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This dissertation gives a survey of formal issues of Hamiltonian lattice gauge theories in the

context of simulation by quantum computers. The basic properties of gauge field theories and

their lattice regularizations are first reviewed, especially as they pertain to the local constraint

that arises in canonical quantization: Gauss’s law, the satisfaction of which is synonymous

with gauge invariance and charge conservation. Digital quantum algorithms are developed

for the basic task of checking Gauss’s law in U(1) and Z(N) Abelian gauge theories, as they

are conventionally formulated. We then analyze U(1) gauge theories by reconstructing them

in terms of dual variables that make Gauss’s law manifest. The task of quantum simulation is

then studied for the non-Abelian gauge group SU(2). The first quantum simulation of SU(2)

gauge bosons using existing IBM quantum hardware is presented, made possible by partially

solving the Gauss law constraints in a small system. The quest for the “right” variables

to use for quantum algorithms begun with U(1) is then taken up for SU(2). Building on

the prepotential formulation of lattice gauge theories, a complete ‘loop-string-hadron’ (LSH)

framework is developed for one fermion flavor interacting with SU(2) gauge bosons, in terms

of strictly SU(2)-invariant variables. The LSH Hamiltonian is unpacked at a low level,

making it transparent what would have to be implemented on a quantum computer. This

LSH framework is then applied to provide the first quantum circuits for validating wave

functions in SU(2) gauge theories and the associated resource requirements are discussed.
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1

Chapter 1

INTRODUCTION

The development of the Standard Model profoundly transformed humanity’s theoretical

understanding of the fundamental properties of matter and energy over the latter half of

the twentieth century. The Standard Model is a quantum field theory, which characterizes

particles as excitations of underlying fields that permeate spacetime and generalize the more

familiar electric and magnetic fields from classical physics. All the familiar particles are

associated with their own field; there is a photon field, charged lepton fields that include the

electron field, quark fields for all the different flavors, gluon fields, neutral lepton fields for

neutrinos, and finally fields for the W , Z, and Higgs bosons. The dynamics of these fields

are intertwined, giving rise to the rich variety of particle reactions and decays confirmed by

experiments.

Among the most salient features of the Standard Model are its local gauge group sym-

metries. These symmetries are a convenient redundancy in how the quantum fields are

represented. The notion of gauge redundancy is one that is familiar from classical electrody-

namics, wherein an electric potential field Φ(x) and vector potential field ~A(x) can be used

to represent both the electric field ~E(x) and magnetic field ~B(x). In this so-called gauge

theory, there are whole classes of numerically different Φ and ~A fields that encode the same

measurable ~E and ~B fields; the observationally equivalent choices of Φ and ~A are related

by spacetime-dependent gauge transformations, and the gauge transformations form what is

known as a group. A mathematically concise way of expressing this redundancy is to note

that the observable electromagnetic fields ~E(x) and ~B(x), which are derived from Φ(x) and

~A(x), are invariant under local “gauge transformations” of Φ and ~A.

The Lagrange density of the Standard Model has the internal symmetry gauge group
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U(1) × SU(2) × SU(3), where each of the factors is a distinct symmetry group unto its own.

For example, the simplest of these, U(1) or the group of complex phase factors, tells us that

the overall phase of the underlying fermion fields, at any point in space, is arbitrary; one can

locally adjust or ‘rotate’ the fields’ overall phases (in a certain correlated way) such that the

Lagrange density derived from the deformed fields remains the same.

The SU(3) sector, referred to as quantum chromodynamics (QCD), is at the heart of the

physics of hadrons and nuclei. Unlike the situation in the electroweak sector, the SU(3) color

symmetry is a symmetry of both the Lagrangian and the vacuum (it is not spontaneously

broken). Each flavor of quark field is really itself a triplet of quark fields, each carrying its

own color charge, but these colors are all on an equal footing; in this case, the redundancy

is such that one can mix the quarks by apply a rotation matrix to their fields from the

non-Abelian group SU(3). What is physically meaningful is the fact that there are three

types, along with their antiparticles, and that quarks are always observed in combinations

having zero net color charge. A nucleon, which has three valence quarks, is thought of as the

colorless combination resulting from having all three quark colors present. A pion, on the

other hand, is a colorless combination arising from having internal color charge balanced by

equal amounts of anticolor.

At low energies it becomes considerably harder or altogether impossible to harness the

predictive power of the Standard Model with analytic calculations. Non-Abelian gauge the-

ories such as QCD are known for admitting asymptotic freedom and becoming strongly

coupled at low energies. Lattice quantum field theory, namely lattice QCD [4], has proven

to be a successful approach to studying gauge theories in the nonperturbative regime nu-

merically. In the lattice approach, the continuum of spacetime is ‘discretized’ by a lattice of

points and quantum fields are defined only on the sites or along the links joining them. In

addition, time is usually analytically continued to ‘imaginary’ time or Euclidean spacetime.

The lattice is further reduced to a box of finite size, at which point the number of degrees of

freedom is finite and simulatable by computers. One then computes observables by sampling

the path integral formulation of the quantum field theory and taking the continuum limit of
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small lattice spacing.

Lattice QCD has enabled novel ab initio calculations in a variety of applications, such

as heavy quark physics [5], low-lying hadron masses [6], QCD thermodynamics [7,8], baryon

number fluctuations [9], and weak matrix elements [10,11]. These computational feats have

predominantly characterized static or equilibrium properties at zero chemical potential [12].

However, lattice QCD calculations with non-zero baryon chemical potential, with a topologi-

cal θ-term, or in real (Minkowskian) time are generally hampered by exponentially hard sign

problems. The difficulty can be traced to how these scenarios are formulated for simulation

on classical machines, i.e., the path integral and the breakdown of Monte Carlo methods

when applied to it. A class of problems that especially stands to benefit from new methods

is real-time dynamics; the Hamiltonian formulation of gauge theories, which requires singling

out a direction for time, may be more natural for describing intrinsically real-time processes

that do not lend themselves well to Wick rotation.

In the 1980s, it was proposed that computers based on quantum mechanical degrees of

freedom ought to be better suited for simulating quantum many-body systems [13], such as

a gauge theory. The idea is that degrees of freedom of the system under study be mapped

onto those of the quantum computer, and unitary operations are done on it to mimic time

evolution. In this scenario, it seems far more natural to express theories with Hamiltonians

and Hilbert spaces rather than functional integrals and classical field configurations.

The arrival of functional quantum devices [14] thus creates an urgent need for a thorough

grasp of Hamiltonian lattice gauge theory and how its structure can be related to that of

quantum architectures. Several proposals or steps toward proposals for quantum-simulating

lattice gauge theories have been made in recent years [15–17]. So far, most of them have

been for simpler models like Z(2) gauge theories [17–19] or U(1) gauge theories in 1 + 1

dimensions [20–23], including the first digital quantum simulation of the Schwinger model

on a small lattice [24]. Such simulations are instructive, but generalizing to non-Abelian

gauge groups and multidimensional space is necessary to address the important problems

where classical computers fall short. Work on these generalizations is underway [25–34] (see
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also Refs. [16, 17] and references therein), but the state of these studies is even less mature

due to the significant practical complications involved with non-Abelian interactions.

Designing a protocol for a quantum simulation at the theoretical level involves planning

out at least three major steps: i) Creating an initial state. ii) Simulating the intended

process, e.g., time evolution in the Schrödinger picture. iii) Extracting the observables of

interest. Detailing any one of these, however, necessitates a choice of basis. The basis choice

can have far-reaching consequences for the complexity of any one of the procedures, and it

may well be tied in to their planning.

This dissertation is chiefly concerned with the formulation of [U(1) and SU(2)] Hamilto-

nian lattice gauge theories. Special attention is given to the fact that gauge theory Hilbert

spaces are accompanied by local Gauss law constraints, which will have to be addressed by

any simulation, and to the relationship between gauge constraints and the choice of basis.

In some cases, the constraints and conventional bases are taken as a given and the practi-

cal issues they imply are examined. In others, work is done to improve the prospects for

designing simulations whose dynamics will respect gauge constraints.

In chapter 2, we take a first look at what would be needed to implement gauge invariance

for a Kogut-Susskind-like simulation in Abelian gauge theories. Characterizing legitimate

wave functions should a basic task for theories with constrained dynamics, so we look at

quantum algorithms that would enable one to validate wave functions as they are conven-

tionally formulated. This work was published in Physical Review A 99, 042301 (2019).

In chapter 3, we examine what happens in trying to eliminate gauge redundancy in U(1)

gauge theories (without matter). By using choosing to represent only those gauge invariant

excitations the Hamiltonian can generate, we are naturally led a magnetic dual theory, which

has different constraints. This work, done in collaboration with D.B. Kaplan, is drawn from

arXiv:1806.08797.

In chapter 4, we take up the simulation problem for the non-Abelian gauge group SU(2),

where a conventional (Kogut-Susskind-like) starting point is especially impractical for quan-

tum simulation at this point in time. We study a system with enough room for dynamics to

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.042301
http://arxiv.org/abs/1806.08797
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happen, but small enough that we are also still able to partially solve the non-Abelian Gauss

law, simulate it on existing hardware, and post-select on the leftover gauge constraints. This

work, done in collaboration with N. Klco and M.J. Savage, was published in Physical Review

D 101, 074512 (2020).

Then, in chapter 5, we follow an approach that goes much farther in solving non-Abelian

constraints, using what we call a loop-string-hadron (LSH) formulation. This amounts to

deconstructing the theory entirely and reassembling it in a language where charge conser-

vation is made intrinsic. There are still constraints leftover in the LSH formulation, so in

chapter 6, we give the quantum circuits analogous to those developed for U(1), except these

routines check flux conservation along links instead of at sites. These works were both done

in collaboration with I. Raychowdhury and are published in Physical Review D 101, 114502

(2020) and Physical Review Research 2, 033039 (2020).

The remainder of the present chapter is dedicated to reviewing the fundamental properties

of the gauge field theories that we are most interested in simulating. The emphasis is

particularly on fundamentals of Hamiltonian gauge theory, its lattice formulation, and the

implications of gauge constraints. The concepts from quantum computation that are used

are standard textbook material; see, for example, Ref. [35].

1.1 Classical gauge fields in the continuum

Here we summarize the key features of continuum theories, especially as they pertains to

the features lattice formulations must reproduce. This section also serves to set conventions.

The development follows Ref. [36] and Ref. [37].

The theories of interest, such as QED or QCD, are special in that they have notions of

conserved charges. In QED, conservation of charge dictates that the charge of the Universe

is conserved. Particles can be created or destroyed but they must do so in such a way

that equal parts of positive and negative charges are created or destroyed. In QCD, we say

“color” is conserved—quarks can be “red,” “green,” or “blue,” and antiquarks can carry

the corresponding anticolors. The combination of r, g, and b quarks would give a colorless

https://link.aps.org/doi/10.1103/PhysRevD.101.074512
https://link.aps.org/doi/10.1103/PhysRevD.101.074512
https://link.aps.org/doi/10.1103/PhysRevD.101.114502
https://link.aps.org/doi/10.1103/PhysRevD.101.114502
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033039
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combination (no net color). A proton can be thought of as such a state. In any reaction of

particles, no net color can be created or destroyed.

Not only is charge universally conserved, but where there is charge, its fingerprint is

evident in the configuration of the gauge fields. In electrodynamics, this is expressed by

Gauss’s law,

~∇ · ~E = ρ . (1.1)

The requirements of Lorentz invariance and charge conservation constrain how the involved

quantum fields may interact.

The most direct path to constructing continuum gauge field theories is to start with

the principle of local gauge invariance. A Lagrangian for matter fields is first observed to

have a conservation law (total number of particles minus antiparticles, say) associated with

a continuous and global transformation on the fields; the symmetry transformation is then

“promoted” to a local symmetry by insisting that the transformation can be done locally

while still leaving the Lagrangian invariant.

Concretely, the classical Lagrange density is formed from fields ψl(x) that can be trans-

formed by symmetry transformations belonging to a Lie group. Local, Lie group gauge

transformations on matter fields ψl take the form

ψl(x)→ [ei εα(x)Tα ]l
mψm(x) (1.2)

≡ Ω(ε(x))l
mψm(x) , (1.3)

or in matrix/vector notation, ψ(x)→ Ω(ε(x))ψ(x) . (1.4)

Here, l and m are generalized indices for fields that transform under the symmetry.1 Ωl
m is a

square matrix-valued function of x defining how the fields are locally mixed, with ε(x) being

real parameters for the gauge transformation function Ω. The matrices Tα are matrices in

some representation of the Lie algebra. They are generators of the group and each Tα labels

1For example, ψσ l = (qσ 1, qσ 2, qσ 3) for the theory of a single quark flavor, but with the Dirac index σ
suppressed since eq. (1.3) does not mix Dirac components. A two-flavor theory of up and down quarks
could have ψl = (u1, u2, u3, d1, d2, d3), in which case the Tα would be block diagonal.
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a distinct transformation. The generators form a Lie algebra under commutation:

[Tα, Tβ] = iCγ
αβTγ (real Cγ

αβ). (1.5)

The Cγ
αβ are known as structure constants. We assume the Lie algebra is a direct sum of

commuting compact simple and U(1) subalgebras (cf. §15.2 of [36]).

The principle of local gauge invariance is the requirement that the Lagrange density

constructed from the fields is unchanged by all such transformations in eq. (1.3). A locally

gauge invariant Lagrange density will involve derivatives of the fields, but the issue arises

that spatial derivatives ∂µψl do not transform simply like ψl; ∂ is not a gauge covariant

operator. For example,

∂µψ → ∂µ (Ωψ) = Ω(∂µψ) + (∂µΩ)ψ . (1.6)

The first term matches the form of eq. (1.3), but we would like to avoid the second term

(which does vanish for global gauge transformations, i.e., constant Ω). A covariant derivative

is formed by introducing ‘gauge fields’ Aαµ (one four-vector field per generator α) as follows:

Dµψl = ∂µψl − iAαµ(Tα)l
mψm . (1.7)

This is expressed more compactly by collecting the gauge fields into a matrix-valued field,

Aµ(x) ≡ Aαµ(x)Tα , (1.8)

Dµψl = ∂µψl − i (Aµ)l
mψm (1.9)

or just Dµψ = (∂µ − iAµ)ψ . (1.10)

The covariant derivative Dµψl is made to transform like ψl by having the gauge fields Aαµ

undergo simultaneous transformations:

Aµ → ΩAµΩ−1 + i Ω(∂µΩ−1) (1.11)

⇒ Dµψl → Ωl
m(Dµψ)m (1.12)

or just Dµψ → ΩDµψ . (1.13)
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To make Aµ a dynamical field too, we will need to couple derivatives of Aµ, but we again

need to avoid the same problem of how spatial derivatives transform. The solution is to form

the field strength tensor using covariant derivatives of A:

Fµν = i [Dµ, Dν ] (1.14)

= ∂µAν − ∂νAµ − i [Aµ, Aν ] (1.15)

= ∂µAν − ∂νAµ + Cγ
αβA

α
µA

β
νTγ (1.16)

Fα
µν ≡ ∂µA

α
ν − ∂νAαµ + Cα

βγA
β
µA

γ
ν (1.17)

Gauge transformations on the field strength are indeed homogeneous:

Fµν → ΩFµνΩ
−1 (1.18)

or equivalently, Fα
µν → (ΩA)αβF

β
µν with (ΩA)αβ = r tr(TαΩTβΩ−1) (1.19)

The latter shows how the field strength transforms like a matter field in the adjoint repre-

sentation. To summarize the gauge transformations thus far,

ψ → Ωψ (1.20)

Aµ → ΩAµΩ−1 + i Ω(∂µΩ−1) (= i Ω(∂µ − iAµ)Ω−1) (1.21)

⇒ Fµν → ΩFµνΩ
−1 (1.22)

ψ, Dµ, Fµν all transform homogeneously, so as long as we only couple fields via these objects,

it will be trivial to construct locally gauge invariant Lagrangians:

L = L(ψ,Dµ, Fµν , · · · ) (1.23)

The simplest gauge invariant and Lorentz invariant kinetic Lagrangian for the gauge fields

is known as the Yang-Mills Lagrangian, with

LYM ∝ tr(FµνF
µν) (1.24)

= gαβF
α
µνF

b µν (1.25)

gαβ = tr(TαTβ) (1.26)
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(where gαβ should not be confused with the Minkowski metric tensor η). The quadratic form

also has the lowest possible mass dimension (Dµ being of mass dimension 1 and Fµν being

of mass dimension 2). For the groups we consider, we can take

gαβ =
1

2g2
δαβ . (1.27)

The conventionally normalized continuum Lagrangian is then

LYM = − 1

4g2
δαβF

αµνF β
µν = − 1

2g2
tr(δαβFµνF

µν) . (1.28)

From this point forward, we will have little to say about the continuum Lagrangians.

Going over to Hamiltonian dynamics, we need conjugate momenta to the gauge fields:

∂

∂(∂ρA
β
σ)

(
Fα
µνF

µν
α

)
= 4F ρσ

β (1.29)

⇒ ∂LYM
∂(∂0Aαj )

= Πj
α = −F 0j

α /g
2 = F j0/g2 = F0j/g

2 . (1.30)

Note the correspondence of the momenta with the Maxwell electric fields ~E = (−∂t ~A −
~∇Φ)/g:

(Maxwell) Aµ = (Φ, ~A) (1.31)

(Maxwell) Πi =
1

g2
(∂0Ai − ∂iA0) (1.32)

⇒ Eα
i = −gΠα

i . (1.33)

We can also identify the generalization of the Maxwell magnetic field ~B = ~∇× ~A/g,

(Maxwell) Bi = εijk(∂
jAk − ∂kAj)/g (1.34)

⇒ Bα
i = εijkF

αjk/g . (1.35)

The conjugate momentum Π0
α evidently vanishes, so A0 is not actually dynamical. In the

canonical formalism, it can therefore be convenient to fix the potential to Weyl gauge,

A0 ≡ 0 (1.36)

⇒ Πj
α = g−2Ȧjα . (1.37)
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Spatial gauge transformations Ω(x) = Ω(~x) are still a symmetry since these preserve the

gauge fixing condition. The Hamiltonian density resulting from Legendre transformation is

then

H =
g2

2
Πj
aΠa j +

1

2g2
tr(FijF

ij) . (1.38)

1.2 Quantization

The gauge fields are quantized by stipulating the equal-time commutation relations:

[Âαi (~x), Π̂j
β(~y)] = i δαβ δ

j
i δ(~x− ~y) (1.39)

Gauge transformations must now be realized in operator form—we need symmetry operators

to effect the matrix multiplications. Infinitesimally, the requirement on the operator gauge

fields is (for Ω = 1 + i εαTα + · · · )

δÂαµ = ∂µε
α − i (ÂAµ )αβε

β (1.40)

= (D̂A
µ ε)

α (1.41)

The covariant divergences DiΠ
i
α generate the infinitesimal gauge transformations on the

gauge fields:

T̂α ≡ (D̂iΠ̂
i)α (1.42)

= −(D̂iÊ
i)α/g (1.43)[

(−i )

∫
ddx εα(~x)(D̂iΠ̂

i(~x))α , Â
β
j (~y)

]
=

[
(−i )

∫
ddx εα(~x)T̂α(~x) , Âβj (~y)

]
(1.44)

= ∂jε
β(~y)− i ÂAj (~y)βγε

γ(~y) (1.45)

= (D̂A
j ε(~y))β (1.46)

(with a discarded boundary term). The DiΠ
i
α are themselves a representation of the Lie

group, satisfying the exact same algebra of the generators in a distributional sense:∫
ddx εα(x)

[
(D̂iΠ̂

i)α(x) , (D̂jΠ̂
j)β(y)

]
= εα(y) iCγ

αβ(D̂iΠ̂
i(y))γ (1.47)

or just
[
(D̂iΠ̂

i)α(x) , (D̂jΠ̂
j)β(y)

]
= iCγ

αβ(D̂iΠ̂
i(y))γ δ(~x− ~y) (1.48)
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So the unitary operator to effect the matrix transformation Ωε(~x) = exp[i εα(~x)Tα] on Â

would be the quantum (Hilbert space) operator exp[−i
∫
ddx εα(~x)T̂α(~x)] :

Ω̂(ε) ≡ ei
∫
ddx εα(x)T̂α(x) (1.49)

⇒ Ω̂†(ε)Âj(~y)Ω̂(ε) = Ωε(~y)ÂjΩ
†
ε(~y) + i Ωε(~y)∂jΩ

†
ε(~y) (1.50)

where Âj is in any representation and the dagger placement is not accidental. In particular,

note that Ω̂(ε) is a functional of the spatial gauge transformation function ε(x)—it is not

a field, it is a single quantum operator fixed by ε, and it lacks “group indices”—while the

classical matrix Ωε(~x) does carry group indices, is still a function of space, and acts like a

c-number as far as quantum operations are concerned.

Later we will consider fermionic matter. Here we have

δψ̂l = i εα(Tα)l
mψ̂m (1.51)

J0
α = ψ†Tαψ (1.52)

[Ĵ0
α(t, ~x), Ĵ0

β(t, ~y)] = iCγ
αβĴ

0
γ (t, ~x)δ(~x− ~y) (1.53)

[(−i )Ĵ0
α(t, ~x), ψ̂l(t, ~y)] = i (Tα)l

mψ̂m(t, ~x)δ(~x− ~y) (1.54)

Combining the above, we have the Gauss law operators that generate gauge transforma-

tions and satisfy the same Lie algebra:

Ĝα(x) = (D̂iΠ̂
i(x))α + ψ̂†(x)Tαψ̂(x) = −1

g
(D̂iÊ

i(x))α + Ĵ0
α(x) (1.55)

⇒
∫
ddx εα(x)

[
Ĝα(x) , Ĝβ(y)

]
= εα(y) iCγ

αβĜ(y)γ (1.56)

or just
[
Ĝα(x) , Ĝβ(y)

]
= iCγ

αβĜ(y)γ δ(~x− ~y) (1.57)

To summarize, using the Gauss law operators Ĝα(x) we can construct the symmetry operators
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Θ̂ that effect the gauge transformations introduced in the classical theory as follows:

Θ̂(ε) ≡ ei
∫
ddx εα(x)Ĝα(x) (1.58)

Θ̂†(ε)Âj(~x)Θ̂(ε) = Ωε(~x)Âj(~x)Ω†ε(~x) + i Ωε(~x)∂jΩ
†
ε(~x) (1.59)

Θ̂†(ε)F̂µν(~x)Θ̂(ε) = Ωε(~x)F̂µν(~x)Ω†ε(~x) (1.60)

Θ̂†(ε)F̂ µν
α (~x)Θ̂(ε) = [ΩA

ε (~x)]α
βF̂ µν

β (~x) (1.61)

Θ̂†(ε)ψ̂l(~x)Θ̂(ε) = [Ωε(~x)]l
mψ̂m(~x) (1.62)

1.3 Gauge fields on the lattice

For any numerical simulation, the continuum of degrees of freedom of a field theory must

be truncated. This is traditionally done by defining the fields only on a discrete (d+1)-

dimensional lattice of points in Euclidean spacetime. It is standard to use a Cartesian

geometry with lattice spacing a, as it preserves the largest possible symmetry subgroup of

the (d+1)-dimensional rotation group. A volume truncation is also necessary; it is common

to use a (d+1)-dimensional box, with length Lx along d “spatial” directions and Lt along the

“time” direction. For Euclidean simulations, singling out a direction to call “time” is due to

the fact that the (d+1)-dimensional Euclidean path integral is identified with the partition

function of the same system in d spatial dimensions, in thermal equilibrium at temperature

1/Lt. Ground state properties are thus extracted by taking the limit of large Euclidean time

extent.

The lattice is itself a regularization scheme for the continuum quantum field theory. The

nonzero lattice spacing a means that particles can only be resolved with momenta below the

scale π/a—an ultraviolet cutoff—and the finite volume also implies a cutoff on wavelength at

the scale of the box size Lx—an infrared cutoff. These two limits are important considerations

for what physics will be accessible, e.g., Lx must be larger than 1 femtometer to study the

proton, while a must be much smaller than 1 femtometer.

At a more practical level, latticization renders the domain of the functional integral finite-

dimensional so that the functional integral is itself well-defined and amenable to Monte Carlo
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integration. In addition, while the continuum limit is formally taken by sending a → 0, in

practice the continuum limit is approached by instead tuning parameters in the lattice action

to ‘critical values’ at which correlation lengths diverge (in lattice units) [38]. In this way, the

effects of lattice discretization are made small or negligible relative to the probed physics.

In the subsequent chapters, we will be primarily considered with the UV structure of

the theory, meaning the local lattice degrees of freedom themselves. These depart from

traditional lattice field theory because we are most interested in Hamiltonian mechanics, in

which time remains continuous and only space is discretized, with a lattice spacing as. Of

course, we also work with Hilbert spaces rather than classical field configurations. For gauge

theories, we take the Weyl gauge A0 = 0 so that gauge fields have only spatial components.

The details of extrapolating to the continuum and ameliorating lattice “artifacts” will not

be taken up because Hamiltonian simulation problems are still in such a nascent stage of

development. It is not even known how different these processes will be when working with

spatially-discretized Hamiltonians in real time, as opposed to spatiotemporally-discretized

actions in imaginary time.

On the lattice, matter field transformations take the form they did in the continuum,

ψ(x)→ Ω(x)ψ(x) (1.63)

at all sites x. For derivative fields, we have to choose what we mean by ‘derivative’ on the

lattice. A simple choice is the forward derivative ∂+
µ f(x) = (f(x+1)−f(x))/as. The discrete

operator ∂+
µ suffers a problem like that encountered in the continuum,

∂+
µ (Ω(x)ψl(x)) = Ω(x)∂+

µ ψl(x) + (∂+
µ Ω(x))ψl(x+ eµ) (1.64)

[cf. discussion around (1.6)], but the second term is arguably worse now, due to the de-

pendence on the translated value ψl(x + eµ). A covariant derivative is formed this time by

introducing group matrices U(x, x+ eµ):

Dµψ(x) = a−1
s [U(x, x+ eµ)ψ(x+ eµ)− ψ(x)] (1.65)
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These matrices are prescribed the simultaneous transformations

U(x, x+ eµ)→ Ω(x)U(x, x+ eµ)Ω−1(x+ eµ) . (1.66)

The U(x, x + eµ) are referred to as link variables. For brevity, we can also take Uµ(x) ≡

U(x, x+ eµ) and Uµ(x)−1 = U(x+ eµ, x). The link variables are most closely related to the

continuum Aµ by path-ordered products in the continuum, which have the same transfor-

mation rules:

P exp

[
−i

∫ x

z

dyµAµ(y)

]
→ Ω(x)P exp

[
−i

∫ x

z

dyµAµ(y)

]
Ω−1(z) (1.67)

⇒ Uµ(x, x+ eµ) ∼P exp

[
−i

∫ x

x+eµ

dyµAµ(y)

]
. (1.68)

Also by analogy with the continuum, the transformation rules of the path ordered product

imply that gauge invariant Wilson loops from the continuum have lattice counterparts formed

by multiplying together Uµ’s along links to form closed contours. The smallest such loop is

called a plaquette, given by

Uµν(x) = Uµ(x)Uν(x+ eµ)U(x+ eν)
−1
µ U(x)−1

ν (1.69)

Uµν(x)→ Ω(x)Uµν(x)Ω−1(x) (1.70)

⇒ tr(Uµν)→ tr(Uµν) . (1.71)

Using the plaquettes and lattice covariant derivative, the Wilson gauge action with näıve

fermions is

S = −
∑
xµν

1

2g2ra4
s

tr(1− Uµνx)

−
∑
xµ

1

2as

[
ψ̄(x)γµUµ(x, x+ eµ)ψ(x+ eµ)− ψ̄(x+ eµ)γµU †µ(x, x+ eµ)ψ(x)

]
. (1.72)

The continuum limit of the Wilson action reproduces the classical action. The näıve lattice

action is so named because it is known to suffer from so-called fermion “doublers”, but

addressing them is outside the scope of this dissertation and a variety of improvements

are already known and regularly employed (for example, staggered [39], clover [40], domain

wall [41–44], overlap [45], Ginsparg-Wilson [46], and fixed point [47,48] fermions).
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1.4 Quantized Hamiltonian formulation

In this section we review the basic setup of Hamiltonian lattice gauge theory. This largely

follows Chapter 4 of Ref. [37] on lattice gauge fields. Ref. [49] is also an instructive contem-

porary resource.

In Hamiltonian lattice gauge theory, we work with Hilbert spaces corresponding to ele-

ments of the gauge group G, one such space for each link. In a path integral formulation,

we integrate over all classical matrices Uρ in some irrep ρ of the gauge group. Where neces-

sary, we take ρ to be a unitary representation. We can think of these classical matrices as

positions on the group manifold G in the particular representation ρ. The local link Hilbert

space Hlink can then be constructed from the eigenstates of a position operator Ûρ. The

operator-matrix eigenvalue relation is

Ûρ |g〉 = |g〉Dρ(g) , i.e., Ûρ
m′
m |g〉 = |g〉Dρ(g)m′

m (1.73)

where Dρ(g) is a Wigner matrix for g, in the representation ρ. With respect to Hilbert space

operations, the eigenvalue matrix behaves as a c-number. Note that even if we had started

from a path integral for a particular irrep, we can freely choose ρ in (1.73) to be any irrep

we like, with the action of Ûρ defined as given.

In the path integral formulation, the Lagrangian is defined to be invariant under local

gauge transformations. The generators are of course the matrices Tα introduced at the start.

What are needed now are the quantum generators that will induce the right transformations

on link variables.

