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Abstract

The Asia—Europe—Pacific School of High-Energy Physics is intended to give young physicists an introduction
to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures
on quantum field theory, quantum chromodynamics, flavour physics and CP-violation, physics beyond the
Standard Model, neutrino physics, particle cosmology, heavy-ion physics, as well as a presentation of recent
results from the Large Hadron Collider (LHC), practical statistics for particle physicists and a short introduction
to the principles of particle physics instrumentation.
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Preface

The first event in the new series of the Asia—Europe—Pacific School of High-Energy Physics took place in
Fukuoka, Japan, from 14 to 27 October 2012. A strong team from KEK, as well as from Kyushu and Saga
Universities, provided excellent local organization. CERN and KEK collaborated to provide administrative
support in preparation for the School.

The staff and students were housed in comfortable accommodation in the Luigans spa and resort com-
plex that also provided excellent conference facilities. The students shared twin or three-bed rooms, mixing
nationalities to foster cultural exchange between participants from different countries.

A total of 83 students coming from 21 different countries attended the school. About 70% of the students
were from Asia-Pacific countries, most of the others coming from Europe. More than 80% of the participants
were working towards a PhD, while most of the others were advanced Masters students; the School was also
open to postdocs. Over 80% of the students were experimentalists; the school was also open to phenomenolo-
gists.

A total of 34 lectures were complemented by daily discussion sessions led by six discussion leaders. The
teachers (lecturers and discussion leaders) came from many different countries: Australia, China, France, Ger-
many, India, Japan, Korea, Russia, Spain, Switzerland, Taiwan and the United Kingdom.

The programme required the active participation of the students. In addition to the discussion sessions that
addressed questions from the lecture courses, there was an evening session in which many students presented
posters about their own research work to their colleagues and the teaching staff. The high level of interest could
be gauged by the fact that discussion of the posters continued into the early hours of the next morning.

Collaborative projects in which the students of each Discussion Group worked together on an in-depth
study of a published experimental data analysis were an important activity. This required interacting, outside
of the formal teaching sessions, with colleagues from different countries and different cultures. A student
representative of each of the six groups presented a short summary of the conclusions of the group’s work in
a special evening session whose attendees included the Directors General of CERN and KEK, both of whom
then delivered lectures on the final day of the School.

Leisure activities included a full-day excursion to the Mount Aso volcano, and a half-day excursion to
Dazaifu where the group visited a Buddhist temple and a Shinto shrine as well as the Kyushu national museum.
There was also a free afternoon during which participants could visit the city of Fukuoka at the time of the
Hakata Okunchi Festival.

Our thanks go to the local-organization team and, in particular, to Professor Kiyotomo Kawagoe for all
his work and assistance in preparing the School, on both scientific and practical matters, and for his presence
throughout the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted
the School organizers and the participants in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, undoubtedly appreciated listening to and discussing with the teaching staff of world
renown.

We would like to express our strong appreciation to Professor Rolf Heuer, Director General of CERN, and
Professor Atsuto Suzuki, Director General of KEK, for their lectures on the particle-physics programmes in
Europe and in Asia, and for discussing with the School participants.

We would particularly like to thank Hiroshi Ogawa, Governor of Fukuoka Prefecture, and Professor Setsuo
Arikawa, President of Kyushu University, for visiting the School and more generally for their interest and
support.

We would also like to recognize the important work done by the International Advisory Committee under



the chairmanship of Professor Fumihiko Takasaki in initiating this new series of Schools, and in establish-
ing the framework and strategy for their organization. In both the International Advisory Committee and the
International Organizing Committee, there is broad representation from Asia—Pacific countries with members
from Australia, China, India, Japan, Korea, Russia, Taiwan, as well as from Europe with members from CERN
and France. The collaborative spirit within and between these two committees has been very important for
achieving this first and successful School.

We are very grateful to Hélene Haller and Kate Ross from CERN, and Misa Miyai and Masami Yokoyama
from KEK, for their untiring efforts on administration for the School.

Sponsorship from numerous bodies in many countries covered the cost of travel and/or local expenses of
their staff and students who attended the School. In addition, general sponsorship is gratefully acknowledged
from: CEA/Irfu, France; CNRS/IN2P3, France; CERN; Fukuoka Convention and Visitors Bureau, Japan;
Fukuoka Prefecture, Japan; KEK, Japan; Kyushu University, Japan.

Nick Ellis
(On behalf of the Organizing Committee)

e
Representatives of the organizing committees and the Governor of Fukuoka prefecture at the opening
ceremony of the School. From left to right: Professor Kiyotomo Kawagoe, Professor Fumihiko Takasaki,
Governor Hiroshi Ogawa and Dr. Nick Ellis.
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Introductory Lectures on Quantum Field Theory

Luis Alvarez-Gaumé® and Miguel A. Vizquez-Mozo®
@ CERN, Geneva, Switzerland
b Universidad de Salamanca, Salamanca, Spain

Abstract

In these lectures we present a few topics in Quantum Field Theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to Particle Physics
and String Theory.

1 Introduction

These notes summarize lectures presented at the 2005 CERN-CLAF school in Malargiie, Argentina, the
2009 CERN-CLAF school in Medellin, Colombia, the 2011 CERN-CLAF school in Natal (Brazil), and
the 2012 Asia-Europe-Pacific School of High Energy Physics in Fukuoka (Japan). The audience in all
occasions was composed to a large extent by students in experimental High Energy Physics with an
important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction
to a subject as vast as Quantum Field Theory. For this reason the lectures were intended to provide a
review of those parts of the subject to be used later by other lecturers. Although a cursory acquaitance
with th subject of Quantum Field Theory is helpful, the only requirement to follow the lectures it is a
working knowledge of Quantum Mechanics and Special Relativity.

The guiding principle in choosing the topics presented (apart to serve as introductions to later
courses) was to present some basic aspects of the theory that present conceptual subtleties. Those topics
one often is uncomfortable with after a first introduction to the subject. Among them we have selected:

- The need to introduce quantum fields, with the great complexity this implies.

- Quantization of gauge theories and the rdle of topology in quantum phenomena. We have included
a brief study of the Aharonov-Bohm effect and Dirac’s explanation of the quantization of the
electric charge in terms of magnetic monopoles.

- Quantum aspects of global and gauge symmetries and their breaking.
- Anomalies.

The physical idea behind the process of renormalization of quantum field theories.

- Some more specialized topics, like the creation of particle by classical fields and the very basics
of supersymmetry.

These notes have been written following closely the original presentation, with numerous clarifi-
cations. Sometimes the treatment given to some subjects has been extended, in particular the discussion
of the Casimir effect and particle creation by classical backgrounds. Since no group theory was assumed,
we have included an Appendix with a review of the basics concepts.

By lack of space and purpose, few proofs have been included. Instead, very often we illustrate a
concept or property by describing a physical situation where it arises. A very much expanded version
of these lectures, following the same philosophy but including many other topics, has appeared in book
form in [1]. For full details and proofs we refer the reader to the many textbooks in the subject, and in
particular in the ones provided in the bibliography [2—11]. Specially modern presentations, very much
in the spirit of these lectures, can be found in references [3, 6, 10, 11]. We should nevertheless warn the
reader that we have been a bit cavalier about references. Our aim has been to provide mostly a (not
exhaustive) list of reference for further reading. We apologize to those authors who feel misrepresented.
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1.1 A note about notation

Before starting it is convenient to review the notation used. Through these notes we will be using the
metric 7, = diag(1,—1,—1,—1). Derivatives with respect to the four-vector 2 = (ct,Z) will be
denoted by the shorthand

0 10 =
o=—=|-=—,V]. 1
B O (c ot’ ) M)
As usual space-time indices will be labelled by Greek letters (i, v,... = 0,1, 2, 3) while Latin indices
will be used for spatial directions (z,7,... = 1,2,3). In many expressions we will use the notation

o" = (1,0") where ¢ are the Pauli matrices

L (01 o [0 —i s (1 0
"‘(1 0>’ 0_<z‘ 0)’ ”‘(0—1)‘ 2)

Sometimes we use of the Feynman’s slash notation ¢ = y*a,,. Finally, unless stated otherwise, we work
in natural units A~ = ¢ = 1.

2 Why do we need Quantum Field Theory after all?

In spite of the impressive success of Quantum Mechanics in describing atomic physics, it was immedi-
ately clear after its formulation that its relativistic extension was not free of difficulties. These problems
were clear already to Schrodinger, whose first guess for a wave equation of a free relativistic particle was
the Klein-Gordon equation

82 2 2
(aﬁ_v +m>z/1(t,f)—0. 3

This equation follows directly from the relativistic “mass-shell” identity £? = p? + m? using the corre-
spondence principle

p — —iV. @
Plane wave solutions to the wave equation (3) are readily obtained
U(t, ) = e Putt = oTIBHIPT with E = 4w, = +1/p2 + m2. (5)

In order to have a complete basis of functions, one must include plane wave with both £ > 0 and F < 0.
This implies that given the conserved current

= 5 (400 — 007 ), ©

its time-component is j© = F and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein-Gordon equation (3)
labelled by the momentum p can be defined as

fp(t’f) _ 7€—iwpt+iﬁ.57

Fopltd) = ———— e )
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Fig. 1: Spectrum of the Klein-Gordon wave equation.

Given the inner product

(P1]th2) = i/d?’l‘ (ﬁaowz — 0oy %)

the states (7) form an orthonormal basis

(Folfr) = 0@ —p"),
(foplfp) = —0(@—p"), ®)
<fp|f*p’> = 0. )

The wave functions f, (¢, ) describes states with momentum p'and energy given by w, = \/p'2 + m?.
On the other hand, the states | f_,) not only have a negative scalar product but they actually correspond
to negative energy states

iaOf—p(t7f) =V p‘2 + m2 f—p(t7f)' (10)

Therefore the energy spectrum of the theory satisfies |E| > m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground state is not necessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters, since
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation can be heuristi-
cally tackled in the case of spin—% particles, described by the Dirac equation

<—iﬁ§t+&ﬁ—m> W(t, &) =0, (11)

where @ and 3 are 4 x 4 matrices

P 0 o {01
O‘_(—z‘oi 0)’ 5‘(1 0)’ (12)
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Fig. 2: Creation of a particle-antiparticle pair in the Dirac sea picture.

with o the Pauli matrices, and the wave function (¢, ¥) has four components. The wave equation (11)
can be thought of as a kind of “square root” of the Klein-Gordon equation (3), since the latter can be
obtained as

T 2

(—w% +a-v-— m) (—w% +a-v-— m) Y(t,T) = <% —-VvZ4 m2> W(t,E).  (13)

An analysis of Eq. (11) along the lines of the one presented above for the Klein-Gordon equation

leads again to the existence of negative energy states and a spectrum unbounded from below as in Fig.

1. Dirac, however, solved the instability problem by pointing out that now the particles are fermions

and therefore they are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be

occupied by at most one particle, so the states with ¥ = m can be made stable if we assume that all the
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where all
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusion that a
single-particle interpretation of the Dirac equation is not possible. Indeed, a photon with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leaving behind a “hole” in
the Dirac sea (see Fig. 2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape to the conclusion that interactions will produce pairs
particle-antiparticle out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac equation
this is not the end of the story. In 1929 Oskar Klein stumbled into an apparent paradox when trying to
describe the scattering of a relativistic electron by a square potential using Dirac’s wave equation [12] (for
pedagogical reviews see [13, 14]). In order to capture the essence of the problem without entering into
unnecessary complication we will study Klein’s paradox in the context of the Klein-Gordon equation.

Let us consider a square potential with height V3 > 0 of the type showed in Fig. 3. A solution to
the wave equation in regions I and Il is given by

1/11(75,33) — 6—iEt+iplz+Re—iEt—iplz’
Yrr(t,x) = Te Brree, (14)
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Fig. 3: Illustration of the Klein paradox.

where the mass-shell condition implies that

p1=VE* —m?, p2 =/ (E —Vp)? — m2, (s)

The constants 12 and 1" are computed by matching the two solutions across the boundary x = 0. The
conditions 17 (t,0) = v7(t,0) and 0,01 (t,0) = Ox10r7(t,0) imply that

2 —
T — P1 R:P1 P2

= , . (16)
p1+ D2 p1+ p2

At first sight one would expect a behavior similar to the one encountered in the nonrelativistic
case. If the kinetic energy is bigger than 1} both a transmitted and reflected wave are expected, whereas
when the kinetic energy is smaller than Vj one only expect to find a reflected wave, the transmitted wave
being exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens if £ — m > Vj. In this case both p; and py are real and we have a
partly reflected, and a partly transmitted wave. In the same way, if V) — 2m < E — m < Vj then ps is
imaginary and there is total reflection.

However, in the case when Vy > 2m and the energy is in the range 0 < £ —m < Vy — 2m
a completely different situation arises. In this case one finds that both p; and py are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This is a
shocking result, since it implies that there is a nonvanishing probability of finding the particle at any
point across the barrier with negative kinetic energy (£ — m — Vi < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insistence in giving a single-
particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the paradox
[13] shows that what happens when 0 < E — m < V — 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of pairs particle-antiparticle out of the energy of
the barrier (notice that for this to happen it is required that V5 > 2m, the threshold for the creation of a
particle-antiparticle pair).
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Fig. 4: Two regions R, R that are causally disconnected.

Actually, this particle creation can be understood by noticing that the sudden potential step in Fig.
3 localizes the incoming particle with mass m in distances smaller than its Compton wavelength A = %
This can be seen by replacing the square potential by another one where the potential varies smoothly
from 0 to Vp > 2m in distances scales larger than 1/m. This case was worked out by Sauter shortly after
Klein pointed out the paradox [15]. He considered a situation where the regions with V' =0 and V = 1}
are connected by a region of length d with a linear potential V' (z) = %. When d > % he found that
the transmission coefficient is exponentially small'.

The creation of particles is impossible to avoid whenever one tries to locate a particle of mass m
within its Compton wavelength. Indeed, from Heisenberg uncertainty relation we find that if Az ~ %
the fluctuations in the momentum will be of order Ap ~ m and fluctuations in the energy of order

AE ~m (17)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to allow
the creation of particles out of the vacuum. In the case of a spin—% particle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of order m, electrons from the Dirac sea can be excited to
positive energy states, thus creating electron-positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariance.
In non-relativistic Quantum Mechanics observables are represented by self-adjoint operator that in the
Heisenberg picture depend on time. Therefore measurements are localized in time but are global in
space. The situation is radically different in the relativistic case. Because no signal can propagate faster
than the speed of light, measurements have to be localized both in time and space. Causality demands
then that two measurements carried out in causally-disconnected regions of space-time cannot interfere
with each other. In mathematical terms this means that if Or, and Op, are the observables associated
with two measurements localized in two causally-disconnected regions R, I?o (see Fig. 4), they satisfy

[Or,,ORr,] =0, if (x1 — 22)% < 0,forall z; € Ry, 75 € Ry. (18)

'In section (9.1) we will see how, in the case of the Dirac field, this exponential behavior can be associated with the creation
of electron-positron pairs due to a constant electric field (Schwinger effect).
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Hence, in a relativistic theory, the basic operators in the Heisenberg picture must depend on the
space-time position z*. Unlike the case in non-relativistic quantum mechanics, here the position & is not
an observable, but just a label, similarly to the case of time in ordinary quantum mechanics. Causality is
then imposed microscopically by requiring

[O(2), O(y)] =0, if (z —y)* < 0. (19)
A smeared operator O over a space-time region R can then be defined as
OR = / d*z O(z) fr(z) (20)
where fr(z) is the characteristic function associated with R,
1 rEeER
e ={ g TSR 21

Eq. (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when we
insist in keeping a single-particle interpretation that we crash against causality violations. To illustrate
the point, let us consider a single particle wave function (¢, Z) that initially is localized in the position
=0

(0, 7) = 6(2). (22)

Evolving this wave function using the Hamiltonian H = +/—V?2 + m? we find that the wave function
can be written as

3
o it/ VTAmZs o _ [ Tk iR/
P(t, @) =e" ™5 (T) _/(277)361 e me. (23)
Integrating over the angular variables, the wave function can be recast in the form
1 o Ll g
W(t,T) = ﬂ/ k dk e'KIZ] g =itk +m? (24)
21217 o

The resulting integral can be evaluated using the complex integration contour C' shown in Fig. 5. The
result is that, for any ¢ > 0, one finds that ¢)(¢,Z) # 0 for any &. If we insist in interpreting the wave
function (¢, ) as the probability density of finding the particle at the location Z in the time ¢ we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abandon
the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the set of quantum number
associated with the set of free particles in the initial and final states. Ignoring for the moment other
quantum numbers like spin and flavor, one-particle states are labelled by the three-momentum p and
span the single-particle Hilbert space H;

p) € M1, (p1p’) = o(p'—p").- (25)

The states {|p) } form a basis of #; and therefore satisfy the closure relation

/ d’p |p)(pl =1 (26)
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\k

2 2

Fig. 5: Complex contour C' for the computation of the integral in Eq. (24).

The group of spatial rotations acts unitarily on the states |p). This means that for every rotation R €
SO(3) there is a unitary operator U(R) such that

U(R)|p) = |Rp) 27)

where Rp represents the action of the rotation on the vector k, (Rp)' = R’ jk:j . Using a spectral decom-

position, the momentum operator P’ can be written as

pi— / &p|p) p' (7 (28)

With the help of Eq. (27) it is straightforward to check that the momentum operator transforms as a
vector under rotations:

UR) " PUR) = / &p|RYp) pf (R = R, P9, 29)

where we have used that the integration measure is invariant under SO(3).

Since, as we argued above, we are forced to deal with multiparticle states, it is convenient to
introduce creation-annihilation operators associated with a single-particle state of momentum p’

[a(p), al (5")] = 6(p — §"), [a(p), a(p")] = [a' (), " (p")] =0, (30)

such that the state |p) is created out of the Fock space vacuum |0) (normalized such that (0|0) = 1) by
the action of a creation operator a!(p)

15) = a'(2)/0), a(p)|0) =0 Vp. (31)

Covariance under spatial rotations is all we need if we are interested in a nonrelativistic theory.
However in a relativistic quantum field theory we must preserve more that SO(3), actually we need
the expressions to be covariant under the full Poincaré group ISO(1, 3) consisting in spatial rotations,
boosts and space-time translations. Therefore, in order to build the Fock space of the theory we need
two key ingredients: first an invariant normalization for the states, since we want a normalized state in
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one reference frame to be normalized in any other inertial frame. And secondly a relativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant under
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant function f(p) of the four-momentum
pH of a particle of mass m with positive energy p® > 0, there is an integration measure which is invariant
under proper Lorentz transformations”

4
/ (;ﬂjj (@m)3(% —m?) 0°) £(p), 32)

where 0(x) represent the Heaviside step function. The integration over p° can be easily done using the
J-function identity

Wa= Y b=, (3)

x;=zeros of f
which in our case implies that
1 1
S(p? —m?) = 2—})05 (po —Vp? +m2) + 2—}905 (po + v/ p? —I—m2) . (34)

The second term in the previous expression correspond to states with negative energy and therefore does
not contribute to the integral. We can write then

4 3
/é%ﬂ%ﬂﬁ_ﬁﬁ@ﬁ@—/é&zﬁ;mﬂ<ﬁummﬁ (35)

Hence, the relativistic invariant measure is given by

dp 1
/ (J with wy = /P2 + m?. (36)

27)3 2w,

Once we have an invariant measure the next step is to find an invariant normalization for the states.
We work with a basis {|p)} of eigenstates of the four-momentum operator P*

POlp) = wylp), Pilp) = p|p). 37)

Since the states |p) are eigenstates of the three-momentum operator we can express them in terms of the
non-relativistic states |p) that we introduced in Eq. (25)

lp) = N(P)|p) (38)

with N (p) a normalization to be determined now. The states {|p) } form a complete basis, so they should
satisfy the Lorentz invariant closure relation

/(;ljrzg4 (2m)a(p* = m*) 0(p°) Ip) (pl = 1 39)

At the same time, this closure relation can be expressed, using Eq. (38), in terms of the nonrelativistic
basis of states {|p) } as

4 3
/ (;’;4 2m)3 ~m)66°) o) vl = [ (;ﬂj;,%i N )P 17 (1. (40)

The factors of 27 are introduced for later convenience.
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Using now Eq. (28) for the nonrelativistic states, expression (39) follows provided
IN@)I? = (2m)* (2wp)- (41)

Taking the overall phase in Eq. (38) so that N (p) is real, we define the Lorentz invariant states |p) as

Ip) = (27)2 /2w, D), (42)

and given the normalization of |p) we find the normalization of the relativistic states to be
(plp') = (2m)° (2w,)8 (5 — 7). (43)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Although it
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions where the
two components (p°, p!) of the on-shell momentum can be parametrized in terms of a single hyperbolic
angle )\ as

p° = mcosh A, p' = msinh . (44)
Now, the combination 2w,d(p! — p'’) can be written as
2w,0(pt — p') = 2m cosh A §(msinh A — msinh V') = 26(\ — \), (45)

where we have made use of the property (33) of the J-function. Lorentz transformations in 1 + 1 di-
mensions are labelled by a parameter £ € R and act on the momentum by shifting the hyperbolic angle
A — X+ &. However, Eq. (45) is invariant under a common shift of A and X, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing a Lorentz covariant basis of
states for the one-particle Hilbert space H;. The generators of the Poincaré group act on the states |p) of
the basis as

Pip) = p"[p), UN)Ip) = [A, p") = [Ap)  with A €S0(1,3). (46)
This is compatible with the Lorentz invariance of the normalization that we have checked above
(plp") = (Pl (M) U [p') = (Ap|Ap'). (47)

On H; the operator PH admits the following spectral representation

5 dp 1
Pt = / (27:))32%?@ p"(p| . (48)

Using (47) and the fact that the measure is invariant under Lorentz transformation, one can easily show
that P* transform covariantly under SO(1, 3)
dp 1

ALY R (AL = AR PV 49

UN) T PRUA) = /

A set of covariant creation-annihilation operators can be constructed now in terms of the operators
a(p), af(p) introduced above

3 3
a(p) = (2m) 2/ 2wpa(p), ol (p) = (2m)2\/2w,al (P) (50)
with the Lorentz invariant commutation relations
(@), ot (7)) = (2m)*(2w,)5(F — "),

10
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[(p), a(p")] = [a(p),a!(")] =0. (51)

Particle states are created by acting with any number of creation operators «(p) on the Poincaré invariant
vacuum state |0) satisfying

(0[0) = 1, B0y =0, UA)[0) = [0), VA € SO(L,3). (52)

A general one-particle state | f) € H1 can be then written as

= [y L et (53
= p)a(p)lv),
(2m)3 2wy,
while a n-particle state |f) € ’H?" can be expressed as
d3 pi 1 o o N N
/H By [ (7)o 7)) (54)
Wp;

That this states are Lorentz invariant can be checked by noticing that from the definition of the creation-
annihilation operators follows the transformation

Na(@UN)" = a(Ap) (55)
and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have to be localized implies the ne-
cessity of introducing quantum fields. Here we will consider the simplest case of a scalar quantum field
¢(x) satisfying the following properties:

- Hermiticity.

o' (z) = ¢(). (56)

- Microcausality. Since measurements cannot interfere with each other when performed in causally
disconnected points of space-time, the commutator of two fields have to vanish outside the relative

ligth-cone
[6(x), $(y)] =0, (z—y)* <0. (57)
- Translation invariance.
P ag(r)e P = gz — a). (58)
- Lorentz invariance.
UN)TG(@UA) = ¢(A ). (59)

- Linearity. To simplify matters we will also assume that ¢(x) is linear in the creation-annihilation
operators o(p), af (p)

d3p 1
— — | f( 7. x)al ) 60
@) = | Gz [P0 + 95210 (7 (60)
Since ¢(x) should be hermitian we are forced to take f(p, z)* = g(p, z). Moreover, ¢(x) satisfies
the equations of motion of a free scalar field, (9,0* + m?)¢(x) = 0, only if f(p,z) is a complete
basis of solutions of the Klein-Gordon equation. These considerations leads to the expansion

d3 1 . L . N
@) = [ e [ P ale) + Pl ). (6D
p

11
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Given the expansion of the scalar field in terms of the creation-annihilation operators it can be
checked that ¢(x) and 0,¢(x) satisfy the equal-time canonical commutation relations

[(z)(t? f)v 8t¢(t7 g)] = lé(f - ?j) (62)

The general commutator [¢(z), ¢(y)] can be also computed to be

[¢(2), ¢(a')] = iA(z — ). (63)
The function A(x — y) is given by
3 . ’ )
T B X
)3 2wy
d'p 2 2\ ~ (0 p—ip-(z—2")
- / (277)4 (271')(5(]9 -m )E(p )e P ) (64)

where ¢(z) is defined as

1 z>0

-1 =<0 ©5)

e(x)=0(x) —0(—x) = {

Using the last expression in Eq. (64) it is easy to show that iA(x — z’) vanishes when z and z’
are space-like separated. Indeed, if (z — ') < 0 there is always a reference frame in which both events
are simultaneous, and since iA(x — ') is Lorentz invariant we can compute it in this reference frame.
In this case ¢ = ' and the exponential in the second line of (64) does not depend on p°. Therefore, the
integration over k° gives

/ T ()i —m?) = / T [1a<p0>6<p° ) + e (P + wp)

oo o 2wp 2wp
1 1

= — ——=0. 66
2wy 2wy (66)

So we have concluded that iA(z — 2') = 0 if (x — 2’)? < 0, as required by microcausality. Notice that
the situation is completely different when (x — 2/)2 > 0, since in this case the exponential depends on
p° and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of properties to the quantum scalar field:
existence of asymptotic states, locality, microcausality and relativistic invariance. With these only ingre-
dients we have managed to go quite far. The previous can also be obtained using canonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the quantum
theory by replacing Poisson brackets by commutators. Since this quantization procedure is based on the
use of the canonical formalism, which gives time a privileged rdle, it is important to check at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In the following we will briefly
overview the canonical quantization of the Klein-Gordon scalar field.

The starting point is the action functional S[¢(x)] which, in the case of a free real scalar field of
mass m is given by

Slo(x)] = / d*z L(p,0,0) = % / d'z (0,00"¢ — m*¢?) . (67)

12
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The equations of motion are obtained, as usual, from the Euler-Lagrange equations

oL oc 2y
9, [W] -G =0 . (00" + m?)$ = 0. (68)

The momentum canonically conjugated to the field ¢(x) is given by

oL 99
0(00p) Ot (5%

m(x) =

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordinates
and their time derivatives but in terms of the generalized coordinates and their canonically conjugated
momenta. This is achieved by a Legendre transformation after which the dynamics of the system is
determined by the Hamiltonian function

H= /d33: (ﬁ;‘f _ z:) _ ;/d% [H + (V) + mﬂ : (70)

The equations of motion can be written in terms of the Poisson rackets. Given two functional
Alo, ], B[¢, 7] of the canonical variables

Aol = [(Eaa@m). Bl = [aaion) an
Their Poisson bracket is defined by
{A’B}/M[aqﬁ or  on 5¢>}’ (72)

where % denotes the functional derivative defined as

0A  0A [ 0A ]
— = = — (73)
56~ 09 " |0(0.9)
Then, the canonically conjugated fields satisfy the following equal time Poisson brackets
{¢(t,f),¢(t,f/)} = {W(t,f),ﬂ'(t?f/)} =0,
{o(t,2),n(t, ")} = 6(F—-7'). (74)

Canonical quantization proceeds now by replacing classical fields with operators and Poisson
brackets with commutators according to the rule

Z{v} — [7] (75)

In the case of the scalar field, a general solution of the field equations (68) can be obtained by working
with the Fourier transform

(00" +m?)¢(z) =0 = (—p* +m*)é(p) =0, (76)

whose general solution can be written as’

4
o(z) = / (;iﬂ]; (2m)6(p* — m*)0(p°) [a(p)e™ " + a(p)*e™ "]

3In momentum space, the general solution to this equation is ¢(p) = f(p)é(p®> — m?), with f(p) a completely general
function of p*. The solution in position space is obtained by inverse Fourier transform.

13
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Bp 1

and we have required ¢(z) to be real. The conjugate momentum is

. d3
m(z) = —% / 7(275))3 [a(p)eflwpt”x + ap)*etrt= p’”} : (78)

Now ¢(z) and 7(z) are promoted to operators by replacing the functions «(p), «(p)* by the
corresponding operators

a(p) — a(p), a(p)* — al(p). (79)

Moreover, demanding [¢(t, ), 7(t, Z')] = i0(& — &') forces the operators a(p), a(p)! to have the
commutation relations found in Eq. (51). Therefore they are identified as a set of creation-annihilation
operators creating states with well-defined momentum p’out of the vacuum |0). In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantization of a classical field.

Knowing the expressions of ¢ and 7 in terms of the creation-annihilation operators we can proceed
to evaluate the Hamiltonian operator. After a simple calculation one arrives to the expression

H= / d*p [wpaT(ﬁ)a(m + %wp 5(6)} . (80)

The first term has a simple physical interpretation since &' (7)a(p) is the number operator of particles
with momentum p. The second divergent term can be eliminated if we defined the normal-ordered
Hamiltonian :H: with the vacuum energy subtracted

~

di= 1 - 01810) = [ #p,a'(5)a) 81)
It is interesting to try to make sense of the divergent term in Eq. (80). This term have two sources
of divergence. One is associated with the delta function evaluated at zero coming from the fact that we
are working in a infinite volume. It can be regularized for large but finite volume by replacing § (6) ~V.
Hence, it is of infrared origin. The second one comes from the integration of w, at large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regularized by
considering the scalar field to be living in a box of finite volume V. In this case the vacuum energy is

Evac = (0|H|0) = Z ~wp. (82)

Written in this way the interpretation of the vacuum energy is straightforward. A free scalar quantum
field can be seen as a infinite collection of harmonic oscillators per unit volume, each one labelled by
p. Even if those oscillators are not excited, they contribute to the vacuum energy with their zero-point
energy, given by %wp. This vacuum contribution to the energy add up to infinity even if we work at
finite volume since even then there are modes with arbitrary high momentum contributing to the sum,
p; = an integer. Hence, this divergence is of
ultrav1olet orlgm.

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other cases,
in particular in quantum electrodynamics. Although one might be tempted to discarding this infinite
contribution to the energy of the vacuum as unphysical, it has observable consequences. In 1948 Hendrik

14
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Region | Region I Region IlI
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Conducting plates

Fig. 6: Illustration of the Casimir effect. In regions I and II the spetrum of modes of the momentum p; is
continuous, while in the space between the plates (region II) it is quantized in units of 7.

Casimir pointed out [16] that although a formally divergent vacuum energy would not be observable, any
variation in this energy would be (see [17] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite, perfectly con-
ducting plates placed parallel to each other at a distance d (see Fig. 6). Because the conducting plates fix
the boundary condition of the vacuum modes of the electromagnetic field these are discrete in between
the plates (region II), while outside there is a continuous spectrum of modes (regions I and III). In order
to calculate the force between the plates we can take the vacuum energy of the electromagnetic field
as given by the contribution of two scalar fields corresponding to the two polarizations of the photon.
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergent result. This infinity can
be removed, however, by substracting the vacuum energy corresponding to the situation where the plates
are removed

E(d)reg = E(d)vac — £(00)vac (83)

This substraction cancels the contribution of the modes outside the plates. Because of the boundary
conditions imposed by the plates the momentum of the modes perpendicular to the plates are quantized
according to p; = =, with n a non-negative integer. If we consider that the size of the plates is much
larger than their separation d we can take the momenta parallel to the plates pj| as continuous. For n > 0
we have two polarizations for each vacuum mode of the electromagnetic field, each contributing like

%1 / ]5’”2 + pi to the vacuum energy. On the other hand, when p; = 0 the corresponding modes of the

field are effectively (2+1)-dimensional and therefore there is only one polarization. Keeping this in mind,
we can write

d2p|| 1 d2pH
E re - =P 2
()reg S/ (27)2 2‘p”’ S/ (2

15
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dp 1
25d D 84
/(2) L5l (84)

where S is the area of the plates. The factors of 2 take into account the two propagating degrees of
freedom of the electromagnetic field, as discussed above. In order to ensure the convergence of integrals
and infinite sums we can introduce an exponential damping factor*

E(d)reg = QS/EZP)J_ _A|p|p||+SZ/ p|| KW ]5’”24- <%)2

dp dp — PR
= ” . p \/p” +pj_ (85)

where A is an ultraviolet cutoff. It is now straightforward to see that if we define the function

Pla) = g [ wdye WO e () - /<OO) dze Nz (86)

the regularized vacuum energy can be written as

— Sd

E(d)reg = S 0)+ > F(n)— / dz F(z) (87)
n=1 0
This expression can be evaluated using the Euler-MacLaurin formula [19]
= oo 1 1., ,
> F(n) - i do F(z) = —5[F(0)+ F(o0)] + 5 [F'(c00) — F'(0)]
n=1
. i " o
=50 [F"(00) — F"(0)] + ... (88)

Since for our function F(co) = F'(0c0) = F"(00) = 0 and F'(0) = 0, the value of E(d)yeg is
determined by F"”(0). Computing this term and removing the ultraviolet cutoff, A — oo we find the
result

S 728
E(d)eg = =—F"(0) = — . 89
(g = = F"(0) = — 2 (89)
Then, the force per unit area between the plates is given by
72 1
Pcasimir = *%@ (90)

The minus sign shows that the force between the plates is attractive. This is the so-called Casimir effect.
It was experimentally measured in 1958 by Sparnaay [18] and since then the Casimir effect has been
checked with better and better precission in a variety of situations [17].

4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization procedure.
However, nature is richer than that and it is necessary to consider other fields with more complicated be-
havior under Lorentz transformations. Before considering other fields we pause and study the properties
of the Lorentz group.

*Actually, one could introduce any cutoff function f(p% + pﬁ) going to zero fast enough as p1, p — oo. The result is
independent of the particular function used in the calculation.
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4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of them correspond to the generators
of the group of rotations in three dimensions SO(3). In terms of the generators J; of the group a finite
rotation of angle  with respect to an axis determined by a unitary vector € can be written as

PP Jl
R(E,p) = e~ &I J=1| 7 |. 1)
J3

The other three generators of the Lorentz group are associated with boosts M; along the three spatial
directions. A boost with rapidity A along a direction 1 is given by

B(ii,\) = e~ &M M=\ M, |. (92)
M3
These six generators satisfy the algebra
i, J;) = i€,
[Ji, My] = iegjpMy, (93)
[M;, M;] = —iegny,

The first line corresponds to the commutation relations of SO(3), while the second one implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem difficult. The problem is
greatly simplified if we consider the following combination of the generators

1 .
JE = §(Jk + iMy). (94)

Using (93) it is easy to prove that the new generators .J ,;t satisfy the algebra

[Jz:t,J]i] = ie,;iji,
;7] = 0. (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of the algebra of SU(2) ~ SO(3).
Therefore the irreducible representations of the Lorentz group can be obtained from the well-known rep-
resentations of SU(2). Since the latter ones are labelled by the spins = k + %, k (with k € N), any
representation of the Lorentz algebra can be identified by specifying (s, s_ ), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentz group we study some
particular examples. Let us start with the simplest one (sy,s_) = (0,0). This state is a singlet under

JijE and therefore also under rotations and boosts. Therefore we have a scalar.

The next interesting cases are (%, 0) and (O, %) They correspond respectively to a right-handed

and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the case of
(%, %), since from Eq. (94) we see that J; = J;L + J; the rules of addition of angular momentum
tell us that there are two states, one of them transforming as a vector and another one as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows that the singlet state corresponds

to the time component of a vector and the states combine to form a vector under the Lorentz group.

There are also more “exotic” representations. For example we can consider the (1,0) and (0, 1)
representations corresponding respectively to a selfdual and an anti-selfdual rank-two antisymmetric
tensor. In Table 1 we summarize the previous discussion.
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Table 1: Representations of the Lorentz group.

Representation | Type of field
(0,0) Scalar
(3,0) Right-handed spinor
(0,1) Left-handed spinor
(3.3) Vector
(1,0) Selfdual antisymmetric 2-tensor
(0,1) Anti-selfdual antisymmetric 2-tensor

To conclude our discussion of the representations of the Lorentz group we notice that under a
parity transformation the generators of SO(1,3) transform as

P:J,— J, P:M; — —M; (96)

this means that P : J-= — J.F and therefore a representation (s1, Sz is transformed into (s2,s;). This
means that, for example, a vector (1, 1) is invariant under parity, whereas a left-handed Weyl spinor

272
(3,0) transforms into a right-handed one (0, 3) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz group, namely (%, 0) and
(0, %) These representations can be explicitly constructed using the Pauli matrices as

1, _
Jr = 502, J7 =0 for  (3,0),
1,
Jr =0, J; :501 for  (0,3). (97)

We denote by u4 a complex two-component object that transforms in the representation s+ = % of JL.
If we define o/{ = (1, +0") we can construct the following vector quantities

uiaiu+, u o u_. (98)

1
)2
To construct a free Lagrangian for the fields w4 we have to look for quadratic combinations of the

fields that are Lorentz scalars. If we also demand invariance under global phase rotations

Notice that since (.J:*)T = .JF the hermitian conjugated fields ul arein the (0, ) and (3, 0) respectively.

ur — ePuy (99)
we are left with just one possibility up to a sign

E%Veyl = ZUJ:rI: (8,5 +- 6) Uy = iulaiauu:l:' (100)
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This is the Weyl Lagrangian. In order to grasp the physical meaning of the spinors ui we write the
equations of motion

(0% V)us =0. (101)
Multiplying this equation on the left by (80 Fo- ﬁ) and applying the algebraic properties of the Pauli
matrices we conclude that v satisfies the massless Klein-Gordon equation
00" ut =0, (102)
whose solutions are:
ug () = us (k)e *e, with k0 = |k|. (103)

Plugging these solutions back into the equations of motion (101) we find

(|E|:FE-&) us =0, (104)
which implies
G-k
Uy — =1,
||
> ];‘
u_ o E_ . (105)
||

Since the spin operator is defined as § = %6’, the previous expressions give the chirality of the states
with wave function w4, i.e. the projection of spin along the momentum of the particle. Therefore we
conclude that u is a Weyl spinor of positive helicity A = %, while u_ has negative helicity A = —%.
This agrees with our assertion that the representation (%, 0) corresponds to a right-handed Weyl fermion
(positive chirality) whereas (O, %) is a left-handed Weyl fermion (negative chirality). For example, in
the Standard Model neutrinos are left-handed Weyl spinors and therefore transform in the representation

(0, 1) of the Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl Lagrangian (100).
There we constructed the invariants from the vector bilinears (98) corresponding to the product repre-
sentations

(3.3)=(3.00®(0,3) and (3,3)=(0,3)®(3,0). (106)

In particular our insistence in demanding the Lagrangian to be invariant under the global symmetry
ut+ — e"uq rules out the scalar term that appears in the product representations

(3,0)®(3,0) = (1,0) ®(0,0), (0.3)®(0,3) = (0,1) & (0,0). (107)
The singlet representations corresponds to the antisymmetric combinations
Capuf (108)

where €, is the antisymmetric symbol €15 = —€a; = 1.

At first sight it might seem that the term (108) vanishes identically because of the antisymmetry
of the e-symbol. However we should keep in mind that the spin-statistic theorem (more on this later)
demands that fields with half-integer spin have to satisfy the Fermi-Dirac statistics and therefore satisfy
anticommutation relations, whereas fields of integer spin follow the statistic of Bose-Einstein and, as a
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consequence, quantization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermions w4 are anticommuting Grassmann fields

uub, +ulul = 0. (109)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi-Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and therefore
each quantum state can be occupied, at most, by one fermion. Therefore the naive definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion field do not really make
sense classically.

Since the combination (108) does not vanish and we can construct a new Lagrangian
) m
£\:‘/:Veyl = Zulai@uui — Eeabu?tuz: + h.c. (110)

This mass term, called of Majorana type, is allowed if we do not worry about breaking the global U(1)
symmetry u4+ — e%u.. This is not the case, for example, of charged chiral fermions, since the Majorana
mass violates the conservation of electric charge or any other gauge U(1) charge. In the Standard Model,
however, there is no such a problem if we introduce Majorana masses for right-handed neutrinos, since
they are singlet under all standard model gauge groups. Such a term will break, however, the global U(1)
lepton number charge because the operator eabyj%y% changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the representations (%, 0) and (O, %), ie. it
changes right-handed with left-handed fermions

P:uy — ug. (IT1)

An obvious way to build a parity invariant theory is to introduce a pair or Weyl fermions v and u.
Actually, these two fields can be combined in a single four-component spinor

u
¢—<uf ) (112)

transforming in the reducible representation (3,0) & (0, 1 ).
Since now we have both w4 and u_ simultaneously at our disposal the equations of motion for
uy, i0Y Ousr = 0 can be modified, while keeping them linear, to

: [ _
10 Opuy = mu_ "
— z’(”o+ OM>8M1/J:m<2 é)w. (113)

o
- _
0”0y u_ = muy

These equations of motion can be derived from the Lagrangian density

) a0 01
LDirac = 10! < N >éw —my ( 10 >w. (114)
To simplify the notation it is useful to define the Dirac y-matrices as
0 o
- -
= ) (e
and the Dirac conjugate spinor ¢
— 0 1
wzw”:w*<1 0)- (116)
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Now the Lagrangian (114) can be written in the more compact form

ﬁDirac = 1/1 (ifyualt - m) 1/] (117)
The associated equations of motion give the Dirac equation (11) with the identifications
V=8, 4 =id. (118)

In addition, the y-matrices defined in (115) satisfy the Clifford algebra

{97} =29 (119)
In D dimensions this algebra admits representations of dimension 203). When D is even the Dirac
fermions 1) transform in a reducible representation of the Lorentz group. In the case of interest, D = 4
this is easy to prove by defining the matrix

. 1 0
7’ = =i’y = < 0 1 ) : (120)

We see that +° anticommutes with all other y-matrices. This implies that

1
4

Because of Schur’s lemma (see Appendix) this implies that the representation of the Lorentz group
provided by o* is reducible into subspaces spanned by the eigenvectors of v° with the same eigenvalue.
If we define the projectors Py = %(1 + ~5) these subspaces correspond to

H¢=(%>, Pw=<f), (122

which are precisely the Weyl spinors introduced before.

[v>, 0] = 0, with ot = ——[yH 47 (121)

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines used for
the Klein-Gordon field, starting with a general solution to the Dirac equation and introducing the cor-
responding set of creation-annihilation operators. Therefore we start by looking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field the elements of the basis were labelled by
their four-momentum k*. Now, however, we have more degrees of freedom since we are dealing with
a spinor which means that we have to add extra labels. Looking back at Eq. (105) we can define the
helicity operator for a Dirac spinor as

1. kK /10
A==-0 — . 123
20 |k|<0 1) (23

Hence, each element of the basis of functions is labelled by its four-momentum k* and the corresponding
eigenvalue s of the helicity operator. For positive energy solutions we then propose the ansatz

u(k, s)e”*® s = i%, (124)
where uq(k, s) (e = 1,...,4) is a four-component spinor. Substituting in the Dirac equation we obtain
(k —m)u(k,s) =0. (125)

In the same way, for negative energy solutions we have
v(k, s)eik'x, s = :I:%, (126)
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where v(k, s) has to satisfy
(F +m)o(k,s) = 0. (127)

Multiplying Egs. (125) and (127) on the left respectively by (f F m) we find that the momentum is
on the mass shell, k> = m?2. Because of this, the wave function for both positive- and negative-energy
solutions can be labeled as well using the three-momentum k of the particle, u(k, s), v(k, s).

A detailed analysis shows that the functions u(k, s), v(k, s) satisfy the properties

@( s)u (’5 5) = 2m @(E 5)v (EL) —2m,
a(k, s)y"u(k,s) = 2k o(k, s)y"v(k, s) = 2k (128)
ua(E,S)ﬂﬁ(EaS):(%Jr )as va(k, 5)va(k, ) = (;é m)ags

s==+

N

with £ = wy, = V k2 +m?2. Then, a general solution to the Dirac equation including creation and
annihilation operators can be written as:

-~ d3k 1 — ~ = . 7o — — . PG
2\ —iwpt+ik-T oF iwpt—ik-T
D¢, ) / 5 B §:1 [u(kz,s)b(kz,s)e v ok, s) di(E, s)e ] (129)

SZE

The operators ZT(E, s), B(E) respectively create and annihilate a spin—f particle (for example, an

electron) out of the vacuum with momentum & and helicity s. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation relations for ¢ which means
that the creation-annihilation operators satisfy the algebra’

— —

{b(k,s),bT(k", s} = 6(k—k")ds,
{b(k,s),b(k', s} = {bl(k,s),bI(k" )} =0. (130)

In the case of d(k, s), d'(k, s) we have a set of creation-annihilation operators for the correspond-
ing antiparticles (for example positrons). This is clear if we notice that dT(E, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave function va(E, s). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuum (see
Fig. 2). The creation-annihilation operators for antiparticles also satisfy the fermionic algebra

{d(E. ), dI(
{d(F, ). d

All other anticommutators between b(k, s), bt (k, s) and d(k, s), d'(k, s) vanish.

The Hamiltonian operator for the Dirac field is

E )} = 5(E_E/)5ss’v
d(k',s"}y = {di(k,s),d"(E" )} =o0. (131)

~ 1 3
gl d°k

. [bT(E, s)b(k, ) — d(E, s)d (k, s)] . (132)

At this point we realize again of the necessity of quantizing the theory using anticommutators instead
of commutators. Had we use canonical commutation relations, the second term inside the integral in
(132) would give the number operator dT(E, s)d(E, s) with a minus sign in front. As a consequence the
Hamiltonian would be unbounded from below and we would be facing again the instability of the theory

5To simplify notation, and since there is no risk of confusion, we drop from now on the hat to indicate operators.
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already noticed in the context of relativistic quantum mechanics. However, because of the anticommuta-
tion relations (131), the Hamiltonian (132) takes the form

Bk 1 - - . . . .
Z / 55— bT(k,s)b(k,s) +wde(k,s)d(k;,s)] - 2/d kwpd(0).  (133)

Wk

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein-Gordon field, the vacuum energy is
negative. In section 9.2 we will see that in certain type of theories called supersymmetric, where the
number of bosonic and fermionic degrees of freedom is the same, there is a cancellation of the vacuum
energy. The divergent contribution can be removed by the normal order prescription

. 3 L } .
H:= Zl/(d Pl [wkb*(hs)b(k,s)+wkd*(/<:,s)d(/-c,s) : (134)

27[')3 2wk

Finally, let us mention that using the Dirac equation it is easy to prove that there is a conserved
four-current given by

gt =y, uj* = 0. (135)

As we will explain further in sec. 6 this current is associated to the invariance of the Dirac Lagrangian
under the global phase shift ) — €??1). In electrodynamics the associated conserved charge

Q= e/d3xj0 (136)
is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetic fields E, B. These can be
expressed in terms of the scalar and vector potential (¢, A)

. Y\
E = _VSO - 57
B = VxA. (137)

From these equations it follows that there is an ambiguity in the definition of the potentials given by the
gauge transformations

o(t, T) = o(t, T) + —e(t, T), A(t,T) — A(t, &) — Ve(t, T). (138)

-,

Classically (¢, A) are seen as only a convenient way to solve the Maxwell equations, but without physical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz invariant form using the
four-vector gauge potential A* = (¢, A) and the antisymmetric rank-two tensor: F},, = 9,4, — 0, A,..
Maxwell’s equations become

OuFH = gt
Y, Fyy = 0, (139)
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where the four-current j* = (p, 7) contains the charge density and the electric current. The field strength
tensor F),,, and the Maxwell equations are invariant under gauge transformations (138), which in covari-
ant form read

A, —s Ayt D (140)

Finally, the equations of motion of charged particles are given, in covariant form, by

d 12
m% — eFMy,, (141)

where e is the charge of the particle and u*(7) its four-velocity as a function of the proper time.

The physical role of the vector potential becomes manifest only in Quantum Mechanics. Using
the prescription of minimal substitution p'— p'— e A, the Schridinger equation describing a particle with
charge e moving in an electromagnetic field is

0 = [—1 (6 . ie/T)Q n 64 v, (142)
2m
Because of the explicit dependence on the electromagnetic potentials ¢ and A, this equation seems
to change under the gauge transformations (138). This is physically acceptable only if the ambiguity
does not affect the probability density given by |W(¢,#)|?. Therefore, a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservable) phase of the wave function.
This is indeed what happens: the Schrédinger equation (142) is invariant under the gauge transformations
(138) provided the phase of the wave function is transformed at the same time according to

U(t,7) — e DY (t, 7). (143)

Aharonov-Bohm effect. This interplay between gauge transformations and the phase of the wave
function give rise to surprising phenomena. The first evidence of the role played by the electromagnetic
potentials at the quantum level was pointed out by Yakir Aharonov and David Bohm [20]. Let us consider
a double slit experiment as shown in Fig. 7, where we have placed a shielded solenoid just behind the
first screen. Although the magnetic field is confined to the interior of the solenoid, the vector potentlal is
nonvanishing also outside. Of course the value of A outside the solenoid is a pure gauge, i.e. VxA=0,
however because the region outside the solenoid is not simply connected the vector potential cannot be
gauged to zero everywhere. If we denote by \1150) and \II;O) the wave functions for each of the two electron
beams in the absence of the solenoid, the total wave function once the magnetic field is switched on can
be written as

v o= el Aﬁdf\pgo) 4 etelr, ,&dfq/go)

eiefrl A-dz |:\I;g0) + eiefrg-df\lléo) ’ (144)

where I'y and I'y are two curves surrounding the solenoid from different sides, and I' is any closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending on the
value of the vector potential outside the solenoid as

U =exp [ie% A. d:i"} . (145)
r

Because of the change in the relative phase of the electron wave functions, the presence of the vector
potential becomes observable even if the electrons do not feel the magnetic field. If we perform the
double-slit experiment when the magnetic field inside the solenoid is switched off we will observe the
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Electron = . S

source

Screen

Fig. 7: Illustration of an interference experiment to show the Aharonov-Bohm effect. S represent the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However if now the magnetic field is switched on,
because of the phase (144), a change in the interference pattern will appear. This is the Aharonov-Bohm
effect.

The first question that comes up is what happens with gauge invariance. Since we said that A
can be changed by a gauge transformation it seems that the resulting interference patters might depend
on the gauge used. Actually, the phase U in (145) is independent of the gauge although unlike other
gauge-invariant quantities like E and B, is nonlocal. Notice that, since V x A = 0 outside the solenoid,
the value of U does not change under continuous deformations of the closed curve I', so long as it does
not cross the solenoid.

The Dirac monopole. It is very easy to check that the vacaum Maxwell equations remain invariant
under the transformation

E—iB — ¢(E —iB), 9 € [0,27] (146)

which, in particular, for = 7 interchanges the electric and the magnetic fields: E - B B— —E.
This duality symmetry is however broken in the presence of electric sources. Nevertheless the Maxwell
equations can be “completed” by introducing sources for the magnetic field (p;,, J»,) in such a way that
the duality (146) is restored when supplemented by the transformation

p—ipm — €%(p—ipm), T—ijm — €7 —ijm). (147)

Again for 6 = 7 /2 the electric and magnetic sources get interchanged.

In 1931 Dirac [21] studied the possibility of finding solutions of the completed Maxwell equation
with a magnetic monopoles of charge g, i.e. solutions to

= g0(%). (148)

441

Away from the position of the monopole

B
. B = 0 and the magnetic field can be still derived locally
from a vector potential A according to B =V x

A. However, the vector potential cannot be regular
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o

Dirac string

Fig. 8: The Dirac monopole.

everywhere since otherwise Gauss law would imply that the magnetic flux threading a closed surface
around the monopole should vanish, contradicting (148).

We look now for solutions to Eq. (148). Working in spherical coordinates we find

g
B, = G B, =By =0. (149)
Away from the position of the monopole (Z # 0) the magnetic field can be derived from the vector
potential

A= Ll A== (150)
[z 2

As expected we find that this vector potential is actually singular around the half-line § = 7 (see Fig.

8). This singular line starting at the position of the monopole is called the Dirac string and its position

changes with a change of gauge but cannot be eliminated by any gauge transformation. Physically we

can see it as an infinitely thin solenoid confining a magnetic flux entering into the magnetic monopole

from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that the presence of
monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are gauge
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fact that
the Dirac string does not pose any consistency problem as far as it does not produce any physical effect,
i.e. if its presence turns out to be undetectable. From our discussion of the Aharonov-Bohm effect we
know that the wave function of charged particles pick up a phase (145) when surrounding a region where
magnetic flux is confined (for example the solenoid in the Aharonov-Bohm experiment). As explained
above, the Dirac string associated with the monopole can be seen as a infinitely thin solenoid. Therefore
the Dirac string will be unobservable if the phase picked up by the wave function of a charged particle is
equal to one. A simple calculation shows that this happens if

elcd =1 — eg = 2mn with n € Z. (151)
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Interestingly, this discussion leads to the conclusion that the presence of a single magnetic monopoles
somewhere in the Universe implies for consistency the quantization of the electric charge in units of 2?”,
where ¢ the magnetic charge of the monopole.

Quantization of the electromagnetic field. We now proceed to the quantization of the electro-

magnetic field in the absence of sources p = 0, J’= 0. In this case the Maxwell equations (139) can be
derived from the Lagrangian density

1 1 /- -
EMaxwell = _ZF;LUF“V = 5 (E2 - BQ) . (152)

Although in general the procedure to quantize the Maxwell Lagrangian is not very different from the
one used for the Klein-Gordon or the Dirac field, here we need to deal with a new ingredient: gauge
invariance. Unlike the cases studied so far, here the photon field A, is not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transformations A, — A, +
Oue. A first consequence of this symmetry is that the theory has less physical degrees of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the electro-
magnetic potential before quantization. This can be done in several ways, for example by imposing the
Lorentz gauge fixing condition

9, A" = 0. (153)

Notice that this condition does not fix completely the gauge freedom since Eq. (153) is left invariant
by gauge transformations satisfying 9,,0"c = 0. One of the advantages, however, of the Lorentz gauge
is that it is covariant and therefore does not pose any danger to the Lorentz invariance of the quantum
theory. Besides, applying it to the Maxwell equation 0, F*" = 0 one finds

0= 0,0" A" — , (9,A") = 0,0 A", (154)

which means that since A, satisfies the massless Klein-Gordon equation the photon, the quantum of the
electromagnetic field, has zero mass.

Once gauge invariance is fixed A, is expanded in a complete basis of solutions to (154) and the
canonical commutation relations are imposed

BE 1 - - T S S T
= > / 77 e,t(k,A)a(k,/\)e’”k't“k“+eu(kz,)\)*a*(k,)\)e”k't’l“ (155)
A==+1

where A = +1 represent the helicity of the photon, and eu(E, A) are solutions to the equations of motion
with well defined momentum an helicity. Because of (153) the polarization vectors have to be orthogonal
to ky,

ke, (B, ) = kte, (K, \)* = 0. (156)
The canonical commutation relations imply that
[@(k, ), al (K", \)] = (2 m)*(2]
L) = @tk ) a (k = (157)

Therefore a(k, \), @' (k, ) form a set of creation-annihilation operators for photons with momentum &
and helicity .

Behind the simple construction presented above there are a number of subleties related with gauge
invariance. In particular the gauge freedom seem to introduce states in the Hilbert space with negative
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probability. A careful analysis shows that when gauge invariance if properly handled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textbooks [1]-
[11].

Coupling gauge fields to matter. Once we know how to quantize the electromagnetic field we
consider theories containing electrically charged particles, for example electrons. To couple the Dirac
Lagrangian to electromagnetism we use as guiding principle what we learned about the Schrodinger
equation for a charged particle. There we saw that the gauge ambiguity of the electromagnetic potential
is compensated with a U(1) phase shift in the wave function. In the case of the Dirac equation we know
that the Lagrangian is invariant under 1) — €‘“*1), with ¢ a constant. However this invariance is broken
as soon as one identifies ¢ with the gauge transformation parameter of the electromagnetic field which
depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order to promote the global U(1)
symmetry into a local one, 1) — e~“=(®)4),_ it suffices to replace the ordinary derivative 0, by a covariant
one D, satisfying

Du [e—ies(r)w} — e—ies(m)D’ud}' (158)
This covariant derivative can be constructed in terms of the gauge potential A, as
D, = 0, +ieA,. (159)

The Lagrangian of a spin—% field coupled to electromagnetism is written as

1 -
EQED — _ZFHVFMV + 7/1(@ - m)u}v (160)
invariant under the gauge transformations
p——— TS A, — Ay 4 9,e(x). (161)

Unlike the theories we have seen so far, the Lagrangian (160) describe an interacting theory. By
plugging (159) into the Lagrangian we find that the interaction between fermions and photons to be

LD = —ed, Py, (162)

As advertised above, in the Dirac theory the electric current four-vector is given by j# = e)yH).

The quantization of interacting field theories poses new problems that we did not meet in the case
of the free theories. In particular in most cases it is not possible to solve the theory exactly. When this
happens the physical observables have to be computed in perturbation theory in powers of the coupling
constant. An added problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables are plagued with infinities that should be taken care of. We
will go back to this problem in section 8.

Nonabelian gauge theories. Quantum electrodynamics (QED) is the simplest example of a gauge
theory coupled to matter based in the abelian gauge symmetry of local U(1) phase rotations. However, it
is possible also to construct gauge theories based on nonabelian groups. Actually, our knowledge of the
strong and weak interactions is based on the use of such nonabelian generalizations of QED.

Let us consider a gauge group G with generators 7%, a = 1, ..., dim G satisfying the Lie algebra®

[T, T° = ifebeTe. (163)

®Some basics facts about Lie groups have been summarized in Appendix A.
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A gauge field taking values on the Lie algebra of G can be introduced A, = AT which transforms
under a gauge transformations as

1 el a
A, — —@UG#U* +UA U, U = X' (@1 (164)

where g is the coupling constant. The associated field strength is defined as
Ff, = 0,A% — 0,A% + gf* AL AS. (165)

Notice that this definition of the £, reduces to the one used in QED in the abelian case when f abe — ,
In general, however, unlike the case of QED the field strength is not gauge invariant. In terms of F},, =
F;, T* it transforms as

F,, — UF, U (166)

The coupling of matter to a nonabelian gauge field is done by introducing again a covariant deriva-
tive. For a field in a representation of G

b —UD (167)
the covariant derivative is given by
D,® = 09,® —igA;T"®. (168)

With the help of this we can write a generic Lagrangian for a nonabelian gauge field coupled to scalars
¢ and spinors 1 as

L= —%FﬁuF“”“ + iy + D DPé — o [Mi(¢) + ivs Ma(e)] ¥ — V(). (169)

In order to keep the theory renormalizable we have to restrict M (¢) and Ma(¢) to be at most linear in ¢
whereas V'(¢) have to be at most of quartic order. The Lagrangian of the Standard Model is of the form
(169).

4.4 Understanding gauge symmetry
In classical mechanics the use of the Hamiltonian formalism starts with the replacement of generalized
velocities by momenta

oL ) )
Pi= 5 — 4 = Gi(q,p)- (170)

)

Most of the times there is no problem in inverting the relations p; = p;(q, ¢). However in some systems
these relations might not be invertible and result in a number of constraints of the type

fa(q7p):0> azla"'le- (171)

These systems are called degenerate or constrained [23,24].

The presence of constraints of the type (171) makes the formulation of the Hamiltonian formalism
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since the
addition of any linear combination of the constraints do not modify its value. Secondly, one has to make
sure that the constraints are consistent with the time evolution in the system. In the language of Poisson
brackets this means that further constraints have to be imposed in the form

{fa, H} = 0. (172)
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Following [23] we use the symbol ~ to indicate a “weak” equality that holds when the constraints
fa(q,p) = 0 are satisfied. Notice however that since the computation of the Poisson brackets involves
derivatives, the constraints can be used only after the bracket is computed. In principle the conditions
(172) can give rise to a new set of constraints g,(q,p) = 0, b = 1,..., No. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this finishes
when a set of constraints is found that do not require any further constraint to be preserved by the time
evolution’.

Once we find all the constraints of a degenerate system we consider the so-called first class con-
straints ¢, (q,p) = 0, a = 1,..., M, which are those whose Poisson bracket vanishes weakly

{(ba: (bb} = Cabc¢c ~ 0. (173)
The constraints that do not satisfy this condition, called second class constraints, can be eliminated by
modifying the Poisson bracket [23]. Then the total Hamiltonian of the theory is defined by

M
Hr =pigi — L+ Y _ A(t)éa- (174)

a=1

What has all this to do with gauge invariance? The interesting answer is that for a singular system
the first class constraints ¢, generate gauge transformations. Indeed, because {¢,, ¢} ~ 0 ~ {¢q, H}
the transformations

M
q — 4 +Z€a(t){%‘7¢a}7

M
pi — pit+ Y ca(t){pi,da} (175)

leave invariant the state of the system. This ambiguity in the description of the system in terms of
the generalized coordinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

FL . L . 0L
04:04; 7 = " 0404, 7 " dgi’

(176)
we find that order to determine the accelerations in terms of the positions and velocities the matrix 83 an,
has to be invertible. However, the existence of constraints (171) precisely implies that the determinant
of this matrix vanishes and therefore the time evolution is not uniquely determined in terms of the initial
conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian

1
L=— /d3 ., FH. (177)
The generalized momentum conjugate to A, is given by
oL
b= —— = F¥, 178
" A e

In particular for the time component we find the constraint 7 = 0. The Hamiltonian is given by

H = /d% [hdp A, — L] = /d% [; (E2 + 52) + 7080 Ag + AoV - E| . (179)

"In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this case
the system itself is inconsistent as it is the case with the Lagrangian L(q, ¢) = q.
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Requiring the consistency of the constraint 7% = 0 we find a second constraint
{7° H} ~ 8y7° + V - E = 0. (180)

Together with the first constraint 7% = 0 this one implies Gauss’ law V - E = 0. These two constrains
have vanishing Poisson bracket and therefore they are first class. Therefore the total Hamiltonian is given
by

Hr=H+ /d% [Al(g;)ﬂo + X (2)V - E} , (181)

where we have absorbed A in the definition of the arbitrary functions Aj(z) and A\o(x). Actually, we
can fix part of the ambiguity taking A; = 0. Notice that, because A has been included in the multipliers,
fixing A1 amounts to fixing the value of Ag and therefore it is equivalent to taking a temporal gauge. In
this case the Hamiltonian is

1/= ~ .
Hr = /d% [2 <E2 + B2) +e(2)V - E} (182)
and we are left just with Gauss’ law as the only constraint. Using the canonical commutation relations
{A;(t, %), Ej(t,2")} = 6;;6(Z — &) (183)

we find that the remaining gauge transformations are generated by Gauss’ law
§A; = {Ai,/d%’eﬁ - E} = e, (184)

while leaving Ay invariant, so for consistency with the general gauge transformations the function &(x)
should be independent of time. Notice that the constraint V - E = 0 can be implemented by demanding
V - A = 0 which reduces the three degrees of freedom of A to the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the constraint V - E = 0 has to be
imposed on the physical states |phys). This is done by defining the following unitary operator on the
Hilbert space

U(e) = exp (i/d%g(f)ﬁ : E) . (185)

By definition, physical states should not change when a gauge transformations is performed. This is
implemented by requiring that the operator U (¢) acts trivially on a physical state

U(e)|phys) = |phys) = (V- E)|phys) = 0. (186)

In the presence of charge density p, the condition that physical states are annihilated by Gauss’ law
changes to (V - E — p)|phys) = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding the
real role of gauge invariance [25]. As we have learned, the existence of a gauge symmetry in a theory
reflects a degree of redundancy in the description of physical states in terms of the degrees of freedom
appearing in the Lagrangian. In Classical Mechanics, for example, the state of a system is usually
determined by the value of the canonical coordinates (g;, p;). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated by the first class constraints
change the value of ¢; and p; withoug changing the physical state. In the case of Maxwell theory for every
physical configuration determined by the gauge invariant quantities E, B there is an infinite number of
possible values of the vector potential that are related by gauge transformations 0 A, = ,.¢.
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Fig. 9: Compactification of the real line (a) into the circumference S! (b) by adding the point at infinity.

In the quantum theory this means that the Hilbert space of physical states is defined as the result of
identifying all states related by the operator U (&) with any gauge function () into a single physical state
|phys). In other words, each physical state corresponds to a whole orbit of states that are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy in the states a further
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodynamics
the conditions Ay = 0, V - A = 0 selects a value of the gauge potential among all possible ones giving
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topology of the gauge group plays
an important physical role. To illustrate the point let us first deal with a toy model of a U(1) gauge theory
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalism gauge transformations
g(Z) are functions defined on R with values on the gauge group U(1)

g:R—U(1). (187)

We assume that g(x) is regular at infinity. In this case we can add to the real line R the point at infinity
to compactify it into the circumference S' (see Fig. 9). Once this is done g(z) are functions defined on
S1 with values on U(1) = S! that can be parametrized as

g:8'—U), g(z) = @), (188)

with z € [0, 27].
Because S! does have a nontrivial topology, g(z) can be divided into topological sectors. These
sectors are labelled by an integer number n € Z and are defined by

a2r) =a(0)+21n . (189)

Geometrically n gives the number of times that the spatial S' winds around the S' defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

¢ alw) (o) = 2mn (190)
Sl

where the integral is along the spatial S*.

