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Abstract

Optomechanical (OM) system is formed by an optical or microwave cavity contain-

ing a movable mechanical element that can support collective oscillational modes.

It is a rapidly growing field showing great potential in precision measurement of

small displacements, forces, electrical charges, and magnetic fields.

The coupling between light and mechanical element in OM system could be

dispersive, dissipative or both at the same time. Dispersive coupling results in

position dependence of the cavity eigen-modes while in dissipative coupling the

cavity linewidth is position dependent. Detection of weak classical forces via dis-

persive coupling has a long history. However, recent studies show that dissipative

coupling can also allow force sensing beyond the standard quantum limit (SQL).

In this thesis, we have mainly focused on the detection of weak classical force

using dissipatively coupled OM system. First, we study the effects of laser phase

noise (LPN) associated with the cavity drive on the detection of a weak force on a

free test mass. Our results show that for an optimum choice of various parameters,

one can realize force sensing below SQL even in the presence of LPN.

The analysis is further extended by introducing a parametric amplifier (PA)

in the system and driving it with a noisy pump. The presence of PA improves

force sensitivity much better than SQL. However, LPN associated with PA pump

strongly affects force sensing. Interestingly, we find that for an optimum choice of

different parameters, force sensitivity better than SQL can still be realized.

We also investigate the effects of Kerr medium on force sensing of an OM oscil-

lator. Our analysis show that the presence of Kerr medium improves force sensing

beyond SQL. Moreover, increasing the strength of Kerr non-linearity not only

improves force sensitivity but also increases the measurement bandwidth. Kerr

medium also leads to the robustness of the system against thermal fluctuations.

In our final theoretical proposal, we present an optical detection technique

based on dissipative OM coupling for the detection of weak magnetic field. Our

analysis suggest measurement of magnetic field upto sub-nano-Tesla level at room

temperature while working in the bad-cavity regime.
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FPI Fabry-Pérot Interferometer

MSI Michelson-Sagnac Interferometer

RWA Rotating Wave Approximation

PA Parametric Amplifier

SQL Standard Quantum Limit

LPN Laser Phase Noise

ωm Frequency of Mechanical Mode

G Parametric Gain

η Dissipative Coupling Constant

ωc Frequency of Optical Mode

ωl Input Laser Frequency

κ Cavity Decay Rate

γm Mechanical Damping Rate

P Input Laser Power

∆ Detuning

ξ Brownian Noise Operator

ΓL Laser Linewidth

KB Boltzmann Constant

xvii



Chapter 1
Introduction

1.1 Brief History of Optomechanics

Radiation pressure results from the transfer of momentum from light to a solid

object upon reflection, absorption or emission. The concept of radiation pressure

was first introduced by J. Kepler in 1619 in order to explain why the tail of a

comet always points away from the Sun. In 1873, J. C. Maxwell introduced his

electromagnetic theory in the form of Maxwell equations which also predicted the

fact that light carries momentum [1]. Later in 1900, a Russian physicist Prof. P.

N. Lebedev for the first time experimentally demonstrated the effects of radiation

pressure on material objects [2]. His experiment verified with high confidence

that for electromagnetic radiation of power P at normal incidence, the associated

momentum can be written as p = P
c
(1 + ρ), where ρ is the reflectivity of the

illuminated surface and c is the speed of light. In an independent experimental

work, E. F. Nichols and G. F. Hull in 1901 also measured radiation pressure [3].

It may be noted that radiation pressure force associated with light is extremely

faint. For instance, 1 watt laser at normal incidence on a perfectly reflecting mir-

ror exerts approximately 6 nN of force. This is the reason, why it took so long to

observe the mechanical effects of light in laboratory. However, technological ad-

vancements during past few decades have made it possible to study and maneuver

the mechanical effects of light which eventually opened new avenues in the field

of physics.

An optical cavity with a mechanical oscillator can be coupled to radiation

pressure force to form an optomechanical (OM) device [4–6]. These devices are

1



Chapter 1: Introduction

rich in the context of observing and controlling the mechanical effects of light

and lead to the study of various novel effects like cooling of mechanical oscillator

to its quantum-mechanical ground state [7–10], generation of slow light [11–13],

quantum state transfer [14–17], gravitational wave interferometery [18–20] and

many more [21, 22]. The size of OM systems range from nanometer/femtogram

scale for on-chip phononic and photonic crystals to kilometer/kilogram scale of

large Michelson interferometer for the detection of gravitational waves.

Optomechanics also brings about the interesting idea of observing quantum

effects on macroscopic scale. For example, entanglement which is a characteris-

tic trait associated with quantum systems can be observed between macroscopic

oscillator and optical field of the cavity. The idea was theoretically proposed by

Vitali et al. [23] and also observed experimentally by Palomaki et al [24].

The field of optomechanics emerged due to the development of early gravita-

tional wave detectors in late 1970s. Quantum mechanics entered into the picture

when it was realized that the measurement of position of the end mirrors of the

interferometer cannot be made with arbitrary precision. Rather, vacuum fluc-

tuations of the optical field set a limit on sensitivity of position measurements.

Therefore, it could also result in mechanical oscillations on quantum scale [25–30].

1.2 Precision Measurement via Optomechanics

Early research in OM systems was primarily based on the detection of gravitational

waves. However, as the research continued, soon it was realized that OM systems

have great potential in precision measurement. Since then OM systems advanced

the art of precision measurement. Measurement of small displacement [31–35],

force [36–44], torque [45], electrical charge [46], magnetic field [47–49] can be

made with remarkable sensitivity.

1.2.1 Force Sensing

The coupling between the optical and mechanical degrees of freedom in optome-

chanical systems could be dispersive, dissipative or both at the same time. In

dispersively coupled OM systems, displacement of the mechanical oscillator (MO)

2



Chapter 1: Introduction

Figure 1.1: Schematics of a Fabry-Pérot cavity with a fixed and movable mirror.

Here ωm and γm represent frequency and damping of MO respectively while ωc

and κ represent frequency of the cavity and optical decay rate, respectively.

modulates the eigen-modes of the optical cavity. A simple example of dispersive

coupling is a standard Fabry-Pérot interferometer (FPI) with one movable mirror

that provides an additional mechanical degree of freedom as shown in Fig. (1.1).

The detection of a weak classical force using dispersive OM system to reduce

quantum noise and surpass the standard quantum limit (SQL) has a long history.

For instance, it has been shown that the force sensitivity can be improved by using

a squeezed vacuum [27,40,50]. In another scheme, the idea of OM speed meter was

proposed to monitor clasical force on a test mass which results in measurement

sensitivity better than SQL [36, 39]. In an interesting study, it was shown that

the use of Kerr cell in interferometric gravity-wave detector counters the radiation

pressure induced fluctuations. The performance of such interferometers greatly

surpass SQL [51]. It may be noted that SQL fundamentally arises due to the

Heisenberg uncertainty principle. By definition, SQL of a measurement error is

the limit mean square value of the estimate for one observable calculated from the

measurement results of its conjugate observable [52].

A lot of work has been done in dispersively coupled OM system, however, it has

its own constraints e.g. requirement of side-band resolved regime for ground state

cooling [7, 8] which is not always feasible particularly in the case of low mechan-

ical frequencies. However, such requirements are not necessary for dissipatively

coupled OM cavities [53–57].

In dissipative coupling, the displacement of the mechanical oscillator modulates

the decay rate of the optical cavity. The dissipation in this case does not lead to

3
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Figure 1.2: (a) Michelson Sagnac Interferometer (as a generalize mirror GM) works

as an input mirror of the Fabry-Pérot cavity. (b) The effective Fabry-Pérot cavity.

decoherence or absorption of light, rather it results in loss-less coupling between a

continuous optical wave and a mode of the optical cavity. This coupling enables

the optical cavity to perform as a perfect transducer.

The idea of dissipative coupling was first proposed theoretically by Elste et

al [53] and studied in different systems [45, 54, 55, 57–60]. Dissipatively coupled

OM systems enables ground state cooling of mechanical oscillators without re-

quiring the resolved-side-band condition [53–57, 59–62]. There are a variety of

interesting physical effects which were discussed with dissipative coupling for ex-

ample, the normal mode splitting [56, 60, 61], electromagnetically induced trans-

parency [56, 60], and the squeezing of the output light [63, 64]. Various optome-

chanical systems were studied for dissipative coupling based on Febry-Pérot In-

terferometer [45, 58–60] and Michelson-Sagnac Interferometer (MSI) [54, 55, 57]

among many others. In a recent study, it was also shown that purely dissipative

coupling in a bad cavity regime results in strong reduction of the backaction and

suppression of the squeezing ability of the system [65]. A practical realization is

shown in Fig. (1.2) based on MSI with a movable membrane M which acts as a

compound mirror (GM) [54, 55, 57]. The position of M and transmission of the

beam splitter BS sensitively affects the overall transmission of GM . The com-

pound mirror GM along with a perfect mirror M1 forms an effective FPI whose

linewidth now sensitively depends upon the position of the membrane.
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1.2.2 Force Sensing via Dissipatively Coupled System

In a recent study, it was shown that the dissipative coupling in an OM system

can be used for the measurement of a classical force on a free particle having

sensitivity better than the Standard Quantum Limit (SQL) [42]. Moreover, the

sensitivity of a classical force on a free particle was found to be comparable with

that of the dispersive OM system, however, it has a much wider measurement

bandwidth. The idea of force measurement in a dissipative system was further

extended with the use of parameteric amplifier (PA) [43]. It was shown that the

presence of PA allows much better force sensitivity (surpassing the SQL) over a

wide range of detection frequencies even in the presence of mechanical damping

and thermal noise. It was also shown that an increase in the parametric gain

reduces the effects of mechanical damping and thermal noise. The presence of PA

also makes the system more robust against thermal noise.

1.2.3 Effects of Laser Phase Noise (LPN) on Force Sensing

The optical field of a single mode laser oscillating far above threshold is in a state

that is very close to the coherent state. The intensity of the field is almost free from

fluctuations due to intrinsic saturation, however, the phase of the field fluctuates

randomly in time. If we perform successive measurements, the state of the field

appears to be a mixture of coherent states.

Typically, the effects of phase noise associated with the laser are ignored. How-

ever, it has profound impact on many applications for example, entanglement gen-

eration in a correlated spontaneous emission laser (CEL) is highly sensitive to the

phase fluctuation [66, 67]. Moreover, ground state cooling and OM entanglement

are strongly affected by LPN [68–70].

The spectral density of a laser operating far above threshold, can be approx-

imated well by a Lorentzian function [71, 72]. However, by taking a Lorentzian

line shape overestimate the effects of LPN. For instance, in an earlier study by

Diósi [73], a white noise model was proposed for LPN which suggested no possi-

bility of ground state cooling contrary to the experimental findings of low phonon

numbers. Later, a more realistic model was proposed by Rabl et al. [74], which
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suggest the experimental feasibility of optical ground-state cooling and coherent

operations in OM systems. Following the same approach as discussed in Ref. [74]

for noise model, we assume φ(t) to be a zero mean Gaussian noise process, the

correlation function can be written as

{φ̇(s)φ̇(s′)} =

∫
dω

2π
Sφ̇(ω)e−iω(s−s

′), (1.1)

where {} represents average over different noise values. For each experimental

setup the frequency noise spectrum Sφ̇(ω) is specific. In our case the noise spec-

trum is given as [74]

Sφ̇(ω) =
2Γl

1 + ω2/γ2c
, (1.2)

where Γl represents the laser linewidth and γ−1c represents the finite correlation

time of the LPN. In the limiting case of γc →∞, white noise model is recovered.

In this thesis, we incorporate LPN in dissipatively coupled OM system and

investigate its effects on force measurement. First we consider the system pre-

sented in Ref. [42] for dissipative coupling and introduce LPN associated with

the laser that drives the system. The effects of LPN are investigated, our results

show that LPN strongly affects the sensitivity of force measurement [75]. Next,

we consider dissipatively coupled system with a parametric amplifier (PA) as dis-

cussed in Ref. [43]. We introduce LPN in the drive laser of PA and investigate its

effects on force sensing. In this case again, LNP strongly affects the measurement

sensitivity [76]. Detailed analysis is presented in Chapter 2 and Chapter 3.

1.2.4 Effects of Kerr Medium on Force Sensing

The presence of Kerr cell in an optical cavity results in a nonlinear phase shift

which is proportional to the intensity of light [77]. The effects of Kerr cell has

been studied in the context of quantum-non-demolition (QND) measurement of

photon number operator [78, 79]. It has also been shown that use of Kerr cell in

an interferometric gravity-wave-detector counters the radiation pressure induced

fluctuations which results in performance of such interferometer greatly surpassing

SQL [51]. The presence of strong Kerr non-linearity inside an optical cavity also in-
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hibits normal mode splitting (NMS) due to photon blockade mechanism [80]. The

increase in Kerr nonlinearity results in progressive decreases in NMS. Therefore,

Kerr medium can be used to coherently control the micro-mirror’s dynamics. Kerr

medium can also enhance stationary entanglement in OM system [81]. Another

interesting feature which can be observed in OM cavity in the presence of Kerr

medium is optical bistability of intracavity intensity [82]. This effect can be used

in design and development of all-optical switches and high sensitivity sensors [83].

In view of all these interesting features of Kerr medium in OM systems, we have

studied its effects on force sensing using a dissipative OM system. For dissipative

OM system, we have considered the system proposed by Vyatchanin et al. [42]. We

then introduced an optical Kerr media inside the cavity and studied its effects on

force sensing capability of a MO. The presence of Kerr media not only improved

the measurement sensitivity below SQL but also made the system more robust

against the thermal noise. A detailed analysis is presented in Chapter 4.

1.2.5 Magnetic Field Sensing via Dissipatively Coupled

System

The precision measurement of weak magnetic field has gained a lot of interest due

to its practical application in various fields like geology, material characterization

and medicine [84]. Magnetometers based on superconducting quantum interfer-

ence devices (SQUID) operating at cryogenic temperatures, magnetostrictive mag-

netometers and atomic magnetometers provides remarkable sensitivity [85–89]. In

recent studies, the magnetic field sensors based on OM cavity were also proposed,

they have small size, high sensitivity and operational capability at room temper-

ature [47, 49]. In another study, a technique based on optomechanical induced

transparency (OMIT) was proposed for the detection of weak magnetic fields [48].