The effect of a lattice gauge transformation Ω(x) is to rotate the link operators just like

the classical transformation:

Ûρ(x, i)
Ω→ Ûρ(x, i)′ = Ωρ(x)Ûρ(x, i)Ωρ(x+ ei)

−1 . (1.74)

We will often use L (R) to refer to the refer to the “left” (“right”) end of the link, namely

x (x+ ei) for link Ui(x).
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We will denote the Hilbert space symmetry transformations that perform these local

gauge transformations for us by Θ̂L and Θ̂R. Θ̂L(g) will be defined to shift the eigenvalue of

Ûρ by left-multiplication with g:

ÛρΘ̂L(g) |h〉 ≡ Dρ(gh)Θ̂L(g) |h〉 (1.75)

⇒ Θ̂L(g)−1ÛρΘ̂L(g) = Dρ(g)Ûρ . (1.76)

Similarly, Θ̂R(g) is defined so that the eigenvalue of Ûρ is right-multiplied by g−1:

ÛρΘ̂R(g) |h〉 ≡ Dρ(hg−1) |h〉 (1.77)

⇒ Θ̂R(g)−1ÛρΘ̂R(g) = ÛρDρ(g−1) . (1.78)

Defined this way, the left and right transformations each provide representations of the group,

namely

Θ̂L(g1)Θ̂L(g2) = Θ̂L(g1g2) , (1.79)

Θ̂R(g1)Θ̂R(g2) = Θ̂R(g1g2) . (1.80)

The generators of left and right rotations are those operators L̂α and R̂α such that

Θ̂L(g) = exp(iωαL̂α) , (1.81)

Θ̂R(g) = exp(iωαR̂α) . (1.82)

Since the Θ̂L/R have the same multiplication table as the elements of G, the generators must

obey the same Lie algebra as the generators Tα:

[L̂α, L̂β] = iCγ
αβL̂γ , (1.83)

[R̂α, R̂β] = iCγ
αβR̂γ . (1.84)

The Θ̂L/R operators effectively translate the link operator through the group manifold.

The operators L̂α and R̂α are then infinitesimal generators of translations along that mani-

fold. This makes it natural to ask what the commutation relations are for Ûρ with L̂α and

R̂α. The properties given above are all we need to infer the commutation relations.
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First, by acting [Θ̂L(g), Ûρ] on an arbitrary state |h〉 and factoring out Ûρ, we obtain the

operator identity

[Θ̂L(g), Ûρ] = Θ̂L(g)(Iρ −Dρ(g))Ûρ . (1.85)

Now taking g = exp(iωαTα) with ωα � 1, the left-hand side is iωα[L̂α, Û
ρ] +O(ω)2. On the

right-hand side, we have Dρ(g) = exp(iωαT ρα), and since the factor (Iρ −Dρ(g)) is already

O(ω), the leading order behavior is obtained by dropping O(ω) corrections to Θ̂L(g). Thus,

iωα[L̂α, Û
ρ] +O(ω)2 = −iωαT ραÛ

ρ +O(ω2) (1.86)

From here we can read off the canonical commutation relation [L̂α, Û
ρ] = −T ραÛρ.

We can then do an analogous exercise using Θ̂R(g). This time we find

[Θ̂R(g), Ûρ] = Ûρ(Dρ(g)− Iρ)Θ̂R(g) (1.87)

Using infinitesimals as was done with Θ̂L, we find [R̂α, Û
ρ] = ÛρT ρα . The results of both

calculations are summarized as

[L̂α, Û
ρ] = −T ραÛρ , (1.88a)

[R̂α, Û
ρ] = +ÛρT ρα . (1.88b)

To be sure, T ρα are matrices in group space, while Ûρ have both group space and Hilbert

space structure.

So far left and right generators have been discussed as separate objects. However, they

are related by parallel transport, which will be important for characterizing states later.

A right rotation Θ̂R(h) on a state can be expressed in terms of a left rotation in a trivial

way by noting

Θ̂R(h) |g〉 = |gh−1〉 = Θ̂L(gh−1g−1) |g〉 . (1.89)

To relate right and left generators, however, we are after an operator relation and not just a

ket-dependent equivalence. To proceed we will concentrate on infinitesimal transformations

since that is enough to tell us about the generators.
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We start by taking h = ei ηαTα for small η. Then the left-hand side of 1.89 expands out

to

Θ̂R(h) |g〉 = (1̂ + i ηαR̂α + · · · ) |g〉 . (1.90)

As for the right-hand side, we first need to expand the argument of Θ̂L as

gh−1g−1 = 1− i ηαgTαg
−1 + · · · . (1.91)

We know that if the linear term of this group element is put into the form iωαTα, then the

linear term of the left rotation Θ̂L will simply be i L̂αω
α. Here we will need the automorphism

property relating the adjoint representation to any other representation (Appendix A of

Ref. [37])

(Ωρ)−1T ραΩρ = (ΩA)α
βT ρβ (1.92)

or equivalently ΩρT ρα(Ωρ)−1 = T ρβ (ΩA)βα. The linear term of the argument to Θ̂L is therefore

−iTαD
A(g)αβη

β, from which we see that ωα = −DA(g)αβη
β. Thus, the right-hand side of

eq. (1.89) is given by

Θ̂L(gh−1g−1) |g〉 = [1̂ + i L̂α(−DA(g)αβη
β) + · · · ] |g〉 (1.93)

= (1̂− i ηαL̂β(ÛA)βα + · · · ) |g〉 . (1.94)

Comparing this with eq. (1.90), we finally see the parallel transport relation of left and right

generators:

R̂α = −L̂β(ÛA)βα . (1.95)

We have motivated a parallel transport relationship between L̂ and R̂, but the real

test is if R̂ as defined has all the properties we expect. A natural starting point would

be the canonical commutation relations. To show that (1.88) works out, we will need the

automorphism property again as well as the fact that elements of Û from any representations
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commute with each other. Proceeeding,

[R̂α, Û
ρ
β
γ] = −[L̂δ(Û

A)δα, Û
ρ
β
γ]

= −[L̂δ, Û
ρ
β
γ](ÛA)δα − L̂δ[(ÛA)δα, Û

ρ
β
γ]

= (T ρδ )β
εÛρ

ε
γ(ÛA)δα − 0

= (T ρδ (ÛA)δα)β
εÛρ

ε
γ

= (ÛρT ρα(Ûρ)−1)β
εÛρ

ε
γ

= (ÛρT ρα)β
γ (1.96)

⇒ [R̂α, Û
ρ] = ÛρT ρα , (1.97)

as required.

Another check is that left and right generators commute:

−[R̂α, L̂β] = [L̂γ(Û
A)γα, L̂β]

= [L̂γ, L̂β](ÛA)γα + L̂δ[(Û
A)δα, L̂β]

= iCδ
γβL̂δ(Û

A)γα + L̂δ(T
A
β )δγ(Û

A)γα

= iCδ
γβL̂δ(Û

A)γα + L̂δ(−iCδ
γβ)(ÛA)γα

= 0 . (1.98)

Yet another important test is reproducing the Lie algebra. Using a couple applications

of a product rule for commutators, one finds

[R̂α, R̂β] = [R̂α,−L̂δ(ÛA)δβ]

= −L̂δ[R̂α, (Û
A)δβ]− [R̂α, L̂δ](Û

A)δβ

= L̂δ[L̂γ(Û
A)γα, (Û

A)δβ]− 0

= L̂δ

(
[L̂γ, (Û

A)δβ](ÛA)γα + L̂γ[(Û
A)γα, (Û

A)δβ]
)

= L̂δ[L̂γ, (Û
A)δβ](ÛA)γα + 0 . (1.99)

The last expression is easily shown to equal i L̂δC
δ
εγ(Û

A)εβ(ÛA)γα. Here we note that the
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invariance of the structure constants under any rotation ΩA is expressed by

Cδ
εγ(Ω

A)εβ(ΩA)γα = Cγ
βα(ΩA)δγ , (1.100)

giving

L̂δ[L̂γ, (Û
A)δβ](ÛA)γα = i L̂δC

γ
βα(ÛA)δγ

= iCγ
αβ(−L̂δ(ÛA)δγ)

= iCγ
αβR̂γ . (1.101)

We have therefore seen that [R̂α, R̂β] = iCγ
αβR̂γ, as required.

Finally, the parallel transport relationship can be used to show that the quadratic

Casimirs at either end of a link are equal. This follows by noting that the parallel transport

relation is equivalently expressed by

R̂α = −(ÛA −1)αβL̂
β . (1.102)

Therefore,

R̂αR̂
α = L̂β(ÛA)βα(ÛA −1)αγL̂

γ (1.103)

= L̂βL̂
β . (1.104)

Considering a particular link (x, x+ei) within a Cartesian lattice, the operators associated

with it are Ûρ
i (x) = Ûρ(x, x + ei), L̂

i
α(x), and R̂i

α(x + ei). We have fixed Weyl gauge, so

Ûρ(x, x+ e0) = 1 and only the spatial links are dynamical and affected by the residual gauge

symmetry. Both the L̂α and R̂α from a given link obey the Lie algebra of the group. Summing

all of them around a site then gives generators for all links joined to the site simultaneously,

T̂α(x) = a−ds
∑
i

(L̂iα(x) + R̂i
α(x)) (1.105)

The factors a−ds are inserted to get the same mass dimension as the covariant divergences

(D̂iΠ̂
i)α from the continuum, which the above operators must correspond to given how they
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generate gauge transformations on all links emanating from a site. These operators satisfy

lattice analogues of the continuum commutation relations:

[T̂α(~x), T̂β(~y)] = iCγ
αβT̂γ(~x)a−ds δ~x,~y . (1.106)

To explicitly see the correspondence with the covariant divergences (D̂iΠ̂
i)α from the

continuum, let us identify gauge fields Aρ(x, x + ei) with link operators by Ûρ(x, x + ei) ≡

exp(−i asÂ
ρ(x, x+ ei)). Then we have

(L̂iα(x) + R̂i
α(x)) =

(
L̂iα(x)− (ÛA)βα(x− ei, x)L̂β(x− ei)

)
=
(
L̂iα(x)−

(
δβα − i asÂ

γ(x− ei, x)(TAγ )βα +O(a2
s)
)
L̂β(x− ei)

)
=
(
as∂

−
i L̂

i
α(x) + i asÂ

A(x− ei, x)βαL̂β(x− ei) +O(a2
s)
)

= as∂
−
i L̂

i
α(x) + asC

β
αγÂ

γ(x− ei, x)L̂β(x− ei)) +O(a2
s) . (1.107)

Or, alternatively,

(L̂iα(x) + R̂i
α(x)) = −as∂+

i R̂
i
α(x)− Cβ

αγA
γ(x, x+ ei)R̂

i
α(x+ ei) +O(a2

s) . (1.108)

The above two results show that the lattice generators T̂α can be identified with D̂iΠ̂
i
α in the

continuum limit if we identify Π̂i
α with a1−d

s L̂iα or with −a1−d
s R̂i

α.

Summarizing these observations, L̂iα and R̂i
α can essentially be thought of as being Π̂i

α

evaluated at infinitesimal distances to either side of the site,

Π̂i
α(~x+ δ ei) = a1−d

s L̂iα(~x) ,

Π̂i
α(~x− δ ei) = −a1−d

s R̂i
α(~x) ,

0 < δ � 1 .

Note, however, that at nonzero as the conjugate momenta identified as such do not commute.
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Instead, we have only that[
a1−d
s L̂iα(~x), a1−d

s L̂jβ(~y)
]

= asiC
γ
αβ(a1−d

s L̂iγ(~x))(a−ds δ~x,~y)δ
ij (1.109)

∼ asiC
γ
αβ(a1−d

s L̂iγ(~x)) δ(~x− ~y)δij , (1.110)[
−a1−d

s R̂i
α(~x), −a1−d

s R̂j
β(~y)

]
= asiC

γ
αβ(a1−d

s R̂i
γ(~x))(a−ds δ~x,~y)δ

ij (1.111)

∼ asiC
γ
αβ(a1−d

s R̂i
γ(~x)) δ(~x− ~y)δij . (1.112)

These commutators are suppressed by a factor of as, so the requirement that [Π̂α(~x), Π̂β(~y)] =

0 is recovered in the continuum limit.

For matter fields, gauge transformations at a site should take the form

Θ̂−1(g)ψ̂lΘ̂(g) = Dρ(g)l
mψ̂m (1.113)

Θ̂−1(g)ψ̂Θ̂(g) = Dρ(g)ψ̂ . (1.114)

If Ĵ0
α(x) are Noether charge densities such that

[Ĵ0
α(x), ψ̂l(y)] = −(T ρα)l

mψ̂m(x) δ~x,~y/a
d
s , (1.115)

[Ĵ0
α(~x), Ĵ0

β(~y)] = iCγ
αβĴ

0
γ (~x)δ~x,~y/a

d
s , (1.116)

then complete generators of local gauge transformations are given by the lattice Gauss law

operators Ĝα:

Ĝα(x) = a−ds

d∑
i=1

(L̂α,i(x) + R̂α,i(x)) + Ĵ0
α(x) . (1.117)

Like in the continuum, examples of such a charge density would be ψ†(x)T ραψ(x) for fermionic

fields. Then the symmetry operator associated to an aggregate gauge transformation parametrized

by εα(~x) would be

Θ̂[ε] = exp

[
i
∑
~x

ads ε
α(~x)Ĝα(~x)

]
=
∏
~x

exp
[
i ads ε

α(~x)Ĝα(~x)
]
. (1.118)

When we speak of a theory being gauge invariant, we mean foremost that its Hamiltonian

commutes with the Gauss law operators. The Gauss law operators then give a collection of
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constants of motion, and we will always consider “allowed” or “physical” lattice states to be

those that are invariant under gauge transformations, with

Ĝα(x) |phys〉 = 0 (1.119)

being the lattice realization of D̂iÊ
i
α |phys〉 = gĴ0

α |phys〉 from the continuum.2 However, one

can in principle change these constants of motion to describe static charge sources, giving

rise to charge superselection sectors that are dynamically isolated from each other.

For calculations, one must eventually choose a basis, and in Hamiltonian lattice gauge

theory it is common to use one that diagonalizes electric fields rather than their conjugate

gauge fields. This is because the Gauss law constraints given above are expressed in terms of

electric fields, so characterizing and working in the subspace of allowed states is easier. The

quantum numbers characterizing a link state correspond to some complete set of commuting

operators (CSCO) for the generators.

For SU(2), the familiar CSCO is { ~J · ~J, J3}; ~J · ~J has angular momentum eigenvalues

j(j + 1) for half-integers j and completely characterizes any irreducible representation of

SU(2), while J3 can have eigenvalues m = j, j − 1, · · · ,−j. Recalling that a link comes with

mutually commuting left and right electric fields,

{L̂αL̂α, L̂3, R̂αR̂
α, R̂3} (1.120)

are all mutually commuting, but we also have that the quadratic Casimir is a link invariant,

L̂αL̂
α = R̂αR̂

α. Putting this all together, a basis of SU(2) irreducible representation or

“irrep” states can be labeled as

|j,mL,mR〉 . (1.121)

For SU(3), an additional Casimir invariant would be available, dαβγTαTβTγ. A CSCO is

then given by the two Casimir operators, along with isospin t21 + t22 + t23, isospin projection t3,

2A proper physical Hilbert space should generally respect more symmetries than just gauge constraints,
such as translational invariance, parity, etc., but this dissertation is primarily concerned with the gauge
constraints.



24

and hypercharge t8. The latter three, not being invariants, have distinct quantum numbers

on each side of a link, so that states would be of the form

|p, q, IL, I3,L, YL, IR, I3,R, YR〉 (1.122)

[with p and q labeling the irreducible representation of SU(3).] We will not have much to

say about SU(3) in this dissertation, but details of the formalism have been discussed and

worked out, e.g., in Refs. [25,50,51].

1.5 Schwinger boson formulation

The Hamiltonian generates dynamics among states that satisfy Gauss’s law, i.e.,

Ĝα(x) |phys〉 = 0 for all x, α. (1.123)

Dynamics of this sort is usually described using redundant but local degrees of freedom.

Alternatively, these states can be described in terms of arbitrary gauge-invariant Wilson loop

and Wilson line operators acting on some reference state. Characterizing states this way,

however, leads to a highly overcomplete basis; mutually dependent loops satisfy Mandelstam

constraints [52–54], which are nonlocal and notoriously hard to solve. A central aim of the

remainder of this work is to encode dynamics using local degrees of freedom that both satisfy

Gauss’s law and are orthogonal, starting from multiplets of harmonic oscillators [55].

The method of Schwinger bosons [56] is a way of providing an explicit realization of the

algebraic structure in terms of simple harmonic oscillators, satisfying the familiar commuta-

tion relations

[âi, â
†
j] = δij , (1.124)

[âi, âj] = [â†i , â
†
j] = 0 . (1.125)

This follows from the fact that, given generators Tα, the same Lie algebra is obeyed by
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contracting the generators with the oscillators,

τ̂α = â†Tα â = â† b(Tα)b
câc (1.126)

⇒ [τ̂α, τ̂β] = iCγ
αβ τ̂γ . (1.127)

The beauty of this trick is the simplicity of working in terms of simple harmonic oscillators.

Working with the new degrees of freedom can introduce redundancy. It is apparent

by inspection that the generators τ̂α are linear combinations of total-number-conserving

operators – they all commute with â†â. If all operators in the theory are like this, then the

dynamics started in one eigenspace of â†â will never explore any other sector of the Hilbert

space.

This occupation number conservation corresponds to a continuous U(1) symmetry:

âi → ei θâi . (1.128)

This transformation preserves the oscillator commutation relations and consequently the

algebra of τ̂α. The symmetry transformation is generated by the total number operator,

[N̂ , âi] = −âi , (1.129)

e−i θN̂ âie
i θN̂ = ei θâi . (1.130)

The “prepotential” formulation of lattice gauge theory [51,55,57–59] is an application of

this method that provides an alternative, equivalent framework to the formalism of Kogut

and Susskind. This formulation replaces Ê and Û with bilinears of harmonic oscillator

doublets âa(L/R) (the Schwinger bosons or prepotentials) at the left (L) and right (R) ends

of each link (x, x+ ei), as shown in Fig. 1.1.

The electric fields on a link are realized by introducing multiplets for each side of the

link,

L̂α ≡ â†(L)Tαâ(L) , (1.131a)

R̂α ≡ â†(R)Tαâ(R) . (1.131b)
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x
L

 a1(L)

a2(L)


x+ ei

R

 a1(R)

a2(R)



Figure 1.1: A link (x, i) from a Cartesian lattice starting at x and terminating at x + ei.

We denote the starting side “left” (L) and the terminal side “right” (R). Link ends each

host a bosonic oscillator doublet, here indicated by a(L) = (a1(L), a2(L)) at L and a(R) =

(a1(R), a2(R)) at R. The arrow indicates the link orientation, pointing from L to R.

It is always possible to form U(1) generators on each side,

N̂L/R = â†(L/R) · â(L/R) . (1.132)

The requirement that left and right Casimirs be equal leads to an Abelian Gauss law (AGL)

relating these U(1) generators along each link:

N̂L(x, i) |phys〉 = N̂R(x+ ei, i) |phys〉 . (1.133)

It is useful to define Hermitian projectors for the AGL-satisfying subspace within the tensor

product space of all Schwinger boson modes:

P̂A(x, i) =

∫ π

−π

dφ

2π
eiφ(N̂R(x+ei,i)−N̂L(x,i)) . (1.134)

In later chapters we will be most concerned with SU(2) gauge theories. An explicit

decomposition of a link operator in this case is

Û ≡ ÛLÛR , (1.135)

ÛL ≡
1√

N̂L + 1

 â†2(L) â1(L)

−â†1(L) â2(L)

 , (1.136a)

ÛR ≡

 â†1(R) â†2(R)

−â2(R) â1(R)

 1√
N̂R + 1

. (1.136b)
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With the above definitions, the relations (1.88) follow. One can also show that the Schwinger

boson construction of Û is indeed a ‘special unitary’ matrix on the AGL-satisfying Hilbert

space:

P̂AÛ
†Û P̂A = P̂AÛ Û

†P̂A

= P̂A

 1 0

0 1

 P̂A , (1.137)

P̂A det(Û)P̂A = P̂A

(
Û11Û22 − Û12Û21

)
P̂A

= P̂A(1)P̂A = P̂A . (1.138)

That this link operator can really be thought of as an SU(2) matrix is exemplified by the

relation

P̂A(Û22 − Û †11)P̂A = P̂A(Û21 + Û †12)P̂A = 0 . (1.139)

And finally, the link operator elements commute as they should within the allowed Hilbert

space,

P̂A[Ûαβ, Ûγδ]P̂A = P̂A[Ûαβ, Û
†
γδ]P̂A = 0 . (1.140)

(1.141)

Schwinger bosons are an expedient device for doing explicit calculations involving electric

and link operators in non-Abelian gauge theories. In Abelian theories, however, it is not so

cumbersome to work in the Hilbert spaces as they are conventionally formulated. In the next

two chapters, we will simply take Abelian gauge theories and immediately being analyzing

their structure, without any detour through Hilbert spaces of harmonic oscillator multiplets.
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Chapter 2

GAUSS LAW CIRCUITS FOR ABELIAN GAUGE THEORIES

In this chapter,1 algorithms are developed to projectively measure physicality, i.e. con-

sistency of Gauss’s law, on states in Abelian lattice gauge theories by using constraint-

checking oracles: a state |Ψ〉 = cos(θ) |Ψphys〉+ sin(θ) |Ψunphys〉 will collapse to either |Ψphys〉

or |Ψunphys〉. This could be useful as a method of filtering out non-gauge invariant errors

– e.g., an accept-reject step in a simulation (see also [60, 61]), or a subroutine for curing

states afflicted with unphysical errors – without the need for all the qubits of fault-tolerant

computation. Rejecting unphysical states would be useful when working with small lattices,

although large lattices presumably require a more sophisticated solution. A generalization

of the approach to a non-Abelian gauge theory is the subject of chapter 6.

In §2.1, the needed gauge theory background is summarized. Then, in §2.2, a procedure

is given for constructing oracles that projectively distinguish physical states from unphys-

ical ones. In §2.3, constructions are shown in example theories. Additional remarks on

implementation follow since the examples omit details about the exact gates that would be

programmed to a device. Section 2.4 then expands on the significance of constraint-checking

circuits and their potential applications.

2.1 Mapping of Z(N) and U(1)

This section summarizes the Abelian lattice gauge theory structure to be mapped onto a

quantum computer. The gauge groups considered are G = Z(N) and G = U(1). Space is

discretized using a cubic lattice L with sites s. For simplicity, L is given periodic boundary

conditions. The lattice links ` ∈ L are associated with independent gauge field Hilbert spaces

1This chapter is based on Physical Review A 99, 042301 (2019).

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.042301
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H`, each having an identical discrete basis:

〈m′|m〉 = δm′m , (2.1)

1̂ =
∑
m

|m〉 〈m| , (2.2)

where

m′,m ∈

Z(N) , if G = Z(N) ,

Z , if G = U(1) .

(2.3)

(The same symbol Z(N) will be used for the integers modulo N and for the N th roots of

unity.) The Hamiltonian is a function of link operators Û` associated with the links ` and

their (dimensionless) conjugate electric fields Ê`,

Û` =
∑
m`

|m` + 1〉 〈m`| , (2.4)

Ê` =
∑
m`

|m`〉m` 〈m`| . (2.5)

For G = Z(N), the Hermitian electric field is periodic and the Hamiltonian really depends

on its exponentiated form Q̂`,

|m`〉 ≡ |m` (mod N)〉 , (2.6)

Q̂` ≡ e2πiÊ`/N =
N−1∑
m`=0

|m`〉 e2πim`/N 〈m`| . (2.7)

Operators associated with different links commute, and the same-link commutation relations

are

Q̂`Û`Q̂
†
` = Û`e

2πi/N , if G = Z(N) , (2.8)

[Ê`, Û`] = Û` , if G = U(1) . (2.9)

For the remainder of this chapter, link labels ` will only be shown when necessary.

For adding in matter there are many possibilities; to keep things simple yet illustrative, I

consider matter fields with anticommuting statistics and carrying unit charge. Each matter
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species is labeled with a collective index σ, which could include flavor or Dirac indices, and

has possible occupation numbers 0 ≤ nσ ≤ 1. The results of this chapter are easily extended

to other possibilities.

A lattice “configuration” or “basis state” will be used to refer to any state |E, ρ〉 with

definite electric fields on the links and occupation numbers on the sites. Usually only one

site s ∈ L is under consideration, so the quantum numbers associated with other sites or

links not attached to s are suppressed,

|E, ρ〉 → ⊗di=1 |Ei(s)〉 ⊗di=1 |Ei(s− ei)〉 ⊗σ |nσ(s)〉 .

Physicality of a state means the Gauss law constraint is satisfied at each site s. It is conve-

nient to express this by using Gauss law and physicality operators Ĝs and F̂s,

Ĝs ≡ (∇ · Ê)(s)− ρ̂(s) , (2.10)

=
d∑
i=1

(Êi(s)− Êi(s− ei))−
∑
σ

eσn̂σ(s) (2.11)

F̂s ≡
∫ 2π

0

dφ

2π


∞∑

k=−∞
e−iφ(Ĝs−kN) , if G = Z(N),

e−iφĜs , if G = U(1).

(2.12)

Above, ∇· is a discrete divergence operator and eσ = ±1 are charges. The physicality

operator F̂s is synonymous with the projector onto the subspace of configurations with

Gauss’s law satisfied at s,

F̂s |phys〉 = |phys〉 , (2.13)

F̂s |unphys〉 = 0 . (2.14)

The notation Fs(E, ρ) will be used for the eigenvalue of |E, ρ〉 with respect to F̂s. The

operators F̂s are spatially local, but a full lattice configuration is only physical if Fs(E, ρ) = 1

for all s ∈ L. Oracle operators Ôs can now be introduced that are related simply to the

physicality operators,

Ôs = 1̂− 2F̂s . (2.15)
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The oracle “flags” states that satisfy Gauss’s law at s,

Ôs |E, ρ〉 = |E, ρ〉 (−)Fs(E,ρ) . (2.16)

Operators with such behavior are closely related to Grover’s quantum search algorithm

[35, 62]. Understanding Ôs as a quantum circuit that computes or checks constraints is a

central task in the remaining sections.

Quantum simulation requires a Hilbert space of finite dimensionality. For G = Z(N), the

finite lattice volume automatically renders the gauge Hilbert space finite-dimensional. For

G = U(1), the links’ electric fields are uniformly truncated as well. Anticipating the use of

qubits (rather than more general qudits or some mixture thereof), the local link dimension

for either G is fixed to

dimH` = 2n , (2.17)

and the states are labeled by non-negative integers 0 ≤ ε ≤ 2n − 1. These correspond to

some range of uniformly-spaced electric field values E, the linear relationship being

ε = E − Emin , Emax = Emin + 2n − 1 . (2.18)

The truncation when G = U(1) renders the link operators Û , Û † non-unitary since they can

destroy states at the ends of the ladder. Crucially, the commutation relation [Ê, Û ] = Û

survives truncation, and all of the formalism introduced above carries over straightforwardly.

2.2 Oracles for constraints

In this section, the oracle Ôs is given as a quantum algorithm that internally checks the

constraint (2.10) for computational basis states and applies a conditional phase flip. A

basic familiarity with quantum computation and notation of the quantum circuit model is

assumed. To state an algorithm for constructing Ôs, the formalism of the previous section

will be tailored to a quantum computer.
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A binary representation for electric fields |ε〉 is used. The number of qubits per link is n,

so the local link Hilbert space takes the form

H` = {|0〉 , |1〉}⊗n, dimH` = 2n . (2.19)

The bit strings represented by the computational basis states are regarded as binary expres-

sions for the electric field labels 0 ≤ ε ≤ (2n− 1). εi(s) and εi(s− ei) are referred to as εOUT
i

and εINi . And, for simplicity, the occupation numbers nσ = 0, 1 will be identified with the

computational labels 0 and 1.

The constraint function (2.10) at s can be rewritten as

∇ · E− ρ =

(
d∑
i=1

εOUT
i +

∑
σ: eσ<0

nσ

)
−

(
d∑
i=1

εINi +
∑

σ: eσ>0

nσ

)
. (2.20)

Writing it this way suggests the negative and positive charges be separately absorbed into

the internal computation of the out-flux and in-flux. One can easily imagine a variety of

ways to arrange the internal arithmetic to compute the constraint, but with the procedure

outlined below it turns out there are cheap ways to include small numbers of fermions if the

addition subroutines use incoming “carry” qubits.

The main ideas of the algorithm can be illustrated by constructing the oracle and entan-

gling it with an auxiliary “query bit” |q〉 that gets flipped if Gauss’s law holds at site s for

a given wave function. (“Bit” will frequently be used in place of “qubit.”) This query bit is

the probe for the oracle’s action, since a global phase change alone is not observable. The

procedure is as follows:

1. Initialize needed work bits. This includes the query bit |q〉 in a Ẑ basis state |0〉 or |1〉.

2. Apply a Hadamard gate to the query bit.

3. Compute both sums on the right-hand side of (2.20).

4. Compute the difference of (or compare) these sums.
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Figure 2.1: A multi-qubit subroutine ⊕ for comparing two n-bit integers x and y by adding

all their corresponding bits modulo two: A (non)zero result for y⊕ x means x is (not) equal

to y.

5. Apply a phase flip if and only if the constraint vanishes and the query bit is set to |1〉.

6. Undo (uncompute) the arithmetic of steps 4 and 3, restoring the state’s original quan-

tum numbers.

7. Apply another Hadamard gate to the query bit.

8. Measure the query bit in the Ẑ basis.

A flip of the query bit |q〉 → |q ⊕ 1〉 is found if and only if Gauss’s law is satisfied at the site.

In practice, it is usually cheaper to forego evaluating Gs proper (step 4) in favor of a more

direct comparison of two integers. This is accomplished with a string of CNOTs, as shown

in Fig. 2.1. These CNOTs are denoted by a multi-qubit gate, ⊕.

Calls to the oracle will generally described in terms of their action on computational basis

states. When the input lattice wave function is any superposition of physical (Fs = 1) and

unphysical (Fs = 0) components, measuring the query bit afterward will probabilistically

project the wave function onto one eigenspace of F̂s or the other.
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Figure 2.2: A generic adder A for adding two n-bit integers “in place.” A is assumed to

take an incoming carry bit c0(=0,1), whose value can be added to y + x at no additional

cost. The overflow bit h = 0 is needed to express the (n+ 1)-bit sum.

2.3 Examples and remarks

This section expands on how the oracles work by showing circuits for example theories.

Truncated U(1) shares more features with the simulation of non-Abelian groups than does

Z(2n), so figures are shown for the former case and the small modifications needed for the

latter are explained in the text. The adders needed for checking a constraint are indicated

by multi-qubit gates A, defined in Fig. 2.2. It is common for addition algorithms to take

an incoming carry bit c0 initialized to zero, which can be exploited to account for fermions.

For now, the adders’ inner workings will be neglected because the exact choice of algorithm

they use is mostly irrelevant to the oracle. The simplest interesting matter scenarios will be

seen to cost essentially the same as their pure gauge counterparts (except in 1D), but more

general matter content requires introducing more adder subroutines—thereby increasing the

number of required gates. Thereafter, remarks are made about the adders, and T gate counts

are given for the examples.