In R? a similar situation happens with the gauge group® SU(2). If we demand g(%) € SU(2) to be
regular at infinity |#| — oo we can compactify R? into a three-dimensional sphere S®, exactly as we did
in 1+1 dimensions. On the other hand, the function ¢g(Z) can be written as

g(%) = a®(x)1 +d(z) - & (191)

8 Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.

32



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

and the conditions g(z)Tg(z) = 1, detg = 1 implies that (a°)? 4+ @2 = 1. Therefore SU(2) is a
three-dimensional sphere and g(z) defines a function

g:8% — 53 (192)

As it was the case in 1+1 dimensions here the gauge transformations g(z) are also divided into topolog-
ical sectors labelled this time by the winding number

1

n=53 . P e Tr [(97'0:9) (97 0i9) (97 0ig)] € Z. (193)

In the two cases analyzed we find that due to the nontrivial topology of the gauge group manifold
the gauge transformations are divided into different sectors labelled by an integer n. Gauge transforma-
tions with different values of n cannot be smoothly deformed into each other. The sector with n = 0
corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with gauge
group G and let us denote by G the set of all gauge transformations G = {g : S3 — G}. At the same
time we define Gy as the set of transformations in G that can be smoothly deformed into the identity. Our
theory will have topological sectors if

G/Go # 1. (194)

In the case of the electromagnetism we have seen that Gauss’ law annihilates physical states. For a
nonabelian theory the analysis is similar and leads to the condition

U(g0)Iphys) = exp [ [ #ox@v- E] Iphys) = [phys), (195)

where go(7) = eX*(@)T ig in the connected component of the identity Gy. The important point to realize
here is that only the elements of Gy can be written as exponentials of the infinitesimal generators. Since
this generators annihilate the physical states this implies that ¢/ (go)|phys) = |phys) only when gy € Go.

What happens then with the other topological sectors? If g € G /G there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theory. However since ¢ is not in the
connected component of the identity, it cannot be written as the exponential of Gauss’ law. Still gauge
invariance is preserved if U/(g) only changes the overall global phase of the physical states. For example,
if g; is a gauge transformation with winding number n = 1

U(g1)|phys) = €|phys). (196)

It is easy to convince oneself that all transformations with winding number n = 1 have the same value
of # modulo 27. This can be shown by noticing that if g(Z) has winding number n = 1 then g(Z) ! has
opposite winding number n = —1. Since the winding number is additive, given two transformations g,
g2 with winding number 1, g, ! g5 has winding number n = 0. This implies that

Iphys) = U(g7 L g2)|phys) = U(g1) U(g2)|phys) = €@~ |phys) (197)

and we conclude that #; = 62 mod 27. Once we know this it is straightforward to conclude that a gauge
transformation g,, (%) with winding number n has the following action on physical states

U(gy)|phys) = ¢ |phys), n € 7. (198)

To find a physical interpretation of this result we are going to look for similar things in other
physical situations. One of then is borrowed from condensed matter physics and refers to the quantum
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states of electrons in the periodic potential produced by the ion lattice in a solid. For simplicity we
discuss the one-dimensional case where the minima of the potential are separated by a distance a. When
the barrier between consecutive degenerate vacua is high enough we can neglect tunneling between
different vacua and consider the ground state |na) of the potential near the minimum located at x = na
(n € Z) as possible vacua of the theory. This vacuum state is, however, not invariant under lattice
translations

¢"Plna) = |(n + 1)a). (199)
However, it is possible to define a new vacuum state

k) = e *|na), (200)

nez
which under ¢/*P transforms by a global phase

6ia13|k,> _ Zefikna’(n + 1)CL> — eika|k>' (201)
nez

This ground state is labelled by the momentum & and corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabelian gauge theories. The vacuum
state labelled by 6 plays a role similar to the Bloch wave function for the periodic potential with the
identification of 6 with the momentum k. To make this analogy more precise let us write the Hamiltonian
for nonabelian gauge theories

H= ;/d?’x (Fa+ Fa+ Ba- Ba) = ;/d?’x (B B+ Ba- Ba), (202)
where we have used the expression of the canonical momenta 7 and we assume that the Gauss’ law
constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the brackets as
the kinetic energy 1" = %ﬁa -7, and the second term as the potential energy V = %éa . Ea. Since V>0
we can identify the vacua of the theory as those A for which V = 0, modulo gauge transformations. This
happens wherever Aisa pure gauge. However, since we know that the gauge transformations are labelled
by the winding number we can have an infinite number of vacua which cannot be continuously connected
with one another using trivial gauge transformations. Taking a representative gauge transformation gy, (%)
in the sector with winding number n, these vacua will be associated with the gauge potentials

N 1 I o
A= —@gn(m)Vgn(x) L (203)

modulo topologically trivial gauge transformations. Therefore the theory is characterized by an infinite
number of vacua |n) labelled by the winding number. These vacua are not gauge invariant. Indeed, a
gauge transformation with n = 1 will change the winding number of the vacua in one unit

U(gr)n) = [n +1). (204)

Nevertheless a gauge invariant vacuum can be defined as

10) =) e ), with § € R (205)
nel
satisfying
U(g1)10) = e”10). (206)
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We have concluded that the nontrivial topology of the gauge group have very important physi-
cal consequences for the quantum theory. In particular it implies an ambiguity in the definition of the
vacuum. Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangian for
the nonabelian version of Maxwell theory we only consider the term F7, F'#”“. However this is not the
only Lorentz and gauge invariant term that contains just two derivatives. We can write the more general
Lagrangian

£ = —Lpo e 99 po fuw 207
4w Co3op2 ’ (207)
where ﬁ;}y is the dual of the field strength defined by

na 1 oA

Fuy = §€uua)\F . (208)

The extra term in (207), proportional to Ee. B9 is actually a total derivative and does not change the
equations of motion or the quantum perturbation theory. Nevertheless it has several important physical
consequences. One of them is that it violates both parity P and the combination of charge conjugation
and parity C'P. This means that since strong interactions are described by a nonabelian gauge theory
with group SU(3) there is an extra source of C'P violation which puts a strong bound on the value of 6.
One of the consequences of a term like (207) in the QCD Lagrangian is a nonvanishing electric dipole
moment for the neutron [26]. The fact that this is not observed impose a very strong bound on the value
of the #-parameter

] <107° (209)

From a theoretical point of view it is still to be fully understood why 6 either vanishes or has a very small
value.

Finally, the #-vacuum structure of gauge theories that we found in the Hamiltonian formalism can
be also obtained using path integral techniques form the Lagrangian (207). The second term in Eq. (207)
gives then a contribution that depends on the winding number of the corresponding gauge configuration.

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the final aim of Quantum Field Theory
is the calculation of observables. Most of the information we have about the physics of subatomic
particles comes from scattering experiments. Typically, these experiments consist of arranging two or
more particles to collide with a certain energy and to setup an array of detectors, sufficiently far away
from the region where the collision takes place, that register the outgoing products of the collision and
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechanical amplitudes
and how these amplitudes themselves can be evaluated in perturbative Quantum Field Theory. We keep
our discussion rather heuristic and avoid technical details that can be found in standard texts [2]- [11].
The techniques described will be illustrated with the calculation of the cross section for Compton scat-
tering at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision experiment where two particles collide

to produce again two particles in the final state. The aim of such an experiments is a direct measurement

of the number of particles per unit time %(9, ) registered by the detector flying within a solid angle

d€Q in the direction specified by the polar angles 6, ¢ (see Fig. 10). On general grounds we know that
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detector

detector

Fig. 10: Schematic setup of a two-to-two-particles single scattering event in the center of mass reference frame.

this quantity has to be proportional to the flux of incoming particles®, fi,. The proportionality constant
defines the differential cross section

dN do

In natural units f;, has dimensions of (length)~3, and then the differential cross section has dimensions
of (length)?. It depends, apart from the direction (6, ¢), on the parameters of the collision (energy, impact
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the products of the collision. It is
also physically interesting to quantify how effective the interaction between the particles is to produce
a nontrivial dispersion. This is measured by the total cross section, which is obtained by integrating the
differential cross section over all directions

1 2m do
a:/ d(cos@)/ dp —(0, ). (211)
1 0 dQ?
To get some physical intuition of the meaning of the total cross section we can think of the classical
scattering of a point particle off a sphere of radius R. The particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere and a calculation of the total cross section yields
o = mR2. This is precisely the cross area that the sphere presents to incoming particles.

In Quantum Mechanics in general and in Quantum Field Theory in particular the starting point for
the calculation of cross sections is the probability amplitude for the corresponding process. In a scattering
experiment one prepares a system with a given number of particles with definite momenta p7, . . . , pj,. In
the Heisenberg picture this is described by a time independent state labelled by the incoming momenta
of the particles (to keep things simple we consider spinless particles) that we denote by

D1y .-+, Pn;in). (212)

This is defined as the number of particles that enter the interaction region per unit time and per unit area perpendicular to
the direction of the beam.
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On the other hand, as a result of the scattering experiment a number k of particles with momenta

p1’,...,px are detected. Thus, the system is now in the “out” Heisenberg picture state
Py, .., pis out) (213)
labelled by the momenta of the particles detected at late times. The probability amplitude of detecting k
particles in the final state with momenta p7’, ..., pi’ in the collision of n particles with initial momenta
D1, - - - » P, defines the S-matrix amplitude
S(in — out) = (py’, ..., px’;out|py, . . ., P;in). (214)

It is very important to keep in mind that both the (212) and (213) are time-independent states in
the Hilbert space of a very complicated interacting theory. However, since both at early and late times the
incoming and outgoing particles are well apart from each other, the “in” and “out” states can be thought
as two states |p1, ..., p,) and |p1’, ..., i) of the Fock space of the corresponding free theory in which
the coupling constants are zero. Then, the overlaps (214) can be written in terms of the matrix elements
of an S-matrix operator S acting on the free Fock space

<ﬁlla cee 7ﬁk/; Ouﬂﬁla v 7ﬁn7 1Il> = <ﬁlla o 7ﬁk’,‘5’ﬁl7 s aﬁn) (215)

The operator Sis unitary, ST = S, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do not interact at all and the
system is left in the same initial state. Then it is useful to write the .S-matrix operator as

S=1+iT, (216)

where 1 represents the identity operator. In this way, all nontrivial interactions are encoded in the matrix
elements of the T-operator (p1’, ..., pi'|¢T|p1,- - ., Pn). Since momentum has to be conserved, a global
delta function can be factored out from these matrix elements to define the invariant scattering amplitude

M

<ﬁ1/,...,ﬁk/‘if‘ﬁl,...,pn> = 27T 45 ( Z Di — pr) plw"aﬁn;ﬁl,a"'vﬁk,) (217)

initial final

Total and differential cross sections can be now computed from the invariant amplitudes. Here we
consider the most common situation in which two particles with momenta p} and 5 collide to produce
a number of particles in the final state with momenta p;’. In this case the total cross section is given by

1 d3 / A
= ) _
(2wp; ) (2wp, ) [V12] [H (27 )SQW,I‘MHf‘ 2m)s! (m +tp— ) pl> 218)

final
states states

where ¥12 is the relative velocity of the two scattering particles. The corresponding differential cross
section can be computed by dropping the integration over the directions of the final momenta. We will
use this expression later in Section 5.3 to evaluate the cross section of Compton scattering.

We seen how particle cross sections are determined by the invariant amplitude for the correspond-
ing proccess, i.e. S-matrix amplitudes. In general, in Quantum Field Theory it is not possible to compute
exactly these amplitudes. However, in many physical situations it can be argued that interactions are weak
enough to allow for a perturbative evaluation. In what follows we will describe how S-matrix elements
can be computed in perturbation theory using Feynman diagrams and rules. These are very convenient
bookkeeping techniques allowing both to keep track of all contributions to a process at a given order in
perturbation theory, and computing the different contributions.
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5.2 Feynman rules

The basic quantities to be computed in Quantum Field Theory are vacuum expectation values of products
of the operators of the theory. Particularly useful are time-ordered Green functions,

<Q]T[Ol(:p1)...0n($n) ), (219)
where |Q2) is the the ground state of the theory and the time ordered product is defined
T|0i(@)05(y)| = 02" = y)0u(2) 05 (y) + 0 — =)0 () Oi(x). (220)

The generalization to products with more than two operators is straightforward: operators are always
multiplied in time order, those evaluated at earlier times always to the right. The interest of these kind of
correlation functions lies in the fact that they can be related to .S-matrix amplitudes through the so-called
reduction formula. To keep our discussion as simple as possible we will not derived it or even write
it down in full detail. Its form for different theories can be found in any textbook. Here it suffices to
say that the reduction formula simply states that any S-matrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function. Morally speaking

— —

(DY, ... Pm;0ut|pl, . .., P in)
N8 (221)

/d4$1 e /d4yn<Q‘T |:(Z§(,Z'1)T .. ¢(xm)T¢(y1) .. (b(yn) |Q> eipll'xl . e*ipn'yn7

where ¢(x) is the field whose elementary excitations are the particles involved in the scattering.

The reduction formula reduces the problem of computing S-matrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantities are easy to compute exactly in the
free theory. For an interacting theory the situation is more complicated, however. Using path integrals,
the vacuum expectation value of the time-ordered product of a number of operators can be expressed as

/%ﬁ%ﬁ O1(z1) ... Op(y) ciS[¢:0']
(QUT|O1(1) ... On ) |12) = } | o)
/ D¢t S199"]

For an theory with interactions, neither the path integral in the numerator or in the denominator is Gaus-
sian and they cannot be calculated exactly. However, Eq. (222) is still very useful. The action S[¢, quf]
can be split into the free (quadratic) piece and the interaction part

S[¢, ¢'] = Sol¢, '] + Sins[, ¢']. (223)

All dependence in the coupling constants of the theory comes from the second piece. Expanding now
exp|iSint] in power series of the coupling constant we find that each term in the series expansion of both
the numerator and the denominator has the structure

/ D6 Dt [ . .}eiSO[WL (224)

where “...” denotes certain monomial of fields. The important point is that now the integration measure
only involves the free action, and the path integral in (224) is Gaussian and therefore can be computed
exactly. The same conclusion can be reached using the operator formalism. In this case the correlation
function (219) can be expressed in terms of correlation functions of operators in the interaction picture.
The advantage of using this picture is that the fields satisfy the free equations of motion and therefore
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can be expanded in creation-annihilation operators. The correlations functions are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calculate S-matrix amplitudes in a perturbative
series in the coupling constants of the field theory. This can be done using Feynman diagrams and rules,
a very economical way to compute each term in the perturbative expansion of the S-matrix amplitude
for a given process. We will not detail the the construction of Feynman rules but just present them
heuristically.

For the sake of concreteness we focus on the case of QED first. Going back to Eq. (160) we
expand the covariant derivative to write the action

Somn = [ e [~ L Ful T - m)b + 04, @25)

The action contains two types of particles, photons and fermions, that we represent by straight and wavy
lines respectively

The arrow in the fermion line does not represent the direction of the momentum but the flux of (negative)
charge. This distinguishes particles form antiparticles: if the fermion propagates from left to right (i.e.
in the direction of the charge flux) it represents a particle, whereas when it does from right to left it
corresponds to an antiparticle. Photons are not charged and therefore wavy lines do not have orientation.

Next we turn to the interaction part of the action containing a photon field, a spinor and its conju-
gate. In a Feynman diagram this corresponds to the vertex

Now, in order to compute an S-matrix amplitude to a given order in the coupling constant e for a process
with certain number of incoming and outgoing asymptotic states one only has to draw all possible dia-
grams with as many vertices as the order in perturbation theory, and the corresponding number and type
of external legs. It is very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the conservation of the
electric charge. In addition one should only consider diagrams that are topologically non-equivalent, i.e.
that they cannot be smoothly deformed into one another keeping the external legs fixed!©.

To show in a practical way how Feynman diagrams are drawn, we consider Bhabha scattering, i.e.
the elastic dispersion of an electron and a positron:

e+—|—e_—>e++e_.

Our problem is to compute the S-matrix amplitude to the leading order in the electric charge. Because
the QED vertex contains a photon line and our process does not have photons either in the initial or the

From the point of view of the operator formalism, the requirement of considering only diagrams that are topologically
nonequivalent comes from the fact that each diagram represents a certain Wick contraction in the correlation function of
interaction-picture operators.
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final states we find that drawing a Feynman diagram requires at least two vertices. In fact, the leading
contribution is of order e? and comes from the following two diagrams, each containing two vertices:

et et et et

e e e e

Incoming and outgoing particles appear respectively on the left and the right of this diagram. Notice
how the identification of electrons and positrons is done comparing the direction of the charge flux with
the direction of propagation. For electrons the flux of charges goes in the direction of propagation,
whereas for positrons the two directions are opposite. These are the only two diagrams that can be
drawn at this order in perturbation theory. It is important to include a relative minus sign between
the two contributions. To understand the origin of this sign we have to remember that in the operator
formalism Feynman diagrams are just a way to encode a particular Wick contraction of field operators
in the interaction picture. The factor of —1 reflects the relative sign in Wick contractions represented by
the two diagrams, due to the fermionic character of the Dirac field.

We have learned how to draw Feynman diagrams in QED. Now one needs to compute the con-
tribution of each one to the corresponding amplitude using the so-called Feynman rules. The idea is
simple: given a diagram, each of its building blocks (vertices as well as external and internal lines) has
an associated contribution that allows the calculation of the corresponding diagram. In the case of QED
in the Feynman gauge, we have the following correspondence for vertices and internal propagators:

o - B = <Z )
p—mtic)pg,
— i,
W Ao~ Y - 2#
pe+e
B
—ie~t (2m)4s@
H = 2675a( ) (p1 + p2 + p3).
o

A change in the gauge would reflect in an extra piece in the photon propagator. The delta function
implementing conservation of momenta is written using the convention that all momenta are entering the
vertex. In addition, one has to perform an integration over all momenta running in internal lines with the

measure
dd
/ ( 2771)) - (226)
1

and introduce a factor of —1 for each fermion loop in the diagram!.

""'The contribution of each diagram comes also multiplied by a degeneracy factor that takes into account in how many ways
a given Wick contraction can be done. In QED, however, these factors are equal to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be done using the delta func-
tion at the vertices, leaving just a global delta function implementing the total momentum conservation in
the diagram [cf. Eq. (217)]. It is even possible that all integrations can be eliminated in this way. This is
the case when we have tree level diagrams, i.e. those without closed loops. In the case of diagrams with
loops there will be as many remaining integrations as the number of independent loops in the diagram.

The need to perform integrations over internal momenta in loop diagrams has important conse-
quences in Quantum Field Theory. The reason is that in many cases the resulting integrals are ill-defined,
i.e. are divergent either at small or large values of the loop momenta. In the first case one speaks of in-
frared divergences and usually they cancel once all contributions to a given process are added together.
More profound, however, are the divergences appearing at large internal momenta. These ultraviolet
divergences cannot be cancelled and have to be dealt through the renormalization procedure. We will
discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of operators, this would be all.
However, in the case of S-matrix amplitudes this is not the whole story. In addition to the previous
rules here one needs to attach contributions also to the external legs in the diagram. These are the wave
functions of the corresponding asymptotic states containing information about the spin and momenta of
the incoming and outgoing particles. In the case of QED these contributions are:

Were we computing time-ordered (amputated) correlation function of operators, this would be all.
However, in the case of S-matrix amplitudes this is not the whole story. In addition to the previous
rules here one needs to attach contributions also to the external legs in the diagram. These are the wave
functions of the corresponding asymptotic states containing information about the spin and momenta of
the incoming and outgoing particles. In the case of QED these contributions are:

Incoming fermion: o —»@ == Ua (P, )

Incoming antifermion: o —4—@ — Ua(D, s)

Outgoing fermion: @—» o' — U (P, S)

Outgoing antifermion: @—4— a = Va(p, s)

Incoming photon:  f W\@ = e#(lz, A)
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Outgoing photon: @'W\/ I — eM(E, A)*

Here we have assumed that the momenta for incoming (resp. outgoing) particles are entering (resp.
leaving) the diagram. It is important also to keep in mind that in the computation of S-matrix amplitudes
all external states are on-shell. In Section 5.3 we illustrate the use of the Feynman rules for QED with
the case of the Compton scattering.

The application of Feynman diagrams to carry out computations in perturbation theory is ex-
tremely convenient. It provides a very useful bookkeeping technique to account for all contributions to
a process at a given order in the coupling constant. This does not mean that the calculation of Feynman
diagrams is an easy task. The number of diagrams contributing to the process grows very fast with the
order in perturbation theory and the integrals that appear in calculating loop diagrams also get very com-
plicated. This means that, generically, the calculation of Feynman diagrams beyond the first few orders
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rules can be com-
puted for other interacting quantum field theories with scalar, vector or spinor fields. In the case of the
nonabelian gauge theories introduced in Section 4.3 we have:

1
.t - i = S — 5
B,J <]$—m—|—25>ﬁa ij
1 \QQQO000QQQ) »b = o
p°+e
B.Jj
@ = —igvga o
Qa,t
o,c
o = g f nH (p7 — pg) + permutations}
v,b
o,c A d
— —ig? [ fabe pode <n“"77")‘ — 77’”\77"") + permutations
Hs Q@ v, b
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It is not our aim here to give a full and detailed description of the Feynman rules for nonabelian
gauge theories. It suffices to point out that, unlike the case of QED, here the gauge fields can interact
among themselves. Indeed, the three and four gauge field vertices are a consequence of the cubic and
quartic terms in the action

1
S = - / d*z Fj, Fr e, (227)

where the nonabelian gauge field strength £, is given in Eq. (165). The self-interaction of the non-
abelian gauge fields has crucial dynamical consequences and its at the very heart of its success in de-
scribing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute the cross section for the
dispersion of photons by free electrons, the so-called Compton scattering:

Yk, A) + e (p,s) — (K, X)) +e” (0, 8).

In brackets we have indicated the momenta for the different particles, as well as the polarizations and
spins of the incoming and outgoing photon and electrons respectively. The first step is to identify all
the diagrams contributing to the process at leading order. Taking into account that the vertex of QED
contains two fermion and one photon leg, it is straightforward to realize that any diagram contributing to
the process at hand must contain at least two vertices. Hence the leading contribution is of order e2. A
first diagram we can draw is:

D, s p,s
k.7 A k/, A/
This is, however, not the only possibility. Indeed, there is a second possible diagram:
D, s KN
k, A p, s

It is important to stress that these two diagrams are topologically nonequivalent, since deforming one into
the other would require changing the label of the external legs. Therefore the leading O(e?) amplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find

i N2 = NI N IVE P+ F+me 7 -
H + X = (ie)*u(p’, s")¢' (k' \) mﬂka)\)u(%s)

P EN P . o)
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Because the leading order contributions only involve tree-level diagrams, there is no integration over
internal momenta and therefore we are left with a purely algebraic expression for the amplitude. To get
an explicit expression we begin by simplifying the numerators. The following simple identity turns out
to be very useful for this task

@ = —pa + 2(a-b)1. (229)

Indeed, looking at the first term in Eq. (228) we have

(B+ K+ me)d(k, Nu(Bis) = —¢(k, \)(p— me)u(p, s) + k¢(k, Nu(p, )
; Aulp; 5), (230)

where we have applied the identity (229) on the first term inside the parenthesis. The first term on
the right-hand side of this equation vanishes identically because of Eq. (125). The expression can be
further simplified if we restrict our attention to the Compton scattering at low energy when electrons are
nonrelativistic. This means that all spatial momenta are much smaller than the electron mass

191, &I, 157], k'] < me. (231)
In this approximation we have that p*, p’* ~ (m., 6) and therefore
p-e(k,\) =0. (232)

This follows from the absence of temporal photon polarization. Then we conclude that at low energies

(B+ I+ me)d(k, (B, s) = ke(k, Nu(P, s) (233)
and similarly for the second term in Eq. (228)
(B— K +me)d' (K N u(@,s) = —K'¢' (K, N) u(p,s). (234)

Next, we turn to the denominators in Eq. (228). As it was explained in Section 5.2, in computing
scattering amplitudes incoming and outgoing particles should have on-shell momenta,

pP=ml=p? and K =0=k"2 (235)
Then, the two denominator in Eq. (228) simplify respectively to
P+k)2—m2=p*+ k2 +2p-k—m2=2p-k=2wlk| — 25k (236)
and
(p—KY—m2=p* +E?+2p- kK —m?=-2p-k = —QwPU;'\ + 25 k. (237)
Working again in the low energy approximation (231) these two expressions simplify to
(p+k)> —m2 ~ 2m.|k|, (p—K)? —m? ~ —2m.|k'|. (238)

Putting together all these expressions we find that at low energies

X

Go) g, ) [¢ '(k wrﬁe@, N + (BN Ay (FNY (). (239)

2me 14 k]
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Using now again the identity (229) a number of times as well as the transversality condition of the
polarization vectors (156) we end up with a handier equation

}H»< ::i: (F ) e @mwﬂwyﬁ%ﬁmaﬁ

+ u(’, )¢k N (k' N)* (~ - ﬂ> u(p,s).  (240)

2me [kl k]

With a little bit of effort we can show that the second term on the right-hand side vanishes. First we
notice that in the low energy limit |k| ~ |k’|. If in addition we make use the conservation of momentum
k — k' = p’ — p and the identity (125)

(@', s")g(k, Ng' (k' N)* (k - kl) u(p; s)

T
z|%< )R N (B XY (F = me)u(F, 5). (241)

Next we use the identity (229) to take the term (p' — m,) to the right. Taking into account that in the low
energy limit the electron four-momenta are orthogonal to the photon polarization vectors [see Eq. (232)]
we conclude that

S E N X = mou(rs)
= (")~ mf(F N (BN (i 5) = 0 (42)

where the last identity follows from the equation satisfied by the conjugate positive-energy spinor,
u(p’, s") (' —me) = 0.
After all these lengthy manipulations we have finally arrived at the expression of the invariant
amplitude for the Compton scattering at low energies
. e? 7 IO Z\E | k
iM=—|e(k,\) -k, ) \up’, s')=u(p,s). (243)
Me ||
The calculation of the cross section involves computing the modulus squared of this quantity. For many
physical applications, however, one is interested in the dispersion of photons with a given polarization
by electrons that are not polarized, i.e. whose spins are randomly distributed. In addition in many
situations either we are not interested, or there is no way to measure the final polarization of the outgoing
electron. This is for example the situation in cosmology, where we do not have any information about
the polarization of the free electrons in the primordial plasma before or after the scattering with photons
(although we have ways to measure the polarization of the scattered photons).

To describe this physical situations we have to average over initial electron polarization (since we
do not know them) and sum over all possible final electron polarization (because our detector is blind to
this quantum number),

2
1 e? -
iMPP=< | —= | |ek,\)-€ (k'
iM] 2Qmm0‘( )

The factor of % comes from averaging over the two possible polarizations of the incoming electrons.
The sums in this expression can be calculated without much difficulty. Expanding the absolute value
explicitly

> EEI (" k)| = 3 jij [ o), 1] [a, o hup9)], @49

s:l:l— s:l:l—

2 > > ‘ﬂ(ﬁ'»s')kU(ﬁS) " (244)

41l 41
s=x3 s'==%3
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using that v*T = 494#~0 and after some manipulation one finds that

7—»//—»2 = N (= AN Y
S [ ks = | Y waldwss) | B | S uel a0 ) | B
s=+1g=+1 s=+1 s'=+1

= Tr |(B+mkG +mok|, (246)
where the final expression has been computed using the completeness relations in Eq. (128). The final
evaluation of the trace can be done using the standard Dirac matrices identities. Here we compute it
applying again the relation (229) to commute %’ and . Using that k2 = 0 and that we are working in the
low energy limit we have!?

Te [(p+ me) (8 + mo)k] = 2(p- k)(p - KT L ~ 8m?[F2 (247)

This gives the following value for the invariant amplitude

[ - - 2
M2 = 464‘6(]{3, A) (RN (248)
Plugging |iM|? into the formula for the differential cross section we get
do 1 — 2\ - - 2
= iM|2 = k) -€(k", ). 249
dQ  6472m? [iM <47rme) ‘6( )€k X) 249)

The prefactor of the last equation is precisely the square of the so-called classical electron radius r¢. In
fact, the previous differential cross section can be rewritten as

do 3 - - 2
— = — )€k, \N)* 250
o = amor|e(F,X) - (B XY 250)
where o7 is the total Thomson cross section
et 8T o
orT = 67ng = ?TCI' (251)

The result (250) is relevant in many areas of Physics, but its importance is paramount in the study
of the cosmological microwave background (CMB). Just before recombination the universe is filled by
a plasma of electrons interacting with photons via Compton scattering, with temperatures of the order of
1 keV. Electrons are then nonrelativistic (m,. ~ 0.5 MeV) and the approximations leading to Eq. (250)
are fully valid. Because we do not know the polarization state of the photons before being scattered by
electrons we have to consider the cross section averaged over incoming photon polarizations. From Eq.
(250) we see that this is proportional to

1 7 I ERNAY 1 * I\ Y
221:2 e(k,A) - € (K", X) 2);262-(1{,/\)@(/{,/\) (k" N)ei (k' N> (252)

2

The sum inside the brackets can be computed using the normalization of the polarization vectors, |€ (E A2 =
1, and the transversality condition k - €(k, ) = 0

2_1 kikj PO ONIN T\ k
= 2<6z]_ ‘EP)eg(ka)‘)ez(kjv)\)

2We use also the fact that the trace of the product of an odd number of Dirac matrices is always zero.
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L |7 &N (253)

N |

&
k|

From the last equation we conclude that Thomson scattering suppresses all polarizations parallel to
the direction of the incoming photon 7, whereas the differential cross section reaches the maximum in the
plane normal to 0. If photons would collide with the electrons in the plasma with the same intensity from
all directions, the result would be an unpolarized CMB radiation. The fact that polarization is actually
measured in the CMB carries crucial information about the physics of the plasma before recombination
and, as a consequence, about the very early universe (see for example [22] for a throughout discussion).

where £ = £ is the unit vector in the direction of the incoming photon.

6 Symmetries
6.1 Noether’s theorem

In Classical Mechanics and Classical Field Theory there is a basic result that relates symmetries and
conserved charges. This is called Noether’s theorem and states that for each continuous symmetry of the
system there is conserved current. In its simplest version in Classical Mechanics it can be easily proved.
Let us consider a Lagrangian L(g;, ¢;) which is invariant under a transformation ¢;(t) — ¢;(¢, €) labelled
by a parameter . This means that L(q’, ¢’) = L(q, ¢) without using the equations of motion'?. If ¢ < 1
we can consider an infinitesimal variation of the coordinates d.¢;(t) and the invariance of the Lagrangian
implies

oL oL oL d oL oL
= L 3 ‘7: = 7 94 a- E"i = YT 5 7 et ) 2 4
0 = deL(qi, i) Bg; 04+ 5,04 [ﬁqi dt@qi](s T <8 M) Y

When d.¢; is applied on a solution to the equations of motion the term inside the square brackets vanishes
and we conclude that there is a conserved quantity

. BL
Q=0 with Q=—-—0¢;. (255)
dd;
Notice that in this derivation it is crucial that the symmetry depends on a continuous parameter since
otherwise the infinitesimal variation of the Lagrangian in Eq. (254) does not make sense.

In Classical Field Theory a similar result holds. Let us consider for simplicity a theory of a single
field ¢(x). We say that the variations d.¢ depending on a continuous parameter € are a symmetry of the

theory if, without using the equations of motion, the Lagrangian density changes by
0L = 0 K. (256)

If this happens then the action remains invariant and so do the equations of motion. Working out now the
variation of £ under d.¢ we find

oL oL oL oL
O = 50,d) it + 5500 = 8“(8(8@) ‘b) [a¢ On (W)]&‘p‘ @7

If ¢(x) is a solution to the equations of motion the last terms disappears, and we find that there is a
conserved current

oL
9, =0 with JH=_"" 5.6 K" (258)
Z 90,9 "

BThe following result can be also derived a more general situations where the Lagrangian changes by a total time derivative.
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Actually a conserved current implies the existence of a charge

Q= / d3z JO(t, %) (259)

which is conserved

% = [ dPx oyt 7) = _/dgmic”'(t,f) =0, (260)

provided the fields vanish at infinity fast enough. Moreover, the conserved charge () is a Lorentz scalar.
After canonical quantization the charge () defined by Eq. (259) is promoted to an operator that generates
the symmetry on the fields

6 = i[9, Q). (261)

As an example we can consider a scalar field ¢(z) which under a coordinate transformation x — z’
changes as ¢/ (') = ¢(x). In particular performing a space-time translation z**' = z* + a* we have

¢ (x) — d(z) = —a"Oup + O(a®) = ¢ =—a"0u0. (262)
Since the Lagrangian density is also a scalar quantity, it transforms under translations as
0L = —a"0,L. (263)

Therefore the corresponding conserved charge is

oL
JH=— a’0,¢ + a'L = —a, TH, (264)
50,0)"

where we introduced the energy-momentum tensor

oL
HY = o’p— L. (265)
A(0ud)
We find that associated with the invariance of the theory with respect to space-time translations there
are four conserved currents defined by T#” with v = 0, ..., 3, each one associated with the translation

along a space-time direction. These four currents form a rank-two tensor under Lorentz transformations
satisfying

T = 0. (266)

The associated conserved charges are given by
PY = / d3z 7% (267)

and correspond to the total energy-momentum content of the field configuration. Therefore the energy
density of the field is given by 7°° while 7% is the momentum density. In the quantum theory the P*
are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved charge is the global
phase invariance of the Dirac Lagrangian (117), ¢ — %), For small 6 this corresponds to variations
09t = 101, dg1p = —i61) which by Noether’s theorem result in the conserved charge

" =y, Ouj" = 0. (268)
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Thus implying the existence of a conserved charge
Q= [sis= [ dsvlv. (269)

In physics there are several instances of global U(1) symmetries that act as phase shifts on spinors.
This is the case, for example, of the baryon and lepton number conservation in the Standard Model. A
more familiar case is the U(1) local symmetry associated with electromagnetism. Notice that although
in this case we are dealing with a local symmetry, § — e«(z), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a conserved current j* = eiy"e). In
Eq. (162) we saw that the spinor is coupled to the photon field precisely through this current. Its time
component is the electric charge density p, while the spatial components are the current density vector .

This analysis can be carried over also to nonabelian unitary global symmetries acting as
i — Uijiby, Utu =1 (270)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the matrix U in
terms of the hermitian group generators 7 as

U = exp (iagT?), (T =17, (271)
we find the conserved current
gre = %T{}v"wg‘, auj” =VU. (272)

This is the case, for example of the approximate flavor symmetries in hadron physics. The simplest
example is the isospin symmetry that mixes the quarks « and d

<Z)—>M(Z>, M € SU(2). (273)

Since the proton is a bound state of two quarks u and one quark d while the neutron is made out of
one quark u and two quarks d, this isospin symmetry reduces at low energies to the well known isospin
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved charges ()® associated to symmetries by
Noether’s theorem are operators implementing the symmetry at the quantum level. Since the charges are
conserved they must commute with the Hamiltonian

Q. H] = 0. (274)

There are several possibilities in the quantum mechanical realization of a symmetry:

Wigner-Weyl realization. In this case the ground state of the theory |0) is invariant under the
symmetry. Since the symmetry is generated by Q% this means that

U()]0) = @0y = 0) = Q%0)=0. (275)

At the same time the fields of the theory have to transform according to some irreducible representation
of the group generated by the Q¢. From Eq. (261) it is easy to prove that

U(a)pil(a) ™ = Uj(@)g;, (276)
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where Uj;j(«) is an element of the representation in which the field ¢; transforms. If we consider now
the quantum state associated with the operator ¢;

i) = ¢:[0) 277)

we find that because of the invariance of the vacuum (275) the states |i) transform in the same represen-
tation as ¢;

U(a)li) = U(a)ditd (o)~ U(@)|0) = Usj();|0) = Us(a)lj). (278)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, since
[H,U(a)] = 0 all states in the same multiplet have the same energy. If we consider one-particle states,
then going to the rest frame we conclude that all states in the same multiplet have exactly the same mass.

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of the
theory is classified according to multiplets of the symmetry group depended crucially on the invariance
of the ground state. However this condition is not mandatory and one can relax it to consider theories
where the vacuum state is not left invariant by the symmetry

e @t0) £ [0) = Q0) #0. (279)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of (279) we consider the example of a number scalar fields ¢°
(¢ =1,...,N)whose dynamics is governed by the Lagrangian

1 . .
L=50u9'0"" = V() (280)

where we assume that V' (¢) is bounded from below. This theory is globally invariant under the transfor-
mations

bp' = e (T*)j¢, (281)
with 7% a = 1,..., 2 N(N — 1) the generators of the group SO(N).
To analyze the structure of vacua of the theory we construct the Hamiltonian
s 1l i le i
H= [ d=x 3T +§ch V' +V(p) (282)
and look for the minimum of

V(p) = /dga: Bﬁgpl . ﬁgp" + V(cp)} . (283)

Since we are interested in finding constant field configurations, ﬁgo =0to preserve translational invari-
ance, the vacua of the potential V(i) coincides with the vacua of V' (¢). Therefore the minima of the
potential correspond to the vacuum expectation values'*

ov
0yt

= 0. (284)
pi=(p')

We divide the generators 7* of SO(/V) into two groups: Those denoted by H* (o« = 1,...,h)
that satisfy

(H*)’(¢") = 0. (285)

"For simplicity we consider that the minima of V'(¢) occur at zero potential.
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This means that the vacuum configuration (') is left invariant by the transformation generated by H<.
For this reason we call them unbroken generators. Notice that the commutator of two unbroken genera-
tors also annihilates the vacuum expectation value, [H%, H?];;(¢7) = 0. Therefore the generators { H*}
form a subalgebra of the algebra of the generators of SO(/N). The subgroup of the symmetry group
generated by them is realized a la Wigner-Weyl.

The remaining generators K4, with A = 1,..., %N (N — 1) — h, by definition do not preserve
the vacuum expectation value of the field

(K4)i(?) #0. (286)

These will be called the broken generators. Next we prove a very important result concerning the broken
generators known as the Goldstone theorem: for each generator broken by the vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacuum (%) is determined by the quadratic part of
the potential. Since we assumed that V' ({p)) = 0 and we are expanding around a minimum, the first
term in the expansion of the potential V() around the vacuum expectation values is given by

5%V ‘ ‘ . .
V(p) = sn =N (T — (7)) + O (¢ = (p))? (287)
() = 5550 o (" =N =)+ O (e~ ()]
and the mass matrix is:
2
M} = i : (288)
0909 | p—(y)

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass matrix
on the vacuum expectation values (¢").

To extract some information about the possible zero modes of the mass matrix, we write down the
conditions that follow from the invariance of the potential under " = e“(T“)}goJ. At first order in €*

L OV
Oy’

SV(p) =€ (T")%¢" = 0. (289)

Differentiating this expression with respect to ©* we arrive at

82VT.- ov

o Lie + 55Tk =0. (290)

Now we evaluate this expression in the vacuum ¢’ = (*). Then the derivative in the second term cancels
while the second derivative in the first one gives the mass matrix. Hence we find

M7 (T*)i(g") = 0. (291)

Now we can write this expression for both broken and unbroken generators. For the unbroken ones, since
(H a); (¢7) = 0, we find a trivial identity 0 = 0. On the other hand for the broken generators we have

M(KYie) = 0. (292)

Since (K A);(W) # 0 this equation implies that the mass matrix has as many zero modes as broken
generators. Therefore we have proven Goldstone’s theorem: associated with each broken symmetry
there is a massless mode in the theory. Here we have presented a classical proof of the theorem. In the
quantum theory the proof follows the same lines as the one presented here but one has to consider the
effective action containing the effects of the quantum corrections to the classical Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3) invariant scalar field theory with a
“mexican hat” potential

(3% —d?)’. (293)

The vacua of the theory correspond to the configurations satisfying (7) 2 = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e. a point in the sphere, is preserved
by SO(2) rotations around the axis of the sphere that passes through that point. Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

(@) :  SO(3) — SO(2). (294)

Since SO(3) has three generators and SO(2) only one we see that two generators are broken and there-
fore there are two massless Goldstone bosons. Physically this massless modes can be thought of as

corresponding to excitations along the surface of the sphere (@) 2 = a.

Once a minimum of the potential has been chosen we can proceed to quantize the excitations
around it. Since the vacuum only leaves invariant a SO(2) subgroup of the original SO(3) symmetry
group it seems that the fact that we are expanding around a particular vacuum expectation value of the
scalar field has resulted in a lost of symmetry. This is however not the case. The full quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in the fact that the physical
properties of the theory do not depend on the particular point of the sphere (7) 2 = a? that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the same
physics.

It is very important to realize that given a theory with a vacuum determined by () all other
possible vacua of the theory are unaccessible in the infinite volume limit. This means that two vacuum
states |01), |02) corresponding to different vacuum expectation values of the scalar field are orthogonal
(01]02) = 0 and cannot be connected by any local observable ®(x), (01|®(x)|02) = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching from one vacuum into
another one requires changing the vacuum expectation value of the field everywhere in space at the same
time, something that cannot be done by any local operator. Notice that this is radically different to our
expectations based on the Quantum Mechanics of a system with a finite number of degrees of freedom.

In High Energy Physics the typical example of a Goldstone boson is the pion, associated with
the spontaneous breaking of the global chiral isospin SU(2); x SU(2) symmetry. This symmetry acts
independently in the left- and right-handed spinors as

( UL,R ) — My g ( UL,R ) , M reSU@2)Lr (295)
dr.r ’ dr.r ’ ’

Presumably since the quarks are confined at low energies this symmetry is spontaneously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spinors.
Associated with this symmetry breaking there is a Goldstone mode which is identified as the pion. No-
tice, nevertheless, that the SU(2);, xSU(2) g would be an exact global symmetry of the QCD Lagrangian
only in the limit when the masses of the quarks are zero m,,, mg — 0. Since these quarks have nonzero
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstone bo-
son is not massless. That is why pions have masses, although they are the lightest particle among the
hadrons.

Symmetry breaking appears also in many places in condensed matter. For example, when a solid
crystallizes from a liquid the translational invariance that is present in the liquid phase is broken to a
discrete group of translations that represent the crystal lattice. This symmetry breaking has Goldstone
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bosons associated which are identified with phonons which are the quantum excitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism. Gauge symmetry seems to prevent a vector field from having a mass.
This is obvious once we realize that a term in the Lagrangian like mQAMA“ is incompatible with gauge
invariance.

However certain physical situations seem to require massive vector fields. This happened for
example during the 1960s in the study of weak interactions. The Glashow model gave a common de-
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2) xU(1)
but, in order to reproduce Fermi’s four-fermion theory of the 5-decay it was necessary that two of the
vector fields involved would be massive. Also in condensed matter physics massive vector fields are
required to describe certain systems, most notably in superconductivity.

The way out to this situation is found in the concept of spontaneous symmetry breaking discussed
previously. The consistency of the quantum theory requires gauge invariance, but this invariance can be
realized a la Nambu-Goldstone. When this is the case the full gauge symmetry is not explicitly present in
the effective action constructed around the particular vacuum chosen by the theory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs model: a
U(1) gauge field coupled to a self-interacting charged complex scalar field ¢ with Lagrangian

1 _ Ao
L=—1FuF" + DOD"® — 2 (30 - 11%)°, (296)

where the covariant derivative is given by Eq. (159). This theory is invariant under the gauge transfor-
mations

O — @), A, = A+ d,0(x). (297)

The minimum of the potential is defined by the equation |®| = p. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant under the
gauge symmetry

and therefore the symmetry is spontaneously broken Let us study now the theory around one of these
vacua, for example (®) = p, by writing the field ® in terms of the excitations around this particular
vacuum

O(x) = {u + \20(1’)} (@), (299)

Independently of whether we are expanding around a particular vacuum for the scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (297). This means that perform-
ing a gauge transformation with parameter o(x) = —v(x) we can get rid of the phase in Eq. (299).
Substituting then ®(z) = p + %a(m) in the Lagrangian we find

1 1 1
L = _ZFWFW +e2ut A, AR + 5%08”0 — 5)\”202
A
— Ao’ — 104 + e pA, Al + €2 A, Al o, (300)

What are the excitation of the theory around the vacuum (®) = pn? First we find a massive real scalar
field o(x). The important point however is that the vector field A,, now has a mass given by

m? = 2e*p’. (301)
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The remarkable thing about this way of giving a mass to the photon is that at no point we have given up
gauge invariance. The symmetry is only hidden. Therefore in quantizing the theory we can still enjoy all
the advantages of having a gauge theory but at the same time we have managed to generate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (300) we did not find any massless mode. Since the
vacuum chosen by the scalar field breaks the U (1) generator of U(1) we would have expected one masless
particle from Goldstone’s theorem. To understand the fate of the missing Goldstone boson we have to
revisit the calculation leading to Eq. (300). Were we dealing with a global U(1) theory, the Goldstone
boson would correspond to excitation of the scalar field along the valley of the potential and the phase
Y¥(x) would be the massless Goldstone boson. However we have to keep in mind that in computing the
Lagrangian we managed to get rid of ¥}(x) by shifting it into A, using a gauge transformation. Actually
by identifying the gauge parameter with the Goldstone excitation we have completely fixed the gauge
and the Lagrangian (300) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse ones ke (E, +1) = 0 plus a longi-
tudinal one &7,(k) ~ k. In gauging away the massless Goldstone boson 1J() we have transformed it into
the longitudinal polarization of the massive vector field. In the literature this is usually expressed saying
that the Goldstone mode is “eaten up” by the longitudinal component of the gauge field. It is important
to realize that in spite of the fact that the Lagrangian (300) looks pretty different from the one we started
with we have not lost any degrees of freedom. We started with the two polarizations of the photon plus
the two degrees of freedom associated with the real and imaginary components of the complex scalar
field. After symmetry breaking we end up with the three polarizations of the massive vector field and the
degree of freedom of the real scalar field o ().

We can also understand the Higgs mechanism in the light of our discussion of gauge symmetry
in section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge trans-
formations is not explicitly broken, and this implies that Gauss’ law is satisfied quantum mechanically,
V- Ea\phys) = 0. The theory remains invariant under gauge transformations in the connected com-
ponent of the identity G, the ones generated by Gauss’ law. This does not pose any restriction on the
possible breaking of the invariance of the theory with respect to transformations that cannot be continu-
ously deformed to the identity. Hence in the Higgs mechanism the invariance under gauge transformation
that are not in the connected component of the identity, G /Gy, can be broken. Let us try to put it in more
precise terms. As we learned in section 4.4, in the Hamiltonian formulation of the theory finite energy
gauge field configurations tend to a pure gauge at spatial infinity

—

Ae)— = L@ Tg@ 1 o (302)
The set transformations go(Z) € Gy that tend to the identity at infinity are the ones generated by Gauss’
law. However, one can also consider in general gauge transformations ¢(Z) which, as |Z| — oo, approach
any other element g € G. The quotient G, = G/Gy gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symmetry
is spontaneously broken. Notice that this is not a threat to the consistency of the theory. Properties
like the decoupling of unphysical states are guaranteed by the fact that Gauss’ law is satisfied quantum
mechanically and are not affected by the breaking of G.

The Abelian Higgs model discussed here can be regarded as a toy model of the Higgs mechanism
responsible for giving mass to the W+ and Z° gauge bosons in the Standard Model. In condensed matter
physics the symmetry breaking described by the nonrelativistic version of the Abelian Higgs model can
be used to characterize the onset of a superconducting phase in the BCS theory, where the complex scalar
field ® is associated with the Cooper pairs. In this case the parameter ;2 depends on the temperature.
Above the critical temperature 7., 4?(7T) > 0 and there is only a symmetric vacuum (®) = 0. When,
on the other hand, T' < T then p2(T) < 0 and symmetry breaking takes place. The onset of a nonzero
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mass of the photon (301) below the critical temperature explains the Meissner effect: the magnetic fields
cannot penetrate inside superconductors beyond a distance of the order miv

7 Anomalies

So far we did not worry too much about how classical symmetries of a theory are carried over to the
quantum theory. We have implicitly assumed that classical symmetries are preserved in the process of
quantization, so they are also realized in the quantum theory.

This, however, does not have to be necessarily the case. Quantizing an interacting field theory
is a very involved process that requires regularization and renormalization and sometimes, it does not
matter how hard we try, there is no way for a classical symmetry to survive quantization. When this
happens one says that the theory has an anomaly (for a review see [28]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a theory is regularized in the process
of quantization. When we talk about anomalies we mean a classical symmetry that cannot be realized in
the quantum theory, no matter how smart we are in choosing the regularization procedure.

In the following we analyze some examples of anomalies associated with global and local sym-
metries of the classical theory. In Section 8 we will encounter yet another example of an anomaly, this
time associated with the breaking of classical scale invariance in the quantum theory.

7.1 Axial anomaly

Probably the best known examples of anomalies appear when we consider axial symmetries. If we
consider a theory of two Weyl spinors u+

u—

L =iy = iuiai@,ﬂq + iuio’i@uu_ with Y = < h > (303)

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helicities
transform with the same phase, this is a vector transformation:

Uy : utr — €Cug, (304)
whereas in the second one, the axial U (1), the signs of the phases are different for the two chiralities

Uy : us — e %y (305)
Using Noether’s theorem, there are two conserved currents, a vector current

He= T =l oty +ulofus = 9,0 =0 (306)

and an axial vector current

Jh = bz = ulaiu+ —ul oty = o, J4 = 0. (307)

The theory described by the Lagrangian (303) can be coupled to the electromagnetic field. The
resulting classical theory is still invariant under the vector and axial U(1) symmetries (304) and (305).
Surprisingly, upon quantization it turns out that the conservation of the axial current (307) is spoiled by
quantum effects

8, J% ~hE-B. (308)

To understand more clearly how this result comes about we study first a simple model in two
dimensions that captures the relevant physics involved in the four-dimensional case [29]. We work in
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Minkowski space in two dimensions with coordinates (z°, 2!) = (¢, 2) and where the spatial direction
is compactified to a circle S'. In this setup we consider a fermion coupled to the electromagnetic field.
Notice that since we are living in two dimensions the field strength F},,, only has one independent com-
ponent that corresponds to the electric field along the spatial direction, F°! = £ (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of the algebra of
~y-matrices

(VA" =20"" with  n= ( (1) _(1) > : (309)

In two dimensions the dimension of the representation of the y-matrices is 2l2] = 2. Here take

0 1 0 1
0 1_ 1.2 _
vy o —(1 O)’ Y =10 <_1 0). 310)

115

This is a chiral representation since the matrix 5 is diagona
1 0
— A0 1
V==Y (0 _1> (311)

Writing the two-component spinor ¢ as

u
o= ( i ) 312)

and defining as usual the projectors P. = %(1 ++y5) we find that the components u. of ¢ are respectively
a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of the y-matrices we can write the Dirac equation. Expressing it in
terms of the components w4 of the Dirac spinor we find

(0o — O1)uy =0, (Op + 01)u— = 0. (313)
The general solution to these equations can be immediately written as
uy = uy (2 + b, u_ =u_(z° — zh). (314)

Hence w4 are two wave packets moving along the spatial dimension respectively to the left (uy) and
to the right (u_). Notice that according to our convention the left-moving u is a right-handed spinor
(positive helicity) whereas the right-moving u_ is a left-handed spinor (negative helicity).

If we want to interpret (313) as the wave equation for two-dimensional Weyl spinors we have the
following wave functions for free particles with well defined momentum p* = (E, p).

1 .
W20 £ 2) = ——e i FE@ED gith  p=FE. (315)

VL
As it is always the case with the Dirac equation we have both positive and negative energy solutions. For
uy, since E = —p, we see that the solutions with positive energy are those with negative momentum
p < 0, whereas the negative energy solutions are plane waves with p > 0. For the left-handed spinor u_
the situation is reversed. Besides, since the spatial direction is compact with length L the momentum p
is quantized according to

p=— n € Z. (316)
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V+ VvV _

Fig. 11: Spectrum of the massless two-dimensional Dirac field.
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Fig. 12: Vacuum of the theory.

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vacuum. As with the Dirac
equation in four dimensions we fill all the states with £/ < 0 (Fig. 12). Exciting of a particle in the Dirac
see produces a positive energy fermion plus a hole that is interpreted as an antiparticle. This gives us the
clue on how to quantize the theory. In the expansion of the operator u in terms of the modes (315) we
associate positive energy states with annihilation operators whereas the states with negative energy are

5In any even number of dimensions s is defined to satisfy the conditions 42 = 1 and {7s,7"} = 0.
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associated with creation operators for the corresponding antiparticle
ui(z) =3 [ai(E)v(iE) (z) + bl (B)ol® ($)*] . (317)
E>0

The operator a (E) acting on the vacuum |0, +) annihilates a particle with positive energy E and mo-
mentum FE. In the same way bl (E)) creates out of the vacuum an antiparticle with positive energy F
and spatial momentum . In the Dirac sea picture the operator b4 (F)! is originally an annihilation
operator for a state of the sea with negative energy —F. As in the four-dimensional case the problem of
the negative energy states is solved by interpreting annihilation operators for negative energy states as
creation operators for the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion of u in Eq. (317) satisfy the usual algebra

{ax(B), al, (E")} = {bA(E), b5, (E')} = 05,50, (318)

where we have introduced the label A\, \' = +. Also, a)(FE), alt\ (E) anticommute with by/(E"), b;, (E).
The Lagrangian of the theory

L =iul (8o + 0)us +iu' (8o — 01)u_ (319)

is invariant under both U(1)y, Eq. (304), and U(1) 4, Eq. (305). The associated Noether currents are in
this case

oo (et Y (et ), -
v —u1u+ + uT_u_ ’ —u1u+ - uT_u_

The associated conserved charges are given, for the vector current by
L
Qy = /0 da! (u1u+ + uT_u,) (321)
and for the axial current
L
04 = / dat (u1u+ _ uiu_) . (322)
0
Using the orthonormality relations for the modes vf) (z)

L /!
/ da?t viE)(x) UE_LE )(ac) =0p (323)
0
we find for the conserved charges:

Qv = Y [ah(B)ar(B) ~bl(B)by (B) + ol (E)a_(B) ~ bL(E)- (7))
E>0

Ou = Z[QL(E)M(E)_bL(E)m(E)—aT_ (E)a_(E)—ka_(E)b_(E)}. (324)
E>0

We see that )y counts the net number (particles minus antiparticles) of positive helicity states plus the
net number of states with negative helicity. The axial charge, on the other hand, counts the net number of
positive helicity states minus the number of negative helicity ones. In the case of the vector current we
have subtracted a formally divergent vacuum contribution to the charge (the “charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Qv or () 4, since the
occupation numbers do not change. What we want to study is the effect of coupling the theory to electric
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Fig. 13: Effect of the electric field.

field £. We work in the gauge Ag = 0. Instead of solving the problem exactly we are going to simulate
the electric field by adiabatically varying in a long time 7 the vector potential A; from zero value to
—&T1p. From our discussion in section 4.3 we know that the effect of the electromagnetic coupling in the
theory is a shift in the momentum according to

p— p— €A, (325)

where e is the charge of the fermions. Since we assumed that the vector potential varies adiabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (325) on the vacuum depicted in Fig. (12). What
we find is that the two branches move as shown in Fig. (13) resulting in some of the negative energy
states of the v branch acquiring positive energy while the same number of the empty positive energy
states of the other branch v_ will become empty negative energy states. Physically this means that the
external electric field £ creates a number of particle-antiparticle pairs out of the vacuum. Denoting by
N ~ e& the number of such pairs created by the electric field per unit time, the final values of the charges

Qv and Q) 4 are

Qa(ro) = (N—-0)+(0-
Qv(rn) = (N-0)—(0—

)
)

Therefore we conclude that the coupling to the electric field produces a violation in the conservation of
the axial charge per unit time given by AQ 4 ~ e&. This implies that

N) =0,
N)=2

N. (326)

9, % ~ ehE, (327)

where we have restored / to make clear that the violation in the conservation of the axial current is a
quantum effect. At the same time AQy = 0 guarantees that the vector current remains conserved also
quantum mechanically, 9, J{; = 0.

59



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial anomaly [30].
The heuristic analysis presented here can be made more precise by computing the quantity

O = (O[T [ J4(x) T (0)] 10) = (328)
T v

The anomaly is given then by 9,,C*". A careful calculation yields the numerical prefactor missing in Eq.
(327) leading to the result

eh

—e"F,g, (329)
2T

" =

with 01 = —¢£10 = 1,

The existence of an anomaly in the axial symmetry that we have illustrated in two dimensions is
present in all even dimensional of space-times. In particular in four dimensions the axial anomaly it is
given by

2

OnIh =~ 16,2

"7 Fuy Fy. (330)

This result has very important consequences in the physics of strong interactions as we will see in what
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quantum Chromodynamics
(QCD) [32]. This is a nonabelian gauge theory with gauge group SU(/V.) coupled to a number Ny of

quarks. These are spin-% particles Q*/ labelled by two quantum numbers: colori = 1,. .., N, and flavor
f=1,..., N;. The interaction between them is mediated by the N2 — 1 gauge bosons, the gluons A%,
a=1,...,N2 — 1. In the real world N. = 3 and the number of flavors is six, corresponding to the

number of different quarks: up (u), down (d), charm (c), strange (s), top (¢) and bottom (b).

For the time being we are going to study a general theory of QCD with N, colors and Ny flavors.
Also, for reasons that will be clear later we are going to work in the limit of vanishing quark masses,
my — 0. In this cases the Lagrangian is given by

Ny
1 _ _
Laop = =7 Fa, P + 3 [iQLP Q1 +iQrP QF| . (331)
f=1

where the subscripts L and R indicate respectively left and right-handed spinors, Qé’ r=Ps Q/, and the
field strength F}j,, and the covariant derivative D), are respectively defined in Eqs. (165) and (168). Apart
from the gauge symmetry, this Lagrangian is also invariant under a global U(/Ny)r, xU(Ny)pg acting on
the flavor indices and defined by

QL = YpUL) QL QL — @
UNY), : UNp)p - (332)

QL - @l Qw — SpUn)pQh
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with U, Ug € U(N f). Actually, since U(/V)=U(1)xSU(N) this global symmetry group can be written
as SU(Ny); x SU(Ny) p x U(1)f, X U(1) g. The abelian subgroup U(1);, x U(1) z can be now decomposed
into their vector U(1)p and axial U(1) 4 subgroups defined by the transformations

Q) — €°Q) Q) — Q)
U()g: A U(l)y : A (333)
QL — ¢eqQl QL — eeQh
According to Noether’s theorem, associated with these two abelian symmetries we have two conserved
currents:

Ny Ny
J=>"0""qf, Th=3"0" s Q7 (334)
F=1 F=1

The conserved charge associated with vector charge J{; is actually the baryon number defined as the
number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group SU(N ), XxSU(Ny)g can also be decomposed
into its vector and axial subgroups, SU(Ny),, x SU(NNy) ,, defined by the following transformations of
the quarks fields

Q — XUl QF = X, UL)Q)
SUNy)y, SU(NY) , : (335)

QL — S pUL) Qb QL = X p(UzYrQk

Again, the application of Noether’s theorem shows the existence of the following nonabelian conserved
charges

Ny Ny
Ip _ ~f / Ty _ ~F !
Tt =" QAT @, T =0 QT Q. (336)
f7f’:1 f,flzl
To summarize, we have shown that the initial chiral symmetry of the QCD Lagrangian (331) can be
decomposed into its chiral and vector subgroups according to

U(Ny); X U(Ng)p = SUNyp),, x SUWNy) 4 x U x U(1) 4. (337)
The question to address now is which part of the classical global symmetry is preserved by the quantum

theory.

As argued in section 7.1, the conservation of the axial currents J'| and JZ“ can in principle be
spoiled due to the presence of an anomaly. In the case of the abelian axial current Jy the relevant quantity
is the correlation function

_ g -
Q7
Ny Ty
17 = (O[T [ J4(2) ttge (2) foge0)] 10) = 3 Q! (338)
f=1
Q7
L g 4 symmetric
Here jg:uge is the nonabelian conserved current coupling to the gluon field
Ny
ot =3 QM e, (339)

f=1
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where, to avoid confusion with the generators of the global symmetry we have denoted by 7% the gen-
erators of the gauge group SU(N.). The anomaly can be read now from 9,C*"?. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gauge invariance of the whole
expression, 0,C*? = 0 = 9,C""7, we find that the axial abelian global current has an anomaly given
byl6

N
,J" _g%g eHINpe PR, (340)

In the case of the nonabelian axial global symmetry SU(/Vy) 4 the calculation of the anomaly is
made as above. The result, however, is quite different since in this case we conclude that the nonabelian
axial current J%" is not anomalous. This can be easily seen by noticing that associated with the axial
current vertex we have a generator 77 of SU(N 1), whereas for the two gluon vertices we have the
generators 7% of the gauge group SU(V.). Therefore, the triangle diagram is proportional to the group-
theoretic factor
_ g -

Q7

Q' ~tr Tt {79, 7% =0 (341)

Qf

L g 4 symmetric

which vanishes because the generators of SU(/Ny) are traceless.

From here we would conclude that the nonabelian axial symmetry SU(/V¢) 4 is nonanomalous.
However this is not the whole story since quarks are charged particles that also couple to photons. Hence
there is a second potential source of an anomaly coming from the the one-loop triangle diagram coupling
Jj“ to two photons

_ vy -
!
N Iy «
, o Jy
(OIT [I4 (@) tn() 72 (0)] 10) = 3 Q' (342)
=1
Q7
L ¥ 4 symmetric
where jk, is the electromagnetic current
Ny
it =", Q' Q7 (343)
f=1

with gy the electric charge of the f-th quark flavor. A calculation of the diagram in (342) shows the
existence of an Adler-Bell-Jackiw anomaly given by

Ny

S (@)prat| N Fon, (344)

N,
1672

9 I = —

where F),, is the field strength of the electromagnetic field coupling to the quarks. The only chance for
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

16The normalization of the generators 7" of the global SU(N ) is given by tr (TI T J) = %6 1,
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Before proceeding let us summarize the results found so far. Because of the presence of anomalies
the axial part of the global chiral symmetry, SU(Nf) 4 and U(1) 4 are not realized quantum mechanically
in general. We found that U(1)4 is always affected by an anomaly. However, because the right-hand
side of the anomaly equation (340) is a total derivative, the anomalous character of .J/; does not explain
the absence of U(1) 4 multiplets in the hadron spectrum, since a new current can be constructed which
is conserved. In addition, the nonexistence of candidates for a Goldstone boson associated with the
right quantum numbers indicates that U(1) 4 is not spontaneously broken either, so it has be explicitly
broken somehow. This is the so-called U(1)-problem which was solved by 't Hooft [33], who showed
how the contribution of quantum transitions between vacua with topologically nontrivial gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(/V,) gauge theory the axial nonabelian symmetry is spontaneously
broken due to the presence at low energies of a vacuum expectation value for the fermion bilinear @fo

0[Q’Qf10) £ 0 (No summation in f1). (345)

This nonvanishing vacuum expectation value for the quark bilinear actually breaks chiral invariance
spontaneously to the vector subgroup SU(Ny)y, so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Np), x UNyp), — SUWNp), x U (346)

Associated with this breaking a Goldstone boson should appear with the quantum numbers of the broken
nonabelian current. For example, in the case of QCD the Goldstone bosons associated with the sponta-
neously symmetry breaking induced by the vacuum expectation values (wu), (dd) and {(ud — du)) have
been identified as the pions 7°, 7&. These bosons are not exactly massless because of the nonvanishing
mass of the v and d quarks. Since the global chiral symmetry is already slightly broken by mass terms in
the Lagrangian, the associated Goldstone bosons also have masses although they are very light compared
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies in the physics of strong
interactions we particularize now our analysis of the case of real QCD. Since the u and d quarks are
much lighter than the other four flavors, QCD at low energies can be well described by including only
these two flavors and ignoring heavier quarks. In this approximation, from our previous discussion we
know that the low energy global symmetry of the theory is SU(2)y xU(1) g, where now the vector group
SU2)y is the well-known isospin symmetry. The axial U(1)4 current is anomalous due to Eq. (340)
with Ny = 2. In the case of the nonabelian axial symmetry SU(2) 4, taking into account that ¢, = %e
and q; = —1Le and that the three generators of SU(2) can be written in terms of the Pauli matrices as
TK = %O‘K we find

2

S (@srai= Y (THraf =0, > (T)srq7 = %- (347)

f=u,d f=u,d f=u,d

Therefore Ji“ is anomalous.