In this thesis, we also present an optical detection technique for measuring

weak magnetic field which can work at room temperature. We use a dissipatively

coupled OM system that can be realized in a Michelson-Sagnac interferometer

(MSI) with a movable membrane [53–55] as shown in Fig. (1.2). The transmissivity

of this system when operating close to the dark port condition, sensitively depends
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upon the position of the movable mirror/membrane. Thus, the linewidth of the

cavity sensitively depends upon the position of the membrane. When current is

applied to the membrane in the presence of magnetic field, the position of the

membrane changes which in turn changes the linewidth of the cavity. Therefore,

by observing the spectrum of the output field, magnetic field upto sub-nano-Tesla

levels can be measured. Detail of the scheme is presented in Chapter 5.

1.3 Thesis Structure

The contents of the rest of this thesis are divided into five chapters.

Chapter 2: Focuses on the effects of laser phase noise (LPN) on the detection

of a weak classical force that acts on a free particle in a dissipative optomechanical

(OM) system. In this chapter, the effect of mechanical damping and thermal noise

on force sensing in the presence of LPN have also been investigated.

Chapter 3: The presence of PA in a dissipatively coupled OM system improves

force sensitivity much better than the standard quantum limit (SQL) over a wider

range of detection frequency [43]. This chapter deals with the effects of LPN

associated with the pump laser that drives the parametric amplifier (PA). The

effects of LPN on force sensing on a free test mass have been discussed here.

Chapter 4: Optical Kerr medium has the ability to transform amplitude

fluctuations in the initial coherent state into phase fluctuations [90] and therefore

can result in the improvement of the detection of weak force. In this chapter, the

effects of Kerr medium on the detection of a weak classical force acting on an OM

oscillator have been discussed in dissipatively coupled OM system. The influence

of Kerr medium on thermal fluctuations has also been considered in this chapter.

Chapter 5: An optical detection technique is proposed for the detection of

weak magnetic field which is based on dissipatively coupled OM system. Our

proposal suggests measurement of weak magnetic field upto sub-nano-Tesla levels

at room temperature.

Chapter 6: In this chapter, we summarize all of our results in detail and

conclude the thesis.
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Chapter 2
Effects of Laser Phase Fluctuation on
Force Sensing in a Dissipatively Coupled
Optomechanical System

2.1 Introduction

Dissipatively coupled optomechanical (OM) systems have gained considerable at-

tention due to its ability of cooling the mechanical oscillator to its ground state

without requiring the good cavity regime [53]. Later, it was also considered for nor-

mal mode splitting [60,91], optomechanical induced transparency [60] and squeez-

ing of the output light [63]. The dissipative coupling has been demonstrated

experimentally for several interesting systems like silicon nitride membrane in a

cavity-enhanced Michelson-Sagnac interferometer for optomechanical cooling [55],

photonic crystal split-beam nanocavity for the detection of nanoscale sources of

torque [45] and others. In a recent study, it was shown that dissipative coupling

in an optomechanical systems can be used for the measurement of a classical

force on a free mass having sensitivity better than the Standard Quantum Limit

(SQL) [42]. Moreover, the sensitivity of a classical force on a free mass was found

to be comparable with that of the dispersive OM system however, it has a much

wider measurement bandwidth.

In this chapter, we study the effects of laser phase noise (LPN) on the detec-

tion of a weak classical force that acts on a free mass in a dissipatively coupled

OM system [42, 54]. We also investigate the effect of mechanical damping and

thermal noise on force measurement in the presence of LPN. Typically, the effects

of phase noise associated with the laser are ignored. However, it has profound
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impact on many applications for example, the effects of LPN has been studied for

entanglement generation in a correlated spontaneous emission laser (CEL) and it

was found that entanglement generation is highly sensitive to the phase fluctua-

tion [66,67]. Ground state cooling and OM entanglement in presence of LPN was

also considered in some earlier studies [68–70]. They have discussed the feasibil-

ity of ground state cooling in OM systems and the strong effects of LPN on OM

entanglement.

In section 2.2, we present our model and solve the equations of motion using

quantum Langevin equation formalism. In section 2.3, we find an expression for

the output quadrature of the field and calculate the noise spectral density. In

section 2.4, we study the effect of mechanical damping and thermal noise on the

force sensitivity in the presence of phase fluctuation. In section 2.5 we summarize

our results.

2.2 Theory and Model

We consider an optomechanical system in which a free mass m is dissipatively

coupled to a cavity field with eigenfrequency ωo [42, 92]. For the realization of

dissipative coupling, we consider a system which is based on a Michelson-Sagnac

Interferometer (MSI) as proposed by Xuereb et al. [54] as shown in Fig. (1.2).

The schematic diagram shows an interferometer that contains a generalized input

mirror GM which itself is an interferometer and provides the necessary dissipative

coupling for the Fabry-Perot interferometer. The mirror M1 is perfectly reflecting

and d is the distance between the beam splitter and the end mirror. Under the

assumption that the size of GM is much smaller than d, the reflectance and

transmittance of GM are constant without having any dependence on spectral

frequency. The GM demonstrates pure dissipative coupling because the spatial

shift of M changes only the relaxation rate of the cavity and not its eigenfrequency.

This feature of MSI is discussed in detail in Ref. [42,54]. The movable mirrorM can

be considered as a free mass at the time scale much smaller than the oscillation

period. For a free particle, potential energy is zero, its momentum and kinetic

energy are conserved. The cavity is pumped resonantly with a strong coherent
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light of frequency ωp = ωo. We assume that the pump laser has phase fluctuation

φ(t) =
∫
φ̇(t′)dt′ with zero mean value. The Hamiltonian of the system is given

by

Ĥ = ~ωoc†c+
p2

2m
+

∫
~ωb†(ω)b(ω)dω

− i~
√
κ
[
c†cine

−i[ωpt+φ(t)] − c†incei[ωpt+φ(t)]
]
. (2.1)

Here κ = κo(1 + ηx) represents the position dependent photon decay rate, κo is

the decay rate for x = 0 and η = κcp/κo, where κcp is the dissipative coupling

constant between the cavity field and the free particle. The first term represents

the free energy of the cavity field, the second term represents the energy of the free

particle, the third term represents the bosonic bath and the fourth term repre-

sents the cavity-bath interaction which gives attenuation of the pump photons and

associated quantum noise. In order to incorporate the effects of LPN associated

with the drive laser, we follow the noise model of Rabl et al. [74] as discussed in

section (1.2.3).

In the presence of an external weak force Fex acting on the free mass with zero

mean value the Heisenberg’s equations of motion for the system are given by

ẋ =
p

m
, (2.2a)

ṗ =
i~η√κo

2
[c†cine

−i[ωpt+φ(t)] − c†incei[ωpt+φ(t)]] + Fex, (2.2b)

ċ = −(
κ

2
+ iωo)c+

√
κcine

−i(ωp+φ̇)t. (2.2c)

The output field of the system can equally be obtained by the input output

formalism [90] and is given by

cout = −cin +
√
κc, (2.3)
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with the frame rotating at the instantaneously fluctuating frequency (ωp + φ̇)

Eqs. (2.2a)-(2.2c) takes the following form:

ċ = −(
κ

2
− iφ̇)c+

√
κcin, (2.4a)

ẍ =
ṗ

m
=
i~η
√
κo

2m
[c†cin − c†inc] +

Fex
m
. (2.4b)

These operators can be represented as a sum of large mean value and small

fluctuating terms such that c = c + δc, cin = cin + δcin, cout = cout + δcout, p =

p+ δp, x = x+ δx, where

δcin = −
∫
b(ω)e−i(ω−ωp)t

dω

2π
, (2.5)

represents the fluctuating part of the input drive and the corresponding correla-

tions are defined as

[
b(ω), b†(ω′)

]
= 2πδ(ω − ω′), (2.6a)[

δcin(t), δc†in(t′)
]

= δ(t− t′). (2.6b)

We assume the steady-state displacement of the free particle to be x = 0. In

steady state, ẋ = 0, ṗ = mẍ = 0 and ċ = 0, under this condition Eqs. (2.4a) and

(2.4b) lead to the solution p = 0, c = (2/
√
ko)cin, cout = cin. We also assume the

input field to be real i.e., cin = c∗in =
√

P/~ωl, where P is the power of input field.

In the first order approximation, we obtain the linearized equations of motion for

fluctuating operators such that

δċ = −κ
2
δc− ηκoc

4
x+
√
κoδcin + iφ̇c, (2.7a)

δcout = −δcin +
√
κoδc+

η
√
κoc

2
x, (2.7b)

ẍ =
i~η
√
κo

2m
[(δcin − δc†in)− κo

2
(δc− δc†)] +

Fex
m
. (2.7c)
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In frequency domain these equations can be written as

δcout+ =

(
κo + 2iω

κo − 2iω

)
b+ −

η
√
κoc

κo − 2iω
iωxω +

2i
√
κoc

κo − 2iω
φ̇+, (2.8a)

xω = −
~ηc√κo

mω2 (κo − 2iω)

[
ω
(
b+ − b†−

)
+
c
√
κo

2

(
φ̇+ + φ̇−

)]
− fex
mω2

. (2.8b)

where φ̇± = φ̇(ωo ± ω) represents the Fourier amplitude of the corresponding

operator.

It is interesting to note that in the presence of LPN, the output field given by

Eq. (2.8a) still carries the information about the speed iωxω of the probe mass in

frequency domain. However, an additional term due to LPN also appears in this

case. Similarly, the probe’s displacement equation given by Eq. (2.8b) also carries

an additional noise term due to LPN.

2.3 Detection of Classical Force in the Presence

of Laser Phase Noise

Next we consider the detection of classical force acting on the free test mass in the

presence of phase fluctuations associated with the laser driving the system. In or-

der to do that we write the input and output fields in terms of their amplitude and

phase quadrature. Thus, Ain = (b++b†−)/
√

2 and pin = (b+−b†−)/i
√

2 represent the

amplitude and phase quadratures of input field while Aout = (δcout+ + δc†out−)/
√

2

and pout = (δcout+ − δc†out−)/i
√

2 represent amplitude and phase quadratures of

the output field. The input quadratures are related with b+(b†−) while output

quadratures are related with δcout+(δc†out−). By using Eqs. (2.8a) and (2.8b), we

obtain following expressions for the quadratures of the output filed:

Aout =

(
κo + 2iω

κo − 2iω

)[
Ain −

2~η2c2

m (κ2o + 4ω2)
pin +

i
√

2κoηc

κo + 2iω

fex
mω

+
i
√

2κoc

κo + 2iω

(
φ̇+ − φ̇−

)
+

i
√

2κo~η2c3κo
2mω (κ2o + 4ω2)

(
φ̇+ + φ̇−

)]
, (2.9a)

pout =

(
κo + 2iω

κo − 2iω

)[
pin +

√
2κoc

κo − 2iω

(
φ̇+ + φ̇−

)]
. (2.9b)
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In order to write the above equations in much simplified form, we define following

parameters:

Q =
Pκ2o

κ2o + 4ω2
, P =

2~η2c2

mκo
, FSQL =

√
2~mω2,

fs = eiβ
fex
FSQL

, eiβ = i
κ0 − 2iω√
κ2o + 4ω2

,

M1 =

√
2κoQ

4ω
− ieiβ

√
2Q

κoP
, M2 =

√
2κoQ

4ω
+ ieiβ

√
2Q

κoP
(2.10)

Here P is the dimensionless power parameter and is related to the input power

as P = mκ2oωl

8η2
P and fs represents the signal force normalized to SQL of force

FSQL. By using the above mentioned parameters, the output quadrature given by

Eqs. (2.9a) and (2.9b) can be written in a much simplified form as given by the

following relations:

Aout =

(
κo + 2iω

κo − 2iω

)[
Ain −Qpin +

√
2Qfs + ic

(
M1φ̇+ +M2φ̇−

)]
, (2.11a)

pout =

(
κo + 2iω

κo − 2iω

)[
pin + c

(
M1 −M2

2

)(
φ̇+ + φ̇−

)]
. (2.11b)

It is clear from Eq. (2.11a) that the amplitude quadrature of the output field

contains shot noise (1st term), back action (2nd term), force signal (3rd term)

and the LPN term (4th term). While the phase quadrature of the output field

given by Eq. (2.11b) has information regarding input phase quadrature (1st term)

and LPN (2nd term). It is also clear from Eqs. (2.11a) and (2.11b) that our results

reduces to the same results as discussed in Ref. [42] in the absence of LPN. It is

also interesting to note that in the limit 2ω/κo << 1 (i.e., the bad cavity regime)

and in the absence of LPN and external force, Eqs. (2.11a) and (2.11b) reduce

to Aout ≈ Ain +
√
P [1

2
(2ω/κo)

2 − 1]pin and pout = pin. The reduction in back

action is evident in the amplitude quadrature. This feature of MSI tuned at pure

dissipative coupling regime has been discussed in detail in Ref. [65].

In order to achieve optimum detection strategy, it is better to define a gener-

alized output field quadrature such that

δZ = Aout cos θ + pout sin θ, (2.12)
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where θ represents the reference phase in homodyne detection that can be opti-

mized to achieve better sensitivity. It may be pointed out that the local oscillator

is produced by splitting off a part of the input laser, as a result, it also contains

the laser phase noise. In order to incorporate its effects, we follow the same ap-

proach as discussed by Abdi et al., [69] and consider all the detected quantities in

a frame rotating at randomly fluctuating instantaneous frequency i.e., (ωo + φ̇).

The correlation function for δc̃in(t)→ δcin(t)eiωot+iφ(t) in the rotating frame is still

given by Eq. (2.6b).

On substituting output quadratures from Eqs. (2.11a) and (2.11b) in

Eq. (2.12), we obtain our generalized output quadrature in terms of fluctuating

input field quadratures (Ain, pin), fluctuating phase (φ̇±) and SQL normalized

signal force (fs). The fluctuating input field quadratures and fluctuating phase

terms in the generalized output quadrature represents the Fourier component of

noise and is found to be

fN =
e−iβ√

2

[
Ain√
Q

+

(
−
√
Q+

tan θ√
Q

)
pin

+ ic

{
2M1 + i(M2 −M1) tan θ√

Q
φ̇+ +

2M2 + i(M2 −M1) tan θ√
Q

φ̇−

}]
.

