT)Cs

0¢ = —/10(1 + 7733'3)(50 — m

0 + V2k,(1 + nxs/2)cip. (5.4c)

By taking the Fourier transform of Egs. (5.4a)-(5.4c|), the fluctuating position and

cavity field in frequency domain can be written as:

52(w) 1 B hnv/2kowes
r(w) = 2

mlw?, — w? — iwyp] (14 nzy) — iw]

m_

cn—cf G5)

KolCs X 0T
— 3. 5.5b
2(1+ nxs/Q)} (5:5b)

() = ! {wz_nou /2 —

 Ko(1+nwe/2) — iw

By using Eqs. (5.5a) and (5.5b) and employing the input output relation (See
Eq. (3.6b)) in Chapter , the fluctuating output field of the system becomes:

(o) = { 2t (1 + n/2) 1} o

Ro(l + nxs) — iw -
Ko } V2Kencs0x

+ {1 T () — ()| 2

(5.6)

As in the preceding chapters, we define the input amplitude and phase quadratures

as Xin(w) = J5lcin(w) + cl(—w)] and Vi, (w) = 5[cin(w) — cl,(~w)]. Similarly,

the output field’s amplitude and phase quadratures are defined as X, (w) =
\%[&Om(u}) +6c) . (—w)] and Y (w) = ﬁi[&om(w) —6¢!.(—w)]. On substituting

the values of d¢,y(w) and (5cjm

(w), the output quadratures of the field are found
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to be:
Ko + 1w
Xou == : X’m Y;n - 5 5.7
g Ko(l + nxg) — iw [ o azd (5.72)
Yout = ——0 0y (5.7b)

Ko(l 4+ nzy) —iw

where o; and as are defined as

il — (14 ne/2) (1 + ) — )] -
Wi (Ko + 1w) (1 4+ nxs/2){Ko(1 + nxs) —iw} ’ '
T ko — (14 /D molL + 1) — )]

)

R VS Win (Ko + iw) (1 + nxs/2

, (5.8b)

with J = hn?c?/mk,, being the dimensionless power and x = w,/(w?, — w? —
iwYm) is the mechanical susceptibility. The output field can also be expressed as
Zout(w) = Xout(w) cos 0+ Yy, (w) sin 8, where 6 represents the homodyne phase an-
gle. On substituting Eqs. and in the generalized quadrature Z,,;(w),

we obtained the following expression:

(Ko + iw) cos

Zout(w)

ffo(l n T]xs) i |:in + (Oél + tan ‘9)}/;” — OéQ&} . (59)

Using Eq. (2.22), Egs. (3.10a), (3.10b) and Eq. (3.11) of Chapter 2] and Chapter [3]

the spectral density of the output field is found to be:

(k2 + w?) cos® 0
2[K2(1 + nwy)? + w?

Sout(w) = [1 + |y + tan 6]* + 4kaTfym]a2\2] (5.10)

In Eq. (5.10), the first term is the contribution from the photons shot noise, the
second term is from the back-action and the last term is from the thermal noise.
The homodyne phase angle 6 can also be optimized to suppress the back action

term. This can be done by setting the homodyne angle 6 such that tan 8,,; = —ay.

5.3 Results and discussion

In this section, we present the results of our numerical simulation. Here, we

consider m = 50 pg, k, = 27 x 59 KHz, A\ = 1064 nm, g = 27 x 2.6 Hz,

Q = Wn/Ym = 1.1 x 107, T = 300 K and w,, ~ K, (i.e., non-resolved-sideband

regime) as discussed in Ref. [54,107-109]. It may also be noted that SiN membrane
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Figure 5.2: Normalized spectral density of the output field when B = 0 (straight
line at Syu/Souto = 1), which becomes greater than 1 for B # 0. Here the
parameters m = 50 pg, kK, = 27 X 59 KHz, A = 1064 nm, g, = 27 x 2.6 Hz,
Q = wWn/Ym =1.1x 107, Wy, ~ Ko, P =10 pW, T = 300 K, ¢ =2 x 1075 A.m and

Wn/ko = 1.

coated with Aluminium or Graphene [110,/111] can be used for the realization of
current flowing through the membrane. As we discussed earlier, in the presence of
magnetic field, the transmissivity of the right mirror of the effective FPI depends
upon the current flowing through it. Therefore, a shift in the output spectral
density of the field can be observed in the presence of magnetic field. Figure
shows the plot of normalized spectral density Sout/Sout0 Where S,y o represents the
output field spectral density when B field is zero. Thus, S,y represents the total
noise floor. We also set the optimum homodyne angle at w = wy, (i.e., substituting
W = Wy, in tanf,,; = o) or equivalently when 6,, is close to /2 which leads to
large dissipative coupling strength [63]. The input power P = 10 uW and the
current flowing through the membrane is assumed to be ¢ = 2 x 107° A.m [48§].
The solid straight line at Syt /Sout0 = 1 in Fig. shows the normalized spectral
density of the output field when B field is zero. When B field is turned on, the
spectral density of the output field becomes greater than 1, i.e., Sout/Souto > 1
and the shift in the spectral density depends upon the strength of the magnetic
field. The dip in the spectral density arises due to the membranes fundamental
resonance. It may also be noted that shift in the spectral density is large when

the detection frequency is smaller than the mechanical frequency as compared to
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Figure 5.3: The plot shows that sub-nano-Tesla measurement can be made with
better resolution if w,,/k, < 1. Here we used w,,/k, = 0.2, while all the other
parameters are the same as in Fig. 1'

the case when the detection frequency is larger than the mechanical frequency.
The system is relatively less sensitive to the magnetic field when the detection
frequency is equal or close to the mechanical frequency.