Physically, the anomaly in the axial current Jj“ has an important consequence. In the quark
model, the wave function of the neutral pion 7% is given in terms of those for the u and d quark by

%) = ;5 (18)lu) — |d)[d)) (348)

The isospin quantum numbers of |7°) are those of the generator 7. Actually the analogy goes further
since 0, Ji“ is the operator creating a pion 7° out of the vacuum

170 ~ 8,J5")0). (349)
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This leads to the physical interpretation of the triangle diagram (342) with Ji“ as the one loop contribu-
tion to the decay of a neutral pion into two photons

70— 2. (350)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [34] presented a calcula-
tion, using current algebra techniques, according to which the decay of the pion into two photons should
be suppressed. This however contradicted the experimental evidence that showed the existence of such
a decay. The way out to this paradox, as pointed out in [30], is the axial anomaly. What happens is that
the current algebra analysis overlooks the ambiguities associated with the regularization of divergences
in Quantum Field Theory. A QED evaluation of the triangle diagram leads to a divergent integral that
has to be regularized somehow. It is in this process that the Adler-Bell-Jackiw axial anomaly appears
resulting in a nonvanishing value for the 70 — 2y amplitude!’

The existence of anomalies associated with global currents does not necessarily mean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomaly it is its existence what
allows for a solution of the Sutherland-Veltman paradox and an explanation of the electromagnetic decay
of the pion. The situation, however, is very different if we deal with local symmetries. A quantum
mechanical violation of gauge symmetry leads to all kinds of problems, from lack of renormalizability to
nondecoupling of negative norm states. This is because the presence of an anomaly in the theory implies
that the Gauss’ law constraint V - E, = pe cannot be consistently implemented in the quantum theory.
As a consequence states that classically are eliminated by the gauge symmetry become propagating fields
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left and right-
handed fermions transform in different representations of the gauge group. Physically, the most interest-
ing example of such theories is the electroweak sector of the Standard Model where, for example, left
handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. On the
other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

Nt N_
1 y N PN ()
L= FUEL iy POl iy 9l pyl, (351)
i=1 =1
where the chiral fermions ¢, transform according to the representations 7, of the gauge group G
(a =1,...,dim G). The covariant derivatives DLi) are then defined by
Gyl = 0,0 + igAl el (352)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with one
axial and two vector gauge current vertices

W

(OIT |5 @)t ()% )] 10) = | Qg (353)
Ja

L by 4 symmetric
Jv

17 An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger in [31].
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where gauge vector and axial currents ji,/", j4" are given by
Ny No
W= YUkl + Y iy
i =1
Ny N_
J = D Ty = ety (354)
i=1 i=1

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condition,
it is enough if we calculate the overall group theoretical factor. In the case of the diagram in Eq. (353)
for every fermion species running in the loop this factor is equal to

tr [resdrle mesd] (355)

where the sign 4 corresponds respectively to the generators of the representation of the gauge group for
the left and right-handed fermions. Hence the anomaly cancellation condition reads

Ny N_
Ztr |:TZ-C7L+{T£+,T5+}] — Ztr [Tﬁf{Tﬁi,Tﬁf } =0. (356)
i=1 Jj=1

Knowing this we can proceed to check the anomaly cancellation in the Standard Model
SUB)xSU2)xU(1). Left handed fermions (both leptons and quarks) transform as doublets with respect
to the SU(2) factor whereas the right-handed components are singlets. The charge with respect to the
U(1) part, the hypercharge Y, is determined by the Gell-Mann-Nishijima formula

Q=T;+Y, (357)

where () is the electric charge of the corresponding particle and 73 is the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representation: 75 = %03 for the doublets and
T3 = 0 for the singlets. For the first family of quarks (u, d) and leptons (e, v.) we have the following
field content

ua « (87
quarks: < s )L ) UR,2 ng

8
leptons: < Ve > eRr,—1 (358)
€ 1
L-1

where o = 1,2, 3 labels the color quantum number and the subscript indicates the value of the weak
hypercharge Y. Denoting the representations of SU(3)xSU(2)xU(1) by (n¢, ny)y, with n. and ny,
the representations of SU(3) and SU(2) respectively and Y the hypercharge, the matter content of the
Standard Model consists of a three family replication of the representations:

left-handed fermions: (3,2)% (1,2)%,
6 2
(359)
right-handed fermions: (3,1)% (3,1)%, (1,1)E,.
3 3

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge group
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SUB)xSU2)xU(1) couples to each vertex:

SU(3)? SU®2)? u(1)?
SU(3)*SU(Q2) SU2)2U(1)

SU3)2U(1) SU2) U(1)?

SU(3) SU(2)*

SU3)SUR2) U(1)

SU3) U(1)?

It is easy to check that some of them do not give rise to anomalies. For example the anomaly for the
SU(3)? case cancels because left and right-handed quarks transform in the same representation. In the
case of SU(2)® the cancellation happens term by term because of the Pauli matrices identity 0%¢? =

59 4 j2bcsc that leads to
tr [aa{ab, aC}] — 2 (tr o) 6 = 0. (360)

However the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this case
the absence of anomalies within a single family is guaranteed by the nontrivial identity

Zyj—ﬂzg:myf’ 3x2x <é>3+2 X (—;>3—3 X <§>3—3 X (_;>3_(_1)3

left
3 3
_ <—4> n (4> 0. 361)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice that this result
holds even if a right-handed sterile neutrino is added since such a particle is a singlet under the whole
Standard Model gauge group and therefore does not contribute to the triangle diagram. Therefore we see
how the matter content of the Standard Model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we only considered the computation of one-loop diagrams.
It may happen that higher loop orders impose additional conditions. Fortunately this is not so: the
Adler-Bardeen theorem [35] guarantees that the axial anomaly only receives contributions from one loop
diagrams. Therefore, once anomalies are canceled (if possible) at one loop we know that there will be
no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler-Bardeen theorem, however, only applies in perturbation theory. It is nonetheless possi-
ble that nonperturbative effects can result in the quantum violation of a gauge symmetry. This is precisely
the case pointed out by Witten [36] with respect to the SU(2) gauge symmetry of the Standard Model.
In this case the problem lies in the nontrivial topology of the gauge group SU(2). The invariance of
the theory with respect to gauge transformations which are not in the connected component of the iden-
tity makes all correlation functions equal to zero. Only when the number of left-handed SU(2) fermion
doublets is even gauge invariance allows for a nontrivial theory. It is again remarkable that the family
structure of the Standard Model makes this anomaly to cancel

3 % < u > +1x ( Ve ) = 4 SU(2)-doublets, (362)
d I e ),

where the factor of 3 comes from the number of colors.
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8 Renormalization
8.1 Removing infinities

From its very early stages, Quantum Field Theory was faced with infinities. They emerged in the calcula-
tion of most physical quantities, such as the correction to the charge of the electron due to the interactions
with the radiation field. The way these divergences where handled in the 1940s, starting with Kramers,
was physically very much in the spirit of the Quantum Theory emphasis in observable quantities: since
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this number
should arise from the addition of a “bare” (unobservable) value and the quantum corrections. The fact
that both of these quantities were divergent was not a problem physically, since only its finite sum was
an observable quantity. To make thing mathematically sound, the handling of infinities requires the in-
troduction of some regularization procedure which cuts the divergent integrals off at some momentum
scale A. Morally speaking, the physical value of an observable Oppysical i given by

Ophysical = 13520 [O(A)bare + AO(A)ﬁ] ) (363)

where AO(A)j, represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the corrections to the electric charge
in Quantum Electrodynamics. We consider the process of annihilation of an electron-positron pair to
create a muon-antimuon pair e~ e™ — p . To lowest order in the electric charge e the only diagram
contributing is

In order to compute the renormalization of the charge we consider the first diagram which takes
into account the first correction to the propagator of the virtual photon interchanged between the pairs
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due to vacuum polarization. We begin by evaluating

=1 1 364
WAO\IM q2+i6 OZOB q2+i67 ( )

where the diagram between brackets is given by

2m)* (k2 —mZ +ie] [(k + @)% — mZ + ie]

a O 8= Haﬁ(q) _ i2(—ie)2(_1)/ (d4k Ir (k + me)'Ya(k + ﬁ + 'me)’}”g ) (365)

Physically this diagram includes the correction to the propagator due to the polarization of the vacuum,
i.e. the creation of virtual electron-positron pairs by the propagating photon. The momentum ¢ is the
total momentum of the electron-positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbation theory in nonrela-
tivistic Quantum Mechanics. In each vertex the interaction consists of the annihilation (resp. creation)
of a photon and the creation (resp. annihilation) of an electron-positron pair. This can be implemented
by the interaction Hamiltonian

Hi = e / Pz pyripA,. (366)

All fields inside the integral can be expressed in terms of the corresponding creation-annihilation oper-
ators for photons, electrons and positrons. In Quantum Mechanics, the change in the wave function at
first order in the perturbation Hjy, is given by

. . n|Hing |7y, in
fyin) = [y, in)o + 3 Ll o 667
n in — Lin

and similarly for |7, out), where we have denoted symbolically by |n) all the possible states of the
electron-positron pair. Since these states are orthogonal to |7, in)g, |y, out)o, we find torder e?

v, in|Hing|n) (n|Hint|y', out)g
(Ein - En)(Eout - En)

(v,in]y, out) = o(v, in|]y/, out)o + Z o +0O(eh). (368)

Hence, we see that the diagram of Eq. (364) really corresponds to the order-e? correction to the photon

propagator (7, in|y’, out)

AN — 0<’y, in"y/,out>0

<f}/7 in|I{int ‘n> <n’Hint‘fY,7 Out>
N\/\/\.( >’\MJ\, . 369
Y ’Y/ - zn: (El - En)(Eout - En) ( )

68




INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

Once we understood the physical meaning of the Feynman diagram to be computed we proceed
to its evaluation. In principle there is no problem in computing the integral in Eq. (364) for nonzero
values of the electron mass. However since here we are going to be mostly interested in seeing how
the divergence of the integral results in a scale-dependent renormalization of the electric charge, we
will set m. = 0. This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless. Implementing gauge invariance and using
standard techniques in the computation of Feynman diagrams (see references [1]- [11]) the polarization
tensor I1,,,,(¢) defined in Eq. (365) can be written as

W (q) = (P — quar) TH(g?) (370)
with
I(q) = 8¢’ /1 d:c/ d'k 2l ) : 371)
0 2m)4 k2 — m? + 2(1 — x)¢? + i€]?

To handle this divergent integral we have to figure out some procedure to render it finite. This can be
done in several ways, but here we choose to cut the integrals off at a high energy scale A, where new

) e2 q> )
II(g*) ~ 1922 log (Az) + finite terms. (372)

If we would send the cutoff to infinity A — oo the divergence blows up and something has to be done
about it.

If we want to make sense out of this, we have to go back to the physical question that led us to
compute Eq. (364). Our primordial motivation was to compute the corrections to the annihilation of two
electrons into two muons. Including the correction to the propagator of the virtual photon we have

(1o

= Tap (Ve ue) 4 g U,u’Y u,u +77a6 Uy e) W U,u’Yﬁu,u)
62 2 q2
= 7o (Ve ue) {47Tq2 [1 + 197 5 log <A2>} } (quyﬁulJ . (373)

Now let us imagine that we are performing a e~ e™ — p~ ™ with a center of mass energy j. From the
previous result we can identify the effective charge of the particles at this energy scale e(u) as

2
= g (Terue) [1‘22] (@“’yﬁuu). (374)

This charge, e(u), is the quantity that is physically measurable in our experiment. Now we can make
sense of the formally divergent result (373) by assuming that the charge appearing in the classical La-
grangian of QED is just a “bare” value that depends on the scale A at which we cut off the theory,
e = e(A)pare- In order to reconcile (373) with the physical results (374) we must assume that the
dependence of the bare (unobservable) charge e(A)pare on the cutoff A is determined by the identity

e(Mare 1o (1
e(1)? = e(M)pare |1+ T%l <A2ﬂ : (375)
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If we still insist in removing the cutoff, A — oo we have to send the bare charge to zero e(A)pare — 0
in such a way that the effective coupling has the finite value given by the experiment at the energy scale
w. It is not a problem, however, that the bare charge is small for large values of the cutoff, since the
only measurable quantity is the effective charge that remains finite. Therefore all observable quantities
should be expressed in perturbation theory as a power series in the physical coupling e(x)? and not in
the unphysical bare coupling e(A)pare-

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular Eq. (375), from a different point of view. In order
to remove the ambiguities associated with infinities we have been forced to introduce a dependence of
the coupling constant on the energy scale at which a process takes place. From the expression of the
physical coupling in terms of the bare charge (375) we can actually eliminate the cutoff A, whose value
after all should not affect the value of physical quantities. Taking into account that we are working in

perturbation theory in e()?, we can express the bare charge e(A)Z, _ in terms of e(u)? as

e(p)? 1
e(Mbare = €(1)” [1 ~ g2 108 (AQ + Ole(w)°). (376)
This expression allow us to eliminate all dependence in the cutoff in the expression of the effective charge
at a scale p by replacing e(A)pare in Eq. (375) by the one computed using (376) at a given reference
energy scale fig

2 2
e(n)” = e(po)® [1 + 61(52)2 log (/’;)] : (377)
0

From this equation we can compute, at this order in perturbation theory, the effective value of the
coupling constant at an energy j, once we know its value at some reference energy scale p. In the case
of the electron charge we can use as a reference Thompson’s scattering at energies of the order of the
electron mass m. ~ 0.5 MeV, at where the value of the electron charge is given by the well known value

1

~ —. 378
137 (378)

e(me)2
With this we can compute e(u)? at any other energy scale applying Eq. (377), for example at the electron
mass u = me =~ 0.5 MeV. However, in computing the electromagnetic coupling constant at any other
scale we must take into account the fact that other charged particles can run in the loop in Eq. (373).
Suppose, for example, that we want to calculate the fine structure constant at the mass of the Z%-boson
= Mz = 92 GeV. Then we should include in Eq. (377) the effect of other fermionic Standard Model
fields with masses below M. Doing this, we find'®

e(me)? M2
1+ =55 (Zf) log <m§>] (379)

where ¢; is the charge in units of the electron charge of the i-th fermionic species running in the loop
and we sum over all fermions with masses below the mass of the Z° boson. This expression shows how
the electromagnetic coupling grows with energy. However, in order to compare with the experimental
value of e(Mz)? it is not enough with including the effect of fermionic fields, since also the W+ bosons

e(Mz)? = e(me)?

8In the first version of these notes the argument used to show the growing of the electromagnetic coupling constant could
have led to confusion to some readers. To avoid this potential problem we include in the equation for the running coupling
e(u)? the contribution of all fermions with masses below Mz. We thank Lubos Mot for bringing this issue to our attention.
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can run in the loop (My < Mz). Taking this into account, as well as threshold effects, the value of the
electron charge at the scale M is found to be [37]

e(Mg)? ~ —— . (380)

This growing of the effective fine structure constant with energy can be understood heuristically
by remembering that the effect of the polarization of the vacuum shown in the diagram of Eq. (364)
amounts to the creation of a plethora of electron-positron pairs around the location of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge and decreasing
its value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded in Quantum Field Theory
in the beta function defined by

g

Bl9) = g, (381)
In the case of QED the beta function can be computed from Eq. (377) with the result
3
B(e)qep = 192" (382)
The fact that the coefficient of the leading term in the beta-function is positive 8y = 6# > 0 gives

us the overall behavior of the coupling as we change the scale. Eq. (382) means that, if we start at an
energy where the electric coupling is small enough for our perturbative treatment to be valid, the effective
charge grows with the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and better results as we go to
lower energies. Actually, because the electron is the lighter electrically charged particle and has a finite
nonvanishing mass the running of the fine structure constant stops at the scale m, in the well-known
value ﬁ Would other charged fermions with masses below m. be present in Nature, the effective value
of the fine structure constant in the interaction between these particles would run further to lower values
at energies below the electron mass.

On the other hand if we increase the energy scale e(11)? grows until at some scale the coupling is of
order one and the perturbative approximation breaks down. In QED this is known as the problem of the
Landau pole but in fact it does not pose any serious threat to the reliability of QED perturbation theory:
a simple calculation shows that the energy scale at which the theory would become strongly coupled is
Alandan =~ 10277 GeV. However, we know that QED does not live that long! At much lower scales we
expect electromagnetism to be unified with other interactions, and even if this is not the case we will
enter the uncharted territory of quantum gravity at energies of the order of 10'° GeV.

So much for QED. The next question that one may ask at this stage is whether it is possible to
find quantum field theories with a behavior opposite to that of QED, i.e. such that they become weakly
coupled at high energies. This is not a purely academic question. In the late 1960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially as free
particles inside hadrons. The apparent problem was that no theory was known at that time that would
become free at very short distances: the example set by QED seem to be followed by all the theories
that were studied. This posed a very serious problem for Quantum Field Theory as a way to describe
subnuclear physics, since it seemed that its predictive power was restricted to electrodynamics but failed
miserably when applied to describe strong interactions.

Nevertheless, this critical time for Quantum Field Theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [38] and David Politzer [39] showed that nonabelian gauge theories can
actually display the required behavior. For the QCD Lagrangian in Eq. (331) the beta function is given
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Fig. 14: Beta function for a hypothetical theory with three fixed points g, g5 and g3. A perturbative analysis
would capture only the regions shown in the boxes.

byl9
sg) =~ [Un, - 2x (383)
D= "t6r2 [37° 37|
In particular, for real QCD (N¢ = 3, Ny = 6) we have that 8(g) = —176‘;3 5> < 0. This means that

for a theory that is weakly coupled at an energy scale po the coupling constant decreases as the energy
increases u — oo. This explain the apparent freedom of quarks inside the hadrons: when the quarks
are very close together their effective color charge tend to zero. This phenomenon is called asymptotic
freedom.

Asymptotic free theories display a behavior that is opposite to that found above in QED. At high
energies their coupling constant approaches zero whereas at low energies they become strongly coupled
(infrared slavery). This features are at the heart of the success of QCD as a theory of strong interactions,
since this is exactly the type of behavior found in quarks: they are quasi-free particles inside the hadrons
but the interaction potential potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they become extremely com-
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how the
theory confines color charges and generates the spectrum of hadrons, as well as the breaking of the chiral
symmetry (345).

In general, the ultraviolet and infrared properties of a theory are controlled by the fixed points of
the beta function, i.e. those values of the coupling constant g for which it vanishes

Blg") = 0. (384)

Using perturbation theory we have seen that for both QED and QCD one of such fixed points occurs
at zero coupling, g* = 0. However, our analysis also showed that the two theories present radically
different behavior at high and low energies. From the point of view of the beta function, the difference
lies in the energy regime at which the coupling constant approaches its critical value. This is in fact
governed by the sign of the beta function around the critical coupling.

The expression of the beta function of QCD was also known to ’t Hooft [40]. There are even earlier computations in the
russian literature [41].
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We have seen above that when the beta function is negative close to the fixed point (the case of
QCD) the coupling tends to its critical value, g* = 0, as the energy is increased. This means that the
critical point is ultraviolet stable, i.e. it is an attractor as we evolve towards higher energies. If, on the
contrary, the beta function is positive (as it happens in QED) the coupling constant approaches the critical
value as the energy decreases. This is the case of an infrared stable fixed point.

This analysis that we have motivated with the examples of QED and QCD is completely general
and can be carried out for any quantum field theory. In Fig. 14 we have represented the beta function for
a hypothetical theory with three fixed points located at couplings g7, g5 and g3. The arrows in the line
below the plot represent the evolution of the coupling constant as the energy increases. From the analysis
presented above we see that g7 = 0 and g3 are ultraviolet stable fixed points, while the fixed point g5 is
infrared stable.

In order to understand the high and low energy behavior of a quantum field theory it is then crucial
to know the structure of the beta functions associated with its couplings. This can be a very difficult
task, since perturbation theory only allows the study of the theory around “trivial” fixed points, i.e. those
that occur at zero coupling like the case of g7 in Fig. 14. On the other hand, any “nontrivial” fixed
point occurring in a theory (like g5 and ¢3) cannot be captured in perturbation theory and requires a full
nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with the ultraviolet divergences
in a quantum field theory has the consequence, among others, of introducing an energy dependence in
the measured value of the coupling constants of the theory (for example the electric charge in QED).
This happens even in the case of renormalizable theories without mass terms. These theories are scale
invariant at the classical level because the action does not contain any dimensionful parameter. In this
case the running of the coupling constants can be seen as resulting from a quantum breaking of classical
scale invariance: different energy scales in the theory are distinguished by different values of the coupling
constants. Remembering what we learned in Section 7, we conclude that classical scale invariance is an
anomalous symmetry. One heuristic way to see how the conformal anomaly comes about is to notice
that the regularization of an otherwise scale invariant field theory requires the introduction of an energy
scale (e.g. a cutoff). This breaking of scale invariance cannot be restored after renormalization.

Nevertheless, scale invariance is not lost forever in the quantum theory. It is recovered at the
fixed points of the beta function where, by definition, the coupling does not run. To understand how
this happens we go back to a scale invariant classical field theory whose field ¢(x) transform under
coordinate rescalings as

ot — Azt d(x) — A BN 1), (385)

where A is called the canonical scaling dimension of the field. An example of such a theory is a massless
¢* theory in four dimensions

L= %am A — %&, (386)
where the scalar field has canonical scaling dimension A = 1. The Lagrangian density transforms as
L2z (387)
and the classical action remains invariant®’.

If scale invariance is preserved under quantization, the Green’s functions transform as

(QIT[¢ (x1) ... ¢ (20)]|Q) = NMQT 6N Lz1) ... p(N " z)]|2). (388)

®In a D-dimensional theory the canonical scaling dimensions of the fields coincide with its engineering dimension: A =
% for bosonic fields and A = % for fermionic ones. For a Lagrangian with no dimensionful parameters classical scale
invariance follows then from dimensional analysis.
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Fig. 15: Systems of spins in a two-dimensional square lattice.

This is precisely what happens in a free theory. In an interacting theory the running of the coupling
constant destroys classical scale invariance at the quantum level. Despite of this, at the fixed points of
the beta function the Green’s functions transform again according to (388) where A is replaced by

Aanom = A+ 7", (389)

The canonical scaling dimension of the fields are corrected by *, which is called the anomalous dimen-
sion. They carry the dynamical information about the high-energy behavior of the theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kind of pre-
scription or recipe to get rid of the divergences in an ordered way. This discomfort about renormalization
was expressed in occasions by comparing it with “sweeping the infinities under the rug”. However thanks
to Ken Wilson to a large extent [42] the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.

Statistical mechanics. Wilson’s ideas are both simple and profound and consist in thinking about
Quantum Field Theory as the analog of a thermodynamical description of a statistical system. To be
more precise, let us consider an Ising spin system in a two-dimensional square lattice as the one depicted
in Fig 15. In terms of the spin variables s; = j:%, where ¢ labels the lattice site, the Hamiltonian of the
system is given by

H=-7]) sis, (390)
(i.3)

where (7, j) indicates that the sum extends over nearest neighbors and .J is the coupling constant between
neighboring spins (here we consider that there is no external magnetic field). The starting point to study
the statistical mechanics of this system is the partition function defined as

z2=Y ¢ PH (391)
{si}

where the sum is over all possible configurations of the spins and 5 = % is the inverse temperature.

For J > 0 the Ising model presents spontaneous magnetization below a critical temperature 7%, in any

dimension higher than one. Away from this temperature correlations between spins decay exponentially
at large distances

_ =zl

(sisj) ~e €, (392)
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Fig. 16: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin computed
according to the rule (394). Notice also that the size of the lattice spacing is doubled in the process.

with |x;;| the distance between the spins located in the i-th and j-th sites of the lattice. This expression
serves as a definition of the correlation length £ which sets the characteristic length scale at which spins
can influence each other by their interaction through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spin system. We can
capture the relevant physics by integrating out somehow the physics at short scales. A way in which this
can be done was proposed by Leo Kadanoff [43] and consists in dividing our spin system in spin-blocks
like the ones showed in Fig 16. Now we can construct another spin system where each spin-block of the
original lattice is replaced by an effective spin calculated according to some rule from the spins contained
in each block B,

{si:ie B} — s, M. (393)

a

For example we can define the effective spin associated with the block B, by taking the majority rule
with an additional prescription in case of a draw

1 _ ].
sa( ) = §sgn Z si |, (394)

1€8B,

where we have used the sign function, sign(z) = 27> With the additional definition sgn(0) = 1. This
procedure is called decimation and leads to a new spin system with a doubled lattice space.
The idea now is to rewrite the partition function (391) only in terms of the new effective spins

sa(l). Then we start by splitting the sum over spin configurations into two nested sums, one over the spin
blocks and a second one over the spins within each block

Z = Ze_BH[S"'] = Z Z ) [sa(l) — sign (Z sz>] e BHIsi], (395)
{8}

(5} {F€Ba} i€ Bq

75



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

The interesting point now is that the sum over spins inside each block can be written as the exponential

of a new effective Hamiltonian depending only on the effective spins, H (1) [sa(l) ]

d o [sa(” — sign <Z s)] o—BHI[s:) _ o~BHM[sV] (396)

{SEBa} 1€ Bq

The new Hamiltonian is of course more complicated

HY = —JOS 00y (397)
(4,9

where the dots stand for other interaction terms between the effective block spins. This new terms appear
because in the process of integrating out short distance physics we induce interactions between the new
effective degrees of freedom. For example the interaction between the spin block variables 81(1) will in
general not be restricted to nearest neighbors in the new lattice. The important point is that we have
managed to rewrite the partition function solely in terms of this new (renormalized) spin variables s (!
interacting through a new Hamiltonian H®)

2= 3 BV, (398)
(s}

Let us now think about the space of all possible Hamiltonians for our statistical system including
all kinds of possible couplings between the individual spins compatible with the symmetries of the sys-
tem. If denote by R the decimation operation, our previous analysis shows that R defines a map in this
space of Hamiltonians

R:H — HWY, (399)

At the same time the operation R replaces a lattice with spacing a by another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units of the lattice spacing is
divided by two, R : £ — 3.

Now we can iterate the operation R an indefinite number of times. Eventually we might reach a
Hamiltonian H, that is not further modified by the operation R

s QAT - (RN - (O LN (400)
The fixed point Hamiltonian H, is scale invariant because it does not change as R is performed. Notice
that because of this invariance the correlation length of the system at the fixed point do not change under
‘R. This fact is compatible with the transformation & — % only if £ = 0 or £ = oo. Here we will focus
in the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the coupling constants
associated with all possible interaction terms between individual spins of the lattice. If we denote by
O, ]s:] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system under
study can be written as

Hisi] =Y XaOalsi, (401)
a=1

where A\, € R are the coupling constants for the corresponding operators. These constants can be thought
of as coordinates in the space of all Hamiltonians. Therefore the operation R defines a transformation in
the set of coupling constants

R:Ag — AW, (402)
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For example, in our case we started with a Hamiltonian in which only one of the coupling constants
is different from zero (say Ay = —J). As a result of the decimation \; = —J — —J (1) while some
of the originally vanishing coupling constants will take a nonzero value. Of course, for the fixed point
Hamiltonian the coupling constants do not change under the scale transformation k.

Physically the transformation R integrates out short distance physics. The consequence for physics
at long distances is that we have to replace our Hamiltonian by a new one with different values for the
coupling constants. That is, our ignorance of the details of the physics going on at short distances result
in a renormalization of the coupling constants of the Hamiltonian that describes the long range physical
processes. It is important to stress that although R is sometimes called a renormalization group trans-
formation in fact this is a misnomer. Transformations between Hamiltonians defined by R do not form
a group: since these transformations proceed by integrating out degrees of freedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations with £ = oo
are associated with phase transitions. From our previous discussion we can conclude that the space
of Hamiltonians is divided in regions corresponding to the basins of attraction of the different fixed
points. We can ask ourselves now about the stability of those fixed points. Suppose we have a statistical
system described by a fixed-point Hamiltonian H, and we perturb it by changing the coupling constant
associated with an interaction term O. This is equivalent to replace H, by the perturbed Hamiltonian

H = H, +)\O, (403)

where § ) is the perturbation of the coupling constant corresponding to O (we can also consider pertur-
bations in more than one coupling constant). At the same time thinking of the A\,’s as coordinates in the
space of all Hamiltonians this corresponds to moving slightly away from the position of the fixed point.

The question to decide now is in which direction the renormalization group flow will take the
perturbed system. Working at first order in J A there are three possibilities:

— The renormalization group flow takes the system back to the fixed point. In this case the corre-
sponding interaction O is called irrelevant.

— R takes the system away from the fixed point. If this is what happens the interaction is called
relevant.

— It is possible that the perturbation actually does not take the system away from the fixed point at
first order in §A. In this case the interaction is said to be marginal and it is necessary to go to higher
orders in § A in order to decide whether the system moves to or away the fixed point, or whether
we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow in the
space of coupling constants. In Fig. 17 we have depicted an example of such a flow in the case of a
system with two coupling constants A; and As. In this example we find two fixed points, one at the
origin O and another at F' for a finite value of the couplings. The arrows indicate the direction in which
the renormalization group flow acts. The free theory at A\; = A2 = 0 is a stable fix point since any
perturbation d\1,0A2 > 0 makes the theory flow back to the free theory at long distances. On the
other hand, the fixed point F' is stable with respect to certain type of perturbations (along the line with
incoming arrows) whereas for any other perturbations the system flows either to the free theory at the
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply to
Field Theory. Let us begin with a quantum field theory defined by the Lagrangian

Llga) = Lol¢al + Y 6:Oil6al, (404)
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Fig. 17: Example of a renormalization group flow.

where Ly[¢,] is the kinetic part of the Lagrangian and g; are the coupling constants associated with the
operators O;[¢,]. In order to make sense of the quantum theory we introduce a cutoff in momenta A. In
principle we include all operators O; compatible with the symmetries of the theory.

In section 8.2 we saw how in the cases of QED and QCD, the value of the coupling constant
changed with the scale from its value at the scale A. We can understand now this behavior along the lines
of the analysis presented above for the Ising model. If we would like to compute the effective dynamics
of the theory at an energy scale ;1 < A we only have to integrate out all physical models with energies
between the cutoff A and the scale of interest u. This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theory the effective action S[¢,, u] at
scale y» can be written in the language of functional integration as

(IS0 / [[ D6 594, (405)
u<p<A ™,

Here S[¢,, A] is the action at the cutoff scale

S[pa, A] = /d4$ {ﬁo[%] + Zgz‘(/\)@z‘[%]} (406)

and the functional integral in Eq. (405) is carried out only over the field modes with momenta in the
range ;4 < p < A. The action resulting from integrating out the physics at the intermediate scales
between A and p depends not on the original field variable ¢, but on some renormalized field ¢/. At
the same time the couplings ¢; (1) differ from their values at the cutoff scale g;(A). This is analogous to
what we learned in the Ising model: by integrating out short distance physics we ended up with a new
Hamiltonian depending on renormalized effective spin variables and with renormalized values for the
coupling constants. Therefore the resulting effective action at scale y can be written as

S, ul = / d'z {ﬁow + Zgi(moi [¢>;]} : (407)

This Wilsonian interpretation of renormalization sheds light to what in section 8.1 might have looked
just a smart way to get rid of the infinities. The running of the coupling constant with the energy scale
can be understood now as a way of incorporating into an effective action at scale p the effects of field
excitations at higher energies &2 > p.
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As in statistical mechanics there are also quantum field theories that are fixed points of the renor-
malization group flow, i.e. whose coupling constants do not change with the scale. We have encountered
them already in Section 8.2 when studying the properties of the beta function. The most trivial example
of such theories are massless free quantum field theories, but there are also examples of four-dimensional
interacting quantum field theories which are scale invariant. Again we can ask the question of what hap-
pens when a scale invariant theory is perturbed with some operator. In general the perturbed theory is not
scale invariant anymore but we may wonder whether the perturbed theory flows at low energies towards
or away the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimension d[O] of the
operator O|¢,] used to perturb the theory at the fixed point. In four dimensions the three possibilities are
defined by:

— d[O] > 4: irrelevant perturbation. The running of the coupling constants takes the theory back to
the fixed point.

— d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invariant
theory.

— d[O] = 4: marginal deformation. The direction of the flow cannot be decided only on dimensional
grounds.

As an example, let us consider first a massless fermion theory perturbed by a four-fermion inter-

action term
— I —

L= by — 55 (). (408)

This is indeed a perturbation by an irrelevant operator, since in four-dimensions [¢)] = % Interactions

generated by the extra term are suppressed at low energies since typically their effects are weighted by

. . 2 . .

the dimensionless factor %, where E is the energy scale of the process. This means that as we try

to capture the relevant physics at lower and lower energies the effect of the perturbation is weaker and

weaker rendering in the infrared limit £ — 0 again a free theory. Hence, the irrelevant perturbation in

(408) makes the theory flow back to the fixed point.

On the other hand relevant operators dominate the physics at low energies. This is the case, for
example, of a mass term. As we lower the energy the mass becomes more important and once the energy
goes below the mass of the field its dynamics is completely dominated by the mass term. This is, for
example, how Fermi’s theory of weak interactions emerges from the Standard Model at energies below
the mass of the W boson

Vel

At energies below My, = 80.4 GeV the dynamics of the W boson is dominated by its mass term and
therefore becomes nonpropagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators dominate the dynamics
in the infrared, taking the theory away from the fixed point, irrelevant perturbations become suppressed
in the same limit. Finally we consider the effect of marginal operators. As an example we take the
interaction term in massless QED, O = 1y A,,. Taking into account that in d = 4 the dimension of
the electromagnetic potential is [A,] = 1 the operator O is a marginal perturbation. In order to decide
whether the fixed point theory

Lo = —%FWFW + i (409)
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is restored at low energies or not we need to study the perturbed theory in more detail. This we have
done in section 8.1 where we learned that the effective coupling in QED decreases at low energies. Then
we conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behavior we can write the Lagrangian for
a SU(IV.) gauge theory, £ = _%F;LlyFa g

1 a a av 14 a aoc a cv
L= - (0, AL — 0, A%) (" A™Y — 9 A*H) — 4g f**° AT AL 91 A
+ gAfeteprde A AC AT ACY = Lo + O, (410)

i.e. a marginal perturbation of the free theory described by £y, which is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we know that the full theory is asymp-
totically free, so the coupling constant grows at low energies. This implies that the operator O, becomes
more and more important in the infrared and therefore the theory flows away the fixed point in this limit.

It is very important to notice here that in the Wilsonian view the cutoff is not necessarily regarded
as just some artifact to remove infinities but actually has a physical origin. For example in the case of
Fermi’s theory of S-decay there is a natural cutoff A = My at which the theory has to be replaced by
the Standard Model. In the case of the Standard Model itself the cutoff can be taken at Planck scale
A ~ 10" GeV or the Grand Unification scale A ~ 10'® GeV, where new degrees of freedom are
expected to become relevant. The cutoff serves the purpose of cloaking the range of energies at which
new physics has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a physical
cutoff, there is no fundamental difference between renormalizable and nonrenormalizable theories. Ac-
tually, a renormalizable field theory, like the Standard Model, can generate nonrenormalizable operators
at low energies such as the effective four-fermion interaction of Fermi’s theory. They are not sources
of any trouble if we are interested in the physics at scales much below the cutoff, £ < A, since their
contribution to the amplitudes will be suppressed by powers of %

9 Special topics
9.1 Creation of particles by classical fields

Particle creation by a classical source. In a free quantum field theory the total number of particles
contained in a given state of the field is a conserved quantity. For example, in the case of the quantum
scalar field studied in section 3 we have that the number operator commutes with the Hamiltonian

[ &k 1 - _
i= [ g @e®,  (al-o. @i

This means that any states with a well-defined number of particle excitations will preserve this number
at all times. The situation, however, changes as soon as interactions are introduced, since in this case
particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantum theory is coupled
to a classical source. The archetypical example of such a situation is the Schwinger effect, in which a
classical strong electric field produces the creation of electron-positron pairs out of the vacuum. However,
before plunging into this more involved situation we can illustrate the relevant physics involved in the
creation of particles by classical sources with the help of the simplest example: a free scalar field theory
coupled to a classical external source J(x). The action for such a theory can be written as

2

5= [at [;wmw@) T (@) + I @)o)| @412)
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where .J(z) is a real function of the coordinates. Its identification with a classical source is obvious once
we calculate the equations of motion

(V2 +m?) ¢(z) = J(z). (413)

Our plan is to quantize this theory but, unlike the case analyzed in section 3, now the presence of the
source J (x) makes the situation a bit more involved. The general solution to the equations of motion can
be written in terms of the retarded Green function for the Klein-Gordon equation as

8(0) = du(a) + 1 [ s’ Gl — ) (@), @1
where ¢o(z) is a general solution to the homogeneous equation and
d*k i "
t.z — —ik-x
Gr(t, ) / (2m)* k2 — m?2 + ie sign(ko)e
3k 1 . > . L
— i0(t - ( —twgt+kT ’kat—lpnr) , 415
! ()/(27T)32wk € ¢ (415)

with 0(z) the Heaviside step function. The integration contour to evaluate the integral over p° surrounds
the poles at p = +wy, from above. Since Gr(t, ¥) = 0 for t < 0, the function ¢ () corresponds to the
solution of the field equation at t — —o0, before the interaction with the external source?!

To make the argument simpler we assume that J(x) is switched on at ¢ = 0, and only last for a
time 7, that is

J(t, ) =0 ift <Oort>r. (416)

We are interested in a solution of (413) for times after the external source has Eeen switched off, ¢ > 7.
In this case the expression (415) can be written in terms of the Fourier modes .J(w, k) of the source as

$BE 1 o~ PN —iwpttikd T TNk dwpt—iked
(27)3@ [J(wk,k)e — J(wr, k)"e . (417)

o0.2) = o(2) + |
On the other hand, the general solution ¢((z) has been already computed in Eq. (77). Combining this
result with Eq. (417) we find the following expression for the late time general solution to the Klein-
Gordon equation in the presence of the source

Bk 1 - i~ - < o
t = - k J k —twt+ik-&
¢( ,1’) / (27_[_)3 \/m { |:a( ) + \/m (wk7 ):| e
" i o~ - R
*(k) — J(wg, k)* | efwrt—ika L 418

We should not forget that this is a solution valid for times ¢ > 7, i.e. once the external source has been
disconnected. On the other hand, for ¢ < 0 we find from Egs. (414) and (415) that the general solution
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentum 7 (z) = Jp¢(x) can be
computed from Eqgs. (77) and (418). Imposing the canonical equal time commutation relations (74) we
find that o (k), of (k) satisfy the creation-annihilation algebra (51). From our previous calculation we
find that for ¢ > 7 the expansion of the operator ¢(x) in terms of the creation-annihilation operators
a(k), af (k) can be obtained from the one for ¢ < 0 by the replacement

~ -

J(wk,k),

alk) — 5(E)za(E)+\/m

2'We could have taken instead the advanced propagator G 4 () in which case ¢o(z) would correspond to the solution to the
equation at large times, after the interaction with J(x).
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~ -

(k) — BIE) = al(F) — ——J(wp, k)" 419
Oé() ﬁ() a() m(wka) ( )
Actually, since J (wy, k) is a c-number, the operators 3(k), 87 (k) satisfy the same algebra as a(k), af (k)
and therefore can be interpreted as well as a set of creation-annihilation operators. This means that we
can define two vacuum states, |0_), |0,.) associated with both sets of operators

a(k)|0-) =0

-

v k. (420)
B(k)[0+) =0
For an observer at t < 0, (k) and a(k) are the natural set of creation-annihilation operators
in terms of which to expand the field operator ¢(z). After the usual zero-point energy subtraction the
Hamiltonian is given by

O A A
mﬂzz/@mﬁmMmm 421

and the ground state of the spectrum for this observer is the vacuum |0_). At the same time, a second
observer at t > 7 will also see a free scalar quantum field (the source has been switched off at £ = 7) and
consequently will expand ¢ in terms of the second set of creation-annihilation operators 5(15) 5T(E). In
terms of this operators the Hamiltonian is written as

—~ 3 — —
mn =3[ (;ﬂr’jg BH(R)BE). (422)

Then for this late-time observer the ground state of the Hamiltonian is the second vacuum state |04.).

In our analysis we have been working in the Heisenberg picture, where states are time-independent
and the time dependence comes in the operators. Therefore the states of the theory are globally defined.
Suppose now that the system is in the “in” ground state |0_). An observer at ¢ < 0 will find that there
are no particles

a)o_) = o. (423)

However the late-time observer will find that the state |0_) contains an average number of particles given
by

Bk 1 |5 o2
7~ - |2 -
O-A10) = [ g | T

(424)

Moreover, |0_) is no longer the ground state for the “out” observer. On the contrary, this state have a
vacuum expectation value for H(+)

2

~ 3 ~ -
(0-|H0-) = 1/“ ]J(wk,k) (425)

2 ) (2m)3

The key to understand what is going on here lies in the fact that the external source breaks the
invariance of the theory under space-time translations. In the particular case we have studied here where
J(x) has support over a finite time interval 0 < ¢ < 7, this implies that the vacuum is not invariant
under time translations, so observers at different times will make different choices of vacuum that will
not necessarily agree with each other. This is clear in our example. An observer in ¢ < 7 will choose the
vacuum to be the lowest energy state of her Hamiltonian, |0_). On the other hand, the second observer
at late times ¢ > 7 will naturally choose |0,) as the vacuum. However, for this second observer, the
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E

A

Fig. 18: Pair creation by a electric field in the Dirac sea picture.

state |0_) is not the vacuum of his Hamiltonian, but actually an excited state that is a superposition of
states with well-defined number of particles. In this sense it can be said that the external source has the
effect of creating particles out of the “in” vacuum. Besides, this breaking of time translation invariance
produces a violation in the energy conservation as we see from Eq. (425). Particles are actually created
from the energy pumped into the system by the external source.

The Schwinger effect. A classical example of creation of particles by a external field was pointed
out by Schwinger [44] and consists of the creation of electron-positron pairs by a strong electric field. In
order to illustrate this effect we are going to follow a heuristic argument based on the Dirac sea picture
and the WKB approximation.

In the absence of an electric field the vacuum state of a spin—% field is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electric field £ = il inthe
range 0 < x < L created by a electrostatic potential

0 <0
V(r) = &z O<ax<L (426)
—E&L Tz >L

After the field has been switched on, the Dirac sea looks like in Fig. 18. In particular we find that if
e€L > 2m there are negative energy states at x > L with the same energy as the positive energy states
in the region = < 0. Therefore it is possible for an electron filling a negative energy state with energy
close to —2m to tunnel through the forbidden region into a positive energy state. The interpretation of
such a process is the production of an electron-positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKB approximation.
Focusing for simplicity on an electron on top of the Fermi surface near + = L with energy Ejy, the
transmission coefficient in this approximation is given by??

= (B /457
exp [—2 /1

ol (Eo — m2+ﬁ12)

Twkp =

2Notice that the electron satisfy the relativistic dispersion relation E = /p2 + m2 + V and therefore —p2 = m? — (F—
V)2 + 2. The integration limits are set by those values of z at which p, = 0.
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= ep |- (5 +m?) | (427)

where p% = pg + p?. This gives the transition probability per unit time and per unit cross section dydz
for an electron in the Dirac sea with transverse momentum p7 and energy Fy. To get the total probability
per unit time and per unit volume we have to integrate over all possible values of pr and Ey. Actually,
in the case of the energy, because of the relation between Ej and the coordinate = at which the particle
penetrates into the barrier we can write dEO = 65 5-dx and the total probability per unit time and per unit
volume for the creation of a pair is given by

65 d2pT _ (=2 2 6282 7rm2
_o( & ZE(@r+m?) _ - 42
W <27r> / (27r) ’ ¢ (428)

where the factor of 2 accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponentially suppressed and it is only sizeable for
strong electric fields. To estimate its order of magnitude it is useful to restore the powers of ¢ and % in
(428)

252 s m2 c3
c hee (429)

= Andch? ¢

The exponential suppression of the pair production disappears when the electric field reaches the critical
value &, at which the exponent is of order one

m2c?

he

Ecrit = ~1.3x 10" Vem™. (430)
This is indeed a very strong field which is extremely difficult to produce. A similar effect, however,
takes place also in a time-varying electric field [45] and there is the hope that pair production could be
observed in the presence of the alternating electric field produced by a laser.

The heuristic derivation that we followed here can be made more precise in QED. There the decay
of the vacuum into electron-positron pairs can be computed from the imaginary part of the effective
action I'[A,,] in the presence of a classical gauge potential A,

vow@wb"

1
= log det[l—zeAza -

This determinant can be computed using the standard heat kernel techniques. The probability of pair
production is proportional to the imaginary part of sI'[4,,] and gives

T,

(431)

W= N T (432)

Our simple argument based on tunneling in the Dirac sea gave only the leading term of Schwinger’s result
(432). The remaining terms can be also captured in the WKB approximation by taking into account the
probability of production of several pairs, i.e. the tunneling of more than one electron through the barrier.

Here we have illustrated the creation of particles by semiclassical sources in Quantum Field The-
ory using simple examples. Nevertheless, what we learned has important applications to the study of
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quantum fields in curved backgrounds. In Quantum Field Theory in Minkowski space-time the vacuum
state is invariant under the Poincaré group and this, together with the covariance of the theory under
Lorentz transformations, implies that all inertial observers agree on the number of particles contained
in a quantum state. The breaking of such invariance, as happened in the case of coupling to a time-
varying source analyzed above, implies that it is not possible anymore to define a state which would be
recognized as the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particular, if
the background is time-dependent (as it happens in a cosmological setup or for a collapsing star) different
observers will identify different vacuum states. As a consequence what one observer call the vacuum will
be full of particles for a different observer. This is precisely what is behind the phenomenon of Hawking
radiation [46]. The emission of particles by a physical black hole formed from gravitational collapse of
a star is the consequence of the fact that the vacuum state in the asymptotic past contain particles for an
observer in the asymptotic future. As a consequence, a detector located far away from the black hole
detects a stream of thermal radiation with temperature

he?

Thascking = 5y 17 4
Hawking 87TGN]{7M ( 33)

where M is the mass of the black hole, G is Newton’s constant and & is Boltzmann’s constant. There
are several ways in which this results can be obtained. A more heuristic way is perhaps to think of this
particle creation as resulting from quantum tunneling of particles across the potential barrier posed by
gravity [47].

9.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of Quantum Field Theory
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry, and
in particular gauge symmetry. The Lagrangian of the Standard Model can be written just including all
possible renormalizable terms (i.e. with canonical dimension smaller o equal to 4) compatible with the
gauge symmetry SU(3)xSU(2)xU(1) and Poincaré invariance. All attempts to go beyond start with the
question of how to extend the symmetries of the Standard Model.

As explained in Section 5.1, in a quantum field theoretical description of the interaction of elemen-
tary particles the basic observable quantity to compute is the scattering or .S-matrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentum into some final
products

A(in — out) = (py’,...;out|p, .. .;in). (434)

An explicit symmetry of the theory has to be necessarily a symmetry of the S-matrix. Hence it is fair to
ask what is the largest symmetry of the S-matrix.

Let us ask this question in the simple case of the scattering of two particles with four-momenta p;
and po in the t-channel

b2 p/2

P
Pl
We will make the usual assumptions regarding positivity of the energy and analyticity. Invariance of the
theory under the Poincaré group implies that the amplitude can only depend on the scattering angle
through

t=p —p1)?=2(mi—pp}) =2(mi— E1E] + |p1]|py/| cos ) . (435)
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If there would be any extra bosonic symmetry of the theory it would restrict the scattering angle to a set
of discrete values. In this case the S-matrix cannot be analytic since it would vanish everywhere except
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing to the analyticity
of the scattering amplitudes is to introduce “fermionic” symmetries, i.e. symmetries whose generators
are anticommuting objects [48]. This means that in addition to the generators of the Poincaré group??
P#, M and the ones for the internal gauge symmetries (G, we can introduce a number of fermionic gen-
erators Qé, Qu I =1,...,N), where Q;; = (Qg)T. The most general algebra that these generators
satisfy is the \-extended supersymmetry algebra [49]

{QCINQZ}J} = 20:5Pu51J1

{QLQ]} = 2ewZ", (436)
I —=J —=IJ
{Qu, @i} = 26427, (437)
where Z// € C commute with any other generator and satisfies Z// = — 27!, Besides we have the

commutators that determine the Poincaré transformations of the fermionic generators Qé, QaJ

Qs P*] = [Qar, P*=0,
QL M™) = S(0™), Q). (438)
Qur M) =~ (@) Ty,
where 0% = —io?, 0¥ = kg% and G = (o). These identities simply mean that QI, Q, ;

transform respectively in the (1, 0) and (0, 1) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that the spectrum can be
classified in multiplets with respect to that symmetry. In the case of supersymmetry start with the case
case N = 1 in which there is a single pair of supercharges Q,, @, satisfying the algebra

{Qaa@i)} = 2O-ZBP/J«7 {Qa’ Qb} = {@d)@l}} =0. (439)

Notice that in the A/ = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (439), starting with the massless
case. Given a state |k) satisfying k2 = 0, we can always find a reference frame where the four-vector k*
takes the form k* = (F, 0,0, E). Since the theory is Lorentz covariant we can obtain the representation
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the right-
hand side of the first anticommutator in Eq. (439) is given by

0 0
0 3 p3
20", P, = 2(P —aP)z(O 4E>. (440)

Therefore the algebra of supercharges in the massless case reduces to

{leQI} = {QlaQ;}:Oa
{Q2,Q1} = 4E. (441)

The commutator {Q1, Q;} = 0 implies that the action of (J; on any state gives a zero-norm state of the
Hilbert space |Q1|¥)| = 0. If we want the theory to preserve unitarity we must eliminate these null

BThe generators M* are related with the ones for boost and rotations introduced in section 4.1 by J* = M%, M* =
%5” k¥ M3* In this section we also use the “dotted spinor” notation, in which spinors in the (%, 0) and (O, %) representations
of the Lorentz group are indicated respectively by undotted (a, b, . . .) and dotted (a, b,...) indices.
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states from the spectrum. This is equivalent to setting (J; = 0. On the other hand, in terms of the second
generator (o we can define the operators

1 1
— T t
a=—=0Q2, a' = —=Qs, 442
2\/EQ2 2\/EC22 (442)
which satisfy the algebra of a pair of fermionic creation-annihilation operators, {a,a!'} = 1, a®> =

(a")? = 0. Starting with a vacuum state a|\) = 0 with helicity A\ we can build the massless multiplet
), A+ 3) =al|h). (443)
Here we consider two important cases:

— Scalar multiplet: we take the vacuum state to have zero helicity |07) so the multiplet consists of a
scalar and a helicity—% state

07), |3) =aljo™). (444)

However, this multiplet is not invariant under the CPT transformation which reverses the sign of
the helicity of the states. In order to have a CPT-invariant theory we have to add to this multiplet
1

its CPT-conjugate which can be obtain from a vacuum state with helicity A = —3

07), |—3)- (445)

Putting them together we can combine the two zero helicity states with the two fermionic ones into

the degrees of freedom of a complex scalar field and a Weyl (or Majorana) spinor.

1

— Vector multiplet: now we take the vacuum state to have helicity A = 3,

also a massless state with helicity A = 1

As with the scalar multiplet we add the CPT conjugated obtained from a vacuum state with helicity
A=-1

so the multiplet contains

), 1) =al|d). (446)

N[ =

| =3 |- 1), (447)
which together with (446) give the propagating states of a gauge field and a spin—% gaugino.

In both cases we see the trademark of supersymmetric theories: the number of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supersym-
metry charge. At the end, we have A\ sets of fermionic creation-annihilation operators {a/, a}} = 7>
(a)? = (a})2 = 0. Let us work out the case of A/ = 8 supersymmetry. Since for several reasons we do
not want to have states with helicity larger than 2, we start with a vacuum state | — 2) of helicity A = —2.
The rest of the states of the supermultiplet are obtained by applying the eight different creation operators
a} to the vacuum:

8
A=2 ai.. ag\—2> <8) = 1 state,
3 ) 8
)\25: a}l...al7\—2> (7> = § states,
I 8) _
A=1: ap...ap|—2) (6) = 28 states,
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A= % : QL "‘QL‘ -2) (i) = 56 states,
A=0: af ...a}|-2) (i) = 70 states, (448)
A= —é : a}l a}2a§3| —2) (2) = 56 states,
A=—-1: aL a}2| -2) <§) = 28 states,
A= —; : a}l\ —2) (f) = 8 states,
A=—-2: | —2) 1 state.

Putting together the states with opposite helicity we find that the theory contains:

1 spin-2 field g,,,, (a graviton),
-8 spin—% gravitino fields v/,
28 gauge fields AL”},

- 56 spin—% fermions /7],

— 70 scalars ¢l /L]

where by [I.J...] we have denoted that the indices are antisymmetrized. We see that, unlike the massless
multiplets of A/ = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in the
case of the massless N = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 14+284+70+28+1 =128 states,
fermions: 8+ 56 + 56 + 8 = 128 states.

Now we study briefly the case of massive representations |k), k2 = M?2. Things become simpler
if we work in the rest frame where P’ = M and the spatial components of the momentum vanish. Then,
the supersymmetry algebra becomes:

{QL.Q; ,} =2M35 ;6" ). (449)

We proceed now in a similar way to the massless case by defining the operators

1 I 1 =
\/ﬁ ch \/ﬁ Qa I
The multiplets are found by choosing a vacuum state with a definite spin. For example, for N' = 1 and
taking a spin-0 vacuum |0) we find three states in the multiplet transforming irreducibly with respect to
the Lorentz group:

ag al; = (450)

0, alfo),  ®alal|0), 451)
which, once transformed back from the rest frame, correspond to the physical states of two spin-0 bosons
and one spin—% fermion. For N -extended supersymmetry the corresponding multiplets can be worked
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of the

interesting properties of supersymmetric theories. For example, in section 4 we computed the divergent
vacuum energy contributions for each real bosonic or fermionic propagating degree of freedom is>*

Fype = %5(6) / d>pwp, (452)

**For a boson, this can be read off Eq. (80). In the case of fermions, the result of Eq. (134) gives the vacuum energy
contribution of the four real propagating degrees of freedom of a Dirac spinor.
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where the sign &+ corresponds respectively to bosons and fermions. Hence, for a supersymmetric the-
ory the vacuum energy contribution exactly cancels between bosons and fermions. This boson-fermion
degeneracy is also responsible for supersymmetric quantum field theories being less divergent than non-
supersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Group Theory. Given a group G a representation
of GG is a correspondence between the elements of G and the set of linear operators acting on a vector
space V, such that for each element of the group g € G there is a linear operator D(g)

D(g):V —V (453)
satisfying the group operations
D(g1)D(g2) = D(g192),  D(g9;')=D(g1)™",  g1,02€G. (454)

The representation D(g) is irreducible if and only if the only operators A : V' — V commuting with all
the elements of the representation D(g) are the ones proportional to the identity

[D(g), Al =0, Vg = A=), XeC (455)

More intuitively, we can say that a representation is irreducible if there is no proper subspace U C V
(i.e. U # V and U # () such that D(g)U C U for every element g € G.

Here we are specially interested in Lie groups whose elements are labelled by a number of con-
tinuous parameters. In mathematical terms this means that a Lie group is a manifold M together with
an operation M x M — M that we will call multiplication that satisfies the associativity property
g1 (92 - 93) = (g1 - g2) - g3 together with the existence of unity g1 = 1g = g,for every g € M and
inverse gg~! = g7 lg = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each element
R(6) is labelled by the rotation angle 6, with the multiplication acting as R(61)R(62) = R(61 + 02).
Because the angle 6 is defined only modulo 27, the manifold of SO(2) is a circumference S*.

One of the interesting properties of Lie groups is that in a neighborhood of the identity element

they can be expressed in terms of a set of generators 7% (a = 1,...,dim G) as
=, (—i)
D(g) = exp(—ia,T?) = Z gy o O, T T, (456)
o n!

where o, € C are a set of coordinates of M in a neighborhood of 1. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two group elements is encoded in the value of the
commutator of two generators, that in general has the form

[T%, T = i feeTe, (457)

where f2¢ ¢ C are called the structure constants. The set of generators with the commutator operation
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie algebra
of generators we can construct a representation of the group by exponentiation (at least locally near the
identity).

We illustrate these concept with some particular examples. For SU(2) each group element is
labelled by three real number oy, © = 1, 2, 3. We have two basic representations: one is the fundamental
representation (or spin %) defined by

(i) = e 3% (458)
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with ¢ the Pauli matrices. The second one is the adjoint (or spin 1) representation which can be written
as

Di(ey) = e, (459)

where

—1 0 10
, J=1 -10 0 |. (460)
00

0 00
1], J2=[0 0 o0
0 1 0 0 0

—1

Actually, J? (i = 1,2, 3) generate rotations around the x, y and z axis respectively. Representations of
spin j € N+ % can be also constructed with dimension

dim D;(g) =25 + 1. (461)

As a second example we consider SU(3). This group has two basic three-dimensional representa-
tions denoted by 3 and 3 which in QCD are associated with the transformation of quarks and antiquarks
under the color gauge symmetry SU(3). The elements of these representations can be written as

D3(a%) = e2%"Ae, D3(a®) = e 39" (a=1,....8), (462)

where )\, are the eight hermitian Gell-Mann matrices

010 0 — 0 1 0 0
A= 10 0 ], X=[1¢ 0 0 |, =0 -1 0 |,
000 0 0 0 0 0 O
0 0 1 0 0 —i 000
A = 00 0], =10 0 0 ) =10 0 1], (463)
1 00 i 0 0 010
00 0 5 0 0
A = 00 —i |, M=| 0 % 0
; 2
0 2 O 0 0 ~-
Hence the generators of the representations 3 and 3 are given by
a 1 a/q 1 T
T3) = §>\a’ T43) = —5)\&. (464)

Irreducible representations can be classified in three groups: real, complex and pseudoreal.

— Real representations: a representation is said to be real if there is a symmetric matrix S which acts
as intertwiner between the generators and their complex conjugates

T" = —81°871, ST =3 (465)

This is for example the case of the adjoint representation of SU(2) generated by the matrices (460)
— Pseudoreal representations: are the ones for which an antisymmetric matrix S exists with the
property

T" = —871°871, ST =g, (466)

As an example we can mention the spin—% representation of SU(2) generated by %ai.
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— Complex representations: finally, a representation is complex if the generators and their complex
conjugate are not related by a similarity transformation. This is for instance the case of the two
three-dimensional representations 3 and 3 of SU(3).

There are a number of invariants that can be constructed associated with an irreducible represen-
tation 12 of a Lie group G and that can be used to label such a representation. If T are the generators
in a certain representation R of the Lie algebra, it is easy to see that the matrix Zii:niG TRETE commutes
with every generator 1. Therefore, because of Schur’s lemma, it has to be proportional to the identity®.

This defines the Casimir invariant C(R) as

dim G
> THTH = Co(R)1. (467)

a=1

A second invariant T5(R) associated with a representation R can also be defined by the identity
Tr TRTY, = To( R)6™. (468)

Actually, taking the trace in Eq. (467) and combining the result with (468) we find that both invariants
are related by the identity

Cy(R) dim R = Ty(R) dim G, (469)

with dim R the dimension of the representation R.

These two invariants appear frequently in quantum field theory calculations with nonabelian gauge
fields. For example 7 (R) comes about as the coefficient of the one-loop calculation of the beta-function
for a Yang-Mills theory with gauge group G. In the case of SU(N), for the fundamental representation,
we find the values

NZ -1 1
Cs(fund) = Ts(fund) = = 470
2( un ) 2N ? 2( un ) 2 ) ( )
whereas for the adjoint representation the results are
Cg(adj) = N, Tg(adj) = N. (471)

A third invariant A(R) is specially important in the calculation of anomalies. As discussed in sec-
tion (7), the chiral anomaly in gauge theories is proportional to the group-theoretical factor Tr [T}%{TE, T]‘fz}}
This leads us to define A(R) as

Tr [Tg{Tg,Tg}} = A(R)d™, 472)

where d%° is symmetric in its three indices and does not depend on the representation. Therefore, the
cancellation of anomalies in a gauge theory with fermions transformed in the representation R of the
gauge group is guaranteed if the corresponding invariant A(R) vanishes.

It is not difficult to prove that A(R) = 0 if the representation R is either real or pseudoreal. Indeed,
if this is the case, then there is a matrix S (symmetric or antisymmetric) that intertwins the generators
T and their complex conjugates TaR = —STRS ~1. Then, using the hermiticity of the generators we can
write

Tr [T,%{TE,TE}} —Tr [T}%{TE,TIQ}}T —Tr [T%{T%,T}}] . (473)

»Schur’s lemma states that if there is a matrix A that commutes with all elements of an irreducible representation of a Lie
algebra, then A = A1, for some A € C.
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Now, using (465) or (466) we have
e (R0 a Q— - c Q— a c
Te [ThlTr Tr}| = —Tr [STES STRS ™, STRS ™'} = ~Tr [TR{TR, TRY],  (474)

which proves that Tr [T%{T}, T§,}] and therefore A(R) = 0 whenever the representation is real or pseu-
doreal. Since the gauge anomaly in four dimensions is proportional to A(R) this means that anomalies
appear only when the fermions transform in a complex representation of the gauge group.
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Abstract

I review the basics of perturbative QCD, including infrared divergences and
safety, collinear and k7 factorization theorems, and various evolution equa-
tions and resummation techniques for single- and double-logarithmic correc-
tions. I then elaborate its applications to studies of jet substructures and hadronic
two-body heavy-quark decays.

1 Introduction

One of the important missions of the Large Hadron Collider (LHC) is to search for new physics beyond
the standard model. The identification of new physics signals usually requires precise understanding of
standard-model background, whose contributions mainly arise from quantum chromodynamics (QCD).
Many theoretical approaches have been developed based on QCD, which are appropriate for studies
of processes in different kinematic regions and involving different hadronic systems. The theoretical
framework for high-energy hadron collisions is known as the perturbative QCD (pQCD). I will focus on
pQCD below, introducing its fundamental ingredients and applications to LHC physics. Supplementary
material can be found in [1].

The simple QCD Lagrangian reveals rich dynamics. It exhibits the confinement at low energy,
which accounts for the existence of various hadronic bound states, such as pions, protons, B mesons, and
etc.. This nonperturbative dynamics is manifested by infrared divergences in perturbative calculations
of bound-state properties like parton distribution functions and fragmentation functions. On the other
hand, the asymptotic freedom at high energy leads to a small coupling constant, that allows formulation
of pQCD. Therefore, it is possible to test QCD in high-energy scattering, which is, however, nontrivial
due to bound-state properties of involved hadrons. That is, high-energy QCD processes still involve
both perturbative and nonperturbative dynamics. A sophisticated theoretical framework needs to be
established in order to realize the goal of pQCD: it is the factorization theorem [2], in which infrared
divergences are factorized out of a process, and the remaining piece goes to a hard kernel. The point
is to prove the universality of the infrared divergences, namely, the independence of processes the same
hadron participates in. Then the infrared divergences are absorbed into a parton distribution function
(PDF) for the hadron, which just needs to be determined once, either from experimental data or by
nonperturbative methods. The universality of a PDF guarantees the infrared finiteness of hard kernels
for all processes involving the same hadron. Convoluting these hard kernels with the determined PDF,
one can make predictions. In other words, the universality of a PDF warrants the predictive power of the
factorization theorem.

Though infrared divergences are factorized into a PDF, the associated logarithmic terms may ap-
pear in a process, that is not fully inclusive. To improve perturbative expansion, these logarithmic cor-
rections should be organized by evolution equations or resummation techniques. For the summation of
different single logarithms, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [3] and
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [4] have been proposed. For different double log-
arithms, the threshold resummation [5-7] and the k7 resummation [8, 9] have been developed. Besides,
an attempt has been made to combine the DGLAP and BFKL equations, leading to the Ciafaloni-Catani-
Fiorani-Marchesini (CCFM) equation [10]. Similarly, the threshold and k7 resummations has been uni-
fied under the joint resummation [11, 12], which is applicable to processes in a wider kinematic range. A
simple framework for understanding all the above evolution equations and resummation techniques will
be provided.
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After being equipped with the pQCD formalism, we are ready to learn its applications to various
processes, for which I will introduce jet substructures and hadronic two-body heavy-quark decays. It
will be demonstrated that jet substructures, information which is crucial for particle identification at the
LHC and usually acquired from event generators [13], are actually calculable using the resummation
technique. Among jet substructures investigated in the literature, the distribution in jet invariant mass
and the energy profile within a jet cone will be elaborated. For the latter, it will be shown that the
factorization theorem goes beyond the conventional naive factorization assumption [14], and provides
valuable predictions for branching ratios and CP asymmetries of hadronic two-body heavy-quark decays,
that can be confronted by LHCb data. Specifically, I will concentrate on three major approaches, the
QCD-improved factorization [15], the perturbative QCD [16-19], and the soft-collinear-effective theory
[20-23]. Some long-standing puzzles in B meson decays and their plausible resolutions are reviewed.
For more details on this subject, refer to [24].

2 Factorization Theorem

The QCD lagrangian is written as

_ 1.
ﬁQCD :¢(2 ;DaTa —mW— ZF# F,uzlaa (1)
with the quark field v, the quark mass m, and the covariant derivative and the gauge field tensor

DE = OF 4 igAl,
FI¥ = 0rAL = 0V AL — gfucAL AL, @

respectively. The color matrices T, and the structure constants f;. obey
F ) .
T, T = i T, (T e = =i fates 3)

where I’ (A) denotes the fundamental (adjoint) representation. Adding the gauge-fixing term in the
path-integral quantization to remove spurious degrees of freedom, Eq. (1) becomes

_ 1. 1
LQCD = ¢(1 rDaTa - m)?/) - ZFzéL Fw/a - 5)‘(8MAZ)2 + 3u772(3“ + gfabcAg)nba (4)

with the gauge parameter A, and the ghost field 7. The last term in the above expression comes from the
Jacobian for the variable change, as fixing the gauge.