(2.13)

When fN < fs, the force signal is detectable and when fs = 1, the signal is at

SQL [40]. It is interesting to note that the homodyne angle θ can be optimized to

eliminate the back action term completely from the noise spectrum [93–97]. This

can be done by taking

tan θopt =
Pκ2o

κ2o + 4ω2
o

. (2.14)

The single-sided spectral density of noise can be calculated by using the stan-

dard relation [40]

1

2
2πSN(ω)δ(ω − ω′) =

1

2

[
〈fN(ω)f †N(ω′)〉 + 〈f †N(ω′)fN(ω)〉

]
, (2.15)

assuming the spectral densities of the input field quadratures to be SAin
= Spin = 1

with no cross-correlation i.e, SAinpin = 0 and for the laser phase fluctuation we use
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Figure 2.1: Here light shaded lines show noise spectrum in the presence of phase

fluctuations while dark shaded lines show the case of no phase fluctuation. The

horizontal line corresponds to SQL. Here solid , dashed and dotted lines correspond

to P = 3, 9 and 27, respectively. Here m = 100 ng, κo = 2π MHz, η = 4.182× 108

m−1, Γl = 10 Hz, γc = 200 Hz.

Eq. (1.2). The noise spectral density is found to be

SN =
1

2

[
1

Q
+

(
−
√
Q+

tan θ√
Q

)2

+
2Γl

1 + ω2/γ2c
c2
{
κoQ

4ω2
+

4

κoP
(1 + tan2 θ)− 4

√
Q

P (κ2o + 4ω2)
tan θ

}]
.

(2.16)

From Eq. (2.16) it is clear that by selecting the optimum homodyne angle ac-

cording to Eq. (2.14), the back action term can be eliminated completely.

Next, we present the results of our numerical simulation. It may be noted that

throughout our calculations, we use m = 100 ng, κo = 2π MHz, λ = 1064 nm and

η = 4.182 × 108 m−1 which are the same as discussed in Ref. [43]. Figure (2.1)

shows a comparison of noise spectrum SN in the absence and presence of laser

phase noise. The dark shaded lines correspond to the case when there is no phase

fluctuation while the light shaded lines correspond to situation when the effects of

phase fluctuation are incorporated into the system. The dotted lines, dashed lines

and solid lines correspond to power parameter P = 27, 9, 3 respectively. Other

parameters are Γl = 10 Hz and γc = 200 Hz. It is interesting to see that SQL

can still be achieved for a wide range of detection frequencies even in the presence
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Figure 2.2: Contour plot of noise spectrum SN against laser linewidth Γl and noise

correlation parameter γc. Here the line at SN = 0 dB corresponds to SQL and the

region below this line gives better than SQL sensitivity. Here the power parameter

P = 6 and all the other parameters are the same as in Fig. 2.1.

of laser phase noise provided the power levels are kept low as clearly shown by

light shaded continuous and dashed lines. To get an insight of this situation, we

consider the noise spectrum SN given by Eq. (2.16) which contains a shot noise

term, back-action term and laser phase noise term. For an optimum angle at

2ω/κo = 1, Eq. (2.14) reduces to tan θopt = P/2 = Q which results in complete

elimination of the back-action from the noise spectrum. The braces {} term in

Eq. (2.16), which is related to the phase noise, reduces to (1/2κo)[P +8/P ], which

shows clear dependence of phase noise on the input power P . The phase noise

increases in both cases i.e., when power level is either very large or very small.

However, there exists an intermediate power range in which below SQL sensitivity

can be achieved. That is why, we have both upper and lower bound on the power

levels (See also Fig. (2.3)).

In figure (2.2) we present a contour plot which shows the effect of laser linewidth

and finite correlation time on noise spectrum. The contour at SN = 0 dB rep-

resents SQL. The positive values of the contour correspond to above SQL and

negative values of the contour correspond to below SQL. It is clear from the re-
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Figure 2.3: Contour plot of noise spectrum SN against P and 2ω/κo. The dark

shaded region (in red) corresponds to below SQL sensitivity. Here Γl = 10 Hz and

γc = 200 Hz. All the other parameters are the same as in Fig. 2.1.

sults that the laser linewidth and the correlation time must be selected in a manner

to remain in the negative portion of the contour to obtain below SQL measure-

ment. The contour is plotted at the optimum homodyne phase value of 2ω/κo = 1

for power parameter P = 6.

In order to get further insight, next we show contour plot of noise spectrum

against the input power parameter P and the detection frequency 2ω/κo (See

Fig. (2.3)). Only the dark shaded region in Fig. (2.3) corresponds to below SQL

sensitivity. Here the laser linewidth and noise correlation parameter are considered

to be Γl = 10 Hz and γc = 200 Hz, respectively. It is clear from the contour plot

that the power levels for which below SQL sensitivity can be achieved range from

0.95 to 11.5. Thus for higher power level force sensitivity below SQL cannot be

achieved. This is also evident from Fig. 2.1 (where the light dotted line is at

power level of 27).
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2.4 Force Detection on Free Mass in the Pres-

ence of Phase Fluctuations, Damping and

Thermal Noise

In this section, we consider the effect of mechanical damping of the free particle and

its interaction with the thermal environment in presence of LPN. The equations

of motion in this case are as follows

ċ = −(
κ

2
− iφ̇)c+

√
κcin, (2.17a)

ẍ =
i~η
√
κo

2m
[c†cin − c†inc]−

γmp

m
+

ξ

m
+
Fex
m
. (2.17b)

Here γm represents the mechanical damping rate and ξ is the thermal noise cou-

pling of the free particle with zero mean value. In this case, the displacement of

the free particle and the output field in frequency domain evolve in the following

way:

δcout+ =

(
κo + 2iω

κo − 2iω

)[
b+ −

η
√
κoc

κo + 2iω
iωxω +

2i
√
κoc

κo + 2iω
φ̇+

]
, (2.18a)

xω = −
~ηc√κo

m(ω + iγm)(κo − 2iω)

(
b+ − b†−

)
− ~ηc2κo

2mω(ω + iγm)(κo − 2iω)

(
φ̇+ + φ̇−

)
− fex + ξ

mω(ω + iγm)
. (2.18b)

Following the same procedure as we did in section 2.3, the amplitude and phase

quadratures of the output field can be written as

Aout =

(
κo + 2iω

κo − 2iω

)[
Ain −

Q

B
pin +

√
2Q

B

fex + ξ

FSQL
eiβ + ic

(
M ′

1φ̇+ +M ′
2φ̇−

)]
,

(2.19a)

pout =

(
κo + 2iω

κo − 2iω

)[
pin + cB

(
M ′

1 −M ′
2

2

)(
φ̇+ + φ̇−

)]
, (2.19b)
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where Q and P are the same parameters as defined in Eq. (2.10) while the param-

eter B, M ′
1 and M ′

2 are defined as

B = (1 + iγm/ω),

M ′
1 =

√
2κoQ

4ω
− ieiβ

B

√
2Q

κoP
,

M ′
2 =

√
2κoQ

4ω
+
ieiβ

B

√
2Q

κoP
. (2.20)

For a generalized quadrature δZ as defined earlier, the noise fN in this case is

given by the following relation

fN =
e−iβ√

2
B

[
Ain√
Q

+

(
−
√
Q

B
+

tan θ√
Q

)
pin +

ξ

BFSQL
eiβ

+ ic

{
2M ′

1 + i(M ′
2 −M ′

1)B tan θ√
Q

φ̇+ +
2M ′

2 + i(M ′
2 −M ′

1)B tan θ√
Q

φ̇−

}]
.

(2.21)

For random thermal force ξ, the correlation function is defined as

〈ξ(ω)ξ(Ω)〉 = 4πmKBTγmδ(ω + Ω) (2.22)

and the corresponding noise spectrum can be written as Sth = 4πmKBTγm, where

KB is the Boltzmann constant, T is the temperature of the environment and γm

is the mechanical damping of the oscillator. The noise spectrum SN in this case

is given by the following:

SN =
1

2

[
|B|2

Q
+

{
Q+

|B|2

Q
tan2 θ − (B +B∗) tan θ

}
− 8πmKBTγm

F 2
SQL

+
2Γl

(1 + ω2/γ2c )

|B|2c2

Q

{(√
2κoQ

4ω
−
√

2Q

κoP

(
tan θ cos β − sin(β − δ)

|B|

))2

+

(√
2Q

κoP

(
tan θ sin β +

cos(β − δ)
|B|

))2

+

(√
2κoQ

4ω
−
√

2Q

κoP

(
tan θ cos β +

sin(β − δ)
|B|

))2

+

(√
2Q

κoP

(
tan θ sin β − cos(β − δ)

|B|

))2}]
. (2.23)
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Figure 2.4: A comparison of noise spectrum: (dark solid line) without phase

fluctuation, (light solid line) with phase fluctuation and (dotted line) with both

damping and phase fluctuations. Here P = 3, 2ωo/κo = 1, Γl = 10 Hz, γc = 200

Hz, γm/κo = 10−5 and T = 0 K.
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Figure 2.5: Effects of damping on noise spectrum: horizontal line refers to SQL,

solid line corresponds to γm/κo = 0, dotted line corresponds to γm/κo ' 0.1 and

the dashed line corresponds to γm/κo ' 1. All the other parameters are the same

as in Fig. (2.4).

Here |B| =
√

1 + ω2/γ2m; β = tan−1(κo/2ω) and δ = tan−1(γm/ω). In Eq. (2.23)

the first term represents the photons shot noise, the second term corresponds to

the radiation back pressure, third term gives the contribution of thermal noise

and the last term corresponds to laser phase fluctuation noise. It may be noted

that in the presence of mechanical damping, contribution from the radiation back

action cannot be eliminated completely for any choice of optimum homodyne

phase. However, minimum value of back action can be achieved by selecting the
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Figure 2.6: Effects of temperature on noise spectrum: solid, dashed and dotted

lines correspond to T = 0 mK, 200 mK and 500 mK, respectively. Here γm/κo =

10−5 and all the other parameters are the same as in Fig. (2.4).

homodyne phase θ such that

tan θopt =
Pκ2o

(κ2o + 4ω2)(1 + γ2m/ω
2)
. (2.24)

It may be noted that for γm = 0, this result reduces to Eq. (2.14).

Figure (2.4) shows a comparison of the noise spectrum in absence of phase

fluctuation (dark solid line), with phase fluctuation (light solid line) and when

both damping and phase fluctuation are present (dotted line). The temperature

is taken to be at T = 0 K. Clearly there is no significant effect of damping on

the noise spectrum for γm/κo = 10−5. In order to further explore the effects of

mechanical damping on noise spectrum consider Fig. (2.5) which shows the noise

spectrum for different values of mechanical damping. It is clear that as long as

γm/κo << 1, the effects of mechanical damping is negligible. However, when γm is

of the order of κo, the noise spectrum is then significantly affected by mechanical

damping as shown by the dashed line in Fig. (2.5).

Next we discuss the force sensitivity on the free particle when thermal fluc-

tuations are also incorporated along with damping and phase fluctuations. Fig-

ure (2.6) shows the effects of finite temperature on noise spectrum. Here solid,

dashed and dotted line corresponds to T = 0 mK, 200 mK and 500 mK, respec-

tively. The mechanical damping is assumed to be γm/κo = 10−5. It is clear that
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Figure 2.7: A Contour plot representing the force sensitivity as a function of 2ω/κo

and P . Here Γl = 10 Hz, γc = 200 Hz and γm/κo = 10−5. The largest contour

corresponds to T = 0 mK. By increasing the temperature the contours become

smaller and vanishes for T > 460 mK, as a result no measurement at SQL is

possible.

below SQL sensitivity can still be achieved in the presence of finite temperature

however, force sensitivity decreases due to the increase in the temperature of the

environment.

Figure (2.7) shows a contour plot of noise spectrum SN against 2ω/κo and

P . The size of the contour decreases due to an increase in the temperature and

eventually vanishes when T approaches 460 mK. In this figure the largest contour

corresponds to T = 0 K and it spans input power range of 0.95 < P < 11.5 while

the allowed detection frequency range for this case is about 0.55 < 2ω/κo < 1.68.

It is interesting to note that the largest contour in Fig. (2.7) which corresponds

to T = 0 mK is almost similar to the contour shown in Fig. (2.3). The slight

difference appears due to the non-zero value of mechanical damping.
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2.5 Summary

In summary, our results show that the sensitivity of the force detection strongly

depends upon the laser phase fluctuation. However, force measurement better

than SQL can still be achieved with a wider frequency range for laser linewidth

Γl of few tens of Hz and noise correlation parameter γc of few hundreds of Hz.

We also considered the effect of mechanical damping and thermal noise in the

presence of phase fluctuations. The mechanical damping doesn’t affect the force

measurement substantially as long as γm is much smaller than ω. Temperature

of the environment greatly reduces the measurement sensitivity however, better

then SQL measurement is still possible for temperature T < 460 mK if Γl = 10 Hz

and γc = 200 Hz. In the presence of laser phase fluctuation and thermal noise,

the magnitude of input power of the laser also influences the force measurement

sensitivity. Our results show that below SQL measurement can neither be achieved

for very low power levels nor for very high power levels. For laser power parameter

P < 0.95, below SQL measurement is not possible while the upper level bound

on power level P depends upon the value of Γl, γc and T . Thus an optimum

choice of various parameters involved in the system play an important role for

force measurement in the presence of LPN, damping and thermal noise.
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Chapter 3
Force Sensing in a Dissipative
Optomechanical System in the Presence
of Parametric Amplifier’s Pump Phase
Noise

3.1 Introduction

The idea of dissipative coupling for the detection of weak force signal that acts on

a free test mass was proposed by Vyatchanin et al. [42]. This scheme provides the

possibility of detecting a classical force with sensitivity better than the SQL. The

proposal was further extended with the introduction of a degenerate parametric

amplifier (PA) into the system. It was shown that the presence of PA allows much

better force sensitivity (as compared to the case when it is not present) even in the

presence of mechanical damping and thermal noise [43]. In both of these studies,

the effect of phase fluctuations associated with the driving laser field were ignored.