It is interesting to note that, if we further shift towards the non-resolved-
sideband regime for example, wy,/k, = 0.2 < 1 as in Ref. [43], the spectral den-
sity of the output field becomes more sensitive to the magnetic field as shown
in Fig. . It may be pointed out that the micro- and nano-optomechanical
devices due to their small size, inherently work in the bad cavity regime (i.e.,
W /Ko << 1) [112], which is advantageous for our scheme. By comparing Fig.
and Fig. , it is clear that for w,,/k, = 0.2, shift in the output spectral density
is larger even for the magnetic field strength ten times smaller than the results
obtained for the case when w,,/k, ~ 1.

The measurement sensitivity can be further improved by adjusting the current
flowing through the membrane. This is shown in Fig. , where the spectral den-
sity of the output field is plotted for three different choices of the current parameter
¢ for B=0.1 nT and w,,/k, = 0.2. Our results clearly show that the sensitivity
of the measurement increases by increasing the current through the membrane.
However, it may be pointed out that our analysis is based on linearization of the
equations of motion around the large mean values (See Eqs. —), so for

linear approximation to hold, current cannot be increased indefinitely. The linear
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Figure 5.4: The spectral density of the output field for three different choices
of current parameter (. Here B = 0.1 nT while all the other parameters are the
same as in Fig. . By increasing the current, the spectral density shifts towards
higher values, thus increasing the sensitivity of magnetic field (See Fig. for

a comparison).

approximation holds as long as nx << 1, so that the cavity linewidth « is linearly
related to the position x via k = k,(1 + nx). It is also interesting to note that,
due to the topology of MSI, if the current is reversed i.e. ( — —(, the position
of MO also shifts as x — —x. Therefore, the Hamiltonian given by Eq. is
invariant under the transformation ( — —( and * — —x. As a result the output
spectral density remains the same.

Figure shows a contour plot of the output field spectral density with
respect to the magnetic field and current at w = w,, which is the resonance
frequency of the membrane. At w = w,,, the shift in the spectral density is at its
minimum (as can be seen in Figs. —). It is clear from Fig. that for
weak magnetic interaction (e.g., B = 0.1 nT and ¢ = 2 x 107> A.m), the shift
in the output field spectral density is below 1.01 which can also be verified from
Fig. at w = wy,. The shift in the spectral density enhances when we increase
the current or magnetic field. Thus, for an appropriate choice of current values,
and detection frequency smaller than the mechanical frequency, and working in the
non-resolved-side-band regime, B field upto sub-nano-Tesla levels can be measured

by this scheme.
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Figure 5.5: Contour plot of the normalized spectral density against B and ( at
wm = w. Here wy,/k, = 0.2 and all the other parameters are the same as in
Fig. ((5.3)).

5.4 Summary

In this chapter we considered a dissipative OM system for the detection of weak
magnetic field. In the presence of magnetic field, the position of the membrane
depends upon the current flowing through it. Thus by varying the current, the
position of the membrane changes which leads to a change in the optical decay rate
k or transmissivity of the compound mirror. The effects of change in transmissiv-
ity can be seen in the output spectrum of the field. Therefore, by analyzing the
spectrum of the output field, weak magnetic field can be measured. Our scheme
is based on MSI which to the best of our knowledge is the only proven system
for achieving pure dissipative coupling . From experimental point of view,
dissipative coupling is more favorable in the micro- and nano-optomechanical de-
vices. The optical line-width for such small devices typically scales inversely with
the length of the cavity and eventually results in wy,,/k, << 1, i.e., the so called
non-resolved-sideband regime or bad cavity regime. Our proposal works better
in this regime and therefore, could be more feasible to detect DC magnetic fields

experimentally. Moreover, the system needs no magnetic shielding from the back-
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ground, as measurements are made relative to the background. This also pro-
vides us the liberty to measure even weaker magnetic fields as long as the signal
can be resolved from the background. Throughout our numerical simulations,
we have used the parameters which are accessible in experiment. Therefore, we
believe that our scheme enables potentially practical proposal for precision mea-
surement of weak magnetic field. By adjusting the current and working in the
non-resolved-side-band regime, one can make measurement of weak magnetic field

upto sub-nano-Tesla levels at room temperature.
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Chapter

Conclusion

In this thesis, we mainly focused on precision measurement using dissipatively
coupled OM system. We theoretically investigated the effects of LPN associated
with the laser that drives the OM cavity. In addition, we also studied the effects of
LPN in the presence of PA with noisy pump laser. We also considered the effects
of optical Kerr media on weak force measurement. Finally, we presented an optical

detection technique for weak magnetic field measurement via dissipative coupling.