The Feynman rules for QCD can be derived from Eq. (4) following the standard procedures [25].
The quark and gluon propagators with the momentum p are given by i %/(p? + i) and —ig"” /p? in the
Feynman gauge, respectively. The quark-gluon-quark vertex and the ghost-gluon-ghost vertex are written
as —1gv, 1, and g fabcp;“ respectively, where the subscripts p and a are associated with the gluon, p/ is
the momentum of the outgoing ghost, and b (c) is associated with the outgoing (incoming) ghost. The
three-gluon vertex and the four-gluon vertex are given by

I3y = —gfarasaslg”(p1 —p2)” + ¢ (p2 — p3)"* + " (p3 — p1)"*,
1—‘4g = _ig2[fea1a2fea3a4 (guluggugm - gyly4gy2y3) + fea1a3f6a4a2 (gyly4gy3y2 - gyly2gy3y4)
+fea1a4fea2a3 (gylyzgy4l/3 - 9V1V39V4V2)]’ (5)
respectively, where the subscripts a1, a9, - -+ and vy, v, - - - are assigned to gluons counterclockwise.

The particle momenta flow into the vertices in all the above Feynman rules.
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2.1 Infrared Divergences and Safety

The first step to establish the factorization theorem is to identify infrared divergences in Feynman di-
agrams for a QCD process at quark-gluon level. We start with the vertex correction to the amplitude
v*(q¢) = q(p1)d(p2), in which a virtual photon of momentum ¢ = p; + p; splits into a quark of momen-
tum p; and an anti-quark of momentum p2. Given the Feynman rules, one has the loop integral

A i i i
/ (27r)4 (—ZQ’Y Ta) (p1 (fll)g ?ie(—zew) (p2 Eﬁf)g —i—y)’iE( g'YuTa)lQ (6)

+ i€’
where [ is the loop momentum carried by the gluon, and the inclusion of the corresponding counterterm
for the regularization of a ultraviolet divergence is understood. The appearance of infrared divergences
becomes more transparent, as performing the contour integration in the light-cone frame, in which the
coordinates [* = (17,17, 17) are defined by

I 104107

V2

When an on-shell particle moves along the light cone, only one component of its momentum is large
in this frame. For example, the above quark momenta can be chosen as p}' = (p],0,07) and py =

(07p2_7 OT)
In terms of the light-cone coordinates, Eq. (6) is reexpressed as

Iy = (I%,1%). (N

ditdl—d?l 1 1 1
/ T ®)

2m)* 20t —p )= — B +ie2lt(Im —py) — 12 +ie 2l — 12 +ie’

where only the denominators are shown, since infrared divergences are mainly determined by pole struc-
tures. The poles of I~ are located, for 0 < [T < p{, at

) 2 o 22
[ :M+Z€, { :p2 +217+_Z€7 l :2l7+_7’€’ (9)

As It ~ O(py), the contour of [~ is pinched at [~ ~ O(I2./p{) by the first and third poles, defin-
ing the collinear region. As [T ~ O(lr), the contour of [~ is pinched at [~ ~ O(lr), defining the
soft region. That is, the collinear (soft) region corresponds to the configuration of I* ~ (E,A?/E, A)
(" ~ (A, A, A)), where E and A denote a large scale and a small scale, respectively. Another leading
configuration arises from the hard region characterized by I* ~ (E, E, E). A simple power counting
implies that all the above three regions give logarithmic divergences. Picking up the first pole in Eq. (9),
Eq. (8) becomes

i /dl*dle pt -1+ 1 /dl+/d2lT 10
2pf ) (2m)® 2pyit(pf — 1)+ IR 2 4p1 pa (27)3 ’

which produces the double logarithm from the overlap of the collinear (the integration over /™) and soft
(the integration over /1) enhancements.

The existence of infrared divergences is a general feature of QCD corrections. An amplitude is
not a physical quantity, but a cross section is. To examine whether the infrared divergences really call for
attention, we extend the calculation to the cross section of the process e~ et — X, the e”e™ annihilation
into hadrons. A cross section is computed as the square of an amplitude, whose Feynman diagrams are
composed of those for the amplitude connected by their complex conjugate with a final-state cut between
them. The cross section at the Born level e " et — 7* — qq 1S written as
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\.

Fig. 1: Final-state cut on self-energy corrections to a virtual photon propagator.

where N. = 3 is the number of colors, « is the electromagnetic coupling constant, Q? is the e~e™
invariant mass, and () is the quark charge in units of the electron charge. The virtual one-loop correc-
tions, including those to the gluon vertex in Eq. (6) and to the quark self-energy, give in the dimensional
regularization [25]

2

sV = _aN,C ZQWO‘S dmpt )\ 1- L3l T iio@], a2
- F 7r Q2 ) T(2-2¢ &  2¢ 2

with the color factor Cr = 4/3, the strong coupling constant «, the renormalization scale u, and the
Gamma function I'. The double pole 1/€? is a consequence of the overlap of the collinear and soft
divergences. The one-loop corrections from real gluons lead to [25]

2\ 2¢ _ 2
AL —2NCFZQ2Q:S (477#) F(l 6>[1+31 7T+19+O()} (13)

Q? 2 —2¢ 2¢ 2 4

It is a crucial observation that the infrared divergences cancel in the summation over the virtual
and real corrections in Eqs. (12) and (13), respectively: the double and single poles have a minus sign
in the former, but a plus sign in the latter. It is easy to understand the infrared cancellation by means
of self-energy corrections to the propagator of a virtual photon. Since a virtual photon does not involve
a low characteristic scale, the loop corrections must be infrared finite. As taking the final-state cut
shown in Fig. 1, the imaginary piece of a particle propagator is picked up, Im(1/(p? + i€)) oc §(p?),
which corresponds to the Feynman rule for an on-shell particle. Because the self-energy corrections are
infrared finite, their imaginary part, i.e., the e“et — X cross section, is certainly infrared finite. The
above observation has been formulated into the Kinoshita-Lee-Nauenberg (KLN) theorem [26], which
states that a cross section is infrared safe, as integrating over all phase spaces of final states. Combining
Egs. (11), (12), and (13), one derives the e"e™ — X cross section up to next-to-leading order (NLO)

- N >0 152, (14)

that has been used to determine the strong coupling constant «s(Q) at the scale Q.

2.2 DIS and Collinear Factorization

Though a naive perturbation theory applies to the e~ e™ annihilation, it fails for more complicated ones,
such as the deeply inelastic scattering (DIS) of a nucleon by a lepton, ¢(k)N (p) — ¢(k") + X. Even as
the momentum transfer squared —¢? = (k —k’)? = Q? is large, the quark-level cross section for the DIS
suffers infrared divergences at high orders, which reflect the nonperturbative dynamics in the nucleon.
A special treatment of the infrared divergences is then required. It will be demonstrated that they can be
factorized out of the scattering process, and absorbed into a nucleon PDF.
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Consider the two structure functions Fy »(z, Q?) involved in the DIS, where the Bjorken variable
is defined as * = —¢*/(2p - q) = Q?/(2p - q), and take F; as an example. We shall not repeat loop
integrations, but quote the NLO corrections to the quark-level diagrams [25]:

@) = ofs0-n+ 2o L (222 o)

1—=z T 4 4 n
g 1+ 22 B\ € Q? dk:%
oo () o [ ) s

where the superscript ¢ denotes the initial-state quark, vz is the Euler constant, and the first term comes
from the leading-order (LO) contribution. The subscript + represents the plus function, which is under-
stood as a distribution function via

L)t @) - 1)
/de( )+_/0 d . (16)

1—z 1—z

The integration over k% generates an infrared divergence, that is regularized in the dimensional
regularization with € < 0,

@ K2 1 e
/0 Wf’% = — (@*)°. (17)
Hence, the infrared divergence does exist in the perturbative evaluation of the DIS structure function,
even after summing over the virtual and real corrections. This divergence arises from the collinear region
with the loop momentum being parallel to the nucleon momentum, since it can also be regularized by
introducing a mass to the initial-state quark. It is related to the confinement mechanism, and corresponds
to a long-distance phenomenon associated with a group of collimated on-shell particles. The other terms
in Eq. (15) represent the hard NLO contribution to the structure function. Comparing the results for the
DIS and for the e”e™ annihilation, the former involves the integration over final-state kinematics, but
not over initial-state kinematics. This is the reason why the KLLN theorem does not apply to the infrared
divergences associated with the initial-state nucleon, and the above collinear divergence exists. Note that
the soft divergences cancel between virtual and real diagrams due to the fact that a nucleon is color-
singlet: a soft gluon with a huge space-time distribution cannot resolve the color structure of a nucleon,
so it does not interact with it.

Besides, the collinear gluon emissions modify a quark momentum, such that the initial-state quark
can carry various momenta, as it participates in hard scattering. It is then natural to absorb the collinear
divergences into a PDF for the nucleon, ¢/, which describes the probability for quark ¢ to carry certain
amount of the nucleon momentum. In other words, the quark-level collinear divergences are subtracted
by those in the PDF in perturbation theory, and the remaining infrared finite piece contributes to the hard
kernel H. We write the quark-level structure function as the following expansion in the strong coupling
constant,

_ © | O ) % o)
F(2,Q%) = HO @ ¢y + o "HD @ ¢+ " HO @6,y + -+, (18)

where H(®) (gf)éi/)N) is the hard kernel (PDF) of the ¢-th order. The symbol ® represents a convolution in
the parton momentum fraction &:

1
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We are ready to assign each term in Eq. (15) into either H®) or ¢gi/)N. The first term 6(1 — z) goes
to H© ¢(0) with the definitions

O(@/e, Q) =01 —2/8), Gy (&) =38(1—¢), (20)

which confirm H(® ® ¢<(1(})N = 0(1 — z). The second term in Eq. (15) is assigned to HY @ ¢$)N

the third term to H® @ qS((]l/)N with

Q2
H(l)(x, Q,n) = Pq(;)(ﬂ?) ]nF 4o
e k3
SN(En) = (dmue ) PD(E) /O o on
and the quark splitting function
14 2?
P(I(;)(‘T):CF(l_x>+- (22)

The definition of the PDF in terms of a hadronic matrix element is given by

bon (€0 1) / Y exp(~ip*y)

Z )|g(0,y~ 0T> W (y~,0)q(0,0,07)|N(p,0)),  (23)

where | N (p, o)) denotes the bound state of the nucleon with momentum p and spin o, ¥~ is the minus
component of the coordinate of the quark field after the final-state cut, the first factor 1/2 is attributed to
the average over the nucleon spin, and the matrix v /2 is the spin projector for the nucleon. Here p is
called the factorization scale, which is similar to a renormalization scale, but introduced in perturbative
computations for an effective theory. The Wilson lines are defined by W (y—,0) = W (0)WT(y~) with

W(y~) =Pexp [_ig / e Aly+2n_)|, 24)
0

where P represents a path-ordered exponential. The Wilson line behaves like a scalar particle carry-
ing a color source. The two quark fields in Eq. (23) are separated by a distance, so the above Wilson
links are demanded by the gauge invariance of the nonlocal matrix element. Since Eq. (23) depends
only on the property of the nucleon, but not on the hard processes it participates in, a PDF is universal
(process-independent). This is the most important observation, that warrants the predictive power of the
factorization theorem.

The Wilson line appears as a consequence of the eikonalization of the final-state quark, to which
the collinear gluons attach. The eikonalization is illustrated below by considering the loop correction to
the virtual photon vertex. Assuming the initial-state quark momentum p = (p*, 0, O1) and the final-state
quark momentum p’ = (0,p'~, O ), we have the partial integrand

v P+ A vt N A s v+

%7 ~ ,y ﬁ/ ) ﬁ—i_ /l +
(P +0%" (p+1) w02 02!

o 1 (12!

Py

R (25)

as the loop momentum [ is collinear to p, where #’' comes from the Feynman rule for the final-state quark,
~* is the photon vertex, and the subleading contribution from the transverse components of " has been

100



QUANTUM CHROMODYNAMICS

neglected. Applying the identity v~ p' = 2p'~— gy~ and ' p' = p'?> = 0 leads the above expression
to

/— - v
e S I - S I S .y
where the dimensionless vector n_ = (0, 1,07) is parallel to p, and the subleading contribution from

v = T has been restored. The factor n” and 1/n_ - [ are called the eikonal vertex and the eikonal
propagator, respectively.

It is then shown that the Feynman rule n” /n_ - [ for the eikonalized final-state quark is derived
from the Wilson line in Eq. (24). Consider the expansion of the path-order exponential in W (0) up to
order of ag, and Fourier transform the gauge field into the momentum space,

_ig /0 T den_ - / dlexpliz(n_ - 1 + i) A(l)

. q.expliz(n_ -1 +ie)] |77 s _/ . L~
N Zg/dl i i+ | " A= [ A1), 27)

n_ -l +1e

where the term 7e has been introduced to suppress the contribution from z = oo. The field fl(l) is
contracted with the gauge field from the initial-state quark with interaction to form the gluon propaga-
tor —i/(I2 + i€). The expansion of the second piece W (y~) gives the Feynman rules for the eikonal
propagator appearing after the final-state cut. In this case the additional exponential factor exp(il - y)
is combined with exp(—i&pTy~), implying that the valence quark ¢(0,y~,07) after the final-state cut
carries the momentum £p — [. In summary, the first (second) piece of Wilson lines corresponds to the
configuration without (with) the loop momentum flowing through the hard kernel. The above discussion
verifies the Wilson lines in the PDF definition.

After detaching the collinear gluons from the final-state quark, the fermion flow still connects the
PDF and the hard kernel. To achieve the factorization in the fermion flow, we insert the Fierz identity,

1 1 1
LIijIi, = le'k]lj + E(Wa)z‘kﬁa)lj + 1(75’704)%(7&75)13'

+%(75)ik('75)lj + é(750a6>ik<0a575)lj7 (28)
with I being the identity matrix and 0,8 = i[Va, 73]/2. At leading power, only the term (vq )i (7v*)1;/4
contributes, in which the structure (v*);;/2 &~ (y1);;/2 goes to the definition of the PDF in Eq. (23), and
(Ya)ik/2 =~ (77 )ik /2 goes into the evaluation of the hard kernel. The other terms in Eq. (28) contribute
at higher powers. Similarly, we have to factorize the color flow between the PDF and the hard kernel by
inserting the identity

LijIy, = ]\17611'16[13' + 2(T) i1 (T),5, (29)
where I denotes the 3 x 3 identity matrix, and 7 is a color matrix. The first term in the above expression
contributes to the present configuration, in which the valence quarks before and after the final-state cut
are in the color-singlet state. The structure Ij; /N, goes into the definition of the PDF, and I;; goes
into the evaluation of the hard kernel. The second term in Eq. (29) contributes to the color-octet state
of the valence quarks, together with which an additional gluonic parton comes out of the nucleon and
participates in the hard scattering.

The factorization formula for the nucleon DIS structure function is written as

1
R, Q%) =Y / fow/s,Q,mqaf/N(f,m, (30)
f xT
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with the subscript f labeling the parton flavor, such as a valence quark, a gluon, or a sea quark. The
hard kernel H is obtained following the subtraction procedure for the collinear divergences, and its LO
and NLO expressions have been presented in Eqgs. (20) and (21), respectively. The universal PDF ¢/,
describing the probability for parton f to carry the momentum fraction £ in the nucleon, takes a smooth
model function. It must be derived by nonperturbative methods, or extracted from data.

2.3 Predictive Power

The factorization theorem derived above is consistent with the well-known parton model. The nucleon
travels a long space-time, before it is hit by the virtual photon. As Q2 >> 1, the hard scattering occurs
at point space-time. Relatively speaking, the quark in the nucleon behaves like a free particle before
the hard scattering, and decouples from the rest of the nucleon. Therefore, the cross section for the
nucleon DIS reduces to an incoherent sum over parton flavors under the collinear factorization. That is,
the approximation

2

~ > IMsP g, 31)

)

ZMi/N

holds, where M represents the scattering amplitude for partonic state ¢ of the nucleon N (it could be
a multi-parton state), and M ; represents the infrared finite scattering amplitude for parton f.

Comparing the factorization theorem with the operator product expansion (OPE), the latter in-
volves an expansion in short distance y* ~ 0. A typical example is the infrared safe e~e™ — X, whose
cross section can be expressed as a series 0 ~ » . C;(y)O;(0). The Wilson coefficients C; and the local
effective operators O; appear in a product in the OPE. A factorization formula involves an expansion on
the light cone with small 32 ~ 0, instead of 4" ~ 0. A typical example is the DIS structure function,
in which the existence of the collinear divergences implies that a parton travels a finite longitudinal dis-
tance y~. It is also the reason why the hard kernel Hy and the PDF ¢, appear in a convolution in the
momentum fraction.

The factorization procedure introduces the factorization scale i into the hard kernel Hy and the
PDF ¢/, as indicated in Eq. (30). Higher-order corrections produce the logarithms In(Q /) in H and
In(41/Qo) in ¢¢/n, which come from the splitting of In(Q/Qo) in the structure function F», Qo being a
low scale characterizing ¢y /. One usually sets © = @ to eliminate the logarithm in Hy, such that the
input ¢/n (€, Q) for arbitrary @ is needed. The factorization scale does not exist in QCD diagrams, but
is introduced when a physical quantity like the structure function is factorized. The independence of the
factorization scale, udF»/du = 0, leads to a set of renormalization-group (RG) equations

d
i @i (&) = o (6 1),

d
:U’@Hf(:E/ngaM) = _’Yfo(x/faQnu’)v (32)

where 7 denotes the anomalous dimension of the PDF. A solution of the RG equations describes the
evolution of the PDF in @)

Q
61 (6,Q) = by n (€ Qo) exp { /Q ffmas(m)} , (33)

as aresult of the all-order summation of In(Q/Qo). Hence, one just extracts the initial condition ¢(&, Qo)
defined at the initial scale Qg from data. The PDF at other higher scales () is known through the evo-
lution. That is, the inclusion of the RG evolution increases the predictive power of the factorization
theorem.
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x f(x,Q) versus x
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Fig. 2: CT10 NNLO (solid color) and NLO (dashed) parton distribution functions.

Fitting the factorization formulas for those processes, whose dynamics is believed to be clear, such
as Eq. (30) for DIS, one has determined the PDFs for various partons in the proton. The CTEQ-TEA
CT10 models at the accuracy of NLO and next-to-next-to-leading order (NNLO) for hard kernels are
displayed in Figs. 2 [27,28]. The increase of the gluon and sea-quark PDFs with the decrease of the
momentum fraction £ is a consequence of more radiations in that region in order to reach a lower £. The
comparison of the PDFs at () = 2 GeV and () = 85 GeV indicates that the valence u-quark and d-quark
PDFs become broader with (), while the gluon and sea-quark PDFs increase with Q).

Note that a choice of an infrared regulator is, like an ultraviolet regulator, arbitrary; namely, we
can associate an arbitrary finite piece with the infrared pole 1/(—¢) in gb;l/)N. Shifts of different finite
pieces between ¢, and H correspond to different factorization schemes. Hence, the extraction of a
PDF depends not only on powers and orders, at which QCD diagrams are computed, but on factorization
schemes. Since perturbative calculations are performed up to finite powers and orders, a factorization
scheme dependence is unavoidable. Nevertheless, the scheme dependence of pQCD predictions would
be minimized, if one sticks to the same factorization scheme. Before adopting models for PDFs, it should
be checked at which power and order, at which initial scale, and in what scheme they are determined.

At last, I explain how to apply the factorization theorem to make predictions for QCD processes.
A nucleon PDF ¢/ is infrared divergent, if evaluated in perturbation theory due to the confinement
mechanism. The QCD diagram for a DIS structure function involving quarks and gluons as the external
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Fig. 3: Comparison of ATLAS data for inclusive jet pp distribution with a theoretical prediction using CT10
NNLO.

particles are also infrared divergent. It has been demonstrated that the infrared divergences cancel be-
tween the QCD diagrams and the effective diagrams for ¢/, as taking their difference, which defines
the hard kernel HP™S. One then derives the factorization formula for other processes, such as the Drell-
Yan (DY) process N (p1)N(p2) — ¢1¢7(q) + X, and computes the corresponding hard kernel HPY.
The point is to verify that the infrared divergences in the QCD diagrams for DY and in the effective
diagrams for the nucleon PDF cancel, and HPY is infrared finite. If it is the case, the universality of
the nucleon PDF holds, and the factorization theorem is applicable. If not, the factorization theorem
fails. After verifying the factorization theorem, one makes predictions for the DY cross section using
the formula oY = ¢ n/N @ H DY & ¢ fo/N- As an example, the predictions for the inclusive jet pp
distribution derived from the factorization theorem [28] are presented in Fig. 3. The consistency between
the predictions and the ATLAS data is obvious.

2.4 k7 Factorization

The collinear factorization theorem introduced above has been intensively investigated and widely ap-
plied to many QCD processes up to higher powers and orders. The evolution of PDFs from low to high
factorization scales is governed by the DGLAP equation. The databases for PDFs have been constructed,
such as the CTEQ models. Other nonperturbative inputs like soft functions, jet functions, and fragmen-
tation functions have been all explored to some extent. However, another more complicated framework,
the kr factorization theorem [29-31], may be more appropriate in some kinematic regions or in semi-
inclusive processes. The collinear factorization applies, when the DIS is measured at a finite Bjorken
variable z. The cross section is written as the convolution of a hard kernel with a PDF in a parton mo-
mentum fraction . As z — 0, £ > x can reach a small value, at which the parton transverse momentum
kr is of the same order of magnitude as the longitudinal momentum £p, and not negligible. Once k7 is
kept in a hard kernel, a transverse-momentum-dependent (TMD) function ®(&, k7, 1) is needed to de-
scribe the parton distribution not only in the momentum fraction &, but also in the transverse momentum
k7. The DIS cross section is then written, in the k7 factorization theorem, as the convolution

1
R, @) =3 [ 5 [ hott o/t kr, Qg (€ o). (34)
f xT

The k7 factorization theorem is also applicable to the analysis of low pr spectra of final states, like direct
photon and jet productions, for which k7 ~ pr is not negligible.

A collinear gluon emission, modifying a parton longitudinal momentum, generates a parton trans-
verse momentum k7 at the same time. The factorization of a TMD from the DIS is similar to that of
a PDF, which relies on the eikonal approximation in the collinear region. This procedure results in the
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eikonal propagator n” /n_ - [, represented by the Wilson lines similar to that defined in Eq. (24). A naive
TMD definition as an extension of the PDF in Eq. (23) is given by

dy— dQQT —i — ik
q)q/N(fadei) = /27r/(27r)26 Ty kY

1

1
X §<N(pa U)|C.7(O’ v, yT)§7+W(?J_, yr, 07 OT)Q(O, 07 OT)|N(]), U)>7 (35)

with the Wilson links W (y~, yr, 0,07) = W (0,07)Io,, W' (y~, yr). Because the valence quark fields
before and after the final-state cut are separated by a transverse distance in this case, the vertical links
Iy . located at y~ = oo are demanded by the gauge invariance of a TMD [32]. More investigations on
the vertical Wilson links can be found in [33].

Though we do need the k7 factorization theorem, many of its aspects have not yet been completely
understood. For example, the naive definition in Eq. (35) is actually ill-defined, due to the existence of
the light-cone singularity, that arises from a loop momentum parallel to the Wilson line direction n_. A
plausible modification is to rotate the Wilson line away from the light cone, namely, to replace n_ by
a vector n with n? # 0. This rotation is allowed, since the collinear divergences are insensitive to the
direction n as illustrated in Eq. (26) [34]: even when n_ is rotated to n, only the minus component n~
is relevant for the evaluation of the collinear divergences. A detailed discussion on this subtle issue can
be found in [35]. Besides, a parton is off-shell by —k:%, once k7 is retained. Then whether a hard kernel
obtained in the k7 factorization theorem is gauge invariant becomes a concern [36]. Dropping the kr
dependence of the hard kernel in Eq. (34), the integration of the TMD over k7, f A2k ® 7/ ~(& kr), can
be worked out. How this integral is related to the PDF ¢, ~ (&) in Eq. (23) is worth of a thorough study.

3 Evolution and resummation

As stated in the previous section, radiative corrections in pQCD produce large logarithms at each order
of the coupling constant. Double logarithms appear in processes involving two scales, such as In> (p™b)
with p™ being the large longitudinal momentum of a parton and 1/b being the small inverse impact
parameter, where b is conjugate to the parton transverse momentum k7. In the region with large Bjorken
variable z, there exists In?(1/N) from the Mellin transformation of In(1 — z)/(1 — z), for which
the two scales are the large p* and the small infrared cutoff (1 — x)p™ for gluon emissions from a
parton. Single logarithms are generated in processes involving one scale, such as Inp* and In(1/z),
for which the relevant scales are the large p* and the small zp™, respectively. Various methods have
been developed to organize these logarithmic corrections to a PDF or a TMD: the kp resummation for
In? (p™b) [8,9], the threshold resummation for In? (1/N) [5-7], the joint resummation [11,12] that unifies
the above two formalisms, the DGLAP equation for In p™ [3], the BFKL equation for In(1/x) [4], and
the CCFM equation [10] that combines the above two evolution equations. I will explain the basic ideas
of all the single- and double-logarithmic summations in the Collins-Soper-Sterman (CSS) resummation
formalism [8,9].

3.1 Resummation Formalism

Collinear and soft divergences may overlap to form double logarithms in extreme kinematic regions,
such as low pr and large x. The former includes low pr jet, photon, and W boson productions, which
all require real gluon emissions with small pr. The latter includes top pair production, DIS, DY pro-
duction, and heavy meson decays B — X,lv and B — X [16,37,38] at the end points, for which
parton momenta remain large, and radiations are constrained in the soft region. Because of the limited
phase space for real gluon corrections, the infrared cancellation is not complete. The double logarithms,
appearing in products with the coupling constant c, such as s In? (E/pr) with the beam energy E and
asIn(1l — z)/(1 — x)4, deteriorate perturbative expansion. Double logarithms also occur in exclusive
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Fig. 4: (a) Jet subprocess defined in Eq. (36). (b) and (c) LO diagrams of (a).
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Fig. 5: Derivative p*d.J/dp™ in the covariant gauge.

processes, such as Landshoff scattering [39], hadron form factors [40], Compton scattering [41] and
heavy-to-light transitions B — m(p) [42] and B — D®™) [43] at maximal recoil. In order to have a
reliable pQCD analysis of these processes, the important logarithms must be summed to all orders.

The resummation of large logarithms will be demonstrated in the covariant gauge 0 - A = 0 [38],
in which the role of the Wilson line direction n and the key technique can be explained straightforwardly.
Take as an example a jet subprocess defined by the matrix element

J(p.m)u(p) = (0[P exp [—z‘g | e A<nz>] {0)lp) . (36)

where ¢ is a light quark field with momentum p, and u(p) is a spinor. The abelian case of this subprocess
has been discussed in [44]. The path-ordered exponential in Eq. (36) is the consequence of the factor-
ization of collinear gluons with momenta parallel to p from a full process, as explained in the previous
section. For convenience, it is assumed that p has a large light-cone component p™, and all its other com-
ponents vanish. A general diagram of the jet function J is shown in Fig. 4(a), where the path-ordered
exponential is represented by a double line along the vector n. As explained before, varying the direction
n does not change the collinear divergences collected by the Wilson line.

It is easy to see that J contains double logarithms from the overlap of collinear and soft divergences
by calculating the LO diagrams in Fig. 4(b), the self-energy correction, and in Fig. 4(c), the vertex
correction. In the covariant gauge both Figs. 4(b) and 4(c) produce double logarithms. In the axial gauge
n - A = 0 the path-ordered exponential reduces to an identity, and Fig. 4(c) does not exist. The essential
step in the resummation technique is to derive a differential equation p*td.J/dp™ = CJ [16,38,42],
where the coefficient function C' contains only single logarithms, and can be treated by RG methods.
Since the path-ordered exponential is scale-invariant in n, J must depend on p and n through the ratio
(p-n)?/n?. The differential operator d/dp* can then be replaced by d/dn using a chain rule

L d n? d

b dpt v-n Cdng

J, 37
with the vector v = (1,0, 07) being defined via p = pT .

Equation (37) simplifies the analysis tremendously, because n appears only in the Feynman rules
for the Wilson line, while p may flow through the whole diagram in Fig. 4(a). The differentiation of each
eikonal vertex and of the associated eikonal propagator with respect to n,

n2 d n n2 v -l 1 0
o a1 <n.z”u—%>n.z el %)

N —
v-n dngn-l  v-n e

106



QUANTUM CHROMODYNAMICS

TGV

R
(b)

& ¥ ¥
®(C/

)

(d)

Fig. 6: (a) O(a?) examples for the differentiated J. (b) Factorization of K at O(ay). (c) Factorization of K at
O(a?). (d) Factorization of G at O(a).

leads to the special vertex 7,,. The derivative p*d.J/dp™ is thus expressed as a summation over different
attachments of 7, labeled by the symbol + in Fig. 5. If the loop momentum [ is parallel to p, the factor
v - [ vanishes, and 7, is proportional to v,,. When this 7, is contracted with a vertex in ./, in which all
momenta are mainly parallel to p, the contribution to p*dJ/dp™ is suppressed. Therefore, the leading
regions of [ are soft and hard.

According to this observation, we investigate some two-loop examples exhibited in Fig. 6(a). If
the loop momentum flowing through the special vertex is soft but another is not, only the first diagram
is important, giving a large single logarithm. In this soft region the subdiagram containing the special
vertex can be factorized using the eikonal approximation as shown in Fig. 6(b), where the symbol ®
represents a convoluting relation. The subdiagram is absorbed into a soft kernel K, and the remainder
is identified as the original jet function .J, both being O(«y) contributions. If both the loop momenta
are soft, the four diagrams in Fig. 6(a) are equally important. The subdiagrams, factorized according to
Fig. 6(c), contribute to K at O(a?), and the remainder is the LO diagram of .J. If the loop momentum
flowing through the special vertex is hard and another is not, the second diagram in Fig. 6(a) dominates.
In this region the subdiagram containing the special vertex is factorized as shown in Fig. 6(d). The right-
hand side of the dashed line is absorbed into a hard kernel G as an O(«) contribution, and the left-hand
side is identified as the O(«a) diagram of J. If both the loop momenta are hard, all the diagrams in
Fig. 6(a) are absorbed into G, giving the O(a?) contributions.

Extending the above reasoning to all orders, one derives the differential equation

Pﬂl;lﬂ = [K(m/p, as(u) + Gptv/p, as(u)] J, (39)

where the coefficient function C' has been written as the sum of the soft kernel K and the hard kernel G.
In the above expression i is a factorization scale, the gauge factor in G is defined as v = /(v - n)?/|n?,
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and a gluon mass m has been introduced to regularize the infrared divergence in K. It has been made
explicit that K and G depend on a single infrared scale m and a single ultraviolet scale p™, respectively.

The O( ) contribution to K from Fig. 6(b) is written as

Al R, g o
K = —ig?Crouc " Sk 4
ig"Cru /(277)45n-ll2—m21;-l ’ (“0)

d K being an additive counterterm. The O(«) contribution to G from Fig. 6(d) is given by

d*=cl ny, g™ [ p+ 1 v
— _iq2 € kg _ v _
G = 149 CF,U, / (27-[-)476 n-1l l2 ((p + l)Q’YV V- l> (5G, (41)

where the second term in the parentheses acts as a soft subtraction to avoid double counting, and G is an
additive counterterm. A straightforward evaluation shows that Egs. (40) and (41) contain only the single
logarithms In(m/u) and In(p™ v/ ), respectively, as claimed before. Organizing these single logarithms
using RG methods, and then solving Eq. (39), one resums the double logarithms In? (p™/m)in J.

To explain all the known resummations and evolution equations, we first construct a master equa-
tion for the TMD ®(x, k7 ), which is a differential equation in the hadron momentum p*. The depen-
dence on the factorization scale p is implicit. If the parton is a quark, ® is defined by Eq. (35). If
the parton is a gluon, the nonlocal operator in the hadronic matrix element of Eq. (35) is replaced by
Ef(y~,yr)F**(0). Similarly, n is varied arbitrarily away from the light cone with n? # 0. Then ®
depends on pT via the ratio (p - n)2/n?, so the chain rule in Eq. (37) relating the derivative d®/dp™ to
d® /dn,, applies. Following the derivation in the previous subsection, one obtains the master equation

d
+ _
p dp+(b(x7 kT) - 2(I)(x7kT)7 (42)

where ® contains the special vertex, and the coefficient 2 is attributed to the equality of ® with the special
vertex on either side of the final-state cut.

The function @ is factorized into the convolution of the soft and hard kernels with ®:

O(x, k) = ®y(z, kr) + p (2, k7), (43)
with the soft contribution
= =l n-v
b, = |—ig’Cpus — 0K | ®(z, k
[ R / (2m)ien - 12v -1 (w,kr)

g*C / A v 0(12)® (x4 11 /pt, [kp +17)) (44)
—4 i x

g Urpu (27-[-)476”,[1},[ b IKT T1)s
where the first term is the same as in Eq. (40), and the second term proportional to §(1?) arises from the
real soft gluon emission. The hard contribution is given by @ (z, kr) = G(zpTv/p, as(p))®(x, kr),
in which the hard kernel G is the same as in Eq. (41).

3.2 k7 Resummation and BFKL Equation

The TMD definition in Eq. (35) contains three scales: (1 — z)p™, xp™, and k7. We first consider the
soft approximation corresponding to the rapidity ordering of real gluon emissions in a ladder diagram.
Assume that a parton carries the longitudinal momentum xp* + 15 + [, which becomes zp™ + [] after
emitting a gluon of longitudinal momentum l;’ and transverse momentum lo7, and then becomes zp™
after emitting a gluon of longitudinal momentum lf and transverse momentum [;7. In the kinematic
configuration with l;’ > lf’ and lo7 ~ ly7, the original parton momentum is approximated by xp™ +
l;r + lf ~ xpt + l;r . The loop integral associated with the first gluon emission is then independent
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Fig. 7: Scattering amplitude for direct photon production.

of lf, and can be worked out straightforwardly, giving a logarithm. The loop integral associated with
the second gluon emission, involving only I;", also gives a logarithm. Therefore, a ladder diagram with
N rung gluons generates the logarithmic correction (asL)" under the above rapidity ordering, where
L denotes the large logarithm. Following the rapidity ordering, we adopt the approximation for the real
gluon emission in Eq. (44)

e+ 1" /p*, ke + bl) = D(a, [k + 1)), (45)

where the [T dependence has been neglected. The transverse momenta I, being of the same order as kr
in this kinematic configuration, is kept. The variable [* in K is then integrated up to infinity, such that
the scale (1 — x)p™ disappears.

Equation (44) is Fourier transformed into the impact parameter b space to decouple the /7 integra-
tion. Hence, in the intermediate x region ® involves two scales, the large zp™ that characterizes the hard
kernel G and the small 1/b that characterizes the soft kernel /. The master equation (42) becomes

d
p+d]7<1>(ﬂf7 b) = 2 [K(1/(bp), s(p)) + GapTv/p, as(n))] (. b), (46)
whose solution with v = 1 leads to the k7 resummation
O(x,b) = Ag(x,b)P;(x), 47)

with the Sudakov exponential

Ag(z,b) —exp[ /W v /jbd: Vi (s ( ))] ) (48)

and the initial condition ®; of the Sudakov evolution. The anomalous dimension of K, A\ = uddK/dpu,
is given, up to two loops, by [45]

Qg g\ 2 67 w2 5
=20+ (%) Cr [CA <36 - 12) - wnf] : (49)

with n s being the number of quark flavors and C'4 = 3 being a color factor.

The kr resummation effect on the low pr spectra of the direct photon production depicted in
Fig. (7)has been analyzed [46]. The initial-state and final-state radiations are constrained in the low
pr region, where the k7 resummation is necessary for improving the perturbation theory. Figure 8
shows the deviation (Data -Theory)/Theory of the NLO pQCD predictions, obtained using the CTEQ4M
PDFs [47], from the experimental data as a function of x; = 2pr/+/s, /s being the center-of-mass
energy. The deviation is huge as expected, especially at low x; of each set of the data. After including
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Fig. 8: Low pp direct photon spectra before (upper) and after (lower) including the k7 resummation.

the k7 resummation effect [46], it is clear that a significant improvement on the agreement between
theoretical predictions and the data is achieved. As to the intermediate- and high-pr regions of the direct
photon production, NLO pQCD works reasonably well in accommodating the data as indicated in Fig. 9.
The threshold resummation effect, which will be introduced in the next subsection, is more relevant in
these regions: it slightly improves the consistency between predictions and the data [48].

In the small x region with zp™ ~ kg, or zp™ ~ 1/b in the b space, the two-scale case reduces
to the single-scale one. In this region contributions from gluonic partons dominate, so ¢ represents
the gluon TMD below. The source of double logarithms, i.e., the integral containing the anomalous
dimension 7, is less important. Because only the soft scale exists, one drops the hard kernel G, and
keeps the soft kernel with an ultraviolet cutoff. The right-hand side of Eq. (42) becomes

_ dl n-v [0(kE—12)
2 T T
O(x, kr) = —ig NC/ Gr)in o0 { B O(x, kr)
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Fig. 9: High pr direct photon spectrum under the threshold resummation.

+27i6(1%)(, |kr + 17])] (50)

where the color factor C'r has been replaced by N, for the gluon TMD. The 6 function introduces the
ultraviolet cutoff on /7 mentioned above. To make variation in z via variation in p™, a fixed parton
momentum is assumed. Under this assumption, the momentum fraction z is proportional to 1/p*, and
one has ptd®/dpt = —xd®/dx® [49]. Performing the integrations over /™ and [~ in Eq. (50), the
master equation (42) reduces to the BFKL equation [50],

de(z, k _ [ d?
m =% / ﬁ; [6(x, kr + 7)) — 0(k7 — 1)@, k)] | 51)

with the coupling constant &; = N.ovg /.

A remarkable prediction of the above LO BFKL equation is that a high-energy cross section in-
creases with the center-of-mass energy,

SO

with the momentum transfer squared ¢. It turns out that Eq. (52), with the Pomeron intercept wp — 1 =
4 In 2, violates the Froissart (unitarity) bound o < const. X In? [51]. The unsatisfactory prediction of
the LO BFKL equation called for the NLO corrections [52], which were, however, found to be dramatic
as indicated by the = dependence of the derivative of the structure function dFy,/dIn@Q? in Fig. 10
[53]: the NLO effect is nearly as large as the LO result for x ~ 0.001, and becomes dominant at
lower z. It even turns dFy,/dIn Q? negative below = ~ 0.0001 in the upper of Fig. 10. That is, the
perturbative solution is not at all stable. Choosing a running coupling constant [53], the NLO effect is
not overwhelming, but still significant as exhibited in the lower of Fig. 10.

3.3 Threshold Resummation and DGLAP Equation

We then consider the soft approximation corresponding to the k7 ordering of real gluon emissions in
a ladder diagram. Assume that a parton without the transverse momentum, carries —l;7 after emit-
ting a gluon of longitudinal momentum lf and transverse momentum ly7, and then carries —l;7 — lop
after emitting a gluon of longitudinal momentum l; and transverse momentum ly7. In the kinematic
configuration with lop > [i7 and l; ~ [f, the final parton momentum can be approximated by
—lor — 117 = —lop, such that the loop integral associated with the first gluon emission involves only
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Fig. 10: Effects from LO and NLO BFKL equations.

17, and can be worked out straightforwardly, giving a logarithm. The loop integral associated with the
second gluon emission involves only lo7, and also gives a logarithm. Hence, a ladder diagram with N
rung gluons generates the logarithmic correction (a5 L) under the above k7 ordering. In this case ® is
independent of I1, and we have the approximation for the real gluon emission in Eq. (44)

®(x+ 1" /pt, [kr +11|) = ©(z + 1T /pT, kr), (53)

in which z and [ /p™ are of the same order. The dependence on k7 can then be integrated out from both
sides of the master equation (42), and the TMD ® reduces to the PDF ¢. The scale kr disappears, and
the scale (1 — z)p™ is retained.

The Mellin transformation is employed to bring ¢, from the momentum fraction z space to the

moment N space,

1
bs(N) = /deleqﬁs(:v), (54)
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Fig. 11: Dependence of the total cross section for the top-pair production on the top mass at the LHC with /s =
7 TeV.

under which the [T integration decouples. In the large x region ¢ involves two scales, the large zp™ ~ p™
from the hard kernel G and the small (1 — x)p™ ~ p™ /N from the soft kernel K. To sum In(1/N), we
rewrite the derivative pTd¢/dp™ as

+d¢ _p+ do

= ) 55
P T N dp/N) o
The solution of the master equation (42) then gives the threshold resummation,
P(N) = Ay(N) o (56)
with the exponential
P dp [P du
A(N) =exp | -2 — | —(as(w)| (57)
pt/N P Jpt H
or its equivalent expression
Lo gN-1 gl d\
A¢(N) = exp [/ dzl/ —’yK(as(ﬁer)) ) (58)
0 . (1-2)2 A

An application of the threshold resummation is found in the analysis of the top-quark pair produc-
tion, which was performed at the next-to-next-to-leading-logarithmic (NNLL) accuracy [54]. It has been
observed that the threshold resummation effect enhances the NLO total cross section by few percents
as shown in Fig. 11, where the bands sandwiched by the thinner lines denote the theory uncertainty.
The above formalism can be used to determine of the top quark mass as indicated in Fig. 12, where the
solid lines represent the central values, and the total uncertainties of the theoretical and experimental
results [55] are given by the external dashed lines.

In the intermediate x region the two-scale case reduces to the single-scale one because of zp™ ~
(1 —2)p™, and the source of double logarithms is less important. Without the Mellin transformation, the
sum in Eq. (43), with the approximation in Eq. (53) being inserted, leads to the DGLAP equation [49],

ldg

p*d;i (z) = ?P(w/£)¢<£> : (59)
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with the kernel

Ozs(p+)CF(1 2) |
.

where the variable change £ = z + [T /p' has been made. The argument of a, i.e, the factorization
scale pi, has been set to the scale zp™ ~ (1 — z)p™ ~ O(p™). Note that the kernel P differs from the
splitting function P,, in Eq. (22) by the term (22 — 1) /(1 — 2)4, which is finite in the z — 1 limit. The
reason is that the real gluon emission was evaluated under the soft approximation as deriving P, while it
was calculated exactly as deriving Py,.

P(z) =

(60)

Gluon emissions in Fig. 13 cause the mixing between the quark and gluon PDFs, giving the com-
plete set of DGLAP equations with four splitting functions

w(2)- (2 )-(2)
= ® 7). (61

dln Q? (‘% Pyq Py bg )

The evolution of the u-quark and d-quark PDFs in Q2 predicted by the LO DGLAP equation [56] is
shown in Fig. 14, where the inputs at the initial scale Qg = 1 GeV were taken from MRST2001 [57].

It is observed that the valence quark PDFs increase with Q? at small z, namely, they become broader
with 2, a feature consistent with what was stated in the previous section. The predictions for the
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deuteron structure function derived from the LO, NLO, and NNLO DGLAP equations are displayed in
Fig. 15 [58], which agree with the NMC data [59].

3.4 Joint Resummation and CCFM Equation

At last, a unified resummation formalism for large and intermediate x and a unified evolution equation for
intermediate and small  can be derived by retaining the [™ and I dependencies of ® in Eq. (44), which
corresponds to the so-called angular ordering. In this case both the Fourier and Mellin transformations
are applied to Eq. (44), leading to

O,(N,b) = K(p" /(Np),1/(bp), s (1)) @ (N, D) | (62)
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with the soft kernel [11]

1 4—e o _
K = —ingF,uE/ dz/(d L [5(152 2
0

2m)4=€n - lv-1

+ .
+2mis(12)0 (1 - ;ﬁ) ZNleuT.b] _K,
Qg 1 2U +b
- 7(TM)CF [Inbu_KO< N )] 63)

K being the modified Bessel function. As p™b > N, we have Ky — 0, and the soft scale inferred by the
above expression approaches 1/b for the k1 resummation. As N >> p™b, we have Ky ~ — In(vp*bh/N),
and the soft scale approaches p™ /N for the threshold resummation.

Following the procedures similar to Eqs. (46)-(48), we derive the joint resummation

with the exponential
Pt dp [P du
Bu(V.b) =exp |2 [ v/ i (o)) | (65)
prx~H(ND) P Jptx-t(1p) H
The dimensionless function [12]
b
X(N,b) = <N + pZ> e, (66)

is motivated by the limits discussed above. It is apparent that Eq. (65) reduces to Eq. (48) and Eq. (57)
inthe b — oo and N — oo limits, respectively. The effect from the joint resummation on the g7 spectra
of selectron pairs produced at the LHC with /S = 14 TeV has been investigated in [60]. It is seen in
Fig. 16 that the joint and k7 resumations exhibit a similar behavior in the small-g7 region as expected,
but the jointly-resummed cross section is about 5%-10% lower than the kr-resummed cross section in
the range 50 GeV < g7 < 100 GeV.

In the intermediate and small z regions, it is not necessary to resum the double logarithms In?(1/N).
After extracting the k7 resummation, the remaining single-logarithmic summation corresponds to a uni-
fication of the DGLAP and BFKL equations, since both the ™ and [ dependencies have been retained.
The function ®(z + [ /p™, b) in Eq. (44) is reexpressed, after the Fourier transformation, as

O(z+17/p"b) = 0((L—2)p" —17)2(x,b)
+[@(x + 1T /pT,b) — 0((1 — 2)pT —17)®(z,b)]. (67)

The contribution from the first term is combined with the first term in Eq. (44), giving the soft kernel K
for the k7 resummation. The second term in Eq. (67) contributes

4 A - .
~iNeg? [ ) R 1 )~ (1 = o~ BB (@)

which will generate the splitting function below. The color factor has been replaced by V., since the
gluon TMD is considered here.
The master equation (42) then becomes
" g

d _
p+d]7‘1>(%b) = -2 [/m ?MVK(%(M))*Oés(prr)ln(erb) ®(z,b)
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1

+2as(xp+)/ dzPyq(2)®(z/2,b), (69)

x

with the splitting function

1 1
ng:|:(1_z)++z—2+z(1—2):|, (70)

obtained from Eq. (68). The term —2 + z(1 — z2) finite as z — 0 and z — 1 has been added. The
exponential A is extracted from the k7 resummation,

A(z,b,Qo) = exp (—Q/Ip CLP [/p df#W((as(M)) — as(p)In pb]) , (71)

Qo P 1/b M x

(o being an arbitrary low energy scale. It is trivial to justify by substitution that the solution is given by
q)(fI,', b) - .’IJ b QO

+2/ / —as (xp)Ag(z,b)Pyg(2)®(x/2,b), (72)

which can be regarded as a modified version of the CCFM equation [10].

4 PQCD for jet physics

Jets, abundantly produced at colliders [61], carry information of hard scattering and parent particles,
which is crucial for particle identification and new physics search. Study of jet physics is usually done
using event generators, which, however, suffer ambiguity from parameter tuning. Hence, we are moti-
vated to establish an alternative approach free of the ambiguity. I will demonstrate that jet dynamics can
be explored and jet properties can be predicted in the pQCD resummation formalism.

We start from the dijet production in the e~e™ annihilation, which is part of its total cross section.
The physical dijet final state, described in Fig. 17, contains two jet cones of half angle ¢ and isotropic
soft gluons within the energy resolution €@, Q being the e~ e™ invariant mass. The Born cross section
is the same as the total one in Eq. (11). With the constrained phase space for real gluons, the infrared
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Fig. 17: Dijet final state in e~ e™ annihilation.

cancellation is not complete, and logarithmic enhancement appears. The explicit NLO calculations imply

that the isotropic soft gluons give a contribution proportional to 2 1n?(2¢Q /) —72 /6, the collinear gluons

in the cones with energy higher than the resolution give —3In(Qd/u) — 21n%(2¢) — 4 1n(Q5 /1) In(2€) +

17/4 — 7 /3, and the virtual corrections contribute —21n?(Q/u) + 31n(Q/u) — 7/4 + 72 /6. The total

NLO corrections indicate that the dijet cross section is infrared finite, but logarithmically enhanced:
25

36+ 41n61n(2e) + ~ —

5 "3 (73)

where the double logarithm In 6 In(2¢) is attributed to the overlap of the collinear and soft logarithms.

4.1 Jet in Experiments

To describe the kinematics for jets, we define the pseudorapidity = In[cot(6/2)], which is related to the
polar angle 6 with respect to the beam direction, and the azimuthal angle ¢. That is, § = 0, 90°, and 180°
correspond to 7 = 400, 0 and —o0, respectively. Comparison of theoretical and experimental descrip-
tions for jet observables is nontrivial. One needs jet algorithms that map experimental measurements
with theoretical calculations as close as possible. The infrared safety [61] is an important guideline for
setting up a jet algorithm. There are two major classes of jet algorithms in the literature: cone algorithms
and sequential algorithms. The former is a geometrical method, which stamps out jets on the 1-¢ plane
as with a cookie cutter. The latter combines particle four-momenta one by one following given kinematic
criteria.

I take the seeded cone algorithm as an example to explain the operation in the first class of jet
algorithms, which aims at finding stable cones via an iterative procedure. Start from a seed particle 4,
and consider a set of particles j with separations smaller than jet cone of radius R,

Calculate the new cone center J by summing all particle four-momenta in the cone. A stable cone
is composed of a set of particles ¢ satisfying AR;; < R. If the cone is stable, the procedure stops.
Otherwise, take .JJ as a new seed, and repeat the above procedure.

However, the seeded cone algorithm suffers the problem of infrared divergences. Such a geomet-
rical algorithm does not differentiate infrared gluons from energetic gluons, so final outcomes depend
on soft radiation and collinear splitting. This problem can be illustrated by considering a system of two
particles 1 and 2, separated by R12 with R < Rj2 < 2R. Each of particles 1 and 2, taken as a seed,
forms a stable jet. One then adds a soft gluon to this system. It is obvious that a virtual soft gluon
exchanged between jets 1 and 2 does not change the outcome; namely, a virtual soft gluon contributes to
the dijet cross section. On the contrary, adding a real soft seed between jets 1 and 2 will merge the two
jets because of R < Rj2 < 2R. Therefore, a real soft gluon contributes to the single jet cross section. As
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a result, the soft divergences do not cancel between the virtual and real corrections. One may speculate
that starting from the hardest particle may avoid the difficulty caused by the soft seed. It turns out that the
collinear splitting would change the outcome. Including a more energetic particle into the above system,
which is emitted between particles 1 and 2. Taking this central particle as the seed, one constructs a
single stable jet formed by the three particles. A self-energy correction to the central particle does not
change this final state, and contributes to the single jet cross section. However, the splitting of the central
particle may produce two particles, which are less energetic than particles 1 and 2. Then one has to take
particle 1 or 2 as the seed, and ends up with two stable jets. That is, the collinear splitting contributes to
the dijet cross section, and there is no cancellation between virtual and real corrections. It is concluded
that a seeded cone algorithm is not infrared safe.

Next I introduce sequential algorithms by taking the k7 algorithm as an example. For any pair of
particles ¢ and j, find the minimum of the following three distances
2
RZ
with k7 being is a jet transverse momentum. If the minimum is d; or d;p, 7 or j is a jet, and removed
from the list of particles. Otherwise, ¢ and j are merged into a new jet. Repeat the above procedure until

no particles are left. The other sequential algorithms include the Cambridge/Aachen and anti-k7 ones
with the definitions of the distances

dij = min(kF;, k%) dip = k3, djp =k, (75)

AR
dij = 72 dip=1, djp=1,
2 -2 AR% —2
dij = min(kg;, kz5) 2 dip =kp;, dip= k‘TJ, (76)

respectively. The grouping starts from soft (energetic) particles and usually leads to an irregular (round)
jet shape in the k7 (anti-k7) algorithm. Note that a sequential algorithm differentiates infrared gluons
from energetic ones: adding a soft real gluon does not modify a cone center, so it does not change the
outcome.

4.2 Jets in Theory

As outlined in the Introduction, we intend to establish a theoretical framework for jet study, following
the idea of the factorization theorem for the DIS in Sec. 2. At NLO, a jet is produced in DIS, as the
gluon emitted by the initial-state or final-state quark is collimated to the final-state quark. The restricted
phase space of the final-state quark and the gluon in a small angular separation renders an incomplete
cancellation between the virtual and real corrections. Hence, jet production is expected to be enhanced
by collinear dynamics. Similarly, the initial-state quark propagator can be eikonalized in this collinear re-
gion, such that collinear gluons are detached from the initial-state quark and absorbed into a jet function.
To all orders, the collinear gluons are collected by the Wilson link with the path-ordered exponential

W = Pexp [—z’g /OO dzn - A(zn)} , 77
0

with an arbitrary vector n. The collinear gluon emitted by the final-state quark can be factorized into the
jet function straightforwardly by applying the Fierz transformation. A more sophisticated factorization
formula for the jet production in the DIS is then written as a convolution of a hard kernel H with a PDF
and a jet function J. H denotes the contribution with the collinear pieces for the initial and final states
being subtracted. This factorization formalism is the basis for the application of pQCD to jet physics.

The light-quark and gluon jet functions are defined by [62]

Jo(M3, Pr,v* R, %) = 2\[ PO N ZTT{ (0[q(0) (Q)T!NJHNJIW@Q_(ON@}
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(a) (b) (©)

Fig. 18: Some NLO real corrections to the quark jet function.

Fig. 19: Some NLO real corrections to the gluon jet function, where the dashed line represents a ghost field.

x6(M3 — M3(Ny, R)8@ (e — e(N))d(P) — w(Ny)),

3
Jo(M3,Pp,v* R, 1i%) = 2(5,32:))3]\[Z(O\SUF””(O)W@T\NJ><NJ|W(9)Ff(O)§p\O>
J c Ny
x3(M37 — M3(Ny, R))3®) (€ — &(N,))6(P) — w(Ny)), (78)

where | N ;) denotes the final state with N particles within the cone of size R centered in the direction
of the unit vector é, M. 7(Nj, R) (w(Ny)) is the invariant mass (total energy) of all N particles, and p is
the factorization scale. The above jet functions absorb the collinear divergences from all-order radiations
associated with the energetic light jet of momentum Pﬁ‘ = Pf])v“, in which Pf]) is the jet energy, and the

vector v is given by v* = (1, 3,0,0) with 8 = (/1 — (M;/P9)2. & = (1,—1,0,0) is a vector on the
light cone. The coefficients in Eq. (78) have been chosen, such that the LO jet functions are equal to
§(M?3) in a perturbative expansion.

Underlying events include everything but hard scattering, such as initial-state radiation, final-state
radiation, and multiple parton interaction (MPI). The Wilson lines in Eq. (78) have collected gluons
radiated from both initial states and other final states in a scattering process, and collimated to the light-
particle jets. Gluon exchanges between the quark fields ¢ (or the gluon fields F°” and F}) correspond to
the final-state radiations. Both the initial-state and final-state radiations are leading-power effects in the
factorization theorem, and have been included in the jet function definition. A chance of involving more
partons in hard scattering is low, so the contribution from MPI is regarded as being subleading-power.
This contribution should be excluded from data, but it is certainly difficult to achieve in experiments.
Nevertheless, it still makes sense to compare predictions for jet observables based on Eq. (78) at the
current leading-power accuracy with experimental data. At last, pile-up events must be removed in
experiments [63], since they cannot be handled theoretically so far.

The NLO diagrams for the light-quark and gluon jet functions are displayed in Figs. 18 and 19,
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Fig. 20: Jet mass distribution at NLO.

respectively. Evaluating the jet functions up to NLO, a divergence is observed at small jet invariant mass
M as shown in Fig. 20, that implies the nonperturbtive nature of the jet functions. The total NLO
corrections in Mellin space indicate the existence of double logarithms, which hint the implementation
of the resummation technique. Both the angular and energy resolutions are related to the jet mass: when
M is not zero, particles in a jet cannot be completely collimated, and the jet must have finite minimal
energy. This accounts for the source of the double logarithms. Recall that low pr spectra of direct
photons, dominated by soft and collinear radiations, are treated by the k7 resummation. The jet invariant
mass is attributed to soft and collinear radiations, so the mass distribution can also be derived in the
resummation formalism.

Varying the Wilson line direction n, we derive the differential equation for the light-quark jet
function [64]
n? d

— nvaWJq(Mﬁ, Pr,v?, R, p*) = 2(K + G) ® J,(M3, Pr,v* R, 1i?). (79)

The above equation implies that the soft gluons in K are associated with the jet function J, a feature
consistent with the anti-k7 algorithm. The solution to Eq. (79) resums the double logarithms in the jet
function. One then convolutes the light-quark and gluon jet functions with the constituent cross sections
of LO partonic dijet processes at the Tevatron and the PDF CTEQG6L [65]. The resummation predictions
for the jet mass distributions at R = 0.4 and R = 0.7 are compared to the Tevatron CDF data [66] in
Fig. 21 [67] with the kinematic cuts Pr > 400 GeV and the rapidity interval 0.1 < |Y| < 0.7. The
abbreviation NLL refers to the accuracy of the resummation, and NLO to the accuracy of the initial
condition of the jet function solved from Eq. (79). The consistency of the resummation results with the
CDF data is satisfactory.

4.3 Jet Substructure

It is known that a top quark produced almost at rest at the Tevatron can be identified by measuring iso-
lated jets from its decay. However, this strategy does not work for identifying a highly-boosted top quark
produced at the LHC. It has been observed that an ordinary high-energy QCD jet [68, 69] can have an
invariant mass close to the top quark mass. A highly-boosted top quark, producing only a single jet, is
then difficult to be distinguished from a QCD jet. This difficulty also appears in the identification of a
highly-boosted new-physics resonance decaying into standard-model particles, or Higgs boson decaying
into a bottom-quark pair. Hence, additional information needs to be extracted from jet internal structures
in order to improve the jet identification at the LHC. The quantity, called planar flow [70], has been pro-
posed for this purpose, which utilizes the geometrical shape of a jet: a QCD jet with large invariant mass
mainly involves one-to-two splitting, so it leaves a linear energy deposition in a detector. A top-quark jet,
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Fig. 21: Comparison of resummation predictions for the jet mass distributions to Tevatron CDF data with the
kinematic cuts Pr > 400 GeV and 0.1 < |Y| < 0.7at R = 0.4 and R = 0.7. The inset shows the detailed
comparison in large jet mass region.

proceeding with a weak decay, mainly involves one-to-three splitting, so it leaves a planar energy depo-
sition. Measuring this additional information, it has been shown with event generators that the top-quark
identification can be improved to some extent. Investigations on various observables associated with jet
substructures are usually done using event generators. For a review on recent theoretical progress and
the latest experimental results in jet substructures, see [71].

Here I focus on a jet substructure, called the energy profile, and explain how to calculate it in the
resummation formalism [64]. This quantity describes the energy fraction accumulated in the cone of size
r within a jet cone R, i.e., 7 < R. Its explicit definition is given by [72]

1 Zri<r,i€J Pr;
’
NJ J ZT7;<R,7:€J PTZ

with the normalization ¥(R) = 1, where Pr; is the transverse momentum carried by particle 7 in the
jet J, and 7; < r (r; < R) means the flow of particle 7 into the jet cone r (R). Different types of
jets are expected to exhibit different energy profiles. For example, a light-quark jet is narrower than
a gluon jet; that is, energy is accumulated faster with r in a light-quark jet than in a gluon jet. A
heavy-particle jet certainly has a distinct energy profile, which can be used for its identification. The
importance of higher-order corrections and their resummation for studying a jet energy profile have been
first emphasized in [73]. Another approach based on the soft-collinear effective theory and its application
to jet production at an electron-positron collider can be found in Refs. [74-76].

U(r) = (80)

We first define the jet energy functions J (M3, Pr,v?, R,r) with f = ¢(g) denoting the light-
quark (gluon), which describe the energy accumulation within the cone of size » < R. The definition
is chosen, such that Jf(o) = Pré (M}) at LO. The Feynman rules for J JZE are similar to those for the

jet functions J at each order of «, except that a sum of the step functions ) _, E2O(r — ;) is inserted,
where k? (6;) is the energy (the angle with respect to the jet axis) of particle i. For example, the jet
energy functions J fE are expressed, at NLO, as

&>k

2[ PO 2N, Z/ 2 32p (27)32k0

<[P0 >+k°@<r—ek>]

< T { £001a(O)W D, 75 b, Ak, X;p, oW D (0)]0)}

JEO (M2, Prv? Ry p?) =
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xé(M% ~(p+ k>2>5<2><é — i )3(P) — " — KO),

&’k
P03N Z/ 2m

32p 27)32k0
x[p°O(r — 6,) + kK°O(r — 6;.)]
(01 F (0)YW DT p, a5 ke, N (e, X; p, o[ WD FL(0)€,]0)
x6(M3 — (p+k)*)0P (6 — épu)d(PY —p" —K°), (81

where the expansion of the Wilson links in a is understood. The factorization scale is set to 4 = Pr to
remove the associated logarithms, so its dependence will be suppressed below.

JgE(l) (Mgﬂ PTa V2> R7 T, #2)

The Mellin-transformed jet energy function .J, qE obeys a similar differential equation [64]

n? d FE
dng ¢
which can be solved simply. Inserting the solutions to Eq. (82) into Eq. (80), the jet energy profile is
derived. Note that a jet energy profile with N = 1 is not sensitive to the nonperturbative contribution,
so the predictions are free of the nonperturbative parameter dependence, in contrast to the case of the jet
invariant mass distribution. It has been found that the light-quark jet has a narrower energy profile than
the gluon jet, as exhibited in Fig. 22 for /s = 7 TeV and the interval 80 GeV < Pr < 100 GeV of
the jet transverse momentum. The broader distribution of the gluon jet results from stronger radiations

caused by the larger color factor C4 = 3, compared to C'r = 4/3 for a light-quark jet.

= 17PT7V27R7T)7

Vo (82)

(N =1,Pp,v% R,r) = 2(K + G)JJ (N
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Fig. 22: Resummation predictions for the energy profiles of the light-quark (solid curve) and gluon (dotted curve)
jets with /s = 7 TeV and 80 GeV < Pr < 100 GeV.
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Fig. 23: Comparison of resummation predictions for the jet energy profiles with R = 0.7 to Tevatron CDF data in
various Pr intervals. The NLO predictions denoted by the dotted curves are also displayed.

One then convolutes the light-quark and gluon jet energy functions with the constituent cross sec-
tions of the LO partonic subprocess and CTEQ6L PDFs [65] at certain collider energy. The predictions
are directly compared with the Tevatron CDF data [72] as shown in Fig. 23. It is evident that the re-
summation predictions agree well with the data in all Pr intervals. The NLO predictions derived from
jf(l)(l, Pr, u{%, R, r) are also displayed for comparison, which obviously overshoot the data. The re-
summation predictions for the jet energy profiles are compared with the LHC CMS data at 7 TeV [77]
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from the anti-k7 jet algorithm [78] in Fig. 24, which are also consistent with the data in various Pr
intervals. Since one can separate the contributions from the light-quark jet and the gluon jet, the com-
parison with the CDF and CMS data implies that high-energy (low-energy) jets are mainly composed of
the light-quark (gluon) jets. Hence, a precise measurement of the jet energy profile as a function of jet
transverse momentum can be used to experimentally discriminate the production mechanism of jets in
association with other particles, such as electroweak gauge bosons, top quarks and Higgs bosons.
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Fig. 24: Resummation predictions for the jet energy profiles with R = 0.7 compared to LHC CMS data in various
Pr intervals. The NLO predictions denoted by the dotted curves are also displayed.

5 Hadronic heavy-quark decays

Hadronic decays of heavy-quark bound states, such as B, Bs, and Ay, are one of the focuses of LHCb
physics, whose precision measurement may reveal new physics in the flavor sector. They are difficult
to analyze theoretically because of complicated QCD dynamics and multiple characteristic scales they
involve: the W boson mass myy, the b quark mass 1, and the QCD scale Aqcp. The standard procedure
is first to integrate out the scale myy, such that QCD dynamics is organized into an effective weak
Hamiltonian [79]. For the B — D7 decays, the effective Hamiltonian is written as

Gr
Hot = —=
N

where G is the Fermi coupling constant, V,;, V7, is the product of the Cabibbo-Kobayashi-Maskawa
matrix elements, y is the renormalization scale, C'y o are the Wilson coefficients, and the four-fermion
operators are defined by

VoV |CL ()01 (1) + Ca(m) Oa(n)|. (83)

O1 = (db)y—a(cu)v-a , Og = (eb)y—a(du)y_a. (84)

For exclusive processes, such as hadron form factors, the collinear factorization was developed
in [80-83]. The range of a parton momentum fraction z, contrary to that in the inclusive case, is not
experimentally controllable, and must be integrated over between 0 and 1. Hence, the end-point region
with a small x is not avoidable. If there is no end-point singularity developed in a hard kernel, the
collinear factorization works. If such a singularity occurs, indicating the breakdown of the collinear
factorization, the k7 factorization should be employed, because the parton transverse momentum k7
is not negligible. To derive B — D= decay amplitudes, one evaluates the hadronic matrix elements
(D7|O; ()| B). Different theoretical approaches have been developed for this purpose, which include
the factorization assumption, the QCD-improved factorization, the perturbative QCD, the soft-collinear
effective theory, the light-cone QCD sum rules, and the quark-diagram parametrization. In this section I
briefly introduce the basic ideas of the first three approaches [24].