In Chapter 2, we incorporated the phase fluctuation associated with the drive laser

and thoroughly studied its effects on free mass force sensing in a dissipative OM

system. It was shown that the sensitivity of force detection strongly depends upon

LPN.

In this chapter, we study the effects of phase noise associated with the pump

laser which drives the parametric amplifier (PA) on the detection of a weak clas-

sical force acting on a free test mass in a dissipative OM system. In order to

incorporate the pump phase noise associated with PA in our system, we follow

the noise model as proposed by Rabl et al. [74]. Our scheme can be realized by

considering pure dissipative coupling setup based on a modified Michelson-Sagnac
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interferometer [54]. The relative strength of the dispersive and dissipative coupling

can be tuned so that the purely dissipative-coupling regime becomes experimen-

tally feasible as demonstrated by Sawadsky et al. [55]. The parametric amplifier

can be introduced in this setup with a separate pump as proposed by Ref. [62].

The paper is organized as follows. In section 3.2, we present our model and solve

the equations of motion using quantum Langevin equation formalism. We find an

expression for the output quadrature of the field and calculate the noise spectral

density. In section 3.3, we present results of our numerical calculations. Finally,

in section 3.4, we summarize our results.

3.2 Theory and Model

We consider an optomechanical (OM) system with a degenerate parametric am-

plifier PA [43, 62] where a free test mass m is dissipatively coupled to a cavity

field with eigen-frequency ωo. The potential energy of the free mass is zero and

its momentum and kinetic energy are conserved. The cavity is driven resonantly

with a strong coherent light of frequency ωl = ωo and amplitude εl. A pump laser

field of frequency ωp = 2ωl interacts with the PA and produces an output field at

frequency ωl inside the cavity. We assume that the pump laser driving the PA has

phase fluctuation φ(t) =
∫
φ̇(t′)dt′ with zero mean value. The Hamiltonian of the

system in rotating frame at frequency ωl is given by

Ĥ = ~(ωo − ωl)c†c+
p2

2m
+ i~
√

2κ[εl(c
† − c)

+ c†cin − c†inc] + i~G(c†2eiθ − c2e−iθ), (3.1)

where κ = κo(1 + ηx) represents the position dependent photon decay rate and

κ = κo when x = 0. The parameter η = κcp/κo, where κcp is the dissipative

coupling constant between the cavity field and the free test mass. The parameter

θ is associated with the laser which drives PA and is given by θ = θo + φ(t),

where θo is the reference phase and φ(t) is the fluctuating phase. The amplitude

of the field is related to the input power as εl =
√

P/~ωl. The first term in the

Hamiltonian represents the free energy of the cavity field, while the second term

represents the energy of the free mass. The third term represents the coupling of
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cavity field with the input laser and input vacuum noise represented by cin. The

last term represents the interaction between the cavity field and PA.

Here it may also be notted that, the cavity is driven with a laser of frequency

ωl while the PA is driven by a separate pump with frequency ωp = 2ωl. In

practice, due to the power broadening in PA laser pump, the noise bandwidth

associated with PA is much bigger than the laser that drives the cavity. Under

this assumption, we can neglect the effects of the laser phase noise which drives

the cavity against the effects of PA pump phase noise as discussed by Farman

et al. [98]. For phase noise model, we follow the same approach as presented in

section 1.2.3, in Chapter 1.

In the presence of an external weak force Fex acting on the free mass with zero

mean value, the Heisenberg equations of motion for the system are given by the

following:

ẋ =
p

m
, (3.2a)

ṗ = −i~η
√

2κo
2

[εl(c
† − c) + c†cin − c†inc] + Fex, (3.2b)

ċ =
√

2κo(1 +
η

2
x)(εl + cin) + 2Gc†eiθ − κo(1 + ηx)c. (3.2c)

Here we assume that the steady-state displacement of the free particle to be zero

i.e., xs = 0. Under this condition the steady-state momentum and cavity field are

found to be

ps = 0, cs =

√
2κoεl

κ2o − 4G2
(κo + 2Geiθo). (3.3)

If we assume the deterministic part of the phase θo = 0, the steady-state value

of the cavity field becomes cs =
√

2κoεl(κo − 2G)−1, which is exactly the same

as given in Ref [43] with the stability requirement of κo > 2G. The equations of

motion for the operators given by Eqs. (3.2a)-(3.2c) can be represented as a sum

of large mean value and small fluctuating terms such that x = xs+ δx, p = ps+ δp

and c = cs + δc. In the first order approximation, the linearized equations of
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motion are given by

δẋ =
δp

m
, (3.4a)

δṗ = −i~η
√

2κo
2

[εl(δc
† − δc) + cs(cin − c†in)] + Fex, (3.4b)

δċ = −κoδc− (κo + 2G)
csηδx

2
+ 2G(δc† + icsφ) +

√
2κocin, (3.4c)

By taking the Fourier transform of these operators, the cavity field and position

fluctuation in frequency domain are found to be

δc(ω) =
1

(κo − iω)2 − 4G2

[√
2κ0(κo − iω)cin(ω)

+ 2G
√

2κ0c
†
in(−ω)− (κo − iω + 2G)(κo + 2G)

× csηδx(ω)

2
− 2Gcs

ω

{
(κo − iω)φ̇(ω)− 2Gφ̇(−ω)

}]
, (3.5a)

δx(ω) =
i~η√κocs√

2mω2

4G− iω
κo − iω + 2G

(cin − c†in)

+
i~ηGc2s
mω3

κo − 2G

κo − iω + 2G

[
φ̇(ω) + φ̇(−ω)

]
− fex
mω2

. (3.5b)

The output field of the system and its fluctuation can equally be obtained by the

input output formalism [90] and are given by

cout = −cin +
√

2κc, (3.6a)

δcout(ω) = −cin(ω) +
√

2κoδc(ω) +
√

2κo
ηcs
2
δx(ω). (3.6b)

On substituting Eqs. (3.5a) and (3.5b) in Eq. (3.6b), the fluctuating output field

of the system is found to be

δcout(ω) = −
√

2κoηcs
2

(4G+ iω)

κo − iω − 2G
δx(ω) +

[
2κo(κo − iω)

(κo − iω)2 − 4G2
− 1

]
cin(ω)

+
4Gκo

(κo − iω)2 − 4G2
c†in(ω)−

2csG
√

2κo
[
(κo − iω)φ̇(ω)− 2Gφ̇(−ω)

]
ω[(κo − iω)2 − 4G2]

.

(3.7)

Equation (3.7), which is one of the main result of the paper clearly shows that the

output field which contains information regarding the force signal and speed of the

test mass depends upon the phase fluctuations associated with the laser driving
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PA. Next, we define the input amplitude and phase quadratures as Xin(ω) =

1√
2
[cin(ω) + c†in(−ω)] and Yin(ω) = 1

i
√
2
[cin(ω) − c†in(−ω)]. Similarly, the output

field’s amplitude and phase quadratures are defined as Xout(ω) = 1√
2
[δcout(ω) +

δc†out(−ω)] and Yout(ω) = 1
i
√
2
[δcout(ω)− δc†out(−ω)]. On substituting the values of

δcout(ω) and δc†out(ω), the output quadratures of the field are found to be

Xout =
κo + iω + 2G

κo − iω − 2G

[
Xin +KYin +

√
2KU

fex(ω)

FSQL(ω)

−M1

{
φ̇+ − φ̇−

}
−M2

{
φ̇+ + φ̇−

}]
, (3.8a)

Yout =
κo + iω − 2G

κo − iω + 2G

[
Yin +M3

{
φ̇+ + φ̇−

}]
, (3.8b)

where φ̇± = φ̇(±ω) while the parameters U , K, FSQL, M1, M2 and M3 are the

same as given in Appendix A.

The first term in Eq. (3.8a) is the photons shot noise, while the second term

is the radiation back action term, the third term is the external force signal nor-

malized to FSQL and the last two terms arise due to the PA’s pump phase noise.

Equation (3.8b) shows that the phase quadrature of the output field also contains

the phase noise terms in addition to the back-action term. It may be noted that

in the absence of PA (i.e., G = 0), Eqs. (3.8a), (3.8b) reduce to the same results as

discussed in Ref. [43]. We can also define a generalized quadrature of the output

field as Zout(ω) = Xout(ω) cosϕ+ Yout(ω) sinϕ, where ϕ represents the homodyne

phase angle determined by the local oscillator that can be optimized for better sen-

sitivity. By using Eq. (3.8a) and Eq. (3.8b), we obtained the following expression

for the generalized quadrature:

Zout(ω) =
κo + iω + 2G

κo − iω − 2G

[
Xin cosϕ+

(
K cosϕ+

1

A
sinϕ

)
Yin

+
√

2KU
fex
FSQL

cosϕ−M1 cosϕ× (φ̇+ − φ̇−)

+
(
−M2 cosϕ+

M3

A
sinϕ

)
(φ̇+ + φ̇−)

]
, (3.9)

where A = (κo+2G)2+ω2

(κo−2G)2+ω2 . It is clear from Eq. (3.9) that it contains information

about the weak force signal that can be detected by using homodyne detection of

the quadrature Zout(ω) of the output field from the cavity. Using the correlation
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functions of the input vacuum noise

〈Xin(ω)Xin(Ω)〉 = 〈Yin(ω)Yin(Ω)〉 =
1

2
2πδ(ω + Ω), (3.10a)

〈Xin(ω)Yin(Ω)〉 = 〈Yin(ω)Xin(Ω)〉 =
i

2
2πδ(ω + Ω), (3.10b)

the spectrum of the fluctuations in the quadrature Zout(ω) of the output field can

be written as [43]

2πSout(ω)δ(ω + Ω) =
1

2

[
〈Zout(ω)Zout(Ω)〉 + 〈Zout(Ω)Zout(ω)〉

]
. (3.11)

Finally, we obtain the following expression for the spectrum of the output field:

Sout(ω) = 2AK cos2 ϕ

[
1

4K
+

1

4K

{
K +

tanϕ

A

}2

+
1

2K
Sph(ω) + fs

]
, (3.12)

where fs = Sex(ω)

F 2
SQL

is the spectrum of the external signal force normalized by the

spectral density of SQL of force. When fs = 1, the signal is said to be at SQL.

Sph(ω) is the noise spectrum of PA’s drive and is given by

Sph(ω) =
2Γl

1 + ω2

γ2c

[{
−M1 −M2 +

M3 tanϕ

A

}{
M

′

1 −M
′

2 +
M

′
3 tanϕ

A

}
+

{
M1 −M2 +

M3 tanϕ

A

}{
−M ′

1 −M
′

2 +
M

′
3 tanϕ

A

}]
(3.13)

where M
′
1, M

′
2 and M

′
3 are defined as

M
′

1 =
2csG

√
κo

−ω(κo − iω + 2G)
,

M
′

2 =
iGKcs(κo − 2G)

−√κoω(4G+ iω)
,

M
′

3 =
2icsG

√
κo

−ω(κo − iω − 2G)
. (3.14)

In Eq. (3.12), the first term is the photon shot noise, the second term is the

radiation back action noise, the third term is the noise associated with the phase

fluctuation of PA’s pump and the last term is the force signal. For the detection

of force signal, the Fourier component of the noise should be smaller than the SQL

normalized signal term. Hence the first three terms in Eq. (3.12) represent the
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single sided spectral density of the noise i.e.,

SN(ω) =
1

4K

[
1 +

{
K +

tanϕ

A

}2]
+

1

2K
Sph(ω), (3.15)

by this definition when SN(ω) = fs = 1, the noise level is said to be at SQL.

Moreover, the homodyne phase angle ϕ can also be optimized at some frequency

ωo, to get rid of the back action term [93, 94, 96, 97]. The optimum homodyne

angle ϕopt is given by

tanϕopt = −AK =
Jκ2o(16G2 + ω2

o)

ω2
o [(κo − 2G)2 + ω2

o ]
. (3.16)

where J = ~η2c2s
mκo

is dimensionless power parameter and is proportional to the input

power (See Appendix A). Thus, on substituting Eq. (3.16) into Eq. (3.15), the back

action term can be completely eliminated at ω = ωo. It may also be noted that

when phase noise is zero, our result reduces to that of Huang et al. [43]. If we

further simplify our system by assuming that the gain of PA is also zero i.e., G = 0,

our results reduces to that of Vyatchanin et al. [42].

3.3 Results and Discussion

Next, we present the results of our numerical simiulation. Throughout in our

calculations, we consider m = 100 ng, κo = 2π MHz, λ = 1064 nm and η =

4.182× 108 m−1 which are the same as discussed in Ref. [43]. In our analysis, we

also keep the system in the stable regime i.e., G/κo < 1/2. The power parameter

J can be written as J = Jo(1− 2G/κo)
−2, where Jo refers to the power parameter

in the absence of PA (See Appendix A). In Fig. (3.1), the dotted line shows the

noise spectrum SN when gain of PA is zero i.e. G = 0, the noise spectrum SN

is below the SQL line and is approximately -3 dB around the homodyne phase

ϕopt is optimized at ω/κo = 1. This is the case which has been discussed in detail

in Ref [42]. When gain of the parametric amplifier is non-zero i.e., G/κo = 0.2

(dashed line), the noise spectrum drops to -9 dB around the homodyne phase.

Thus, the presence of PA greatly improves the force sensitivity as discussed in

detail in Ref. [43]. Next we consider the effect of phase fluctuations associated with
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Figure 3.1: Here the dotted line shows noise spectrum in the absence of PA,

the dashed line corresponds to the noise spectrum when PA is used for the force

detection and the solid line represents the noise spectrum in presence of phase

fluctuations associated with the pump driving the PA. The horizontal line corre-

sponds to SQL. Here Jo = 1, G/κo = 0.2, Γl = 100 Hz, γc = 500 Hz and the

homodyne angle is set at ω/κo = 1.

the pump laser which drives PA. The solid line in Fig. (3.1) corresponds to the case

when pump phase fluctuation is non-zero i.e., Γl = 100 Hz and γc = 500 Hz. The

result clearly shows that SN is still below SQL line however, with less sensitivity

and smaller bandwidth. It is clear that the phase noise associated with PA pump

considerably reduces the sensitivity for below SQL measurement. Here the power

parameter Jo = 1 and the homodyne phase defined by Eq. (3.16), is optimized at

ω/κo = 1 in all the three cases.