2.3.1 1D U(1) and Z(N)

Figure 2.3a depicts an oracle for 1D U(1) gauge theory coupled to one Dirac fermion. The

physical inputs from a lattice site are two n-bit electric field states |εOUT,IN〉 and occupation

numbers |ν〉 , |p〉. The incoming carry bit |c0〉 is set equal to |p〉. (One could simply use |p〉
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(a) A quantum circuit for checking Gauss’s law. This circuit accommodates one Dirac fermion and uses the

subtractor routine S as defined to the right.

(b) A subtractor routine S, which may

be thought of as a modified version of

A.

Figure 2.3: A query to the oracle for U(1) or Z(2n) gauge theory in 1D.
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as the carry bit.) An overflow bit |h〉 is used for storing the result of the subtraction routine

S, which is defined in Fig. 2.3b. This is the only example in which actually performing the

subtraction in (2.20) does not cost more gates than a simple comparison. Additional work

bits could be needed by the subtraction subroutine S, or by the controlled-Z.

In more detail: The subtractor S, regarded as a modified version of A, first computes the

difference of two n-bit electric fields, εOUT − εIN, using the relation

a− b = ā+ b , (2.21)

|ā〉 = X⊗n |a〉 . (2.22)

The bar notation defined in (2.22) defines the “ones’ complement” of a. However, this

notation is abused in (2.21); the precise meaning is

| a︸︷︷︸
n bits

− b︸︷︷︸
n bits

〉 ≡ 1⊗X ⊗ · · · ⊗X︸ ︷︷ ︸
X⊗n

| ā+ b︸ ︷︷ ︸
n+1 bits

〉 , (2.23)

meaning the overflow bit supplied to the internal A is not flipped after addition. When

b > a, (2.21) yields a − b modulo 2n+1. Setting |c0〉 = |p〉 manipulates the subtraction

to yield |εOUT − εIN − p〉, which is flipped when |ν〉 = |0〉. Inversion operators at the end

uncompute the constraint, restoring the original configuration. The net result of the circuit

is that q is flipped if and only if Gs(E, ρ) vanishes.

This is all made clearer by considering some simple inputs (taking q = 1):

(i) εOUT = εIN = p = ν = 0: The output of S is |0〉⊗(n+1). Because ν = 0, this gets flipped

to |1〉⊗(n+1). The Cn(Z) gate is therefore triggered by the physical configuration.

(ii) εOUT = εIN = 0, ν = p = 1: The output of S will be |1〉⊗(n+1). Because ν = 1,

this output is not flipped. The Cn(Z) gate is therefore triggered by the physical

configuration.

(iii) εOUT = 1, εIN = p = ν = 0: The output of S will be |0 · · · 01〉, which gets flipped to

|1 · · · 10〉. The Cn(Z) gate is consequently not triggered by the unphysical configura-

tion.
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Figure 2.4: A query to the oracle for U(1) gauge theory in 2D. This example accommodates

one flavor of Dirac fermion via the occupation numbers ν and p. To modify this forG = Z(2n),

the overflow bits hOUT,IN would be removed.

More generally, the circuit does not always compute Gs proper, but the Cn(Z) gate is nev-

ertheless triggered exactly when Gs vanishes.

The modification needed for Z(2n) is to omit the overflow bit h and only work with an

n-bit difference (instead of the n+ 1 bits from (2.23)). The modification for 1D pure gauge

theory is more significant: For either G = U(1) or G = Z(2n), physicality is equivalent to

saying EOUT are EIN identical. The oracle is therefore simply constructed using the ⊕ gates

introduced earlier, bit flips, and a controlled-Z.

2.3.2 2D U(1): Pure gauge or one Dirac fermion

In Fig. 2.4, an oracle for 2D U(1) gauge theory with one Dirac fermion is illustrated. The

inputs to the oracle from the lattice are four n-bit electric field states |ε{x,y},{OUT,IN}〉 and

occupation numbers |ν〉 , |p〉. Carry bits |cOUT,IN
0 〉 and overflow bits |hOUT,IN〉 are provided for

the adders. Some lines break over multi-qubit gates, emphasizing that they do not participate
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in those gates. Additional work bits could be required by the subtraction subroutine S or

by the controlled-Z. The result of the circuit is that q is flipped if and only if Gs(E, ρ) = 0.

In more detail: The first stage of this circuit involves summing the total out-flux and total

in-flux in parallel. When εOUT
y is added to εOUT

x , a CNOT controlled by |ν〉 on the incoming

carry can have the effect of counting one unit of negative charge in the sense of (2.20); this

observation also applies to the in-flux computation with |p〉 as the control. The second stage

“adds” these two results bit-wise. Third, a phase flip is applied if and only if the bit-wise

sum was 0 · · · 00: this is accomplished by flipping the bits, acting with a Cn+1(Z) gate, and

then flipping them back.

For this matter scenario, checking (2.20) costs essentially the same as its pure gauge

analogue. The point is that an adder/subtractor for the “−ρ” term in Gs has been avoided;

more flavors would require more adder subroutines, i.e., many more gates than the four

explicit CNOTs in Fig. 2.4. The pure gauge version is obtained by omitting |ν〉, |p〉, and the

four CNOT gates attached to them. To modify the 2D oracle for G = Z(2n), the overflow

bits hOUT,IN are omitted from the circuit because they do not need to be calculated.

2.3.3 3D U(1): Pure gauge or one Dirac fermion

In Fig. 2.5, an oracle for 3D U(1) gauge theory is illustrated. It is very similar to the 2D

oracle. Dirac fermions in 3D have four components, here denoted |ν1,2〉 and |p1,2〉. Like the

previous examples, including one flavor costs marginally more gates than the pure gauge

analogue—no more than 12 additional CNOTs. Some of these explicit CNOTs serve to reset

and reuse the carry bits cOUT,IN
0 a few times throughout the 3D oracle, saving qubits. Similar

comments apply to modifying the algorithm for G = Z(2n) as in 2D: overflow bits are simply

omitted from the computation.

2.3.4 Remarks on implementation

While the details of the adder subroutines have thus far been neglected, their implementation

generally dominates the oracle gate requirements. There are several known quantum adder
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Figure 2.5: A query to the oracle for U(1) gauge theory in 3D. This example accommodates

one flavor of Dirac fermion via the occupation numbers ν1,2 and p1,2. To modify this for

G = Z(2n), the four overflow bits h{OUT,IN},{1,2} would be removed.
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Table 2.1: T-counts associated with the arithmetic routines in the oracles for U(1) or Z(2n)

gauge theories, coupled to one Dirac fermion, using the RCA method [2].

Dimension T-count using RCA (controlled-Z’s excluded)

1D (Fig. 2.3) 2(8n+O(1))

2D (Fig. 2.4) 4(8n+O(1))

3D (Fig. 2.5) 4(16n+ 8 +O(1))

algorithms with varying complexities and resource requirements: these include ripple-carry

[2, 63], quantum Fourier transformation [64], carry-lookahead [65], carry-save [66], and later

developments of these [67–70]. When simulating something as complicated as a lattice gauge

theory, an O(1) number of ancillary or scratch bits seems reasonable to ask for, in which case

the ripple-carry adder [2] would be suitable. The ripple-carry adder (RCA) costs 8n+O(1)

T gates, and in Table 2.1 the T-counts are given for the examples of the previous section.

Note that a variant of ripple-carry using temporary logical-ANDs [70] could be useful if one

can further supply O(n) work qubits, because it can halve the T count associated with the

oracle’s arithmetic.

Finally, the examples only explicitly considered one flavor of Dirac matter. It is unlikely

that several charged species on sites could be accommodated without introducing more adder

subroutines to sum E’s and ρ’s, which would appreciably increase the number of gates in the

oracle per the remarks above. This is already exemplified by the fact that 1D pure gauge

oracles require no adder circuits, but one charged species does require an adder.

2.4 Discussion

The previous sections have introduced routines for testing physicality of wave functions in

Abelian lattice gauge theory simulations by essentially calculating the Gauss law operator.

The simplest interesting examples involving anticommuting matter in d = 1, 2, 3, have been
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worked out explicitly. It has been shown that the matter content of those theories requires

only a small number of gates (independent of n) more than the pure-gauge computation, but

generally more adders are needed somewhere (increasing the T gate count by O(n)). The

remainder of this work revisits the relevance of these routines to a quantum lattice gauge

theory simulation, addressing a couple concerns raised in the Introduction and highlighting

the potential applications to error detection.

The first issue is there is a very real possibility (also pointed out by [31,71]) that Trotter

evolution can generate unphysical components in a state vector due to algorithmic approx-

imation errors. The first-order Trotter approximation involves replacing time evolution by

the full Hamiltonian H =
∑

j Hj with a sequence of small time steps by each Hj, and taking

the limit of small time steps:

e−i t
∑
j Hj = lim

Nt→∞

(∏
j

e−i ∆t Hj

)Nt

, ∆t = t/Nt . (2.24)

In general the individual steps exp(−i ∆tHj) do not commute, so
∏

j exp(−i ∆t Hj) 6=

exp(−i ∆t
∑

j Hj) and the state vector suffers O(∆t2) errors dictated by the Baker-Campbell-

Hausdorff (BCH) formula. In a lattice gauge theory, the usual Hj are all gauge invariant op-

erators, so deviations from the BCH formula do not affect Gauss’s law. But to simulate using

qubits, each Hj would itself need Trotterization down to the level of qubit operations, which

is commonly done by decomposing Hj into multi-qubit Pauli operators. It is well-known how

to implement the Trotter steps once they are in the form exp(−i t σµ1⊗σµ2⊗· · · ). It is the er-

rors from this second level of decomposition that generally do not commute with Gauss’s law.

Hence, at any finite Trotter step size, even a physical initial state and evolution via noiseless

gates generically creates unphysical components in the state. A more explicit discussion of

the problems with first-order Trotterization is given for the Schwinger model in Appendix A.

These theoretical errors (as opposed to stochastic) can in principle be quantified, and it may

be possible to apply methods from oblivious amplitude amplification [72, 73] to help rotate

wave functions closer to the physical subspace. An algorithm to help “fix” a state that has

acquired overlap onto the unphysical subspace by rotating it would be extremely useful, and
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if one exists it will almost certainly require constraint-checking oracles.

The second issue has to do with finite quantum noise—even in the optimistic case of

gauge invariant time evolution. Most of the basis states available to the quantum computer

violate Gauss’s law, which means there is ample unphysical Hilbert space for a state vector

to wander into [71, 74]. Error-correcting codes can help to protect against the bit flips

that would induce such wandering, but for the foreseeable future it is crucial to save qubits

wherever possible. Therefore routines for verifying gauge invariance would be valuable to

filtering out this class of errors. Such tests could be accept-reject steps either during time

evolution or on the final state.

Indeed, a promising application of the oracles is as collective detection mechanisms for

bit flip errors in the vicinity of a site; the gauge invariance condition probes many qubits at

once for an error. To better appreciate this, consider a lattice wave function prepared by

acting on a physical initial state with some series of gates. If bit flip errors are relatively rare

throughout the execution, those that do occur are likely to appear as localized Gauss law

violations. This is because a constraint Gs involves quantum numbers from the site s and its

2D links, and any single-qubitX (or Y ) error on them will necessarily change Gs. For multiple

X errors on different qubits to look gauge invariant would require they conspire to change

the constraint function by compensating amounts. That is, bit flips can only be overlooked

if the error itself corresponds to a gauge invariant operator. (Note that any function of qubit

Zs is gauge invariant, so phase errors are invisible to the oracle.) On small lattices it might

be acceptable to simply reject unphysical states, however the probability of all constraints

being preserved in the presence of noise becomes exponentially small with increasing lattice

volume. The benefit is that when all the constraints are found to be satisfied, any unphysical

components will have been removed from the wave function. Alternatively, knowing where

or if a lattice wave function has suffered a bit flip error could serve as input for a correction

scheme.

Lastly, it should be noted that this chapter has focused on the digitization of Abelian

lattice gauge theories using conventional electric variables, but that is not the only option for
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quantum simulating lattice gauge theories. In particular, lattice gauge theories with finite-

dimensional link Hilbert spaces have been introduced [75–78] and proposed for quantum

simulation [27, 79, 80]. Among these are the Quantum Link Models (QLMs). QLMs have

the same local gauge symmetries as the Kogut-Susskind Hamiltonian, but their operator

algebra is not identical [30]. Chandrasekharan and Wiese argue in Ref. [77] that 4D Yang-

Mills theory can be obtained from a QLM in the limit of infinite extent of a fifth dimension.

In taking this limit, they relax the Gauss law constraint, which could have some practical

advantages; on the other hand, simulating an extra dimension will present its own challenges.

Another approach to lattice gauge theory is the prepotential formalism [51, 58, 81]; a non-

Abelian generalization of the oracles in this chapter based on prepotentials is the subject of

chapter 6. Many more references for different lattice gauge theory simulation schemes can

be found in the review Ref. [82].
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Chapter 3

GAUSS’S LAW, DUALITY, AND THE HAMILTONIAN
FORMULATION OF U(1) LATTICE GAUGE THEORY

Quantum computers offer hope for surmounting some of the obstacles encountered in

classical lattice simulations, and a number of papers have proposed using the Kogut-Susskind

[39] lattice Hamiltonian HKS as a starting point for the study of gauge theories, introducing

a cutoff on the electric field (in addition to the finite lattice spacing) in order to render the

Hilbert space H finite-dimensional [25, 30, 83] (for discussions of Hamiltonian lattice gauge

theory, see [37,84]). The vast majority of states in that H are unphysical; the physical space

is limited to those obeying Gauss’s Law, which we will call Hphys ⊂ H.

There are a couple of drawbacks to this approach which we address in this chapter1: (i) It

appears preferable to work entirely in Hphys if possible, in order to require fewer qubits and

to avoid computational errors causing states initially in Hphys to evolve into the much larger

space of unphysical states; (ii) A cutoff on electric fields is appropriate for strong coupling,

for which electric fluctuations are suppressed, but is not ideal for weak coupling, such as one

would encounter in the continuum limit for any gauge theory in d < 3, or asymptotically-free

theories in d = 3, where d is the spatial dimension. Instead, a cutoff on magnetic fluctuations

would likely be a more efficient regulator, allowing one to approach the continuum limit with

a smaller Hilbert space. In this chapter we examine these issues in two of the simplest gauge

theories – U(1) theories without matter in d = 2 and d = 3 – and find that both concerns

lead directly to a formulation of the electromagnetic dual theory. While these theories are

not of direct physical interest, they are simple enough to clearly illustrate some of the issues

that must be faced when simulating U(1) gauge theories with matter, or non-Abelian gauge

1This chapter is drawn from arXiv:1806.08797, done in collaboration with D.B. Kaplan.

http://arxiv.org/abs/1806.08797
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theories.

3.1 U(1) Hamiltonian and Hilbert space

The Hamiltonian for a U(1) gauge theory in the continuum is Ĥ = (1/2)
∫
ddx (Ê2 + B̂2),

where the electric field operator Êi is the conjugate momentum for the vector potential

Âi. Here we consider compact U(1) gauge theory formulated on a spatial lattice L with

lattice spacing as, periodic boundary conditions, and coordinates {n, `,p, c} for sites, links,

plaquettes, and cubes, respectively. Compact U(1) theory is interacting at finite as; because

time and space are treated asymmetrically, there are two coupling constants gt,s which must

be independently renormalized, with dimensionless couplings defined as g̃2
t,s = a3−d

s g2
t,s. The

continuum limit is equivalent to g̃2
t,s → 0 for d < 3 (as well as for asymptotically-free non-

Abelian gauge theories in d = 3). We fix A0 = 0 gauge, and replace the vector potential A(x)

by a unitary operator Û` = exp(−i asÂ`) on every link; Û` can be thought of as the coordinate

operator for a particle moving on the group manifold. The space H can be represented in

the coordinate basis of product states ⊗` |U`〉, where |U`〉 at each link ` is an eigenstate of Û`

with eigenvalue U`, which is a phase. Alternatively, one can work in the momentum basis,

which diagonalizes the electric field E` also residing on the links. The rescaled electric field

Ê` ≡
a
d+1
2

s

g̃s
Ê` (3.1)

satisfies the commutation relation [
Ê`, Û`′

]
= δ`,`′Û` , (3.2)

and has integer eigenvalues ε`, analogous to the angular momentum of a particle on a circle.

H can then be represented in the electric field basis of product states ⊗` |ε`〉 and regulated

in a gauge-invariant way by restricting fluctuations of the electric field, |ε`| ≤ Λ for some

cutoff Λ [25].

Our starting point for the lattice Hamiltonian is Ĥ = ĤE + ĤB, with

ĤB =
1

2as

[
1

g̃2
s

∑
p

(
2− P̂p − P̂ †p

)]
,
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ĤE =
1

2as

[
g̃2
t

ξ2

∑
`

(
2− Q̂` − Q̂†`

)]
, (3.3)

where we define

Q̂` ≡ eiξÊ` , P̂n,ij ≡ Ûn,iÛn+ei,jÛ
†
n+ej ,i

Û †n,j. (3.4)

Here ĤB is conventional with P̂p being the usual plaquette operator, but in ĤE we have

introduced the dimensionless parameter ξ for convenience, where eq. (3.3) yields the Kogut-

Susskind Hamiltonian HKS in the limit ξ → 0. This is similar to the Hamiltonian for

Z(N) gauge theory in [85]. The parameter at ≡ ξas can be thought of as a “temporal

lattice spacing,” and additional irrelevant terms subleading in at could be added, but the

above symmetric form suits our purposes best. Eq. (3.2) implies that Û acts as a raising

operator for the electric quantum number, and can be expressed in the electric field basis as

Û =
∑

ε |ε+ 1〉 〈ε|. The action of P̂ , therefore, is to create an oriented loop of unit electric

flux around the edge of the plaquette, while P̂ † creates a unit loop in the opposite direction.

At the same time, P̂ measures magnetic field, the phase of its eigenvalue being the magnetic

flux through the plaquette to leading order in as. The above form for Ĥ is bounded and

written as a sum of unitary operators, which may be convenient for simulation by quantum

walks [86].

Note that fluctuations in the magnetic field are large at strong coupling, while electric

fluctuations are large at weak coupling. This is similar to the case of a harmonic oscillator

with mass m and spring constant k, where 〈x̂2〉 ∝ 1/
√
km, while 〈p̂2〉 ∝

√
km, the operators

x̂, p̂ being analogues of B̂, Ê respectively, while m ∼ 1/g̃2
t and k ∼ 1/g̃2

s . Thus regulating

the theory with a cutoff on electric field values is a poor choice for gauge theories in d < 3,

as the continuum limit occurs in the weak coupling limit.

The physical subspace Hphys ⊂ H consists of those states obeying the Gauss law con-

straint ~∇ · ~E = 0, i.e., those states invariant under spatial gauge transformations. On the

lattice, the analogue constraint is that at each lattice site the product of the Q̂ on each
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outgoing link and Q̂† on each incoming link must equal the unit operator:( ∏
` into n

Q̂`
∏

` out of n

Q̂†` − 1̂

)
|phys〉 = 0 . (3.5)

Most states in H violate eq. (3.5) and are unphysical, and therefore on a quantum computer

more qubits than necessary will be needed to simulate this Hamiltonian. Most states in H

violate eq. (3.5) and are unphysical, and therefore simulating Hamiltonian evolution in H will

use more qubits on a quantum computer than physically necessary. To better understand this

constraint, consider the lattice L with periodic boundary conditions in d = 2, 3 dimensions

with n sites, and therefore ` = nd links, p = nd(d−1)/2 plaquettes, and c = nd(d−1)(d−2)/6

cubes. The Hilbert space H is characterized by the eigenvalues of the ` electric field variables,

Q̂`. States fall into topological sectors labeled by an integer-valued d-tuple, ν = (ν1, . . . , νd)

designating νi units of electric flux wrapping around the ei direction of the lattice. For a

given topological sector we have (n+ d− 1) constraints on the ` = nd electric field variables:

(n − 1) constraints from Gauss’s law and d from fixing the topology. Therefore there are

[nd − (n + d − 1)] = (n − 1)(d − 1) variables to describe physical states in a particular

topological sector. If we place a cutoff on electric field values to regulate the theory, and

assume n� 1, then the minimum number of qubits required to describe Hphys will scale as

(d−1)/d times the minimum number required for H; this ratio is expected to be significantly

smaller for non-Abelian theories.

The benefit of restricting a computation to Hphys is not only in reduction of qubits, but

also in ensuring that computational errors do not propagate states into the unphysical part

of H, a process that would look like violation of charge conservation. A brute-force approach

for restricting H→ Hphys is to eliminate the constrained variables in the quantum theory by

the procedure illustrated in Fig. 3.1: (i) Define a maximal tree on the lattice, with (n − 1)

links; (ii) eliminate the |ε`〉 states from H for each link in the tree; (iii) set Û` ≡ 1 in Ĥ for

each eliminated link; (iv) recursively solve for the Q̂` in Ĥ at each eliminated link, in terms

of the Q̂’s on the free links; (v) remove the final d links by enforcing a fixed topology ν. The

fourth step involves defining Q̂ operators on each of the tree links as the appropriate product
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Figure 3.1: An n = 16 site lattice with periodic boundary conditions in d = 2 with

nd = 32 links. The (n − 1) = 15 links on a maximal tree (dashed blue) are eliminated via

Gauss’s Law. The d = 2 links in dashed red are eliminated by constraining the net electric

flux through the dotted green lines to equal the topological quantum numbers νx,y. The

remaining (n−1)(d−1) = 15 black links represent the physical variables of the theory. This

procedure generalizes to arbitrary d, n.

of the other Q̂, Q̂† operators meeting at the same vertex, beginning at the ends of the tree

branches; fixing the topology (step five) can be easily done at the border of the maximal tree,

as indicated in Fig. 3.1. The resulting Hphys on a given sector ν is written using products

of the |ε`〉 states over each of the (n − 1)(d − 1) free links; a heavy price is paid, however,

in the loss of locality and discrete translational invariance of the resulting Hamiltonian. We

next describe an alternative procedure, which leads directly to a duality transformation.

3.2 U(1) dual formulation

Physical states can be defined in terms of gauge-invariant operators acting on the trivial state

|0〉 with zero electric field everywhere [39]; those operators can be constructed out of Wilson

loops – products of Û` along closed paths. We first define the Polyakov loop operators Ŵ (Ci)

to be the product of oriented Û link operators along a closed loop Ci that wraps around the
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lattice in the ei compact direction. We then define the state

|ν〉 ≡
d∏
i=1

(
Ŵ (Ci)

)νi
|0〉 , νi ∈ Z . (3.6)

All the physical states within a topological class are then created by acting on |ν〉 with

powers of plaquette operators:

|A 〉ν =
∏
p

(
P̂p

)Ap

|ν〉 , Ap ∈ Z , (3.7)

where p runs over all p plaquette coordinates. It is evident that |A 〉ν ∈ Hphys for all A and

ν since both the Ŵ and P̂ operators are gauge-invariant, each producing only closed loops of

electric flux. It is also easy to see that any of the ⊗` |ε`〉 basis states obeying Gauss’s law can

be written in this form. The particular choice of the Ci paths is unimportant, since two such

paths can be deformed into each other by the application of plaquette operators. The problem

now, however, is that the |A 〉ν states are an over-complete basis for Hphys, since a state in

a particular topological sector depends on p = nd(d− 1)/2 variables instead of the required

(n−1)(d−1). The number of redundant A variables is therefore R = (d−1)[1+(d−2)n/2].

For d = 2, the redundancy is R = 1, independent of the number of sites n; for d = 3,

R = 2 + n, scaling with the volume of the lattice. These redundancies arise because the

product of plaquette operators around any closed surface is an identity operation, expressing

the discretized integral form of ~∇· ~B = 0; R simply counts the number of independent closed

surfaces. We will deal with the redundancy by treating all of the |A 〉ν states as independent,

then subsequently imposing the magnetic Gauss law constraint.

The action of the Hamiltonian eq. (3.3) on the |A 〉ν states is simple to characterize: ĤB

applies plaquette operators to the state, and therefore either raises or lowers Ap by one.

ĤE measures the electric field, which at each link is determined by differences between the

Ap for the plaquettes the link borders — with a possible additional contribution from the

Polyakov loop in eq. (3.6) if the link lies along one of the Ci curves. ĤE therefore looks like

a finite difference operator acting on Ap. The behavior of HB and HE can be most naturally

described in terms of operators on the dual lattice. We first discuss the simpler case of
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d = 2, where the duality transformation maps the {n, `,p} coordinates of L to {p?, `?,n?},

respectively, on the dual lattice L?. n sits at the center of plaquette p? and n? sits at the

center of p, while `? and ` intersect each other; we adopt a convention where the x-links

of the two lattices are oriented anti-parallel to each other, while the y-links are parallel.

By ignoring the redundancy in our definition of |A 〉ν in eq. (3.7), we can treat An? as an

independent integer-valued variable on each site and use product states ⊗n? |An?〉 as a basis

for a Hilbert space H?. In terms of these states, we can define the two local coordinate and

shift operators, Ûn? and Q̂n? , living on sites of the dual lattice as

Ûn? =
∑
An?

|An?〉 eiξAn? 〈An? | ,

Q̂n? =
∑
An?

|An? + 1〉 〈An?| . (3.8)

For a given topological sector ν, the matrix elements of the Hamiltonian Ĥ of eq. (3.3)

between the |A 〉ν states are reproduced then by the dual Hamiltonian Ĥν on L?,

Ĥν =
1

2as

∑
n?

[
1

g̃2
s

(
2− Q̂n? − Q̂†n?

)
− g̃2

t

ξ2
a2
sÛ

†
n?∆Ûn?

]
(d = 2).

(3.9)

In this expression, ∆ is a discrete covariant Laplacian ∆ = D+
i D

−
i , where D+

i are the

difference operators

D+
1 Fn? = (W{n?,n?−e1}Fn?−e1 − Fn?)/as ,

D+
2 Fn? = (W{n?,n?+e2}Fn?+e2 − Fn?)/as , (3.10)

D−i ≡ −
(
D+
i

)†
, and the discrete vector gauge field W accounts for the topological charges

ν:

W`? =

e
iξνi , if ` ∈ Ci ;

1, otherwise ;

(3.11)

`? being the link dual to `. Note that D+
1 is a derivative in the −e1 direction because on L?

we have oriented the x-links anti-parallel to those on L, unlike the y-links, which are parallel.
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The gauge symmetry associated with W reflects the equivalence of constructions based on

different Ci paths for the Polyakov loops in eq. (3.6).

The first term in eq. (3.9) arises from ĤB, while the second from ĤE, and we see that the

roles of the two have been reversed: ĤB becomes an operator that translates the value of the

dual field A , while ĤE measures gradients in A . The discrete gauge field W corresponding

to the topological electric fields of the original theory seems to have no analogue in the

original theory, but that is simply because we did not build in topological magnetic field

loops; to do so would require a field analogous to W added to the original Hamiltonian Ĥ.

As mentioned above, in d = 2 there is one redundant variable arising from the fact that∏
p P̂p = 1̂. Thus the restriction to Hphys ⊂ H? requires applying the single constraint on

physical states (
Q̂L? − 1̂

)
|A 〉ν = 0 , Q̂L? ≡

∏
n?

Q̂n? . (3.12)

This constraint can be solved by setting A = 0 at a single site n? and equating Q̂ at that

site to the product of Q̂† over all the other sites — again at the cost of sacrificing locality

and discrete translational invariance. A more attractive alternative is to work directly in H?

and simply use an initial wave function that satisfies eq. (3.12). Unlike in the conventional

formulation, where the number of constraints scales with the number of lattice sites, here

with only a single unphysical variable, the problems of constructing the initial state obeying

the constraint — or of subsequently becoming “lost in space” due to computational error

— should be vastly diminished compared to simulations in the original space H subject to

eq. (3.5). Because there is one Q̂n? , Ûn? variable pair per site on L?, as compared with two

Q̂`, Û` variable pairs per site on L, we see the expected (d− 1)/d = 1/2 reduction in degrees

of freedom, which should correspond to a similar reduction in the number of qubits required

to characterize the system. However, for this statement to be meaningful, we first have to

discuss regulating H? to make it finite-dimensional.

To regulate the dual theory in d = 2 one cannot simply limit An? to lie in the finite

range −Λ ≤ Ân? ≤ Λ, taking Λ → ∞ in the continuum limit: the operator Q̂L? shifts
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the Ân? field uniformly so that the constraint eq. (3.12) cannot hold in a space spanned

by eigenstates of the Ân? with finite eigenvalues. Instead, one can regulate the eigenvalues

of the unitary Qn? operators, equivalent to placing a cutoff on magnetic field fluctuations

in the original theory. The regulated Hamiltonian will then commute with the constraint,

and an initial wave function chosen to satisfy the constraint eq. (3.12) will continue to do

so as it evolves. Therefore, in d = 2, there are several advantages to simulating Ĥν on a

quantum computer instead of Ĥ: (i) the variables are scalars, rather than vectors, reducing

the number of degrees of freedom by half; (ii) there is a single redundant variable, rather than

the (n−1) unphysical variables in the conventional formulation; (iii) it is natural to regulate

magnetic fluctuations rather than electric, which is likely to converge more efficiently to the

continuum limit.

We now turn to the problem of constructing the d = 3 Hamiltonian for the |A 〉ν states of

eq. (3.7). As for d = 2, this naturally leads to a duality transformation, interchanging the co-

ordinates for sites, links, plaquettes and cubes from L to L? as {n, `,p, c} ↔ {c?,p?, `?,n?}.

In particular, the plaquettes p on L get mapped to the links `? on L? piercing them in the

direction opposite to their normal vectors, so that L? is parity inverted relative to L. There-

fore the plaquette variable Ap on L gets mapped to a dual vector field A`? living on the links

of L?, unlike in d = 2 where a scalar An? lives on sites. We can then define link operators

U`? and Q`? operators exactly as in eq. (3.8), and the dual Hamiltonian is computed to be

Ĥν =
1

2as

[∑
n?

1

g̃2
s

(
2− Q̂`? − Q̂†`?

)
+
g̃2
t

ξ2

∑
p?

(
2−

(
Wp?P̂p? + h.c.

))]
(d = 3).

(3.13)

In this expression, Pp? is the plaquette operator on L? constructed out of U`? ’s in the same

way Pp is constructed from U`’s in eq. (3.4), while Wp? is a phase that is nontrivial whenever

the topological electric field loops Ci on L pierce the p? plaquette on L?,

Wp? =

e
iξνi , if ` ∈ Ci ;

1, otherwise ;

(3.14)
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` being the link dual to p?.