5.1 Factorization Assumption

Intuitively, decay products from a heavy b quark move fast without further interaction between them.
This naive picture is supported by the color-transparency argument [84]: the Lorentz contraction renders
energetic final states emitted from the weak vertex have small longitudinal color dipoles, which cannot
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be resolved by soft gluons. Therefore, the hadronic matrix element (O(u)) is factorized into a product of
two matrix elements of single currents, governed by decay constants and form factors, without soft gluon
exchanges between them. This factorization assumption (FA) [14] was first proved in the framework of
large energy effective theory [85], and justified in the large /N, limit [86]. For the B — D decays, the
color-allowed (color-suppressed) amplitude, involving the B — D (B — m) transition form factor, is
proportional to the Wilson coefficient a; = Cy + C1 /N, (a3 = C1 + C3/N,).

In spite of its simplicity, the FA encounters three principal difficulties. First, a hadronic matrix
element under the FA is independent of the renormalization scale u, as the vector or axial-vector cur-
rent is partially conserved. Consequently, the amplitude C(11){(O)act is not truly physical as the scale
dependence of the Wilson coefficient does not get compensation from the matrix element. This prob-
lem may not be serious for color-allowed modes, because the parameter a; is roughly independent of
w. It is then not a surprise that the simple FA gives predictions in relatively good agreement with data
of these modes. However, the parameter a2 depends strongly on the renormalization scale and on the
renormalization scheme, because of the similar magnitude and different sign of the C (x) and Ca (1) /N,
terms (calculated in the NDR scheme and for Agfi) = 225 GeV, the Wilson coefficients have the values
C1(mp) = —0.185 and Cy(mp) = 1.082 [79], mp being the B meson mass). This may be the reason
why the FA fails to accommodate data of color-suppressed modes. It also means that as is more sensitive
to subleading contributions.

The second difficulty is related to the first one: nonfactorizable effects have been neglected in the
FA. This neglect may be justified for color-allowed modes due to the large and roughly p-independent
value of aj, but not for color-suppressed modes, such as B — J/y K (), The .J /1 meson emitted from
the weak vertex is not energetic, and the color-transparency argument does not apply. To circumvent this
difficulty, nonfactorizable contributions were parameterized into the parameters x; [87, 88],

T = Oolu) + Cr() [; i m(u)] ,

& = Culu) + Colp) [; T mw] . (85)

The 1 dependence of the Wilson coefficients is assumed to be exactly compensated by that of x; (1) [89].
It is obvious that the introduction of y; does not really resolve the scale problem in the FA.

Third, strong phases are essential for predicting CP asymmetries in exclusive B meson decays.
These phases, arising from the Bander-Silverman-Soni (BSS) mechanism [90], are ambiguous in the FA:
the charm quark loop contributes an imaginary piece proportional to

/duu(l —w)f(q*u(l — u) —m?), (86)

where ¢? is the invariant mass of the gluon attaching to the charm loop. Since ¢? is not precisely de-
fined in the FA, one cannot obtain definite information of strong phases from Eq. (86). Moreover, it is
legitimate to question whether the BSS mechanism is an important source of strong phases in B meson
decays. Viewing the above difficulties, the FA is not a complete model, and it is necessary to go beyond
the FA by developing reliable and systematic theoretical approaches.

5.2 QCD-improved Factorization

The color-transparency argument allows the addition of hard gluons between the energetic mesons emit-
ted from the weak vertex and the B meson transition form factors. These hard gluon exchanges lead to
higher-order corrections in the coupling constant o5 to the FA. By means of Feynman diagrams, they
appear as the vertex corrections in the first two rows of Fig. 25 [15]. It has been shown that soft di-
vergences cancel among them, when computed in the collinear factorization theorem. These O(cv)
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Fig. 25: O(«) corrections to the FA in the QCDF approach.

M,
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Fig. 26: Annihilation contributions.

corrections weaken the p dependence in the Wilson coefficients, and generate strong phases. Besides,
hard gluons can also be added to form the spectator diagrams in the last row of Fig. 25. Feynman rules
of these two diagrams differ by a minus sign in the soft region resulting from the involved quark and
anti-quark propagators. Including the above nonfactorizable corrections to the FA leads to the QCD-
improved factorization (QCDF) approach [15]. The gluon invariant mass ¢ in the BSS mechanism can
be unambiguously defined and related to parton momentum fractions in QCDF. Hence, the theoretical
difficulties in the FA are resolved. This is a breakthrough towards a rigorous framework for two-body
hadronic B meson decays in the heavy quark limit.

Corrections in higher powers of 1/m;, to the FA can also be included into QCDF, such as those
from the annihilation topology in Fig. 26, and from twist-3 contributions to the spectator amplitudes.
However, it has been found that endpoint singularities exist in these high-power contributions, which
arise from the divergent integral fol dx/x, x being a momentum fraction. These singularities have the
same origin as those in the collinear collinear factorization formulas for B meson transition form factors
[91]. Because of the endpoint singularities, the annihilation and twist-3 spectator contributions must be
parameterized as [15]

In B (1 n pAei5A> . B (1 n pHe“H) : 87)
Ap Ap

respectively, with the hadronic scale Aj,. A QCDF formula then contains the arbitrary parameters p4 g

and 04 . Setting these parameters to zero, one obtains predictions in the “default” scenario, and the

variation of the arbitrary parameters gives theoretical uncertainties. If tuning these parameters to fit data,

one obtains results in the scenarios “S”, “S2”,... [92].
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M

Fig. 27: Perturbative QCD factorization.

5.3 Perturbative QCD

The endpoint singularities signal the breakdown of the collinear factorization for two-body hadronic B
meson decays. Motivated by the removal of these singularities, the perturbative QCD (PQCD) approach
based on the k7 factorization theorem was developed [16-19]. A parton transverse momentum k7 can
be generated by gluon radiations, before hard scattering occurs. The endpoint singularities from the
small z region simply indicate that k7 is not negligible. Taking into account k7, a particle propagator
does not diverge as x — 0. The B meson transition form factors, and the spectator and annihilation
contributions are then all calculable in the framework of the k7 factorization theorem. It has been shown
that a B — M; M, decay amplitude is factorized into the convolution of the six-quark hard kernel, the
jet function and the Sudakov factor with the bound-state wave functions as shown in Fig. 27,

AB— MiM)=¢p@HRJRS® dp, @ du,- (88)

The jet function J comes from the threshold resummation, which exhibits suppression in the small z
region [93]. The Sudakov factor .S comes from the k7 resummation, which exhibits suppression in the
small k7 region [39,40]. These resummation effects guarantee the removal of the endpoint singularities.
J (), organizing double logarithms in the hard kernel (meson wave functions), is hidden in H (the three
meson states) in Fig. 27. The arbitrary parameters introduced in QCDF are not necessary, and PQCD
involves only universal and controllable inputs.

The theoretical difficulties in the FA are also resolved in PQCD but in a different manner. The FA
limit of the PQCD approach at large my, which is not as obvious as in QCDF, has been examined [93]. It
3/

was found that the factorizable emission amplitude decreases like 1, 2, if the B meson decay constant

fB scales like fp o mb_l/ 2 This power-law behavior is consistent with that obtained in [15, 94].
The higher-order corrections to the FA have been included in PQCD, which moderate the dependence
on the renormalization scale p. The ratio of the spectator contribution over the factorizable emission
contribution decreases with my in PQCD, showing a behavior close to that in QCDEF. The gluon invariant
mass ¢ in the BSS mechanism is unambiguously defined and related to parton momentum fractions.
The penguin annihilation amplitude is almost imaginary in PQCD [18], whose mechanism is similar to
the BSS one [90]: in the annihilation topology, the loop is formed by the internal particles in the LO hard
kernel and by infinitely many Sudakov gluons exchanged between two partons in a light meson. A sizable
strong phase is generated, when the internal particles go on mass shell. In terms of the principal-value
prescription for the internal particle propagator, the strong phase is given by [18]

1 P

= —imd(zm% — k2. 89
ajsz—k%—F’iE meB—k% imo(wmis 7) (89)
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Fig. 29: Diagrams for the B — 7 form factor in SCET].

5.4 Soft-Collinear Effective Theory

The soft-collinear effective theory (SCET) based on the collinear factorization is formulated in the frame-
work of OPE [20-23]. The matching at different scales involved in B meson decays has been carefully
handled in SCET. Take the simple B — 7 transition form factor in Fig. 28 as an example. The soft spec-
tator in the B meson carries the momentum  ~ O(Aqcp), because it is dominated by soft dynamics.
If the spectator in the energetic pion carries the momentum py ~ O(my), the virtual gluon in Fig. 28 is
off-shell by pg = (p2—7)? = —2p2 -1 ~ O(mpAqcp). Then the virtual quark in Figs. 28(a) is off-shell
by (mpv + k + pg)* — mZ ~ O(m?), where v is the b quark velocity and k ~ O(Aqcp) denotes the
Fermi motion of the b quark. Hence, B meson decays contain three scales below myy: my, \/myAqcen,
and AQCD-

The separate matching at the two scales my, and \/m,Aqcp is briefly explained below [95]. The
first step is to integrate out the lines off-shell by mg in QCD, and the resultant effective theory is called
SCET;. One then derives the zeroth-order effective current J(©) from the b — u weak vertex, and the
first-order effective current .J(1) by shrinking the virtual b quark line in Fig. 28(a). The next step is to
integrate out the lines off-shell by m,Aqcp in SCET], arriving at SCETyy. The relevant diagrams to start
with are displayed in Fig. 29. Shrinking all the lines off-shell by m;Aqcp, one derives the corresponding
Wilson coefficients, i.e., the jet functions, and the effective four-fermion operators. Sandwiching these
four-fermion operators by the initial B meson state and the final pion state leads to the B meson and
pion distribution amplitudes. The B — 7 transition form factor is then factorized as depicted in Fig. 30.
The factorization of two-body hadronic B meson decays is constructed in a similar way, and the result is
also shown in Fig. 30.

At leading power in 1/m;, there is no large source of strong phases in SCET (the annihilation
contribution is parametrically power-suppressed). To acquire strong phases, it has been argued that
cc (charming) penguins could give long-distance effects at leading power [96]. This contribution is
nonperturbative, so it must be parameterized as an arbitrary amplitude A°. Including the charming
penguin, SCET has been applied as an QCD-improved parametrization, and A is determined together
with other hadronic inputs from data. It should be mentioned that the long-distance charming-penguin
contribution is power-suppressed according to QCDF, PQCD and light-cone sum rules [97].
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Fig. 30: Factorization of the B — m form factor and of the B — M M5 decay in SCET.

5.5 Puzzles in B Physics

Before concluding, I review the long-standing puzzles in hadronic two-body B meson decays, which
have not yet been fully resolved so far. According to a naive estimate of the color-suppressed tree
amplitude, the hierarchy of the branching ratios B(B? — 7%7%) ~ O(\2)B(B" — nFx¥*) with the
CKM parameter \ = 0.2 is expected. However, the data [98]

B(B® = 7F7%) = (5.10£0.19) x 1079,
B(B? — 7% = (1.91703%) x 107, (90)

imply B(B® — 797%) ~ O(A\)B(B® — 7Fx%), giving rise to the B — 77 puzzle. As observed
in [99], the NLO corrections, despite of increasing the color-suppressed tree amplitude significantly, are
not enough to enhance the B® — 770 branching ratio to the measured value. A much larger color-
suppressed tree amplitude, about the same order as the color-allowed tree amplitude, must be obtained in
order to resolve the puzzle [100,101]. To make sure that the above NLO effects are reasonable, the PQCD
formalism has been applied to the B — pp decays [99], which also receive the color-suppressed tree
contribution. It was observed that the NLO PQCD predictions are in agreement with the data B(B? —
p°p%) = (0.73703%) x 1075 [98]. One concludes that it is unlikely to accommodate the measured
B — 7070 and p®p" branching ratios simultaneously in PQCD, and that the B — 77 puzzle remains.

It has been claimed that the B — 77 puzzle has been resolved in the QCDF approach [15]
with an input from SCET [102-104]: the inclusion of the NLO jet function, the hard coefficient of
SCETy, into the QCDF formula for the color-suppressed tree amplitude gives sufficient enhancement
of the B — 7%7° branching ratio, if adopting the parameter scenario ”S4" [105]. It is necessary to
investigate whether the proposed new mechanism deteriorates the consistency of theoretical results with
other data. The formalism in [102] has been extended to the B — pp decays as a check [99]. It was found
that the NLO jet function overshoots the observed B — p°p° branching ratio very much as adopting
”S4". That is, it is also unlikely to accommodate the B — 77 and pp data simultaneously in QCDF.

Table 1: Polarization fractions in the penguin-dominated B — V'V decays.

Mode BABAR Belle

¢K*T ] 0.49+0.05+0.03 | 0.52 +£0.08 +0.03

K*tp? 10.78+£0.12+0.03

K" [0.52+£0.10+£0.04 | 0.43+0.117505
K*FK* | 0.75703% +0.03
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For penguin-dominated B — V'V decays, such as those listed in Table 1 [98], the polarization
fractions deviate from the naive counting rules based on kinematics [106]. This is the so-called the B —
¢ K* puzzle. Many attempts to resolve the B — ¢ K™ polarizations have been made [107], which include
new physics [108—112], the annihilation contribution [113, 114] in the QCDF approach, the charming
penguin in SCET [115], the rescattering effect [116—118], and the b — sg (the magnetic penguin) [119]
and b — s [120] transitions. The annihilation contribution from the scalar penguin operators improves
the consistency with the data, because it is of the same order for all the three final helicity states, and could
enhance the transverse polarization fractions [106]. However, the PQCD analysis of the scalar penguin
annihilation amplitudes indicates that the B — ¢K™ puzzle cannot be resolved completely [107]. A
reduction of the B — K™ form factor Ay, which is associated with the longitudinal polarization, further
helps accommodating the data [121].

The penguin-dominated B — K*p decays are expected to exhibit similar polarization frac-
tions. This is the reason why the longitudinal polarization fraction in the Bt — K*Yp* decay, which
contains only the penguin contribution, is close to fr,(¢K*) ~ 0.5 as listed in Table 1. Another
mode BT — K**p°, nevertheless, exhibits a large longitudinal polarization fraction around 0.8. This
mode involves tree amplitudes, which are subdominant, and should not cause a significant deviation
from fr, ~ 0.5. Though the data of fr(K*°p?) from BABAR still suffer a large error, the different
longitudinal polarization fractions, fr,(K*Tp%) # fr(K*Op™), call for a deeper understanding. The
Bt — K*TK*Y decay shows a longitudinal polarization fraction smaller than unity, but larger than 0.5.
A more thorough study of the B — K* K™ decays can help discriminating the various resolutions for
the B — ¢ K™ puzzle [121,122].

The B® — K*nT decays depend on the tree amplitude 7" and the QCD penguin amplitude P.
The data of the direct CP asymmetry Acp(B° — K*7F) ~ —10% then imply a sizable relative strong
phase between 71" and P, which verifies the LO PQCD prediction made years ago [18]: the scalar pen-
guin annihilation provides an important source of strong phases. The PQCD predictions for significant
penguin annihilation have been confirmed by the recent measurement of the pure annihilation mode,
B(Bs; — ntn™) = (0.73 £ 0.14) x 107, which is consistent with 0.57 x 10~6 obtained in the LO
PQCD approach [123]. The B* — K* 70 decays contain the additional color-suppressed tree amplitude
C and electroweak penguin amplitude P.,,. Since both C and P,,, are subdominant, the approximate
equality for the direct CP asymmetries Acp(B*T — K*7°) ~ Acp(B° — K*77) is expected. How-
ever, this naive expectation is in conflict with the data [98],

Acp(B® = K*nF) = —0.086 +0.007
Acp(B* — K*n% = 0.040 4+ 0.021, 1)

making the B — K puzzle.

While LO PQCD gives a negligible C' [18, 19], it is possible that this supposedly tiny amplitude
receives a significant subleading correction. Note that the small C'is attributed to the accidental cancel-
lation between the Wilson coefficients C; and Co/N, at the scale of my;. In [124] the important NLO
contributions to the B — K decays from the vertex corrections, the quark loops, and the magnetic
penguins were calculated. It was observed that the vertex corrections increase C' by a factor of 3, and
induce a large phase about —80° relative to T". The large and imaginary C renders the total tree amplitude
T + C more or less parallel to the total penguin amplitude P + P,,, in the B¥ — K*70 decays, leading
to nearly vanishing Acp(B* — K*r%) = (—173)% at NLO (it is about -8% at LO). One concludes
that the B — K7 puzzle has been alleviated, but not yet gone away completely. Whether new physics
effects [125, 126] are needed will become clear when the data get precise. More detailed discussion on
this subject can be found in [127].
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6 Summary

Despite of nonperturbative nature of QCD, theoretical frameworks with predictive power can be devel-
oped. They are based on the factorization theorems, in which nonperturbative dynamics is absorbed into
PDFs, and the remaining infrared finite contributions go to hard kernels. A PDF is universal (process-
independent) and can be extracted from data, while a hard kernel is calculable in perturbation theory.
Both the collinear and k7 factorization theorems are the fundamental tools of pQCD. The collinear fac-
torization theorem is a simpler version, and has been intensively studied and widely applied. The k1
factorization theorem is more complicated, and many of its aspects have not been completely explored.

Sophisticated evolution equations and resummation techniques have been developed in pQCD,
which enhance predictive power, and increase theoretical precision. All the known single- and double-
logarithm summations, including their unifications, have been explained in the CSS resummation for-
malism. The point is the treatment of real gluon emissions under different kinematic orderings, and the
resultant logarithmic summations are summarized in Table 2. The k7 and threshold resummations, and
the DGLAP and BFKL equations have been applied to various QCD processes.

Table 2: Single- and double-logarithmic summations under different kinematic orderings.

| small = | intermediate x ] large x
rapidity ordering | BFKL equation | k7 resummation ]
kr ordering | |  DGLAPequation | threshold resummation
angular ordering | CCFM equation; joint resummation

Experimental and theoretical studies of jet physics have been reviewed. Especially, it was pointed
out that jet substructures could be calculated in pQCD: starting with the jet function definition, applying
the factorization theorem and the resummation technique, one can predict observables, which are con-
sistent with data. Because fixed-order calculations are not reliable at small jet invariant mass, and event
generators have ambiguities, pQCD provides an alternative approach, that resolves the above difficulties.
The pQCD formalism will improve the jet identification and new particle search at the LHC.

We have been able to go beyond the factorization assumption fr hadronic two-body heavy-quark
decays by including QCD corrections. Different approaches have been discussed and commented: in
QCDF the high-power corrections must be parameterized due to the existence of the endpoint singulari-
ties. There are no endpoint singularities in PQCD, which is based on the k7 factorization theorem, and
in SCET, which employs the zero-bin subtraction [128]. A major difference arises from the treatment of
the annihilation contribution, which is parameterized in QCDF and neglected in SCET, but is the main
source of strong phases in PQCD.

Many subtle subjects on pQCD deserve more exploration, including the legitimate definition of
TMDs, the gauge invariance of the kp factorization, resummations of other types of logarithms, such
as rapidity logarithms, non-global logarithms, and etc., jet substructures of boosted heavy particles, and
the long-standing puzzles in B physics. pQCD remains as one of the most challenging research fields in
high-energy physics.
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Abstract
A Brief review on the physics beyond the Standard Model.

1 Quest of BSM

Although the standard model of elementary particles(SM) describes the high energy phenomena very
well, particle physicists have been attracted by the physics beyond the Standard Model (BSM). There are
very good reasons about this;

The SM Higgs sector is not natural.
There is no dark matter candidate in the SM.
Origin of three gauge interactions is not understood in the SM.

Ll e

Cosmological observations suggest an inflation period in the early universe. The non-zero baryon
number of our universe is not consistent with the inflation picture unless a new interaction is
introduced.

The Higgs boson candidate was discovered recently. The study of the Higgs boson nature is
extremely important for the BSM study.

The Higgs boson is a spin 0 particle, and the structure of the radiative correction is quite different
from those of fermions and gauge bosons. The correction of the Higgs boson mass is proportional to
the cut-off scale, called “quadratic divergence". If the cut-off scale is high, the correction becomes
unacceptably large compared with the on-shell mass of the Higgs boson. This is often called a “fine
turning problem". Note that such quadratic divergence does not appear in the radiative correction to the
fermion and gauge boson masses. They are protected by the chiral and gauge symmetries, respectively.

The problem can be solved if there are an intermediate scale where new particles appears, and
the radiative correction from the new particles compensates the SM radiative correction. The scale is
probably much less than O(100) TeV, where the ratio between the SM radiative correction and the Higgs
vev is more than 1000. The turning of the factor 1000 may sound unnatural, but it is much better than
the scale among other parameters, such as Planck scale to the order of electroweak symmetry breaking,
or the large difference among Yukawa couplings.

An idea to introduce a new particle that couples to the Higgs boson to cancel one loop level
quadratic correction, is not successful, because such accidental cancellation does not hold all order in
the perturbation theory. One needs new symmetry to cancel the quadratic divergence in the SM by a
new physics contribution. The known ideas to achieve the reduction of quadratic divergence are the
following;

1. Supersymmetry: Extend the SM so that the theory has “supersymmetry". Supersymmetry is
the symmetry between bosons and fermions, which allows the divergence of Higgs boson mass
controlled by "chiral symmetry" of fermions. Due to the cancellation among various diagrams
involving SM particles and their superpartners (SUSY particles), there are no quadratic divergence
to the Higgs bosons mass in this theory.

2. Dynamical symmetry breaking: In this theory, a new strong interaction causes the spontaneous
gauge symmetry breaking of the SM. The Higgs doublet is a Nambu-Goldstone boson of the sym-
metry breaking and bound states of fermions charged under the strong interaction, corresponding
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to the pions in the QCD. The Higgs boson does not exist above the symmetry breaking scale, so
there are no problem of quadratic divergence.

3. Extra dimension Although we recognize that we live in the four dimensional space-time, we
might live in more than the five dimension space time where the extra dimensions are compactified.
The true Planck scale may be much closer to electroweak scale in such a theory, or the fundamental
parameters in the Higgs sector is of the order of Planck scale in the higher dimensional theory but
looks small in the effective four dimensional theory. In some class of the model the Higgs boson
may be a part of gauge boson in the 5th dimension so that the divergence of the Higgs mass
parameters is controlled by the gauge symmetry.

Those models are constrained strongly by precision measurements. Currently there are no mea-
surements with significant deviation from the SM predictions. In the SM theory, one can predict various
observables from a few fundamental parameters: the gauge couplings g;(i = 1,2,3), and the Higgs
vacuum expectation value (vev) v. By measuring the deviations from the SM predictions, we can set
constrains on the new physics. Especially, the S and T parameters which parametrize the new physics
contributions to the gauge two point functions are sensitive to all particles that couple to the gauge
bosons. Measurements of flavor changing neutral current (FCNC) constrain the existence of flavor off-
diagonal interactions. Very precisely measured parameters sometimes exhibit significant deviations from
the SM predictions. Currently muon anomalous magnetic moment deviates from the SM prediction by
more than 3 o. It is sensitive to the new physics that couples to muon.

The quadratic divergence of the Higgs sector exists if the divergence is estimated by the momen-
tum cut off A, the upper bound of the various loop integral appearing in the radiative correction in the
mass. We have to keep it in mind that the quadratic divergence does not depend on the external momen-
tum, therefore it is a regularization dependent object. Especially in dimensional regularization, quadratic
divergence is trivially zero. Then, is there any reason that we should take the fine turning problem
seriously?

The fine turning argument based on momentum cut-off is justified in the case that the theory has
large symmetry at some higher energy scale. For example, in the supersymmetric model, the regular-
ization must respect to supersymmetry and one cannot subtract all quadratic divergence. To this end,
the Higgs sector receives radiative corrections proportional to the SUSY scale (superpartner mass scale)
under correct regularization. In the limit that superpartners are much heavier than SM particles, the low
energy theory looks like the SM with the momentum cutoff at the SUSY scale. Fine turning arguments
hold for the theories with an intermediated scale above which a new symmetry emerges.

There is another indication of the existence of new physics between the weak scale and the Planck
scale. We may consider the Higgs potential at large field value in the SM and study the stability. The
potential is a function of the top and Higgs masses, and current top and Higgs mass measurements favor
metastable Higgs potential. There is not any reason that the Higgs vev should fall in such a metastable
point, and this also suggests that additional particles that couple to the Higgs sector change the shape of
the potential.

Another strong indication of new physics is the existence of dark matter in our Universe. Global
fit of the cosmological observation favors the existence of stable, neutral particle, dark matter, which
accounts for 27% of the total energy of our Universe. The existence of the dark matter is also confirmed
by various observations of the stellar objects. Rotation curve of the stars of the galaxy indicates that
galaxies are dominated by the non-luminous component. The is also a technique to measure the matters
extended beyond the galaxy scale using gravitational lensing.

Our universe is 1.38 x 10'C years old, roughly 10'7 s <> 10743 GeV~!. The dark matter life time
must be at least of the oder of the age of the Universe to remain in the current Universe. ! On the other

'In order to avoid the constraints coming from cosmic ray observations, the lifetime of the dark matter in our Universe must
be significantly longer than the age of the Universe.
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hand, a particle with mass m (GeV) with interaction suppressed by 1/M,,; has a decay width of order of
g%*(m/1 GeV)310738 GeV. Namely the lifetime, 7 ~ ¢g~210's/(m/1 GeV)?, would be much shorter
than the life of our Universe (~ 4.3 x 10'7 s), where g is the coupling of the decay vertex. To account for
the lifetime of the dark matter in our universe, its decay must be very strongly suppressed, or forbidden.

For the case of the SM particles, existence of stable particles is ensured by the symmetry. Electron
is the lightest charged particle and electronic charge is conserved by the gauge symmetry. Proton is the
lightest bound state of quarks. There are no interaction to break proton in the SM, because number of
quark is conserved for interaction with the gauge bosons or the Higgs boson, and direct interaction with
electron is forbidden by the gauge symmetry. It is possible to conserve the Baryon number 1/3 to the
quarks in the SM, and this reflects the fact that proton is stable. To consider the particle model involving
the stable (or long-lived) dark matter, we must introduce new symmetry to protect the dark matter from
decaying.

Another puzzle of the SM is the hyper-charge assignments of the fermions. In the first glance,
it is not easy to find the rules to assign the charge to the SM matters. But, it fits very nicely to the
representation of a SU(5) group, where SU(3) x SU(2) x U(1) generators are embedded as

u X0 ; 0 0 —115 0
Tsy(s) = < 0 0 > T2y = < 0 oi > Tyay = ( 3 11, ) ¢))

Here, A% and o* are the SU(3) and SU(2) generators, 13 and 15 are 3 x 3 or 2 X 2 unit matrix, and
Tsu3) Tsu)» Ty satisfy the commutation relations of SU(3), SU(2), and U (1) generators. Under
this generator assignment, 5* and 10 representations of SU(5) have a charge assignment as

(17 2)71/2
while 10 representation is decomposed into (3,2); /6 © (3*,1)_9/3 @ (1,1)1 which reside in the 5 x 5
antisymmetric matrix as
o 35193 (3,2)1y6
o= (e G ). ®

This suggests that SU(3) x SU(2) x U(1) symmetry of the SM can be unified into the SU(5) gauge
symmetry. To realize this, the SM three gauge couplings must unify at the short distance, so that the
SU(5) symmetry is recovered above that scale. The gauge couplings at the short distance is calculated
by utilizing the SM renormalization group equations from the low energy inputs. They do not unify for
the particle content of the SM, therefore to realize the idea of GUT, new set of particles are needed.
We will see a successful gauge coupling unification is realized in the Supersymmetric model in the next
section.

2 Supersymmetry

Supersymmety is the symmetry exchanging bosons into fermion, and fermions into bosons. The genera-
tors of the supersymmetric transformation satisfy the following anti-commutation relations

{@°.Q;} =20" P, )

Here Q is a spin 1/2 and mass dimension 1/2 operator and v and 3 (= 1, 2) are the spin indices of chiral
and anti-chiral fermions, and o* = (1, 0%) is the Pauli matrices.

This anti-commutation relation can be reduced for any massive eigenstate |a) by taking the rest
frame P*|a) = mqado,|a) as follows:

{Q.Q5} =20, yma. )
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Table 1: Particle content of the Minimal Supersymmetric Standard Model.

represenations quark squark
(3,2)1/6 qr = (u,d)r | 4L = (ur,dr)
(3%, 1) 2/3 up (ur)®
(3%, 1)1y3 (dr)° (dr)*
lepton slepton
(1,2)1/2 lp=,e)r | 4L = (1, €L)
(1,1), (er)° (ér)°
Higgsino Higgs
(172)71/2 (I:I??I{l_) (H%Hl_)
( a2)12 (H2+’H20) (H;’Hg)
spin 1/2 spin 1
(8,1)o G (gluino) GH
(1,3)0 W (wino) WH
(1,1)o B (bino) BH

The relation is same as that of a two-fermion system in quantum mechanics. One can construct an
irreducible representation of this algebra starting from a state which annihilates any ();. Suppose the
state is spin 0, |0), all possible states are generated as follows;

10) = Q1]0), Q2]|0) — Q1Q2]0). (6)

Because (101 = Q2Q2 = 0, no more state can be obtained by multiplying the generator ;. Two spin 0
states and two spin 1/2 states are obtained. These states form a SUSY multiplet, and the spin 0 states are
the superpartners of the spin 1/2 states and vise versa. Because this multiplet contains spin 1/2 states,
we can regard this as a matter multiplet.

Starting from a spin 1/2 state annihilating ) one gets two spin 1/2 fermion states, a spin 1 massive
bosonic states and a spin 0 bosonic state, namely 4 fermion degrees of freedom and 4 bosonic degrees
of freedom. This may be regarded as two chiral fermions, one massive gauge boson and one massive
Higgs boson. Repeating similar analysis to the massless particles, one obtains states with helicity h = A
and A + 1/2. If A = 1/2, a massless gauge boson and its superpartner fermion make a supersymmetric
multiplet. The number of bosonic degrees of freedom is the same as that of fermionic degrees of freedom
in this theory.

All states in the above multiplet have the same mass, which looks irrelevant for describing real
particles, but it is known that such mass degeneracy is removed by spontaneous supersymmetry breaking.
Supersymmetry breaking is discussed in the next section.

The minimal supersymmetric standard model (MSSM) is an extension of the SM that has a super-
symmetry in the limit where all particle masses are ignored. The model is thought to be an effective the-
ory of a fully supersymmetic theory. Due to the spontaneous supersymmetry breaking of the full theory,
the superparters of the SM particles receive a mass much higher than the SM particles. A superpartner of
a fermion is called sfermion and it is a spin O particle. A superpartner of a gauge boson is called gaugino
and has spin 1/2. A Higgs boson superpartner is called a higgsino and has spin 1/2. The particle content
of the MSSM is given in Table 2. The SM particles and their superpartners have same charge, because
the generator of supersymmetric transformation  commutes with the SM SU(3) x SU(2) x U(1) trans-
formation. The number of Higgs doublets is two in the MSSM because one should add two Higgsinos,
chiral fermions with charge (1,2),. /5 in the SM because of a condition of anomaly cancellation.

As one can see from Table 2, the number of particles are doubled in the MSSM. The supersymme-
try specifies all dimensionless couplings of interactions of new particles, such as four point interaction of
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scalers and Yukawa couplings, while mass parameters of superpartners are undetermined. To understand
the coupling relations, one needs to understand the supersymmetric field theory. In this lecture, I do not
have enough time to talk about it in detail, so I just sketch the important elements.

Fields in the same supersymmetric matter multiplet can be arranged in a “chiral superfield” which
is a function of coordinate x, § and 6 a grassmanian Lorentz spinors with mass dimension —1/2,

D(x,0,0) = d(y) + V20(y)0 + F(y)00, @)

where y* = z# — ifc*0. Note that by redefining the coordinate from x to y, ¢ becomes a function of y
and 6, and  does not appear. There are only three fields ¢, F' and ¢ appearing as the component fields of
®. When 6 is zero, ®(x) = ¢(z), therefore @ is an extension of the scalar field of non-supersymmetric
theory. On the other hand, ®(y, #) represents both fermonic and bosonic fields simultaneously.

® is dimension 1, so that dim(¢) = 1 and dim(¢)) = 3/2. F is then spin 0 and dim 2 field. The
only dim < 4 kinetic term of F' is F'F™*, therefore F' is not dynamical. The product of a chiral superfield
is also a chiral superfield depending only y and 6. On the other hand, ®®’ is not a chiral superfield as it
has the terms proportional to 6.

Just as operator P* translation in coordinate space x is expressed as 0/0x, supersymmetric trans-
formation () is a translation in the 6 and 6 space. Namely, in the coordinate representation it is expressed
as

So = + i(c"9,0). )

0
90
The second term is needed to satisfy the SUSY algebra give in Eq. 4. With this transformation, each
field transform as

Ssusyd = V2aub,
Ssusy = —ivVo,ot¢a+ V2Fa,
SsusyF = —iv2ad,atp, 9)

where o and & are transformation parameters. Under this transformation kinetic term
Liin = 0,00 ¢* + ipo"dy1p + F*F (10)

is invariant.

There are a few things worth paying attention. First The dgygy F is total derivative. Because the
product of chiral superfields is also a superfield, the 66 component F transforms as F = J,,J*, namely
F can be interaction terms which are invariant under supersymmetric transformation. For example,
PPy P35 gives F' term

Lyukawa = F19203 + F20103 + F39102 — 19203 — VYa1p391 — P39102. (11)

The interaction contains Yukawa interaction term ;51 @5 which is symmetric under the exchange of
i, J, k, and also the scalar potential terms proportional to y;;, F;¢;¢, Combined with kinetic term F'F™*,
interactions of four point scalar fields proportional to y? is generated. The similar relations also holds for
supersymmetric gauge interactions. The interaction between gaugino-fermion- sfermion is proportional
the gauge coupling g, and there are scalar four point interactions proportional to g>. While many scalar
and fermion partners are introduced, there are no new dimensionless coupling introduced.

In addition to the F' term, 9@?@ term of general field product, D is supersymmetric. For example,
supersymmetric kinetic term is 60660 term of ®®.

We now address some important features of supersymmetric models.
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Fig. 1: Left: the running of Higgs four point coupling changes at the scale of m;,,. Right: Maximal value of the
Higgs boson mass as a function of X; /Mgy sy when all the other parameter are scanned. From arXive 1311.0720.

— There are no quadratic divergence in the theory. The quadratic divergence coming from the top
loop is canceled by the stop loop generated by the Higgs-Higgs-stop-stop four point interaction.
Both of them are proportional to 2. The Higgs four point coupling is proportional to the square
of the gauge coupling, and quadratic divergence arising from the diagram is canceled by the gauge
and gaugino-higgsino loops. This is because scalar particles are now in a same multiplet with the
fermion, and the mass of the fermion is only logarithmically divergent. The fine-turning in the
Higgs sector is now significantly reduced.

— Because the Higgs four point coupling is a gauge coupling, the Planck scale Higgs four point cou-
pling is always positive, therefore significantly less in danger of running into metastable vacuum
At low energy the Higgs mass is upper bounded by the Z boson mass in tree level, and radiative
corrections proportional to the (mt*/m?%,) log(m;/m,) appear in the Higgs boson mass formulae.
This correction is interpreted as the running of the Higgs boson four point coupling from the stop
mass scale to the top mass scale under the SM renormalization group equation, because below the
stop mass scale, the theory is effectively the SM. In addition there are contribution proportional to
the fourth power of stop left-right mixing X;. See Fig. 1 (left) for the RGE interpretation of the
radiative corrections to the Higgs mass. In this theory, the Higgs boson mass is calculated from the
scalar top mass and its mixing, therefore the SUSY scale is predicted from the Higgs boson mass.
In other words, the measured Higgs boson mass gives a strong constraint to the SUSY mass scale
and mixing. See Fig. 1 (right).

— In the SM, one cannot write an interaction violating baryon and lepton numbers due to the gauge
invariance. This is no longer true because Higgsino and lepton doublets have same quantum num-
bers. The product of superfields W whose 66 terms is the SM Yukawa interactions

W = —ycHy - E°L —yqHy - D°Q — yyHy - U°Q — pHy - Ho, (12)

where Q = qr, + 0qp..., U® = u% + Ouf...... are the superfields whose bosonic component is a
sfermion and a fermionic component is quarks or leptons. However, 66 term of W’

W' = GLLLEC+EBLLQDC+€BUCDCDC—|—€LHLH2 (13)

is not forbidden by the gauge symmetry, because H; and L have a same quantum numbers, and
UDD = €4,.U*D?D¢ is a gauge singlet. The interactions violate lepton and/or baryon numbers
and should be forbidden.

The symmetry that forbids L and B violating terms is called the conserved R-parity. In the MSSM
R-parity may be assigned to the superfield and coordinate 6§ as follows,

R(L) = R(E) = R(Q) = R(U) = R(D) = —1,R(H) = 1, R(0) = —1. (14)
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Fig. 2: Two loop renormalization group evolution of the gauge couplings in the SM (dashed lines) and MSSM
(solid lines) from “A Supersymmetry primer” hep-ph/9709356.

In this assignment, all the SM particles have R = 1 and all superpartners have R = —1, and
R(Wlgg) = 1, and R(W'|g9) = —1. The interaction term from W multiplicatively conserves R
parity, namely, product of R parity of all particles involved in a vertex is one. Namely, R = —1
particle decays into the final states which contains odd number of R = —1 particles. If two
R = 1 particle collides, the final state contains even number of R = —1 particles. By requiring
multiplicatively conserved R parity, the lightest supersymmetric particle (LSP) becomes stable.
The LSP can be a dark matter candidate.

— Gauge coupling: In the supersymmetric model, the number of particles is doubled and running of
the gauge couplings would be modified above the SUSY particle mass scale. The gauge couplings
unify at the GUT scale much better than that of the SM as can be seen in Fig. 2. This means "su-
persymmetric GUT" is consistent with experimental data, though there are still some fine turning
issues when we consider the Higgs sector violating GUT symmetry.

3 Origin of SUSY breaking

As we have mentioned already, the MSSM is not a complete theory, because it requires a mechanism to
break the supersymmetry somewhere outside the MSSM. A general set up of the SUSY breaking models
are the following; there are hidden sector H, and fields Z; in the sector H break the supersymmetry
spontaneously. This hidden sector couples to our sector indirectly though a messenger sector. The
particles in the messenger sector have a mass scale M.

The spontaneous symmetry breaking is realized for the vacuums which do not annihilate with the
supersymmetric generator () and Q. If such a vacuum exists, there are some fermions ¢» whose supersym-
metric transformation dsy7sy1) = {Q, 1} has non-zero vev, namely (0|55 sy ¢|0) = —/2(0|F|0) # 0.
Some of the superfields in the Hidden section must have non-zero F' terms in our setup.

If F' term of Z has non zero veyv, <§2 = (FZ>99_, various mass terms are induced in the low
energy effectively. A simple example is 000 term of ZZ®®/M?, which may be induced through the
messenger interactions. After the symmetry breaking the term ((F)2/M?)p¢* is the effective SUSY
breaking mass term of the scaler boson ¢.

There are already severe constraints to the interaction of the messenger sector to the MSSM sector.

These constrains come from the flavor changing neutral currents such as K%- K% mixing. The constraints
typically require

q12

0.1

2
|:10T6V] <1, (15)

mg.g

Am? /m2] ?
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Supersymmetry breaking in a picture
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Fig. 3: Relation between the MSSM sector and SUSY breaking sector.

where m%n is a mixing parameter of the first and second generation squark, and m? is diagonal squark

masses. The SUSY breaking sector H therefore must couple to the MSSM matter sector universally.

Several mechanisms have been proposed to assure the universality of the soft scalar masses. The
supergravity model uses the gravity interaction as the messenger mechanism, on the other hand, gauge
mediation models uses some vector-like matters charged under the SM gauge groups as the messenger
fields. Even if there are no direct couplings between the MSSM and SUSY breaking sectors, there
are mediation mechanism through the superconformal anomaly, and the model utilizing this is called
anomaly mediation model.

It is difficult to access the Hldden sector directly. The SUSY breaking of the total theory Fj
and mass of the gravitino(super partner of graviton) mg; is related as mgz/, = Fo /My,. The gravitino
could be the LSP, in that case the next lightest SUSY particle(NLSP) is long-lived. The NLSP can
be detected directly at the collider, the decay lifetime provide the information of hidden sector SUSY
breaking. If gravitino is not the LSP, the gravitino can be long-lived and may have impact on big-bang
neucleosynthesis. See Fig. 3.

The mediation mechanism sets the sparticle mass parameters at the mediation scale, and on-shell
masses of the SUSY particles are obtained by running the RGE equation of the masses down to the low
energy scale. If the boundary condition is universal at M7, squark and gluino masses are much heavier
than those of electroweakly interacting superpartners such as sleptons, wino, bino and Higgsinos. The
square of Higgs mass parameter is driven to be negative at the weak scale, and Higgsino mass parameter
w1 compensates it so that the Higgs vev is the correct value. The cancellation between p and SUSY
breaking parameters at the weak scale is a measure of the fine turning in the Higgs sector. See Fig. 4.

4 Collider search of supersymmetric particles

So far, a proton-proton collider at CERN, the Large Hadron Collider (LHC), has collected ~ 30 fb~! of
integrated luminosity for each experiment at 7 to 8 TeV. It will start operation again from 2015 aiming
for 300 fb—! at 13 TeV.

A proton is a composite particle and quarks and gluons in the proton are the elementary particles
that are involved in the high energy scatting process. The momentum of the quarks and gluons are parallel
to the beam direction but the absolute values are not fixed. Therefore the collision system is boosted to
one of the beam directions. The production cross section is generally the highest near the threshold. It
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Fig. 4: Relation between the MSSM sector and SUSY breaking sector.
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Fig. 5: The decay pattern of squark and gluino produced at the LHC, and particles emitted from the cascade decay
chain. The particles in the Little Higgs model with T parity or universal extra dimension model may also give a
similar signature.

reduces gradually with the increase of the parton collision energy +/s. The quarks and gluons in the final
state are fragmented and hadronized into hadrons, forming the jets. Electroweakly interacting particles
W, Z, v, leptons and neutrinos are also produced from various production processes.

Colored superpaticles are copiously produced at the hadron collider. Due to the conserved R-
parity of the MSSM, superpartners are produced in pairs, each superpartner decays to the final state
involving another superpartner, and at the end of the cascade decay, the LSP appears. The LSP is stable.
Due to the cosmological constraints, it is neutral and color-singlet, and escapes detection. If the mass
difference between the superpartners are large, the decay product tends to have high pr. In such a case,
the LSP, which cannot be detected directly, is also relativistic (See Fig. 5). The sum of LSP momentum
transverse to the beam direction is balanced against other visible particles. Namely, significant missing
transverse momentum Pr,,;ss defined as

Primiss = — Y PTiee + Y _ PTI, (16)

? J

is a signature of SUSY particle production. Another important quantity is the sum of absolute values of
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Fig. 6: Distribution of p/, from the W boson decay measured at CDF experiment at Tevatron.
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Fig. 7: Distribution of me ¢ and E7yy,;ss of the top partner pair production at the LHC followed by the decay into
top and stable neutral gauge boson (left) compared with the ## distribution.

the transverse momentum

Hr = Priec + Y Py (17)
i J
or the effective mass ‘ '
Meff = Zp%jet +Zp%‘l +ETmissa (18)
i J

where E;ss 1s the absolute value of missing transverse momentum.

The meg distribution peaks at the sum of the produced particles at the hard process. To observe this
fact, let us first consider the pr distribution of leptons from W boson decay produced at CDF experiment
at Tevatron, a pp collider at 1.8 TeV. The distribution peaks at 40 GeV, which is a half of the W boson
mass. See Fig. 6. The feature is easily understood when we calculate the pr distribution of spherically
decaying W boson boosted to the beam direction,

2
r)dr = ———=dx, (19)
Jwde= =5
where pr = (my/2) sin @ = xmyy /2; The distribution strongly peaks at pr = myy /2 (sinf = 1) and
the structure remains even though W bosons are boosted transversely in the realistic situation, because
the production cross section is largest near the threshold. The fact applies to all production processes at
the hadron collider; the sum of the pr of the decay products peaks near the parent’s mass. When heavy

particles are produced in pairs, the sum of the pr of the decay products peaks at the sum of the produced
particle masses.

Fig. 7 compares the distributions of 77T and ¢t pair productions. Here a hypothetical particles
T- is assumed to decay into ¢t and By, and By is a neutral stable massive U (1) gauge boson. The signal
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Fig. 8: Latest mass limit of the MSSM squarks and gluinos shown as a function of GUT scale gaugino mass and
scaler mass. Presented in SUSY2013.

contains ¢t and existence of two By’s is observed by the missing transverse momentum of the events,
namely, the signal is similar to that of superpartner pair production. The signal production cross section
is O(1) pb, while the tt production cross section is huge at the LHC, around 800 pb. If the distribution
overlaps significantly, the signal is very difficult to be observed. However, the signal m, s distribution
peaks around 1 TeV and missing momentum as close as half of the M, ¢, while the background peaks
around meyry ~ 400 GeV and Erpiss < Mgy /2. Because of this distribution differences, the 7_
signature with the production cross section much less than 1 pb may be observed at the LHC.

So far we have been talking about “inclusive” quantity. They are defined using all objects in
an event. We may also select jets or leptons with special features and use kinematical information to
separate signals and backgrounds. Let us consider events with one lepton and some missing momentum.
The event with one lepton + multiple jets + missing momentum is an important signature of superpartner
production. However, events involving W boson also produce such signatures. However, the events with
W boson can be reduced significantly if we require that m of a lepton and missing pr is above 100 GeV

where m is defined as
my = \/2pl ETmiss (1 — cos(A¢(l, pr)) (20)

The cut significantly reduces the background from the W boson production to the SUSY process.

The current bound of the SUSY process is obtained after successful reduction of background
using the above kinematical variable. The understanding of background distribution is quite important,
especially the cross section of W,Z, tt with multiple jets must be correctly calculated. The techniques
to obtain multiple jets amplitudes with parton shower has been established only this century, and current
SUSY searches at the LHC is benefitted by those techniques greatly. The current limit typically excludes
squark with mass 1.8 TeV and gluino with mass less than 1.4 TeV, if the mass splitting between the LSP
and colored SUSY particles are large enough. See Fig. refsusylimit for the latest limits.

5 Dynamical symmetry breaking and BSM

Supersymmetry is not a unique solution of the hierarchy problem. Another important class of solutions
is dynamical symmetry breaking models. When a global symmetry is broken spontaneously, a massless
scalar modes (Nambu-Goldstone boson) appears, even if the theory does not have an elementary Higgs
boson. An important example is chiral symmetry breaking in QCD. The QCD Lagrangian has SU(2), x
SU(2)r symmetry when quark masses are ignored. The symmetry is spontaneously broken to SU (2)y

147



M. NOJIRI

dynamically, and the Goldstone boson of the symmetry breaking are pions © ~ g;y5¢’, and (gq) has
non-Zero vev.

The pion has the same charge as the Goldstone boson in the Higgs sector. Therefore, it is natural
to consider scale up of the mechanism. The model involves a set of new quarks () with EW charges,
but couple to different asymptotic free gauge interactions whose couplings blow up at the scale of EW
symmetry breaking. If QQ condense, the light Qv5Q states work as the Goldstone bosons of the EW
symmetry breaking. This class of the model called Technicolor model. The model has no quadratic
divergence because the massless bound states only appear in the low energy effective theory.

This is an interesting and beautiful idea, but is not consistent with precision EW observations.
At LEP, gauge boson two point functions were precisely measured. Especially the parameter called
S, receives non decoupling contribution from SU(2) doublets () which is colored in the new strong
interactions, and also necessary charged under SU(2) x U(1) symmetry in the SM to break the gauge
symmetry. Their contribution appears constructively to the gauge two point functions, and therefore the
model is tightly constrained. In addition, these models tend to predict a heavy Higgs boson inconsistent
with the data.

Another class of models called "composite Higgs models" allows a Higgs boson which is light
but non-elementary. In these models, the Higgs doublet itself is a pseudo Goldstone boson of some
dynamical symmetry breaking. Though the mechanism of dynamical symmetry breaking is not specified,
the smallness of the mass of the Higgs boson is thought to be ensured by the global symmetry of the
theory. The model requires extension of the top sector because the top Yukawa coupling violates the
desired global symmetry strongly. The extended top sector is a target of extensive ATLAS and CMS
searches.

6 Extra dimension models

In the Extra dimension models the space has more than three dimensions but the additional space di-
mension is compactified with a small size R so that we could not recognized it easily. When the extra
dimension is flat, the fields in the extra dimension may satisfy the periodic boundary condition such as

qﬁ(:r,y) :¢($,y+R), (2D

where x represents four dimensional space time, while y is the fifth dimension. Under this boundary
condition, the wave function is expressed as

bz, y) = ¢'(z) exp(ipsy), (22)

where ps R = 27n (n is an integer). This leads to an equation of motion of a free particle propagating in
the the fifth dimension,

n\ 2
B2 =p+pd=p'+2n)? (2) . (23)
Namely, the model predicts an infinite tower of particles of the four dimensional effective theory, which
corresponds to different values of the discrete momenta in the fifth direction.

The coupling of the fifth dimension related with the couplings in the four dimensional effective
theory in non-trivial manner. A simple example is the gauge coupling of the fifth dimensional theory and
the four dimensional effective theory,

1 1
/d4$d$52Flul,F'uV — /d4x2FMVFHV, (24)
g5 941

where g4 = g5/v/ R. Larger the size of the fifth dimension is, g4 becomes small. This is also true for
gravitational interactions. The four dimensional gravitational interaction may be small because the size
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of extra dimension is large. The Large extra dimension model tried to solve the fine tuning problem by
making true Phanck scale in the higher dimensional theory much smaller than the My.

The extra dimension may not be flat. In the RS model, the fifth dimension has non-trivial metric

as follows:
ds® = e_QU(‘b)nuydx“dm” + r?dng, (25)

where ¢ = 0 and 7 is the boundary of the fifth dimension. The gravity action in the bulk is expressed as

Syravity = / d*z | dov—G—A+ 2M3R, (26)
when the o (¢) is expressed as
—A
o(¢) = reld| BYSVER 27)

provided appropriate fine tuning of the boundary actions.

The geometry allows us to control the masses of SM particles. If the Higgs boson is at ¢ = 7
boundary (which is called visible brane), the kinetic term is expressed as

Suis = / d'ay/=Guise™ "7 s { gl DD, H —~ N|HP —03)°} (28)

The mass term receives the suppression factor of e ~*"<™ after rescaling the Higgs field so that they have
canonical kinetic terms. By adjusting parameters one can easily obtain the mass of the SM particle of
the oder of the EW scale while all parameters of the fundamental fifth dimensional Lagrangian are of the
order of M, without fine turning.

The model predicts towers of KK particles with mass of the order of Ay, = J@Mple_’"” for the
particles living in the fifth dimension(bulk). A popular set up of the model is that all the SM fermions
are the zero mode of the particles living in the bulk, and the Higgs boson lives in the IR brane. Mass
term of the fifth dimensional Lagrangian of the SM model matters control the profile of the fields in
the bulk. One can adjust the mass so that light (heavy) quarks and lepton have small (large) overlap
with the IR brane so that Yukawa couplings in the four dimensional effective Lagrangian is realized
without introducing too much hierarchy among the interactions between the Higgs boson and the bulk
fermions. There are on-going search of the KK gauge bosons and KK fermions at the LHC, however,
FCNC constraints require A, > 10 TeV already, and it is unlikely that these new particles will be found
at the LHC.

7 Suggested reading

To those who is interested in Supersymmetry, a good review for start with is S. P. Martin,“A Supersym-
metry primer,” In *Kane, G.L. (ed.): Perspectives on supersymmetry II* 1-153 [hep-ph/9709356]. For A
review of composite Higgs model, I suggest R. Contino, “The Higgs as a Composite Nambu-Goldstone
Boson,” arXiv:1005.4269 [hep-ph].
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Abstract

In these three lectures, I overview the theoretical framework of the flavour
physics and CP violation. The first lecture is the introduction to the flavour
physics. Namely, I give theoretical basics of the weak interaction. I follow
also some historical aspect, discovery of the CP violation, phenomenological
studies of charged and neutral currents and the success of the GIM mecha-
nism. In the second lecture, I describe the flavour physics and CP violating
phenomena in the Standard Model (SM). I also give the latest experimental
observation of the CP Violation at the B factories and the LHC and discuss its
interpretation. In the third lecture, I discuss the on-going search of the signals
beyond SM in the flavour physics and also the future prospects.

1 Introduction

The Standard Model (SM) is a very concise model and at the same time a very successful chapter in
particle physics. In the establishment of the SM, the flavour changing and/or the CP violating phenomena
had played a crucial roles. On the other hand, there is a very important unsolved question related to the
CP violation: how the matter and anti-matter asymmetry of the universe occurs in the evolution of the
universe? Although the Kobayashi-Maskawa mechanism has been successful to explain the CP violation
in the flavour phenomena, it is known that the single complex phase introduced in this mechanism is not
enough to solve this problem. Since there is no known way to introduce another source of CP violation
in the SM (except for the strong CP phase), we expect that the SM needs to be extended. Apart from this
issue, there are various reasons to expect physics beyond the SM. The search for a signal beyond SM is
a most important task of particle physics today.

In this lecture, we expose the theoretical basis of flavour physics in the SM and its phenomenology.

2 Weak interaction: fundamentals of flavour physics
2.1 Quarks and leptons

The flavour physics concerns the interaction among different fermions, quarks and leptons. Fermions are
known to appear in three generations:

Quarks Leptons
Generation Generation
Ch h
arge 1 11 Charge I 1 1
U & t Ve vy vy
+2/3e 0
electron muon tau
up charm top neutrino neutrino neutrino
d S b e o T
-1/3e -
down | strange | bottom electron muon tau

As we will see in the following, the interactions between the fermions with difference of charge
+1 can be described by the charged current while the interactions between the fermions with the same
charge is described by the neutral current. The examples of such processes are 3 decays, K — K mixing,
et v scattering process, etc... All these processes are governed by an effective coupling, the so-called
Fermi constant G = 1.16639(2) x 1075 GeV 2.

151



E. Kou

2.2 Charged current

The history of the weak interaction started from the observation of the continuum spectrum of the
decay of nucleons in the 1930’s:
72X =741 X + ety (1)

where v is the neutrino postulated by Pauli. During the next two decades, many new experiments were
performed and new particles and new decays were discovered. In particular, the two particles called 6
and 7' were quite puzzling. They both contain strangeness and have very similar properties. Besides,
they have different decay patterns: 6 decays into two pions and 7 into three pions. For a solution to this
problem, Lee and Yang had proposed the parity violation of the weak interaction that was successfully
tested by Wu through the 3 decay of 50Co. After various experimental tests and theoretical argument, it
was suggested that the weak interaction should be of the form of V' — A (V: Vector current, A: Axial
vector current). In this theory, the charged current involves fermions with only left-handed chirality.
Thus, the weak interaction processes in which charge is exchanged between leptons and leptons/hadrons
are well described at low energy by the effective Lagrangian:

Gr "

T @
where J, = ey.(1 — v5)v, J, = qavu(1 — ¥5)qu. where gy, gq are the up and down type quarks,
respectively. One of the problems of this theory at the early time was that the discrepancy in the vector
coupling when measuring the decay of radioactive oxygen, 1#O: the coupling constant which was thought
to be universal, G i, which is the case for the lepton current, was 0.97G . In the early 60’s, this problem
was nicely understood by introducing the so-called Cabibbo angle f.: the coupling of m and K are
different and it is proportional to cos 6. and sin 6., respectively. Therefore, the hadronic current (with
three quarks) is written as:

J}jadron = cos O.ury,dr, + sin0.ury,sy, 3)

The measurements of 120 —* N + eTv and K — 7% v lead to a consistent value of the Cabibbo
angle, 0. = 0.220 4+ 0.003, which proved the correctness of this expression.

2.3 Neutral current

From the theory with three quarks, up, down, strange, described above, we can conclude that the quarks
provide an SU (2) doublet such as:

Q= ( " ), )

dcosf,. + ssin b,

Then, the neutral current, namely the term which is induced by @Lth 1 (t3 is the SU(2) generator)
would induce the term proportional to ELWS 1 and 57,7,dy, representing strangeness changing neutral
current which were not seen in experiments. This problem was solved by Glashow, Iliopoulos and Miani
in 1970, by introducing a hypothetical fourth quark, c. With this extra quark, one can compose another
doublet: ¢

oublet: ( —dcosf, + ssinf,
can be cancelled out at the tree level (GIM mechanism). Note however, such flavour changing neutral
current can still occur at the loop level if the up quark and the newly introduced charm quark have
significantly different masses. Let us see the example of K — K mixing. The diagram is given in Fig. 1.
This is indeed the strangeness changing (AS = 2) neutral current. The amplitude of this process should

> with which the problematic strangeness changing neutral currents
L

'Not to be confused with the 7 lepton!
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d— < — S
W+ W+
S—> > —

Fig. 1: Feynman diagram inducing K — K mixing.

proportional to:
G2 | (sin b, cos 0,)? f (my) — 2(sin 6, cos 0,)? f (my, me) + (sin 6, cos 90)2f(mc)} 3

where the first and third terms represent the diagram with either « or ¢ quark in the loop, respectively,
while the second term is with both « and ¢ quarks in the loop. The function f is called loop function,
which contains the result of this loop diagram computation and is a function of the internal particle
masses (quarks and W boson in this case). If the mass of the up and charm quarks are the same, the
three loop functions in this formula coincide, thus, the full amplitude becomes zero (GIM mechanism at
one loop level). In reality, the observed difference in the up and charm quark masses are significantly
different, which can yield non-zero K — K mixing. What is remarkable about the work by GIM is that
the fourth quark, ¢, was predicted in order to solve the problem of K decays. It took a couple of years
since then but indeed the c¢ charm bound state, .J /1) was discovered in 1974.

2.4 Describing the weak interactions in the SM

The V' — A theory developed to explain the S decay and strangeness changing interactions is neither
renormalizable field theory nor gauge theory. The heavy vector particles which can intermediate the weak
interactions is now known as W boson. In the late 60’s, the model which unifies the electromagnetic
interaction and the weak interaction were developed by S. Glashow, A. Salam and S. Weinberg. In this
model, the W, Z and ~y can be understood as the gauge bosons of the SU(2);, x U(1)y gauge group.

In the SM, the masses of the particles are obtained through the Higgs mechanism, where the
SU(2)r, x U(1)y symmetry breaks spontaneously to U (1)gy (while keeping the photon massless). Let
us see the term which gives the masses of the quarks in the SM, the so-called Yukawa interaction term:

b= 5,5 Yo (5 ), (5 o o
ij

)

which is invariant under SU(3)c x SU(2)r, x U(1)y gauge transformations. The indices i,j = 1,2,3
run through the generation. The so-called Yukawa matrix is a completely general complex matrix and
not constrained in any way (it could be even non-Hermitian). Then, after the neutral part of the Higgs
field acquires the vacuum expectation value, the quark mass matrices are produced:

Ly = Z m%@uﬂg + Z m%mde + h.c. 7
ij ij
where
mis = Y5 e,  m = Yi(d")vac 8)

This Yukawa mass term can induce parity- and flavour-non-conserving terms. However, we can introduce
new quark fields

U, =KYUp, up=KYup, D) =KPD,, dy=KRdg 9)
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where the matrices K are constrained only by the condition that they must be unitary in order to preserve
the form of the kinetic term. Then, when we re-write the mass term with the prime fields, it takes the
same form as above but the new matrix:

U= KYmVKGS!, mP = KPmPKET (10)

Now it is a general theorem that for any matrix m, it is always possible to choose unitary matrices A and
B such that AmB is real and diagonal. Note here that if the matrix m was Hermitian, we would find
A = B. Therefore, we choose m!’ and m””’ being real and diagonal. Then, the Yukawa mass term does
no longer produce the flavour-non-conserving terms, while now the charged current would require some
modifications. Let us write the weak doublets with the new prime fields:

KU
Qir = (((KD 19%)) ) (an
The, the charged current reads:
Z—Ul "Dy = Z—U” HETRD) ;D Z—U” "V DY (12)

where the unitary matrix V;; = (K LUTK f’ )ij is known as Cabibbo-Kobayashi-Maskawa matrix. The
rotation of the 1-2 part of this matrix corresponds to the Cabibbo angle discussed above. Now it is clear
that the quark mixing which differentiates the Gy to 0.97GF in the hadronic 3 decay originated from
the mismatch between the weak eigenstate and mass eigenstate in the SM.

The full Lagrangian for the quark coupling to the gauge bosons reads:

> [Er(id)Er + Lir(id)lir + Qi (i0)Qir, + Wr(id)uir + dir(id)dir

(Wi T+ W dh + Z00%) + Ayt (13)
where the coupling g is related to the Fermi constant by Grp = 4\/29%. The index ¢ = 1,2, 3 is the
w
generation number. The left handed fermions compose SU(2) doublet as:
(Vv (U
Bi=(7), Q=(p ), (14)

Note that the assignment of the hypercharge Y is Y = —1/2 for F;;, and Y = +1/6 for Q;1, which
together with 73 = +1/2, gives a correct charge Q = T2 4 Y. For the right-handed fields, 7% = 0
and thus the hypercharge is equal to the electric charge. Then, the charged, neutral and electro-magnetic
currents are written as:

1 .

T = E(Wv“LiﬁUm”DiL) (15)

J{/{/_ = 7( zL’Y v + DZL7 UzL) (16)
1% 1 1 1 : 2 T (a3 2

J; = Jooste viLy ( Jir + Lipy* (—§+Sln Ow) Lir, + Liry" (sin” O0y)lir

— 1 2. . 2 .
+UiL’Y“(§ — g sin 20,)UiL + Uz‘R'YM(_g sin? 0, )uir

’Here we show only the result for the first generation but the remaining parts can be derived easily by repeating it with
different generations.
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—_ 1 1 — 1
+DiL’y”(—§ + 3 sin? 0,,)D;1, + diny“(g sin? 0,,)d;R | (17)

_ — 2 — 1
Jhy = Lm”(—l)Li+Un“(+§)Ui+DW“(—§)Di (18)

_€_

The weak angle 0,, relates different couplings and masses, e.g. g = oL and my = myz cos O,,.

3 CP violation
3.1 Matter anti-matter asymmetry in nature

Back in 1920’s, having the theory of relativity of Einstein, Dirac extended the quantum mechanics to
incorporate the matter which moves with close to the speed of light. The relativistic quantum mechanics
follows the equation of motion called Dirac equation. This equation had one solution which correspond
to the electron and in addition, another one that has the same mass and spin as the electron but with
opposite charge, an anti-particle. A couple of years after, in 1932, Anderson discovered a particle in
cosmic rays, which indeed corresponds to this solution, a positron! In Dirac’s theory, anti-particles and
particles can be created and annihilated by pairs. Then, a serious question raises: why only particles
(electron, proton, etc) can exist in the universe but not anti-particles? This theoretical problem has not
been solved yet. It seems that something has happened in the early universe, which caused an unbalance
between particles and anti-particles.

Our universe was born about 135 x 10'! years ago, with extremely high temperature, 10 GeV
(about 4000 K). After its birth, the universe started expanding. As a result, the temperature dropped
rapidly. At the early time when the temperature was high, the high energy photon could pair-create par-
ticles and anti-particles (namely, proton/anti-proton, neutron/anti-neutron, electron/anti-electron). At the
same time, since all the particles are relativistic, they could also pair-annihilate. As a result, the photon,
particle, anti-particle are created and annihilated freely (equilibrium state). Once the temperature reached
about 1 MeV, the photon energy was not high enough to create the (anti-)particles. Then, only pair anni-
hilation would have occurred and our universe would not have had any (anti-)particles! However, that has
not been the case. For some reasons, by that time, there existed some more particle than anti-particles.
The remaining particles composed Helium and then, various nucleus were generated through nuclear
interactions. So far, the reason of the asymmetry of number of particle and anti-particle is not known.
The only thing we know is that there was some cause of asymmetry when the temperature of the universe
was about 10'® GeV. And in order for this to happen, there are three conditions (Sakharov’s conditions):
i) Baryon number violation, ii) C-symmetry and CP-symmetry violation, iii) Interactions out of thermal
equilibrium.

It turned out that CP symmetry is violated in nature. This is the subject of this section. The ob-
served CP violation in nature is explained well in the framework of the SM. However, it has also been
found that the source of CP violation in SM is much too small to explain the matter anti-matter asymme-
try of the universe. This is one of the reasons why we strongly believe that there is physics beyond the
SM and why we search for further CP violating observables.