To further elaborate the effects of PA’s pump phase noise, consider Fig. (3.2)

which shows a contour plot of the noise spectrum SN against the laser linewidth

Γl and the noise correlation parameter γc. The contour at SN = 0 (as shown by

white line) is at SQL while the region below this contour (dark shaded region)

corresponds to below SQL regime. In order to achieve sensitivity below SQL, the

values of Γl and γc should be selected in the dark shaded region.

Next, Fig. (3.3) shows contour plots of the noise spectrum SN against the

parametric gain G/κo and the detection frequency ω/κo. The solid line refers to

the case when phase fluctuation is zero and the sensitivity is at SQL. By increasing

the parametric gain such that 0 ≤ G/κo < 0.5, the range of detection frequency
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Figure 3.2: Contour plot of the noise spectrum SN against laser linewidth Γl and

noise correlation parameter γc. Here SN = 0 dB (contour shown by white line)

corresponds to SQL and the region below this contour (the darkest one) gives

better than SQL sensitivity. Here Jo = 0.25 and other parameters are the same

as in Fig. (3.1).

increases and then start decreasing and eventually approaches to the limiting value

of ω/κo ≈ 1. The detection frequency range is maximum when parametric gain

is around 0.15 < G/κo < 0.3. We can have below SQL sensitivity for almost any

value of the parametric gain (between 0 < G/κo < 0.5) and for each value of the

parametric gain we have certain width of detection frequency range. However, our

results show that when phase noise is also incorporated, the range of detection

frequency and parametric gain for which SQL can be beaten is reduced. This is

shown by dot-dashed, dashed and dotted contours in Fig. (3.3). Depending upon

the values of Γl and γc, we have different size of contours and therefore, limited

freedom in selecting various parameters for achieving below SQL sensitivity. Thus

measurement sensitivity is determined by the laser linewidth and noise correlation

parameter.

Figure (3.4) shows contour plots of the noise spectrum SN against the para-

metric gain G/κo and the power parameter Jo. The homodyne phase is optimized

at ω/κo = 1. The solid line corresponds to the case when pump phase noise is
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Figure 3.3: Contour plots of noise spectrum SN against parametric gain G/κo and

detection frequency ω/κo. Here all the contours are at SQL. The solid contour

corresponds to the case when phase fluctuation of the PA’s pump is zero. The

dotted, dashed and dot-dashed contours correspond to (Γl = 50 Hz, γc = 1000

Hz), (Γl = 100 Hz, γc = 500 Hz) and (Γl = 150 Hz, γc = 300 Hz), respectively.

Here Jo = 0.25 and all the other parameters are the same as in Fig. (3.1).

zero. By increasing the parametric gain the minimum power required to achieve

SQL decreases. However, when phase fluctuation of the PA’s pump is not zero,

we have both upper and lower bound on the power parameter for below SQL

measurement. For instance, when Γl = 100 Hz and γc = 500 Hz (dashed con-

tour), then for G/κo = 0.2 the power range allowed for below SQL sensitivity is

0.18 < Jo < 1.18. And for Γl = 50 Hz and γc = 1000 Hz (dotted contour) at

G/κo = 0.2 the allowed power range for below SQL sensitivity is 0.21 < Jo < 0.71.

Similarly, for Γl = 150 Hz and γc = 300 Hz (dot-dashed contour) at G/κo = 0.2,

below SQL sensitivity can be achieved for 0.17 < Jo < 1.7. Thus the presence of

phase noise not only limits the parametric gain but also affects the power range

for below SQL sensitivity.

Figure (3.5) shows contour plots of the noise spectrum SN against the power

parameter Jo and the detection frequency ω/κo. The parametric gain is G/κo =

0.2. The solid line corresponds to the case when pump phase noise is zero. By
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Figure 3.4: Contour plots of noise spectrum SN against the parametric gain G/κo

and power parameter Jo. Here all the contours are at SQL. The solid contour

corresponds to the case when phase fluctuation of the PA’s pump is zero. The

dotted, dashed and dot-dashed contours correspond to (Γl = 50 Hz, γc = 1000

Hz), (Γl = 100 Hz, γc = 500 Hz) and (Γl = 150 Hz, γc = 300 Hz), respectively.

Here the homodyne phase is optimized at ω/κo = 1 and all the other parameters

are the same as in Fig. (3.1).

increasing the input power the detection frequency range decreases but in a very

slow fashion for instance, at power level of Jo = 3, the detection frequency is in

the range of 0.6 < ω/κo < 1.4. It is also interesting to note that for Jo = 0.25,

the detection frequency range is 0.25 < ω/κo < 1.32 (which can also be verified

from Fig. (3.3) at G/κo = 0.2). However, when phase fluctuation of the PA’s

pump is not zero, not only the detection frequency range is reduced but the range

of power level is also reduced for below SQL measurement. For instance, when

Γl = 100 Hz and γc = 500 Hz (dashed contour), then for G/κo = 0.2 the power

range allowed for below SQL sensitivity is 0.18 < Jo < 1.18 at detection frequency

of ω/κo = 1. Furthermore, for Γl = 50 Hz and γc = 1000 Hz (dotted contour), the

allowed power range for below SQL sensitivity is 0.21 < Jo < 0.71 at G/κo = 0.2

and ω/κo = 1. Similarly, for Γl = 150 Hz and γc = 300 Hz (dot-dashed contour),

below SQL sensitivity can be achieved for 0.17 < Jo < 1.7. All these results are

consistent with Fig. (3.4). The power range for below SQL sensitivity is maximum
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Figure 3.5: Contour plots of noise spectrum SN against power parameter Jo and

detection frequency ω/κo. All the contours are at SQL. The solid contour corre-

sponds to the case when phase fluctuation of the PA’s pump is zero. The dotted,

dashed and dot-dashed contours correspond to (Γl = 50 Hz, γc = 1000 Hz),

(Γl = 100 Hz, γc = 500 Hz) and (Γl = 150 Hz, γc = 300 Hz) respectively. Here

G/κo = 0.2 and all other parameters are the same as in Fig. (3.1).

for the detection frequency in the neighborhood of optimum phase as back-action

is minimum around that phase.

Figure (3.6) shows the plot of noise spectrum against the detection frequency

for different choices of various parameters. The dot-dashed curve shows the noise

spectrum when Γl = 500 Hz, γc = 1 KHz, Jo = 1 and the optimum angle is set

at ω/κo = 2. For dashed curve, Γl = 1 KHz, γc = 5 KHz, Jo = 10 and the

optimum angle is set at ω/κo = 7. For solid curve, Γl = 2 KHz, γc = 10 KHz,

Jo = 15 and the optimum angle is ω/κo = 9. The parametric gain in all the

three cases is G/κo = 0.2. It may be noted that by increasing the laser linewidth

and noise correlation parameter, below SQL measurement is possible, however,

it require higher values of input power and the optimum angle is shifted towards

higher values of the detection frequency. It follows from above discussion that

depending upon the values of Γl and γc, below SQL sensitivity can be achieved for

specific range of input power Jo, detection frequency ω/κo and parametric gain
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Figure 3.6: Plot of the noise spectrum SN against the detection frequency ω/κo.

For dot-dashed curve, Γl = 500 Hz, γc = 1 KHz, Jo = 1 and the optimum angle

is set at ω/κo = 2. For dashed curve, Γl = 1 KHz, γc = 5 KHz, Jo = 10 and the

optimum angle is set at ω/κo = 7. For solid curve, Γl = 2 KHz, γc = 10 KHz,

Jo = 15 and the optimum angle is set at ω/κo = 9. The parametric gain in all the

three cases is G/κo = 0.2.

G/κo. Thus, the presence of LPN (associated with the PA pump) limits the choice

of selection of various parameters for below SQL measurement.

3.4 Summary

To summarize the results in this chapter, we have considered the effect of phase

fluctuations associated with the laser driving PA in a dissipatively coupled op-

tomechanical system on force sensing. Our results show that the sensitivity of the

force detection strongly depends upon the laser phase fluctuation associated with

PA’s pump. However, force measurement better than SQL can still be achieved

with a wider frequency range provided an optimum choice of various parameters

is made. As an example, for any particular value of the gain within 0 < G < 0.5,

there exists a certain range of the laser linewidth Γl and noise correlation parame-

ter γc in which below SQL measurement is possible. And for below SQL sensitivity

at that particular value of G, Γl and γc, there exist a certain range of input power

level and detection frequency. Thus in case of LPN of PA pump, we have limited

choice in the selection of various parameters for below SQL measurement.
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Chapter 4
Effects of Kerr Medium on Force Sensing
in a Dissipative Optomechanical System

4.1 Introduction

In this chapter, we study the effects of the Kerr medium on the detection of a weak

classical force acting on an OM oscillator which is coupled purely dissipatively. The

presence of Kerr medium inside an OM cavity can lead to very interesting effects

such as controlling the normal mode splitting (NMS) due to photon blockade [80],

enhancement of OM entanglement [81] and bistability of the OM system [82, 83].

In an earlier study, it has been shown that the use of Kerr cell in interferometric

gravity-wave detector counters the radiation pressure induced fluctuations. The

performance of such interferometers greatly surpass SQL [51]. We are therefore

interested to see the effects of optical Kerr medium on force sensing in a dissipative

OM system.

4.2 Theory and Model

We consider an optomechanical (OM) system where the oscillator of mass m and

frequency ωm is dissipatively coupled to a cavity field having eigenfrequency ωo.

The cavity is driven by a strong coherent light of frequency ωl and amplitude

εl. We assume an optical Kerr medium is present inside the OM cavity with

anhormonicity parameter χ. For the realization of dissipative coupling, we consider

the Michelson-Sagnac Interferometer (MSI) configuration as shown in Fig. (1.2) in

Chapter 1. An interesting feature of this system is that it can be tuned to operate

in pure dissipative coupling regime. This can be done by properly adjusting the
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position of the membrane and the reflectivity of the beam splitter as discussed in

detail by Xuereb et al. [54]. The Hamiltonian of the system in rotating frame at

frequency ωl is given by

Ĥ = ~∆oc
†c+

1

2
mω2

mx
2 +

p2

2m

+ i~
√

2κ[εl(c
† − c) + c†cin − c†inc] + ~χc†2c2, (4.1)

where ∆o = ωo−ωl and κ = κo(1 +ηx), represents the position dependent photon

decay rate and κ = κo when x = 0. The parameter η is related to the dissipative

coupling strength as gκ = ηκoxzpf , where xzpf =
√

~/2mωm is the zero-point

fluctuation of the oscillator. The amplitude of the field is related to the input

power as εl =
√
P/~ωl. The first term in the Hamiltonian represents the free

energy of the cavity field, while the second and third term represent the energy

of the oscillator. The fourth term represents the coupling of cavity field with the

input laser while the input vacuum noise is represented by cin. The last term

represents the interaction between the cavity field and the Kerr medium with

χ ≡ 3~ω2
oRe[χ

(3)]/2εVc, where ε represents the dielectric constant of the medium,

Vc is the volume of the cavity and χ(3) is the third order nonlinear susceptibility

of the medium.

In the presence of an external weak force Fex with zero mean value acting on

the oscillator, the Heisenberg equations of motion for the system are given by the

following:

ẋ =
p

m
, (4.2a)

ṗ = −i~η
√

2κo
2

[εl(c
† − c) + c†cin − c†inc]−mω2

mx− γmp+ ξ + Fex, (4.2b)

ċ = −i∆oc+
√

2κo(1 +
η

2
x)(εl + cin)− 2iχc†c2 − κo(1 + ηx)c. (4.2c)

In the steady-state, the solution of Eqs. (4.2a)-(4.2c) yields

ps = 0, cs =

√
2κsεl

κs + i∆
, xs =

√
2κoi~ηεl(cs − c∗s)

2mω2
m

, (4.3)

where κs = κo(1 + ηxs), ∆ = ∆o + 2χNs and Ns = |cs|2. It may be noted that

both xs and Ns are not only related to each other but also satisfies third order
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equation and can have three roots, as a result, it can display multistable behavior.

The steady-state photon density Ns must be real and positive, while the steady

state position xs of the oscillator must be real. It is also clear from Eq. (4.3), when

∆ = 0 ⇒ cs = c∗s which leads to xs = 0. The operators given by Eqs. (4.2a)-(4.2c)

can be represented as a sum of large mean value and small fluctuating terms such

that x = xs + δx = δx, p = ps + δp = δp and c = cs + δc. In the first order

approximation, the linearized equations of motion are given by the following:

δẋ =
δp

m
, (4.4a)

δṗ = −i~η
√

2κo
2

[εl(δc
† − δc) + c∗scin − csc

†
in)]

−mω2
mδx− γmδp+ ξ + Fex, (4.4b)

δċ = −[κs + i(∆o + 4χNs)]δc− 2iχc2sδc
†

+
(κoηxs/2 + i∆)csηδx

1 + ηxs/2
+
√

2κscin. (4.4c)

Equations (4.4a)-(4.4c) and their Hermitian conjugate constitute a system of four

first order coupled equations which can be written as

ḟ(t) = Af(t) + ζ(t), (4.5)

where f(t) and ζ(t) are column vectors and their transposes are given by

f(t)T = (δx, δp, δc, δc†),

ζ(t)T = (0,
i~η
√

2κo
2

[csc
†
in − c∗scin] + ξ + Fex,

√
2κscin,

√
2κsc

†
in), (4.6)

while matrix A is given by

A =


0 1/m 0 0

−mω2
m −γm iW −iW

−c1/
√

2 0 −κ1 −2iχc2s

−c∗1/
√

2 0 2iχc∗2s −κ∗1

 , (4.7)

where c1 =
√

2ηcs(κoηxs/2 + i∆)/(1 + ηxs/2), κ1 = κs + i(∆ + 2χNs) and W =
√

2κo~ηεl/2. The solution of Eq. (4.5) is f(t) = M(t)f(0) +
∫ t′
0
M(t′)ζ(t − t′)dt′,
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where M(t) = eAt. The system reaches its steady-state value and remains stable

as t→∞ only if the real parts of all the eigenvalues of the matrix A are negative

such that M(∞) = 0. The stability conditions for the system can be obtained by

employing the Routh-Hurwitz criterion [99], and are given by

S1 = 2
√

2mκs[(κs + γm)2 + ∆(∆ + 4χNs)] +
√

2mγmω
2
m − iW (c1 − c∗1) > 0,

S2 = iW (c1κ
∗
1 − c∗1κ1)− 2Wχ(c2sc

∗
1 + c∗2s c1) +

√
2mω2

m[κ2s + ∆(∆ + 4χNs)] > 0,

S3 =
[
iW (c1 − c∗1) +

√
2mγm

{
κ2s + ∆(∆ + 4χNs)

}
+ 2
√

2κsmω
2
m

]
S1

−
√

2m2(2κs + γm)2S2 > 0. (4.8)

Throughout our numerical analysis we restrict to the stable regime. All the pa-

rameters chosen in this work have been verified to satisfy the stability conditions

given by Eq. (4.8).