In d = 3 the |A 〉ν states in eq. (3.7) are again over-complete, but the problem is more

severe than in d = 2 as the product of plaquette operators on the surface of any cube c in L

should be an identity transformation, the number of cubes scaling with n. The constraint on

the dual lattice to remove this degeneracy is (unsurprisingly) the dual of the electric Gauss

law constraint eq. (3.5): the same equation with the substitution Q̂` → Q̂`? . Thus, we see

a “conservation of difficulty” between the original and dual theories for d = 3, each form

of the theory having a Gauss law constraint of identical form. The one advantage of the

dual formulation common with the d = 2 example is that regulating the eigenvalues of the

Q̂ operators controls magnetic fluctuations, which we expect to be more efficient at weak

coupling than a cutoff on the electric field.

3.3 Conclusions

We have focused here entirely on U(1) gauge theories without matter and have shown the

consequences of defining these theories on the space of gauge-invariant states. In particular,

we found that this leads to a dual formulation subject to a magnetic Gauss law constraint.

This result can lead to a substantial reduction of variables in d = 2, but not in d = 3;

in both cases though it offers the opportunity to regulate the theory by limiting magnetic

fluctuations rather than electric, which is expected to be advantageous in approaching the

continuum limit in d = 2, or studying the weak field limit in d = 3. One can hope for a similar

approach to regulating asymptotically-free gauge theories in d = 3, for which the continuum

limit is also at weak coupling. Extending the analysis to include charged matter fields and

non-Abelian gauge symmetries is complicated by the fact that not all gauge-invariant states

in the theory can be written in the form eq. (3.7); much previous work on related issues

for non-Abelian gauge theories exists [57, 58, 87, 88] and could serve as a basis for quantum

computations. Understanding such theories better, and developing the tools to efficiently

represent these theories on a quantum computer and extrapolate to the continuum theory,

remain as fascinating theoretical challenges to be tackled before one can contemplate solving
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outstanding computational problems in QCD.

* * *

Following the preparation of the work presented in this chapter, Ref. [89] appeared,

investigating the impact of different truncation schemes in Abelian lattice gauge theories as

a function of the bare coupling. That work analyzes in great detail (2+1)-dimensional U(1)

theories, including fermionic matter, in both electric and magnetic representations. They

find that recovering the weak-coupling ground state wave function of a 2×2 periodic lattice

with high overlap requires a truncation level scaling like g̃
8/5
s in a magnetic representation, as

compared to g̃−2
s in an electric representation. The former is clearly much more efficient on

qubit resources at weak coupling, quantitatively confirming the qualitative arguments given

above. Their obtained magnetic basis results rely on approximating the U(1) gauge group

by its Z(N) subgroups, however, and so there is no direct way to extend their analysis to

non-Abelian gauge groups.
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Chapter 4

DIGITAL QUANTUM SIMULATION OF AN SU(2) GAUGE
THEORY IN ONE DIMENSION

Great success has been achieved in computing the properties and low-energy dynamics of

hadronic systems using the numerical technique of lattice QCD [90,91] on the world’s largest

supercomputers. Current lattice QCD calculations at the physical quark masses have resulted

from a sustained co-development effort over the last ∼ 50 years. Those developments began

with calculations on small lattices, with unphysical quark masses, and with large lattice

spacings using computers available during the 1970’s [91]. While good progress is being

made in designing Hilbert spaces for [92–110], creating detailed hardware-specific proposals

for [111–126], and implementing [1,127–131] quantum field theories on quantum devices, non-

Abelian gauge theories have not yet been simulated on today’s limited and noisy hardware.

It is in the spirit of the early days of lattice gauge theory that we develop an improved

algorithm to evolve a string of SU(2) plaquettes, and use it to simulate a non-Abelian gauge

field theory on IBM’s digital quantum hardware.1,

The Hamiltonian formulation of lattice gauge theories [132] includes exponentially-large

sectors of unphysical 2 Hilbert space in order to maintain spatially-local interactions while

satisfying gauge constraints. The hardware error rates and gate fidelities of current NISQ-

era [133] quantum devices, and the lack of error correction capabilities, allow quantum states

to disperse into these unphysical sectors. To avoid such dispersion, previous quantum simu-

lations of lattice gauge theories have employed various procedures to remove the unphysical

1This chapter is drawn from Physical Review D 101, 074512 (2020), done in collaboration with N. Klco
and M.J. Savage.

2The space referred to as unphysical can be naturally interpreted as isolated Hilbert spaces with non-zero
external sources.

https://link.aps.org/doi/10.1103/PhysRevD.101.074512
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Hilbert space from the embedding onto quantum devices [127–129,131,134]. However, these

techniques do not scale efficiently, and a generic description for multi-dimensional lattices

with non-trivial gauge groups in terms of only local, physical degrees of freedom is not cur-

rently known. A variety of approaches for quantumly simulating gauge theories are being

pursued—reformulating the interactions, lattice structure, and degrees of freedom by de-

signing Hilbert space bases of group elements, Schwinger bosons, duality transformations,

loop variables, tensor networks, and more [49,105,107,108,112,118,121,132,135–157]—often

with the explicit goal of mitigating unphysical degrees of freedom. Reductions have been

obtained by solving Gauss’s law, which is related to loop formulations where the fundamen-

tal degrees of freedom are gauge invariant [138, 144, 158–168]. Proposed for both analog

and digital quantum implementation, progress is being made toward using renormalization

group methods to connect quantum link models [95,114,117,169–173] to continuum theories

of importance [172, 174–176]. Classical numerical explorations of truncation errors arising

from gauge field digitization in lattice QCD calculations [107], and exploring the use of the

crystal groups associated with SU(3) to discretize the gluon fields for quantum simulations

have begun [110]. Here marks the introduction of an explicit quantum algorithm for digital

implementation of dynamics with generalizable operator structures.

In this work, the angular momentum basis [132,135,136] is utilized, which is made com-

putationally feasible on quantum devices by exploiting the local gauge symmetry to remove

the angular momentum alignment variables. A similar reduction in degrees of freedom has

been suggested to be an advantageous mapping for quantum simulations [100], and has been

employed in calculations using matrix product states. The associated qubit mapping, along

with the flexibility of the introduced gauge variant completion (GVC), has made possible the

exploration of operator structures necessary for generalization to larger lattices and higher

dimensions on current hardware. As an explicit example, time evolution of a one-dimensional

string of two SU(2) plaquettes is implemented on IBM’s Tokyo [177] quantum device with

employed error mitigation techniques. The new mappings and techniques that we introduce

here generalize to quantum simulations of gauge field theories in higher numbers of spatial
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dimensions.

The Hamiltonian of spatially-discretized Yang-Mills gauge theory is [132] (in lattice units)

Ĥ =
g2

2

∑
links

Ê2 − 1

2g2

∑
2

(
2̂ + 2̂†

)
(4.1)

where Ê2 is the local gauge-invariant Casimir operator, 2̂ is the gauge-invariant plaquette

operator contracting closed loops of link operators, and 2̂ = 2̂† for SU(2). On a square

lattice, the single plaquette operator is

2̂ =

1
2∑

α,β,γ,δ=− 1
2

Ûαβ Ûβγ Ûγδ Ûδα (4.2)

where Ûαβ is a j = 1/2 link operator with definite starting and ending points oriented

around a plaquette. In the limit of strong coupling, g2 →∞, this Hamiltonian is dominated

by the electric contributions and fluctuations between configurations of definite link angular

momentum vanish. In weak coupling, the magnetic contributions dominate and a theory of

dynamical loops emerges.

The angular momentum basis describes the quantum state of a generic link by its irre-

ducible representation, j, and associated third-component projections at the left and right

end of the link in the 2 and 2̄ representations, |j,m,m′〉 ≡ |j,m〉 ⊗ |j,m′〉, respectively.

In one dimension, SU(2) lattice gauge theory can be spatially discretized onto a string of

plaquettes (see Fig. 4.1). With periodic boundary conditions (PBCs), only three-point ver-

tices contribute to such a plaquette chain. To form gauge singlets, components of the three

links at each vertex are contracted with an SU(2) Clebsch-Gordan coefficient. While these

coefficients are conventionally incorporated into the state space allowing plaquette operators

to be localized to four active links, the qubit Hilbert space is more naturally structured

as an unconstrained grid. Thus the Clebsch-Gordan coefficient at each vertex will be here

included in the plaquette operator itself. This decision delocalizes the plaquette operator at

the scale of immediately neighboring links as shown in Fig. 4.1, where the green, circular

parts of the operator denote the dependence of the operator on the quantum state of qubits

on neighboring links.
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To calculate the plaquette operator, the state is first structured with Clebsch-Gordans

at each vertex such that the wavefunction has the form

V ∼
∑
b,c,e

〈j1, b, j2, e|q, c〉 |j1, a, b〉 ⊗ |q, c, d〉 ⊗ |j2, e, f〉 , (4.3)

where indices b, c, and e are located at the vertex. By focusing on a system with an even

number of plaquettes, matrix elements of the arbitrary plaquette operator may be deter-

mined. The wavefunction of a lattice with an even number of plaquettes in one dimension

with PBCs in the link angular momenta basis is

|χ〉 = N
∑
{m}

L∏
i=1

〈jti ,mt
i,R, j

t
i+1,m

t
i+1,L|qi,mt

qi
〉

〈jbi ,mb
i,R, j

b
i+1,m

b
i+1,L|qi,mb

qi
〉

|jti ,mt
i,L,m

t
i,R〉 ⊗ |jbi ,mb

i,L,m
b
i,R〉 ⊗ |qi,mt

qi
,mb

qi
〉 (4.4)

with jL+1 = j1, mL+1 = m1, and normalization N =
∏

i(dim(qi))
−1 with dim(q) = 2q + 1.

Referring to the plaquette string’s ladder structure, on links located as rungs of the ladder,

angular momentum values are labeled by q. Thus, a plaquette string is created by two strings

of j-type registers connected periodically by rungs of q-type registers. The contraction with

Clebsch-Gordan coefficients at each vertex ensures the local gauge singlet structure required

by Gauss’s law. The link operator acts on the degrees of freedom at each end of a link and

is a source of j = 1/2 angular momentum,

ÛAB |j, a, b〉 =
∑
⊕J

√
dim(j)

dim(J)
|J, a+ A, b+B〉 〈j, a;

1

2
, A|J, a+ A〉 〈j, b; 1

2
, B|J, b+B〉 ,

(4.5)

which contains non-vanishing contributions only for J = j ± 1
2

[49]. By acting this operator

on the above wavefunction of Eq. (4.4) and summing over alignment variables, that matrix

elements of the plaquette operator in one dimension and in the tensor product basis of



59

magnetic quantum numbers, j, are calculated to be

〈χ··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···| 2̂ |χ··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···〉

=
√

dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )
√

dim(q`i) dim(q`f ) dim(qri) dim(qrf )

× (−1)j
t
`+j

b
`+jtr+j

b
r+2(jtaf+jbaf−q`i−qri)

jt` jtai q`i

1
2

q`f jtaf


jb` jbai q`i

1
2

q`f jbaf


jtr jtai qri

1
2

qrf jtaf


jbr jbai qri

1
2

qrf jbaf


(4.6)

where the indices jt,b` , q`i, q`f , j
t,b
a , qri, qrf , and jt,br are used to indicate the j-values relevant

for the single plaquette operator (as depicted in Fig. 4.1) and the brackets indicate Wigner’s

6-j symbols. The four registers jt,b`,r outside the plaquette are not modified by the action of

the plaquette operator. However, their inclusion as control registers is necessary to maintain

Gauss’s law. The sums over alignment in each gauge-invariant space yield a dramatically

reduced Hilbert space to be mapped onto a quantum device, characterized entirely by the

|j〉’s (rather than the |j,m,m′〉’s [100]) incrementing naturally by half-integers. As a result,

the Hilbert space dimension scales with the number of links, L, as (2Λj + 1)L—a small

asymptotic savings in terms of qubit number, but an important savings for noisy devices

where survival probabilities in the physical subspace are imperfect. This concept is here

exemplified by embedding a four dimensional physical subspace into a sixteen dimensional

computational space rather than into what would be a ≥ 54-dimensional Hilbert space in

the |j,m,m′〉 basis. The qubit representation of the periodic plaquette string is shown on

the top panel of Fig. 4.1, where each link contains a dlog2(2Λj + 1)e-qubit register with Λj

the angular momentum truncation per link.

Quantum circuits were devised for the plaquette operator with angular momentum trun-

cation Λj = 1/2. For time evolution beginning in the strong-coupling (empty) vacuum, the

top and bottom j values are equivalent with this cutoff and the plaquette operator reduces

to a five-qubit operator.

While the value of plaquette operator matrix elements connected to the physical Hilbert

space are important for implementation of accurate time evolution, those within the unphysi-
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Figure 4.1: (top) Diagram of the lattice distribution of dlog2(2Λj+1)e-qubit registers and the

action of 2̂ on SU(2) plaquettes in one dimension. 2̂ operates on the four qubit registers in

the plaquette and is controlled by the four neighboring qubit registers to enforce the Gauss’s

law constraint. (bottom) The plaquette operator with labeled angular momentum registers.

[image credit: Natalie Klco]

Figure 4.2: Digital circuit implementation of the plaquette operator centered on ja for a

truncated lattice with Λj = 1/2, two plaquettes, and PBCs as depicted at the right. The

angles β̃ defining this circuit are given in Eq. (B.4) to be β̃ = (3/8, 5/8). [image credit:

Natalie Klco]
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〈j`f q`f jaf qrf jrf |2̂(1/2)|j`i q`i jai qri jri〉

〈00000|2̂(1/2)|01
2

1
2

1
2
0〉 1

〈0001
2

1
2
|2̂(1/2)|01

2
1
2
01

2
〉 1

2

〈1
2

1
2
000|2̂(1/2)|1

2
01

2
1
2
0〉 1

2

〈1
2
01

2
01

2
|2̂(1/2)|1

2
1
2
01

2
1
2
〉 1

4

Table 4.1: Matrix elements of the Λj = 1/2, Hermitian plaquette operator 2̂(1/2), as

calculated in Eq. (4.6) with jt`,a,r = jb`,a,r. All other matrix elements between physical states

are zero.

cal space are not. Thus, significant freedom exists in designing the operator in the unphysical

space to hardware-specifically optimize quantum computation. Operators with equivalent

physical matrix elements but differing in their unphysical operation will be described as dif-

ferent gauge variant completions (GVCs) of the same physical operator. For example, here

it is convenient to use a GVC within the set of Pauli operators to minimize the quantum

gate resource requirements. Observing the plaquette operator matrix elements in Table 4.1,

states are connected when q`, ja, and qr experience a qubit inversion with a matrix element

dependent on the j`, jr-sector. Such a controlled operator is depicted schematically at the

bottom of Figure 4.1 (with top and bottom j’s identified) and may be written as

2̂(1/2) = P0XXXP0 +
1

2
P0XXXP1 +

1

2
P1XXXP0 +

1

4
P1XXXP1 (4.7)

with P0 = 1
2
(I + Z) and P1 = 1

2
(I − Z), the j = 0(1

2
) state mapped to quantum state

|0〉(|1〉), and the Hilbert spaces ordered as in the heading of Table 4.1. With this GVC,

the plaquette Hamiltonian has 24 non-zero couplings between unphysical states that would

otherwise vanish in the evaluation of Eq. (4.6) 3. One possible digital qubit implementation

of the associated time evolution operator with the GVC above is shown explicitly in Fig. B.1

3Equation (B.1) shows explicitly the Hamiltonian structure with the chosen GVC. If the GVC of Eq. (4.6)
was used without modification, a factor of four in quantum gates is expected as shown in Appendix B.2.
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of Appendix B.1. As written, this operator acts equivalently throughout the one-dimensional

string of plaquettes to implement time evolution of the lattice. We anticipate that the concept

of GVC will play an important role in quantum simulations of quantum field theories in higher

dimensions, and other physical systems with conserved quantities or constraints.

Specializing to the two-plaquette system with PBCs, only the matrix elements in the

first and last rows of Table 4.1 remain. The second plaquette operator in the two-plaquette

system reduces to the following four-qubit operator,

2̂(1/2)
2 = P0XXX +

1

4
P1XXX . (4.8)

Digital implementation of this operator is shown in Fig. 4.2. The reduced linear combination

structure defined by the first and fourth rows and columns of the matrix shown in Eq. (B.4)

produces the vector β̃ appearing in Fig. 4.2. A natural qubit representation of the electric

operator is

Ĥ
(1/2)
E =

g2

2

∑
links

3

4

(
I− Z

2

)
, (4.9)

including 12 non-zero elements in the unphysical Hilbert space.

Real-time evolution of two plaquettes with PBCs (see the right panel of Fig. 4.2) and

truncation Λj = 1/2 has been here implemented on IBM’s quantum device Tokyo, selected for

its available connectivity of a four-qubit loop. The top panel of Fig. 4.3 shows time-evolved

expectation values of the energy contributions from the first electric plaquette calculated with

one and two Trotter steps 4. The electric contributions, being localized in their measurement

to the four-dimensional physical subspace, are well determined after a small number of

samples. In contrast, measuring the energy contributions from the magnetic Hamiltonian

requires increased sampling due to the operator’s natural representation in the Pauli-X basis

of the q`, ja, and qr qubit registers—distributing the wavefunction’s amplitude throughout

the Hilbert space. Results have been corrected for measurement error by the constrained

inversion of a 16-dimensional calibration matrix informed by preparation of each of the

4The Trotter step in this calculation has been ordered in application as the first plaquette, the second
plaquette as written in Eq. (4.8), and lastly the electric time evolution operator.
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16 computational basis states prior to calculation. The resulting probabilities are linearly

extrapolated in the presence of CNOT gates, post-selected within the gauge-invariant space,

and renormalized. The linear extrapolation is informed by r = 1, 2, where r = 1 is the circuit

in Fig. 4.2 and r = 2 stochastically inserts a pair of CNOTs accompanying each of the three

CNOTs either in the first or second half of the plaquette operator. The combined noise and

gate fidelity of the device were found to limit the ability to extrapolate further in CNOT noise,

even with a single Trotter step. These error mitigation techniques have allowed calculation

of the electric energy associated with the SU(2) gauge field to the precision obtained after a

single Trotter step.

It is important to determine the feasibility of retaining gauge-invariant Hilbert spaces

with near-term quantum hardware. For our calculations on IBM’s Tokyo quantum device,

before CNOT extrapolation, the (NTrot, r) = (1, 1) measurements were found to remain

in the gauge invariant space with a survival population of ∼ 45%, as shown in the bot-

tom panel of Fig. 4.3. After linear extrapolation in the probabilities, this was increased to

∼ 65%, with survival population decreasing as evolution time increases. The survival pop-

ulation for NTrot = 2 was found to be ∼ 25%, consistent with loss of quantum coherence of

a four-dimensional physical space embedded onto four qubits, precluding CNOT extrapola-

tion. This observable is a diagnostic of the calculation. As it approaches the decorrelated

limit (25%), CNOT extrapolations become less reliable, leading to the underestimate of sys-

tematic uncertainties in Fig. 4.3. Because neither the proposed qubit representation nor

the subsequent Trotterization produce gauge-variant error contributions, the observed decay

of population in the physical subspace is a measure of the device’s ability to robustly iso-

late Hilbert subspaces. This is likely to be an essential capability for evolving lattice gauge

theories and other systems with conserved quantities, as well as for quantum error correction.

When increasing Λj, the plaquette operator must be calculated and designed over 8

registers of qubits, each containing dlog2 (2Λj + 1)e qubits. The classical computational

resources required to define this operator with Eq. (4.6) scales with the number of unique

non-zero matrix elements, which is polynomial in Λj. When constructing the time evolution
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Figure 4.3: (top) Expectation value of the electric energy contribution of the first plaquette

in the two-plaquette lattice with PBCs and coupling g2 = 0.2 computed on IBM’s Tokyo.

The dashed(purple) and dot-dashed(blue) lines are the NTrot = 1, 2 Trotterized expectation

values, while the thick gray line is the exact time evolution. (bottom) Measured survival

probability to remain in the physical subspace for one and two trotter steps, NTrot, and

one and two r values indicating stochastically inserted 2r − 1 CNOTs per CNOT in the

digital implementation. Uncertainties represent statistical variation, as well as a systematic

uncertainty estimated from reproducibility measurements. The icons (defined in Ref. [1])

denote computations performed on quantum devices. [image credit: Natalie Klco]
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operator for Λj > 1/2, the combination of Trotterization and Pauli decomposition of the 4-

register operators in j`,r-controlled sectors generically generates interactions breaking gauge

invariance [142,153,178]. While a unitary operator preserving gauge invariance exists, it will

generically require an exponential amount of quantum resources to implement and classical

resources to define. The breaking of gauge invariance will be important to control if this

decomposition is used in future calculations.

For the simulated system, the SU(2) Hilbert space associated with each link and the

spatial lattice are significantly truncated. This work represents an early step along the

long road ahead for quantum simulations of gauge field theories. As Hamiltonian operators

are local in such field theories, thoughtful design and optimization of quantum operators in

small, classically manageable systems will impact the design and execution of future quantum

simulations of larger dimensionality. The impact of the truncation on the continuous-field

system of two plaquettes (for the value of g2 used in this work) is presented in Table B.1 of

Appendix B. We find that the employed truncation of Λj = 1/2 leads to a ∼ 56% change to

the ground state energy and a much larger change to the “glueball” mass. A larger value of

g2 would lead to smaller deviations in both quantities, as the system becomes more amenable

to perturbative methods. At the selected value of g2, where the system is nonperturbative,

enlarging the simulation to include three qubits per link (a cutoff of Λj = 7/2), rather than

one qubit per link (Λj = 1/2), causes these low-energy observables to become calculable

with an accuracy exceeding 2% using the basis discussed in this paper. The fidelity of the

ground state in the enlarged simulation is ∼ 90% with respect to the untruncated ground

state. The convergence properties of this formulation of gauge theories, and others intended

for quantum simulation, are important topics of future research.

Developing quantum computation capabilities for non-Abelian gauge field theories is a

major objective of nuclear physics and high-energy physics research. We have presented the

first quantum simulation of a non-Abelian gauge field theory on a digital quantum computer,

which required the development of a number of new techniques. One of the challenges facing

such calculations is that the mapping of the gauge theory onto the register of a digital
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quantum computer involves a digitization of the gauge fields. We have presented calculations

of the dynamics of a one-dimensional SU(2) plaquette string with implementation on IBM’s

Q Experience superconducting hardware. This was made feasible by an improved mapping

of the angular momentum basis states describing link variables and recognizing the utility of

gauge-variant completions. Our design of the plaquette operator for digital quantum devices

requires local control from qubit registers beyond the active plaquette. This key feature

is expected to persist in future developments of quantum computing for gauge theories.

Extension of this analytic reduction beyond one dimension is naturally suited to lattices

with three-point vertices, but generalizes to n-point vertices and thus to quantum simulations

in higher dimensions. Comparisons, at the level of explicit digital implementation, of this

mapping with proposed alternatives will be of importance for realizing physically-relevant

quantum computations of non-Abelian gauge theories.
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Chapter 5

LOOP-STRING-HADRON FORMULATION

Figure 5.1: Depiction of a basis state in the loop-string-hadron framework. It represents

a quark and gauge flux configuration on a 2D spatial lattice. The red flux portions are

unterminated and indicated sites where Abelian flux conservation fails.

In this chapter,1 we revisit and reformulate a non-Abelian lattice gauge theory—SU(2)

gauge theory in d+ 1 dimensions with one flavor of staggered quarks—ultimately putting it

into an explicit form to which (classical or) quantum algorithms can be readily applied. The

main theoretical contributions of this work include a thorough introduction to a loop-string-

1This chapter is drawn from Physical Review D 101, 114502 (2020), done in collaboration with I. Ray-
chowdhury.

https://link.aps.org/doi/10.1103/PhysRevD.101.114502
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hadron (LSH) formulation of SU(2) lattice gauge theory, which uses local loops, strings,

and hadrons as dynamical variables. The derivations provide the detail needed to adapt

the framework to similar SU(2) theories. Furthermore, the exposition on the Hamiltonian

contains the details required to develop comprehensive simulation algorithms. In a compan-

ion work [179], we provide a mapping of the LSH formalism to qubits along with quantum

circuit solutions to all the constraints, representing a major advance toward implementing

verifiably-gauge-invariant states and quantum error mitigation. Generalizing the present

LSH formalism for SU(3) would be a key step toward future quantum simulations of lattice

QCD.

This LSH formulation is the result of working with strictly SU(2)-invariant operators

and is an extension of the Schwinger boson (prepotential) formulation of lattice gauge theory

[51,55–59,180–182]. The non-Abelian Gauss law that usually appears as a constraint is made

intrinsic, meaning the local excitations are physical and even intuitive. The price paid is the

introduction of an Abelian Gauss law that must be enforced instead, and the introduction of

additional lattice links. These are not fundamental hurdles because i) the Abelian constraints

are simpler to work with and, ii) if the Abelian constraints are also solved, then the gauge-

invariant Hilbert space is covered much more efficiently than it would be in a Kogut-Susskind

formulation. (Addressing the latter point is the subject of ongoing work.) Importantly, by

making the operator structure so explicit, algorithms can start being applied to simulating

dynamics and compared against any other proposals made for non-Abelian simulations.

The organization of this chapter is as follows: Section 1.4 reviews key points of the Kogut-

Susskind Hamiltonian formulation. In Sec. 1.5, we briefly review how that framework is

expressed using Schwinger bosons. In Sec. 5.1, we describe the LSH formulation in one spatial

dimension in detail. This includes the LSH operators and their algebra, the Hamiltonian

and Gauss’s law, definition of an orthonormal LSH basis, and complete specification of LSH

matrix elements in that basis. In Secs. 5.2 and 5.3, we generalize to 2+1 and 3+1 dimensions

respectively. Finally, Sec. 5.4 compares the LSH formalism against a conventional framework.

A lattice Hamiltonian for SU(2) gauge bosons coupled to one flavor of staggered fermionic
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matter, in units of the lattice spacing, may now be formulated as [39]

Ĥ = ĤE + ĤB + ĤM + ĤI , (5.1)

with

ĤE =
g2

2

∑
(x,i)

Ê2(x, i) , (5.2a)

ĤB =
1

g2

∑
x

∑
i<j

tr
[
2− Û (ij)

2 (x)− Û (ij)
2 (x)†

]
, (5.2b)

ĤM = m
∑
x

(−)xψ̂†(x)ψ̂(x) , (5.2c)

ĤI =
∑
(x,i)

ψ̂†(x)Û(x, i)ψ̂(x+ ei) + H.c. (5.2d)

Above, g and m are the bare coupling and bare mass; the magnetic energy ĤB is formed

from gauge-invariant traces of plaquette operators,

Û
(ij)
� (x) ≡ Û(x, i)Û(x+ ei, j)Û

†(x+ ej, i)Û
†(x, j) , (5.3)

with tr[Û †�] = tr[Û�] for SU(2); and the alternating sign (−)x ≡ (−1)
∑
i xi in the mass energy

reflects the staggered fermion prescription.

5.0.1 Practical considerations

Compared to compact Abelian gauge groups, there are several aspects of the Kogut-Susskind

formulation that make SU(N) groups especially formidable for simulation.

• Noncommuting constraints.—In U(1) lattice gauge theories, the constraints are simul-

taneously diagonalizable. This means it is possible to choose a basis where each

basis ket is definitely in the allowed subspace or definitely in the unallowed sub-

space. But in SU(N) lattice gauge theory the Gauss law constraints form an algebra,

[Ĝα(x), Ĝβ(x)] = iCγ
αβĜγ(x), so simultaneously diagonalizing all constraints is impos-

sible. Then the basis kets that would be represented by and measured on a quantum

device would not be meaningful by themselves.
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• Asymmetric quantum numbers.—For compact U(1) theories, the eigenstates of electric

fields are characterized by a single integer quantum number. In that eigenbasis, link

operators simply raise or lower the quantum number by one unit. In SU(2) theories

one typically diagonalizes ÊαÊα and Ê3 at every side of every link, yielding local |j,m〉

structures on all link ends. Every irrep j has a different dimensionality, and these

irreps are mixed by the action of link operators according to

ÛMN |j,m〉L |j, n〉R =
∑

j′,m′,n′

|j′,m′〉L |j
′, n′〉R

√
dim j
dim j′

〈1
2
,M ; j,m|j′,m′〉 〈j′, n′|1

2
, N ; j, n〉

(5.4)

[83]. [For SU(2), nonvanishing contributions on the right-hand side come from j′ =

j ± 1/2.] Representing these mixings using qubit (or qudit) registers seems awfully

forced and unnatural.

• Group-specific coefficients.—The action of link operators (5.4) more generally involves

group-dependent Clebsch-Gordon coefficients. In principle, designing simulation pro-

tocols specific to SU(2) and to SU(3) is not unreasonable and should even be expected.

But if SU(2) and SU(3) were first expressed in a common framework then one could

expect optimizations found for the former to better translate to the latter.

• Gauge redundancy in noisy simulations.—Local gauge constraints mean basis states

are largely wasted representing unallowed states. State vectors in non-error-corrected

simulations will wander away from the exponentially small space of allowed states.

Moreover, nontrivial gauge-invariant states are very specific linear combinations of

conventional irrep basis states; if the computational basis represents the irrep basis,

then any single-qubit error could potentially spoil gauge invariance.

All of these disadvantages provide the impetus for exploring alternative frameworks.
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5.0.2 Hilbert space of states

Allowed states in the Schwinger boson framework are characterized similarly to the Kogut-

Susskind formulation. Physically permissible wave functions must be annihilated by the

Schwinger boson implementations of Ĝα(x), and the same reasons to diagonalize electric

operators continue to apply.

Where the two diverge is in the local Hilbert space structure and choice of a complete set

of commuting observables. Instead of having aggregate link Hilbert spaces, the gauge field

Hilbert space is built from local harmonic oscillators: two modes at the left and right ends

of every link. The natural choice of a CSCO for such Hilbert spaces is{
N̂1(L), N̂2(L), N̂1(R), N̂2(R)

}
(5.5)

for each link. This choice is equivalent to (1.120), but the spectrum of quantum numbers is

different.

Truncating the Kogut-Susskind theory at some representation jmax is equivalent to trun-

cating all Schwinger boson occupation numbers to jmax.