3.2 CP violation in the kaon system

The first observation of CP violation was through the measurement of kaon decays. The kaon decays
had unusual properties such as the § — 7 puzzle as mentioned earlier. The kaons came as two isodoublets
(K+, K°) and their anti-particles (K _,FO) with strangeness +1 and —1. The difficulty of assigning
the 0 and the 7 to one of K° or K" is that § which decays to two pions should be CP even and 7 which
decays to three pions should be CP odd while K° and K" are both CP even®. In 1955, it was proposed

*Remember: CP|K®) = [K°), CPIK’) = |K°), CP|x°) = —|x°), CPlntn~) = +|xtx), CP|(ntn )in®) =

(=) (mT w7 ) m°) where [ is angular momentum between 7+ 7~ system and 7°.
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by Gell-Mann and Pais that the observed state must be the linear combination of the K° and K such as:

:\}E(KOJrKD), Kzz\}i(Ko—Ko). (19)

From the weak interaction point of view, this is quite natural since the weak interaction does not distin-

K

guish the strangeness, K° and K’ always mix. Now the problem is solved: K is indeed CP even and
K5 is CP odd*, which therefore can correspond to # and 7, respectively. It is important to notice here
that the life time of K1 and K are very different. The masses of K being 498 MeV and 7 140 MeV, the
three pion final state is suppressed by the small phase (about a factor 600). This reflects in to the lifetime
of these particles: 7(K7) ~ 0.90 x 1071 s and 7(K>3) ~ 5.1 x 10~® s. This accidental phase space
suppression will play a crucial role for discovering the CP violation in kaon system.

In 1962, the experiment of Cronin, Fitch and his collaborators announced the very surprising result
that the long-lived kaon, i.e. K5, decays into two pions:

Ky > nto™
Since K5 is CP odd state while two pion is the CP even state, CP is not conserved in this process! The
fraction is rather small, 2 x 102 of total charged decay modes. Nevertheless, this is the proof that CP

invariance is violated in nature!

A modification to Eq. (19) is in order. Now, we name the short- and long-lived kaons as Kg and
K7, then,

1 0 0) _ ]2 g _ g
Kg = —\/5 (p[( +qK ) =3 [(1 + p)Kl +(1 p)K2:| (20)
K _ 1 KO0 KO _b q K q K
L \/§<p q ) 2 |:(1 p) 1+(1+p) 2:| D

CP violation (Kg 1, # K1 2) occurs when ¢/p # 1.

3.3 Mixing the two kaon states

Let us now formulate these two kaon states in quantum mechanics. The mixing of the two states comes
from the weak interaction which changes the flavour. Let us describe the time evolution of the K K
system in terms of the Hilbert space |¥(t)) = a(t)|K) + b(t)|K) (here we ignore the multi-particle
states). The time dependence of this oscillation can be described by the Schrédinger equation as:

L9
i V(1) = HU(). (22)

0= (39)

where

The matrix H is written by

(24)

H:M—iI‘:<MH_;FH M12—§T12>
2

Moy — 5191 Mag — 5190

The CPT or CP invariance imposes M1; = Mo, I'11 = I'y2 and CP or T invariance imposes & Mo =
0 = & I'1o. Then, the eigenvalues and the eigenvectors of this matrix read:

System 1: My — %FH + % (M12 — %Flg) , < 5 > (25)

*This choice of the kaon state was originally proposed based on the idea that C is conserved in weak interaction (notice K1
and K> are C eigenstates as well). However, when the parity violation in the weak interaction was suggested by Lee and Yang,
it was also suggested that charge invariance is also broken, although it was thought that C’P was still a good symmetry in weak
interaction.
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System 2: MH — %FH — % (M12 — %Flg) s ( _pq ) (26)
which leads to
K1) = plK) +q|K) (27)
|[K2) = plK)—q|K) (28)
with
4_ 4 127312 (29)
P My — 512

where the choice of the solution to this equation, either + or —, corresponds to replacing the Systems 1
and 2. Now, it became clear that the CP violation ¢/p # +1 occurs when M2 and/or I'19 is complex
number.

The masses and the widths yield:
M, — %Fl = My — %Pn + % (M12 — %Tm) (30)
My — %1"2 = My — %Fn — % (M12 - %Fm) GD

where M 2 and I'y o are real numbers. Here we choose the + sign for the solution for ¢/p above, and
then we define the mass and the width differences as:

AM =My — M;, AT =TT, (32)

These two quantities are very important observables for the mixing system. Note that the discussions are
totally general and can apply to DD and BB systems.

3.4 Time evolution master formula

Now let us describe the time evolution of the kaons decaying into pions. When there is a mixing of
two states, these two states oscillate as time evolves. The CP violating phenomena observed in the kaon
system implies that the oscillation rate is different for the state which was K at a given time from those
with K. There is another possibility: the CP violation occurs in the decays, i.e. the decay rates of K and
K are different. To summarize, there are a two possibilities of source of the CP violation:

Oscillation : K g) K, and/or Decay: (K,K) QP) () (33)
Therefore, we are going to derive the time evolution formulae which describe the oscillation and

the decays. The oscillation part is already done. It is the solution to the Schrodinger equation given
above. The states at time ¢, starting as X and K at ¢ = 0 are given:

K1) = frt)|E)+ gf,u)@ (34)
K@) = f0F) + §f4t>|f<> (35)

where )
fy = ie—iMlte—%Flt 1 4 o tAMt 3 ATt (36)

Now the decay part. The decay amplitude of K /K to given final state f (f = 77 or m77) can be
expressed by the matrix element with effective Hamiltonian with AS = 1:

A(f) = (fIHas=1|K?), A(f) = (fIHas=1|K") (37)
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Then, the decay width of the state which was K and K" att = 0 reads:

Qmuw2+2%[L%w<p

D(EO(t) = f) o e AP [K+(t)+K(t)‘;

IS
N———
S|
—
L,
[

2nmfn2+-mR[L*@><p

D(K'(t) = f) o e THA(F) [K+(t)+K—(t)“Z

IS
N————
=
~
e,
—_

where
e A 1
i VAL 38
P =1 = o) %)
1
[fxF = e EL() (39)
1
F-OFi) = e ML) (40)
Ki(t) = 1+ e £ 2628 cos AME (41)
L*(t) = 1— AT 4 2ie3Tgin AMt (42)
The CP violation manifests itself as:
A TEO = H-TED 1) g @)
D(K'(t) = f) + T(K°(t) - f)

3.5 The three types of CP violation

In this section, we learn the three types of CP violating processes:

— Direct CP violation (no-oscillation)
— Flavour specific mixing CP violation
— Flavour non-specific mixing CP violation (time dependent CP violation)

Direct CP violation (no-oscillation):
No-oscillation means AM = 0, AT' = 0 then, we have K_(t) = L(t) = 0. In this type, CP violation
occurs only through the decay:

|A(f)| # [A(S)] (44)

The CP asymmetry is given as:

AP - [ADE _ DR -1 s
ANP+IADZ (P +1

It should be noted that non-zero CP asymmetry A # 0 occurs only when [p| # 1 (arg(p) # 0 is not
sufficient!).

A:

Flavour specific mixing CP violation :

Let’s consider the semi-leptonic decay, e.g. K° — XItv or K’ — XI~7. Note that at the level of
quark and leptons, these decays come from s — uW ™ (— [Tv) and s — uW ™ (— [~ 7), respectively.
In such a decay mode, the initial state and the final state have one to one correspondence: tagging of
the final state flavour (or lepton charge) tells whether the initial state was K or I’ Defining the decay

amplitude as: B
Asp = [AXTTv)| = [A(XT D) (46)
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(note i) this equality comes from CPT invariance and ii) |A(X1"7)| = |A(XITv)| = 0), we find the
decay rates for the state which was K or K’ att = 0 read:

D(K(t) > 1P X) o e "R ()| Ase]? (47)
D(K(t) - 17X) o e TUE_(1) g2|ASL|2 48)
PE () = 17X) o e K ()| AgL? (49)
PE () = 17X) o e K (1) §2|Am2 (50)

where the wrong sign processes (the second and the fourth lines) come from the K° <> K oscillation.
The CP asymmetry is given as:

_ Ip/al® —la/pl* _ Ip/ql* —1
Ip/al*+la/pl*  |p/a* +1

(5D

which does not depend on the time.
Flavour non-specific mixing CP violation (time dependent CP violation) :
For this type of CP violation to be measured, we utilize very special kinds of final state: the final state to

which both K and K" can decay. The CP eigenstate C'P|f+) = +|f1) falls into this category. Indeed,
the 7 final states are such a case:

_ =0 _ —0
K5t K —»atn, K50 K — 7%° 52)

In general, both [p(f)| # 1 and q/p # 1 can occur. Just for simplicity, we present the result for
lp(f)l = 1and |¢/p| = 1,

A 2sin(arg q/p + arg ﬁ)e%AFt sin AMt
1+ €Al cos(arg q/p + arg p)[1 — eAlY]

(53)

Thus, the non-zero CP asymmetry will occur when arg q/p + arg p =# and AM # 0. The asymmetry
depends on the time in this case. We will come back to this type of CP asymmetry later on the B meson
system.

3.6 CP violation in BB system

The discovery of the CP violation in K system is helped by the (accidental) fact that the two (supposed-
to-be) eigenstates g and K1, have very different life time, which allowed us to realize that Ky, (CP-odd
state) decayed to wm (CP even state). In the B meson system, of two B states both have very short life
time. Thus, we need some strategy to identify whether the initial was B or B. The most common way to
achieve this task is the following:

— t = 0: B and B are pair-produced from e*e™ collision (in this way, the BB is produced in a C
odd configuration).

— t = t1: one of B or B decay semi-leptonically. As presented in the previous section, if the final
state contained (), then, the particle that decayed was B(B). Due to the quantum-correlation,
if 1~(+) is detected, the other particle which hasn’t decayed yet should be (B)B.

— t = to: Then, this remaining particle decays to the CP eigenstate, which is common for B and B.
Between t = ¢; and ¢ = to, this particle oscillate between B and B.
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Fig. 2: Time dependence of the B — B oscillation.

The decay rate at t = t5 for the processes where we observe % at t = t; can be written as:
D(B(ts) = f) o e "5 |AB° - )P - 3(Lp(f)) sin(AMp(tz — t1))
b

D(B'(t) — f) o e TPE=ABY - f)P2[+ %(%ﬁ(f)) sin(AMp(t2 — t1))]

where p = 1 is assumed for simplicity and also AI'p = 0 is assumed, which is close to the truth from
the observation. If CP is violated ¢/p # 1, we should observe different time dependence for these two
processes. Indeed, experiment has observed a clear difference between this two and CP violation was
confirmed at B factory experiments in 2001 with the final state f = J/¢ Kg (see Fig. 2 top). It was
35 years after the first discovery of CP violation in K decay. In this channel, the time dependent of the
asymmetry behaves as:

—0
A= LB W=h- PBYO) = 1) _ 95 ) sin AMpt (54)
T(B(t)— f)+T(B(t) = f) P

where t = t9 — t1. Comparing to the kaon system, the CP violation in B system appeared to be large
%%ﬁ(J/wKS) ~ (.67.

4 CP violation in SM: unitarity triangle

Now that we have enough evidences of CP violation in nature, both in K and B system. In fact, by now,
not only in K — 77(w) and B — J /1 Kg processes, but also CP violation has been observed in many
different decay channels. The CP violation for these two channels indicates namely arg(q/p) # 0 in K
and B system. There are also relatively large Direct CP violation observed in various channels (such as
B — 7m), which indicates [p| # 1 in those channels. A hint of observation of the flavour-specific CP
violation is also reported (|¢/p| # 1) in By system but the experimental result is not precise enough yet.
We will discuss on this issue later in this lecture.

In this section, we discuss where the complex phase comes from in the SM in order to have
arg(q/p) # 0. In the model building point of view, it is not easy to incorporate a complex parame-
ter to the theory, namely because, the CP violation is observed only in the K and B systems but nowhere
else. Most strong constraint for introducing complex phase to the theory comes from the non-observation
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of the electric-dipole moment (EDM) of leptons and neutrons. As we have discussed before, the Yukawa
matrix contains free parameters of SM and can be no-Hearmitian. The observable of the Yukawa matrix,
the CKM matrix, is only constrained to be unitary, thus can contain a complex number. The CKM matrix
is the coupling for the flavour changing charged current, thus, it is ideal to generate CP violation only in
the flavour non-diagonal sectors.

4.1 Kobayashi-Maskawa ansatz

The fact that the CKM matrix contains complex phases does not necessarily mean that they generate
observable CP violation, since some phases can be absorbed by the redefinition of the field. In 1973,
Kobayashi and Maskawa investigated this question. A general n X n unitary matrix contains 2n? —
(n + (n? —n)) = n? real parameters. The phases of the quark fields can be rotated freely, 1) — 1)
(applying separately for up-type and down-type quarks), while one overall phase is irrelevant. Thus, we
can rotate 2n — 1 phases by this. As a result, we are left with n? — (2n — 1) = (n — 1)? real parameters.
Among these parameters, we subtract the number of the rotation angles, which is the number of the real
parameter in n X n orthogonal matrix %n(n —1). As aresult, the number of the independent phase in
CKM matrix is: 3(n — 1)(n — 2). Kobayashi and Maskawa concluded that in order for CP to be broken
through CKM matrix, third generation of quarks is necessary. In 1973 when they wrote this paper, there
were only three quarks confirmed (up, down and strange) with a speculation of the fourth quark (charm).
The prediction of further two quarks was rather bold. However, indeed, the J/v (a charm anti-charm
bound state) was discovered in 1974. The third generation lepton 7 was seen in 1975 and confirmed in
1977. Also in 1977, the fifth quark, bottom was discovered. For the sixth quark, top, are needed to wait
until 1994. Now the Kobayashi and Maskawa mechanism is a part of the SM. As we see in the following,
all the observed CP violations can be explained by the single phase in the CKM matrix at a certain level.
Therefore, it is believed that this phase is the dominant source of the observed CP violation.

4.2 The unitarity triangle

As we have repeated, the CKM matrix is restricted by theory only to be unitary. It contains four free
parameters (three rotation angles and one phase), which should explain all observed flavour changing and
non-changing phenomena including CP violating ones. Thus, the test of the unitarity of the CKM matrix
is a very important task in particle physics. For this purpose, let us first inroduce the most commonly
used parameterization.

First we write the 3 x 3 unitary matrix as product of three rotations ordered as:

VvV = w(923, 0)&)(913, —(5)0.)(912, O) (55)
€12€13 $12€13 s13e” %

= — 81223 — C12893513€"  C12Ca3 — S12823513€"°  S23C13 (56)
12823 — C12023513€™°  —C12523 — S12¢23513€"  Co3013

Now we re-define the parameters (Wolfenstein’s parameterization):
sinfip = \, sinfi3 = Av/p2 + 123, sinfay = AN? (57)

Then, realizing that the observed CKM matrix elements follow some hierarchy, we expand in terms of
A(~0.22):

1—IX2 A A/ p? +n2e” N3

V= -\ — 1) AN? + 0\ (58)

A(l = /P2 +12e)\3 —AN? 1

In testing whether all the observed FCNC and CP violating phenomena can be explained by the
CKM matrix (unitary matrix which can be written in terms of three rotation angles and one complex
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Fig. 3: (a) The unitarity triangle. (b) and (c) The current situation of the unitarity triangle constraints from various
flavour observables.

phase), the so-called unitarity triangle is often useful. The unitarity triangle represents one of nine
unitarity conditions, the one that contains the matrix elements relevant to B physics:

VaaVub + VegVer + VigViy = 0 (59)
Assuming that each term is a vector in the complex plane (known as the p = 7 plane), we can draw
a triangle (see Fig. 3 a). We measure independently the sides and the angles of this triangle to test, in
particular, whether the triangle closes or not. The latest result is shown in Fig. 3 b and c. Let us first
look at the measurements of two sides, |V,;| (left side) and AMy/AM; (right side). The overlap region
of theses two measurements determine roughly the position of the apex of the triangle. One can see that
the triangle is not flat from these constraints. The one of the three angles, 5(= ¢;) is measured very
precisely at the B factories through the observation of the B oscillation. And this angle is measured
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as (21.7 4+ 0.64)°, which is indeed rather large. The right side of the triangle drawn by using this
value of 3(= ¢1), the allowed bound passes through the allowed range from the |V,;;| and AMy/AM;
measurements. Moreover, the overlapping region from these three measurements has also an overlap
with the allowed range from the K oscillation measurement, €.

The apex of the triangle determined from various measurements is constrained to be in a small
region, indicating that these phenomena can be explained by the four free parameters of the SM which
are in the CKM matrix. In particular, the success of the KM mechanism is manifested by the CP violation
in the K and the B systems being explained by the single complex phase in the CKM matrix.

However, the Fig. 3 b and c apparently show that the whole program of verifying the unitarity of
the CKM matrix has not been finished yet. The remaining two angles, a(= ¢2) and (= ¢3), have not
been measured as precisely as (= ¢1). Indeed, experimentally, the LHCb experiment has an ability to
determine (= ¢3) through e.g. B — D™ K modes at a higher precision. It will be interesting to see if
the right side drawn by using a more precise (= ¢3) measurement in the future will still pass through the
apex regions allowed by the other measurements. We should like to draw the attention to a subtle tension
appearing in the Fig. 3 b and c: the overlap region among |V, AMy/AM; and 3(= ¢1). For now,
these three bounds have an overlapping region as discussed above. However, the latest determination of
|Viup| from the measurement of the branching ratio of B — 7v turned out to be slightly higher than the
ones determined from the semi-leptonic b — wulv decays. If this tendency remains and the |V,;| value
shifts towards a larger value, then, the overlap region with 3(= ¢1) could be lost. The super B factory,
which are now approved project for B physics, has an ability to measure the B — 7v branching ratio
at a much higher precision. Thus, it will not be too long before the hint of this tension will be revealed.
Finally, we should also mentioned that the errors indicated in the Fig. 3 b and ¢ contain not only the
experimental ones but also the theoretical ones, namely coming from the hadronic uncertainties. And in
particular for |V,,3| and AM /A Mg, the theoretical uncertainties are the dominant sources of the error.
Thus, in order to achieve a high prevision in determining these parameters, a reduction of the theoretical
uncertainty is the most essential. Progresses in various theoretical methods based on QCD, in particular,
Lattice QCD, are key for this goal.

5 CP violation in the B, system: search for physics beyond the SM
5.1 The B; oscillation

We can derive the B oscillation formulae in the same way as B, system. Experimentally, the following
quantities are measured:

AM, = My — My = —2|Myy|, ALy =T — Ty = 2|T'19| cos (s (60)

where the phases are defined as
¢s = arg[Mia], (s = arg[l'12] — arg[M2] (62)

A M, is measured by Tevatron rather precisely, AM, = (17.77 & 0.19 & 0.07) ps~'. Recently, many
progresses have been made for determining the CP violating phase ¢s. In SM, this phase is related to
bs = Bs = —arg[Vip+Vis/Vep+Ves]. The SM phase is known to be very small 5; ~ 2°, while the
LHCb experiment has an ability to reach to this level measuring the B, oscillation with the b — ccs
decay channels such as B — J/¢¢ or B — J/1 fy. It should be noted that different from the By
system, AT's/AM; is non-negligible. Thus, the precise determination of ¢ requires the information of
AT,. Also note that in the case of the J/1¢ final state, the angular analysis is required to decompose
different polarization state which have different CP. We also have another observable, the B, oscillation
measurement with the lepton final state, namely the di-lepton charge asymmetry Ag;, which determines

la/pl-
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Fig. 4: The current experimental bounds on the By oscillation parameters.
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Fig. 5: Illustration of remaining room for new physics after the B, oscillation phase measurements by LHC (see
Eq. 64).

The constraints on ¢5 and AI'y from the CDF and the DO collaboration averaged by HFAG are
presented in Fig. 4. On the left figure, the constraint from the Bj oscillation measurement using the
Bs — J/v¢ and Bs — J/vfy final states (contours) and the constraint from the di-lepton charge
asymmetry measurement (curved bound) are separately plotted while on the right figure, the combined
constraints from these two is presented. It is important to notice that AL'; is a function of the phase (; as
shown in Eq. 61 where ( is related to ¢ as in Eq. 62. In particular, as the I'y5 is the imaginary part of
B, — B, box diagram, which comes from the up and the charm quark contributions, it is real, unless a
new physics contributed to the imaginary part with a non-zero CP violating complex phase. In the case of
arg '12 = 0, we have a physical region is such that the Al'g always decreases from the SM value when
|¢s| departs from its SM value 0°. The average of B; — J/1¢ and By — J/ fo for ¢ measurement
is obtained as:

¢s = 0.047519 (63)

which is smaller than the previous Tevatron result (2.3¢0 deviation was announced) and closer to the SM
value.

Next we attempt to discuss the implication of these experimental result from theoretical point of
view. In order to clarify how large new physics effects can be still allowed after having the constraints
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on the B; oscillation parameters, AM, and ¢, it is useful to introduce the following prameterization:
0(72/SM NP RY
<BS|HeH +Heﬁ |BS>

el 0l = 1 NPl (64)
(B 1Bs)

R

where NP indicates the new physics contribution. The Fig. 5 is an illustration of the allowed range
of real and imaginary part of R from the AM and ¢, measurements. The purple circle represents the
constraints from A M measurement. The bound includes the experimental error as well as the theoretical
one, namely coming from the hadronic parameter. Here, it is illustration purpose only, thus, we assumed
that the central experimental value of AM; is equal to the SM value. The blue bounds represent the
experimental bound coming from ¢s (1o and 30 errors). The dotted-circle shows the possible new
physics contribution to be added to the SM value R ~ 1. What we can see this result is first, even if
the experimental value for A My is close to the SM value, the CP violating phase is allowed to be very
different from the SM value (~ 0). Now that the LHCb results turned out to be close to the SM point,
we can also see that 20 % of new physics contribution can be easily accommodated even taking into
account only one sigma error. As mentioned earlier, the LHCb has an ability to measure ¢, as small as
the SM value (~ —2°). Thus, there is still a plenty of hope that a new physics effect may appear in these
measurements in the future.

6 Motivation to go beyond the SM

The Standard Model (SM) is a very concise model which explains a large number observables with a very
few parameters. In particular, the agreement of the electroweak precision data with the SM predictions is
quite stunning, which shows the correctness of the unified electroweak interaction with the SU (2) x U (1)
gauge symmetry, including its quantum corrections. The crucial prediction of the SM is the existence
of the Higgs boson, which is at the origin of the mass of all particles in the SM. LHC has already seen
some hint and the best-fitted mass around 126 GeV is also in quite good agreement of the prediction
obtained from the electroweak precision data. Furthermore, the agreement of the flavour physics is also
impressive. Basically, the free parameters, three rotation angles and one complex phase in the CKM
matrix can explain a large number of different experiments, including flavour changing charged/neutral
currents as well as CP violating observables.

Some “hints of physics beyond SM" have been reported from time to time, though so far, none of
them is significant enough to declare a discovery of a phenomenon beyond the SM. Then, why do we
believe there is something beyond?! Indeed, the SM has a few problems. Let us list a few of them here.

— Higgs naturalness problem
We will see this problem more in details later on but basically this problem is related to the question
of why the Higgs boson mass scale is so much lower than the Planck mass scale. The quantum
corrections to the Higgs mass depend on a cut-off of the theory. If there is no new physics scale
below the Planck scale, then the quantum correction become enormous unless there is an incredible
fine-tuning cancellation with the bare mass. But that would be quite unnatural.

— The origin of the fermion mass hierarchy
In the SM there are 19 free parameters: three gauge coupling, one strong CP-violating phase, nine
fermion masses, four parameters in the CKM matrix, and two parameters in the Higgs potential.
We realize that the Yukawa interaction leads to a large number of these parameters (13 out of
19). Some people find this fact quite unsatisfactory. In particular, these values look quite random
although with some hierarchy (e.g. top quark and up or down quark have mass scale difference
of order 10°). A symmetry in the Yukawa interaction has been searched for a while, but there has
been so far no obvious solution found.

— The Strong CP problem
Another problem concerns the one of the 19 parameters mentioned above, the strong CP-violating
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phase. This phase is experimentally found to be extremely small from bounds on the neutron
Electric Dipole Moment (nEDM) while theoretically there is no reason why this should be so. In
nature, the observed CP violation effects are all in the flavour non-diagonal sector (such as K — K
or B — B oscillation) while CP violation effects in the flavour diagonal sector (such as the EDM)
seems to be extremely small, if not zero. The reason for this has been searched for in relation to
the conjectured flavour symmetry mentioned above.

— The baryon asymmetry of the universe
It should also be mentioned that it is known that the CP violation is related to another problem, the
baryon asymmetry of the universe, the unbalance between matter and anti-matter that occurred in
the early universe.

— Quantum theory of gravity
Although it is obvious that there is a fourth interaction, the gravitational force, the SM does not
incorporate this force. In fact, the quantization of gravity itself is a problem which has no solution
yet.

These problems are among the sources of the motivation to go beyond the SM. Theoretically,
various types of models are proposed in order to solve one or more of the problems mentioned above.
Experimentally also, tremendous efforts are payed to search for a signal beyond the SM.

7 Flavour problems in model building beyond the SM

One can extend the SM by introducing new fields and new interactions. The Lagrangian for these new
contributions should follow certain rules (the most fundamental one, e.g. is Lorentz invariance). When
adding the new terms, the most important task is to verify that these new terms do not disturb the fantastic
agreement of various experimental observations with the SM predictions. If the new physics enters at
much higher energy than the SM, then this condition could be naturally satisfied: if the currently observed
phenomena are not sensitive to such high scale, the SM is valid as an effective theory.

However, this often means that the new physics scale is extremely high (much beyond the TeV
scale which can be reached by the current accelerators) or the couplings between new physics particles
and the SM particles are very weak. To set a new physics scale high can be inconvenient for the new
physics model building. In particular, for those models which are constructed on the motivation for
Higgs naturalness problem, having another large scale much higher than the electroweak scale does not
sound very preferable. Therefore, in most of the new physics models, the latter solution, to assume
the flavour coupling to be very small, is applied, although it is rather artificial (comparing to the SM
where such adjustment was not needed, e.g. to suppress FCNC or to explain the source of CP violation.
For example, let us consider that the K7 — K¢ mass difference comes from the effective four-Fermi
interaction :

2 J— J—
BT, Dy (65)

If we assume the coupling to be of order 1, we find the new physics scale to be 103(10*) TeV (the number
in parenthesis corresponds to the case when the so-called chiral-enhancement occurs) while if we assume
the coupling is SM-like g ~ V,};V; then, the scale can be down to a few (few hundred) TeV. However,
to make a very strong assumption for flavour coupling is not appropriate when we are looking for a new
physics signal.

In the following, we see in some details, how the extra flavour violation and CP violation occur in
the concrete models and which are the solutions. In general, the new physics models which encounter a
serious problem from flavour physics induce tree level flavour changing neutral current (FCNC) or new
sources of CP violation.
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7.1 Two Higgs Doublet Models

The SM consists of a single Higgs doublet which breaks the electroweak symmetry sector of the SM
and gives to the particles their masses from the Yukawa interactions. On the other hand, this feature is
retained also if there is more than one Higgs doublet. However, once more than one Higgs is introduced,
there are extra sources of CP violation (spontaneous CP violation) and also the extra neutral Higgs can
induce Flavour Changing Neutral Current (FCNC). In the following, we briefly review how these extra
terms appear and the common solution to suppress them by imposing a discrete symmetry based on the
so-called Natural Flavour Conservation.

The Two Higgs Doublet Model (2HDM) is the simplest extension of the standard SU(2) x U(1)
model introducing one more Higgs doublet:

2 ) < 63 >
= , = 66
The most general Higg potential for this model can be written as:
V(grd2) = —uilor — piohés — (udadldn + huc) (67)

+)\1(¢I¢1)2 + )\2(¢£¢2)2 + )\3(¢I¢1¢£¢2) + )\4(¢J{¢2)(¢;¢1)
% [A5(¢1¢2)2 + h-C-} + [(/\6¢];¢1 + Ardha) (0l o) + h.c.}

where the quadratic couplings p; have a mass dimension two. After imposing the Hermiticity of the
potential, we find that 1112, A5 6.7 can be complex. After the spontaneous symmetry breaking, the Higgs
fields obtain the non-zero vacuum expectation values which are invariant under U (1) gauge symmetry:

o= ) to0=( ) (68)

The two VEV’s, vy 2 can have each associated phases 012 while since the potential in Eq. 67 depends
only on one combination, we can rotate the basis giving one single phase & = d9 — §;. Non-zero «
induces an extra source of CP violation on top of the complex phase in the CKM matrix. Being vy o the
values where the potential has an stable minimum, the expectation value of the potential
Vo = pivi + p3vs + 2uiavivs cos(ds + ) (69)

+ 107 + Xovs + (A3 + Ag)v?v3 + 2| A5|viv3 cos(d5 + 20)

+2|\g|vFvg cos(86 + @) + 2| A7|v1vs cos(d7 + a)
should be stable with respect to a variation of «, i.e. 9V /0« = 0. Note that ¢; are the complex phases of

;. This relation can be used to analyze the condition to have non-zero a.. For example, in the case when
all the couplings are real, i.e. §; = 0, this relation leads to

A6v? + Apv2
CoS O — — A6UT + ATV (70)
4)\51)1 ()
Thus, CP can be broken spontaneously without an explicit CP violating phase in the Higgs coupling.

Now, we see the Yukawa coupling of the two Higgs doublet model:
_ U’L T A Ul / d h/
Ly = Z D; (Fij¢1 + Fij¢2)UjR + D; (Gij¢2 + Gij¢1) iR + h.c. an
ij L L
~ Ui
where ¢; = 1T gbZTT = < i _ ) with 79 being the Pauli matrix. After the neutral Higgs acquiring vevs,

—;

we find

Ui w Ui
Ly = Z ( D, )LmijujR + ( D, )ngjde + h.c. (72)

ij
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where B B
miy = Fij(1) + Fjj(da), mi; = Gij¢) + Gij (1) (73)

Now as have done in the SM, we diagonalize the matrix m:fj’d by the inserting unitary matrices K LU’g

(we need to use different matrices from left and right multiplication unless mfj’d are hermitian). But

here, we see a difference; when we look at the mass basis of Eq. 71 by inserting these matrices K,

Fi(]{) and G l(;) are not necessarily diagonalized simultaneously, and this leads to flavour changing neutral
Higgs exchanges. This can induce large FCNC contributions, which could contradict the experimental
observations.

One of the most common ways to avoid this problem is to impose the following discrete symmetry:
o1 = —¢1, P2 = ¢2, dr — —dr, ur > ur (74)

which prevents ¢; from coupling to ur and ¢ to dr. As a result, the FCNC can be avoided. This model
is often called Type II two Higgs doublet model. As the Minimal Supersymmetric Model (MSSM) or the
Peccei-Quinn models give the same phenomenological consequences, this models is the most worked
type among the two Higgs doublet models. We should also note that imposing the discrete symmetry
Eq. 74 to the Higgs potential, the terms proportional to Ag 7 and ji12 are forbidden. Then, from Eq. 70,
we find o = £ /2. This solution is equivalent to change the definition ¢3 — i¢o, thus ¢; and ¢, have
opposite CP. Nevertheless, it is found that this solution can not lead to an observable CP violation.

Having suppressed the phenomenologically unacceptable CP violation and FCNCs by the discrete
symmetry, the main effects in flavour physics are due to the charged Higgs contributions. Even though
the LHC searches for the charged Higgs directly, the constraints on the property of this new particle,
its mass and its couplings, come mainly indirectly from B decays. The branching ratio measurement
of B — X7y constrains the mass of charged Higgs to be higher than 295 GeV. Further constraint is
expected to be obtained from the branching ratio measurement of B — 7v (see Fig. 6).

7.2 The (extended) technicolor model

The technicolor model is one of the earliest examples of the dynamical breaking of the electroweak
symmetry. The model was constructed in a close relation to QCD. In QCD, the SU (2) chiral symmetry
is broken spontaneously at the scale fr ~ 93 MeV, which reflects the fact that at the scale Aqcp the QCD
interaction becomes strong. Suppose, then, that there are fermions belonging to a complex representation
of a new gauge group, technicolor, SU(Ntc), whose coupling arpc becomes strong at Apc around
electroweak scale. Then, the relation: My, = My cosby = % gF;: holds, where F; ~ Apc just like
in QCD. This model can nicely solve the naturalness problem since the all the produced technihadrons
have masses around Arc and they do not receive a large mass renormalization. However, the model is
not complete unless it can provide masses to the SM fermions. For this purpose, an extension of the
gauge group was proposed (Extended Technicolor Model (ETM)) that embeds flavour and technicolor
into a larger gauge group. The flavour gauge symmetries are broken at a higher scale than the technicolor
breaking, Agprc ~ Mgrc/grrc where Mprc is the typical flavour gauge boson mass. Then, the generic
fermion masses are now given by:

2
mq(MgTc) ~ my(MgTc) ~ 2]\’}%&<TLTR>ETC (75)
ETC
where T’ is the technifermion and (TLTR>ETC is the vacuum expectation value. However, an acquisition
of the SM fermion mass by coupling to the technifermion can induce a serious flavour problem: the
transition ¢ — T — ¢’ or ¢ — T — T" — ¢’ produce FCNC. Then, for example, the K mass difference
limit and the € x measurement leads to the mass limit:

Mgrc
Im(d4s)9ETC

Mgrc

BTG <03 Tev,
Re(d45)gETC ™

< 10* TeV, (76)
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Fig. 6: The charged Higgs contribution to Br(B — 7v) compared to the present experimental value (normalized
to the SM prediction, z-axis) as a function of charged Higgs mass (y-axis). The vertical regions are excluded by
the current world average of experimental value, Br(B — TV)exp = (1.15 4+ 0.23) x 1075, at 95% C.L., while
the 1o, 20, 30 errors on the same experimental value are denoted by the grey dotted, dashed, and solid lines,
respectively. The horizontal region is excluded by the Br(B — X v) measurement. The grey and the black lines
correspond to the two possible solutions, with labels denoting the value of tan 5. The second solution can lead to
a stronger constraint than the one from B — X~y especially for large values of tan f3.

respectively. This value together with 75, we find Ap¢ to be 10-1000 times smaller than the electroweak
scale (depending on the flavour coupling d45). Several solutions to this problem have been proposed.
For example, the so-called "walking technicolor model" induces a large anomalous dimension which
enhances the value of fermion masses by keeping the ETC scales relatively low. This can help to reduce
the FCNC for the first two generations while the top quark remains problematic, for instance in FCNC
processes involving top-quark loops. A possible solution is to generate the small fermion masses by
ETC, whereas the top-quark mass is dynamically generated via top condensation (Top-color assisted
Technicolor model).

7.3 Supersymmetry

The supersymmetric (SUSY) extensions of the SM are one of the most popular NP models. SUSY relates
fermions and bosons. For example, the gauge bosons have their fermion superpartners and fermions have
their scalar superpartners. SUSY at the TeV scale is motivated by the fact that it solves the SM hierarchy
problem. The quantum corrections to the Higgs mass are quadratically divergent and would drive the
Higgs mass to Planck scale ~ 10' GeV, unless the contributions are cancelled. In SUSY models they
are cancelled by the virtual corrections from the superpartners. The minimal SUSY extension of the
SM is when all the SM fields obtain superpartners but there are no other additional fields. This is the
Minimal Supersymmetric Standard Model (MSSM). SUSY cannot be an exact symmetry since in that
case superpartners would have the same masses as the SM particles, in clear conflict with observations.
If supersymmetry is the symmetry of nature, the masses of the SUSY particles should be the same
as their partners’. However, no candidate for SUSY particle has been detected by experiments so far.
This indicates that a more realistic model should contain SUSY breaking terms. Different mechanisms
of SUSY breaking have very different consequences for flavor observables. In complete generality the
MSSM has more than one hundred parameters, most of them coming from the soft SUSY breaking terms
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tanf}

M, [GeV/c?]

Fig. 7: The Feynman diagram for the B, 4 — p* ™ in SM (top right) and in SUSY (top left). The constraint on
the SUSY parameter obtained by using the latest LHCb result is also shown (bottom).

— the masses and mixings of the superpartners. If superpartners are at the TeV scale the most general
form with O(1) flavor breaking coefficients is excluded due to flavor constraints. This has been called
the SUSY flavor problem (or in general the NP flavor problem).

A popular solution to the SUSY flavor problem is to assume that the SUSY breaking mechanism
and the induced interactions are flavour "universal”". The flavour universality is often imposed at a very
high scale corresponding to the SUSY breaking mechanism. It could be at, for instance, the Planck scale
(~ 10" GeV), the GUT scale (~ 10'6 GeV) or some intermediate scale such as the gauge mediation
scale (~ 10% GeV). The flavor breaking can then be transferred only from the SM Yukawa couplings
to the other interactions through renormalization group running from the higher scale to the weak scale.
As a result, the flavor breaking comes entirely from the SM Yukawa couplings (thus, an example of
a concrete Minimal Flavour Violation (MFV) NP scenario). Since the soft SUSY breaking terms are
flavor-blind, the squark masses are degenerate at the high energy scale. The squark mass splitting occurs
only due to quark Yukawa couplings, where only top Yukawa and potentially bottom Yukawa couplings
are large. Thus the first two generation squarks remain degenerate to very good approximation, while
the third generation squarks are split.

The MFV can be extended by taking into account the large tan [ effect. That large tan 3 scenario
leads to a large new physics effects to some B physics observable and can be well tested experimentally.
Most recently, the LHCb experiment has made a great progress in this scenario: observation of the
By — pwtpu~ process (3.50 significance). The B, 4 — ptp~ comes from the diagram e.g. like in Fig. 7
(top right). It is extremely rare process with branching ratios:

Br(Bs — utu™) = (3.5440.30) x 107° (77)
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Br(By — ptp”) = (0.107+0.01) x 107° (78)

On the other hand, in the presence of SUSY, there is another contribution like in Fig. 7 (top left), which
can be largely enhanced by a large tan 5 factor:

2,02, 6
mymy, tan® 3

Br(Bsa — ' )susy o Z (79)
mAO
Fig. 7 (bottom) illustrate the constraint obtained by using the latest LHCb result:
Br(Bs — pt ™) = (3.2715) x 107° (80)

Although the constraint depend on different models, this result excluded most of the scenario with
tan 8 2 50.

8 Strategies for New Physics searches in flavour physics

The developments of the particle physics today bore the lack of phenomena which cannot be explained in
the SM. In flavour physics, many small deviations from SM (say, at the 2 — 3o level) have been reported
in the past. However, definitive conclusions for those observation cannot be given so far. Therefore,
the strategy in flavour physics is clear: to search for a significant enough deviation from the SM. We
tackle this task from two directions, first, to improve the precision of the theoretical prediction, second,
to improve the experimental precision. We should emphasize that the latter efforts include not only
experimental development, but also to propose theoretically new observables which are sensitive to new
physics contributions.

Let us see the example of the CKM unitary triangle Fig. 3. The measurement of the angle, e.g.
B, has been improved dramatically the past 10 years since the B factories started. However, the sides
measurements (V;, Ve, Vi etc) have not improved as much since it depends on theoretical inputs and
assumptions, namely from the strong interaction. In the future, there are some experimental propositions
to improve the experimental measurements. The angle measurements, such as 3, ~y, will be improved
further (y could be determined as precise as 3), can directly be used to improve our knowledge of new
physics. The usefulness of the sides measurements relies strongly on progresses in theory, in particular,
the effective theory of QCD, lattice QCD or more phenomenological models.

In Tables 1 to 4 we list the new physics sensitive observable. It is again amazing that all these
experimental measurements agree within the theoretical and experimental errors so far. On the other
hand, the LHCDb experiment as well as Belle II experiment will provide us a large samples of new data in
coming years.
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Table 1: Examples of new physics sensitive observables in B physics. The experimental values are extracted from
HFAG (mainly preparation for PDG 2013). The prospects are extracted from [5] for Belle II and [6] for LHCb.
The number for Belle II corresponds to the sensitivity at 50 ab—! which can be reached by the year 2023 if the
commissioning starts in the year 2015 (physics run in 2016) as scheduled. For LHCb the number corresponds to
the sensitivity reach at the year 2018 and the number in parethethesis is for LHCb up-grade.

Observable Experimental value Prospect Comments
The  current  measurement
agrees with the SM prediction
obtained from the ¢;(3) value
extracted using the unitarity
+0.012 (Belle II) relation. A higher precision
SB_>J/¢KS = 0.665 - 0.024 +0.02(0.007) measurement on ¢1 () together
sin 2¢1(20) ) ' LHCb ) with the measurements for
( ) the other variables in unitarity
relation could reveal a new
physics contribution. New
physics example:  bd box

diagram and/or tree FCNC
In the year 2002, a 2-3 o

deviation from the Sp_, j/y K
was announced though it is di-
minished by now. The devi-
ation from Sp_,j/yKs 1S an
+0.029 (Belle 1I) indication of the CP viola-
+0.05(0.02) (LHCb) | tion in the decay process of
B — ¢Kg, which comes al-
most purely from the penguin
type diagram. New physics ex-
ample: b — s penguin loop dia-

gram
In the year 2002, a 2-3 ¢ devi-

ation from the Sp_, 7/, Was
announced though it is dimin-
ished by now. The deviation
from Sp_, j/4Ks is an indica-
tion of the CP violation in the
decay process of B — 1'Kg.
This decay also comes mainly
from the penguin type diagram
though this can be only proved
by knowing the property of 7’
(quark content etc). It should
also noticed that the branching
ratio of this process turned out
to be a few times larger than
the similar charmless hadronic
B decays and this could also
been regarded as a hint of new
physics. New physics example:
b — s penguin loop diagram.
In particular, contributions that
can induce b — sgg (followed
by anomaly diagram gg — 7’)
are interesting candidates.

SBs¢Ks 0.74%57;

SBonKs 0.59 £0.07 £0.020 (Belle II)
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Table 2: Examples of new physics sensitive observables in B physics II (see caption of Table 1).

Observable Experimental value Prospect Comments

The phase of B, mixing is
at the order of A* and very
small in SM, ~ —0.02. Be-
fore the LHCD started, the
Tevatron data was showing
a 2 — 30 deviation from
the SM, which is not di-
minished. Since the width
difference is not negligible
in the B, system (unlike
the By system), the width
Shosijpe = sin205 | &y = 0.041019 | +0.025(0.008) (LHCb) f;ffsze‘gn?‘:;ii?gu‘j;
(width is less sensitive to
the new physics though it is
not impossible). The LHCb
has an ability to reach to
the precision as small as
this SM value thus, there is
still enough room for new
physics. New physics ex-
ample: CP violation in the
bsbs box diagram and/or

tree FCNC
The deviation from

SB,—a/pe(so) 18 an in-
dication of the CP violation
in the decay process of
Bs; — ¢¢, which comes
almost purely from the
penguin type diagram. The
analysis requires a CP state
decomposition by studying
the angular dependence of
SBy—é — +0.17(0.03) (LHCDb) | the decay. The each com-
ponent can include different
new physics contributions
and it is complementary to
the SB—>¢KS or SB—M]’KS
measurements. In addition,
the angular analysis also
allows us to test the T-odd
asymmetry. New physics
example: b — s penguin
loop diagram
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Table 3: Examples of new physics sensitive observables in B physics III (see caption of Table 1).

Observable Experimental value Prospect Comments

This is one of the golden
channel for Belle II experi-
ment where the experimen-
tal error is expected to be
reduced significantly. Non-
zero CP violation is the sign
of the contamination of the
photon polarization which is
opposite to the one predicted
in SM. The theoretical er-
ror is found to be small
(Iess than a few %) though
some authors warm a possi-
ble large uncertainties to this
value. New physics exam-
ple: right handed current in
b — sy penguin loop dia-
gram

SBs K gm0y —0.15£0.20 +0.02 (Belle II)

Non-zero CP violation is
the sign of the contami-
nation of the photon po-
larization which is oppo-
site to the one predicted
in SM. The LHCb with its
SBs—sdry — +0.09(0.02) (LHCb) | high luminosity could al-
low us to study this observ-
able and it is complemen-
tary to Sp_,ggx0, above.
New physics example: right
handed current in b — sy
penguin loop diagram

The angular distribution
carry various information
~ 0.2 (LHCb) in of/ new physics (C'(7,g’10 and
A2 AIm C7.9.10)- .In partlculg‘r, the
T low ¢? region is sensitive to
the photon polarization of
b— s7.

B — K*IT1I~ (low ¢?) —

We can obtain the informa-
tion of the photon polariza-

~ 6 % (LHCb) tion of b — s7 through the
~ 18 % (Belle 1I) angular distribution of K
in polarization pa- | decay. Detailed resonance
rameter A\ study can improve the sensi-
tivity to the photon polariza-
tion

B — K1y — (Knm)y —
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Table 4: Examples of new physics sensitive observables in B physics IV (see caption of Table 1).

Observable

Experimental value

Prospect

Comments

AMd,s

(0.510 +
0.004) g, ps~*
(17.69 + 0.08)5,

ps~!

The result is consistent to the
SM prediction though it depends
strongly on the |V,4s|. The er-
ror is dominated by the theory
mainly coming from the fp,
and B parameters. New physics
example: bdbd, bsbs box dia-
gram and/or tree FCNC

Br(B = 1v)

(1.1540.23) x 106

+ 6% (Belle IT)

Up to the year 2010, the world
average value was 2-3 ¢ higher
than the SM prediction. The SM
value depends on |V, and fp.
New physics example: charged
Higgs.

(0.440 + 0.057 + + 2.5% for Br of In the year 2012, Babar an-

R — BoD 1y 0.042)p Drv nounced 3o deviation from

~ B=DWWw (0.332 + 0.024 + + 9.0% for Br of the SM. New physics example:
0.018) p~ D*rv (Belle 1) charged Higgs.

Currently SM  prediction (at

NNLO) is consistent to the ex-

perimental value. The error is

Br(B — Xs) (3.1540.23) x 1074 £ 6 % (Belle II) becoming dominated by the the-

oretical ones. The result also de-
pends on Vi,. New physics ex-
ample: b — sy penguin loop

Br(Bg,s — putu™)

(< 1.0 x 1079) 5,
((3:277:3)x1079) ,

(£0.5(0.

(LHCb)

15) x 1079) 5,

The result is so far consistent
to the SM prediction though
it depends on the |Vig.sl.
The Minimal Flavour Viola-
tion (MFV) hypothesis leads

. Br +,—
a relation g Peii— =
rBdH“JFu,
ByTes AM, B}
B Tn. AM; 30. Neverthe

less, a large enhancement in
By — ptu~ is possible in non-
MFV. New physics example:
large tan  scenarios

(697 1%)° (Babar)
(68719)° (Belle)
(71.1118:%)° (LHCb)

+1.5°

(Belle T1)

+4°(0.9°) (LHCb)

The angle ¢5(= ) is ex-
tracted from the decay modes,
DK,D*K, DK* etc. These are
tree level decays that it can be
less affected by the new physics
contributions.  Therefore, the
¢3(= ~) measurement can be
used together with the other
purely tree decays, to determine
the “SM” unitarity triangle to
test the new physics contribu-
tions to the other box/penguin
loop dominant modes. The pre-
cision which can be reached in
the future is quite impressive and
it will be one of the most im-
portant measurements in order to
fully understand the unitarity tri-
angle.
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Abstract

I give a theoretical overview of some basic properties of massive neutrinos in
these lectures. Particular attention is paid to the origin of neutrino masses, the
pattern of lepton flavor mixing, the feature of leptonic CP violation and the
electromagnetic properties of massive neutrinos. I highlight the TeV seesaw
mechanisms as a possible bridge between neutrino physics and collider physics
in the era characterized by the Large Hadron Collider.

1 Finite Neutrino Masses

It is well known that the mass of an elementary particle represents its inertial energy when it exists at
rest. Hence a massless particle has no way to exist at rest — instead, it must always move at the speed of
light. A massive fermion (either lepton or quark) must exist in both left-handed and right-handed states,
since the field operators responsible for the non-vanishing mass of a fermion have to be bilinear products
of the spinor fields which flip the fermion’s handedness or chirality.

The standard model (SM) of electroweak interactions contains three neutrinos (v,, v, v,) which
are purely left-handed and massless. In the SM the masslessness of the photon is guaranteed by the
electromagnetic U (1)Q gauge symmetry. Although the masslessness of three neutrinos corresponds
to the lepton number conservation !, the latter is an accidental symmetry rather than a fundamental
symmetry of the SM. Hence many physicists strongly believed that neutrinos should be massive even
long before some incontrovertible experimental evidence for massive neutrinos were accumulated. A
good reason for this belief is that neutrinos are more natural to be massive than to be massless in some
grand unified theories, such as the SO(10) theory, which try to unify electromagnetic, weak and strong

interactions as well as leptons and quarks.

If neutrinos are massive and their masses are non-degenerate, it will in general be impossible to
find a flavor basis in which the coincidence between flavor and mass eigenstates holds both for charged
leptons (e, y1,7) and for neutrinos (v,,v,,v,). In other words, the phenomenon of flavor mixing is
naturally expected to appear between three charged leptons and three massive neutrinos, just like the
phenomenon of flavor mixing between three up-type quarks (u, ¢, t) and three down-type quarks (d, s, b).
If there exist irremovable complex phases in the Yukawa interactions, CP violation will naturally appear

both in the quark sector and in the lepton sector.

1.1 Some preliminaries

To write out the mass term for three known neutrinos, let us make a minimal extension of the SM by
introducing three right-handed neutrinos. Then we totally have six neutrino fields %:

VeL, NIR
v,=Vuw | Ng=|DNog]| s (D
VL Nyg

't is actually the B—L symmetry that makes neutrinos exactly massless in the SM, where B = baryon number and L =
lepton number. The reason is simply that a neutrino and an antineutrino have different values of B— L. Thus the naive argument
for massless neutrinos is valid to all orders in perturbation and non-perturbation theories, if B—L is an exact symmetry.

The left- and right-handed components of a fermion field (x) are denoted as () = Py (z) and ¢y (2) = Prip(z),
respectively, where P;, = (1 —-y5)/2 and Py = (1+y5)/2 are the chiral projection operators. Note, however, that vy, = Py vy,
and Ny = Pr Ny are in general independent of each other.
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where only the left-handed fields take part in the electroweak interactions. The charge-conjugate coun-
terparts of 14, and Ny, are defined as

() =cr’, (Np) =CNy : @)
and accordingly,
()" =0)e, (V)" = (w)'C, 3)
where C denotes the charge-conjugation matrix and satisfies the conditions
CyiCcl=—y,, CyCl=n, Cl'=cCl=Cc"=-C. ©))

It is easy to check that P (Ng)¢ = (Ny)¢ and Py (v)¢ = (v)° hold; namely, (v )¢ = (v°)y and
(Ng)¢ = (IN¢)y, hold. Hence (v)¢ and (/N )¢ are right- and left-handed fields, respectively. One may
then use the neutrino fields v}, N and their charge-conjugate partners to write out the gauge-invariant
and Lorentz-invariant neutrino mass terms.

In the SM the weak charged-current interactions of three active neutrinos are given by

v

L. = i(e pT)L Y vy | W, +he.. 5)
V2 v
T/ L

Without loss of generality, we choose the basis in which the mass eigenstates of three charged leptons
are identified with their flavor eigenstates. If neutrinos have non-zero and non-degenerate masses, their
flavor and mass eigenstates are in general not identical in the chosen basis. This mismatch signifies
lepton flavor mixing.

1.2 Dirac neutrino masses

A Dirac neutrino is described by a four-component Dirac spinor v = v; + N, whose left-handed and
right-handed components are just v, and Ny. The Dirac neutrino mass term comes from the Yukawa
interactions

~Lpirac = 41,Y, HNg + h.c., (6)

where H = ioyH* with H being the SM Higgs doublet, and /; denotes the left-handed lepton doublet.
After spontaneous gauge symmetry breaking (i.e., SU(2);, x U(1)y — U(1)q), we obtain

— birac = KMDNR + h.C. y (7)
where M, =Y, (H) with (H) ~ 174 GeV being the vacuum expectation value of H. This mass matrix
can be diagonalized by a bi-unitary transformation: VTMDU = M, = Diag{m,, my, ms} with m,
being the neutrino masses (for ¢ = 1, 2, 3). After this diagonalization,

- birac = EMVNﬁ + h.c. ’ )

where vf, = VTyy and Nj; = UTNg. Then the four-component Dirac spinor

41
V= + N= | vy | )
V3

which automatically satisfies P, v’ = 1] and Py’ = Ny, describes the mass eigenstates of three Dirac
neutrinos. In other words,

~ *~Dirac

3
! — yﬁuyl — Z’m,l?z}/l . (10)
=1
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The kinetic term of Dirac neutrinos reads
3
Liinetic = 71,7, 0"vy, + iNgv, 0" Ng = iv'y, 0"/ = iZsz’yM(?“Vk , (11)
k=1

where VIV = VVT = 1 and UTU = UUT = 1 have been used.

Now we rewrite the weak charged-current interactions of three neutrinos in Eq. (5) in terms of
their mass eigenstates 1| = VTZ/L in the chosen basis where the flavor and mass eigenstates of three
charged leptons are identical:

V1
‘Ccc = i(e " T)L ’y‘uV Vg W; + h.c. . (12)
V2 v/

The 3 x 3 unitary matrix V', which actually links the neutrino mass eigenstates (v, V5, V/3) to the neutrino
flavor eigenstates (v,, Vys v, ), just measures the phenomenon of neutrino mixing.

A salient feature of massive Dirac neutrinos is lepton number conservation. To see why massive
Dirac neutrinos are lepton-number-conserving, we make the global phase transformations

l(z) = el(x), vi(z) = ePvi(z), Ni(z) = e®Ny(z), (13)

where [ denotes the column vector of e, u and 7 fields, and ® is an arbitrary spacetime-independent
phase. As the mass term L, ., the kinetic term £, .. and the charged-current interaction term £,
are all invariant under these transformations, the lepton number must be conserved for massive Dirac
neutrinos. It is evident that lepton flavors are violated, unless M, is diagonal or equivalently V' is the

identity matrix. In other words, lepton flavor mixing leads to lepton flavor violation, or vice versa.

For example, the decay mode 7~ — p~ +7,, preserves both the lepton number and lepton flavors.
In contrast, u™ — e + 7 preserves the lepton number but violates the lepton flavors. The observed
phenomena of neutrino oscillations verify the existence of neutrino flavor violation. Note that the 0v2(
decay (A, Z) — (A, Z+2)+2e violates the lepton number. This process cannot take place if neutrinos
are massive Dirac particles, but it may naturally happen if neutrinos are massive Majorana particles.

1.3 Majorana neutrino masses

The left-handed neutrino field v} and its charge-conjugate counterpart (v )¢ can in principle form a
neutrino mass term, as (v )¢ is actually right-handed. But this Majorana mass term is forbidden by
the SU(2);, x U(1)y gauge symmetry in the SM, which contains only one SU(2);, Higgs doublet and
preserves lepton number conservation. We shall show later that the introduction of an SU(2); Higgs
triplet into the SM can accommodate such a neutrino mass term with gauge invariance. Here we ignore
the details of the Higgs triplet models and focus on the Majorana neutrino mass term itself:
1__

- i\/Iajorana = §VL]\4L(VL)C +h.c.. (14)
Note that the mass matrix M must be symmetric. Because the mass term is a Lorentz scalar whose
transpose keeps unchanged, we have

My ()" = [T My (vy)] " = o€ ML = M ()¢ (15)
where a minus sign appears when interchanging two fermion field operators, and C* = —C has been
used. Hence ME = M, holds. This symmetric mass matrix can be diagonalized by the transformation
VIM, V* = M, = Diag{m;, my, my}, where V is a unitary matrix. After this, Eq. (14) becomes

ui]\?l,(l/i)c +he., (16)

/
_ﬁMajorana - )
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where f, = VTy; and ()¢ = CET. Then the Majorana field
V= + W)=, (17)

which certainly satisfies the Majorana condition (/)¢ = 1/, describes the mass eigenstates of three
Majorana neutrinos. In other words,

1—— 1 _
- i\/[ajorana = iylMuV/ = 9 Zmiyz‘yi : (18)
i=1
The kinetic term of Majorana neutrinos reads
— i i
[’kinetic = Z‘ViLfY,ua‘uVL = i]/if)/lua'uyﬁ = §V,fy,u,aul/ = 5 kavﬂaﬂyk ) (19)
k=1

where we have used a generic relationship (wL)%aﬂ(@uL)c = Q/TLyuaqu. This relationship can easily

be proved by taking account of O [(wL)C’yM(z/JL)C} = 0;i.e., we have

T

(D)0 (UL)° = =0 () () = — [0 ), ()°
_ T T I
= (co") Ao (e = B0, (20)

where CT'ngT = 7> which may be read off from Eq. (4), has been used.

It is worth pointing out that the factor 1/2 in £{vlaj0rana allows us to get the Dirac equation of

massive Majorana neutrinos analogous to that of massive Dirac neutrinos. To see this point more clearly,
let us consider the Lagrangian of free Majorana neutrinos (i.e., their kinetic and mass terms):

1 _ 1—
L, =iv;y, 0"y, — |:21/LML(I/L)C + h.c.] = vy, 0", — [2y£MV(V£)C + h.c.
1/— — 1 — o~
=5 (iy"y“@“u' - VIMVI/,) =3 <Z'3'ul//’}/#l/, + Z/’Ml,l/) , 21)

where 0 (7%1/ ) = 0 has been used. Then we substitute £,, into the Euler-Lagrange equation

oL, o
" v _ v
U ICTI R 22

and obtain the Dirac equation
i, 0" — M,y =0. (23)

More explicitly, iv,0"v;, — my v, = 0 holds (for k = 1,2,3). That is why the factor 1/2 in L41,i0rana
makes sense.

The weak charged-current interactions of three neutrinos in Eq. (5) can now be rewritten in terms
of their mass eigenstates 1| = VTVL. In the chosen basis where the flavor and mass eigenstates of three
charged leptons are identical, the expression of L. for Majorana neutrinos is the same as that given in
Eq. (12) for Dirac neutrinos. The unitary matrix V is just the 3 x 3 Majorana neutrino mixing matrix,
which contains two more irremovable CP-violating phases than the 3 x 3 Dirac neutrino mixing matrix
(see section 4 for detailed discussions).
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The most salient feature of massive Majorana neutrinos is lepton number violation. Let us make
the global phase transformations

I(z) = ®l(x), vi(x) = ePr(a), (24)

where [ stands for the column vector of e, i1 and 7 fields, and ® is an arbitrary spacetime-independent
phase. One can immediately see that the kinetic term £,; ... and the charged-current interaction term
L. are invariant under these transformations, but the mass term L’i\/lajomna is not invariant because of

both v — e and (1])¢ — e7*®(1})°. The lepton number is therefore violated for massive
Majorana neutrinos. Similar to the case of Dirac neutrinos, the lepton flavor violation of Majorana
neutrinos is also described by V.

The 0v2( decay (A, Z) — (A, Z+2)+2e~ is a clean signature of the Majorana nature of massive
neutrinos. This lepton-number-violating process can occur when there exists neutrino-antineutrino mix-
ing induced by the Majorana mass term (i.e., the neutrino mass eigenstates are self-conjugate, 7, = v;).
The effective mass of the 0v23 decay is defined as

(M)ee = , (25)

2
E m; Ve
i

where m,; comes from the helicity suppression factor m, / E for the v; exchange between two beta decays
with E being the energy of the virtual v; neutrino. Current experimental data only yield an upper bound
(m).. < 0.23 eV (or < 0.85 eV as a more conservative bound) at the 20 level.

1.4 Hybrid neutrino mass terms

Similar to Eq. (14), the right-handed neutrino field Ny; and its charge-conjugate counterpart (N )¢ can
also form a Majorana mass term. Hence it is possible to write out the following hybrid neutrino mass
terms in terms of vy , Ny, (v,)¢ and (NR )€ fields:

_ 1 o1
—ﬁﬁybrid =V MpNg + §VLML(VL) + §(NR)CMRNR + h.c.
Ll o (M, My (1)°
_§[VL (Ng) <Mg MR> [ N, +h.c., (26)

where M; and My are symmetric mass matrices because the corresponding mass terms are of the Ma-
jorana type, and the relationship

(Np) M ()" = [(Ng)TeMber )" = oy Mp Ny @7)

has been used. The overall 6 x 6 mass matrix in Eq. (26) is also symmetric, and thus it can be diagonalized
by a 6 x 6 unitary matrix through the transformation

v R\'/M, M)\ (V R\" (M, o %)
S U) \ME Mg)\S U) o M)’
where we have defined ]\/4\,/ = Diag{m,, my, mg}, ]\/IN = Diag{M,, M,, M}, and the 3 x 3 matrices

V, R, S and U satisfy the unitarity conditions

VVi+RR = ssT+UuUt = 1,
VIV+SIS=RR+UU = 1,
VST + RUT=VIR+STU = 0. (29)
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After this diagonalization, Eq. (26) becomes
1 — M, 0 V)
b 1§ R[]

where 1], = Vi + ST(NR )¢ and N§ = RT ()¢ + UT Ny, together with (1] )¢ = CVTJT and (Ng)¢ =
CNil’DhT. Then the Majorana field

vy
Vo
) ()] _ | vs
V_[(Nﬁ)c]+[Nﬁ s GD
N,
Ny

satisfies the Majorana condition ()¢ = v/ and describes the mass eigenstates of six Majorana neutrinos.
In other words,

— 3
1— (M, O 1
—L}obrid = u'< voo_Z )M: 7§ (mivv; + MyN,N;) . (32)
ybrid Y 14V 4 Vg
2 0 My 2 &

Because of v, = V[ + R(Ng)¢ and Ny = S*(v1)¢+U* Ny, we immediately have (v )¢ = V* (1) +
R*Ny, and (N )¢ = Sy, + U(Ng)¢. Given the generic relations (¢;)%,0" (¢ )¢ = 1y 7,0";, and

(YR), 0" (YR)° = 1/17R'y#8“¢R for an arbitrary fermion field v, the kinetic term of Majorana neutrinos
under consideration turns out to be

- ~ — ~7 i—
Lignetic = 7,01y, + iNg 7y, 0" Ny = ivf v, 0" 11, + iNg, 0" Ng = gu’yuﬁ’*l/
3
(77, 0" v + Ny, 08Ny (33)
k=1

N | .

where the unitarity conditions given in Eq. (29) have been used.

The weak charged-current interactions of active neutrinos in Eq. (5) can now be rewritten in terms
of the mass eigenstates of six Majorana neutrinos via v;, = V|, + R(Ng)¢. In the chosen basis where
the flavor and mass eigenstates of three charged leptons are identical, we have

g Ny
Loo=Llepmir |V ]| +R|N| | W, +he.. (34)
V2 v N.
3/ 1, 3/ L

Note that V' and R are responsible for the charged-current interactions of three known neutrinos v; and
three new neutrinos N; (for i = 1, 2, 3), respectively. Their correlation is described by VVT+RRI =1,
and thus V' is not unitary unless v; and IV, are completely decoupled (i.e., R = 0).

As a consequence of lepton number violation, the 0v23 decay (A,Z2) — (A, Z + 2) + 2e~
can now take place via the exchanges of both v; and N; between two beta decays, whose coupling
matrix elements are V,, and R_, respectively. The relative contributions of v; and N, to this lepton-
number-violating process depend not only on m;, M;, V,, and I?_; but also on the relevant nuclear matrix
elements which cannot be reliably evaluated. For a realistic seesaw mechanism working at the TeV scale
(i.e., M, ~ O(1) TeV) or at a superhigh-energy scale, however, the contribution of v, to the 0v2/3 decay
is in most cases dominant.
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The hybrid neutrino mass terms in Eq. (26) provide us with the necessary ingredients of a dynamic
mechanism to interpret why three known neutrinos have non-zero but tiny masses. The key point is that
the mass scales of A, My, and My may have a strong hierarchy. First, M, ~ (H) ~ 174 GeV
is naturally characterized by the electroweak symmetry breaking scale. Second, M| < (H) satisfies
’t Hooft’s naturalness criterion because this Majorana mass term violates lepton number conservation.
Third, My > (H) is naturally expected since right-handed neutrinos are SU(2); gauge singlets and
thus their mass term is not subject to the electroweak symmetry breaking scale. The hierarchy My >
My, > M;, can therefore allow us to make reliable approximations in deriving the effective mass matrix
of three active neutrinos (v,, v, v,) from Eq. (28). The latter yields

RMy = My R* + MpU*
SM, = MEV* + My S* ; (35)

and

UMy = MRU* + MER*
VM, = M V* + MpS* . (36)

Given My > My > M;, R ~ S ~ O(Mp/Mp) naturally holds, implying that U and V' are almost
unitary up to the accuracy of O(Mp/MZ). Hence Eq. (36) leads to

UMyUT = My(UUNT + ME(R*UT) ~ My ,
VM VT = My (VVDT + My (VT ~ My, + Mp(S*VT) (37)

S*VT = M SM VT — M ME(VVHT ~ —M; ' M can be derived from Eq. (35). We substitute
this expression into Eq. (37) and then obtain

M, =VM,VT ~ My, — My Mz M7 . (38)

This result, known as the type-(I+II) seesaw relation, is just the effective mass matrix of three light
neutrinos. The small mass scale of M, is attributed to the small mass scale of M; and the large mass
scale of Mpy. There are two particularly interesting limits: (1) If My is absent from Eq. (26), one will
be left with the canonical or type-1 seesaw relation M, ~ —Mp Mg lMg ; (2) If only M; is present in
Eq. (26), one will get the type-1I seesaw relation M,, = M; . More detailed discussions about various
seesaw mechanisms and their phenomenological consequences will be presented in sections 6, 7 and 8.