Next we take the Fourier transform of the operators given by Eqs. (4.4a)-(4.4c).

As a result, fluctuations in the position of oscillator and cavity field in frequency

domain are found to be

δx(ω) = Z(ω)

[
− iW

εl

{
εl(δc

†(ω)− δc(ω)) + c∗scin(ω)− csc†in(ω)
}

+ ξ(ω) + fex(ω)

]
, (4.9a)

δc(ω) =

√
2κscin(ω)− 2iχc2sδc

†(−ω) + c1δx(ω)/
√

2

(κ1 − iω)
, (4.9b)

where Z−1(ω) = m(ω2
m − ω2 − iωγm) is the susceptibility of the mechanical

oscillator. Defining the input amplitude and phase quadratures as Xin(ω) =

1√
2
[cin(ω) + c†in(−ω)] and Yin(ω) = 1

i
√
2
[cin(ω) − c†in(−ω)]. Similarly, for the field

inside the cavity, the amplitude and phase quadratures are defined as X(ω) =

1√
2
[δc(ω) + δc†(−ω)] and Y (ω) = 1

i
√
2
[δc(ω)− δc†(−ω)]. By using these definitions,

Eq. (4.9b) can be written in terms of quadratures of the field as follows

a1(ω)X(ω) + ib1(ω)Y (ω) = c1(ω)δx+
√

2κs{Xin(ω) + iYin(ω)}, (4.10)

where a1(ω) = κ1 + i(2χc2s − ω) and b1(ω) = a1(ω)− 4iχc2s. By solving Eq. (4.10)

along with its Hermitian conjugate, we obtain the following expressions for the

41



Chapter 4: Effects of Kerr Medium on Force Sensing

quadratures of the cavity field:

X(ω) =
1

a2(ω)

[
a3(ω)δx(ω) +

√
2κs

(
{b1(ω) + b∗1(−ω)}Xin(ω)

− i{b1(ω)− b∗1(−ω)}Yin(ω)
)]
, (4.11a)

Y (ω) =
i

a2(ω)

[
a4(ω)δx(ω) +

√
2κs

(
{a1(ω)− a∗1(−ω)}Xin(ω)

− i{a1(ω) + a∗1(−ω)}Yin(ω)
)]
, (4.11b)

where

a2(ω) = a1(ω)b∗1(−ω) + a∗1(−ω)b1(ω),

a3(ω) = b1(ω)c∗1 + b∗1(−ω)c1,

a4(ω) = a1(ω)c∗1 − a∗1(−ω)c1. (4.12)

The position fluctuation can also be written in terms of input amplitude and phase

quadrature as

δx(ω) = Zeff (ω)
[
− a5(ω)Xin + a6(ω)Yin + ξ(ω) + fex(ω)

]
, (4.13)

where a5(ω) and a6(ω) are as follows,

a5(ω) = i~η
√
κo

[cs − c∗s
2

+
εl
√

2κs(a1(ω)− a∗1(−ω))

a2(ω)

]
,

a6(ω) = ~η
√
κo

[cs + c∗s
2
− εl
√

2κs(a1(ω) + a∗1(−ω))

a2(ω)

]
, (4.14)

and Z−1eff (ω) = m(Ω2
eff−ω2− iωΓeff ) is the effective susceptibility of the oscillator

in the presence of Kerr medium with effective mechanical frequency Ω2
eff = ω2

m +

Re[K(ω)] and effective mechanical damping Γeff = γm − Im[K(ω)]/ω. Here the

parameter K(ω) is defined as K(ω) = i~ηεl
√
κoa4(ω)/[ma2(ω)]. It may be noted

that ∆ = 0 leads to K(ω) = 0 and eventually Zeff (ω) = Z(ω). In Eq. (4.13), the

first two terms arise due to the input vacuum noise, the third term represents the

contribution of the thermal noise and the last term is due to the external force.

In the absence of dissipative coupling and external force, the oscillator follows
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Brownian motion, and the spectral density is Lorentzian centered at frequency ωm

with full width of γm at half maximum.

Using Eq. (3.6b) for fluctuating output field and defining the fluctuat-

ing quadrature of the output field as Xout(ω) = [cout(ω) + c†out(−ω)]/
√

2 and

Yout(ω) = [cout(ω) − c†out(−ω)]/i
√

2, we obtain the following expressions for the

amplitude and phase quadrature of the output field:

Xout(ω) =
√

2κoX(ω) +

√
κoη(cs + c∗s)

2
δx(ω)−Xin(ω), (4.15a)

Yout(ω) =
√

2κoY (ω) +

√
κoη(cs − c∗s)

2i
δx(ω)− Yin(ω). (4.15b)

On substituting Eqs. (4.11a), (4.11b) and (4.13) into Eqs. (4.15a) and (4.15b), the

output quadratures of the field are found to be

Xout(ω) = h1(ω)Xin(ω) + h2(ω)Yin(ω) + h3(ω) {ξ(ω) + fex(ω)} , (4.16a)

Yout(ω) = h4(ω)Xin(ω) + h5(ω)Yin(ω) + h6(ω) {ξ(ω) + fex(ω)} , (4.16b)

where the parameters h1(ω), h2(ω), h3(ω), h4(ω), h5(ω) and h6(ω) in Eqs. (4.16a)

and (4.16b) are defined in Appendix B.

It may be noted that in the absence of Kerr medium the shot noise and thermal

noise are present only in the amplitude quadrature of the output field as can be

seen in Ref. [42,43]. However, Eqs. (4.16a) and (4.16b) show that in the presence

of Kerr medium, both quadratures contain the shot noise, back action, thermal

noise and external force signal. This interesting feature arises due to the fact that

the optical Kerr medium transforms amplitude fluctuations in the initial coherent

state into phase fluctuations [90]. We can also define a generalized quadrature of

the output field as Zout(ω) = Xout(ω) cosϕ+ Yout(ω) sinϕ, where ϕ represents the

homodyne phase angle determined by the local oscillator that can be optimized

for better sensitivity. By using Eqs. (4.16a) and (4.16b), we obtained the following
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expression for the generalized quadrature:

Zout(ω) =
[
h1(ω) cosϕ+ h4(ω) sinϕ

]
Xin(ω)

+
[
h2(ω) cosϕ+ h5(ω) sinϕ

]
Yin(ω)

+
[
h3(ω) cosϕ+ h6(ω) sinϕ

]
[ξ(ω) + fex(ω)]. (4.17)

Equation (4.17) shows that the generalized quadrature contains information about

the weak force signal. It can be detected by using homodyne detection of the

quadrature Zout(ω) of the output field from the cavity. In order to elliminate the

back-action noise [93, 94, 97], the homodyne phase ϕ can be optimized by setting

tanϕopt = −h2(ω)/h5(ω). We assume the input light is in a coherent state and MSI

operates in its dark port condition. Under this assumption SXin
= SYin = 1 and

there is no correlation between Xin and Yin [40, 54]. Using these correlations and

Eq. (3.11) in Chapter 3, the spectral density of the fluctuation in the quadrature

Zout(ω) of the output field can be written as

Sout(ω) =
1

2

[
Ssh(ω) + Sba(ω) + Sth(ω) + Sex(ω)

]
, (4.18)

where Ssh, Sba, Sth and Sex represent the spectral density of shot noise, back

action, thermal noise and external signal force respectively. The thermal noise

contribution is given by Sth = 〈ξ(ω)ξ(ω′)〉 = 4πmKBTγmδ(ω + ω′) while Ssh and

Sba are given by

Ssh(ω) =

∣∣∣∣h1(ω) cosϕ+ h4(ω) sinϕ

h3(ω) cosϕ+ h6(ω) sinϕ

∣∣∣∣2,
Sba(ω) =

∣∣∣∣h2(ω) cosϕ+ h5(ω) sinϕ

h3(ω) cosϕ+ h6(ω) sinϕ

∣∣∣∣2. (4.19)

In order to detect the force signal below SQL, the Fourier component of the

noise should be smaller than SQL normalized signal term i.e. Ssh + Sba + Sth ≤

Sex/Ssql. Thus the noise term can be written as

SN(ω) =
1

Ssql
(Ssh + Sba + Sth), (4.20)
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Figure 4.1: Noise spectrum SN against detection frequency ω/κo. Here, red (dot-

dashed), green (dashed) and blue (solid) line shows noise spectrum for ∆o =

χNs = 0, ∆o = −2χNs = −0.3κo and “χNs/κo = 0.15, ∆o = 0”, respectively.

The solid straight line corresponds to the oscillator’s SQL of force. Here we used

P = 1 watt and T = 0.1 K.

where Ssql = 2m~
√

(Ω2
eff − ω2)2 + Γ2

effω
2 (in units of N2/Hz) is the SQL of force

for the mechanical oscillator. In the special case, when ∆ = 0, we have Ssql =

2m~
√

(ω2
m − ω2)2 + γ2mω

2. The noise level is said to be at SQL when SN = 1.

4.3 Results and Discussion

Next, we present the results of our numerical simiulation. We use the parameters

m = 100 ng, κo = 2π MHz, ωm/κo = 0.2348, λ = 1064 nm, η = 4.182 × 108

m−1 and γm/κo = 10−5 as discussed in Ref. [43]. In Fig. (4.1), we have plotted

the noise spectrum SN of the output field against the detection frequency ω/κo

for three different cases: (i) when the cavity is driven resonantly in the absence

of Kerr medium i.e., ∆o = χNs = 0 (dot-dashed curve), (ii) when the cavity is

driven resonantly in the presence of Kerr medium i.e., ∆o = 0, χNs/κo = 0.15

(solid curve) and (iii) when the cavity is detuned in the presence of Kerr medium

such that ∆o = −2χNs = −0.3κo (dashed curve). Clearly, when the cavity is

driven resonantly in the presence of Kerr medium, it not only improves the force

sensitivity but also the detection frequency range as compared to the case when

Kerr medium is not present (please see solid and dot-dashed curves). The presence

of Kerr medium makes the system more sensitive to the power P , detuning ∆o and
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Figure 4.2: Contour plot of noise spectrum SN against detection frequency ω/κo

and detection phase ϕ/π. Here, red (dot-dashed), green (dashed) and blue (solid)

contour correspond to ∆o = χNs = 0, ∆o = −2χNs = −0.3κo and “χNs/κo =

0.15, ∆o = 0”, respectively. All the contours are at SQL i.e., SN = 0 dB. All the

other parameters are the same as in Fig. (4.1).

the strength of Kerr non-linearity χNs. The stability condition given by Eq. (4.8)

must be fulfilled for various choices of parameters to keep the system stable. As we

discussed earlier, Eq. (4.3) shows that when ∆ = ∆o + 2χNs 6= 0, the steady-state

amplitude of the cavity field cs and the steady state position of the oscillator xs

are related to each other and can show multistable behavior for some values of

various parameters. An interesting case arises when the system is driven in such

a way that ∆o = −2χNs which leads to ∆ = 0. In this case, the system remains

stable and gives improved force sensitivity with a wider detection frequency range

as compared to the case when ∆o = χNs = 0 (as shown by the dashed curve in

Fig. (4.1)).

In order to get further insight regarding the role of Kerr medium in the system,

we have also calculated the intra-cavity photon number Ns = |cs|2 for three differ-

ent cases as discussed in Fig. (4.1). The photon numbers obtained for case (i), (ii)

and (iii) are 2.71× 1011, 2.13× 1011 and 2.71× 1011 respectively. For ∆ = 0, the

photon number remains the same. However, for ∆ 6= 0, the intra-cavity photon

number decreases in the presence of Kerr medium. Moreover, non-zero value of ∆
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Figure 4.3: Contour plot of noise spectrum SN against detection frequency ω/κo

and input power P . Here we use ∆o = −2χNs = −0.3κo. The solid line (in red

color) represents SN at SQL while the dark shaded region (in green color) is the

region where SN is below SQL.

also results in a slight shift in the oscillators resonance frequency which is evident

from Fig. (4.1).

Figure (4.2) shows contour plots of SN against detection frequency ω/κo and

homodyne detection phase ϕ/π for the three cases as discussed in Fig. (4.1). Here

all the contours are at SQL i.e., SN = 0 dB. All the parameters are the same as

in Fig. (4.1). Again we have dot-dashed contour for ∆o = χNs = 0, solid contour

for ∆o = 0, χNs/κo = 0.15, and dashed contour for ∆o = −2χNs = −0.3κo. The

contours show that for each case there is a particular value of homodyne phase at

which the range of detection frequency is maximum. For instance, the dot-dashed

curve has maximum detection frequency range at ϕ/π ≈ −0.03. For the solid

contour the range is maximum for ϕ/π ≈ 0.035 and for the dashed curve it is

around ϕ/π ≈ 0.15.

Figure (4.3) shows a contour plot of SN against detection frequency ω/κo and

input power P . Here we consider ∆o = −2χNs = −0.3κo i.e., ∆ = 0. The system

remains stable under this condition as discussed earlier. The homodyne phase is

set at ϕ/π = 0.15 while all the other parameters are the same as in Fig. (4.1).