6.1 Summary

In Chapter |1, we have presented a brief introduction of optomechanics and its
applications in precision measurement. We presented a brief review on dispersive
and dissipative OM systems in the context of weak force measurement. The effect
of LPN and Kerr medium in OM system were also briefly reviewed. A brief
introduction on measurement of magnetic field via OM systems was also presented.

In Chapter [2| we have considered a dissipatively coupled OM system that can
be used for force sensing below SQL for a free mass [42]. The laser that drives
the OM system also has phase fluctuations which cannot be avoided completely
due to its quantum nature. We introduced LPN into our system and studied its
effects on free mass force sensing. Our analysis shows that the sensitivity of the
force detection strongly depends upon the LPN. We also considered the effect of
mechanical damping and thermal noise in the presence of phase fluctuations. The
mechanical damping doesn’t affect the force measurement substantially as long

as Y, << w, however, temperature greatly reduces the measurement sensitivity.
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In the presence of laser phase fluctuation and thermal noise, the magnitude of
input power of the laser also influences the force measurement sensitivity. Below
SQL measurement can neither be achieved for very low power levels nor for very
high power levels. Thus an optimum choice of various parameters involved in the
system play an important role for force measurement in the presence of phase
fluctuations, damping and thermal noise.

In Chapter [3| we have considered a dissipative OM system with PA which can
also be used for free mass force sensing |43]. The presence of PA in the system
results in further improvement of force sensing below SQL. However, the effects
of LPN associated with the pump laser of PA were not considered. We therefore,
introduced LPN associated with PA’s pump and studied its effects on sensitivity of
force measurement. We have not included the effects of LPN associated with the
laser that drives the cavity because the noise bandwidth associated with the PA is
much greater than the laser that drives the cavity due to the power broadening in
PA pump [98|. Again, our results show that the sensitivity of the force detection
strongly depends upon the laser phase fluctuation associated with the PA’s pump.
The presence of LPN limits the choice in the selection of various parameters for
below SQL measurement. However, by suitably selecting various parameters, one
can still achieve better than SQL sensitivity.

In Chapter [ we have introduced an optical Kerr medium in a dissipative OM
system and studied its effects on force sensing of a mechanical oscillator (MO).
Our results show that the presence of Kerr medium not only improves the force
sensitivity of MO below SQL but also makes the system more robust against
thermal fluctuations. The presence of Kerr media can also introduce instability in
the system for some values of various parameters. However, the instability can be
avoided if the system is driven by a blue detuned laser such that A, = —2xN,. Our
results show that by increasing the input power, force sensitivity and detection
frequency range also increase. In the limit w,, << k,, the MO can be considered
as a free mass. Our results show that better force sensitivity over a wide range
of detection frequency can also be achieved for a free test mass in the presence of

Kerr medium.
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Finally, in Chapter [5| we have presented an optical detection technique for
the measurement of weak magnetic field based on dissipative OM system. For
dissipative coupling, MSI with a movable membrane is considered which acts as a
compound mirror having position dependent transmissivity. When current passes
through the movable membrane in the presence of magnetic field, it leads to a
change in the position of the membrane. Eventually, the transmissivity of the
compound mirror changes and can be observed by the output spectrum of the
field. Therefore, by analyzing the spectrum of the output field, weak magnetic field
can be measured. The sensitivity of measurement can simply be controlled by the
current passing through the membrane and working in the bad-cavity regime. Our
proposal suggests measurement of weak magnetic field upto sub-nano-Tesla levels
at room temperature. Thus, our scheme enables potentially practical proposal for

precision measurement of weak magnetic field.
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Appendix A

The parameters U, K, J, Fsqr, My, M and M in Egs. (3.8a)-(3.8b)) in Chapter

are defined as

16G2 +w? Kk, —iw + 2G .

U = Al

\/(FLO +2G)? +w?  w+idG b (A1)
K2 16G* + w?

K = ° A2
J(lio +2G)? +w? w? (A4.2)
hinc? —

J = . s FSQL = 2hmw2, (A3)
2¢,G\/Ko
My = w(ke +iw + 2G)’ (A.4)
G Kes(k, — 2G)
M = Row(4G — iw)’ (A.5)
21 sG 0
M; = iesG /Ko (A.6)

w(ko +iw — 2G)

We also define the power parameter J by using the values of ¢, = /2k,6/(ko —
2G) ' and ¢, = \/P/hw; as J = J,(1 —2G/k,) "2, where J, = %;?)IP refers to the

power parameter in the absence of PA.
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Appendix B

The parameters hi(w), ha(w), hs(w), hy(w), hs(w) and hg(w) in Eqgs. (4.16a) and
(4.16b]) in Chapter [4] are defined as

h(w) =

he(w)

Z ff(w)%(w){zzEZ; 77<023 ;5 c) }
\/2_“0[_i 253(19;(;)))— bi(—w))

Z ff<w>a5<w>{zjzi _ n<c2s¢—§c:> }]
V2, |iZ ff(w)aﬁ(w){z;igz - 77(C;\;§C:)}
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