2 Diagnosis of CP Violation

2.1 C,Pand T transformations

We begin with a brief summary of the transformation properties of quantum fields under the discrete
space-time symmetries of parity (P), charge conjugation (C) and time reversal (T). The parity trans-
formation changes the space coordinates  into —Z. The charge conjugation flips the signs of internal

charges of a particle, such as the electric charge and the lepton (baryon) number. The time reversal
reflects the time coordinate ¢ into —t.

A free Dirac spinor ¢ (¢, &) or ¢ (t, &) transforms under C, P and T as *
(. T) < OO (18),

b(t, ) < —yT(t, 7

3For simplicity, here we have omitted a phase factor associated with each transformation. Because one is always interested
in the spinor bilinears, the relevant phase factor usually plays no physical role.
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Table 1: Transformation properties of the scalar-, pseudoscalar-, vector-, pseudovector- and tensor-like spinor
bilinears under C, P and T. Here ¥ — —Z under P, CP and CPT, together with £ — —¢ under T and CPT, is hidden

and self-explaining for 1; and 1),.

£¢2 i@’}%% @,ﬂﬁg @7,[757% @py¢2
Yoy | ihyystr | =Vt | YoV str | Y0ty
Pty | —ithyY5ts | U1y | Y sty | 0t ey
Vrhy | =ity | 7y Vi 5ty | 0ty
CP | Yoty | =ity Y5ty | =071 | —Yo V58 | —p0" 1y
CPT | ¢ty | iWyysthy | —Uvutn | =0y ¥s%1 | 990,00

O(t,8) — P(—t, DT, (39)

where C = 4757, P = 75 and 7 = ~;75 in the Dirac-Pauli representation. These transformation
properties can simply be deduced from the requirement that the Dirac equation i, 014 (¢, ¥) = my(t, ¥)
be invariant under C, P or T operation. Note that all the classical numbers (or c-numbers), such as the
coupling constants and ~-matrix elements, must be complex-conjugated under T. Note also that the
charge-conjugation matrix C satisfies the conditions given in Eq. (4). It is very important to figure out
how the Dirac spinor bilinears transform under C, P and T, because both leptons and quarks are described
by spinor fields and they always appear in the bilinear forms in a Lorentz-invariant Lagrangian. Let us
consider the following scalar-, pseudoscalar-, vector-, pseudovector- and tensor-like spinor bilinears:

1711/)2, iq/)il%qbz, 1/1717#1/;2, 1/)717#751/12 and 1710#1,1/)2, where 0, = i[vﬂ, ~v,]/2 is defined. One may easily
verify that all these bilinears are Hermitian. Under C, P and T, for example,

Gty — —0TC . C0y = 6Ty, = = [Grn]” = =gty s

[ P N N
V1V — V1%V 0%e = V17 e

17,09 5P () Vi (Y173) Yo = 1Yy ; (40)
and thus
E7M¢2 g _%7M¢1 5
Prvute T3 gy, @1)

with ¥ — —& under P and ¢ — —t under T for ¢; and 1),. The transformation properties of five spinor
bilinears under C, P, T, CP and CPT are summarized in Table 1, where one should keep in mind that all
the c-numbers are complex-conjugated under T and CPT.

It is well known that CPT is a good symmetry in a local quantum field theory which is Lorentz-
invariant and possesses a Hermitian Lagrangian. The latter is necessary in order to have a unitary tran-
sition operator (i.e., the S-matrix). The CPT invariance of a theory implies that CP and T must be
simultaneously conserving or broken, as already examined in the quark sector of the SM via the K°-K°
mixing system. After a slight modification of the SM by introducing the Dirac or Majorana mass term
for three neutrinos, one may also look at possible sources of CP or T violation in the lepton sector.
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2.2 The source of CP violation

The SM of electroweak interactions is based on the SU(2); x U(1)y gauge symmetry and the Higgs
mechanism. The latter triggers the spontaneous symmetry breaking SU(2);, x U(1)y — U(1)q, such
that three gauge bosons, three charged leptons and six quarks can all acquire masses. But this mechanism
itself does not spontaneously break CP, and thus one may examine the source of CP violation in the SM
either before or after spontaneous symmetry breaking.

The Lagrangian of the SM L = L, + Ly + Ly + Ly, is composed of four parts: the kinetic term
of the gauge fields and their self-interactions (L), the kinetic term of the Higgs doublet and its potential
and interactions with the gauge fields (L), the kinetic term of the fermion fields and their interactions
with the gauge fields (L), and the Yukawa interactions of the fermion fields with the Higgs doublet

(ﬁy):
1 UV TR v
‘CG == —Z (I/I/v/J Wﬂl’ +B'u B#y) ;
Ly = (D*H)' (D,H) — i*HH — (HTH)2 :

Ly = QuilQy + [ ilbt;, + Uyid Uy + Dyid Dy + Eidd Er, |
Ly =—Q Y, HUy — Q Y,HDy — 0, Y,HE + h.c. (42)

whose notations are self-explanatory. To accommodate massive neutrinos, the simplest way is to slightly
modify the L, and Ly, parts (e.g., by introducing three right-handed neutrinos into the SM and allow-
ing for the Yukawa interactions between neutrinos and the Higgs doublet). CP violation is due to the
coexistence of L and Ly .

We first show that L, is always invariant under CP. The transformation properties of gauge fields
B, and Wfl under C and P are

(B Wi Wit Wi =55 [= By, =Wl W0 =W

(B, W, w2, Wi s [Br, whe, w2, W]

(B, W), w2, w3 S5 [—Br, —W, w2, W] (43)
with ¥ — —Z under P and CP for relevant fields. Then the gauge field tensors B,,, and Wlil, transform

under CP as follows:

CP

(B, ij, Wg,,, ij] = [-BM, W W ] (44)

Hence L is formally invariant under CP.

We proceed to show that £y, is also invariant under CP. The Higgs doublet /I contains two scalar
components ¢+ and ¢°; i.e.,

+
n=(%). m= @) 45)
Therefore,
H(t,7) <5 H*(t, —7) = <:§0> : (46)

It is very trivial to prove that the H'H and (HTH)? terms of Ly; are CP-invariant. To examine how the
(D*H )T(DMH ) term of £y transforms under CP, we explicitly write out

_ , 0,0t —iX+e? — iy et
D,H = (8, igr" W —ig'V B, ) H = ( WO, O O ) (47)

9,0° —iX, ¢ 4+, ¢
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with X = gW*/V2 = g(W! FiW?2)/2,Y* = £g'YB, + gW?/2,and k = 1,2,3. Note that
+ CP, + CP +
G D SLINED el (48)

together with 9, — 0", ¢ — ¢T and ¢° — ¢°" under CP. So it is easy to check that (D“H)T(D#H)
is also CP-invariant. Therefore, L is formally invariant under CP.

The next step is to examine the CP invariance of L. To be more specific, we divide L into the
quark sector and the lepton sector; i.e., Lp = L, + £;. We only analyze the CP property of £, in the
following, because that of £; can be analyzed in the same way. The explicit form of £, reads

3
£,=QribQy + Ui Ug + Dt/ D = > {2 [ PLW ke, + G P
j=1

NS

= _iq?v“PLWﬁqj — iquv“PLWiqﬂ

Qo

2@ - gy rwia)
B /

+i [P (aﬂ - i%Bﬂ> qj]
_7 /

+i |dA" P, (% - 1'963#) qg]
r /

+i (7" Pr <3u — ngBu> qj]

—7 /
+i | Py (QL + i%Bu) q;] } : (49)

\V)

where g; and ¢ (for j = 1,2, 3) run over (u, ¢, t) and (d, s, b), respectively. The transformation proper-
ties of gauge fields B, and WfL under C and P have been given in Eq. (43). With the help of Table 1, one
can see that the relevant spinor bilinears transform under C and P as follows:

D1y, (£ 75) ¥y = oy, (LF 75) 1
v (L 75) ty — + 7" (LF 5) ¥y
D (1 75) g 20—y (L 75) 9y (50)

with £ — —& under P and CP for v; and 1),. Furthermore,

Dy (1 95) 04y == Wy, (1F 75) 4y
U1y, (1% 95) 99, L Py (1 5) 9, s
D1y, (1 75) 99y Pt (1 £ ) 9,1, (51

with ¥ — —7 under P and CP for ¢; and v,. It is straightforward to check that £, in Eq. (49) is
formally invariant undel CP. Following the same procedure and using Eqgs. (49), (50) and (51), one can
easily show that £, = ¢ i[p¢; + ET#(?’ER is also CP-invariant. Thus we conclude that Ly, is invariant
under CP.

The last step is to examine whether L, is CP-conserving or not. Explicitly,
—Ly = QY HUy + Q. Y,HDy + {;Y,HEg + h.c.

3

= Z {(Yu)jk [@'&{%éﬁo* - ;;PRQkQS_]

jk=1
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Yk [@Pue;¢” — G Prajo]
(V)i [T Pt + ) Prdho” |

(V)i [Py + G PL;o]
(V)1 |75 Palid ™ + 1 Pady’|

+(Y) 5k _EPLVJ'QS_ + EPLZJ‘CZ’O*} } ; (52)

where g; and ¢; (for j = 1,2,3) run over (u,c,t) and (d, s, b), respectively; while v; and [; (for j =
2,3) run over (v,,v,,v,) and (e, u, 7), respectively. Because of ¢+ — ¢F, ¢" — ¢ and ¢ (1 +

5 )ty — 1y (1 F 75)1b; under CP, we immediately arrive at

£y Z {(V) i [G:PLe;0° — T PLdjo ]
j,k=1

+(Yo)jk [QJPRQW CJ?PRCIW_}

(
+(Yd)]k[ 1 PLajo” +ququ¢°]
|5

+(Ya)jk [T Pracd™ +ququ¢}

(V) [T Py~ + [P0 |
(

i
(D)) [7Prlid™ + L Prld’| | (53)

with & — —& for both scalar and spinor fields under consideration. Comparing between Egs. (52) and
(53), we see that Ly, will be formally invariant under CP if the conditions

(Yu)jk = (Yu);k ) (Yd)jk = (Yd);k: ) (Yl>jk = (Yl);’k (54

are satisfied. In other words, the Yukawa coupling matrices Y,,, ¥; and Y; must be real to guarantee the
CP invartiance of L.,. Given three massless neutrinos in the SM, it is always possible to make Y, real
by redefining the phases of charged-lepton fields. But it is in general impossible to make both Y, and Y
real for three families of quarks, and thus CP violation can only appear in the quark sector.

Given massive neutrinos beyond the SM, £y, must be modified. The simplest way is to introduce
three right-handed neutrinos and incorporate the Dirac neutrino mass term in Eq. (6) into Ly,. In this
case one should also add the kinetic term of three right-handed neutrinos into L. It is straightforward
to show that the conditions of CP invariance in the lepton sector turn out to be

Y=Y, Y=Y, (55)

exactly in parallel with the quark sector. If an effective Majorana mass term is introduced into L+, as
shown in Eq. (14), then the conditions of CP invariance in the lepton sector become

M, =M;, Y, =Y", (56)

where M is the effective Majorana neutrino mass matrix. One may diagonalize both Y,, (or M) and
Y, to make them real and positive, but such a treatment will transfer CP violation from the Yukawa
interactions to the weak charged-current interactions. Then lepton flavor mixing and CP violation are
described by the 3 x 3 unitary matrix V' given in Eq. (12), analogous to the 3 x 3 unitary matrix of quark
flavor mixing and CP violation. In other words, the source of CP violation is the irremovable complex
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phase(s) in the flavor mixing matrix of quarks or leptons. That is why we claim that CP violation stems
from the coexistence of L and Ly, within the SM and, in most cases, beyond the SM.

It is worth reiterating that the process of spontaneous gauge symmetry breaking in the SM does
not spontaneously violate CP. After the Higgs doublet H acquires its vacuum expectation value (i.e.,
¢t — 0and ¢ — v/+/2 with v being real), we obtain three massive gauge bosons let and Z,, as well
as one massless gauge boson A ,. According to their relations with W, and B,, it is easy to find out the
transformation properties of these physical fields under CP:

wiE w7, B g oa, B A (57)

i

with £ — —& under P and CP for each field. In contrast, the neutral Higgs boson h is a CP-even
particle. After spontaneous electroweak symmetry breaking, we are left with the quark mass matrices
M, = vY,/v/2 and My = vY,/+/2 or the lepton mass matrices My, = vY,/v/2 and M, = vY;//2 .

u
The conditions of CP invariance given above can therefore be replaced with the corresponding mass

matrices.

3 Electromagnetic Properties
3.1 Electromagnetic form factors

Although a neutrino does not possess any electric charge, it can have electromagnetic interactions via
quantum loops. One may summarize such interactions by means of the following effective interaction
term:

Lgy = 9L AY = J, (2) A% (2) (58)

where the form of the electromagnetic current J, “(x) is our present concern. Dirac and Majorana neutri-
nos couple to the photon in different ways, which are described by their respective electromagnetic form
factors.

For an arbitrary Dirac particle (e.g., a Dirac neutrino), let us write down the matrix element of
J,(z) between two one-particle states:

0
W), (@)10 () = e (W), (0 (p)) = e a(F )T, (p, p")u(p) (59)

with ¢ = p — p'. Because J,, () is a Lorentz vector, the electromagnetic vertex function T, (p, p") must
be a Lorentz vector too. The electromagnetic current conservation (or U (1)Q gauge symmetry) requires
o J,(r) = 0, leading to

(W(p)|0" T, ()| (p)) = (—ig") e " u(F )T, (pp)u(p) = 0. (60)

Thus

¢"u(@)T,(p, p)u(p) = 0 (61)
holds as one of the model-independent constraints on the form of I', (p,p’). In addition, the Hermiticity
of J #(:E) or its matrix element implies

e u(p ) (p.pu(p) = ¢ [T, (p, 0 u(@))'
= a(E) [T (0,00 w@) = e a ) [T 2| (@) | (62)
from which we immediately arrive at the second constraint on I, (p,p'):
L.(p,0') = %lL @ p) - (63)

Because of p> = p/> = m? with m being the fermion mass, we have (p + p/)2 = 4m? — ¢2. Hence
T u(p, p') depends only on the Lorentz-invariant quantity ¢2.
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A careful analysis of the Lorentz structure of u(p")T", (p, p")u(p), with the help of the Gordon-like
identities and the constraints given above, shows that I" u(p, p’) may in general consist of four independent
terms:

L,(p,0) = fo(@®), + (@i, d” + ful@®)o,,d s + fald®) (v, — aud) 75 » (64)

where f (4%, fu(@?), fz(q?) and f, (¢) are usually referred to as the charge, magnetic dipole, electric
dipole and anapole form factors, respectively. In the non-relativistic limit of Ly, it is easy to find
that fQ (0) = @ represents the electric charge of the particle, f,;(0) = p denotes the magnetic dipole
moment of the particle (i.e., Lp\;(fy) = —pd - B with B being the static magnetic field), f;(0) = €
stands for the electric dipole moment of the particle (i.e., L\ (fr) = —€0 - E with E being the static
electric field), and f, (0) corresponds to the Zeldovich anapole moment of the particle (i.e., L (fy)
fa(0)7 - [V x B — E]). One can observe that these form factors are not only Lorentz-invariant but also
real (i.e., Imfq = Imfy = Imfg = Imf, = 0). The latter is actually guaranteed by the Hermiticity
condition in Eq. (62).

Given the form of I, in Eq. (64), it is straightforward to check the CP properties of Ly, in Eq.
(58). Note that the photon field transforms as A* — —A,, under CP, and 4

v~y
E’Y,ﬂs?ﬁ %, — sy,
D0, D —Pa
G050 5+ g1 (65)

Hence only the term proportional to f in Lp,, is CP-violating. If CP were conserved, then this term
would vanish (i.e., fp = 0 would hold). Although there is no experimental hint at CP violation in the
lepton sector, we expect that it should exist as in the quark sector. In any case, all four form factors are
finite for a Dirac neutrino.

If neutrinos are massive Majorana particles, their electromagnetic properties will be rather differ-
ent. The reason is simply that Majorana particles are their own antiparticles and thus can be described by
using a smaller number of degrees of freedom. A free Majorana neutrino field 1 is by definition equal to

its charge-conjugate field ¢¢ = C@T up to a global phase. Then

_ J— c 7T 7T T J—
T 0 = 9T ¢ = 7 CT,C' = (¢Tcruc¢ ) — gty (66)
from which one arrives at
_ pTpTpT _ ppTp—1
r,=-cr,C =cr,c . (67)
Substituting Eq. (64) into the right-hand side of Eq. (67) and taking account of C')/ZC*I = Y
C(’yﬂfyg))TC_1 = +7,75 CO’EVC_l = —0,, and C(Uu,/yg))TC_1 = —0,,75, We obtain
L, (p,0") = —fo(d), — fu(@®)iod” — fe(6))0ud Vs + Fa(@®) (P, — 0u8) v - (68)

A comparison between Egs. (64) and (68) yields

fol@®) = fu(d®) = fe(@®) =0. (69)

This result means that a Majorana neutrino only has the anapole form factor f, (¢?).

4Tiking account of C _1JWC = —a?:l, and C~'v5C =~ , one may easily prove that @wayg,w is odd under both C and P.
Thus o, 751 is CP-even.
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Fig. 1: One-loop Feynman diagrams contributing to the magnetic and electric dipole moments of massive Dirac
neutrinos, where o« = e, u, 7 and ¢,5 = 1, 2, 3.

More generally, one may write out the matrix elements of the electromagnetic current J, “(:c) be-
tween two different states (i.e., the incoming and outgoing particles are different):

(W3 ()|, (@) (p)) = e~ ()T (p, 0 s (B) (70)

where ¢ = p — p/ together with p? = m? and p/ 2 = m? (for i # j). Here the electromagnetic vertex
matrix I’ u(p, p’) can be decomposed into the following Lorentz-invariant form in terms of four form
factors:

L,(p,0") = Fo(a®) (7, — 4u4) + Fa(a)io,,q" + Fi(a%)0,,0"vs + Fa(@®) (7, — a,4) 75 - (71)

where F, F\;, Ff; and F)y are all the 2 x 2 matrices in the space of neutrino mass eigenstates. The
diagonal case (i.e., « = 7) has been discussed above, from Eq. (59) to Eq. (69). In the off-diagonal case
(i.e., i # j), the Hermiticity of J,(z) is no more a constraint on I, (p, p’) for Dirac neutrinos because
Eq. (62) only holds for 7 = j. It is now possible for Majorana neutrinos to have finite transition dipole
moments, simply because Eqs. (66)—(69) do not hold when %), and 1/1j represent different flavors.

We conclude that Dirac neutrinos may have both electric and magnetic dipole moments, while
Majorana neutrinos have neither electric nor magnetic dipole moments. But massive Majorana neutrinos
can have transition dipole moments which involve two different neutrino flavors in the initial and final
states, so can massive Dirac neutrinos.

3.2 Magnetic and electric dipole moments

The magnetic and electric dipole moments of massive neutrinos, denoted as u = F};(0) and € = Fj(0),
are interesting in both theories and experiments because they are closely related to the dynamics of
neutrino mass generation and to the characteristic of new physics.

Let us consider a minimal extension of the SM in which three right-handed neutrinos are intro-
duced and lepton number conservation is required. In this case massive neutrinos are Dirac particles and
their magnetic and electric dipole moments can be evaluated by calculating the Feynman diagrams in
Fig. 1. Taking account of the smallness of both m? /M%, and m?/M32,, where m,, (for o = e, j1,7) and
m,; (for i = 1, 2, 3) stand respectively for the charged-lepton and neutrino masses, one obtains

3eGm,; m; m2
D F''% J « *
)= (14— E 92— V. .V*.
Ml] 32\/57 2 ( mi) % o ( I-M%r) arraj’

3eGm; m; m2
D | J « *
s iy Y (N A E 2 _ V.. V* 72
“ij 32\/§7r2 ( mi> % ( M%z) arars (72)

to an excellent degree of accuracy. Here V,,; and V,, ; are the elements of the unitary lepton flavor mixing
matrix V. Some discussions are in order.
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(1) In the diagonal case (i.e., i = j) we are left with vanishing electric dipole moments (i.e.,
b - = 0). The magnetic dipole moments ,u,“ are finite and proportional to the neutrino masses m, (for

(A
1 =1,2,3):
3eGrm, 1 m2
D__ "Mk % _ 2
i = g Jan? (1 2ZM2 Vil ) (73)
Hence a massless Dirac neutrino in the SM has no magnetic dipole moment. In the leading-order ap-
proximation, ,ug are independent of the strength of lepton flavor mixing and have tiny values

3eGrm; m.
D F'% —19 i
'uiiNS\/iﬂ ~3x10 (1 V)uB, (74)

where g = eh/(2m,) is the Bohr magneton. Given m, < 1 eV, the magnitude of 1) is far below its
present experimental upper bound (< a few x 10~ ).

(2) In the off-diagonal case (i.e., ¢ # 7), the unitarity of V" allows us to simplify Eq. (72) to
m2

3eGpm, m;
D_ _“7YF'"% 3 Ma *
Hig = 32\@71_2 (1 + m) Z Vana] ’

(3

3eGpm, m;
D SR J (e} *
D _ 1—- V_V* . 75
i 32272 ( m)Z:ZM2 aitaj (75)

(2
We see that the magnitudes of u and e ' (for i # j), compared with that of u , are further suppressed
due to the smallness of m2 /M3,. Slmllar to the expression given in Eq. (74),

_ m; +m; e} *
“8’ ~ —4x 1072 <1eVJ) x (Z 2 VMV&J> HB >
D~ 4x 1072 () y o ey v, (76)
€ ~ 1eV m2 it ed | HB

o T

which can illustrate how small ,u and e . are.

(3) Although Majorana neutrinos do not have intrinsic ( = j) magnetic and electric dipole mo-
ments, they may have finite transition (¢ # j) dipole moments. Because of the fact that Majorana
neutrinos are their own antiparticles, their magnetic and electric dipole moments can also get contribu-
tions from two additional one-loop Feynman diagrams involving the charge-conjugate fields of v;, v, [,,,
W# and ~ shown in Fig. 1°. In this case one obtains

3eGpi m2 .
,u%[ - 16\/5F 2 ( i+mj) X za: MI%V (Vazvozj) )

3eGG m2 .
) = Towamr M mi) ¥ 2 g Re (VaiVey) (1)

(07

where m, # m; must hold. Comparing between Eqs. (75) and (77), we observe that the magnitudes of
,u%[ and eM are the same order as those of ,ug and eD in most cases, although the CP-violating phases

hidden in VMVC:‘] are possible to give rise to s1gn1ﬁcant cancellations in some cases.

(4) The fact that p;; and ¢,; are proportional to m,; or m; can be understood in the following way.
Note that both tensor- and pseudotensor—hke spinor blhnears are chirality-changing operators, which link
the left-handed state to the right-handed one ©:

aawqj) = WLJWwR + h.c.,

SHere we confine ourselves to a simple extension of the SM with three known neutrinos to be massive Majorana particles.
%That is why both magnetic and electric dipole moments must vanish for a Weyl neutrino, because it is massless and does
not possess the right-handed component.

191



Z.Z. XING

Y0, 5% = P1,0,,750r — hec. . (78)

Note also that the same relations hold when %) is replaced by its charge-conjugate field ¢ for Majorana
neutrinos. Because (v;)y and (Vj)R do not have any interactions with ¥ in Fig. 1, it seems that only
(v;)1, and (v;);, are flowing along the external fermion lines. To obtain a chirality-changing contribution
from the effective (one-loop) electromagnetic vertex, one has to put a mass insertion on one of the
external legs in the Feynman diagrams. As a result, the magnetic and electric dipole moments must
involve m; and m, the masses of v; and v; neutrinos.

(5) Is the magnetic or electric dipole moment of a neutrino always proportional to its mass? The
answer is negative if new physics beyond the SU(2); x U(1)y gauge theory is involved. For instance,
a new term proportional to the charged-lepton mass can contribute to the magnetic dipole moment of
a massive Dirac neutrino in the SU(2); x SU(2)g x U(1)y model with broken left-right symmetry.
Depending on the details of this model, such a term might cancel or exceed the term proportional to the
neutrino mass in the expression of the magnetic dipole moment.

Finite magnetic and electric dipole moments of massive neutrinos may produce a variety of new
processes beyond the SM. For example, (a) radiative neutrino decays v; — v; +y can happen, so can the
Cherenkov radiation of neutrinos in an external electromagnetic field; (b) the elastic neutrino-electron
or neutrino-nucleon scattering can be mediated by the magnetic and electric dipole moments; (c) the
phenomenon of precession of the neutrino spin can occur in an external magnetic field; (d) the photon
(or plasmon) can decay into a neutrino-antineutrino pair in a plasma (i.e., v* — vv). Of course, non-
vanishing electromagnetic dipole moments contribute to neutrino masses too.

3.3 Radiative neutrino decays

If the electromagnetic moments of a massive neutrino v; are finite, it can decay into a lighter neutrino v
and a photon . The Lorentz-invariant vertex matrix of this ; — v; + 7y process is in general described
by, (p,p') in Eq. (71). Because ¢> = 0 and q,£" = 0 hold for a real photon , where " represents the
photon polarization, the form of ', (p, p’) can be simplified to

L, (p,p") = [iF\(0) + F(0)v5] 0,4 - (79)

By definition, F; K/J[ (0) = p;; and Féj (0) = e, are just the magnetic and elec‘t‘ric transition dipole moments
between v; and v; neutrinos. Given the transition matrix element (") T/ (p, p')u; (), it is straightfor-
ward to calculate the decay rate. In the rest frame of the decaying neutrino v;,

3
ot o)
Ly = gy (‘“z‘j\QJF |€z‘j}2> : (80)

8mm;

This result is valid for both Dirac and Majorana neutrinos.

In the SU(2);, x U(1)y gauge theory with three massive Dirac (or Majorana) neutrinos, the ra-
diative decay v; — v; + 7 is mediated by the one-loop Feynman diagrams (and their charge-conjugate
diagrams) shown in Fig. 1. The explicit expressions of j;; and €;; have been given in Eq. (75) for Dirac
neutrinos and in Eq. (77) for Majorana neutrinos. Hence
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for Dirac neutrinos; or

3
2 _ .2 2\ 3 2
oy m) I ) 2 et (| m\ L
vy T Smm Hij ij 91074 m2 m,
1

1

m.\ 2 m2 i 2
+ (1 o mz> !Z M2 (VanaJ)

2

; (82)

2
m *
X [ MW (VMVO{J)

«

for Majorana neutrinos, where o = €2 /(47) denotes the electromagnetic fine-structure constant.

To compare I', _,,, . with the experimental data in a simpler way, one may define an effective
g J

magnetic dipole moment

2
+

2

€

Feft i ij (83)

Eq. (80) can then be expressed as

m2 ° m. \3 2
_ Yy i Heg -1
F”i—wﬂw = 93X ( mf (1 eV) x <MB > 5o (84)

Although p g 1s extremely small in some simple extensions of the SM, it could be sufficiently large in
some more complicated or exotic scenarios beyond the SM, such as a class of extra-dimension models.
Experimentally, radiative decays of massive neutrinos can be constrained by seeing no emission of the
photons from solar v, and reactor 7, fluxes. Much stronger constraints on f 4 can be obtained from
the Supernova 1987A limit on the neutrino decay and from the astrophysical limit on distortions of the
cosmic microwave background (CMB) radiation. A brief summary of these limits is

2
0.9 x 1071 <eV> Reactor
ml/
2
0.5x 107> <eV> Sun
< oA
e 15 % 10~ 8< ) SN 1987A
m
9/4
1.0 x 10~ 11<6V> CMB
ml/

where m,, denotes the effective mass of the decaying neutrino (i.e., m,, = m,).

3.4 Electromagnetic v_-e scattering

In practice, the most sensitive way of probing the electromagnetic dipole moments of a massive neutrino
is to measure the cross section of elastic neutrino-electron (or antineutrino-electron) scattering, which
can be expressed as a sum of the contribution from the SM (o)) and that from the electromagnetic dipole
moments of massive neutrinos (Ju):

do  doy do,

—_— 85
AT~ AT ' dT (83)
where T' = I/, — m, denotes the kinetic energy of the recoil electron in this process. We have
ar ~ o |- E,) T9E2
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for neutrino-electron scattering, where g, = 2 sin?f, +1forv,, g L =2 sin? 6, — 1 for v, and v_, and
g_ = 2sin? @, for all flavors. Note that Eq. (86) is also valid for antineutrino-electron scattering if one

simply exchanges the positions of g, and g_. On the other hand,

-5 (-2) ()
dTr m2 \T E,) \pg

with 2 = |uD|? + |€2|? (for i = 1, 2 or 3), which holds for both neutrinos and antineutrinos. In
obtaining Egs. (86) and (87) one has assumed the scattered neutrino to be a Dirac particle and omitted the
effects of finite neutrino masses and flavor mixing (i.e., v, = vy, v, = v, and v, = v5 have been taken).
Hence there is no interference between the contributions coming from the SM and electromagnetic dipole
moments — the latter leads to a helicity flip of the neutrino but the former is always helicity-conserving.
While an interference term will appear if one takes account of neutrino masses and flavor mixing, its
magnitude linearly depends on the neutrino masses and thus is strongly suppressed in comparison with
the pure weak and electromagnetic terms. So the incoherent sum of do,/dT" and do, /dT in Eq. (85) is
actually an excellent approximation of do /dT.

It is obvious that the two terms of do/d7T" depend on the kinetic energy of the recoil electron
in quite different ways. In particular, do,/dT" grows rapidly with decreasing values of 7. Hence a
measurement of smaller 7" can probe smaller i, in this kind of experiments. The magnitude of do, /dT
becomes larger than that of do,/dT" if the condition

aQﬂ_Q m 2 m 2
T< (V) ~ 3 x 10%? <”> keV (88)

Girmd \ pg HB

is roughly satisfied, as one can easily see from Eqs. (86) and (87). No distortion of the recoil electron
energy spectrum of v e~ or v, e scattering (for o = e, u, 7) has so far been observed in any direct
laboratory experiments, and thus only the upper bounds on p,, can be derived. For instance, an analysis
of the T-spectrum in the Super-Kamiokande experiment yields p,, < 1.1 X 10_10,uB. More stringent
bounds on y,, can hopefully be achieved in the future.

In view of current experimental data on neutrino oscillations, we know that neutrinos are actually
massive. Hence the effects of finite neutrino masses and flavor mixing should be taken into account in
calculating the cross section of elastic neutrino-electron or antineutrino-electron scattering. Here let us
illustrate how the neutrino oscillation may affect the weak and electromagnetic terms of elastic v e~
scattering in a reactor experiment, where the antineutrinos are produced from the beta decay of fission
products and detected by their elastic scattering with electrons in a detector. The antineutrino state
created in this beta decay (via W~ — e~ 4 7,) at the reactor is a superposition of three antineutrino
mass eigenstates:

3
=D V7 (89)
j=1

Such a 7, beam propagates over the distance L to the detector,
Z eV, |7;) (90)

in which ¢; = |E2 — m? is the momentum of v; with E, being the beam energy and m; being the
mass of v;. After taking account of the effect of neutrino oscillations, one obtains the differential cross

section of elastic antineutrino-electron scattering as follows:
/ /
do’  dogy  doy,

dr ~ 4T ' 4T’ oD
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where
doy, G%me 9 9 T\ 2 m. T
_ - = _ 1 1 - _ _ 1 €
ar = 2w (-t 5) 9=
2
& T\? m,T
iq, L
+2g_ > VP |2 (1 - E) - 2 (92)
]:1 v v
with g = 2sin? 6, for 7,, and
5 2
do’ 2 . €+ fhy 1 1
B2 L VR LA LA RV ( — > 93)

with i and €5, being the magnetic and electric transition dipole moments between v; and v, neutrinos
as defined in Eq. (79). Because different neutrino mass eigenstates are in principle distinguishable in
the electromagnetic 7 e~ scattering, their contributions to the total cross section are incoherent. Eq.
(93) shows that it is in general difficult to determine or constrain the magnitudes of i, and €, (for
7,k =1,2,3) from a single measurement.

4 Lepton Flavor Mixing and CP Violation

Regardless of the dynamical origin of tiny neutrino masses ’, we may discuss lepton flavor mixing by

taking account of the effective mass terms of charged leptons and Majorana neutrinos at low energies 3,

e Ve
JE— 11— e
_ﬁiepton = (8 K 7—)L Ml K + Q(Ve Vu VT)L MV Vﬁ +h.c. . (94)
/R Vi) R

The phenomenon of lepton flavor mixing arises from a mismatch between the diagonalizations of M, and
M, in an arbitrary flavor basis: VlTMlUl = Diag{m,, y,,, m,} and VIM, V= Diag{m,, my, ms},
where V,, U, and V,, are the 3 X 3 unitary matrices. In the basis of mass eigenstates, it is the unitary
matrix V' = VlTVV that will appear in the weak charged-current interactions in Eq. (12). Although the
basis of M, = Diag{m,, m n m,} with V, = 1 and V' =V, is often chosen in neutrino phenomenology,
one should keep in mind that both the charged-lepton and neutrino sectors may in general contribute
to lepton flavor mixing. In other words, both V; and V), are not fully physical, and only their product
V= VfVV is a physical description of lepton flavor mixing and CP violation at low energies.

4.1 Parametrizations of V'

Flavor mixing among n different lepton families can be described by an n X n unitary matrix V', whose
number of independent parameters relies on the nature of neutrinos. If neutrinos are Dirac particles,
one may make use of n(n — 1)/2 rotation angles and (n — 1)(n — 2)/2 phase angles to parametrize
V. If neutrinos are Majorana particles, however, a full parametrization of V' needs n(n — 1)/2 rotation
angles and the same number of phase angles °. The flavor mixing between charged leptons and Dirac

"For simplicity, here we do not consider possible non-unitarity of the 3 X 3 neutrino mixing matrix because its effects are
either absent or very small.

8 As for Dirac neutrinos, the corresponding mass term is the same as that given in Eq. (7). In this case the neutrino mass ma-
trix M, is in general not symmetric and can be diagonalized by means of the transformation vim,u, = Diag{mi, mo, ms},
where both V,, and U, are unitary.

No matter whether neutrinos are Dirac or Majorana particles, the n X n unitary flavor mixing matrix has (n—1)%(n—2)?/4
Jarlskog invariants of CP violation defined as .7, ;Jﬁ =1Im (Vm- Vi Vaj Vg,)
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neutrinos is completely analogous to that of quarks, for which a number of different parametrizations
have been proposed and classified in the literature. Here we classify all possible parametrizations for the
flavor mixing between charged leptons and Majorana neutrinos with n = 3. Regardless of the freedom
of phase reassignments, we find that there are nine structurally different parametrizations for the 3 x 3
lepton flavor mixing matrix V.

The 3 x 3 lepton flavor mixing matrix V', which is often called the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, can be expressed as a product of three unitary matrices O;, O, and O5. They
correspond to simple rotations in the complex (1,2), (2,3) and (3,1) planes:

cie spe”® 0
Oy = | =516 cle7i 0 |,
0 0 en
e 0 0
Oy=1 0 cpe2 8267?’52 ,
0 —spe2 cheiv
g€’ 0 sz s
O3 = 0 e's 0 , 95)

—s3ei53 0 cge_io‘?»
where s, = sinf), and ¢; = cos 0, (for ¢ = 1,2, 3). Obviously OiO;r = Og O; = 1 holds, and any two
rotation matrices do not commute with each other. We find twelve different ways to arrange the product
of Oy, O, and O3, which can cover the whole 3 x 3 space and provide a full description of V. Explicitly,
six of the twelve different combinations of O, belong to the type

with ¢ # j, where the complex rotation matrix O, occurs twice; and the other six belong to the type

V= 0,(0;, 0, Bi,7) @ 0;(0;, 5, B;,7;) @ O (0, g, Brs Vi) L))

with i # j # k, in which the rotations take place in three different complex planes. The products O,0;0,
and 0;0,0; (for i # k) in Eq. (97) are correlated with each other, if the relevant phase parameters are
switched off. Hence only nine of the twelve parametrizations, three from Eq. (96) and six from Eq. (97),
are structurally different.

In each parametrization of V/, there apparently exist nine phase parameters. Some of them or their
combinations can be absorbed by redefining the relevant phases of charged-lepton and neutrino fields.
If neutrinos are Dirac particles, V' contains only a single irremovable CP-violating phase §. If neutrinos
are Majorana particles, however, there is no freedom to rearrange the relative phases of three Majorana
neutrino fields. Hence V may in general contain three irremovable CP-violating phases in the Majorana
case (¢ and two Majorana phases). Both CP- and T-violating effects in neutrino oscillations depend only
upon the Dirac-like phase §.

Different parametrizations of V' are mathematically equivalent, so adopting any of them does not
directly point to physical significance. But it is very likely that one particular parametrization is more
useful and transparent than the others in studying the neutrino phenomenology and (or) exploring the
underlying dynamics responsible for lepton mass generation and CP violation. Here we highlight two
particular parametrizations of the PMNS matrix V. The first one is the so-called “standard" parametriza-
tion advocated by the Particle Data Group:

1 0 0 Ci3 0 sp3e® Clg S12 0
V - 0 023 823 0 1 O _512 012 O P, 5 (98)
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where ¢;; = cosf;; and s;; = sinf,; (for ij = 12,13,23) together with the Majorana phase matrix
P’ = Diag{e', ¢, 1}. Without loss of generality, the three mixing angles (6,5, 65, 053) can all be ar-
ranged to lie in the first quadrant. Arbitrary values between 0 and 27 are allowed for three CP-violating
phases (d, p, o). A remarkable merit of this parametrization is that its three mixing angles are approxi-
mately equivalent to the mixing angles of solar (6,5), atmospheric (55) and CHOOZ reactor (,3) neu-
trino oscillation experiments. Another useful parametrization is the Fritzsch-Xing (FX) parametrization

proposed originally for quark mixing and later for lepton mixing:

¢ 5 0 e 0
V=1-5 ¢ 0 0 c y 0| P, 99)
0O 0 1 0 —s c 0 0 1

Cy
S

where ¢; , = cos0, ,,,s;, =sinf;,, c = cosf, s = sinf, and P’ is a diagonal phase matrix containing
two nontrivial CP—\’/iola7ting phases. Although the form of V' in Eq. (99) is apparently different from
that in Eq. (98), their corresponding flavor mixing angles (6, 0,,, ) and (0,5, 0,5, 053) have quite similar
meanings in interpreting the experimental data on neutrino oscillations. In the limit 6, = 6,5 = 0, one
easily arrives at 0, = 0, and 6 = 0,5. As a natural consequence of very small ¢, three mixing angles
of the FX parametrization can also be related to those of solar (6,,), atmospheric (/) and CHOOZ reactor
(0, sin 0) neutrino oscillation experiments in the leading-order approximation. A striking merit of this
parametrization is that its six parameters have very simple renormalization-group equations when they
run from a superhigh-energy scale to the electroweak scale or vice versa.

4.2 Democratic or tri-bimaximal mixing?

Current neutrino oscillation data indicate the essential feature of lepton flavor mixing: two mixing angles
are quite large (0,5, ~ 34° and 0,3 ~ 45°) while the third one is very small (6,3 < 10°). Such a flavor
mixing pattern is far beyond the original imagination of most people because it is rather different from
the well-known quark mixing pattern (¥, ~ 14.5°, U953 ~ 2.6°, V153 ~ 0.23° and 0 = 76.5°) described
by the same parametrization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. To understand this
difference, a number of constant lepton mixing patterns have been proposed as the starting point of model
building. Possible flavor symmetries and their spontaneous or explicit breaking mechanisms hidden
in those constant patterns might finally help us pin down the dynamics responsible for lepton mass
generation and flavor mixing. To illustrate, let us first comment on the “democratic" neutrino mixing
pattern and then pay more attention to the “tri-bimaximal" neutrino mixing pattern.

The “democratic” lepton flavor mixing pattern

Lok
2 2
Ug=| =+ L 2 (100)
B WO

V3 V3 VB

was originally obtained by Fritzsch and Xing as the leading term of the 3 x 3 lepton mixing matrix
from the breaking of flavor democracy or S(3); x S(3); symmetry of the charged-lepton mass matrix
in the basis where the Majorana neutrino mass matrix is diagonal and possesses the S(3) symmetry. Its
naive predictions 6,5 = 45° and 6,53 ~ 54.7° are no more favored today, but they may receive proper
corrections from the symmetry-breaking perturbations so as to fit current neutrino oscillation data.

Today’s most popular constant pattern of neutrino mixing is the “tri-bimaximal" mixing matrix:

Vo= (101)

Srslsls
SlLshsh
Shk o
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which looks like a twisted form of the democratic mixing pattern with the same entries. Its strange name
comes from the fact that this flavor mixing pattern is actually a product of the “tri-maximal" mixing
matrix and a “bi-maximal" mixing matrix:

11 1 1 g =L
Vy = f ﬁ ﬁ \65 1 \65 = PV, P’ (102)
0 \{g \“{23 \{)5 0 0 1 0 )

Vi v v/ \V2 V2

where w = €27/3 denotes the complex cube-root of unity (i.e., w3 =1),and P = Diag{1,w, w2} and
P’ = Diag{1,1,i} are two diagonal phase matrices. V, or VJ predicts 6, = arctan(1/v/2) ~ 35.3°,
0,3 = 0° and 0,5 = 45°, consistent quite well with current neutrino oscillation data. Because the entries
of U, or V}, are all formed from small integers (0, 1, 2 and 3) and their square roots, it is often suggestive
of certain discrete flavor symmetries in the language of group theories. That is why the democratic or
tri-bimaximal neutrino mixing pattern can serve as a good starting point of model building based on
a variety of flavor symmetries, such as Z,, Zs, S35, Sy, Ay, Dy, D5, Q. Qg, A(27) and 3(81). In
particular, a lot of interest has been paid to the derivation of Vj; with the help of the non-Abelian discrete
A, symmetry.

Note that the democratic mixing matrix U, and the tri-bimaximal mixing matrix V{, are related
with each other via the following transformation:

1 0 0 costy —sinf, 0
Vo=10 ~cosb, —sin,|U,]|sinf, cosf, 0], (103)
0 sinf, cosf, 0 0 1

where 6, = arctan(y/2 — 1)? & 9.7°. This angle is actually a measure of the difference between the
mixing angles of U, and V}, (namely, 45° — 35.3° = 54.7° — 45° = 9.7°). In this sense, we argue that it
is worthwhile to explore possible flavor symmetries behind both Vj) and U, so as to build realistic models
for neutrino mass generation and lepton flavor mixing.

Let us remark that a specific constant mixing pattern should be regarded as the leading-order
approximation of the “true” lepton flavor mixing matrix, whose mixing angles should in general depend
on both the ratios of charged-lepton masses and those of neutrino masses. We may at least make the
following naive speculation about how to phenomenologically understand the observed pattern of lepton
flavor mixing:

— Large values of 0,5 and 6,5 could arise from a weak hierarchy or a near degeneracy of the neutrino
mass spectrum, because the strong hierarchy of charged-lepton masses implies that m,/ m,, and
m,,/m. at the electroweak scale are unlikely to contribute to ;5 and 65 in a dominant way.

— Special values of ¢, and 6,5 might stem from an underlying flavor symmetry of the charged-lepton
mass matrix or the neutrino mass matrix. Then the contributions of lepton mass ratios to flavor
mixing angles, due to flavor symmetry breaking, are expected to serve as perturbative corrections
to U, or V};, or another constant mixing pattern.

— Vanishing or small 6,5 could be a natural consequence of the explicit textures of lepton mass
matrices. It might also be related to the flavor symmetry which gives rise to sizable 0, and 6,5
(e.g.,in U or V).

— Small corrections to a constant flavor mixing pattern may also result from the renormalization-
group running effects of leptons and quarks, e.g., from a superhigh-energy scale to low energies or
vice versa.

There are too many possibilities of linking the observed pattern of lepton flavor mixing to a certain flavor
symmetry, and none of them is unique from the theoretical point of view. In this sense, flavor symmetries
should not be regarded as a perfect guiding principle of model building.
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Fig. 2: Unitarity triangles of the 3 x 3 PMNS matrix in the complex plane. Each triangle is named by the index
that does not manifest in its three sides.

4.3 Leptonic unitarity triangles

In the basis where the flavor eigenstates of charged leptons are identified with their mass eigenstates,
the PMNS matrix V' relates the neutrino mass eigenstates (v, 5, /3) to the neutrino flavor eigenstates

(Ve7 V,w I/T)
Ve Voo Vo Ves n
V;L = Vul Vu? Vu3 Vg : (104)
Vr VTl VT2 VT3 Vs
The unitarity of V represents two sets of normalization and orthogonality conditions:
Z (vaékz) = 5a5 ) Z (VanoTJ) = 5ij ’ (105)
(2 [0

where Greek and Latin subscripts run over (e, i, 7) and (1,2, 3), respectively. In the complex plane
the six orthogonality relations in Eq. (105) define six triangles (A, A, Ar) and (A, Ay, Ag) shown
in Fig. 2, the so-called unitarity triangles. These six triangles have eighteen different sides and nine
different inner (or outer) angles. But the unitarity of V' requires that all six triangles have the same area
amounting to 7 /2, where J is the Jarlskog invariant of CP violation defined through

Im (Vo Vs Va; Vi) = T Z amZ €ijk - (106)

One has J = ¢9815C755,3C93533 sin & in the standard parametrization of V as well as J = ¢;s,c,,s,cs% sin ¢
in the FX parametrization of V. No matter whether neutrinos are Dirac or Majorana particles, the strength
of CP or T violation in neutrino oscillations depends only upon 7.
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To show why the areas of six unitarity triangles are identical with one another, let us take triangles
A, and A, for example. They correspond to the orthogonality relations

VeV + Vo Ve + VesVis = 0,
VeV +ViuVie +VaVih = 0. (107)

Multiplying these two equations by V ,V; and V, , V5| respectively, we arrive at two rescaled triangles
which share the side

VaiVioVa Vit = =V Viol? = VegVia Vs Vs = = [Via Ve = ViaVia Vi Vi (108)
This result is consistent with the definition of J in Eq. (106); i.e., Im(VequQ e*ZV;l) = J and
Im(V3V sV Vi) = Im(V oV Vi V) = —J. The latter simultaneously implies that the areas

of A, and A\, are equal to 7 /2. One may analogously prove that all the six unitarity triangles have the
same area J /2. If CP or T were an exact symmetry, J = 0 would hold and those unitarity triangles
would collapse into lines in the complex plane. Note that the shape and area of each unitarity triangle
are irrelevant to the nature of neutrinos; i.e., they are the same for Dirac and Majorana neutrinos.

Because of ViV, + V4V 5 = —V3V,3 or equivalently [V, Vi + Vo, Vi = [V3Vi5[% itis
easy to obtain

2Re (Vo Vo VaVi) = |‘/e3|2|vu3|2 - |‘/;1‘2|Vu1|2 - |V;52|2|Vu2‘2 . (109)
Combining V,, V,, V5V = Re(V,, V0 Vs Vi) +iJ with Eq. (109) leads us to the result
1 2
T* = Ve PV P WVea PV I = 5 (Ve PVl = Ve PV l* = Ve P Vo)

= |Ve1|2|Vu2‘2|V62|2|VM1‘2 -1+ "/61|2|Vu2‘2 + |V52‘2|VM1|2

=

2
VP = Vol = Vel = V)" - (110)

As a straightforward generalization of Eq. (110), 2 can be expressed in terms of the moduli of any four
independent matrix elements of V:

1
J? = ’Vai’2|vﬁj’2‘vaj‘2lvﬁi‘2 1 (1+ ’VaiP’Vﬁj’Q + ’VaﬂQ‘Vﬁz"Z
2
—Val® = Vg |* = Vo I = Viail*) ™ (111)
in which a # £ running over (e, 1, 7) and ¢ # j running over (1,2, 3). The implication of this result

is very obvious: the information about leptonic CP violation can in principle be extracted from the
measured moduli of the neutrino mixing matrix elements.

As a consequence of the unitarity of V/, two interesting relations can be derived from the normal-
ization conditions in Eq. (105):
“/;2’2 - \Vm’z = \‘@3’2 - \Vr2|2 = |V71|2 - |Ve3‘2 =Ap,
Vol — \%3’2 = \Vu1|2 — Vol = Vsl = [Va? = Ag . (112)
The off-diagonal asymmetries A; and Ay characterize the geometrical structure of V' about its V-
Vi2-V;5 and V_3-V,5-V, axes, respectively. For instance, A = 1/6 and Az = —1/6 hold for the
tri-bimaximal neutrino mixing pattern V. If A; = 0 (or Ay = 0) held, V' would be symmetric about

the Vi1-V),9-Vog (or Vi 3-V,5-V ) axis. Geometrically this would correspond to the congruence between
two unitarity triangles; i.e.,

AL:O: A82A17A#%’A2’AT%A3;
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Table 2: Some important discoveries in the developments of flavor physics.

Discoveries of lepton flavors, quark flavors and CP violation
1897 electron (Thomson, 1897)

1919 proton (up and down quarks) (Rutherford, 1919)

1932 neutron (up and down quarks) (Chadwick, 1932)

1933 positron (Anderson, 1933)

1936 muon (Neddermeyer and Anderson, 1937)

1947 Kaon (strange quark) (Rochester and Butler, 1947)

1956 electron antineutrino (Cowan et al., 1956)

1962 muon neutrino (Danby et al., 1962)

1964 CP violation in s-quark decays (Christenson et al., 1964)
1974 charm quark (Aubert et al., 1974; Abrams et al., 1974)

1975 tau (Perl et al., 1975)

1977 bottom quark (Herb et al., 1977)

1995 top quark (Abe et al., 1995; Abachi et al., 1995)

2000 tau neutrino (Kodama et al., 2000)

2001 CP violation in b-quark decays (Aubert et al., 2001; Abe et al., 2001)

Indeed the counterpart of A in the quark sector is only of O(1079); i.e., the CKM matrix is almost
symmetric about its V, ;,-V,,-V,, axis. An exactly symmetric flavor mixing matrix might hint at an un-
derlying flavor symmetry, from which some deeper understanding of the fermion mass texture could be
achieved.

4.4 Flavor problems in particle physics

In the subatomic world the fundamental building blocks of matter have twelve flavors: six quarks and
six leptons (and their antiparticles). Table 2 is a brief list of some important discoveries in flavor physics,
which can partly give people a ball-park feeling of a century of developments in particle physics. The
SM of electromagnetic and weak interactions contain thirteen free parameters in its lepton and quark
sectors: three charged-lepton masses, six quark masses, three quark flavor mixing angles and one CP-
violating phase. If three known neutrinos are massive Majorana particles, one has to introduce nine free
parameters to describe their flavor properties: three neutrino masses, three lepton flavor mixing angles
and three CP-violating phases. Thus an effective theory of electroweak interactions at low energies
totally consists of twenty-two flavor parameters which can only be determined from experiments. Why
is the number of degrees of freedom so big in the flavor sector? What is the fundamental physics behind
these parameters? Such puzzles constitute the flavor problems in particle physics.

Current experimental data on neutrino oscillations can only tell us m,; < m,. It remains unknown
whether my is larger than m, (normal hierarchy) or smaller than m; (inverted hierarchy). The possibility
my & my ~ ms (near degeneracy) cannot be excluded at present. In contrast, three families of charged
fermions have very strong mass hierarchies:

m, m m, 4
™ 2

U
mC
~Ma  Ms 2 (114)

mg  ny

my,
My
mT

where A = sinf ~ 0.22 with 6 being the Cabibbo angle of quark flavor mixing. In the standard
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parametrization of the CKM matrix, three quark mixing angles exhibit an impressive hierarchy:

These two kinds of hierarchies might intrinsically be related to each other, because the flavor mixing an-
gles actually measure a mismatch between the mass and flavor eigenstates of up- and down-type quarks.
For example, the relations ¥, ~ \/m /m, , ¥y3 = \/m,/m, and J,3 ~ /m,/m, are compatible
with Eqs. (114) and (115). They can be derived from a specific pattern of up- and down-type quark
mass matrices with five texture zeros. On the other hand, it seems quite difficult to find a simple way of
linking two large lepton flavor mixing angles 0, ~ 7/6 and 03 ~ 7/4 to small m./m,, and m,,/m..
One might ascribe the largeness of 6, and 0,5 to a very weak hierarchy of three neutrino masses and
the smallness of 6, to the strong mass hierarchy in the charged-lepton sector. There are of course many
possibilities of model building to understand the observed lepton flavor mixing pattern, but none of them
has experimentally and theoretically been justified.

Among a number of concrete flavor puzzles that are currently facing us, the following three are
particularly intriguing.
— The pole masses of three charged leptons satisfy the equality

m,+m, +m 2
= £ i =z (116)

(vime + g+ ymz) 8

to an amazingly good degree of accuracy — its error bar is only of O(107?).

— There are two quark-lepton “complementarity” relations in flavor mixing:
7r
012 + V19 = bg3 + Uz = 1 (117)

which are compatible with the present experimental data.

— Two unitarity triangles of the CKM matrix, defined by the orthogonality conditions V, ,V.", +
V.V + ViV = 0and V, Vi, + V, Vi + V,,V.r, = 0, are almost the right triangles. Namely,
the common inner angle of these two triangles satisfies

Vudvjb

i
= —tudlub ) o T 118
“am(me 2 (1

indicated by current experimental data on quark mixing and CP violation.

Such special numerical relations might just be accidental. One or two of them might also be possible to
result from a certain (underlying) flavor symmetry.

5 Running of Neutrino Mass Parameters
5.1 One-loop RGEs

The spirit of seesaw mechanisms is to attribute the small masses of three known neutrinos to the existence
of some heavy degrees of freedom, such as the SU(2), gauge-singlet fermions, the SU(2); gauge-triplet
scalars or the SU(2); gauge-triplet fermions. All of them point to the unique dimension-5 Weinberg
operator in an effective theory after the corresponding heavy particles are integrated out:

Ly 1 — -

% = inaﬁfaLHHTﬁgL +h.c., (119)
where A is the cutoff scale, /; denotes the left-handed lepton doublet, H = io, H* with H being the
SM Higgs doublet, and « stands for the effective neutrino coupling matrix. After spontaneous gauge
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symmetry breaking, H gains its vacuum expectation value <f[ ) = v/v/2 with v &~ 246 GeV. We are then
left with the effective Majorana mass matrix M,, = xv? /2 for three light neutrinos from Eq. (119). If the
dimension-5 Weinberg operator is obtained in the framework of the minimal supersymmetric standard
model (MSSM), one will be left with M, = k(v sin 3)2/2, where tan 3 denotes the ratio of the vacuum
expectation values of two MSSM Higgs doublets.

Eq. (119) or its supersymmetric counterpart can provide a simple but generic way of generating
tiny neutrino masses. There are a number of interesting possibilities of building renormalizable gauge
models to realize the effective Weinberg mass operator, either radiatively or at the tree level. The latter
case is just associated with the well-known seesaw mechanisms to be discussed in section 6. Here we
assume that £;_. /A arises from an underlying seesaw model, whose lightest heavy particle has a mass
of O(A). In other words, A characterizes the seesaw scale. Above A there may exist one or more energy
thresholds corresponding to the masses of heavier seesaw particles. Below A the energy dependence
of the effective neutrino coupling matrix x is described by its renormalization-group equation (RGE).
The evolution of x from A down to the electroweak scale is formally independent of any details of the
relevant seesaw model from which & is derived.

At the one-loop level x obeys the RGE
dr _
dt

where ¢t = In(u/A) with p being an arbitrary renormalization scale between the electroweak scale and
the seesaw scale, and Y] is the charged-lepton Yukawa coupling matrix. The RGE of Y, and those of Y,
(up-type quarks) and Y; (down-type quarks) are given by

16727 = o+ C, | (VY + (V)T (120)

dY;
16721 = oy + ClOGY)] V7

dt
ay;
16720 = [a, + CRVLY) + CEvaY])] Yy
day,
16720 = [ad +ONY,Y + C;}(Yde)] Y,. (121)
In the framework of the SM we have
3
Co=Ci=Ci=-3,
3
cl=cv=0d= +5 (122)

and
0 = =363 + A+ 2Tr [3(0, ) +3(vav ) + (]

9 9
o= —0gt — 23+ T [BGY) + 30vaY) + ()]

4 4
17 9
o = 3507 — 395 — 803 + T [3(YUYJ) +3(Y,Y]) + (YleT)] :
1 9
0g =~ 568 — 198 — 83 + T [B(V,¥]) +30aY) + ()] (123)

and in the framework of the MSSM we have

C.=01=0C%=+1,
Cl=Cv=CY=+3, (124)
and
6
O = _gg% - 69% + 6Tr(YuYuT) )
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9
a = ——g?— 32+ Tr [3(YdeT) + (YZYET)} ;

5
13 16
o, = —Eg% — 39% - ?g?g) + 3Tr(YuYuT) )
7 16
g = —T591 395 — ?9?2, +Tr [3(YdeT) + (YlYlT)} : (125)

Here g, g5 and g5 are the gauge couplings and satisfy their RGEs

da.

16%2% = b.g3 (126)
where (by, by, by) = (41/10,—19/6, —7) in the SM or (33/5, 1, —3) in the MSSM. In addition, X is the
Higgs self-coupling parameter of the SM and obeys the RGE

d\ 3, 3/3 2
16m2 =2 = = = 6)%2 -3\ < g+ 392) +3 <5g% +g§> + 393

FANT [3(v,50) + 305 Y)) + ()]
8T [B(YHYJ)Z 3V + (YlYﬁ)ﬂ . (127)

The relation between A and the Higgs mass M), is given by A = M ,% /(20?), where v =~ 246 GeV is the
vacuum expectation value of the Higgs field.

The above RGEs allow us to evaluate the running behavior of « together with those of Y}, Y, and
Y, from the seesaw scale to the electroweak scale or vice versa. We shall examine the evolution of
neutrino masses, lepton flavor mixing angles and CP-violating phases in the following.

5.2 Running neutrino mass parameters

Without loss of any generality, we choose the flavor basis where Y/ is diagonal: Y, = D, = Diag{y,, Ypus Y, t
with y,, being the eigenvalues of Y. In this case the effective Majorana neutrino coupling matrix x can
be diagonalized by the PMNS matrix V; i.e., VIkV* = & = Diag{, ky, i3} with x, being the eigen-
values of . Then

dr

1
T T T _
o = VAV 4+ VAVT 4 VRVT =

[, VEVT +C, (DIVEVT + VERVID?)] ,  (128)
with the help of Eq. (120). After a definition of the Hermitian matrix S = VTD2 V' and the anti-Hermitian
matrix T = V1V, Eq. (128) leads to
Iy 1
K=
1672

Because & is by definition diagonal and real, the left- and right-hand sides of Eq. (129) must be diagonal
and real. We can therefore arrive at

o & + O, (SR + RS*)] — TR + RT™. (129)

) 1
Ri = 162 (e, +2C, ReS;) k; (130)

together with Im7T), = ReT};, = ImS;; = 0 (fori = 1,2, 3). As the off-diagonal parts of Eq. (129) are
vanishing, we have

Tigkj = w1 = 1oz (Sighty + #i55) (131)
with i #£ j. Therefore,
C. K;+ K;
Re,l—;j = — 167’:—2 K/i — K/j R’eSl] 5
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Cp Ki— K
ImsS. . . 132
1672 K+ K, i (132)

DuetoV = VT, Eq. (132) actually governs the evolution of V' with energies.

We proceed to define V = PUP’, in which P = Diag{e'?,e'%s %}, P! = Diag{e®, ", 1},
and U is the CKM-like matrix containing three neutrino mixing angles and one CP-violating phase.
Although P does not have any physical meaning, its phases have their own RGEs. In contrast, P’ serves
for the Majorana phase matrix. We find

T'=pP7TP" = PVivP = PP LU+ U P PU (133)

from which we can obtain six independent constraint equations:
Ty =ip+ Z [Uc*uanl + ,L.Uald)ai| ;
[0
T3y = i6 + Z [USZQUOQ + anﬁa} )
(03

T3y = Z _UésUas + an3€ba_ ;
(0%
T1,2 = Z _USIUOQ + an2¢.§a_ )
[e%
Ty = Z _Uc*dUas + an3¢3a_ 5

«

T3 = |UaUns + iUagda | - (134)

— L |
where « runs over e, p and 7. Note that 7;; = 0 holds and T;; is given by Eq. (132). In view of
Ye <y, < y,, we take D? ~ Diag{0,0, y2} as an excellent approximation. Then Sij» Ty; and T}; can
all be expressed in terms of y2 and the parameters of U and P’. After a straightforward calculatlon we

obtain the explicit expressions of Eqs. (130) and (134) as follows:

(. +2C, 02U (135)

Ri = 162

and

where (;; = (k; — K;)/(r; + #;) with i # j. One can see that those y2-associated terms only consist
of the matrix elements U_, (for i = 1,2,3). If a parametrization of U assures U_; to be as simple as

205

¢!

2

> v n)

S [Vt (W02~ Unada) | = 5

5 [0 (s - )] =0,

i:% (G + iUs6 )| = fgﬁg =) [ Re (U Uo7 P) 4 iyyTm (U7 U000
Z:::Uzl (s )| = = S [ Re (U Urge ™) + it (01U ™)]

Za: i (s + U064 —fgy; (¢ Re (UfpUrge ™) + ipsTm (UfpUrze™)]



Z.Z. XING

possible, the resultant RGEs of neutrino mixing angles and CP-violating phases will be very concise. We
find that the FX parametrization advocated in Eq. (99) with

818y c+clc e~ 8;C,C— ¢S, e~ 88
U= |¢s,c—sce ™ ce,et+ss,e7® ¢s
—8,8 —c,S c

accords with the above observation, while the “standard" parametrization in Eq. (98) does not. That is
why the RGEs of neutrino mixing angles and CP-violating phases in the standard parametrization are
rather complicated.

Here we take the FX form of U to derive the RGEs of neutrino mass and mixing parameters.
Combining Eqgs. (135), (136) and the FX form of U, we arrive at

. K1 2.2.2

f1 = 1673 (o, +2C,y5s,s%)

. Ko 222

Fg = = (oz,_i +2C yzc,s ) ,

. K 2 2

fig = 16;2 (v, +2C,y2¢%) (137)

where ,, &~ —3g2 + 6y? + A (SM) or o, ~ —1.2¢97 — 6¢2 + 6y? (MSSM); and

2
b= fgg; “wiC {Ci”lcpc(pfqﬁ) +C135p5(p—g) ~ 42_31%6(0%) - 423303(07@} )
91/ = fgﬁ CuSy [52 (szlc%g_p) + C125%C,_p)) + 2 (Cl_glci + C13S%) - ( o3 cg + (9355 )} ,
b= %ﬁ cs [sp, (Cs'ep + Guasp) + ¢ (Goa' e + Cassiy)] 5 (138)
as well as
p= fgg; [Z 265" C(a—p)S(0—p) +Cld( b5t — %) cp3p+62303320050] ;
o= fg:; [ C125,,5" Co—p)5(0- p)+Cl3S s° C +C23( 52—02)0050} ;
¢ = fgf [ —si) s es,e <C13 CoS(p—¢) ~ $135pC(p—g) C2_31008(a—<15) + Czssac(ofcb))
+ (pp8° Clo—p)S(o—p) T (i3 (52 = 2c?) CpS, + Goz (2 — s2c?) cgsg} , (139)
where C = (' — Gy = Ak (Hf - /1]2) ¢, = cosaand s, = sina (fora = p, 0,0 — p, p — ¢ or

o — ).
Some discussions on the basic features of RGEs of three neutrino masses, three flavor mixing
angles and three CP-violating phases are in order.

(a) The running behaviors of three neutrino masses m, (or equivalently x,) are essentially iden-
tical and determined by «,,, unless tan 3 is large enough in the MSSM to make the y2-associated term
competitive with the o, term. In our phase convention, &, or m; (for ¢ = 1, 2, 3) are independent of the
CP-violating phase ¢.

(b) Among three neutrino mixing angles, only the derivative of 8, contains a term proportional to
61—21. Note that CZ»; = (m; +m; ) / Am with Am =m? — mj2 holds. Current solar and atmospheric
neutrino oscillation data yield Am21 ~ 7.7 x 107% eV? and !Am%Z‘ ~ |Am§1’ ~ 2.4 x 1073 eV2
So 6, is in general more sensitive to radiative corrections than ¢, and 6. The evolution of 6, can be
suppressed through the fine-tuning of (¢ — p). The smallest neutrino mixing angle §, may get radiative
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corrections even if its initial value is zero, and thus it can be radiatively generated from other neutrino
mixing angles and CP-violating phases.