The solid contour (red line) is at SQL i.e. SN = 0 dB while the dark shaded

47



Chapter 4: Effects of Kerr Medium on Force Sensing

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ω�Κo

Χ
N
s
�
Κ
o

Figure 4.4: Contour plot of the noise spectrum SN against ω/κo and χNs/κo. The

solid line (in red color) is at SQL i.e. SN = 0 dB, while the dark shaded region

(in green color) is the region where SN is below SQL.

area (green color) corresponds to the region where the noise spectral density is

below SQL. It is clear from Fig. (4.3), by increasing the input power, the range of

detection frequency increases in the region where ω > ωm while there is a decrease

in the range of detection frequency for ω < ωm. The overall effect of high input

power results in wider detection frequency range in the region where ω > ωm.

Figure (4.4) shows the contour plot of the noise spectrum SN against the

detection frequency ω/κo and the strength of the Kerr non-linearity χNs/κo. Here

again we consider ∆o = −2χNs while the homodyne phase is set at ϕ/π = 0.12. All

the other parameters are the same as in Fig. (4.1). The solid contour (red line)

in Fig. (4.4) is at SQL while the dark shaded area (green color) represents the

region where the noise spectral density is below SQL. Here we have two different

choices for detection frequency (i) when the detection frequency is greater than the

oscillator’s frequency i.e., ω > ωm and (ii) when the detection frequency is smaller

than the oscillator’s frequency i.e., ω < ωm. For ω > ωm, maximum detection

frequency range can be achieved for 0.35 < χNs/κo < 0.5 while for ω < ωm there

is a slight decrease in the detection frequency range when the Kerr non-linearity

is increased. Thus, an optimum choice of Kerr non-linearity is required in order

to get large detection frequency range for below SQL sensitivity.
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Figure 4.5: Contour plot of SN against ω/κo and T for ∆o = χNs = 0 (dot-dashed

contour), ∆ = ∆o + 2χNs = 0 (dashed contour) and for ∆o = 0, χNs/κo = 0.15

(solid contour). All contours are at SQL i.e. at SN = 0 dB. The solid and dashed

contours show that the presence of Kerr media reduces the effects of temperature

on force sensitivity. All the other parameters are the same as in fig. (4.1).
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Figure 4.6: Noise spectrum SN against the detection frequency ω/κo for ∆o =

χNs = 0 (dot-dashed contour), ∆o = −2χNs = 0.3κo (dashed contour) and for

∆o = 0, χNs/κo = 0.15 (solid contour). Here we used ωm/κo ≈ 0 and all the other

parameters are the same as in fig. (4.1).

Next, we show how the temperature affects the force sensitivity of the oscillator.

Consider Fig. (4.5) which shows a contour plot of SN against ω/κo and T . All

the contours are at SQL, i.e., at SN = 0 dB. The dot-dashed, dashed and solid

contours corresponds to ∆o = χNs = 0, ∆ = ∆o + 2χNs = 0 and ∆o = 0,

χNs/κo = 0.15, respectively. It is clear from dashed and solid contours in Fig. (4.5)
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Figure 4.7: Noise spectrum SN against the detection frequency ω/κo for ∆o =

χNs = 0 (dot-dashed curve), ∆o = −2χNs = 0.3κo (dashed curve) and for ∆o = 0,

χNs/κo = 0.15 (solid curve). Here we used γm/κo ≈ 10−7, Qm ≈ 106, P =

100 mW, T = 5 K and all the other parameters are the same as in fig. (4.1).

that the influence of temperature on force sensitivity is reduced in the presence of

Kerr media which is quite interesting. Thus, the force sensitivity of the oscillator

becomes more robust against the temperature in the presence of Kerr media.

Upto this point, we have discussed the force sensitivity of the mechanical os-

cillator. An interesting case arises when the frequency of mechanical oscillator is

much smaller than the cavity line-width i.e. ωm << κo. Under this condition,

the mechanical oscillator can be considered as a free mass. Figure (4.6) shows

the noise spectrum of the free mass in the absence and presence of Kerr medium.

The dot-dashed and solid curve represents the noise spectrum when the system

is driven resonantly in the absence and presence of Kerr medium, respectively.

The dashed curve represents the noise spectrum when both the Kerr medium and

detuning are present such that ∆o = −2χNs = 0.3κo. Figure (4.6) shows that

force sensitivity is much better with a wider range of detection frequency in the

presence of Kerr medium for a free test mass as well.

In Fig. (4.7),we have plotted the noise spectrum against the detection frequency

for a different set of experimental parameters. The mechanical quality factor

Qm ≈ 106 and mechanical damping γm/κo ≈ 10−7 [100,101]. Here the laser power

is assumed to be P = 100 mW and the temperature T = 5 K. In the absence of

Kerr medium, below SQL measurement is not possible as shown by the dot-dashed
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curve. However, the presence of Kerr medium enables below SQL sensitivity as

shown by the dashed and solid curve. It may be noted that quality factor in

the range 107 − 109 has already been reported for silicon-nitride membrane [100–

102]. From experimental point of view, higher quality factor with low input power

provide more flexibility on base temperature. Moreover, Kerr medium further

enhances robustness against thermal noise.

4.4 Summary

To summarize the work presented in this chapter, we have considered the effects

of Kerr medium in a dissipative OM system for force sensing of a mechanical

oscillator. Our results show that the presence of the Kerr media improves the

force sensitivity of the oscillator. The presence of Kerr media can also introduce

system instability for some values of various parameters. However, the instability

can be avoided if the system is driven by a blue detuned laser in such a way that

∆o = −2χNs. If this condition is fulfilled, then there exist an optimum range

of values for the Kerr non-linearity which leads to better force sensitivity below

SQL with a wider range of detection frequency. Our results also show that by

increasing the input power, force sensitivity and detection frequency range also

increases. Moreover, the presence of Kerr media improves the robustness of the

force sensitivity of the oscillator below the SQL against the thermal noise. It may

also be noted that when frequency of the mechanical oscillator is much smaller

than the cavity line-width i.e. Ω/κo ≈ 0, in this case the mechanical oscillator can

be considered as a free mass. Our results show that better force sensitivity over a

wide range of detection frequency can also be achieved for a free test mass in the

presence of Kerr medium.
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Chapter 5
Measurement of weak magnetic field via
dissipatively coupled opto-mechanical
system

5.1 Introduction

Optomechanical (OM) systems have proven its capability of providing potential

applications in precision measurements. They can be used to achieve sensitivity

beyond the standard quantum limit in gravitational wave detectors [18,103–106],

as a quantum speed meter [36, 39, 42], torque sensor [45], magnetometer [47, 48]

and in precision measurement of electric charge [46].

In previous chapters, we discussed the detection of weak force signal via dis-

sipative OM system. In this chapter, we present an optical detection technique

for measuring weak magnetic field which can work at room temperature. We use

a dissipatively coupled OM system that can be realized in a Michelson-Sagnac

Interferometer (MSI) with a movable membrane [53–55]. MSI can be considered

as a compound mirror as the position of the movable membrane sensitively affects

the transmissivity of MSI when it operates close to the dark port condition. Un-

der this condition, the compound MSI mirror along with a perfect mirror forms

an effective Fabry-Perot Interferometer (FPI) whose linewidth depends upon the

position of the membrane. In addition, when current is applied to the membrane

in the presence of a magnetic field, it leads to the magnetic coupling of the mem-

brane which directly affects the linewidth of the effective FPI. As a result, the

output spectrum of the field is affected and therefore, enables measurement of

weak magnetic field.
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Rest of the chapter is organized as follows: In section 5.2, we present our model

and solve the equations of motion. We find an expression for the output quadrature

of the field and calculate the spectral density. In section 5.3, we present results of

our numerical calculations. Finally, in section 5.4, we conclude our results.

5.2 Theory and Model

We consider an optomechanical system where a mechanical resonator of effective

mass m and resonance frequency ωm is dissipatively coupled to a cavity field with

eigen-frequency ωo. The cavity is driven with a strong coherent light of frequency

ωl = ωo and amplitude εl. In a frame rotating at input laser frequency ωl, the

Hamiltonian of the system is given by

Ĥ =

(
p2

2m
+

1

2
mω2

mx
2

)
+ ~(ωo − ωl)c†c

+ i~
√

2κ[εl(c
† − c) + c†cin − c†inc] + ζBx, (5.1)

where the first term describes the energy of the mechanical oscillator (MO) with

x and p being the position and momentum operators satisfying the commutation

relation [x, p] = i~. The second term is the free energy of the cavity field. The

third term represents the coupling of cavity field with the input laser and input

vacuum noise represented by cin. The last term represents the magnetic coupling of

the MO where ζ is the current coefficient or magnetic coupling coefficient. It may

also be noted that κ = κo(1 +ηx) represents the position dependent photon decay

rate or half linewidth of the cavity and κo is the photon decay rate when x = 0. It

is related to the dissipative coupling strength gκ as gκ = xzpfdκ/dx where xzpf =√
~/2mωm is the zero point fluctuation of the membrane. Therefore, gκ = ηκoxzpf

represents the dissipative coupling constant between the cavity field and MO which

depends upon η. The parameter η is an experimental parameter and is related to

the power reflectivity of the membrane and beam-splitter asymmetry [55]. The

amplitude of the field is related to the input power P as εl =
√

P/~ωl.

The schematics of the system is shown in Fig. (5.1). It is assumed that the

current is passing through the movable membrane M of MSI and the whole system
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Figure 5.1: The schematics of the system. (a) A Michelson-Sagnac interferometer,

containing the membrane M through which current i is flowing. The membrane

is displaced from its mean position due to radiation pressure and external mag-

netic field B. (b) Equivalent Fabry-Perot interferometer whose right mirror have

transmission depending upon the decay rate κ.

is placed in a magnetic field. The mean position of the membrane changes due to

magnetic coupling of the membrane. The entire setup is equivalent to a Fabry-

Perot Interferometer (FPI) with the variable optical decay rate i.e., κ = κo(1+ηx),

where x is the displacement of the membrane. The displacement of the membrane

can be controlled by the application of current in the presence of a magnetic

field. Thus the right mirror of the effective FPI has an optical transmissivity that

depends upon the current in the presence of magnetic field.

The Heisenberg equations of motion for the system when the cavity mode is

resonantly pumped by the input laser (i.e., ωo = ωl) are given by the following:

ẋ =
p

m
, (5.2a)

ṗ = −i~η
√

2κo
2

[εl(c
† − c) + c†cin − c†inc]−mω2

mx− ζB − γmp+ ξ, (5.2b)

ċ =
√

2κo(1 +
η

2
x)(εl + cin)− κo(1 + ηx)c, (5.2c)

where γm is the mechanical damping rate and ξ is the zero mean value thermal

noise which describes the coupling of MO to the thermal environment. It follow

immediately from Eqs. (5.2a)-(5.2c) that in steady-state, the position, momentum
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and cavity field must fulfill the following self consistent equations:

ps = 0, xs = − ζB

mω2
m

, cs =

√
2κo(1 + ηxs/2)εl
κo(1 + ηxs)

. (5.3)

The operators given by Eqs. (5.2a)-(5.2c) can be represented as a sum of large

mean value and small fluctuating terms such that x = xs + δx, p = ps + δp and

c = cs + δc. In the first order approximation, the linearized equations of motion

are given by

δẋ =
δp

m
, (5.4a)

δṗ = −i~η
√

2κo
2

[εl(δc
† − δc) + cs(cin − c†in)]−mω2

mδx− γmδp+ ξ, (5.4b)

δċ = −κo(1 + ηxs)δc−
κoηcs

2(1 + ηxs/2)
δx+

√
2κo(1 + ηxs/2)cin. (5.4c)

By taking the Fourier transform of Eqs. (5.4a)-(5.4c), the fluctuating position and

cavity field in frequency domain can be written as:

δx(ω) =
1

m[ω2
m − ω2 − iωγm]

{
ξ − ~η

√
2κoωcs

2[κo(1 + ηxs)− iω]
(cin − c†in)

}
, (5.5a)

δc(ω) =
1

κo(1 + ηxs/2)− iω

{√
2κo(1 + ηxs/2)cin −

κoηcs × δx
2(1 + ηxs/2)

}
. (5.5b)

By using Eqs. (5.5a) and (5.5b) and employing the input output relation (See

Eq. (3.6b) in Chapter 3), the fluctuating output field of the system becomes:

δcout(ω) =

[
2κo(1 + ηxs/2)

κo(1 + ηxs)− iω
− 1

]
cin

+

[
1− κo

[κo(1 + ηxs)− iω](1 + ηxs/2)

]√
2κoηcsδx

2
. (5.6)

As in the preceding chapters, we define the input amplitude and phase quadratures

as Xin(ω) = 1√
2
[cin(ω) + c†in(−ω)] and Yin(ω) = 1

i
√
2
[cin(ω) − c†in(−ω)]. Similarly,

the output field’s amplitude and phase quadratures are defined as Xout(ω) =

1√
2
[δcout(ω) + δc†out(−ω)] and Yout(ω) = 1

i
√
2
[δcout(ω)− δc†out(−ω)]. On substituting

the values of δcout(ω) and δc†out(ω), the output quadratures of the field are found
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to be:

Xout =
κo + iω

κo(1 + ηxs)− iω
[
Xin + α1Yin − α2ξ

]
, (5.7a)

Yout =
κo + iω

κo(1 + ηxs)− iω
Yin, (5.7b)

where α1 and α2 are defined as

α1 =
iJκ2oχω[κo − (1 + ηxs/2){κo(1 + ηxs)− iω}]
ωm(κo + iω)(1 + ηxs/2){κo(1 + ηxs)− iω}

, (5.8a)

α2 =

√
J

m~
χ[κo − (1 + ηxs/2){κo(1 + ηxs)− iω}]

ωm(κo + iω)(1 + ηxs/2)
, (5.8b)

with J = ~η2c2s/mκo, being the dimensionless power and χ = ωm/(ω
2
m − ω2 −

iωγm) is the mechanical susceptibility. The output field can also be expressed as

Zout(ω) = Xout(ω) cos θ+Yout(ω) sin θ, where θ represents the homodyne phase an-

gle. On substituting Eqs. (5.7a) and (5.7b) in the generalized quadrature Zout(ω),

we obtained the following expression:

Zout(ω) =
(κo + iω) cos θ

κo(1 + ηxs)− iω

[
Xin + (α1 + tan θ)Yin − α2ξ

]
. (5.9)

Using Eq. (2.22), Eqs. (3.10a), (3.10b) and Eq. (3.11) of Chapter 2 and Chapter 3,

the spectral density of the output field is found to be:

Sout(ω) =
(κ2o + ω2) cos2 θ

2[κ2o(1 + ηxs)2 + ω2]

[
1 + |α1 + tan θ|2 + 4mkBTγm|α2|2

]
.(5.10)

In Eq. (5.10), the first term is the contribution from the photons shot noise, the

second term is from the back-action and the last term is from the thermal noise.