5.0.3 Practical considerations

The Schwinger boson formulation offers the following advantages:

• Symmetric quantum numbers.—All quantum numbers are on the same footing, being

integer bosonic occupation numbers. Now it is obvious how one could represent these

quantum numbers with binary registers. It is also obvious how to truncate the electric

field [a uniform cutoff on all the occupation numbers in (5.5)].

• Non-group-specific matrix elements.—The link operator is expressed in terms of simple

harmonic oscillator ladder operators, and Clebsch-Gordon coefficients are implicit in

the various rescaling factors carried along by them. In this sense, the elementary

degrees of freedom are group agnostic. [Of course, in going from SU(2) to SU(3), one

needs SU(3) irreducible Schwinger bosons as described in [183].]



73

These features ought to be favorable for developing algorithms in this framework.

What remains to be addressed is the non-Abelian constraints, and redundancy of states.

The former is addressed starting with the following observation: Local gauge transformations

act site-locally, with Schwinger bosons and matter all transforming identically. This enables

one to construct site-local intertwining operators automatically invariant under the action

of the local generators; these can be identified as segments of all possible SU(2)-invariant

excitations hosted by a site (like a section of a Wilson loop). Using these, one can construct

an SU(2)-invariant Hilbert space locally at each site. For pure gauge theory, the resulting

local “loop states” [57,58,88,181] are characterized by integer-valued loop quantum numbers

directly related to the angular momentum flux j. Truncating the Kogut-Susskind theory at

some representation jmax is equivalent to truncating all Schwinger boson occupation numbers

to jmax, and that is equivalent to truncating local loop numbers at 2jmax/(2d− 1).

A drawback of the loop basis is that it is overcomplete. Finding the complete and

orthogonal gauge-invariant Hilbert space requires solving the Mandelstam constraints, which

becomes increasingly complicated in higher dimensions and with higher cutoff. These issues

have been discussed in great detail in earlier works on the prepotential formulation of pure

gauge theory. A central objective of the loop-string-hadron framework below will be to

give a complete and local description of gauge-invariant dynamics with minimal redundancy,

equipped with fundamental matter, and adaptable to any number of spatial dimensions.

5.1 Loop-string-hadron formulation: One dimension

The SU(2)-invariant excitations at a site are parts of flux loops, parts of meson strings, or

hadrons. We now derive a loop-string-hadron formulation starting from prepotentials that

has non-Abelian gauge invariance built into it. We start in 1 + 1 dimensions, where the

essential features of coupling to matter—which was not previously a part of the prepotential

framework—already appear.
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In 1 + 1 dimensions, the Kogut-Susskind Hamiltonian (5.2) reduces to

Ĥ = ĤE + ĤI + ĤM . (5.6)

Each site x of this lattice is connected to one incoming link along direction i and one outgoing

link along direction o, as in Fig. 5.2. Within the prepotential framework, Schwinger bosons

âa(L) (âa(R)) are attached to the link along the direction o (i). A staggered fermion field

ψ̂ = (ψ̂1, ψ̂2) lives on the sites themselves. We refer to 1D sites as ‘quark sites’ in anticipation

of the need to distinguish their higher-dimensional counterparts from ‘gluonic sites.’

The site-local doublets shown in the box in Fig. 5.2 can contract in many possible ways

to form SU(2) singlets. It follows that SU(2) invariance can be made manifest by passing

from Schwinger boson and quark operators to using only their SU(2)-invariant combinations.

The gauge theory will be expressed entirely in terms of the dynamics generated by all such

operators.

5.1.1 SU(2) singlets: Loop, string, and hadron operators

The complete set of SU(2) invariants at a 1D site of a spatial lattice is obtained by construct-

ing all possible singlet tensors out the available doublets and their conjugates. It is a special

feature of SU(2) that fundamental doublets are unitarily equivalent to antifundamentals: if

f transforms like a fundamental, then f̃ given by

ε ≡ iσy =

 0 1

−1 0

 , (5.7)

f̃a ≡ εabfb , (5.8)

transforms in the conjugate representation. This equivalence implies ã†a(L/R) ≡ εaba
†
b(L/R)

gives another set of doublets to work with.

Using the available tensors, the complete set of nonvanishing singlets is listed below in

(5.9)–(5.13):



75

• Pure gauge loop operators.—Lσ,σ′ :

L++ = a(R)†aa(L)†bεab (5.9a)

L−− = a(R)aa(L)bεab = (L++)† (5.9b)

L+− = a(R)†aa(L)bδab (5.9c)

L−+ = a(R)aa(L)†bδab = (L+−)† (5.9d)

• Incoming string operators.—Sσ,σ
′

in :

S++
in = a(R)†aψ

†
bεab (5.10a)

S−−in = a(R)aψbεab = (S++
in )† (5.10b)

S+−
in = a(R)†aψbδab (5.10c)

S−+
in = a(R)aψ

†
bδab = (S+−

in )† (5.10d)

• Outgoing string operators.—Sσ,σ
′

out :

S++
out = ψ†aa(L)†bεab (5.11a)

S−−out = ψaa(L)bεab = (S++
out )† (5.11b)

S+−
out = ψ†aa(L)bδab (5.11c)

S−+
out = ψaa(L)†bδab = (S+−

out )† (5.11d)

• Hadron operators.—Hσ,σ:

H++ = − 1

2!
ψ†aψ

†
bεab (5.12a)

H−− =
1

2!
ψaψbεab = (H++)† (5.12b)

[Baryons and mesons are the same for SU(2).]
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· · · · · ·ψ
i o

ψ
i o

ψ
i o

 a1(R)

a2(R)


i o

 ψ1

ψ2

  a1(L)

a2(L)



Figure 5.2: Pictorial representation of a 1D lattice with matter. Every site on the 1D lattice

is associated with a fermionic doublet ψ = (ψ1, ψ2). Bosonic doublets a(L) = (a1(L), a2(L))

and a(R) = (a1(R), a2(R)) are associated with link ends attached to any site along directions

o and i, respectively.

• Gauge flux, quark number operators.—NL/R, Nψ:

NL = a(L)†aa(L)a (5.13a)

NR = a(R)†aa(R)a (5.13b)

Nψ = ψ†aψa (5.13c)

These invariants exhaust all possible singlet bilinears and they are referred to as LSH oper-

ators. They obey a closed operator algebra, which will be necessary to establish since the

original E, U , and ψ variables have been replaced.

Before giving the complete algebra, it is helpful to first build some intuition for these

operators. One can visualize LSH operators in terms of creation and annihilation of the

gauge and matter degrees of freedom appearing in their definitions. Below, this is done

using line segments for gauge flux, circles for quarks, and solid (dotted) lines for creation
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(annihilation) actions:

̂ ≡ L++ ̂ ≡ L−−̂ ≡ L+− ̂ ≡ L−+

̂ ≡ S−−in
̂ ≡ S−−out̂ ≡ S+−

in
̂ ≡ S+−

out̂ ≡ S−+
in

̂ ≡ S−+
out̂ ≡ S++

in
̂ ≡ S++

out̂ ≡ H++ ̂ ≡ H−−

The placement of solid and dotted lines is in direct correspondence with the superscripts on

the LSH operators.

The simplest examples from these are L++ and L−−, which create or destroy an SU(2)-

invariant flux line passing through the site. By contrast, the mixed-type operators L±∓

deform a flux line flowing out one side to instead flow out the other; physically, this corre-

sponds to changing the direction flux emanates from a single quark. The hadron operators

H++ and H−− create or annihilate a hadron, consistent with the Pauli principle (at most

two quarks present).

The actions of string operators are more subtle. For example, S++
in will create the “right”

end of a meson string, provided no quark is initially present. Alternatively, if a quark is

already present in the form of an out-string, the strings ends actually join and leave behind

independent hadron and loop flux excitations. The variety of actions S++
in and other string

operators can have will be summarized later on.

Further intuition for how LSH operators interact with each other is also gained from and

made mathematically precise by now looking at their algebra. The algebra of LSH operators

at any 1D lattice site (5.9)–(5.13) is tabulated in two parts. Table 5.1 lists commutators of

operators where at most one operator from the pair has fermionic statistics. Table 5.2 lists

anticommutators of operators that both have fermionic statistics. In addition to these, Table
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5.3 contains the operators and algebra needed for d > 1 that will be discussed in Sec. 5.2.2;

they are displayed now so they can be referred to alongside Tables 5.1 and 5.2. The 1D LSH

algebra is sufficient to completely describe the dynamics of the theory, to be discussed below.

The commutation relations in Table 5.1 have a number of qualitative features:

• The [N , ·] rows and [·,N ] columns express simply how LSH operators change gauge

flux or fermion density.

• The [H,L] and [L,H] sectors express the independence of exciting hadrons and exciting

gauge flux.

• The [S,L] sectors express how loop operators can deform outgoing (incoming) string

operators into incoming (outgoing) string operators.

• The [S,H] sectors express how hadron operators can change the behavior of Sin and

Sout operators.

String operators inherit fermionic statistics and naturally obey anticommutation relations

due to their linearity in fermionic fields. Qualitative patterns can also be found in Table 5.2:

• The {Sin,Sin} and {Sout,Sout} sectors express both the Pauli exclusion principle as well

as the fact that certain combinations of string operators acting from the same side are

equivalent to hadron creation or annihilation.

• The {Sin,Sout} and {Sout,Sin} sectors express how string operators acting on both sides

without changing net quark number should be thought of as a loop action.

The closure of the operator algebra confirms the completeness that was asserted for the

singlets in (5.9)-(5.13).
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[·,NR] [·,NL] [·,Nψ] [·,L−−] [·,L−+] [·,L+−] [·,L++] [·,H++] [·,H−−]

[NR, ·] 0 0 0 −L−− −L−+ +L+− +L++ 0 0

[NL, ·] 0 0 0 −L−− +L−+ −L+− +L++ 0 0

[Nψ, ·] 0 0 0 0 0 0 0 2H++ −2H−−

[L++, ·] −L++ −L++ 0 −NL −NR − 2 0 0 0 0 0

[L+−, ·] −L+− +L+− 0 0 NR −NL 0 0 0 0

[L−+, ·] +L−+ −L−+ 0 0 0 NL −NR 0 0 0

[L−−, ·] +L−− +L−− 0 0 0 0 NL +NR + 2 0 0

[S++
in , ·] −S++

in 0 −S++
in −S+−

out +S++
out 0 0 0 −S+−

in

[S+−
in , ·] −S+−

in 0 +S+−
in −S−−

out −S−+
out 0 0 −S++

in 0

[S−+
in , ·] +S−+

in 0 −S−+
in 0 0 +S+−

out +S++
out 0 +S−−

in

[S−−
in , ·] +S−−

in 0 +S−−
in 0 0 −S−−

out +S−+
out +S−+

in 0

[S++
out , ·] 0 −S++

out −S++
out −S−+

in 0 +S++
in 0 0 +S−+

out

[S−+
out , ·] 0 −S−+

out +S−+
out −S−−

in 0 −S+−
in 0 +S++

out 0

[S+−
out , ·] 0 +S+−

out −S+−
out 0 +S−+

in 0 +S++
in 0 −S−−

out

[S−−
out , ·] 0 +S−−

out +S−−
out 0 −S−−

in 0 +S+−
in −S+−

out 0

[H−−, ·] 0 0 2H−− 0 0 0 0 1−Nψ 0

[H++, ·] 0 0 −2H++ 0 0 0 0 0 Nψ − 1

Table 5.1: Commutator algebra for the loop, string, and hadron operators at a matter site.

{·,S++
in } {·,S+−

in } {·,S
−+
in } {·,S−−

in } {·,S++
out } {·,S+−

out } {·,S−+
out } {·,S−−

out }

{S++
in , ·} 0 0 −2H++ 2 +NR −Nψ 0 0 +L++ −L+−

{S+−
in , ·} 0 0 NR +Nψ −2H−− +L++ +L+− 0 0

{S−+
in , ·} −2H++ NR +Nψ 0 0 0 0 +L−+ +L−−

{S−−
in , ·} 2 +NR −Nψ −2H−− 0 0 −L−+ +L−− 0 0

{S++
out , ·} 0 +L++ 0 −L−+ 0 2H++ 0 2 +NL −Nψ

{S+−
out , ·} 0 +L+− 0 +L−− 2H++ 0 NL +Nψ 0

{S−+
out , ·} +L++ 0 +L−+ 0 0 NL +Nψ 0 2H−−

{S−−
out , ·} −L+− 0 +L−− 0 2 +NL −Nψ 0 2H−− 0

Table 5.2: Anticommutator algebra for incoming and outgoing string operators at a matter

site.
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[·,L++
ij ] [·,L+−

ij ] [·,L−+
ij ] [·,L−−ij ] [·,L++

jk ] [·,L+−
jk ] [·,L−+

jk ] [·,L−−jk ] [·,L++
ki ] [·,L+−

ki ] [·,L−+
ki ] [·,L−−ki ]

[L++
ij , ·] 0 0 0 −Ni −Nj − 2 0 0 +L++

ki +L−+
ki 0 +L++

jk 0 +L+−
jk

[L+−
ij , ·] 0 0 Ni–Nj 0 −L++

ki +L−+
ki 0 0 0 −L−+

jk 0 +L−−jk
[L−+

ij , ·] 0 Nj–Ni 0 0 0 0 −L+−
ki +L−−ki −L++

jk 0 +L+−
jk 0

[L−−ij , ·] Ni +Nj + 2 0 0 0 −L+−
ki −L−−ki 0 0 −L−+

jk 0 −L−−jk 0

[L++
jk , ·] 0 +L++

ki 0 +L+−
ki 0 0 0 −Nj–Nk − 2 0 0 +L++

ij +L−+
ij

[L+−
jk , ·] 0 −L−+

ki 0 +L−−ki 0 0 Nj–Nk 0 −L++
ij +L−+

ij 0 0

[L−+
jk , ·] −L++

ki 0 +L+−
ki 0 0 Nk–Nj 0 0 0 0 −L+−

ij +L−−ij
[L−−jk , ·] −L−+

ki 0 −L−−ki 0 Nj +Nk + 2 0 0 0 −L+−
ij −L−−ij 0 0

[L++
ki , ·] 0 0 +L++

jk +L−+
jk 0 +L++

ij 0 +L+−
ij 0 0 0 −Nk −Ni − 2

[L+−
ki , ·] −L++

jk +L−+
jk 0 0 0 −L−+

ij 0 +L−−ij 0 0 Nk–Ni 0

[L−+
ki , ·] 0 0 −L+−

jk +L−−jk −L++
ij 0 +L+−

ij 0 0 Ni–Nk 0 0

[L−−ki , ·] −L+−
jk −L−−jk 0 0 −L−+

ij 0 −L−−ij 0 Nk +Ni + 2 0 0 0

Table 5.3: Commutator algebra for the loop operators at a gluonic (pure gauge) vertex.

(d ≥ 2)

5.1.2 Gauss laws and translation of the Hamiltonian

The loop-string-hadron operators introduced above are sufficient to express the Hamiltonian

for SU(2) gauge bosons coupled to one flavor of staggered fermions. This is all that is

necessary to define dynamics, since the algebra of operators is known. In this section, all the

pieces of the Hamiltonian are reconstructed from their LSH equivalents, leaving everything

expressed in terms of SU(2)-invariant operators alone.

By working solely with SU(2) singlets, the only gauge constraints that will have to be

enforced “by hand” are the Abelian Gauss laws (1.133):

(NR(x+ 1)−NL(x)) |phys〉 = 0 . (5.14)

This was always the case in the Schwinger boson formulation, but now the on-site non-

Abelian Gauss law is solved at the operator level in the Hamiltonian. Importantly, the

constraints all commute. Also note that these AGL constraints retain the same form they

had in pure gauge loop formulations [51,58,59]. These constraints can be solved too, but for
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now the map will be given just for passing to the SU(2)-invariant variables (5.9)–(5.13). 2

The electric energy measures the gauge flux running along a link. The quadratic Casimirs

are expressed in terms of LSH number operators as

L̂2 = 1
2
NL(x)

(
1
2
NL(x) + 1

)
(5.15)

R̂2 = 1
2
NR(x)

(
1
2
NR(x) + 1

)
. (5.16)

To form the system’s electric energy, all link ends are put on the same footing by taking

ĤE →
g2

4

∑
x

[
1
2
NR(x)

(
1
2
NR(x) + 1

)
+ 1

2
NL(x)

(
1
2
NL(x) + 1

)]
. (5.17)

Note that NR(x) and NL(x) are on either side of some site x, rather than opposite ends of

a link.

The staggered mass terms are given quite simply in terms of the quark number operators,

Nψ = ψ†ψ, so the mass energy is just

ĤM → m
∑
x

(−)xNψ(x) . (5.18)

The hopping terms from ĤI can create, destroy, break, or glue together meson strings, so

their expressions naturally involve the local string operators. To translate a hopping term,

the sites at each end of a link can be considered separately. Recall from (1.135) and (1.136)

that link operators were given in terms of Schwinger bosons by

Û(x, i) = ÛL(x)ÛR(x+ ei) ,

ÛL(x, i) =
1√

N̂L + 1

 â†2(L) â1(L)

−â†1(L) â2(L)

∣∣∣∣∣∣
x,i

,

ÛR(x, i) =

 â†1(R) â†2(R)

−â2(R) â1(R)

 1√
N̂R + 1

∣∣∣∣∣∣
x,i

.

2It is well known that completely solving Gauss’s law in 1D space is trivial. Doing so destroys locality
and does not generalize to multidimensional space.
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Using the separate ÛL/R factors at quark sites, it follows that

ψ̂†(x)ÛL(x) =
1√

NL(x) + 1

(
S++

out (x), S+−
out (x)

)
, (5.19a)

ÛR(x)ψ̂(x) =

S+−
in (x)

S−−in (x)

 1√
NR(x) + 1

. (5.19b)

Thus, the translation of the interaction into LSH operators is given by

ĤI →
∑
x

1√
NL(x) + 1

[∑
σ=±

S+,σ
out (x)Sσ,−in (x+ 1)

]
1√

NR(x+ 1) + 1
+ H.c. (5.20)

The entire Hamiltonian (5.17)-(5.20) is now expressed solely in terms of the SU(2) singlets

from (5.9)-(5.13).

5.1.3 An orthonormal loop-string-hadron basis and operator factorization

To describe dynamics in a way useful for computational algorithms, it is helpful to set up

a basis. It would seem natural to use as a CSCO the operators {NR,NL,Nψ} since these

naturally appeared in the algebra, and to then express the Hamiltonian in terms of their

quantum numbers. However, these may not be the most desirable due to the fact that these

are constrained by the possible excitations LSH operators can create. (For example, Nψ = 1

while NR = NL = 0 is not gauge invariant.) As will be shown below, one can instead

enumerate states more directly in terms of SU(2)-invariant LSH excitations—leading to a

loop-string-hadron basis. In this way, only allowed on-site states are ever represented.

A second practical issue to be addressed concerns operator factorization. The Hamilto-

nian was expressed in terms of LSH operators, but in an orthonormal basis these operators

change state normalization in addition to changing quantum numbers. Factorizing these two

behaviors has the benefits of making the matrix elements of any operator completely evident

and also setting the stage for a Wigner-Jordan transformation. This factorization will be

done for convenience with respect to a LSH basis (though the factorization itself is basis

independent).
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On-site Hilbert space construction

Until this point, the LSH constructions have been built on underlying harmonic oscillator

operators, but there was no need to choose a basis. The formal tools introduced will now be

used to construct a basis of SU(2)-invariant excitations in which to express the action of the

Hamiltonian. This is done by first defining “on-site” bases and later stitching these together

to construct lattice states.

An on-site Hilbert space for the 1D lattice has three apparent degrees of freedom corre-

sponding to the original occupation numbers (5.13), i.e., nL, nR, and nψ. But as remarked

above these are constrained by the possible excitations generated by LSH operators.

A more physical on-site basis consists of states |nl, ni, no〉 with a loop quantum number nl

and quark quantum numbers ni, no that describe strictly SU(2)-invariant gauge and matter

excitations. Such a “loop-string-hadron basis” of unnormalized kets, denoted by a double-bar

ket || 〉, can be defined as follows.

||nl, ni = 0, no = 0〉 ≡ (L++)nl |0〉 , (5.21a)

||nl, ni = 0, no = 1〉 ≡ (L++)nlS++
out |0〉 , (5.21b)

||nl, ni = 1, no = 0〉 ≡ (L++)nlS++
in |0〉 , (5.21c)

||nl, ni = 1, no = 1〉 ≡ (L++)nlH++ |0〉 , (5.21d)

where

ni = 0, 1 no = 0, 1 nl = 0, 1, 2, · · · , (5.22)

|0〉 is the local vacant state annihilated by any LSH operator carrying at least one minus

sign, and 〈0|0〉 = 1. Note that ni and no indicate quark content, but not necessarily strings;

exactly one of these equaling 1 implies the presence of a flux string, but both equaling 1

means they are paired up into a hadron. Furthermore, one must take care to remember

that the quark numbers are properly handled as ordered fermionic occupation numbers. The

states above uniquely enumerate all SU(2)-invariant excitations that can be hosted by a site.
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} nl } nl } nl } nl

ni = 0, no = 0 ni = 0, no = 1 ni = 1, no = 0 ni = 1, no = 1

Figure 5.3: Depiction of SU(2)-invariant configurations at a quark site. The on-site state

is characterized by a loop quantum number nl (the solid lines) and two quark quantum

numbers ni and no (the blobs).

3

The norms of ||nl, ni, no〉 can be derived by repeated use of the operator algebra. These

types of calculations are described in Appendix C. The result is that a normalized basis is

given by

|nl, ni, no〉 =
||nl, ni, no〉√

nl! (nl + 1 + (ni ⊕ no))!
, (5.23)

where ⊕ denotes addition modulo 2. Figure 5.3 depicts the various different basis states.

Before reexpressing the Hamiltonian, the SU(2)-invariant LSH quantum numbers will

have to be related to the prepotential quantum numbers. This relationship can be inferred

from

Nψ |nl, ni, no〉 = (ni + no) |nl, ni, no〉 , (5.24a)

NL |nl, ni, no〉 = (nl + no(1− ni)) |nl, ni, no〉 , (5.24b)

NR |nl, ni, no〉 = (nl + ni(1− no)) |nl, ni, no〉 . (5.24c)

3Though its utility is limited, it is straightforward to give one unifying expression valid for all states:
||nl, ni, no〉 = (L++)nl [P00 + P01 + P10 + (1/2)L−−] (S++

in )ni(S++
out )no |0〉, where P00 = H−−H++, P01 =

L−+L+−, P10 = L+−L−+, and (1/2)L−−(S++
in )ni(S++

out )no |0〉 = δni,1δno,1H++ |0〉.
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These imply that the following act as number operators on the |nl, ni, no〉 states:

Ni ≡ 1
2

[Nψ +NR −NL] , (5.25a)

No ≡ 1
2

[Nψ +NL −NR] , (5.25b)

Nl ≡ 1
2

[
NL +NR −Nψ + 1

2

(
N 2
ψ − (NL −NR)2

)]
. (5.25c)

(Note again that NR/L belong to a common site, not opposite ends of a link.) The relations

(5.24) can now be promoted to operator identities to be inserted in the Hamiltonian:

Nψ = Ni +No , (5.26a)

NL = Nl +No(1−Ni) , (5.26b)

NR = Nl +Ni(1−No) . (5.26c)

To summarize, the LSH basis characterizes local states by counting units of loop flux

passing through a site, and keeping track of quark species present. A lone “out quark”

(no = 1) or a lone “in quark” (ni = 1) is shorthand for indicating the type of string present,

while completely full orbitals just signify a gauge-invariant hadron. The LSH quantum

numbers {Nl,Ni,No} are equivalent to allowed combinations of the {NR,NL,No} quantum

numbers, but have the benefit of being unconstrained over their ranges (5.22).

Global Hilbert space construction in one dimension

While the loop-string-hadron formulation largely focuses on characterizing site-local exci-

tations, the dynamics ultimately couples sites and is expressed using states of the lattice

as a whole. The global Hilbert space consists of the excitations coming from all sites: one

bosonic loop mode and two fermionic quark modes each. However, the global space can

only be viewed as a tensor product space of all the local modes to the extent that fermionic

statistics are accounted for. One can account for fermionic statistics with binary occupation

numbers if the associated basis states have a prescription for how the fermionic operators
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are ordered. The ordered product of operators can then be applied to some fixed reference

state that satisfies the Abelian Gauss law and any other desired symmetries.

In the loop-string-hadron framework, the lattice “vacant” state |0〉 (not to be confused

with a qubit computational basis state) is characterized as a state devoid of any excitations,

Ni(x) |0〉 = No(x) |0〉 = Nl(x) |0〉 = 0 for all x . (5.27)

It is annihilated by any L±±, S±±, or H±± carrying at least one minus sign:

L+−(x) |0〉 = L−+(x) |0〉 = L−−(x) |0〉 = 0 ,

S+−
in (x) |0〉 = S−+

in (x) |0〉 = S−−in (x) |0〉 = 0 ,

S+−
out (x) |0〉 = S−+

out (x) |0〉 = S−−out (x) |0〉 = 0 ,

H−−(x) |0〉 = 0 .

One can construct the entire Hilbert space by using |0〉 as a reference state.

Another reference state would be the staggered strong-coupling vacuum |v〉, which is the

true vacuum at g,m→∞. The staggered strong-coupling vacuum is characterized by having

vanishing electric fields and full fermion orbitals on odd sites; |v〉 can be related to |0〉 by

applying to it H++ from every even site.

For all the other lattice basis states, it is necessary to fix a convention for fermion ordering.

A site-local ordering was already chosen earlier, so all that is necessary is to order sites. The

convention we choose is that sites receive excitations from greatest x down to least; the

associated expressions would then have S++
in/out’s written with x increasing from left to right.

On a lattice with an even number of sites Lx, these states are denoted by

|nl(0), ni(0), no(0);nl(1), ni(1), no(1); · · · ;nl(Lx − 1), ni(Lx − 1), no(Lx − 1)〉 .

For example, the (normalized) staggered strong-coupling vacuum of a four site lattice is given
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by

|v〉 = | 0, 0, 0; 0, 1, 1; 0, 0, 0; 0, 1, 1〉

=
[

1
2
L−−(1)S++

in (1)S++
out (1)

] [
1
2
L−−(3)S++

in (3)S++
out (3)

]
|0〉

= H++(1)H++(3) |0〉 . (5.28)

Of course, the ordering is especially important for states that actually have on-site net

fermionic excitations. An an example of this would be a basis state describing a meson

string between sites x = 0 and x = 1, which is given by

|meson〉 = |0, 0, 1; 0, 1, 0; 0, 0, 0; 0, 1, 1〉

=
1

2
S++

out (0)S++
in (1)H++(3) |0〉 ,

as opposed to 1
2
S++

in (1)S++
in (0)H++(3) |0〉 with the opposite ordering. This state appears

after one application of ĤI to the staggered strong-coupling vacuum |v〉.

We can summarize the characterization of basis states with the following rule: Local

quarks are created going from greatest x down to least, and with S++
out (x) always acting

before S++
in (x).

Working with the full lattice, the Abelian Gauss law is imposed for physical states. In

the |nl, ni, no〉 basis, this translates to

[nl + no(1− ni)]x = [nl + ni(1− no)]x+1 . (5.29)

Operator factorization

It was remarked at the beginning of this section that LSH operators in the Hamiltonian

change quantum numbers as well as state normalization. The on-site operators can now be

factored in order to isolate the two behaviors, at which point matrix elements with respect

to the LSH basis can be read off trivially.

Pertaining to the loop quantum number nl, we introduce normalized ladder operators,
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Λ+ and Λ−:

Λ± ≡ L±± 1√
(Nl + 1

2
± 1

2
)(Nl + 3

2
± 1

2
+ (Ni ⊕No))

(5.30)

Here a “normalized operator” refers to any operator O such that nonvanishing eigenvalues

of O†O are unity. The significance of Λ± is that their nonvanishing matrix elements in the

LSH basis are all unity:

〈n′l, n′i, n′o|Λ± |nl, ni, no〉 = δn′l,nl±1δn′i,niδn′o,no . (5.31)

Hence, they move states up and down the ladder of nl without changing normalization, except

for the possibility of annihilation at the bottom. The ladder operators were constructed in

(5.30) to make factoring L++ and L−− trivial.

As for the quark quantum numbers, these are affected by the string operators (and the

mixed-type loop operators L±,∓). The string operators were found to obey fermionlike anti-

commutation relations, but they are not canonically normalized. This motivates introducing

SU(2)-invariant fermionic modes χi, χo to describe them, with

{χq′ , χq} = {χ†q′ , χ
†
q} = 0 , (q = i, o) (5.32)

{χq′ , χ†q} = δq′q . (q = i, o) (5.33)

These also qualify as normalized ladder operators. Because string operators can affect loop

numbers, it will prove helpful to also introduce the following shorthand conditional ladder

operators :

(Λ±)Nq ≡ (1−Nq) + Λ±Nq , (q = i, o) (5.34a)

(Λ±)1−Nq ≡ Λ±(1−Nq) +Nq . (q = i, o) (5.34b)

Each term in these operator exponentials projects on to one or the other eigenspace of Nq
and is followed by a corresponding loop ladder action or lack thereof.

The SU(2)-invariant quark modes χi and χo are also helpful for characterizing global

basis states. One can express any of the LSH basis states by simply acting all the χ†i/o’s on
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|0〉 with the same rule for ordering as before—there is no need for string and L−− operators

or factors of 1/2 like those in (5.28).

Equipped with the normalized ladder operators, all loop and string operators can be fac-

torized as shown in Table 5.4. It is straightforward to show that these operator factorizations

completely reproduce the LSH algebra. The factorizations are all given in a canonical form,

with diagonal scaling operators sitting on the right and normalized ladder operators follow-

ing them. Acting an LSH operator on a ket |nl, ni, no〉, the numerical value of its matrix

element can just be read off, and the resultant quantum numbers are easily deduced from

the ladder operator content.

Wigner-Jordan transform for one dimension

Using fermionic operators can be convenient analytically, but computation models usually

assume native operations that commute for different sites. In classical lattice QCD, Grass-

man variables are avoided because the quark fields can be integrated out of the functional

integral analytically. Quantum simulation, however, frequently involves choosing a fermionic

mapping onto commuting computational degrees of freedom.

Qubits are two-state systems with a “computational basis” often denoted with states

|0〉 and |1〉, but most computation models do not regard these as having a fermionic char-

acter. For example, the “raising” operators |1〉 〈0| for distinct qubits commute with each

other. The bottom line is that for applications the Hamiltonian will need to be converted to

spin operators at some point. For one-dimensional systems with localized interactions, the

Wigner-Jordan transformation maps fermionic modes into spin operators rather cleanly.