The homodyne phase angle θ can also be optimized to suppress the back action

term. This can be done by setting the homodyne angle θ such that tan θopt = −α1.

5.3 Results and discussion

In this section, we present the results of our numerical simulation. Here, we

consider m = 50 pg, κo = 2π × 59 KHz, λ = 1064 nm, gk = 2π × 2.6 Hz,

Q = ωm/γm = 1.1 × 107, T = 300 K and ωm ∼ κo (i.e., non-resolved-sideband

regime) as discussed in Ref. [54,107–109]. It may also be noted that SiN membrane
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Figure 5.2: Normalized spectral density of the output field when B = 0 (straight

line at Sout/Sout,0 = 1), which becomes greater than 1 for B 6= 0. Here the

parameters m = 50 pg, κo = 2π × 59 KHz, λ = 1064 nm, gk = 2π × 2.6 Hz,

Q = ωm/γm = 1.1× 107, ωm ∼ κo, P = 10 µW, T = 300 K, ζ = 2× 10−5 A.m and

ωm/κo = 1.

coated with Aluminium or Graphene [110, 111] can be used for the realization of

current flowing through the membrane. As we discussed earlier, in the presence of

magnetic field, the transmissivity of the right mirror of the effective FPI depends

upon the current flowing through it. Therefore, a shift in the output spectral

density of the field can be observed in the presence of magnetic field. Figure (5.2)

shows the plot of normalized spectral density Sout/Sout,0 where Sout,0 represents the

output field spectral density when B field is zero. Thus, Sout,0 represents the total

noise floor. We also set the optimum homodyne angle at ω = ωm (i.e., substituting

ω = ωm in tan θopt = α1) or equivalently when θopt is close to π/2 which leads to

large dissipative coupling strength [63]. The input power P = 10 µW and the

current flowing through the membrane is assumed to be ζ = 2 × 10−5 A.m [48].

The solid straight line at Sout/Sout,0 = 1 in Fig. (5.2) shows the normalized spectral

density of the output field when B field is zero. When B field is turned on, the

spectral density of the output field becomes greater than 1, i.e., Sout/Sout,0 > 1

and the shift in the spectral density depends upon the strength of the magnetic

field. The dip in the spectral density arises due to the membranes fundamental

resonance. It may also be noted that shift in the spectral density is large when

the detection frequency is smaller than the mechanical frequency as compared to
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Figure 5.3: The plot shows that sub-nano-Tesla measurement can be made with

better resolution if ωm/κo < 1. Here we used ωm/κo = 0.2, while all the other

parameters are the same as in Fig. (5.2).

the case when the detection frequency is larger than the mechanical frequency.

The system is relatively less sensitive to the magnetic field when the detection

frequency is equal or close to the mechanical frequency.

It is interesting to note that, if we further shift towards the non-resolved-

sideband regime for example, ωm/κo = 0.2 < 1 as in Ref. [43], the spectral den-

sity of the output field becomes more sensitive to the magnetic field as shown

in Fig. (5.3). It may be pointed out that the micro- and nano-optomechanical

devices due to their small size, inherently work in the bad cavity regime (i.e.,

ωm/κo << 1) [112], which is advantageous for our scheme. By comparing Fig. (5.2)

and Fig. (5.3), it is clear that for ωm/κo = 0.2, shift in the output spectral density

is larger even for the magnetic field strength ten times smaller than the results

obtained for the case when ωm/κo ∼ 1.

The measurement sensitivity can be further improved by adjusting the current

flowing through the membrane. This is shown in Fig. (5.4), where the spectral den-

sity of the output field is plotted for three different choices of the current parameter

ζ for B = 0.1 nT and ωm/κo = 0.2. Our results clearly show that the sensitivity

of the measurement increases by increasing the current through the membrane.

However, it may be pointed out that our analysis is based on linearization of the

equations of motion around the large mean values (See Eqs. (5.4a)-(5.4c)), so for

linear approximation to hold, current cannot be increased indefinitely. The linear
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Figure 5.4: The spectral density of the output field for three different choices

of current parameter ζ. Here B = 0.1 nT while all the other parameters are the

same as in Fig. (5.3). By increasing the current, the spectral density shifts towards

higher values, thus increasing the sensitivity of magnetic field (See Fig. (5.3) for

a comparison).

approximation holds as long as ηx << 1, so that the cavity linewidth κ is linearly

related to the position x via κ = κo(1 + ηx). It is also interesting to note that,

due to the topology of MSI, if the current is reversed i.e. ζ → −ζ, the position

of MO also shifts as x → −x. Therefore, the Hamiltonian given by Eq. (5.1) is

invariant under the transformation ζ → −ζ and x→ −x. As a result the output

spectral density remains the same.

Figure (5.5) shows a contour plot of the output field spectral density with

respect to the magnetic field and current at ω = ωm which is the resonance

frequency of the membrane. At ω = ωm, the shift in the spectral density is at its

minimum (as can be seen in Figs. (5.2)-(5.4)). It is clear from Fig. (5.5) that for

weak magnetic interaction (e.g., B = 0.1 nT and ζ = 2 × 10−5 A.m), the shift

in the output field spectral density is below 1.01 which can also be verified from

Fig. (5.4) at ω = ωm. The shift in the spectral density enhances when we increase

the current or magnetic field. Thus, for an appropriate choice of current values,

and detection frequency smaller than the mechanical frequency, and working in the

non-resolved-side-band regime, B field upto sub-nano-Tesla levels can be measured

by this scheme.
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Figure 5.5: Contour plot of the normalized spectral density against B and ζ at

ωm = ω. Here ωm/κo = 0.2 and all the other parameters are the same as in

Fig. (5.3).

5.4 Summary

In this chapter we considered a dissipative OM system for the detection of weak

magnetic field. In the presence of magnetic field, the position of the membrane

depends upon the current flowing through it. Thus by varying the current, the

position of the membrane changes which leads to a change in the optical decay rate

κ or transmissivity of the compound mirror. The effects of change in transmissiv-

ity can be seen in the output spectrum of the field. Therefore, by analyzing the

spectrum of the output field, weak magnetic field can be measured. Our scheme

is based on MSI which to the best of our knowledge is the only proven system

for achieving pure dissipative coupling [54, 55]. From experimental point of view,

dissipative coupling is more favorable in the micro- and nano-optomechanical de-

vices. The optical line-width for such small devices typically scales inversely with

the length of the cavity and eventually results in ωm/κo << 1, i.e., the so called

non-resolved-sideband regime or bad cavity regime. Our proposal works better

in this regime and therefore, could be more feasible to detect DC magnetic fields

experimentally. Moreover, the system needs no magnetic shielding from the back-
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ground, as measurements are made relative to the background. This also pro-

vides us the liberty to measure even weaker magnetic fields as long as the signal

can be resolved from the background. Throughout our numerical simulations,

we have used the parameters which are accessible in experiment. Therefore, we

believe that our scheme enables potentially practical proposal for precision mea-

surement of weak magnetic field. By adjusting the current and working in the

non-resolved-side-band regime, one can make measurement of weak magnetic field

upto sub-nano-Tesla levels at room temperature.
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Chapter 6
Conclusion

In this thesis, we mainly focused on precision measurement using dissipatively

coupled OM system. We theoretically investigated the effects of LPN associated

with the laser that drives the OM cavity. In addition, we also studied the effects of

LPN in the presence of PA with noisy pump laser. We also considered the effects

of optical Kerr media on weak force measurement. Finally, we presented an optical

detection technique for weak magnetic field measurement via dissipative coupling.

6.1 Summary

In Chapter 1, we have presented a brief introduction of optomechanics and its

applications in precision measurement. We presented a brief review on dispersive

and dissipative OM systems in the context of weak force measurement. The effect

of LPN and Kerr medium in OM system were also briefly reviewed. A brief

introduction on measurement of magnetic field via OM systems was also presented.

In Chapter 2, we have considered a dissipatively coupled OM system that can

be used for force sensing below SQL for a free mass [42]. The laser that drives

the OM system also has phase fluctuations which cannot be avoided completely

due to its quantum nature. We introduced LPN into our system and studied its

effects on free mass force sensing. Our analysis shows that the sensitivity of the

force detection strongly depends upon the LPN. We also considered the effect of

mechanical damping and thermal noise in the presence of phase fluctuations. The

mechanical damping doesn’t affect the force measurement substantially as long

as γm << ω, however, temperature greatly reduces the measurement sensitivity.
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In the presence of laser phase fluctuation and thermal noise, the magnitude of

input power of the laser also influences the force measurement sensitivity. Below

SQL measurement can neither be achieved for very low power levels nor for very

high power levels. Thus an optimum choice of various parameters involved in the

system play an important role for force measurement in the presence of phase

fluctuations, damping and thermal noise.

In Chapter 3, we have considered a dissipative OM system with PA which can

also be used for free mass force sensing [43]. The presence of PA in the system

results in further improvement of force sensing below SQL. However, the effects

of LPN associated with the pump laser of PA were not considered. We therefore,

introduced LPN associated with PA’s pump and studied its effects on sensitivity of

force measurement. We have not included the effects of LPN associated with the

laser that drives the cavity because the noise bandwidth associated with the PA is

much greater than the laser that drives the cavity due to the power broadening in

PA pump [98]. Again, our results show that the sensitivity of the force detection

strongly depends upon the laser phase fluctuation associated with the PA’s pump.

The presence of LPN limits the choice in the selection of various parameters for

below SQL measurement. However, by suitably selecting various parameters, one

can still achieve better than SQL sensitivity.

In Chapter 4, we have introduced an optical Kerr medium in a dissipative OM

system and studied its effects on force sensing of a mechanical oscillator (MO).

Our results show that the presence of Kerr medium not only improves the force

sensitivity of MO below SQL but also makes the system more robust against

thermal fluctuations. The presence of Kerr media can also introduce instability in

the system for some values of various parameters. However, the instability can be

avoided if the system is driven by a blue detuned laser such that ∆o = −2χNs. Our

results show that by increasing the input power, force sensitivity and detection

frequency range also increase. In the limit ωm << κo, the MO can be considered

as a free mass. Our results show that better force sensitivity over a wide range

of detection frequency can also be achieved for a free test mass in the presence of

Kerr medium.
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Finally, in Chapter 5 we have presented an optical detection technique for

the measurement of weak magnetic field based on dissipative OM system. For

dissipative coupling, MSI with a movable membrane is considered which acts as a

compound mirror having position dependent transmissivity. When current passes

through the movable membrane in the presence of magnetic field, it leads to a

change in the position of the membrane. Eventually, the transmissivity of the

compound mirror changes and can be observed by the output spectrum of the

field. Therefore, by analyzing the spectrum of the output field, weak magnetic field

can be measured. The sensitivity of measurement can simply be controlled by the

current passing through the membrane and working in the bad-cavity regime. Our

proposal suggests measurement of weak magnetic field upto sub-nano-Tesla levels

at room temperature. Thus, our scheme enables potentially practical proposal for

precision measurement of weak magnetic field.
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Appendix A
The parameters U , K, J , FSQL, M1, M2 and M3 in Eqs. (3.8a)-(3.8b) in Chapter 3

are defined as

U =

√
16G2 + ω2

(κo + 2G)2 + ω2

κo − iω + 2G

ω + i4G
i, (A.1)

K = J
κ2o

(κo + 2G)2 + ω2

16G2 + ω2

ω2
, (A.2)

J =
~η2c2s
mκo

, FSQL =
√

2~mω2, (A.3)

M1 =
2csG

√
κo

ω(κo + iω + 2G)
, (A.4)

M2 =
iGKcs(κo − 2G)
√
κoω(4G− iω)

, (A.5)

M3 =
2icsG

√
κo

ω(κo + iω − 2G)
. (A.6)

We also define the power parameter J by using the values of cs =
√

2κoεl(κo −

2G)−1 and εl =
√

P/~ωl as J = Jo(1− 2G/κo)
−2, where Jo = 2η2

mωlκ2o
P refers to the

power parameter in the absence of PA.
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Appendix B
The parameters h1(ω), h2(ω), h3(ω), h4(ω), h5(ω) and h6(ω) in Eqs. (4.16a) and

(4.16b) in Chapter 4 are defined as

h1(ω) =
√

2κo

[√
2κs(b1(ω) + b∗1(−ω))

a2(ω)
− 1

− Zeff (ω)a5(ω)
{a3(ω)

a2(ω)
+
η(cs + c∗s)

2
√

2

}]
, (B.1)

h2(ω) =
√

2κo

[
−i
√

2κs(b1(ω)− b∗1(−ω))

a2(ω)

+ Zeff (ω)a6(ω)
{a3(ω)

a2(ω)
+
η(cs + c∗s)

2
√

2

}]
, (B.2)

h3(ω) =
√

2κo

[
Zeff (ω)

{a3(ω)

a2(ω)
+
η(cs + c∗s)

2
√

2

}]
, (B.3)

h4(ω) = i
√

2κo

[√
2κs(a1(ω)− a∗1(−ω))

a2(ω)

− Zeff (ω)a5(ω)
{a4(ω)

a2(ω)
− η(cs − c∗s)

2
√

2

}]
, (B.4)

h5(ω) =
√

2κo

[
iZeff (ω)a6(ω)

{a4(ω)

a2(ω)
− η(cs − c∗s)

2
√

2

}
−
√

2κs(a1(ω) + a∗1(−ω))

a2(ω)
− 1

]
, (B.5)

h6(ω) =
√

2κo

[
iZeff (ω)

{a4(ω)

a2(ω)
− η(cs − c∗s)

2
√

2

}]
. (B.6)
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