The fermionic modes χi(x), χo(x) for x = 0, . . . , Lx−1 express physical (SU(2)-invariant)

quark degrees of freedom that dynamically couple to each other through the hopping terms.

However, it turns out that the χi’s and χo’s, in fact, decouple from each other. The operator-

factorized Hamiltonian will be discussed below, but to see this decoupling one only needs

the string operators from the hopping terms in (5.20). With the factorizations in (5.35), the
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Loop-string-hadron operator factorizations

L++ = Λ+
√

(Nl + 1)(Nl + 2 + (Ni ⊕No)) (5.35a)

L−− = Λ−
√
Nl(Nl + 1 + (Ni ⊕No)) (5.35b)

L+− = −χ†i χo (5.35c)

L−+ = χi χ
†
o (5.35d)

S++
in = χ†i (Λ+)No

√
Nl + 2−No (5.35e)

S−−in = χi (Λ−)No
√
Nl + 2(1−No) (5.35f)

S++
out = χ†o (Λ+)Ni

√
Nl + 2−Ni (5.35g)

S−−out = χo (Λ−)Ni
√
Nl + 2(1−Ni) (5.35h)

S−+
in = χ†o (Λ−)1−Ni

√
Nl + 2Ni (5.35i)

S+−
in = χo (Λ+)1−Ni

√
Nl + 1 +Ni (5.35j)

S+−
out = χ†i (Λ−)1−No

√
Nl + 2No (5.35k)

S−+
out = χi (Λ+)1−No

√
Nl + 1 +No (5.35l)

H++ = χ†iχ
†
o (5.35m)

H−− = −χiχo (5.35n)

Table 5.4: Factorization of all SU(2) invariant operators into canonically normalized

fermionic modes times a loop ladder operator times a function of number operators. The

operator exponentials are conditional ladder operators defined in (5.34).
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fermionic content of S+σ
out(x)Sσ−in (x+ 1) terms takes the form

S++
out (x)S+−

in (x+ 1) ∼ χ†o(x)χo(x+ 1) · · · ,

S+−
out (x)S−−in (x+ 1) ∼ χ†i (x)χi(x+ 1) · · · .

The decoupling is now manifest.

Knowing this, we relabel the fermionic modes using Ψk for k = 0, . . . , 2Lx − 1, with the

map

Ψk =

χi(k), 0 ≤ k ≤ Lx − 1

χo(k − Lx), Lx ≤ k ≤ 2Lx − 1

.

The Wigner-Jordan transformation converts the Ψk into spin operators via

Ψk ≡ σ+
k

k−1∏
k′=0

Zk′ . (5.36)

Assuming open boundary conditions, all fermionic couplings are then nearest-neighbor in

the x coordinate as well as the k label, and as a result the Wigner-Jordan transformation

has no leftover Pauli-Z strings. The couplings in the hopping terms will all take the form

σ±k σ
∓
k+1:

χ†i (x)χi(x+ 1)→ σ−x σ
+
x+1 , (5.37)

χ†o(x)χo(x+ 1)→ σ−Lx+xσ
+
Lx+x+1 . (5.38)

Hence, on the 1D open lattice only, it is possible to essentially replace anticommuting χ’s

and χ†’s with commuting σ−’s and σ+’s in the operator factorizations.

5.1.4 Dynamics of loop-string-hadron states

The terms of the Hamiltonian presented in Sec. 5.1.2 were expressed in terms of site-local

loop-string-hadron operators. The Hamiltonian will now be reexpressed once more using the

operator factorizations from above, with the final result expediting the process of calculating

matrix elements in the LSH basis. Subsequently, a graphical method is given for determining

how states are mixed by terms in the Hamiltonian.
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Starting with the electric Hamiltonian, the Casimirs continue to be diagonal as they

always were. Using the conversion (5.26) from prepotential to LSH number operators, we

have

ĤE =
g2

4

∑
x

{[
1
2

(Nl +No(1−Ni))
]
x

[
1
2

(Nl +No(1−Ni)) + 1
]
x

+
[

1
2

(Nl +Ni(1−No))
]
x

[
1
2

(Nl +Ni(1−No)) + 1
]
x

}
. (5.39)

The mass Hamiltonian is also diagonal and given simply by

ĤM = m0

∑
x

(−)x(Ni(x) +No(x)) . (5.40)

And lastly, the interaction ĤI in terms of SU(2) invariants was originally given as (5.20),

with the off-diagonal part of a hopping term being
∑

σ=± σS
+,σ
out (x)Sσ,−in (x + 1). Using the

operator factorizations (5.35), these hopping terms are given by

S++
out (x)S+−

in (x+ 1) =
[
χ†o
]
x

[χo]x+1

[
(1−Ni) + Λ+Ni

]
x

[
Ni + Λ+(1−Ni)

]
x+1
×[√

Nl −Ni + 2
]
x

[√
Nl − (1−Ni) + 2

]
x+1

, (5.41a)

S−−out (x)S−+
in (x+ 1) = [χo]x

[
χ†o
]
x+1

[
(1−Ni) + Λ−Ni

]
x

[
Ni + Λ−(1−Ni)

]
x+1
×[√

Nl + 2(1−Ni)
]
x

[√
Nl + 2Ni

]
x+1

, (5.41b)

S+−
out (x)S−−in (x+ 1) =

[
χ†i

]
x

[χi]x+1

[
No + Λ−(1−No)

]
x

[
(1−No) + Λ−No

]
x+1
×[√

Nl + 2No
]
x

[√
Nl + 2(1−No)

]
x+1

, (5.41c)

S−+
out (x)S++

in (x+ 1) = [χi]x

[
χ†i

]
x+1

[
No + Λ+(1−No)

]
x

[
(1−No) + Λ+No

]
x+1
×[√

Nl +No + 1
]
x

[√
Nl + (1−No) + 1

]
x+1

. (5.41d)

To complete ĤI , one also needs the diagonal “outer” factors that sandwich these. By (5.26),

1√
NL/R + 1

=
1√

Nl +No/i
(
1−Ni/o

)
+ 1

. (5.42)

The above expressions in terms of diagonalized scaling operators and normalized ladder

operators are everything one needs to immediately express the action of the Hamiltonian in

the LSH basis.
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The actions of the loop-string-hadron operators are easier to intuit given the fact they

are 1-sparse in the LSH basis, i.e., any of the L, S, or H operators acting on a basis state

either turns it into another basis state or annihilates it. They do not expand into linear

combinations like link operators do in irrep bases [cf. Eq. (5.4)]. To express all possible

actions of the LSH operators in terms of quantum numbers, we introduce a pictorial mapping

shown in Fig. 5.4 that associates pictures with changes in quantum numbers of the basis

states.

A summary of these pictorial actions on quantum numbers is as follows:

• Solid (dashed) line: Increment (decrement) nl by one unit.

• Solid (dashed) in-quark: Increment (decrement) ni by one unit.

• Solid (dashed) out-quark: Increment (decrement) no by one unit.

• Solid (dashed) hadron: Increment (decrement) both ni and no by one unit.

If the resulting quantum numbers are forbidden, this corresponds to annihilation of the basis

state. Note also that these graphical rules use symbols that are related to, but distinct from,

the basis-independent operator pictures introduced in Sec. 5.1.1.

As a simple example of their usage, the fact that L++ |nl, ni, no〉 ∝ |nl + 1, ni, no〉 means

the action of L++ is represented by a single solid line:

L++ |nl, ni, no〉 ∝ |nl + 1, ni, no〉

⇒ L++ = ̂ ∼

In general, however, the operators may have composite actions, so the instructions are

composed vertically along with an ordering to them. This is summarized as follows:

• Effect the changes indicated by each instruction, going from top to bottom.
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Graphical quantum number instructions

≡ nl → nl + 1

≡ nl → nl − 1

(a)

≡ ni → ni + 1

≡ ni → ni − 1

≡ no → no + 1

≡ no → no − 1

(b)

≡

 ni

no

→
 ni + 1

no + 1


≡

 ni

no

→
 ni − 1

no − 1



(b′)

Figure 5.4: Pictorial representation of changes in quantum numbers between initial and final

states, which represent (a) flux creation and annihilation, (b) quark creation and annihilation,

and (b′) hadron creation and annihilation (a composite action).
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• The state is annihilated if at any step the quantum numbers are forbidden.

Consider S++
in for example. Using the factorization (5.35e) and conditional ladder operators

(5.34), one can write S++
in ∼ χ†i (1−No) + χ†iΛ

+No. Acting on a basis state, at most one of

these terms can be nonzero. Each term tries to raise ni, while only one can raise nl. These

behaviors are diagrammatically summarized by

S++
in = ̂ ∼ + ,

where the first term creates an in-string on a quark-less site, while the second connects an

in-string to an already-existing out-string to form a baryon and gauge flux line. We similarly

represent and describe the actions of all loop-string-hadron operators pictorially in Table

5.5.

5.1.5 Summary of matter sites

To conclude this section, we summarize the results and what their significance is in 1 and

higher dimensions.

Prepotentials were used to construct a closed algebra of manifestly SU(2)-invariant LSH

operators, and it was shown how to translate the Hamiltonian into them. These operators

were then used to construct a LSH basis in which every possible combination of quantum

numbers (consistent with the Abelian Gauss law) describes a unique set of on-site excitations.

For future applications, all LSH operators were then factored for convenience on that basis

and the Hamiltonian was again reexpressed in a more explicit form.

For d = 1 and with open boundary conditions, one can essentially just forget about Fermi

statistics and replace singlet-quark operators with spin operators. In higher dimensions this

will no longer be the case. However, the local bases and operator factorizations will carry

over to “matter sites” in d > 1, so the main feature that gets lost is really just simplicity of

the Wigner-Jordan transformation.
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LSH operator Physical description; Graphical action on state |nl, ni, no〉x
L++(x) ≡ x̂ Create unit of gauge flux.

L−−(x) ≡ x̂ Destroy unit of gauge flux.

L+−(x) ≡ x̂ Change matter-sourced flux direction. (d > 1)

L−+(x) ≡ x̂ Change matter-sourced flux direction. (d > 1)

S++
in (x) ≡

x̂
Create string to left.

+
Join strings, detaching quark pair.

S−−in (x) ≡
x̂

Destroy string to left.

+
Extract left string from loop flux + hadron.

S+−
in (x) ≡

x̂ Replace one quark from
a pair with incoming flux.

+

Replace a meson-string end with gauge flux.

S−+
in (x) ≡

x̂
Cut a flux tube from left.

+
Neutralize incoming flux by completing a pair.

S++
out (x) ≡

x̂
Create string to right.

+
Join strings, detaching quark pair.

S−−out (x) ≡
x̂

Destroy string to right.

+
Extract right string from loop flux + hadron.

S+−
out (x) ≡

x̂
Cut a flux tube from right.

+
Neutralize outgoing flux by completing a pair.

S−+
out (x) ≡

x̂ Replace one quark from
a pair with outgoing flux.

+

Replace a meson-string end with gauge flux.

H++(x) ≡
x̂

Create a hadron.

H−−(x) ≡
x̂

Destroy a hadron.

Table 5.5: Graphical representation of the (1D) LSH operators. Left column: Pictorial

representations of the operators. Right column: The operators’ actions on local LSH states

|nl, ni, no〉x, in terms of the graphical rules in Sec. 5.1.3.
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5.2 Loop-string-hadron formulation: Multiple dimensions

The prepotential formulation of pure SU(2) gauge theory on Cartesian lattices was studied in

great detail in Refs. [51, 55, 57–59]. While it yields a local loop basis, on a Cartesian lattice

that basis is overcomplete and consequently associated with a local form of Mandelstam

constraints. Solving these constraints is involved and becomes increasingly difficult in higher

dimensions.

More recently, a virtual “point splitting” of lattice sites on square lattices [88, 182] was

found to be quite fruitful because it bypasses the Mandelstam constraints and casts all

constraints of the theory into the Abelian form of (1.133). Below, the point splitting method

is reviewed and how this development generalizes to higher dimensions is explained. We

additionally describe how to couple to matter in higher dimensions, giving a complete suite

for describing SU(2) lattice gauge theory coupled to one flavor of staggered quarks.

5.2.1 Virtual point splitting: Two dimensions

Virtual splitting of a site from a square lattice involves formally dividing each four-point

vertex into a pair of three-point vertices with one shared virtual leg, as depicted in Fig. 5.5.

It is notationally convenient to split the site by pairing the +ej (−ej) directions together, to

label the attached link ends 1 and 2 (1̄ and 2̄), and to label their common vertex x′ (x̄′). As

for the internal link, it is further broken into two links with an intermediate vertex that will

accommodate matter. This extra division is not needed for pure gauge theory. Point splitting

the two-dimensional (2D) square lattice results topologically in a hexagonal lattice. One can

now formulate prepotentials on this virtual hexagonal lattice as in (1.131) and (1.135).

The virtual links can carry gauge flux, but the flux through them is not actually counted

toward ĤE. The utility of the links really lies in the fact that a three point-vertex has

no ambiguities in how nonintersecting SU(2) flux lines are routed through it. Four-point

vertices do suffer from such an ambiguity, and this is responsible for redundant states on the

square lattice that normally have to be removed via Mandelstam constraints. The formal
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1̄ 1

2̄

2

ψ
x

⇒
1̄

2̄

1
2

x̄′
3̄

x′
3

ψo

i

x

Figure 5.5: Virtual point splitting of a 2D lattice site x into gluonic sites x′, x̄′, with matter

living on the central quark site x.

hexagonal lattice still harbors redundancy, but dealing with it is significantly easier: the

relevant constraint is just another Abelian Gauss law for virtual links.

As for plaquettes, the elementary loops are indeed hexagonal plaquettes corresponding

to six link operators in pure gauge theory.

For more discussion on the original pure gauge version, see Ref. [88].

The matter field living at site x is now situated between two virtual links as shown in

Fig. 5.5. The virtual matter vertex is locally identical to a 1D lattice site (cf. Fig. 5.2),

so the on-site SU(2)-invariant operators and local Hilbert space for x are handled as in one

dimension. Because hosting matter divides each virtual link into two, the plaquette operators

end up involving eight sites.

The other trivalent virtual sites x′ and x̄′ are gluonic vertices on the same footing as in

pure gauge theory [88], which we now review.
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5.2.2 SU(2) invariants: Loop operators at gluonic vertices

At any gluonic site xg (x′ and x̄′ vertices for the hexagonal lattice), links emerge in three

directions and can be labeled with integers p, q, r such that p < q < r:

p

ψ

r

xg

For the 2D lattice we only ever need (p, q, r) = (1, 2, 3) ((p, q, r) = (1̄, 2̄, 3̄)) at the x′ (x̄′)

sites like in Fig. 5.5, but more (p, q, r) combinations will be used in three dimensions.

The attached link ends are associated with Schwinger bosons âa(xg, i) for i = p, q, r.

From these doublets, one can form the complete set of SU(2) invariants at xg as given in

(5.43)–(5.44).

• Pure gauge loop operators:.—Lσ,σ
′

ij :

L++
ij ≡ â†a(i)ˆ̃a†a(j) (5.43a)

L+−
ij ≡ â†a(i)âa(j) (5.43b)

L−+
ij ≡ âa(i)â†a(j) = (L+−

ij )† (5.43c)

L−−ij ≡ âa(i)ˆ̃aa(j) = (L++
ij )† (5.43d)

• Gauge flux number operators.—Nj:

Nj = â†a(j)âa(j) . (5.44)

Above, i and j are distinct direction indices from the set {p, q, r}. It is easily seen from

(5.43) that the Lσ,σ
′

ij are redundant in their link labels. For example, L++
12 = −L++

21 . More

generally, this interdependence is summarized by

Lσ,σ
′

ij = −σσ′Lσ
′,σ
ji (5.45)
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To avoid this redundancy, we will usually deal only with the “cyclic” pairs ij = (pq, qr, rs).

As with matter sites, the loop operators associated with gluonic vertices form a closed

commutator algebra, displayed in Table 5.3.

5.2.3 Vertex factors and contractions

Completely migrating from the E, U , and ψ variables to LSH variables is greatly aided

by furnishing a dictionary to translate spatially extended, composite operators. Since the

LSH formalism isolates on-site degrees of freedom, such operators are formed by multiplying

together LSH operators from the traversed vertices.

For example, when tracing out a plaquette operator (d ≥ 2) or any other spatial Wil-

son line or loop, one would ordinarily encounter vertex contractions in four possible forms:

UabVbγ, U
†
abV

†
bγ, UabV

†
bγ, or U †abVbγ (with U and V being link operators attached to a given

vertex). In the LSH framework, the four types of vertex contractions are naturally identified

with vertex factor matrices. The four possible vertex contractions are expressed in (5.46)-

(5.49), which show the appropriate factor to assign to a vertex depending on how the links

are oriented relative to the “path” being traced by the Wilson line:

• RL-type traversal:

a =
(
a1
a2

)
ÛR(a)

b =
(
b1
b2

)
ÛL(b)

→ path of Wilson line →

ÛR(a)ÛL(b) =
1√
Nb + 1

 L++
ab L+−

ab

−L−+
ab L−−ab

 1√
Na + 1

(5.46)
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• LR-type traversal:

→ path of Wilson line →

Û †L(a) Û †R(b)

Û †L(a)Û †R(b) =
1√
Nb + 1

−L−−ab −L−+
ab

L+−
ab −L++

ab

 1√
Na + 1

(5.47)

• RR-type traversal:

ÛR(a) Û †R(b)

→ path of Wilson line →

ÛR(a)Û †R(b) =
1√
Nb + 1

L+−
ab −L++

ab

L−−ab L−+
ab

 1√
Na + 1

(5.48)

• LL-type traversal:

Û †L(a) ÛL(b)

→ path of Wilson line →

Û †L(a)ÛL(b) =
1√
Nb + 1

L−+
ab −L−−ab
L++
ab L+−

ab

 1√
Na + 1

(5.49)

In the graphics, the symbols a and b are used to refer to the harmonic oscillator doublets

encountered when “flowing in” to and “flowing out” of a vertex, respectively. Therefore,

they make use of the following singlets:

L++
ab = a† · ε · b† L−−ab = a · ε · b

L+−
ab = a† · b L−+

ab = a · b†

Na = a† · a Nb = b† · b .
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The vertex factor matrices can be transformed into each other by using the ε matrix; schemat-

ically,

(LR) = (−ε)(RL)(−ε) ,

(RR) = (RL)(−ε) ,

(LL) = (−ε)(RL) ,

allowing all four types to be expressed in terms of one matrix and suitable contractions with

ε.

To get a feel for how the vertex factors are used, consider an elementary plaquette in 2D

pure gauge theory that follows the path x → x + e2 → x + e1 + e2 → x + e1 → x. [This

corresponds to U
(21)
� (x) from (5.3).] By multiplying all vertex factors together going around

the path and tracing over the leftover gauge indices, the associated loop takes the schematic

form

tr
(
[V12]x [V2̄3̄V31]x+e2

[V1̄2̄]x+e1+e2
[V23V3̄1̄]x+e1

)
,

for appropriately chosen vertex factor matrices V . Plaquette and Wilson loop operators will

be constructed explicitly in Sec. 5.2.4 below.

To form hopping terms and general meson strings in the LSH framework, one additionally

needs vertex factors at matter sites to form the string ends:

ψ̂†(x)ÛL(x) =
1√

NL(x) + 1

(
S++

out (x), S+−
out (x)

)
(5.50)

ψ̂†(x)Û †R(x) =
1√

NR(x) + 1

(
S−+

in (x), S++
in (x)

)
(5.51)

ÛR(x)ψ̂(x) =

S+−
in (x)

S−−in (x)

 1√
NR(x) + 1

(5.52)

Û †L(x)ψ̂(x) =

S−−out (x)

S−+
out (x)

 1√
NL(x) + 1

(5.53)

The full meson string operator is then a path-ordered product of pure-glue vertex factors,

sandwiched between two appropriate string ends. Elementary matrix multiplication of all
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such factors leaves no uncontracted group indices.

5.2.4 The 2D Hamiltonian

The Hamiltonian for two dimensions will now be translated into loop-string-hadron operators.

The essential difference from d = 1 will be the presence of magnetic energy ĤB.

The electric energy ĤE is the same as a square lattice, in the sense that contributions

from all the 1- and 2-direction links constitute ĤE. That is,

ĤE =
g2

4

∑
x

2∑
j=1

[
1
2
Nj(x′)

(
1
2
Nj(x′) + 1

)
+ 1

2
Nj̄(x̄′)

(
1
2
Nj̄(x̄′) + 1

)]
. (5.54)

Note that this d > 1 expression for ĤE only involves number operators from gluonic sites.

For one dimension, ĤM was translated in (5.40). The translation of ĤM carries over

identically to d > 1:

ĤM = m
∑
x

(−)x(Ni(x) +No(x)) . (5.55)

The hopping terms in ĤI were factored for one dimension in (5.41) and (5.42). The

hopping terms for two dimensions are translated as follows: The links are naturally oriented

such that a typical hopping term takes the schematic form ψ†U †UU †ψ, where the middle U

comes from the original square lattice; these orientations can be seen from the cutout of a

point-split plaquette shown in Fig. 5.6. In a 2D Schwinger boson framework, the hopping

term in the j direction would be expanded as

ψ†(x)U(x, x+ ej)ψ(x+ ej)→ ψ†(x)UR†
3 (x)UL†

3 (x′)UL
j (x′)×

× UR
j (x+ ej

′
)UR†

3 (x+ ej
′
)UL†

3 (x+ ej)ψ(x+ ej) .

This same object is realized in the LSH framework by stringing together the vertex factors
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Figure 5.6: Connectivity of a point-split plaquette in two dimensions. Arrows indicated flow

from the “left” end of a link to its “right” end.

from Sec. 5.2.3. The translation of the right-hand side into LSH operators is

[
1√
NR + 1

(
S−+

in S++
in

)]
x

 1√
Nj + 1

L−+
3j −L−−3j

L++
3j L+−

3j

 1√
N3 + 1


x′

×

×

 1√
N3̄ + 1

L+−
j̄3̄
−L++

j̄3̄

L−−
j̄3̄

L−+
j̄3̄

 1√
Nj̄ + 1


x+ej

′

S−−out

S−+
out

 1√
NL + 1


x+ej

.

To express the result of matrix multiplication, it is helpful to introduce a sign function η
(2D)
h

to carry overall signs:

η
(2D)
h (~σ) ≡ η

(2D)
h (σ1, σ2, σ3) = (−1)δ(σ1,σ2),(−,−)(−1)δ(σ2,σ3),(+,+) . (5.56)
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Therefore, the translation into loop-string-hadron operators is

ψ†(x)U(x, x+ ej)ψ(x+ ej)→
∑

σ1,σ2,σ3

η
(2D)
h (~σ)

[
1√
NR + 1

1√
Nj + 1

]
x

[
1√
N3̄ + 1

]
x+ej

×

×
[
Sσ1,+in Lσ1,σ23j

]
x

[
Lσ2,σ3
j̄3̄
S−,σ3out

]
x+ej
×

×
[

1√
N3 + 1

]
x

[
1√
Nj̄ + 1

1√
NL + 1

]
x+ej

. (5.57)

The final piece of the Hamiltonian is ĤB. The plaquette operators can be translated by

following the gluonic-site vertex contractions around a plaquette as described in Sec. 5.2.3.

A generic plaquette is depicted in Fig. 5.6. Similar to hopping terms, the result is given in

terms of plaquette signs η
(2D)
p stemming from the vertex contractions:

η(2D)
p (~σ) ≡ η(2D)

p (σ1, σ2, · · · , σ8)

= (−1)δ(σ1,σ2),(+,−)(−1)δ(σ2,σ3),(−,−)(−1)δ(σ3,σ4),(+,+)(−1)δ(σ4,σ5),(−,−)×

× (−1)δ(σ5,σ6),(−,+)(−1)δ(σ6,σ7),(+,+)(−1)δ(σ7,σ8),(−,−)(−1)δ(σ8,σ1),(+,+) (5.58)

− tr (U�(x))→∑
σ1,··· ,σ8

η(2D)
p (~σ)

[
1√
N2 + 1

Lσ7σ812

1√
N1 + 1

]
x

×

×
[

1√
N3̄ + 1

1√
Ni + 1

1√
N1 + 1

Lσ8σ1
2̄3̄
Lσ1σ2oi L

σ2σ3
31

1√
N2̄ + 1

1√
No + 1

1√
N3 + 1

]
x+e2

×

×
[

1√
N2̄ + 1

Lσ3σ4
1̄2̄

1√
N1̄ + 1

]
x+e1+e2

×

×
[

1√
N3 + 1

1√
No + 1

1√
N1̄ + 1

Lσ4σ523 Lσ5σ6io L
σ6σ7
3̄1̄

1√
N2 + 1

1√
Ni + 1

1√
N3̄ + 1

]
x+e1

(5.59)

5.2.5 2D dynamics on an orthonormal basis

Following the development for one dimension, we have identified all SU(2)-invariant operators

and used them to express the loop-string-hadron Hamiltonian. Now, we introduce a basis
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`rp

`pq

`qr

∼ |`pq, `qr, `rp〉

Figure 5.7: Depiction of SU(2)-invariant configurations at a gluonic site. The on-site state

is characterized by three loop quantum numbers `pq, `qr, and `rp, with `ij counting the flux

lines flowing into i and out of j.

and factorize all loop-string-hadron operators for convenience in that basis. We then arrive

at the Hamiltonian terms in their factorized form.

On-site gluonic Hilbert space

Here we summarize the local Hilbert space structure that has been studied in Ref. [88].

The local vacant state is again characterized as a normalized state |0〉xg that is annihilated

by any Lσ′σij carrying at least one minus sign. Acting on |0〉xg , only the L++
ij are nonzero and

will build up the local loop Hilbert space. A local loop state basis can be constructed following

steps in analogy to the matter sites in Sec. 5.1.3. This local loop space is characterized by

three independent linking numbers lij denoting the flux flowing along three (ij) directions

[(pq), (qr), and (rp)]. The orthonormal basis, depicted in is given by

|`pq, `qr, `rp〉 ≡
(L++

pq )`pq(L++
qr )`qr(L++

rp )`rp√
`pq!`qr!`rp!(`pq + `qr + `rp + 1)!

|0〉xg (5.60)

The number operators analogous to (5.25) are
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Npq ≡
1

2
(Np +Nq −Nr) , (5.61a)

Nqr ≡
1

2
(Nq +Nr −Np) , (5.61b)

Nrp ≡
1

2
(Nr +Np −Nq) . (5.61c)

It will also be convenient to introduce

NΣ ≡ Npq +Nqr +Nrp + 1 . (5.62)

Operator factorization

Now we will factor operators at gluonic sites in such a way that their actions in the loop

basis are transparent.

We have the following normalized ladder operators:

Λ̂+
ij = L++

ij

1√
(Nij + 1)(NΣ + 1)

(5.63a)

Λ̂−ij =
1√

(Nij + 1)(NΣ + 1)
L−−ij (5.63b)

The operator factorizations for gluonic sites are given in terms of these normalized shift

operators in Table 5.6.

These simple local loop operators, contracted together along the links consistent with the

AGL (1.133), reproduce the nonlocal loops and strings of the original theory. Moreover, these

loop operators now act more like their U(1) counterparts; loop operators in U(1) theories

shift E by unit increments along an infinite tower of states, but in U(1), the normalization

factor is always trivial.
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Loop operator factorizations

L++
ij = Λ̂+

ij

√
(Nij + 1)(NΣ + 1) (5.64a)

L−−ij = Λ̂−ij
√
NijNΣ (5.64b)

L+−
ij = −Λ̂+

kiΛ̂
−
jk

√
(Nki + 1)Njk (5.64c)

L−+
ij = −Λ̂−kiΛ̂

+
jk

√
Nki(Njk + 1) (5.64d)

ijk = pqr, qrp, or rpq

Table 5.6: Factorization of all SU(2) singlet operators at a gluonic site.

Global Hilbert space construction in two dimensions

As in one dimension, the 2D lattice vacant state is characterized as that state on which

Ni(x) |0〉 = No(x) |0〉 = Nl(x) |0〉 = 0 for all x,

N12(xg) |0〉 = N23(xg) |0〉 = N31(xg) |0〉 = 0 for all xg.
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In two dimensions, we call a site x even (odd) if x1 + x2 is even (odd). The strong-coupling

vacuum |v〉 is then defined analogously to one dimension:

Nl(x) |v〉 = 0

(Ni(x) +No(x)) |v〉 = 0 for even x

(Ni(x) +No(x)) |v〉 = 2 |v〉 for odd x

S±,−in (x) |v〉 = S−,±out (x) |v〉 = 0 for even x

S±,+in (x) |v〉 = S+,±
out (x) |v〉 = 0 for odd x

(N12(xg) +N23(xg) +N31(xg)) |v〉 = 0 .

The 2D lattice Hilbert space structure is as follows:

1. The gluonic sites x′, x̄′ have only loop states |l12, l23, l31〉x′/x̄′ , being treated identically

as in pure gauge theory.

2. The matter sites x have loop and quark states |nl, ni, no〉, being structurally identical

to sites with matter in one dimension. Physical quark degrees of freedom still require

an ordering in order to treat lattice basis states as tensor products: We denote the

physical quark modes associated with x by

χ†q(x1, x2) q = 0, 1

0 ∼ in, 1 ∼ out

and order fermions by the map

f(q, x1, x2)→ q + 2(x1 + Lxx2)

Generalizing the 1D convention, basis states are defined to have χ†q(x)’s being applied

on |0〉 from greatest f(q, x1, x2) to least.
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Figure 5.8: Virtual point splitting of a 3D lattice site into gluonic sites x, x′, x̄′, x′′, x̄′′

connected by internal links, with matter again at the central quark site x.

3. The Abelian Gauss laws along the three directions of the hexagonal lattice are

n1(x′) = n1̄(x+ e1
′
) , (5.65a)

n2(x′) = n2̄(x+ e2
′
) , (5.65b)

n3(x′) = nl(x) + ni(x)[1− no(x)] (5.65c)

n3̄(x̄′) = nl(x) + no(x)[1− ni(x)] (5.65d)

2D dynamics of loop-string-hadron states

Matrix elements of the Hamiltonian with respect to the global basis described above are

straightforward to obtain by using the operator factorizations at gluonic sites (5.64) and at

matter sites (5.35) in place of the LSH operators appearing in the various parts of the 2D

Hamiltonian given in (5.54)–(5.59).

5.3 3D lattice with matter

The same scheme of point splitting used in two dimensions can be continued up to arbitrary

spatial dimensionality d. As shown in Fig. 5.8, point splitting in three dimensions results in
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four gluonic three-point vertices, while matter is accommodated by creating a fifth virtual

site along one of the internal lines.

As in two dimensions, the local loop Hilbert space at gluonic vertices remains identical

(three linking numbers) to the pure gauge theory. Matter is incorporated by dividing one

virtual link (the 4 − 4̄ in Fig. 5.8) into two; the Hilbert space at the virtual matter site

has two string numbers and one loop number, again with the same structure used in one

dimension. The modified Abelian Gauss laws on the three-dimensional (3D) lattice are

(Nj(xg)−Nj̄(xg + ej)) |phys〉 = 0 , (j = 1, 2, 3) (5.66a)

(N5(x′)−N5̄(x̄′′)) |phys〉 = 0 , (5.66b)

(N6(x′′)−N6̄(x̄′)) |phys〉 = 0 , (5.66c)

(NL(x)−N4̄(x̄′′)) |phys〉 = 0 , (5.66d)

(NR(x)−N4(x′′)) |phys〉 = 0 . (5.66e)

The Hamiltonian for three dimensions has no conceptually new objects—the terms present

in two dimensions are just more numerous. The explicit decompositions in the LSH frame-

work do, however, have more operator factors and there is less notational symmetry shared

by all three spatial directions. Below, we provide a summary of the operators in the Hamil-

tonian of 3D SU(2) gauge theory with one staggered quark flavor.

For the interaction HI , the hopping terms are given below, using sign factors η
(3D)
h,j anal-
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ogous to two dimensions:

η
(3D)
h,j (~σ) ≡ η

(3D)
h,j (σ1, σ2, · · · , σ5) (j = 1, 2)

= (−1)δ(σ1,σ2),(+,+)(−1)δ(σ2,σ3),(−,−)(−1)δ(σ3,σ4),(+,+)(−1)δ(σ4,σ5),(−,−) (5.67)

η
(3D)
h,3 (~σ) ≡ η

(3D)
h,3 (σ1, σ2, σ3)

= (−1)δ(σ1,σ2),(−,−)(−1)δ(σ2,σ3),(+,+) (5.68)

ψ†(x)U(x, x+ ej)ψ(x+ ej) (j = 1, 2)

→
∑

σ1,··· ,σ5

η
(3D)
h,j (σ1, σ2, σ3, σ4, σ5)×

×

[
1√
NL + 1

1√
N5̄ + 1

1√
Nj + 1

S+,σ1
out Lσ1σ24̄5̄

Lσ2σ35j

1√
N4̄ + 1

1√
N5 + 1

]
x

×

×

[
1√
N6̄ + 1

1√
N4 + 1

Lσ3σ4
j̄6̄
Lσ4σ564 S

σ5,−
in

1√
Nj̄ + 1

1√
N6 + 1

1√
NR + 1

]
x+ej

(5.69)

ψ†(x)U(x, x+ e3)ψ(x+ e3)

→
∑

σ1,σ2,σ3

η
(3D)
h,3 (σ1, σ2, σ3)

[
1√
NR + 1

1√
N3 + 1

Sσ1,+in Lσ1σ243

1√
N4 + 1

]
x

×

×
[

1√
N4 + 1

Lσ4σ5
3̄4
S−,σ5out

1√
N3̄ + 1

1√
NL + 1

]
x+e3

(5.70)

Turning to the magnetic energy ĤB, each plaquette trace is a contraction of LSH opera-

tors, with their three orientations being displayed in Figs. 5.9–5.11. As in two dimensions,

there are sign factors to keep track of from the vertex contractions. All three plaquette

operators can be expressed using a single sign function η
(3D)
p (~σ), as given in (5.71), and the
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formulas for the ĤB contributions are given in (5.72) and (5.73):

η(3D)
p (~σ) ≡ η(3D)

p (σ1, σ2, · · · , σ12) = (−1)δ(σ1,σ2),(−,+)(−1)δ(σ2,σ3),(+,+)

× (−1)δ(σ3,σ4),(−,−)(−1)δ(σ4,σ5),(+,+)

× (−1)δ(σ5,σ6),(−,−)(−1)δ(σ6,σ7),(+,+)

× (−1)δ(σ7,σ8),(+,−)(−1)δ(σ8,σ9),(−,−)

× (−1)δ(σ9,σ10),(+,+)(−1)δ(σ10,σ11),(−,−)

× (−1)δ(σ11,σ12),(+,+)(−1)δ(σ12,σ1),(−,−) (5.71)
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Figure 5.9: Connectivity of a xy-plaquette in three dimensions.
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Figure 5.10: Connectivity of a yz-plaquette in three dimensions.
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−
tr
( U

(1
2
)

�
(x

)) →
∑

σ
1
,··
·,
σ
1
2

η
(3

D
)

p
(~σ

)

[
1

√
N

2
+

1
L
σ
1
0
σ
1
1

1
2

1
√
N

1
+

1

] x

×
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N
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+
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√
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√
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o
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√
N

5̄
+

1

1
√
N

1
+

1
L
σ
1
1
σ
1
2

2̄
6̄
L
σ
1
2
σ
1

6
4
L
σ
1
σ
2

io
L
σ
2
σ
3

4̄
5̄
L
σ
3
σ
4

5
1

1
√
N

2̄
+

1

1
√
N

6
+

1

1
√
N
i
+

1

1
√
N

4̄
+

1

1
√
N

5
+

1

] x
+
e 2

×

×
[

1
√
N

2̄
+

1
L
σ
4
σ
5

1̄
2̄

1
√
N

1̄
+

1

] x
+
e 1

+
e 2

×

×
[

1
√
N

5
+

1

1
√
N

4̄
+

1

1
√
N
i
+

1

1
√
N

6
+

1

1
√
N

1̄
+

1
L
σ
5
σ
6

2
5
L
σ
6
σ
7

5̄
4̄
L
σ
7
σ
8

o
i
L
σ
8
σ
9

4
6
L
σ
9
σ
1
0

6̄
1̄

1
√
N

2
+

1

1
√
N

5̄
+

1

1
√
N
o

+
1

1
√
N

4
+

1

1
√
N

6̄
+

1

] x
+
e 1

(5
.7

2)

−
tr
( U

(j
3
)

�
(x

)) →
∑

σ
1
,··
·,
σ
1
2

η
(3

D
)

p
(~σ

)

[
1

√
N

6̄
+

1

1
√
N

3
+

1
L
σ
4
σ
5

j̄6̄
L
σ
5
σ
6

6
3

1 √ N j̄
+

1

1
√
N

6
+

1

] x
+
e j

×
(j

=
1,

2)

×

[
1

√
N

4̄
+

1

1
√
N
i
+

1

1
√
N

6
+

1

1 √ N j̄
+

1
L
σ
6
σ
7

3̄
4̄
L
σ
7
σ
8

o
i
L
σ
8
σ
9

4
6
L
σ
9
σ
1
0

6̄
j̄

1
√
N

3̄
+

1

1
√
N
o

+
1

1
√
N

4
+

1

1
√
N

6̄
+

1

] x
+
e j

+
e 3×

×

[
1

√
N

5
+

1

1
√
N

3̄
+

1
L
σ
1
0
σ
1
1

j5
L
σ
1
1
σ
1
2

5̄
3̄

1 √ N j
+

1

1
√
N

5̄
+

1

] x
+
e 3

×

×

[
1

√
N

4
+

1

1
√
N
o

+
1

1
√
N

5̄
+

1

1 √ N j
+

1
L
σ
1
2
σ
1

3
4
L
σ
1
σ
2

io
L
σ
2
σ
3

4̄
5̄
L
σ
3
σ
4

5
j

1
√
N

3
+

1

1
√
N
i
+

1

1
√
N

4̄
+

1

1
√
N

5
+

1

] x

(5
.7

3)



116

12

1̄

2̄

6
6̄

4
i

o
4̄

5
5̄

3

3̄

ψ

x+ e3

12

1̄

2̄

6
6̄

4
i

o
4̄

5
5̄

3

3̄

ψ

x+ e3 + e1

12

1̄

2̄

6
6̄

4
i

o
4̄

5
5̄

3

3̄

ψ

x+ e1

12

1̄

2̄

6
6̄

4
i

o
4̄

5
5̄

3

3̄

ψ

x

Figure 5.11: Connectivity of a zx-plaquette in three dimensions.
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5.4 Comparison of loop-string-hadron and Kogut-Susskind

From the perspective of quantum computation and simulation, the LSH framework exhibits

the following benefits:

• Abelian constraints.—The AGLs are the only remnant constraints in the LSH frame-

work. A LSH basis naturally diagonalizes these constraints. Any basis state in the

AGL-satisfying subspace is physically observable.

• Simple quantum numbers.—The LSH Hilbert space is naturally characterized by inte-

gers. Quark quantum numbers are bounded by the Pauli principle, while loop quantum

numbers (nl or `ij) can be any non-negative integer. Additionally, all elementary op-

erators are 1-sparse in the LSH basis.

• No Clebsch-Gordon coefficients.—Like the prepotential formulation, the LSH treatment

avoids the need for Clebsch-Gordon coefficients. What makes the theory describe SU(2)

is the available set of operators and their algebra. Establishing the same for SU(3) is

the subject of ongoing work.

• Gauge redundancy in preliminary simulations.—In d = 1, the LSH formulation gives a

clear advantage over Kogut-Susskind in terms of qubit requirements—simulating the

gauge degrees of freedom takes half the number of qubits. The qubit requirements are

also less for pure gauge theory in d = 2. By bringing down the qubit costs in these

cases, one can learn how to deal with the implementation of LSH structures sooner.

At the same time, there are some caveats:

• Proliferation of Hamiltonian terms.—Introducing virtual links causes the hopping and

plaquette terms to grow in size and number. In d = 3, the number of terms is

formidable. This would pose a problem for quantum simulation methods such as

Trotter-Suzuki decompositions [184,185].
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• Qubit costs without solving the Abelian Gauss law.—During the onset of scientific

quantum computing, each and every qubit is important to count. This framework

would have direct benefit on qubit costs for the 1+1-dimensional theory and the 2+1-

dimensional pure gauge theory, and those are important to study on their own. Be-

yond pure gauge theory in two dimensions, qubit requirements of directly simulating

the multidimensional LSH formulation outpace those of simulating the Kogut-Susskind

formulation. However, it is possible to push the LSH framework further by actually

solving the Abelian Gauss law. If this is done, then simulating the gluons will cost

fewer qubits in any number of dimensions.

These drawbacks are resource oriented, rather than theoretical. Given that the LSH frame-

work is just being introduced, we can hope that novel algorithmic solutions will alleviate the

practical issues.

5.5 Conclusion

In this chapter we have provided a complete Hamiltonian for SU(2) gauge theory coupled to

staggered fermions in 1 + 1, 2 + 1, and 3 + 1 dimensions. Dynamics is described in terms of

physical and local observables: hadrons and segments of flux loops and meson strings. By

using a staggered fermion prescription, the matter field carried only a color (no spinor) index,

allowing the LSH dynamics to be formulated without unnecessary complications. Studying

adaptations of the LSH framework to other fermion discretizations or to more flavors will be

of future interest.

We also point out that, while the focus of this chapter was limited to SU(2) for con-

creteness, the geometric approach makes no explicit use of the SU(2) angular momentum

characterization of states or of SU(2) Clebsch-Gordon coefficients. The prepotential formula-

tion from which this LSH formulation was derived has already been generalized to SU(3) [59]

and even SU(N) [51,180]. Generalization to SU(3) preserves the local loop Hilbert space con-

struction, this time with two Abelian Gauss laws for every link and each of the AGLs of the
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same form as in SU(2). However, finding a suitable point splitting scheme to describe the

dynamics using only physical degrees of freedom is not done yet and is of significant interest

to work out in the future.

We have illustrated in this chapter how the present scheme translates the dynamics of

all possible irreps of the gauge group into the dynamics of many local towers of states

characterized by single integers. This is a major gain of this formalism over the Kogut-

Susskind one. The LSH framework makes non-Abelian gauge theory dynamics more similar

to that of Schwinger model by completely solving the non-Abelian Gauss law constraint.

This particular formalism, which is structurally closer to U(1) gauge theories, stands to

directly benefit from algorithms developed for Abelian theories.

The major price paid is the introduction of more lattice links and a new AGL on each

virtual link. It turns out, however, that half or more of the bosonic degrees of freedom

can be removed by solving the Abelian Gauss law. Solving the Abelian Gauss law would

render the qubit cost of LSH simulation less than that of the Kogut-Susskind formulation in

any dimension and will be the subject of future work. Nonetheless, even before solving the

AGL, the truncated LSH framework costs fewer qubits than the truncated Kogut-Susskind

formulation would for theories that will be important milestones along the way to three-

dimensional simulations.

Combining all the above benefits, the LSH framework may take us one step closer to

quantum-simulating theories that model fundamental interactions of Nature.
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Chapter 6

SOLVING GAUSS’S LAW ON DIGITAL QUANTUM
COMPUTERS

WITH LOOP-STRING-HADRON DIGITIZATION

From the viewpoint of digital quantum simulation, the loop-string-hadron formulation

of lattice gauge theory introduced in chapter 5 offers potential advantages as a digitization

scheme. The Hilbert space is characterized in terms of discrete flux and quark excitations,

which is to say the states are naturally parametrized in terms of binary fermionic occupation

numbers and unbounded bosonic occupation numbers. In addition, the elementary excita-

tions are intrinsically SU(2)-invariant; non-Abelian gauge redundancy is therefore completely

eradicated. The problem of unphysical sectors does still persist in the form of Abelian Gauss

law constraints requiring flux conservation along links, but the LSH constraints are all si-

multaneously diagonalized, so basis states are each definitely allowed or definitely unallowed.

The Hamiltonian then mixes states among each other via raising and lowering operations on

all the occupation numbers.

In this chapter,1 we first apply the loop-string-hadron formulation to digital quantum

simulations of non-Abelian gauge theories. In section 6.1 we review the elements of the LSH

framework for SU(2) gauge fields coupled to one staggered fermion flavor in d = (1, 2, 3)

spatial dimensions and give a digitization scheme for this basis. In section 6.1, we give a

digitization scheme for the LSH framework of SU(2) gauge fields coupled to one staggered

fermion flavor in d = (1, 2, 3) spatial dimensions. Then, in section 6.2, we take advantage

of the digitized LSH basis to present the first decompositions of SU(2) physicality oracles,

i.e., quantum algorithms that probe charge conservation of an SU(2) lattice gauge theory

1This chapter is drawn from Physical Review Research 2, 033039 (2020), done in collaboration with
I. Raychowdhury.

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033039
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wave function. Finally, in section 6.3 we discuss the resources involved with implementa-

tion on digital hardware and the known advantages and disadvantages compared to group

representation bases.

6.1 LSH digitization

For the purposes of this chapter, we are primarily interested in the LSH Hilbert space struc-

ture derived from one quark flavor interacting with SU(2) gauge bosons. The full suite of

LSH operators available depends on the topology of the lattice. As in chapter 5, we consider

Cartesian lattices in d spatial dimensions, equipped with the appropriate scheme of point

splitting.

Regardless of the spational dimensionality, the virtual topology is such that there are

only two possible elementary structures—the quark sites and gluonic sites introduced in

chapter 5. The two types of site are associated with their own local Hilbert space structures

(cf. section 5.1 and section 5.2).

The ingredient of the Hilbert space most important to this chapter is the Abelian Gauss

law constraints. The Abelian Gauss law is the same physical requirement across all links of

the lattice, in any dimension: the total flux magnitudes at each end of a link must be equal.

A given link end within the point-split lattice attaches to either a quark site or a gluonic

site. If that link end attaches to a quark site, the relevant flux number operator is denoted

by NL (NR) if the link end is “outgoing” (“incoming”) relative to the site. In particular,

NL |nl, ni, no〉 = [nl + no(1− ni)] |nl, ni, no〉 , (6.1a)

NR |nl, ni, no〉 = [nl + ni(1− no)] |nl, ni, no〉 . (6.1b)

If instead the link end attaches to a gluonic site, say, along direction i(= p, q, r) relative to
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the site, the relevant flux number operator is denoted by Ni. In this case,

Np |`pq, `qr, `rp〉 = (`rp + `pq) |`pq, `qr, `rp〉 , (6.2a)

Nq |`pq, `qr, `rp〉 = (`pq + `qr) |`pq, `qr, `rp〉 , (6.2b)

Nr |`pq, `qr, `rp〉 = (`qr + `rp) |`pq, `qr, `rp〉 . (6.2c)

Using these, the Abelian Gauss law is the requirement that, for any link of the lattice, the

number operators at each end agree. For brevity, we refer to links joining two gluonic sites

as ‘gg’ links, a quark site and a gluon site as ‘qg’ links, and two quark sites (for d = 1) as

‘qq’ links.

In one spatial dimension every link joins two quark sites, and the Abelian Gauss laws

read

[NL(x)−NR(x+ 1)] |phys〉 = 0 , (6.3)

for every site x. Meanwhile, the 2D Abelian Gauss laws along the three directions of the

hexagonal lattice are

[Nj(x′)−Nj̄(x+ ej
′
)] |phys〉 = 0 (j = 1, 2) , (6.4a)

[N3(x′)−NR(x)] |phys〉 = 0 , (6.4b)

[N3̄(x̄′)−NL(x)] |phys〉 = 0 . (6.4c)

And in 3D space, using the labeling from Figure 5.8, the Abelian Gauss laws read

[Nj(x′)−Nj̄(x+ ej
′
)] |phys〉 = 0 (j = 1, 2) , (6.5a)

[N3(x′′)−N3̄(x+ e3
′′
)] |phys〉 = 0 , (6.5b)

[N5(x′)−N5̄(x̄′′)] |phys〉 = 0 , (6.5c)

[N6(x′′)−N6̄(x̄′)] |phys〉 = 0 , (6.5d)

[N4(x′′)−Ni(x)(1−No(x))] |phys〉 = 0 , (6.5e)

[N4̄(x̄′′)−No(x)(1−Ni(x))] |phys〉 = 0 . (6.5f)
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The Abelian constraints above stand in contrast to the ordinary situation in Hamiltonian

lattice gauge theory. The chosen degrees of freedom do not automate flux conservation along

links, which is why the constraint is Abelian flux conservation. Ordinarily flux conservation

along links is automatic, and color charge conservation must be imposed at vertices.

Näıvely, checking non-Abelian gauge invariance would pose a significant practical chal-

lenge on a quantum computer. SU(2) Gauss law operators take the form

Ĝα(x) =
d∑
i=1

[
L̂α,i(x) + R̂α,i(x)

]
+ ρ̂α(x) ,

ρ̂α(x) = ψ̂†(x)
σα
2
ψ̂(x) ,

where α = (1, 2, 3) for SU(2) and ψ is a two-component staggered fermion field for this

example. To confirm Ĝα(x)Ĝα(x) = 0, it would be sufficient to confirm two of the three color

components annihilate a given wavefunction. The most conventional basis choice would

be one that diagonalizes the 3-components [i.e., all the L̂3(x), R̂3(x), and ρ̂3(x)] and the

Casimirs [L̂2
i and R̂2

i for each i individually]. One could then directly evaluate G3(x) using

diagonal operations, in direct analogy to what was done for U(1) theories in chapter 2. To

check another component, say G1(x), one could simulate an internal color rotation about the

2-axis on every electric link register |j,m〉 and on the fermion doublet—requiring 2d+1 basis

transformations. Such rotations would have to isolate every j sector and mix them in just

the right way. At that point, G1(x) could be checked like G3(x) was, and the bases could be

rotated back.

Better protocols than the above could exist, but digital quantum algorithms have yet to

be furnished to validate states subjected to non-Abelian constraints. This technical endeavor

would likely suffer from sensitivity to the chosen digitization. We instead pursue the problem

in the LSH basis with Abelian constraints.

A convenient feature of the Abelian Gauss law constraints, from the viewpoint of quantum

simulation, is that they all commute. The LSH framework simultaneously diagonalizes these

constraints so that basis states are definitely allowed or definitely unallowed. In contrast, in
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the conventional Kogut-Susskind framework, the only basis state that is gauge invariant is

that with vanishing electric fields.

By the same token, since the LSH basis simultaneously diagonalizes all the constraints,

projective measurements in this basis do not spoil gauge invariance. With basis states

mapped to the computational basis of a quantum computer, (noiseless) readout of the qubit

registers will therefore conserve charge. This could also have benefits for preparing entangled

states that satisfy gauge constraints.

To represent the theory on a quantum computer we first truncate the Hilbert space on

irreducible representations of the gauge group. The representations are labeled by angular

momenta j, related to the flux number operators by j = N /2. To simulate all states with

SU(2) representations up to and including spin j̄, it is sufficient to use the following qubit

resources:

1. N + 1 qubits per quark site loop number n`,

2. N qubits per gluonic site loop number `ij,

where

N = dlog2(j̄ + 1)e . (6.6)

The quark occupancy numbers require no truncation.

The loop quantum numbers can then be represented by a computational basis of binary

integers. For example, with the loop numbers expressed in binary form by

n` =
N∑
m=0

2mn`,m (n`,m = 0, 1) , (6.7)

`ij =
N−1∑
m=0

2m`ij,m (`ij,m = 0, 1) , (6.8)
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their associated kets are

|n`〉 =
N⊗
m=0

|n`,m〉 , (6.9)

|`ij〉 =
N−1⊗
m=0

|`ij,m〉 . (6.10)

Here and below the quantum computing-related conventions follow Ref. [35].

Note how straightforward it is to truncate the above mapping – we simply choose a

maximum flux saturation strength and require links to have matching flux on either side.

Were we to keep the color-projection quantum numbers (J3
i ), a choice would have to be made

regarding how to represent the
∑2j̄+1

n=1 n
2 states on a qubit register and how to exclude some

“extra” states in the register from dynamics. That is all in addition to having to satisfy the

non-Abelian constraints within the mapped representations.

The lattice Hilbert space can be regarded as a tensor product space of all the site-

local Hilbert spaces (provided a simulation accounts for the fermionic nature of the quark

numbers). In practice a volume truncation and choice of boundary conditions are implicit,

but we are concerned with only the local structure in the bulk.

6.2 Implementing gauge invariance

Having access to “Gauss law oracles” within a simulation opens the door to designing error

detection and mitigation protocols that help to preserve gauge invariance. Such oracles seems

especially crucial to making noisy simulations robust against unphysical errors. Thanks

to the diagonalization of the gauge constraints, the space of allowed states is akin to a

computational “code space,” and validating wavefunctions is likened to measurement of the

appropriate “stabilizers”; Gauss’s law itself defines a code space within a larger Hilbert

space that is stabilized by any charge-conserving Hamiltonian. The associated parity can

be thought of as +1 for the Abelian-Gauss-law-satisfying subspace and −1 for the rest of

the states. Detection of a large class of bit-flip errors can therefore be achieved without any

additional encoding of the qubits.
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N+2 N+2 N+2 N+2 N+2

N+2 N+2 N+2 N+2

|no〉x+1 |no〉x+1

|ni〉x+1 |ni〉x+1

|0〉
A′ A′

|0〉

|0〉 |n`〉x+1

···

···

···

···

|0〉 |n`〉x+1

|no〉x |no〉x
|ni〉x |ni〉x
|0〉

A′ A′
|0〉

|0〉 |n`〉x X⊗N+2 CN+1(Z) X⊗N+2 |0〉 |n`〉x

|0〉 H H |F 〉

Figure 6.1: A routine for checking the Abelian Gauss law along a link joining two quark

sites. The registers here are specific to a 1D link, with the constraint [n` + no(1 − ni)]x =

[n` + ni(1− no)]x+1.

In terms of quantum numbers in the LSH basis, the constraints on states take the following

forms:

• For d = 1

[n` + no(1− ni)]x = [n` + ni(1− no)]x+1 . (6.11)

• For d = 2

nj(x
′) = nj̄(x+ ej

′
) (j = 1, 2), (6.12a)

n3(x′) = nl(x) + ni(x)[1− no(x)], (6.12b)

n3̄(x̄′) = nl(x) + no(x)[1− ni(x)], (6.12c)

where n1 = l31 + l12, n2 = l12 + l23, and n3 = l23 + l31 are the eigenvalues from (6.2).
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• For d = 3

ni(x
′) = nj̄(x+ ej

′
) (j = 1, 2), (6.13a)

n3(x′′) = n3̄(x+ e3
′′
) , (6.13b)

n5(x′) = n5̄(x̄′′) , (6.13c)

n6(x′′) = n6̄(x̄′) , (6.13d)

n4(x′′) = ni(x)[1− no(x)] , (6.13e)

n4̄(x̄′′) = no(x)[1− ni(x)] . (6.13f)

In Fig. 6.1 we give a quantum circuit for checking the Abelian Gauss law along a (d = 1)

qq link. The non-standard circuit notations used are the bit-adder gates A′, which add one

bit to an M -bit integer via

|y〉 |0〉⊗M |c0〉→ |y + c0〉 |cM−1cM−2 . . . c1〉 |c0〉

(see Fig. 6.2), and the string of controlled NOTs (CNOTs), used to compute the bitwise

sum of two integers, i.e.,

|xr−1〉 |xr−2〉 · · · |x0〉 ⊗ |yr−1〉 |yr−2〉 · · · |y0〉

→ |xr−1〉 |xr−2〉 · · · |x0〉⊗

⊗ |yr−1 ⊕ xr−1〉 |yr−2 ⊕ xr−2〉 · · · |y0 ⊕ x0〉 .

The constraint (6.11) is equivalent to saying that the (N + 2)-bit integers nL(x) = [n` +

no(1− ni)]x and nR(x+ 1) = [n` + ni(1− no)]x+1 are identical bit by bit. So the constraint

is checked by (i) computing the sums nL(x) and nR(x+ 1), (ii) computing the bit-wise sum

of nL(x) and nR(x+ 1), and (iii) flagging the query qubit if and only if that bit-wise sum is

all zeros. The subsequent gates just uncompute the nonquery registers back to their original

configurations. The query output F = 1 (F = 0) if the link does (does not) satisfy the

Abelian Gauss law.
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→

|c0〉
A′

|c0〉
|0〉 |y〉 |y + c0〉

|0〉⊗(M−1) |cM−1cM−2 . . . c1〉

|y〉 |0〉⊗M |c0〉 |y + c0〉 |cM−1cM−2 . . . c1〉 |c0〉

=

|c0〉 |c0〉
|y0〉 |s0 = y0 ⊕ c0〉
|0〉 |c1 = y0c0〉
|y1〉 |s1 = y1 ⊕ c1〉
|0〉 |c2 = y1y0c0〉
|y2〉 |s2 = y2 ⊕ c2〉
|0〉 |c3 = y2y1y0c0 = s3〉

M M

M+1 M+1

|y〉
A

|y〉

|0〉 |z〉 |z + y〉

Figure 6.2: Top: A reduced adder A′ for adding one bit to an M -bit integer (shown for

M = 3). Here c0 is added to the M -bit integer y, with the (M + 1)-bit result s = y + c0.

This uses M ancillae, M Toffoli gates, and M CNOTs . Bottom: A generic adder circuit A

for in-place addition of two M -bit integers, (y, z)→ (y, z + y). One ancilla is introduced to

express the (M + 1)-bit output.

N N N

N+1 N+1 N+1 N+1 N+1

N+2 N+2 N+2 N+2

|`23〉
A A†

|`23〉

|0〉 |`31〉
···

···

···

···

|0〉 |`31〉

|ni〉 |ni〉
|no〉 |no〉

|0〉
A′ A′†

|0〉

|0〉 |n`〉 X⊗N+2 CN+1(Z) X⊗N+2 |0〉 |n`〉

|0〉 H H |F 〉

Figure 6.3: A routine for checking the Abelian Gauss law along a link joining a quark site

and a gluonic site. The registers here are specific to a 3-i (virtual) link in two dimensions,

with the constraint `23 + `31 = n` + ni(1 − no). The adders A and string of CNOTs are

detailed in Fig. 6.2 and in the text, respectively.
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N N N

N+1 N+1 N+1 N+1 N+1

N N N

N+1 N+1 N+1 N+1

|`31〉
A A†

|`31〉

|0〉 |`12〉
···

···

···

···

|0〉 |`12〉

|`3̄1̄〉
A A†

|`3̄1̄〉

|0〉 |`1̄2̄〉 X⊗N+1 CN(Z) X⊗N+1 |0〉 |`1̄2̄〉

|0〉 H H |F 〉

Figure 6.4: A routine for checking the Abelian Gauss law along a link joining two gluonic

sites. The registers here are specific to a 1-1̄ (physical direction) link in 2D space, with the

constraint `23(x) + `31(x) = `2̄3̄(x + e1) + `3̄1̄(x + e1). The adder circuits A are detailed in

Fig. 6.2, and the CNOTstring is detailed in the text.

In Fig. 6.3 we give a quantum circuit for checking the Abelian Gauss law along a qg link

in d ≥ 2. The additional non-standard circuit notation introduced is the N -bit addition gate

A, detailed in Fig. 6.2. The input and output registers specifically consider (6.12b), i.e., the

Abelian Gauss law across a 3 − i link of the 2D lattice. This constraint is checked by (i)

computing the sums n3 = `23 + `31 and nR = n`+ni(1−no), (ii) computing the bit-wise sum

of n3 and nR, and (iii) flagging the query qubit if and only if that bitwise sum is all zeros.

In Fig. 6.4, we give a quantum circuit for checking the Abelian Gauss law along a gg link

in d ≥ 2. The input and output registers in Fig. 6.4 specifically apply to (6.12a), namely,

the Abelian Gauss law across a 1 − 1̄ gg link of the 2D lattice. The circuit (i) separately

computes n1 = `31(x) + `12(x) and n1̄ = `3̄1̄(x + e1) + `1̄2̄(x + e1), (ii) computes the bitwise

sum of n1 and n1̄, and (iii) flags the query output qubit if and only if that bitwise sum is all

zeros.

In Table 6.1, we give resource costs for the oracles using simple algorithms from the

literature. The main measure of complexity considered is the number of Toffoli gates, broken
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Explicit components A gate adders A′ gate adder Multicontrolled Z [3]

(with A using ripple-carry [2]) (A′ as in Fig. 6.2) (using LSH workspace)

Circuit Anc. CNOT C2(X) cong. Anc. CNOT C2(X) cong. Anc. CNOT C2(X) cong. exact C2(X)

qq 4 2(N + 2) 4 - - - 2(N + 1) 4(N + 1) 4(N + 1) 4N

qg 3 2(N + 1) 2 1 2(5N − 3) 2(2N − 1) N + 1 2(N + 1) 2(N + 1) 4N

gg 2 2(N + 1) 0 2 4(5N − 3) 4(2N − 1) - - - 4(N − 1)

Table 6.1: Resource counts for implementing the oracles using simple subroutines from

the literature. N ≥ 3 refers to the gluonic loop number register size; the quark site loop

number register size is N + 1. The counted resources are numbers of ancillary qubits (Anc.),

CNOTgates, and Toffoli-congruent [C2(X) cong.] or exact Toffoli [C2(X)] gates.

down into “Toffoli-congruent” gates and exact Toffolis. By Toffoli-congruent gates we mean

three-qubit gates that map computational basis states like a Toffoli but with possible phase

shifts. The freedom of phase shifts means Toffoli-congruent gates can be implemented more

efficiently than exact Toffolis [3]. Toffoli-congruent gates are acceptable in the oracles’ adders

since the undesired phases get removed during the uncomputation cycle. However, these

phases cannot be introduced in the multi-controlled Z operation.

To give complete gate counts we had to choose algorithms for the subroutines. We have

already chosen to implement the bit adders A′ in the tailored way given earlier. For the adder

gates A, we considered the ripple-carry addition algorithm (in place and with no incoming

carry bit) from [2]. And for the multicontrolled Z operations, we apply Lemma 7.2 of [3] by

using some of the nonparticipating LSH registers as work space; in the gg circuit the N -qubit

work space could be the |`3̄1̄〉 register, while in the qg circuit the (N + 1)-qubit workspace

could be the |0〉 |`31〉 register. In applying the algorithms of Refs. [2, 3], N ≥ 3 is assumed.

By taking advantage of Toffoli congruence and using Corollary 6.2 of [3] for the exact

Toffolis, we can consolidate the multiqubit gate counts into equivalent CNOTcounts. These

are reported in Table 6.2.
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Circuit Equivalent CNOTs

qq 42N + 32

qg 56N + 4

gg 70N − 46

Table 6.2: CNOTcounts for the circuits assuming N ≥ 3, the use of Toffoli-congruent

gates, and Corollary 6.2 of [3].

6.3 Discussion

The tradeoff of the LSH approach may be an increase in qubits needed for simulation. For the

truncation level j̄ defined above, the total number of logical qubits required for simulating

the LSH basis is

V ( {6(d− 1)dlog2(j̄ + 1)e}+ {dlog2(j̄ + 1)e+ 3} ) ,

where V is the Cartesian volume and the curly brackets separate the costs of gluonic sites and

quark sites. The per-site count stems from the `ij’s at 2(d−1) gluonic vertices, the quantum

numbers of the quark vertex, and the definition of N from (6.6). For the Kogut-Susskind

representation basis as conventionally formulated [83], the best-case cost is

V
( {

d
⌈
log2[8

3
(j̄ + 1

2
)(j̄ + 3

4
)(j̄ + 1)]

⌉}
+ 2

)
.

In this case the per-site count arises from counting up all irreducible representation states

|j,m,m′〉 on d links and the quark occupancies. These costs are displayed in Figs. 6.5 and

6.6. However, as pointed out earlier, the |j,m,m′〉 basis seems ill suited to digitization, so

a better comparison to make could be with a variation of Kogut-Susskind gauge theory in

which the link ends are treated separately: |j,m,m′〉 → |j,m〉 ⊗ |j′,m′〉 with the physical

requirement j = j′ along links. In this case, each site would be associated with 2d link ends

plus the quark doublet, and the logical qubit costs would be

V ({2ddlog2[(j̄ + 1)(2j̄ + 1)]e}+ 2) .
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Figure 6.5: The qubit costs per (unsplit) 2D lattice site as a function of the Casimir

cutoff j̄. The bases considered are the conventional Kogut-Susskind (K-S, thin solid line),

loop-string-hadron (LSH), and modifications of these as described in the text.
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Figure 6.6: The qubit costs per (unsplit) 3D lattice site as a function of j̄. The bases

considered are the conventional Kogut-Susskind (K-S, thick solid line), loop-string-hadron

(LSH), and modifications of these as described in the text.
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We see from Figs. 6.5 and 6.6 that in 2D space with matter, or in 3D space, the LSH basis

indeed calls for more qubits to reach a fixed cutoff than does the conventional representation

basis (labeled K-S); the asymptotic logical qubit cost of LSH with one staggered quark

flavor is 16.7% higher in d = 2 and 44.4% higher in d = 3. The persistent redundancy

of the Hilbert space is apparently the price paid for trading non-Abelian constraints for

Abelian ones. However, it is a common situation in both quantum computation and in

gauge theories where expanding a Hilbert space with extra degrees of freedom can yield a

more convenient theoretical description. Digitization of the conventional representation basis

could even benefit from a treatment with separate Hilbert spaces at the link ends (labeled

K-S′), in which case LSH asymptotically saves 12.5% of qubits in d = 2 and costs only 8.33%

more in d = 3.

Another possibility is to solve the LSH constraints and cut the number of bosonic degrees

of freedom in half, but this may increase the range of the interactions between registers and

also complicate the interactions in the Hamiltonian. Additionally, triangle inequalities in-

volving the dynamical quantum numbers would surface, so some unphysical states would still

persist. Although it is not known yet whether this complete reduction has a net advantage,

we display the associated qubit counts in Figs. 6.5 and 6.6 [indicated by ( 6nl, 6̀ īj̄)].

One could instead settle for a smaller reduction, eliminating the quark-site bosonic vari-

ables nl, without running into the aforementioned complications. This slightly reduced LSH

variant costs about the same qubits as standard K-S in d = 2, and the same as or fewer than

K-S with separated link ends in d = 3. This LSH reduction is similarly shown in Figs. 6.5

and 6.6 [indicated by ( 6nl)].

The essential benefit that was exploited above was the trading of non-commuting Gauss

law constraints for commuting Abelian Gauss law constraints. Thus, no change of basis is

necessary to check the constraints, and one can immediately proceed with computation. For

this reason we could easily furnish the first explicit algorithms to validate wave functions

of a non-Abelian lattice gauge theory. The algorithms call for common subroutines and are

easily adapted to different qubit mappings or even to qudits. For illustrative purposes we
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focused on the most straightforward binary integer representation.

6.4 Conclusion

The loop-string-hadron formulation as a basis for digital quantum simulation offers important

theoretical advantages. While the exact same physics as Kogut-Susskind gauge theory is

being described, this treatment has expedited the process of turning lattice gauge theory

formalism into input for quantum algorithm research. The physicality diagnostics are likely

to be useful in digital simulations because non-gauge invariant errors can easily arise from

the Trotter approximation to exp(−i tĤ) or from quantum noise (cf. chapter 2). Previously,

Gauss law oracles had only been decomposed for U(1) and Z(N) gauge theories. Because

the LSH framework has cast all constraints into an Abelian form, those techniques could be

ported over for use with SU(2).

The LSH framework also endows SU(2) lattice gauge theory with another similarity to

U(1) theories: the plaquette operators in d ≥ 2 manifestly decompose into a sum of one-

sparse ladder operators. This commonality presents the opportunity for SU(2) simulations

to potentially benefit from algorithms designed for U(1) simulations. A key distinguishing

feature of SU(2) to overcome will be that the nonzero matrix elements of the SU(2) ladder

operator are functions of the electric flux, whereas the nonzero matrix elements of the U(1)

plaquette operator are all identical.

The approach to decomposing physicality oracles presented should generalize to SU(3)

just as well. In the prepotential formulation of SU(3), one obtains two Abelian constraints

along each link, so all the benefits of commuting constraints may carry over. There are still

details to be worked out regarding the point splitting procedure and incorporation of matter

before circuits can be furnished.

Much remains to be understood about the quantum simulation of lattice gauge theories.

Even for the simplest gauge groups approaches to Gauss’s law are still being researched [186].

New studies are also underway into the consequences of breaking gauge invariance [187,188].

In this chapter we have made the argument that a more physically-motivated basis can be
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used to enforce all gauge constraints and that there is reason to believe it will help advance

simulation protocols.
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Chapter 7

CONCLUSION

This dissertation has examined the problem of formulating gauge theories for simulation

by quantum computers as well as the unique challenges they will present as compared to other

many-body quantum theories. Local gauge symmetry of a theory is married to redundancy

in its degrees of freedom, which presents one salient issue for quantum simulations. In

addition, the theories of greatest interest for understanding our universe have non-Abelian

gauge groups, which add further challenges to the problem of simulation.

The work presented in this dissertation began with the simple task of validating wave

functions that are permitted by Gauss’s law in Abelian gauge theories. These circuits,

which could be “oracles” within larger algorithmic routines, were presented for a variety

of possible Abelian gauge theories and the underlying task was essentially the evaluation

of constraint functions. Whether or not these are ever implemented on hardware, these

algorithms have provided the starting point for establishing what it means to have verifiably

valid wavefunctions without destroying their correlations.

We then investigated the important question of what it means to work with Abelian [U(1)]

gauge theories if we insist on having Gauss’s law locally built in. This naturally led us to a

magnetic dual representation, which may come with its own constraints that are effectively

magnetic Gauss laws. The variable transformation appears to be advantageous in d < 3

spatial dimensions, but its merits for d = 3 are less apparent due to the electric-magnetic

duality.

Similar problems to the above were then taken up for the non-Abelian gauge group,

SU(2). For reasons explained in chapter 6, going straight into brute force algorithms for

verifying gauge invariance is far less practical or straightforward in such theories. Therefore,
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we first began by doing (scalable) analytic reductions at sites of a plaquette ladder, which also

helped to reduced the system’s Hilbert space redundancy. At this point, simulating a small

version of the theory was within reach of existing hardware, and a simulation was done using

IBM’s Tokyo device. We used post-selection on allowed states (those satisfying appropriate

triangle inequalities) to mitigate some of the errors that violate gauge constraints, and were

able to reproduce expected results at low enough circuit depths.

To scale SU(2) investigations up for future use, we extended the existing loop formu-

lations of pure SU(2) gauge theory to include matter and solve all pertinent constraints,

resulting in what we call a loop-string-hadron or LSH formulation. Like what was pursued

in chapter 3, charge conservation at sites was built in from the start by choosing more phys-

ically motivated UV degrees of freedom. In the process, however, a separation of links into

halves was made, requiring that new conservation laws be introduced to compensate for this

formal convenience. These Abelian Gauss laws are nothing but the requirement that flux

be conserved as it flows across a link, and with the constraints being strictly Abelian, they

seem preferable to work with.

As a first example of the LSH framework’s utility, we returned to the problem of estab-

lishing gauge invariant wave functions in SU(2) gauge theories, with the task now essentially

cast into the form of its U(1) counterpart, save for the fact that the circuits operate on links

instead of sites. Algorithms are now known that validate wave functions in SU(2) gauge

theories, in addition to U(1) and Z(N), with many structural similarities.

One of the most prominent issues not addressed by this dissertation would be actual time

evolution. This is briefly discussed in the context of the Schwinger model in Appendix A,

while a recent work was dedicated to a scaling analysis of Schwinger model Trotterization

when the requirement of exact charge conservation is relaxed [189].

Time evolution algorithms will be a real test of the usefulness of the LSH framework.

What is contained here is essentially the most pre-processing that we saw could be done

before actually discussing qubit mappings or particular time evolution protocols. Our hope

is that the derivations and intuition make the framework adaptable to the particular needs
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that will inevitably arise in the process of developing such algorithms.
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[8] Y. Aoki, S. Borsányi, S. Dürr, Z. Fodor, S. D. Katz, S. Krieg, and K. Szabo, “The
QCD transition temperature: Results with physical masses in the continuum limit II,”
J. High Energy Phys., vol. 2009, pp. 088–088, June 2009.
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A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley,
C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rief-
fel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung,
M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zal-
cman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, pp. 505–510, Oct. 2019.

[15] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller,
“Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Mat-
ter: From String Breaking to Evolution after a Quench,” Phys. Rev. Lett., vol. 109,
p. 175302, Oct. 2012.
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tice gauge invariance in two-dimensional discrete-time quantum walks,” Phys. Rev. A,
vol. 98, p. 032333, Sept. 2018.



158

Appendix A

TROTTER APPROXIMATION ERRORS IN THE
SCHWINGER MODEL

As an example of non-gauge invariant errors, consider a Trotter step in the Schwinger

model (a U(1) gauge theory in 1D) [190]. Discretizing space with staggered fermions [39],

employing periodic boundary conditions, and using a Jordan-Wigner transformation [191],

a rescaled Hamiltonian for this theory is [22,24]

Ĥ = x

2Nph−1∑
s=0

[σ−(s)Û(s)σ+(s+ 1) + H.c.] +

2Nph−1∑
s=0

[Ê(s)2 +
µ

2
(−)sẐ(s)] . (A.1)

Here, Nph is the number of physical sites, x, µ are parameters, Ê(s), Û(s) are the operators

introduced in section 2.1, and σ±n change fermionic occupation numbers (which follow a

different map than the one assumed after (2.19)). Trotter errors induced by decomposing

the electric energy or the mass term into separate steps by individual Pauli operators (if there

are any such errors) will not affect Gauss’s law. The troublesome part of the Hamiltonian is

the hopping term,

Ĥh =

2Nph−1∑
s=0

Ĥh(s) , (A.2)

Ĥh(s) =
[
σ−(s)Û(s)σ+(s+ 1) + σ+(s)Û †(s)σ−(s+ 1)

]
. (A.3)

If the links are given a cutoff n = 1, then Ĥh(s) decomposes into four Pauli operators,

Ĥh(s)|n=1 =
1

4
(XXX +XY Y − Y Y X + Y XY ) . (A.4)

The notation here uses implicit tensor products where the first (last) operator acts on site

s (s + 1), and operators in the middle act on the link. It turns out that all the operators
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in (A.4) mutually commute, so for this special case elementary methods can be used to

implement exp(−i ∆t xHh(s)). When the cutoff is n = 2, however, Hh(s) is the sum of 12

Pauli operators,

Ĥh(s)|n=2 =
1

4
[XIXX +XIY Y − Y IY X + Y IXY ]

+
1

8
[XXXX +XY Y X −XXY Y +XYXY

+Y XY X − Y Y XX + Y XXY + Y Y Y Y ] . (A.5)

These operators do not all commute with each other, and the Trotter step obtained by

compounding 12 elementary rotations generally differs from exp(−i ∆t xHh(s)) by errors

that break Gauss’s law. The situation worsens with increasing n, so näıve Trotterization is

destined to create unphysical components in a state vector. Alternatives to Trotterization

such as quantum walks [192, 193] could also face the same problems with gauge invariance,

but whether the situation is better or worse was not investigated (see also [194]).
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Appendix B

TWO PLAQUETTE SU(2) HAMILTONIAN AND DATA
TABLES

For the two-plaquette lattice with periodic boundary conditions and truncation Λj = 1/2,

the Hamiltonian implemented in the full 16-dimensional Hilbert space with the gauge variant

completion (GVC) discussed in the main text is

Ĥ(1/2) =
1

2g2



0 0 0 0 0 0 0 −2 0 0 0 0 0 −2 0 0

0 3g4

4
0 0 0 0 −2 0 0 0 0 0 −2 0 0 0

0 0 3g4

2
0 0 −2 0 0 0 0 0 0 0 0 0 −1

2

0 0 0 9g4

4
−2 0 0 0 0 0 0 0 0 0 −1

2
0

0 0 0 −2 3g4

4
0 0 0 0 −2 0 0 0 0 0 0

0 0 −2 0 0 3g4

2
0 0 −2 0 0 0 0 0 0 0

0 −2 0 0 0 0 9g4

4
0 0 0 0 −1

2
0 0 0 0

−2 0 0 0 0 0 0 3g4 0 0 −1
2

0 0 0 0 0

0 0 0 0 0 −2 0 0 3g4

2
0 0 0 0 0 0 −1

2

0 0 0 0 −2 0 0 0 0 9g4

4
0 0 0 0 −1

2
0

0 0 0 0 0 0 0 −1
2

0 0 3g4 0 0 −1
2

0 0

0 0 0 0 0 0 −1
2

0 0 0 0 15g4

4
−1

2
0 0 0

0 −2 0 0 0 0 0 0 0 0 0 −1
2

9g4

4
0 0 0

−2 0 0 0 0 0 0 0 0 0 −1
2

0 0 3g4 0 0

0 0 0 −1
2

0 0 0 0 0 −1
2

0 0 0 0 15g4

4
0

0 0 −1
2

0 0 0 0 0 −1
2

0 0 0 0 0 0 9g4

2



,

(B.1)

with matrix elements of the four-dimensional physical subspace highlighted. For the chosen

coupling of g2 = 0.2, the ground state energy density per plaquette, through exact (classical)

diagonalization, is calculated to be -3.5658 and the lowest energy gap (the observable associ-
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ated with the “SU(2)-glueball” mass in the infinite volume limit) is calculated to be 7.4139.

Numerical values for these low-energy observables with increasing Λj truncation are provided

in Table B.1 where percent-level convergence is achieved with three qubits per SU(2) gauge

link.

For the quantum simulated system of two plaquettes with Λj = 1/2, the structure of the

ground state wavefunction is

|ψgs〉 = 0.6943 + 0.1666 + 0.4951

(
+

)
. (B.2)

On each link, a single line corresponds to j = 0 and a double line corresponds to j = 1/2.

The first electric, single plaquette operator in the full 16-dimensional space is diagonal

E2
21

=
g2

2
diag

(
0,

3

4
, 0,

3

4
,
3

4
,
3

2
,
3

4
,
3

2
,
3

2
,
9

4
,
3

2
,
9

4
,
9

4
, 3,

9

4
, 3

)
, (B.3)

with matrix elements serving as weights of the measured probabilities in the measurement

of the electric energy expectation value as shown in Fig. 4.3. The the data appearing in

Fig. 4.3 are presented in Tables B.2 and B.3.

B.1 Plaquette operator for Λj = 1/2 lattices of arbitrary plaquette number in
one dimension

While the circuit implementation of the plaquette operator has been shown in Fig. 4.2 for

the two-plaquette truncated lattice with periodic boundary conditions and Λj = 1/2, the

operator for lattices of larger size may be implemented with 14 nearest-neighbor CNOT

entangling gates as shown in Fig. B.1. This circuit is a massaged version of the circuit

of four two-qubit-controlled X ⊗ X ⊗ X operators with coefficients {1, 1/2, 1/2, 1/4} for

control states |0〉, |1〉, |2〉, |3〉 in the combined Hilbert space of j` and jr. Just as in the main

text, rotations are defined by linear combinations of 2̂(1/2) matrix elements, as established
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Electric Physical Plaquette Matrix Ground State Gap

Cutoff (2Λj) Dimension Elements Energy Density ∆E

1 4 2 -3.5658 7.4139

2 27 31 -5.6437 2.0970

3 95 192 -6.8020 0.9285

4 304 790 -7.4258 0.5024

5 769 2494 -7.7527 0.3096

6 1784 6537 -7.9159 0.2220

7 3664 15028 -7.9921 0.1929

8 7081 31200 -8.0241 0.1885

9 12704 59894 -8.0355 0.1893

10 21823 107823 -8.0388 0.1900

11 35659 184268 -8.0396 0.1902

12 56420 301326 -8.0398 0.1902

Table B.1: Convergence of the ground state energy density and the energy gap to the first

excited state, ∆E, of a two-plaquette SU(2) lattice with periodic boundary conditions as the

truncation in the maximum excitation on any single link, Λj, is increased. Columns two and

three show the number of states included in the basis of physical states below truncation

and the number of non-zero matrix elements in the single plaquette operator.
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NTrot = 1 NTrot = 2

time 〈HE,21〉

0.02 0.009(9)

0.07 0.052(6)

0.12 0.127(7)

0.17 0.201(12)

0.22 0.261(10)

0.27 0.282(7)

0.32 0.278(8)

0.37 0.254(6)

time 〈HE,21〉

0.02 0.027(14)

0.07 0.074(14)

0.12 0.124(14)

0.17 0.159(10)

0.22 0.186(15)

0.27 0.177(12)

0.32 0.144(20)

0.37 0.093(18)

Table B.2: Numerical values of the expectation value of the single electric plaquette energy

contribution for time evolutions implemented with 1,2 Trotter steps as measured on IBM’s

quantum device Tokyo shown in the top panel of Fig. 4.3. Uncertainties represent statistical

variation, as well as a systematic uncertainty estimated from reproducibility measurements.
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(NTrot, r) Survival Probability Series Linear Extrapolation

Time (1,1) (1,2) (2,1) (2,2)

0.02 0.47(1) 0.29(2) 0.23(1) 0.27(1) 0.630(14)

0.07 0.49(2) 0.31(3) 0.24(2) 0.27(1) 0.640(16)

0.12 0.48(2) 0.28(2) 0.26(2) 0.24(1) 0.659(25)

0.17 0.47(2) 0.27(1) 0.24(1) 0.26(1) 0.647(33)

0.22 0.43(1) 0.25(1) 0.25(2) 0.25(2) 0.572(17)

0.27 0.41(2) 0.25(2) 0.23(2) 0.26(1) 0.554(14)

0.32 0.39(1) 0.23(1) 0.22(1) 0.28(1) 0.535(17)

0.37 0.37(1) 0.21(1) 0.22(1) 0.26(1) 0.527(17)

Table B.3: Survival probabilities in the physical subspace as measured on IBM’s quantum

device Tokyo shown in the bottom panel of Fig. 4.3. The label indicates (NTrot, r) values. The

linear extrapolation is determined by extrapolation of computational basis state probabilities

in r for NTrot = 1. Uncertainties represent statistical variation, as well as a systematic

uncertainty estimated from reproducibility measurements.
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Figure B.1: Digital circuit implementation of the plaquette operator centered on ja for

a truncated lattice with Λj = 1/2. The circuit elements appearing in this circuit are the

Hadamard, CNOT, and Z-axis single-qubit rotation implementing a Z-to-X basis change, a

controlled bit flip, and a relative phase, respectively.

in Ref. [1], described by the following matrix structure:

~β =


1 1 1 1

1 −1 −1 1

−1 −1 1 1

−1 1 −1 1



−1
1

1/2

1/2

1/4

 , β̃ =

 1 1

−1 1

−1 1

1/4

 , (B.4)

such that ~β = (3/16, 1/16, 3/16, 9/16) and β̃ = (3/8, 5/8).

B.2 Alternate plaquette gauge variant completion

The optimality of the operator decomposition in the physical subspace is hardware-specific.

For simple comparison to the GVC used on superconducting hardware in this work, a more

näıve implementation of the plaquette operator for the two-plaquette lattice would be to use

the operator exactly as defined by the matrix elements in Eq. (4.6) with no modifications

in the unphysical space (i.e., different charge superselection sectors). In this case, the Pauli

decomposition contains eight operators

2̂ =

(
5

32
I +

3

32
Z

)
⊗X ⊗X ⊗X +

(
− 3

32
I− 5

32
Z

)
⊗X ⊗ Y ⊗ Y

+

(
− 5

32
I− 3

32
Z

)
⊗ Y ⊗X ⊗ Y +

(
− 3

32
I− 5

32
Z

)
⊗ Y ⊗ Y ⊗X , (B.5)
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and it remains convenient for the Trotterization that these eight operators commute. How-

ever, the number of CNOT gates required to implement this operator increases by a factor

of four compared to the operator structure of Fig. 4.2, implemented now in four different

bases

This makes clear that the quantum resources for operator implementation depends even on

the unphysical details of the calculation design—the choice of gauge invariant completion

allows hardware-specific optimization leveraging this sensitivity.
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Appendix C

SIMPLE HARMONIC OSCILLATOR

Below, we recall facts about the simple (bosonic) harmonic oscillator and the occupation

number basis. These are included for reference because the construction of LSH states is a

generalization of the same ideas.

The pertinent operator algebra involves an operator a and its Hermitian adjoint:

[â, â†] = 1 .

The Hamiltonian Ĥ is a linear function of the “number operator” N̂ = â†â.

We call â (â†) an “annihilation” (“creation”) operator because it changes the eigenvalue

of N̂ by -1 (+1):

[N̂ , â] = −â , (C.1)

[N̂ , â†] = â† , (C.2)

Given any eigenstate |λ〉 (N̂ |λ〉 = λ |λ〉), we can apply â arbitrarily many times to get the

eigenvalue of N̂ as low as we wish; the Hilbert space for any physical system (on which Ĥ

has a ground state) must include a state |Ω〉 that terminates this lowering:

â |Ω〉 = 0 .

This is a state with “zero excitations” since N̂ |Ω〉 = 0. It is safe to assume this state is

non-degenerate.

Now working toward the conventional |n〉 basis, we define a normalized vacuum state |0〉

by

|0〉 =
1√
〈Ω|Ω〉

|Ω〉 ,

â |0〉 = 0 .
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The nth level eigenspace of N̂ (N̂ |λn〉 = n |λn〉) can be reached by acting on |0〉 with n powers

of â†. The commutation relations show us how â† rescales magnitude at each application:

〈0| ânâ†n |0〉 = 〈0| ân−1aâ†â†n−1 |0〉

= 〈0| ân−1(1 + â†â)â†n−1 |0〉

= n 〈0| ân−1â†n−1 |0〉 .

By recursion, we learn that

〈0| ânâ†n |0〉 = n! .

The simplest definition of an orthonormal basis is then

|n〉 =
â†n√
n!
|0〉 .

In this basis, we have the familiar properties

â |n〉 =
√
n |n− 1〉 ,

â† |n〉 =
√
n+ 1 |n+ 1〉 .

The simple harmonic oscillator has a U(1) symmetry:

â→ ei θâ,

â† → e−i θâ†

for real θ. The symmetry transformation is generated by N̂ , in accordance with Equation C.1

and Equation C.2. The fact that Ĥ commutes with N̂ (number is conserved) is trivial in a

system this simple.
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Appendix D

GLUONIC SITE STATE NORMALIZATION

Below we shall see that the following states are normalized:

|`12, `23, `31〉 ≡
1√

`12!`23!`31!(`12 + `23 + `31 + 1)!
L++

12
`12L++

23
`23L++

31
`31 |0〉 (D.1)

To do this, we will first calculate the norm of L++
31

`31 |0〉, then L++
23

`23L++
31

`31 |0〉, and finally

L++
12

`12L++
23

`23L++
31

`31 |0〉. The calculations generalize the normalization of simple harmonic

oscillator states, which is reviewed in Appendix C.

To begin one should first derive some commutators that will frequently arise:

[
L−−ij ,L++

ij

]
= a†(i) · a(i) + a(j) · a†(j)

= a†(i) · a(i) + a†(j) · a(j) +N ,[
L−−ij ,L++

ij
k
]

= k(L++
ij )k−1(a(i)†a(i) + a(j)a†(j) + (k − 1))

= k(a(i)†a(i) + a(j)a†(j)− (k − 1))(L++
ij )k−1 .

Also, we clearly have

L−−ij |0〉 = 0 ,

L−−12 L++
23

`23 |0〉 = 0 (and cyclic permutations) .

Using these, for any `31 ≥ 1 we find

〈0| L−−31
`31L++

31
`31 |0〉 = 〈0| L−−31

`31−1
[
L−−31 ,L++

31
`31
]
|0〉

= `31(`31 +N − 1) 〈0| L−−31
`31−1L++

31
`31−1 |0〉 .

The norm of L++
31

`31 |0〉 has been expressed in terms of L++
31

(`31−1) |0〉. The evaluation is
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therefore recursive, and repeating the same steps eventually leads to

〈0| L−−31
`31L++

31
`31 |0〉 =

`31!(`31 +N − 1)!

(N − 1)!
〈0|0〉

=
`31!(`31 + 1)!

1!
.

This formula also works for `31 = 0.

The next step goes through similarly. One first shows that

〈0| L−−31
`31L−−23

`23L++
23

`23L++
31

`31 |0〉

= 〈0| L−−31
`31L−−23

`23−1
[
L−−23 ,L++

23
`23
]
L++

31
`31 |0〉

= `23(`23 + `31 +N − 1) 〈0| L−−31
`23L−−23

`23−1L++
23

`23−1L++
31

`31 |0〉 .

Recursion of this process leads to

〈0| L−−31
`31L−−23

`23L++
23

`23L++
31

`31 |0〉 =
`23!(`23 + `31 +N − 1)!

(`31 +N − 1)!
〈0| L−−31

`31L++
31

`31 |0〉

=
`23!(`23 + `31 +N − 1)!

(`31 +N − 1)!

`31!(`31 +N − 1)!

(N − 1)!

=
`23! `31! (`23 + `31 +N − 1)!

(N − 1)!

The third and final step can be tricky. The facts that L−−31 |0〉 = 0 and L−−23 L++
31

`31 |0〉 = 0

were very useful for turning products of Lijs into functions of number operators. But the

näıve arguments for them are not any good here: at a mathematical level, L−−12 does not

obviously annihilate L++
23

`23L++
31

`31 |0〉 because the state can have modes excited along both

directions 1 and 2. Nonetheless, by beginning with

L−−12 L++
23

`23L++
31

`31 |0〉 =
[
L−−12 ,L++

23
`23
]
L++

31
`31 |0〉 ,

it is not too difficult to show that we do in fact have

L−−12 L++
23

`23L++
31

`31 |0〉 = 0 .

(Intermediate results I used were
[
L−−12 ,L++

23

]
= −L+−

31 ,
[
L−−12 ,L++

23
k
]

= −k L++
23

k−1L+−
31 , and[

L+−
31 ,L++

31

]
=
[
L+−

31 ,L++
31

`
]

= 0. )
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Equipped with this, it is easy to calculate the norm of L++
12

`12L++
23

`23L++
31

`31 |0〉 by following

similar steps to the earlier two calculations. The end result is

〈0| L−−31
`L−−23

`23L−−12
`12L++

12
`12L++

23
`23L++

31
` |0〉

=
`12! (`12 + `23 + `31 +N − 1)!

(`23 + `31 +N − 1)!
〈0| L−−31

`31L−−23
`23L++

23
`23L++

31
`31 |0〉

=
`12! (`12 + `23 + `31 +N − 1)!

(`23 + `31 +N − 1)!

`23! `31! (`23 + `31 +N − 1)!

(N − 1)!

=
`12! `23! `31! (`12 + `23 + `31 +N − 1)!

(N − 1)!
.

With N − 1 = 1 for SU(2), this confirms (D.1).
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