(c) The running behavior of ¢ is quite different from those of p and o, because it includes a peculiar
term proportional to sl_l. This term, which dominates gZ) when 0, is sufficiently small, becomes divergent
in the limit §, — 0. Indeed, ¢ is not well-defined if ¢, is exactly vanishing. But both ¢, and ¢ can be
radiatively generated. We may require that ng remain finite when 6, approaches zero, implying that the
following necessary condition can be extracted from the expression of ¢ in Eq. (139):

Ci3 €S (p0) — C1850C(p—) — $23 CoS(o—0) T C850C(o—g) = O - (140)
Note that the initial value of ), if it is exactly zero or extremely small, may immediately drive ¢ to its

quasi-fixed point. In this case Eq. (140) can be used to understand the relationship between ¢ and two
Majorana phases p and o at the quasi-fixed point.

(d) The running behaviors of p and ¢ are relatively mild in comparison with that of ¢. A remark-
able feature of p and ¢ is that they will vanish, if both p and o are initially vanishing. This observation
indicates that p and o cannot simultaneously be generated from ¢ via the RGE:s.

6 How to Generate Neutrino Masses?

Neutrinos are assumed or required to be massless in the SM, just because the structure of the SM itself
is too simple to accommodate massive neutrinos.

— Two fundamentals of the SM are the SU (2);, x U(1)y gauge symmetry and the Lorentz invariance.
Both of them are mandatory to guarantee that the SM is a consistent quantum field theory.

— The particle content of the SM is rather economical. There are no right-handed neutrinos in the
SM, so a Dirac neutrino mass term is not allowed. There is only one Higgs doublet, so a gauge-
invariant Majorana mass term is forbidden.

— The SM is a renormalizable quantum field theory. Hence an effective dimension-5 operator, which
may give each neutrino a Majorana mass, is absent.

In other words, the SM accidently possesses the (B — L) symmetry which assures three known neutrinos
to be exactly massless.

But today’s experiments have convincingly indicated the existence of neutrino oscillations. This
quantum phenomenon can appear if and only if neutrinos are massive and lepton flavors are mixed, and
thus it is a kind of new physics beyond the SM. To generate non-zero but tiny neutrino masses, one
or more of the above-mentioned constraints on the SM must be abandoned or relaxed. It is intolerable
to abandon the gauge symmetry and Lorentz invariance; otherwise, one would be led astray. Given
the framework of the SM as a consistent field theory, its particle content can be modified and (or) its
renormalizability can be abandoned to accommodate massive neutrinos. There are several ways to this
goal.

6.1 Relaxing the renormalizability

In 1979, Weinberg extended the SM by introducing some higher-dimension operators in terms of the
fields of the SM itself:

Loy Ly
Log = Lsn+ =T+ =150+ (141)

where A denotes the cut-off scale of this effective theory. Within such a framework, the lowest-dimension
operator that violates the lepton number (L) is the unique dimension-5 operator H HLL/A. After spon-
taneous gauge symmetry breaking, this Weinberg operator yields m; ~ (H )2/ A for neutrino masses,
which can be sufficiently small (< 1 eV) if A is not far away from the scale of grand unified theo-
ries (A ~ 1013 GeV for (H) ~ 10% GeV). In this sense we argue that neutrino masses can serve as a
low-energy window onto new physics at superhigh energies.
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6.2 A pure Dirac neutrino mass term?

Given three right-handed neutrinos, the gauge-invariant and lepton-number-conserving mass terms of
charged leptons and neutrinos are

—Liepton = (Y HER + 0 Y, HNg + h.c. (142)

where H = 10, H™ is defined and /1, denotes the left-handed lepton doublet. After spontaneous gauge
symmetry breaking, we arrive at the charged-lepton mass matrix M, = Y,v/ /2 and the Dirac neutrino
mass matrix M, = Y, v/+/2 with v =~ 246 GeV. In this case, the smallness of three neutrino masses m;
(for 2 = 1,2, 3) is attributed to the smallness of three eigenvalues of Y,, (denoted as y, for i = 1,2, 3).
Then we encounter a transparent hierarchy problem: v, /y, = m;/m, < 0.5eV /0.5 MeV ~ 1075. Why
is y, so small? There is no explanation at all in this Dirac-mass picture.

A speculative way out is to invoke extra dimensions; namely, the smallness of Dirac neutrino
masses is ascribed to the assumption that three right-handed neutrinos have access to one or more extra
spatial dimensions. The idea is simply to confine the SM particles onto a brane and to allow Ny, to travel
in the bulk. For example, the wave-function of Ny spreads out over the extra dimension y, giving rise to
a suppressed Yukawa interaction at y = 0 (i.e., the location of the brane):

1
y=0wﬁ

The magnitude of 1/ V'L is measured by A /Aplanas and thus it can naturally be small for an effective
theory far below the Planck scale.

[@YVﬁNR} [QYVHNR} . (143)

y=L

6.3 Seesaw mechanisms

This approach works at the tree level and reflects the essential spirit of seesaw mechanisms — tiny masses
of three known neutrinos are attributed to the existence of heavy degrees of freedom and lepton number
violation.

— Type-I seesaw — three heavy right-handed neutrinos are added into the SM and the lepton number
is violated by their Majorana mass term:

_ . 1
~Liepton = 0 YiH By + 1Y, HNg + 5 Ng My Ng + hee. (144)

where My, is the Majorana mass matrix.

— Type-II seesaw — one heavy Higgs triplet is added into the SM and the lepton number is violated
by its interactions with both the lepton doublet and the Higgs doublet:

_ 1—

~Liepion = 0 Y HER + ieLYAAwQeCL — MM HTi0,AH + h.c. (145)
where V3 A0
(AT —\V2A

A= (\@ P ) (146)

denotes the SU (2), Higgs triplet.

— Type-III seesaw — three heavy triplet fermions are added into the SM and the lepton number is
violated by their Majorana mass term:

_ _ - 1 _
—Liopton = (Y HER + € V2Y5S°H + 5T (EMyX©) + hee. (147)

EO/\/i »+

where

denotes the SU(2); fermion triplet.
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Of course, there are a number of variations or combinations of these three typical seesaw mechanisms in
the literature.

For each of the above seesaw pictures, one may arrive at the unique dimension-5 Weinberg opera-
tor of neutrino masses after integrating out the corresponding heavy degrees of freedom:

;

3 (Y, MR'Y,)) o Cor HHT (5 + hec.

1 .
3 (YoMg'Ys) b HH (5 + hec.

corresponding to type-I, type-1I and type-III seesaws. After spontaneous gauge symmetry breaking, H
achieves its vacuum expectation value (H) = v/+/2 with v ~ 246 GeV. Then we are left with the
effective Majorana neutrino mass term for three known neutrinos,

1

~Lpass = LM + b (149)

mass

where the Majorana mass matrix M, is given by

ly g1 (Type I)
—5Y, ypel),
27V Mg Y
U2
M, ={ AYp—o (Type II) , (150)
MA
1 v?
—~Yo—Yd  (Typelll) .
2> My

It becomes obvious that the smallness of M, can be attributed to the largeness of My, M, or My, in the
seesaw mechanism.

6.4 Radiative origin of neutrino masses

In a seminal paper published in 1972, Weinberg pointed out that “in theories with spontaneously broken
gauge symmetries, various masses or mass differences may vanish in zeroth order as a consequence of
the representation content of the fields appearing in the Lagrangian. These masses or mass differences
can then be calculated as finite higher-order effects.” Such a mechanism may allow us to slightly go
beyond the SM and radiatively generate tiny neutrino masses. A typical example is the well-known Zee
model,

—Liepton = 0,V HER + 0 YsS ioylf, + ®T FSTioyH + hec. (151)

where S* are charged SU(2); singlet scalars, ® denotes a new SU(2); doublet scalar which has the
same quantum number as the SM Higgs doublet H, Yy is an anti-symmetric matrix, and F' represents
a mass. Without loss of generality, we choose the basis of M; = Y;(H) = Diag{m,,m,,m.}. In
this model neutrinos are massless at the tree level, but their masses can radiatively be generated via the
one-loop corrections. Given Mg > My ~ Mg ~ F and (®) ~ (H), the elements of the effective mass
matrix of three light Majorana neutrinos are

2 .9
M, mg—mg

1672 M2

(Mu)aﬁ ~ (YS)aﬁ ) (152)

where o and 3 run over e, p and 7. The smallness of M, is therefore ascribed to the smallness of Yq and
(m3 —m3)/M§. Although the original version of the Zee model is disfavored by current experimental
data on neutrino oscillations, its extensions or variations at the one-loop or two-loop level can survive.
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7 On the Scales of Seesaw Mechanisms

As we have seen, the key point of a seesaw mechanism is to ascribe the smallness of neutrino masses
to the existence of some new degrees of freedom heavier than the Fermi scale v ~ 246 GeV, such as
heavy Majorana neutrinos or heavy Higgs bosons. The energy scale where a seesaw mechanism works
is crucial, because it is relevant to whether this mechanism is theoretically natural and experimentally
testable. Between Fermi and Planck scales, there might exist two other fundamental scales: one is the
scale of a grand unified theory (GUT) at which strong, weak and electromagnetic forces can be unified,
and the other is the TeV scale at which the unnatural gauge hierarchy problem of the SM can be solved
or at least softened by a kind of new physics.

7.1 How about a very low seesaw scale?

In reality, however, there is no direct evidence for a high or extremely high seesaw scale. Hence eV-,
keV-, MeV- and GeV-scale seesaws are all possible, at least in principle, and they are technically natural
in the sense that their lepton-number-violating mass terms are naturally small according to ’t Hooft’s
naturalness criterion — “At any energy scale i, a set of parameters a;(4) describing a system can be
small, if and only if, in the limit «; (1) — O for each of these parameters, the system exhibits an enhanced
symmetry." But there are several potential problems associated with low-scale seesaws: (a) a low-scale
seesaw does not give any obvious connection to a theoretically well-justified fundamental physical scale
(such as the Fermi scale, the TeV scale, the GUT scale or the Planck scale); (b) the neutrino Yukawa
couplings in a low-scale seesaw model turn out to be tiny, giving no actual explanation of why the
masses of three known neutrinos are so small; and (c) in general, a very low seesaw scale does not allow
the “canonical” thermal leptogenesis mechanism to work.

7.2 Seesaw-induced hierarchy problem

Many theorists argue that the conventional seesaw scenarios are natural because their scales (i.e., the
masses of heavy degrees of freedom) are close to the GUT scale. This argument is reasonable on the one
hand, but it reflects the drawbacks of the conventional seesaw models on the other hand. In other words,
the conventional seesaw models have no direct experimental testability and involve a potential hierarchy
problem. The latter is usually spoke of when two largely different energy scales exist in a model, but
there is no symmetry to stabilize the low-scale physics suffering from large corrections coming from the
high-scale physics.

Such a seesaw-induced fine-tuning problem means that the SM Higgs mass is very sensitive to
quantum corrections from the heavy degrees of freedom in a seesaw mechanism. For example,

2 2

Yi 2 21 M,

—3 <A + M7 1n A2> €
M3 M3

SM2 = 16372 [)\3 <A2 + MX 111A2A> + ANAMZ mA—ZA (I1)

Y

3%'2 2 2 Mz2

| 50 (A + M (I11)

in three typical seesaw scenarios, where A is the regulator cut-off, y, and M, (for ¢ = 1,2, 3) stand
respectively for the eigenvalues of Y, (or Yy;) and My (or Msy,), and the contributions proportional to
v? and Mfl have been omitted. The above results show a quadratic sensitivity to the new scale which
is characteristic of the seesaw model, implying that a high degree of fine-tuning would be necessary to
accommodate the experimental data on M, if the seesaw scale is much larger than v (or the Yukawa
couplings are not extremely fine-tuned in type-I and type-III seesaws). Taking the type-I seesaw scenario
for illustration, we assume A ~ M, and require [§M%| < 0.1 TeV?2. Then the above equation leads us
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to the following rough estimate:

(2mv)?|6 M7, |

m;

(153)

)

0.2 eV} 1/3 [ 5M| ] 1/3

1/3
] < 107GeV { 3
0.1 TeV

M~ |

m;

This naive result indicates that a hierarchy problem will arise if the masses of heavy Majorana neutrinos
are larger than about 107 GeV in the type-I seesaw scheme. Because of m, ~ y?v?/(2M,), the bound
M; <107 GeV implies y; ~ /2m;M, /v < 2.6 x 10~* for m, ~ 0.2 eV. Such a small magnitude of y;
seems to be a bit unnatural in the sense that the conventional seesaw idea attributes the smallness of m,
to the largeness of M, other than the smallness of ;.

There are two possible ways out of this impasse: one is to appeal for the supersymmetry, and the
other is to lower the seesaw scale. We shall follow the second way to discuss the TeV seesaw mechanisms
which do not suffer from the above-mentioned hierarchy problem.

7.3 Why are the TeV seesaws interesting?

There are several reasons for people to expect some new physics at the TeV scale. This kind of new
physics should be able to stabilize the Higgs-boson mass and hence the electroweak scale; in other words,
it should be able to solve or soften the unnatural gauge hierarchy problem. It has also been argued that
the weakly-interacting particle candidates for dark matter should weigh about one TeV or less. If the
TeV scale is really a fundamental scale, may we argue that the TeV seesaws are natural? Indeed, we are
reasonably motivated to speculate that possible new physics existing at the TeV scale and responsible
for the electroweak symmetry breaking might also be responsible for the origin of neutrino masses. It is
interesting and meaningful in this sense to investigate and balance the “naturalness” and “testability" of
TeV seesaws at the energy frontier set by the LHC.

As a big bonus of the conventional (type-I) seesaw mechanism, the thermal leptogenesis mecha-
nism provides us with an elegant dynamic picture to interpret the cosmological matter-antimatter asym-
metry characterized by the observed ratio of baryon number density to photon number density, 1; =
ng/n, = (6.1 £0.2) x 10'°. When heavy Majorana neutrino masses are down to the TeV scale, the
Yukawa couplings should be reduced by more than six orders of magnitude so as to generate tiny masses
for three known neutrinos via the type-I seesaw and satisfy the out-of-equilibrium condition, but the CP-
violating asymmetries of heavy Majorana neutrino decays can still be enhanced by the resonant effects
in order to account for 7. This “resonant leptogenesis" scenario might work in a specific TeV seesaw
model.

Is there a TeV Noah’s Ark which can naturally and simultaneously accommodate the seesaw idea,
the leptogenesis picture and the collider signatures? We are most likely not so lucky and should not be
too ambitious at present. In the following we shall concentrate on the TeV seesaws themselves and their
possible collider signatures and low-energy consequences.

8 TeV Seesaws: Natural and Testable?

The neutrino mass terms in three typical seesaw mechanisms have been given before. Without loss of
generality, we choose the basis in which the mass eigenstates of three charged leptons are identified with
their flavor eigenstates.

8.1 Type-I seesaw

Given M, = Y, v/ /2, the approximate type-I seesaw formula in Eq. (150) can be rewritten as M,, =
—MpMg Vs g . Note that the 3 x 3 light neutrino mixing matrix V' is not exactly unitary in this seesaw
scheme, and its deviation from unitarity is of O(M3 /M3g). Let us consider two interesting possibilities.
(1) My ~ O(102) GeV and My ~ O(10') GeV to get M,, ~ O(1072) eV. In this conventional and
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natural case, Mp, /My ~ O(10713) holds. Hence the non-unitarity of V' is only at the O(1072°) level,
too small to be observed. (2) My, ~ O(10%) GeV and My ~ O(10%) GeV to get M,, ~ O(107%) eV. In
this unnatural case, a significant “structural cancellation" has to be imposed on the textures of My, and
My, Because of My, /My ~ O(0.1), the non-unitarity of V' can reach the percent level and may lead to
observable effects.

Now we discuss how to realize the above “structural cancellation" for the type-I seesaw mechanism
at the TeV scale. For the sake of simplicity, we take the basis of My = Diag{M,, M,, My} for three
heavy Majorana neutrinos (/Vy, Ny, N3). It is well known that M, vanishes if

Vv Y2 Y3 3 Y2
Mp=m|oy, oy ays| ., Y. 17 =0 (154)
By, Byy Bys =11

simultaneously hold. Tiny neutrino masses can be generated from tiny corrections to the texture of M,
in Eq. (154). For example, M|, = M, — eX|, with M, given above and ¢ being a small dimensionless
parameter (i.e., |¢| < 1) yields

M}, = — MM M ~ e (Mp Mg XE + Xp Mg ' ME) (155)

from which M/, ~ O(1072) eV can be obtained by adjusting the size of e.

A lot of attention has recently been paid to a viable type-I seesaw model and its collider signatures
at the TeV scale. At least the following lessons can be learnt:

— Two necessary conditions must be satisfied in order to test a type-I seesaw model at the LHC: (a)
M are of O(1) TeV or smaller; and (b) the strength of light-heavy neutrino mixing (i.e., My, /Mp)
is large enough. Otherwise, it would be impossible to produce and detect NV, at the LHC.

— The collider signatures of [V, are essentially decoupled from the mass and mixing parameters of
three light neutrinos v;. For instance, the small parameter € in Eq. (155) has nothing to do with the
ratio Mp, /M.

— The non-unitarity of V' might lead to some observable effects in neutrino oscillations and other
lepton-flavor-violating or lepton-number-violating processes, if Mp, /My < O(0.1) holds.

— The clean LHC signatures of heavy Majorana neutrinos are the AL = 2 like-sign dilepton events,
such as pp — W*EW*+ — %5 and pp — W** — p*N; — p*p* 55 (a dominant channel
due to the resonant production of V).

Some instructive and comprehensive analyses of possible LHC events for a single heavy Majorana neu-
trino have recently been done, but they only serve for illustration because such a simplified type-I seesaw
scenario is actually unrealistic.

8.2 Type-II seesaw

The type-1I seesaw formula M,, = Y, v, = A, Y, v%/M 4 has been given in Eq. (150). Note that the
last term of Eq. (145) violates both L and B — L, and thus the smallness of ), is naturally allowed
according to 't Hooft’s naturalness criterion (i.e., setting A, = 0 will increase the symmetry of L’lept on)-
Given M, ~ O(1) TeV, for example, this seesaw mechanism works to generate M, ~ O(1072) eV
provided A\Y, ~ O(107'%) holds. The neutrino mixing matrix V is exactly unitary in the type-II

seesaw mechanism, simply because the heavy degrees of freedom do not mix with the light ones.

There are totally seven physical Higgs bosons in the type-1I seesaw scheme: doubly-charged H ™"
and H~, singly-charged H " and H —, neutral A% (CP-0dd), and neutral h° and H° (CP-even), where h°
is the SM-like Higgs boson. Except for M?,, we get a quasi-degenerate mass spectrum for other scalars:

hO>
Méii = Mi ~ MIQ{0 ~ M?{i RS Mio. As a consequence, the decay channels H** — W*H* and
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H** — H*H? are kinematically forbidden. The production of H** at the LHC is mainly through
qq@ — Y, 2" — HY*YH " and q7 — W* — H**HT processes, which do not rely on the small
Yukawa couplings.

The typical collider signatures in this seesaw scenario are the lepton-number-violating H+*+ —
lgfléc decays as well as H™ — [tv and H~ — [, v decays. Their branching ratios

(M) 0% (2= 8,5)
S,
p,0

Z (M) o1

BH* > ltp) =2 (156)
Z (M), |2
P,o ’

are closely related to the masses, flavor mixing angles and CP-violating phases of three light neutrinos,
because M, = VM, VT with M, = Diag{m,, m,, m3} holds. Some detailed analyses of such decay
modes together with the LHC signatures of H** and H* bosons have been done in the literature.

B(H* — I515) =

It is worth pointing out that the following dimension-6 operator can easily be derived from the
type-1I seesaw mechanism,

A2 = 4Mi (ZQL’YMKJL)(EgL’YuepL) ) (157)

which has two immediate low-energy effects: the non-standard interactions of neutrinos and the lepton-
flavor-violating interactions of charged leptons. An analysis of such effects provides us with some pre-
liminary information:

— The magnitudes of non-standard interactions of neutrinos and the widths of lepton-flavor-violating
tree-level decays of charged leptons are both dependent on neutrino masses 1, and flavor-mixing
and CP-violating parameters of V.

— For a long-baseline neutrino oscillation experiment, the neutrino beam encounters the earth matter
and the electron-type non-standard interaction contributes to the matter potential.

and ut — eTU.v

— At a neutrino factory, the lepton-flavor-violating processes = — e v, U f

could cause some wrong-sign muons at a near detector.

o

Current experimental constraints tell us that such low-energy effects are very small, but they might be
experimentally accessible in the future precision measurements.

8.3 Type-(I+II) seesaw

The type-(I+11) seesaw mechanism can be achieved by combining the neutrino mass terms in Eqs. (144)
and (145). After spontaneous gauge symmetry breaking, we are left with the overall neutrino mass term

17—~ (M, M vE
—Lonass = = (NS ( L D) ( L) +hee., (158)
2 (mNf) ME Mg ) \ Ny

where My, = Y, v/v/2 and M} = Y v, with (H) = v/+/2 and (A) = v, corresponding to the vacuum
expectation values of the neutral components of the Higgs doublet H and the Higgs triplet A. The 6 x 6
mass matrix in Eq. (158) is symmetric and can be diagonalized by the unitary transformation done in

Eq. (28);i.e.,
v R\'/M, M)\ (V R\" (M, o (159)
S U) \M5 Mg)\S U) 0o M/’
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where ]\/4\1, = Diag{m,, my, ms} and ]/\/I\N = Diag{M,, M,, M;}. Needless to say, VIV + STS =
VVT + RR' = 1 holds as a consequence of the unitarity of this transformation. Hence V/, the flavor
mixing matrix of light Majorana neutrinos, must be non-unitary if R and S are non-zero.

In the leading-order approximation, the type-(I+I1) seesaw formula reads as
M, ~ My, — MMz ' ME . (160)

Hence type-I and type-II seesaws can be regarded as two extreme cases of the type-(I+II) seesaw. Note
that two mass terms in Eq. (160) are possibly comparable in magnitude. If both of them are small, their
contributions to M, may have significant interference effects which make it practically impossible to
distinguish between type-II and type-(I+II) seesaws; but if both of them are large, their contributions to
M, must be destructive. The latter case unnaturally requires a significant cancellation between two big
quantities in order to obtain a small quantity, but it is interesting in the sense that it may give rise to
possibly observable collider signatures of heavy Majorana neutrinos.

Let me briefly describe a particular type-(I+II) seesaw model and comment on its possible LHC
signatures. First, we assume that both M, and M, are of O(1) TeV. Then the production of H +E
and H* bosons at the LHC is guaranteed, and their lepton-number-violating signatures will probe the
Higgs triplet sector of the type-(I+II) seesaw mechanism. On the other hand, O(Mp/Mp) < 0(0.1) is
possible as a result of O(Myp) ~ O(1) TeV and O(Mp,) < O(v), such that appreciable signatures of
N, can be achieved at the LHC. Second, the small mass scale of ), implies that the relation O(M; ) ~
O(Mp My 1Mg ) must hold. In other words, it is the significant but incomplete cancellation between
M, and MMy lMg terms that results in the non-vanishing but tiny masses for three light neutrinos.
We admit that dangerous radiative corrections to two mass terms of M, require a delicate fine-tuning
of the cancellation at the loop level. But this scenario allows us to reconstruct M; via the excellent

approximation M = VM, VT4 RM NRT ~ RM N RT, such that the elements of the Yukawa coupling
matrix Y, read as follows:

(ML)a 5 RaiR zMz
(Ya)ap = Cay et (161)

RN im1 UA

where the subscripts o and 3 run over e, p and 7. This result implies that the leptonic decays of H**
and H* bosons depend on both R and M, which actually determine the production and decays of IV,.
Thus we have established an interesting correlation between the singly- or doubly-charged Higgs bosons
and the heavy Majorana neutrinos. To observe the correlative signatures of H+, H** and N; at the LHC
will serve for a direct test of this type-(I+II) seesaw model.

8.4 Type-III seesaw

The lepton mass terms in the type-IIl seesaw scheme have already been given in Eq. (147). After
spontaneous gauge symmetry breaking, we are left with

l——=/0 M vy
L = 5 1 D) (Mg M];) <Z&c> +he.

—Liass = (er, Y1) <]‘gl @JZD> (52) +h.c., (162)

respectively, for neutral and charged fermions, where M, = Ylv/ V2, My = YEv/ V2 ,and U =
¥~ + XT°. The symmetric 6 x 6 neutrino mass matrix can be diagonalized by the following unitary

transformation:
v R\'/ 0o M)\ (Vv R\ (M, o (163)
S U) \M5 Mg)\s U) o M)’

214



NEUTRINO PHYSICS

where ]\//.71, = Diag{m,, my, mg} and ]\72 = Diag{M,, M,, M;}. In the leading-order approximation,
this diagonalization yields the type-III seesaw formula M, = —Mp My, lMg , which is equivalent to the
one derived from the effective dimension-5 operator in Eq. (150). Let us use one sentence to comment
on the similarities and differences between type-I and type-III seesaw mechanisms: the non-unitarity of
the 3 x 3 neutrino mixing matrix V' has appeared in both cases, although the modified couplings between
the Z° boson and three light neutrinos differ and the non-unitary flavor mixing is also present in the
couplings between the Z° boson and three charged leptons in the type-III seesaw scenario.

At the LHC, the typical lepton-number-violating signatures of the type-III seesaw mechanism can
be pp — LTX0 — l;jlg + Z'W=(— 4j) and pp — 2720 — Ioly + ZOWT(— 4j) processes.
A detailed analysis of such collider signatures have been done in the literature. As for the low-energy
phenomenology, a consequence of this seesaw scenario is the non-unitarity of the 3 x 3 flavor mixing
matrix NV (= V') in both charged- and neutral-current interactions. Current experimental bounds on the
deviation of NN from the identity matrix are at the 0.1% level, much stronger than those obtained in
the type-I seesaw scheme, just because the flavor-changing processes with charged leptons are allowed
at the tree level in the type-III seesaw mechanism.

8.5 Inverse and multiple seesaws

Given the naturalness and testability as two prerequisites, the double or inverse seesaw mechanism is
another interesting possibility of generating tiny neutrino masses at the TeV scale. The idea of this
seesaw picture is to add three heavy right-handed neutrinos N, three SM gauge-singlet neutrinos Sy
and one Higgs singlet ® into the SM, such that the gauge-invariant lepton mass terms can be written as

_ . - 1
~Liopion = I Y/ HEg + 1Y, HNy + NRYs®Sp + 5 Sgusp + he. (164)

where the p-term is naturally small according to "t Hooft’s naturalness criterion, because it violates the
lepton number. After spontaneous gauge symmetry breaking, the overall neutrino mass term turns out to
be

0 M, O Z3
(v, NESg) | ML 0 Mg | | Ny | (165)
0 M p Sy

—L

N

mass

where M, =Y, (H) and Mg = Yo (®). A diagonalization of the symmetric 9 x 9 matrix M leads us to
the effective light neutrino mass matrix

— M} (166)

in the leading-order approximation. Hence the smallness of M, can be attributed to both the smallness
of p itself and the doubly-suppressed My,/Mg term for My < Mg. For example, u ~ O(1) keV
and M /Mg ~ O(1072) naturally give rise to a sub-eV M,,. One has M,, = 0 in the limit 4 — 0,
which reflects the restoration of the slightly-broken lepton number. The heavy sector consists of three
pairs of pseudo-Dirac neutrinos whose CP-conjugated Majorana components have a tiny mass splitting
characterized by the order of .

Going beyond the canonical (type-I) and inverse seesaw mechanisms, one may build the so-called
“multiple" seesaw mechanisms to further lower the seesaw scales.

9 Non-unitary Neutrino Mixing

It is worth remarking that the charged-current interactions of light and heavy Majorana neutrinos are
not completely independent in either the type-I seesaw or the type-(I+II) seesaw. The standard charged-
current interactions of v, and [V, are already given in Eq. (34), where V' is just the light neutrino mixing
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matrix responsible for neutrino oscillations, and R describes the strength of charged-current interactions
between (e, u, 7) and (N, Ny, N3). Since V' and R belong to the same unitary transformation done in
Eq. (28) or Eq. (159), they must be correlated with each other and their correlation signifies an important
relationship between neutrino physics and collider physics.

It can be shown that V' and R share nine rotation angles (6,,, 0,5 and 0,5 for i = 1, 2 and 3)
and nine phase angles (d,,, 6,5 and d,; for ¢ = 1, 2 and 3). To see this point clearly, let us decompose
Vinto V. = AV,,, where 1, is the standard (unitary) parametrization of the 3 x 3 PMNS matrix in

which three CP-violating phases 5ij (for ij = 12,13, 23) are associated with s;; (i.e., ¢;; = cos Hl-j and

8 = €'ii sin 0,;)- Because of VVT = AAT = 1 — RRY, it is obvious that V — V, in the limit of
A — 1 (or equivalently, R — 0). Considering the fact that the non-unitarity of V' must be a small effect
(at most at the percent level as constrained by current neutrino oscillation data and precision electroweak
data), we expect s;; < 0(0.1) (fori =1,2,3 and j = 4, 5, 6) to hold. Then we obtain

814 315 Si6

834 535 536
as an excellent approximations. A striking consequence of the non-unitarity of V" is the loss of universal-
ity for the Jarlskog invariants of CP violation, .J ]ﬂ = Im(V,, ViiVai ;V3;), where the Greek indices run
over (e, i, 7) and the Latin indices run over (1,2, 3). For example, the extra CP-violating phases of V/
are possible to give rise to a significant asymmetry between v, — v, and 7,, — 7, oscillations.

The probability of v, — v/ oscillations in vacuum, defined as P, ;, is given by

Z ’Von’ |Vﬁz’2 +2 Z Re Vﬁj Vg*l) Ccos Aij - Z J;]b, sin AU
1<j 1<j

i (vv )w (vvi )BB ’

where A;; = AmZ;L/(2E) with Amg; = m7 — m3, E being the neutrino beam energy and L being
the baseline length If V is exactly umtary (i.e., A = 1and V = V), the denominator of Eq. (168)
will become unity and the conventional formula of P, ; will be reproduced. Note that v, — v and
v, — v, oscillations may serve as a good tool to probe possible signatures of non-unitary CP violation.
To illustrate this point, we consider a short- or medium-baseline neutrino oscillation experiment with
|'sin Ayg| ~ | sin Agg| > | sin A},|, in which the terrestrial matter effects are expected to be insignificant
or negligibly small. Then the dominant CP-conserving and CP-violating terms of P(v, — v_) and

w
P, —7,)are

(168)

, A
P(v, — v,) ~sin 220, sin’ 223 (Jii + Jﬁi) sin Ay ,
A
P(7, — T,) ~ sin® 20,3 sin’ % +2(J2 + J)2) sin Agg (169)

where the good approximation A3 ~ A,; has been used in view of the experimental fact |Am?;| ~
|Am3,| > |Am?,], and the sub-leading and CP-conserving “zero-distance" effect has been omitted. For
simplicity, I take V;, to be the exactly tri-bimaximal mixing pattern (i.e., ;5 = arctan(1/v/2), 6,3 = 0
and 6,3 = 7/4 as well as 0,5, = 0,3 = 3 = 0) and then arrive at

6

2(JR+T33) ~ ) sysysin 0y — 0y) (170)
=4

Given sy, ~ 55, ~ O(0.1) and (05, — d5,) ~ O(1) (for [ = 4,5, 6), this non-trivial CP-violating quantity
can reach the percent level. When a long-baseline neutrino oscillation experiment is concerned, however,
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the terrestrial matter effects must be taken into account because they might fake the genuine CP-violating
signals. As for v, — v, and v,, — v_ oscillations under discussion, the dominant matter effect results
from the neutral-current interactions and modifies the CP-violating quantity of Eq. (170) in the following
way:

6
2 (Ji?_ + J13 i Z 82l83l Sln 52l (531) + ANCL COS (62[ — 630] y (171)
=4

where Ay = GgN,,/ V2 with N, being the background density of neutrons, and L is the baseline
length. It is easy to find Ay L ~ O(1) for L ~ 4 x 103 km.

10 Concluding Remarks

I have briefly described some basic properties of massive neutrinos in an essentially model-independent
way in these lectures, which are largely based on the book by Dr. Shun Zhou and myself [1] and on
a few review articles or lectures [2]— [6]. It is difficult to cite all the relevant references. I apologize
for missing other people’s works due to the tight page limit of these proceedings. For the same reason
I am unable to write in the cosmological matter-antimatter asymmetry and the leptogenesis mechanism,
although they were discussed in my lectures. Here let me just give a few remarks on the naturalness and
testability of TeV seesaw mechanisms.

Although the seesaw ideas are elegant, they have to appeal for some or many new degrees of
freedom in order to interpret the observed neutrino mass hierarchy and lepton flavor mixing. According
to Weinberg’s third law of progress in theoretical physics, “you may use any degrees of freedom you like
to describe a physical system, but if you use the wrong ones, you will be sorry." What could be better?

Anyway, we hope that the LHC might open a new window for us to understand the origin of
neutrino masses and the dynamics of lepton number violation. A TeV seesaw might work (naturalness?)
and its heavy degrees of freedom might show up at the LHC (festability?). A bridge between collider
physics and neutrino physics is highly anticipated and, if it exists, will lead to rich phenomenology.

I am indebted to the organizers of AEPSHEP 2012 for their invitation and hospitality. This work
is supported in part by the National Natural Science Foundation of China under grant No. 11135009.
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Abstract

The field of relativistic heavy-ion collisions is introduced to the high-energy
physics students with no prior knowledge in this area. The emphasis is on
the two most important observables, namely the azimuthal collective flow and
jet quenching, and on the role fluid dynamics plays in the interpretation of
the data. Other important observables described briefly are constituent quark
number scaling, ratios of particle abundances, strangeness enhancement, and
sequential melting of heavy quarkonia. Comparison is made of some of the
basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial
findings at LHC which seem to be in apparent conflict with the accumulated
RHIC data are highlighted.

1 Introduction

These are exciting times if one is working in the area of relativistic heavy-ion collisions, with two heavy-
ion colliders namely the Relativistic Heavy-lon Collider (RHIC) at the Brookhaven National Laboratory
and the Large Hadron Collider (LHC) at CERN in operation in tandem. Quark-gluon plasma has been
discovered at RHIC, but its precise properties are yet to be established. With the phase diagram of
strongly interacting matter (QCD phase diagram) also being largely unknown, these are also great times
for fresh graduate students to get into this area of research, which is going to remain very active for the
next decade at least. The field is maturing as evidenced by the increasing number of text books that are
now available [1-9]. Also available are collected review articles; see e.g., [10-12].

This is a fascinating inter-disciplinary area of research at the interface of particle physics and
high-energy nuclear physics. It draws heavily from QCD — perturbative, non-perturbative, as well as
semiclassical. It has overlaps with thermal field theory, relativistic fluid dynamics, kinetic or transport
theory, quantum collision theory, apart from the standard statistical mechanics and thermodynamics.
Quark-Gluon Plasma (QGP) at high temperature, 7', and vanishing net baryon number density, np (or
equivalently the corresponding chemical potential, ;15), is of cosmological interest, while QGP at low T’
and large np is of astrophysical interest. String theorists too have developed interest in this area because
of the black hole — fluid dynamics connection.

Students of high-energy physics would know that the science of the ‘small” — the elementary
particle physics — is deeply intertwined with the science of the ‘large’ — cosmology — the study of
the origin and evolution of the universe. Figure 1 shows the temperature history of the universe starting
shortly after the Big Bang. At times ~ 10 pus after the Big Bang, with 7' 2 200 MeV,! the universe
was in the state of QGP, and the present-day experiments which collide two relativistic heavy ions — the
Little Bang — try to recreate that state of matter in the laboratory for a brief period of time.

Recall the phase diagram (pressure vs temperature) of water, Fig. 2(a). It shows three broad
regions separated by phase transition lines, the triple point where all three phases coexist, and the critical
point where the vapour pressure curve terminates and two distinct coexisting phases, namely liquid and
gas, become identical. All these features are well-established experimentally to a great accuracy. In
contrast the QCD phase diagram (Fig. 2(b)) is known only schematically, except for the lattice QCD
predictions at vanishing or small pp, in particular the prediction of a crossover transition around 7' ~

'"In comparison, the temperature and time corresponding to the electroweak transition were ~ 200 GeV and ~ 10712 s,
respectively. Note 1 MeV ~ 10*° K.
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Fig. 1: Temperature history of the universe. The Big Bang and the Little Bang.

150-170 MeV [14, 15] for vanishing pp. As arguments based on a variety of models indicate a first-
order phase transition as a function of temperature at finite ;1 p, one expects the phase transition line to
end at a critical point. The existence of the critical point, however, is not established experimentally.
Apart from the region of hadrons at the low enough 7" and pp, and the region of quarks and gluons
at high T" and g, there is also a region characterized by colour superconductivity, at high pp and low
T [16-18]. However, precise boundaries separating these regions are not known experimentally. Actually
the QCD phase diagram may be richer than what is shown in Fig. 2(b) [19]. Before we proceed further,
a precise definition of QGP is in order. We follow the definition proposed by the STAR collaboration
at RHIC: Quark-Gluon Plasma is defined as a (locally) thermally equilibrated state of matter in which
quarks and gluons are deconfined from hadrons, so that they propagate over nuclear, rather than merely
nucleonic, volumes [20]. Note the two essential ingredients of this definition, (a) the constituents of the
matter should be quarks and gluons, and (b) the matter should have attained (local)? thermal equilibrium.
Any claim of discovery of QGP can follow only after these two requirements are shown to be fulfilled
unambiguously.

The big idea thus is to map out (quantitatively) the QCD phase diagram [21]. The main theoret-
ical tool at our disposal is, of course, the lattice QCD. Although it allows first-principle calculations,
it has technical difficulties for non-vanishing pp or ng. We also have various effective theories and
phenomenological models which indeed are the basis of the schematic phase diagram of QCD shown in
Fig. 2(b). Experimental tools available to us are the relativistic heavy-ion colliders such as those at BNL
and CERN, and the upcoming lower-energy facilities namely Facility for Antiproton and Ion Research
(FAIR) at GSI and Nuclotron-based Ion Collider fAcility (NICA) at JINR. Apart from these terrestrial
facilities, astronomy of neutron stars can also throw light on the low 7" and high n g region of the QCD
phase diagram.

Figure 3 shows the lattice results for the QCD equation of state (EoS) at vanishing chemical
potential in the temperature range 100 MeV < T < 1000 MeV for physical light and strange quark

2Unlike a system in global equilibrium, here temperature and chemical potential may depend on space-time coordinates.

220



RELATIVISTIC HEAVY-ION COLLISIONS

Early — :
tnivese | Critical Point |
s 3l e
e rossover
218 | i = transition ‘Quark— Gluon Plasma
BfF~---=~=--
= | 7 B
E | Deconfinement &
= | —~ First—order . P
= Ice |II b phase transition A / chiral transition
E Triple Point I| 2
£ ooe E] ool
= olour
/ Steam 5 Hadron gas superconductor
o
=)
ﬁ Nuclei
0001 100 374 Neutron stars

Temperature (°C)

Baryon Chemical Potential (L g)
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masses m,, 4. Note that both energy density (¢) and pressure (P) rise rapidly around 7' = 160 MeV,
indicating an increase in entropy or the number of degrees of freedom. This is consistent with the
deconfinement transition with a concomitant release of the partonic degrees of freedom. The rise of P
is less rapid than that of € as expected: the square of the speed of sound ¢2 = 9P/0¢ cannot exceed
unity. Note also that in the limit of high 7T, the EoS approaches the form ¢ = 3P expected of massless
particles. However, € is significantly less than egp showing that the system is far from being in an ideal
gaseous state. Lattice results indicate that the transition at vanishing pp is merely an analytic crossover.
Although there is no strict phase transition, it is common to use the words confined and deconfined phases
to describe the low- and high-temperature regimes. For a recent review of the lattice QCD at non-zero
temperature, see [22].

_I T I T T T I T T T I T T ISBI T T T ] f T I T T T I T T T I T T ISBI T T T _‘
- — 15 - N, 6 -5
- Fmm N=8 3
L - T 4
L —— — [ oo ]
i ~ ] 10 ¢ C T ]
S +t : S F 313
= r 1 e L ]
kv [ ] a E_ _E 2
= ] 5 F ]
[ Neto R - 3
[ 100 150 200 20 C 100 150 200 250 ]
1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 ]
200 400 600 800 1000 200 400 600 800 1000
T[Mev] T[MeV]

Fig. 3: Energy density and pressure normalized by T as a function of temperature (7') on N; = 6, 8 and 10 lattices.
Ny is the number of lattice points in the temporal direction. The Stefan-Boltzmann (SB) limits are indicated by
arrows. Figure from [14]; see also [15].

An ultrarelativistic heavy-ion collision (URHIC) of two (identical) Lorentz-contracted® nuclei is
thought to proceed as follows. Each incoming nucleus can be looked upon as a coherent [5] cloud of
partons (more precisely, a colour-glass-condensate (CGC) plate [24]). The collision results in shatter-
ing of the two CGC plates. A significant fraction of the incoming kinetic energy is deposited in the
central region leading to a high-energy-density fireball (more precisely, a highly non-equilibrium state
called glasma [24]). This is still a coherent state and liberation of partons from the glasma takes a finite
amount of (proper) time (a fraction of a fm/c). Subsequently collisions among partons lead to a nearly
thermalized (local thermalization!) state called QGP. This happens at a time of the order of 1 fm/c — a

3No matter how high the incoming kinetic energy and hence the Lorentz contraction factor is, the limiting thickness of the
nucleus is ~ 1 fm due to the so-called wee partons [23].
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less understood aspect of the entire process. Due to near thermalization, the subsequent evolution of the
system proceeds as per relativistic imperfect fluid dynamics. This involves expansion, cooling, and dilu-
tion. Eventually the system hadronizes. Hadrons continue to collide among themselves elastically which
changes their energy-momenta, as well as inelastically which alters abundances of individual species.
Chemical freezeout occurs when inelastic processes stop. Kinetic freezeout occurs when elastic scat-
terings too stop. These late stages of evolution when the system is no longer in local equilibrium are
simulated using the relativistic kinetic theory framework. Hadrons decouple from the system approx-
imately 10-15 fm/c after the collision and travel towards the surrounding detectors. From the volume
of experimental data thus collected one has to establish whether QGP was formed and if so, extract its
properties.

After years of work a Standard Model of URHICs has emerged: The initial state is constructed
using either the Glauber model [25] or one of the models implementing ideas originating from CGC [26];
for a recent review see [27]. The intermediate evolution is considered using some version of the Miiller-
Israel-Stewart-like theory [28,29] of causal relativistic imperfect fluid dynamics, together with a QCD
equation of state spanning partonic and hadronic phases [30]. The end evolution of the hadron-rich
medium leading to a freezeout uses the Boltzmann equation in the relativistic transport theory [31].
The final state consists of thousands of particles (mesons, baryons, leptons, photons, light nuclei).
Detailed measurements (single-particle inclusive, two- and multi-particle correlations, etc.) are avail-
able, spanning the energy range from SPS to RHIC to LHC, for various colliding nuclei, centralities,
(pseudo)rapidities, and transverse momenta. The aim is to achieve a quantitative understanding of the
thermodynamic and transport properties of QGP, e.g., its EoS, its transport coefficients (shear and bulk
viscosities, diffusivity, conductivity), etc. The major hurdles in this endeavour are an inadequate knowl-
edge of the initial state and event-to-event fluctuations at nucleonic and sub-nucleonic levels in the initial
state.

2 Two most important observables

Elliptic flow and jet quenching are arguably the two most important observables in this field. Observation
of an elliptic flow almost as large as that predicted by ideal (i.e., equilibrium) hydrodynamics led to the
claim of formation of an almost perfect fluid at RHIC [32]. A natural explanation of the observed jet
quenching is in terms of a dense and coloured (hence partonic, not hadronic) medium that is rather
opaque to high-momentum hadrons. Recall the definition of QGP given in section 1. The two essential
requirements mentioned there seem to be fulfilled considering these two observations together.

Before I discuss these two observations in detail, let me explain what is meant by an almost
perfect fluid. Air and water are the two most common fluids we encounter. Which of them is more
viscous? Water has a higher coefficient of shear viscosity (n) than air, and appears more viscous. But
that is misleading. To compare different fluids, one should consider their kinematic viscosities defined
as 1/p where p is the density. Air has a higher kinematic viscosity and hence is actually more viscous
than water! Relativistic analogue of 1/p is the dimensionless ratio 1/s where s is the entropy density.
Scaling by s is appropriate because number density is ill-defined in the relativistic case. Figure 4 shows
constant-pressure (Pe;ticq1) curves for 17/s as a function of temperature for various fluids, namely water,
nitrogen, helium, and the fluid formed at RHIC. All fluids show a minimum at the critical temperature,
and among them the RHIC fluid has the lowest 17/s, even lower than that of helium. Hence it is the
most perfect fluid observed so far*. For water, nitrogen, and helium, points to the left (right) of the
minimum refer to the liquid (gaseous) phase. As T rises, 11/ s for these liquids drops, attains a minimum
at the critical temperature 7, and then in the gaseous phase it rises. This is because liquids and gases
transport momentum differently [35]. RHIC fluid is an example of a strongly coupled quantum fluid and
has been called sQGP to distinguish it from weakly coupled QGP or wQGP expected at extremely high

*More recently, trapped ultracold atomic systems are also shown to have /s much smaller than that for helium [34].
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temperatures. Interestingly, the liquid formed at RHIC and LHC cools into a (hadron resonance) gas!
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Fig. 4: Constant pressure (P,,;+;cq1) curves for (shear viscosity/entropy density) vs temperature. T is the critical
temperature of the liquid-gas phase transition. Points labelled Meson Gas are based on chiral perturbation theory
and have 50% errors (not shown). Points labelled QGP are based on lattice QCD simulations. Figure from [33].

2.1 Elliptic flow

Consider a non-central (i.e., non-zero impact parameter) collision of two identical spherical nuclei trav-
elling in opposite directions; see Fig. 5(a). In an actual experiment the magnitude and orientation of the
impact parameter vector fluctuate from event to event (Fig. 5(b)) and are unknown. This initial geometry
can potentially affect the distribution of particles in the final state — in particular, in the transverse plane.
In order to capture this physics in terms of a few parameters, the triple differential invariant distribution
of particles emitted in the final state is Fourier-decomposed as follows [36]

PN &N PN 1
d*p  prdprdydé¢  prdprdy 2w

1+220ncosn(¢—@3) , (D
n=1

where pr is the transverse momentum, y the rapidity, ¢ the azimuthal angle of the outgoing particle
momentum, and P the reaction-plane angle. Sine terms, sin n(¢ — ®r), are not included in the Fourier
expansion in Eq. (1) because they vanish due to the reflection symmetry with respect to the reaction
plane; see Fig. 5. The reaction-plane angle ® r which characterizes the initial geometry (Fig. 5(b)) is
not known, and is estimated using the transverse distribution of particles in the final state. The estimated
reaction plane is called the event plane. The leading term in the square brackets in Eq. (1) represents the
azimuthally symmetric radial flow. The first two harmonic coefficients v; and v9 are called directed and
elliptic flows, respectively”. We have

2 d¢ cos[n(¢p — Pg) __dN
on(pr,y) = {cosln(¢ — R)]) = = fzg ¢d31jv]pT P, @)
0 prdprdyd

3To understand this nomenclature, make polar plots of 7 = (1 4 2uv,, cos n¢) for a small positive value of v,,.
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The average is taken in the (pr, y) bin under consideration. After taking the average over all particles in
an event, average is then taken over all events in a centrality class®. For a central collision the azimuthal
distribution 1is isotropic, and hence v, = 0, i.e., only the radial flow survives. For a review of the
methods used for analyzing anisotropic flow in relativistic heavy-ion collisions, and interpretations and
uncertainties in the measurements, see [37,38].

Fig. 5: (a) Non-central collision of two nuclei. Collision or beam axis is perpendicular to the plane of the figure.
Impact parameter b = length AB. z is the longitudinal direction, xy is the transverse or azimuthal plane, zz is the
reaction plane, and ¢ is the azimuthal angle of one of the outgoing particles. The shaded area indicates the overlap
zone. For a central or head-on collision (b = 0) the reaction plane cannot be defined. (b) XY Z are the lab-fixed
axes. @ is the reaction-plane angle.

In a non-central collision, the initial state is characterized by a spatial anisotropy in the azimuthal
plane (Fig. 5). Consider particles in the almond-shaped overlap zone. Their initial momenta are pre-
dominantly longitudinal. Transverse momenta, if any, are distributed isotropically. If these particles do
not interact with each other, the final (azimuthal) distribution too will be isotropic. On the other hand, if
they do interact with each other frequently and with adequate strength (or cross section), then the (local)
thermal equilibrium is likely to be reached. Once that happens, the system can be described in terms of
thermodynamic quantities such as temperature, pressure, etc. The spatial anisotropy of the overlap zone
ensures anisotropic pressure gradients in the transverse plane. This leads to a final state characterized by
momentum anisotropy, an anisotropic azimuthal distribution of particles, and hence a nonvanishing v,,.
Thus v,, is a measure of the degree of thermalization of the quark-gluon matter produced in a noncentral
heavy-ion collision — a central issue in this field.

The anisotropic flow v,, is sensitive to the early (~ fm/c) history of the collision: Higher pressure
gradients along the minor axis of the spatially anisotropic source (Fig. 5) imply that the expansion of the
source would gradually diminish its anisotropy, making the flow self-quenching. Thus v,, builds up early
(i.e., when the anisotropy is significant) and tends to saturate as the anisotropy continues to decrease.
(This is unlike the radial flow which continues to grow until freezeout and is sensitive to early- as well
as late-time history of the collision). Thus v, is a signature of pressure at early times.

The flow v,, depends on the initial conditions, i.e., the beam energy, the mass number of colliding
nuclei, and the centrality of the collision. It also depends on the species of the particles under consid-
eration apart from their transverse momentum (py) and rapidity (y) or pseudorapidity (7). Using the
symmetry of the initial geometry, one can show that v, (y) is an even (odd) function of y if n is even
(odd). Hence v (y) vanishes at mid-rapidity. At RHIC energies at mid-rapidity, it is the elliptic flow

SCentrality of a AA collision is determined making use of its tight correlation with the charged-particle multiplicity or
transverse energy at mid-rapidity, which in turn are anti-correlated with the energy deposited in the Zero Degree Calorimeters.
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Fig. 6: Success of ideal hydrodynamics: Minimum-bias elliptic flow data for different particle species in compar-
ison with ideal hydrodynamics calculations. Figure from [39].

vy that plays an important role. Figure 6 shows the va(p7) data at the highest RHIC energy for various
particle species, in broad agreement with the ideal hydrodynamic calculations. As stated before, this
success of the ideal hydrodynamics led to the claim of formation of an almost perfect fluid at RHIC.

Extraction of 1/s: Introduction of shear viscosity tends to reduce the elliptic flow, vs, with respect
to that for an ideal fluid: a particle moving in the reaction plane (Fig. 5(a)) being faster experiences a
greater frictional force compared with a particle moving out of the plane thereby reducing the azimuthal
anisotropy and hence vy. This fact has been used to place an upper limit on the value of 7/s of the
RHIC fluid. A more precise determination is hindered by ambiguities in the knowledge of the initial
state. Event-to-event fluctuations give rise to ‘new’ flows and observables which help constrain the 7/s
further.

2.1.1 Event-to-event fluctuations

The discussion above was somewhat idealistic because we assumed smooth initial geometry: Energy (or
entropy) density €(x, y) (or s(x, y)) in the shaded area in Fig. 5(a) was a smooth function of z, y because
it was assumed to result from the overlap of two smooth Woods-Saxon nuclear density distributions.
However, the reality is not so simple, i.e., the initial geometry is not smooth.

In relativistic heavy-ion collisions, the collision time-scale is so short that each incoming nucleus
sees nucleons in the other nucleus in a frozen configuration. Event-to-event fluctuations in nucleon (V)
positions (and hence in NN collision points) result in an overlap zone with inhomogeneous energy
density and a shape that fluctuates from event to event, Fig. 7. This necessitates that the “sine terms” are
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also included in the Fourier expansion in Eq. (1). Equivalently, one writes
5 &N &N N 1
d*p  prdprdydd  prdprdy 2w

Thus each harmonic n may have its own reference angle W, in the transverse plane. Traditional hy-
drodynamic calculations do not take these event-to-event fluctuations into account. Instead of averaging

1+ Z 2up cosn(p— Up)| . 3)
n=1

Fig. 7: ‘Snapshot’ of nucleon positions at the instant of collision. Due to event-to-event fluctuations, the overlap
zone could be shifted and tilted with respect to the (x, y) frame. z'y’: principal axes of inertia. Figure from [40].

over the fluctuating initial conditions and then evolving the resultant smooth distribution, one needs to
perform event-to-event hydrodynamics calculations first and then average over all outputs. This is done
in some of the recent hydrodynamic calculations. They also incorporate event-to-event fluctuations at
the sub-nucleonic level. Fluctuating initial geometry results in ‘new’ (rapidity-even) flows (Fig. 8). The
rapidity-even dipolar flow shown in Fig. 8(a) is not to be confused with the rapidity-odd directed flow
v1(pr, y) resulting from the smooth initial geometry in Fig. 5.

Fig. 8: (a) Dipole asymmetry giving rise to a dipolar flow v1(pr,y). The cross indicates the centre of entropy
(analogous to the centre of mass) and the large arrow indicates the orientation of the dipole. (b)Triangularity
giving rise to a triangular flow v3(pr, y). Figure from [41].

For recent reviews of the collective flow, its anisotropies, its event-to-event fluctuations, and the
extraction of the specific shear viscosity 1/s of QGP, see [42-44].

2.2 Jet quenching

Recall the role played by successively higher-energy electron beams, over many decades in the last
century, to unravel the structure of atoms, nuclei, and protons. Studying the properties of QGP by means
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of an external probe is obviously ruled out because of its short (~ 10723 s) life-time. Instead one uses
a hard parton produced internally during the nucleus-nucleus collision to probe the medium in which it
is produced. Consider, e.g., g + g — g + g where two longitudinally moving energetic gluons from
the colliding nuclei interact and produce two gluons at large transverse momenta, which fragment and
emerge as jets of particles. Hard partons are produced early in the collision: ¢t ~ 1/Q ~ 1/pr, where
@ is the parton virtuality scale, and hence they probe the early stages of the collision. Moreover, their
production rate is calculable in perturbative QCD. Parton/jet interacts with the medium and loses energy
or gets quenched as it traverses the medium (Fig. 9(a)). The amount of energy loss depends among other
things on the path length (L) the jet has to travel inside the medium. Figure 9(b) shows the data on the
nuclear modification factor, R 4 4, defined schematically as

Raa(pr) = Yield in AA/ (N,y;) Yield in pp, 4)

where (N,,;) is the mean number of nucleon-nucleon collisions occurring in a single nucleus-nucleus
(AA) collision, obtained within the Glauber model [25]. If the nucleus-nucleus collision were a simple
superposition of nucleon-nucleon collisions, the ratio R 44 would be unity. Direct-photon production
rate is consistent with the next-to-leading-order (NLO) perturbative QCD (pQCD) calculation and there
is no suppression of the photon yield. However, the yields of high-pr pions and etas are suppressed by a
factor of ~ 5. No such suppression was seen in dAu and pPb collisions [49] (where QGP is not expected
to be formed) thereby ruling out suppression by cold nuclear matter as the cause. These observations
indicate that the hard-scattered partons lose energy as they traverse the hot medium and the suppression
is thus a final-state effect.

PHENIX Au+Au (central collisions):

m:g [} Direct y
TEU
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@

GLV parton energy loss (dl\?/dy =1100)
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p; (GeV/c)

Fig. 9: (a) Back-to-back jets, one produced near the surface of the hot and dense medium and the other deep
inside. These are called the near-side and away-side jets. The latter gets quenched. The medium is characterized
by its temperature (7'), gluon number density in the rapidity space (dN9/dy), and the transport coefficient or jet-
quenching parameter (¢). Figure from [45]. (b) AuAu central collision data on nuclear modification factor R4
as a function of pr, at the centre-of-mass energy /syny = 200 GeV. Dash-dotted lines: theoretical uncertainties
in the direct photon R4 4. Solid yellow line: jet-quenching calculation of [46,47] for leading pions in a medium
with initial effective gluon density dN9/dy = 1100. Error bands at R4 4 = 1 indicate the absolute normalization
errors. Figure from [48].

Figure 9(b) illustrated jet quenching in a single-particle inclusive yield. Jet quenching is also seen
in dihadron angular correlations shown in Fig. 10 as a function of the opening angle between the trigger
and associated particles. The only difference between the left and the right panels is the definition of
the associated particles. The left panel shows the suppression of the away-side jet in AuAu central, but

227



R.S. BHALERAO

not in pp and dAu central collisions. This is expected because unlike AuAu collisions, no hot and dense
medium is likely to be formed in pp and dAu collisions, and so there is no quenching of the away-side
jet. Energy of the away-side parton in a AuAu collision is dissipated in the medium thereby producing
low-pr or soft particles. When even the soft particles are included, the away-side jet reappears in the
AuAu data as shown in the right panel. Its shape is broadened due to interactions with the medium.
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Fig. 10: (a) STAR data on dihadron angular correlations. A¢ is the opening angle between the trigger (4 < péfig <
6 GeV/c) and associated particles (2 < pg°5°° < pt;,flg GeV/¢). Figure from [50]. (b) Similar to the left panel,
except that 0 < p3°°¢ < 4 GeV /c. Figure from [51].

Figure 11 shows two main mechanisms by which a parton moving in the medium loses energy.
Collisional energy loss via elastic scatterings dominates at low momenta whereas the radiative energy
loss via inelastic scatterings dominates at high momenta. Energy loss per unit path length depends
on the properties of the parton (parton species, energy E), as well as the properties of the medium
(T, dN9/dy, ). The jet quenching parameter, ¢, is defined as the average p% transferred to the outgoing
parton per unit path length. The value of § estimated in leading-order QCD is ~ 2.2 GeV?/fm, while
the value extracted from phenomenological fits to the RHIC experimental data on parton energy loss is
O(10) GeV?/fm.
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Fig. 11: Collisional (left) and medium-induced radiative (right) energy loss mechanisms. Their predictions for the
energy loss per unit length differ from each other: AE o< L and AE o L2, respectively. Figure from [45].

Jets are more abundant and easier to reconstruct at LHC than at RHIC. Figure 12 shows an example
of an unbalanced dijet in a PbPb collision event at CMS (LHC). By studying the evolution of the dijet
imbalance as a function of collision centrality and energy of the leading jet, one hopes to get an insight
into the dynamics of the jet quenching.

For recent reviews of jet quenching, see e.g., [45,53-55].
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Fig. 12: Jet quenching in PbPb collision at the centre-of-mass energy /syny = 2.76 TeV at CMS. Er is the
summed transverse energy in the electromagnetic and hadron calorimeters. 7 and ¢ are the pseudorapidity and
azimuthal angle, respectively. Figure from [52].

3 Some other important observables

Elliptic flow, or more generally anisotropic collective flow, and jet quenching, which we discussed above
are examples of soft and hard probes, respectively. Here ‘soft’ refers to the low-pp regime: 0 < pr < 1.5
GeV /¢, and hard refers to high-pp regime: pp > 5 GeV/c. (At RHIC, such high-pr jets are rare, which
explains the relatively low pp cuts used in Fig. 10.) The medium-py regime (1.5 < pr < 5 GeV/c)
is also interesting, e.g., for the phenomenon of constituent quark number scaling or quark coalescence.
In this section we discuss briefly this and other important observables. We shall, however, not discuss a
few other important topics such as femtoscopy with two-particle correlation measurements [56-58] and
electromagnetic probes of QGP [59, 60].

3.1 Constituent quark number scaling

In the high-pr regime, hadronization occurs by fragmentation, whereas in the medium-pr regime, it is
modelled by quark recombination or coalescence. The phenomenon of constituent quark number scaling
provides experimental support to this model. Figure 13 explains the meaning of constituent quark number
(ng) scaling. In the left panel one sees two distinct branches, one for baryons (n, = 3) and the other
for mesons (ny, = 2). When scaled by n, (right panel), the two curves merge into one universal curve,
suggesting that the flow is developed at the quark level, and hadrons form by the merging of constituent
quarks. This observation provides the most direct evidence for deconfinement so far. ALICE (LHC) has
also reported results for the elliptic flow vo(pr) of identified particles produced in PbPb collisions at
2.76 TeV. The constituent quark number scaling was found to be not as good as at RHIC [62].

For a recent review see [63].

3.2 Ratios of particle abundances’

Ratios of particle abundances such as K/, p/m, etc. constrain models of particle production. In the
thermal or statistical hadronization model [64,65], particles in the final state are assumed to be emitted by

’See also section 6.2.2.
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Fig. 13: (Left) Elliptic flow vo vs transverse kinetic energy K Er for various baryons and mesons. (Right) Both
vy and K E are scaled by the number of constituent quarks n,. Figure from [61].

a source in a thermodynamic equilibrium characterized by only a few parameters such as the (chemical
freezeout) temperature and the baryo-chemical potential. These parameters are determined by fitting the
experimental data on particle abundances. This model has been quite successful in explaining the Al-
ternating Gradient Synchrotron (AGS), Super Proton Synchrotron (SPS), and RHIC data on the particle
ratios [66,67]. These facilities together cover the centre-of-mass energy (,/syn) range from 2 GeV to
200 GeV.

For a recent review of the statistical hadronization picture with an emphasis on charmonium pro-
duction, see [68].

3.3 Strangeness enhancement

Production of strange particles is expected to be enhanced [69, 70] in relativistic nucleus-nucleus col-
lisions relative to the scaled up pp data (Eq. (4)) because of the following reasons: (1) Although
ms > My, 4, strange quarks and antiquarks can be abundant in an equilibrated QGP with temperature
T > mg, (2) large gluon density in QGP leads to an efficient production of strangeness via gluon fusion
gg — s8, and (3) energy threshold for strangeness production in the purely hadron-gas scenario is much
higher than in QGP. Abundance of strange quarks and antiquarks in QGP is expected to leave its imprint
on the number of strange and multi-strange hadrons detected in the final state. The above expectation was
borne out by the measurements made at SPS and RHIC; see Fig. 14 where N4, is the mean number of
participating nucleons in a nucleus-nucleus collision, estimated using the Glauber model [25] and serves
as a measure of the centrality of the collision. The idea of strangeness enhancement in AA collisions
or equivalently of strangeness suppression in pp collisions can be recast in the language of statistical
mechanics of grand canonical (for central AA collisions) and canonical (for pp collisions) ensembles;
see, e.g., [71]. A complete theoretical understanding of these results is yet to be achieved [71].

For a review of strange hadron production in heavy-ion collisions from SPS to RHIC, see [72].
For the ALICE (LHC) results on multi-strange baryon production at 2.76 TeV, see [73]. ALICE observed
that the strangeness enhancement was less pronounced than at lower energies.
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Fig. 14: Enhanced strange baryon production as a function of (\Np,,), at mid-rapidity, in AA collisions compared
to (Npart)-scaled pp interactions at the same energy. Solid markers: STAR data on AuAu collisions at VSNN =
200 GeV. Open symbols: SPS data on PbPb collisions at /sy x = 17.3 GeV. Boxes at unity show statistical and
systematic uncertainties and arrows on the right axes mark the predictions of a thermal model. Figure from [71].

3.4 Sequential melting of heavy quarkonia®

Colour Debye screening of the attraction between heavy quarks (c or b) and antiquarks (¢ or b) in a hot
and dense medium such as QGP is expected to suppress the formation of quarkonia relative to what one
expects from a pp baseline measurement [74]. Observation of suppression would thus serve as a signal
for deconfinement. As the temperature of the medium rises, various quarkonium states are expected to
‘melt’ one by one in the sequence of their increasing binding energies. The sequential melting of heavy
quarkonia thus serves as a ‘thermometer’ for the medium. A reliable estimation of the charmonium’
formation rates, however, needs to take into account several other competing effects:

— gluon shadowing/anti-shadowing and saturation effects in the initial wave functions of the colliding
nuclei,

— initial- and final-state k7 scatterings and parton-energy loss,

— charmonium formation via colour-singlet and colour-octet channels,

— feed-down from the excited states of the charmonium to its ground state,

— secondary charmonium production by recombination or coalescence of independently produced ¢
and ¢,

— interaction of the outgoing charmonium with the medium, etc.

A systematic study of suppression patterns of .J/¢) and Y families, together with p A baseline measure-
ments, over a broad energy range, would help disentangle these hot and cold nuclear matter effects.

8See also section 6.2.3.
°Similar statements would be true for the bottomonium.
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Table 1: Big Bang and Little Bang comparison

Big Bang ‘ Little Bang ‘
Occurrence Only once Millions of times at RHIC, LHC
Initial state Inflation? (1073 s) Glasma? (10724 s)
Expansion General Relativity Rel. imperfect fluid dynamics
Freezeout temperatures | v:2.73K,v :1.95K Tep, ~ 150, Tiin ~ 120 MeV
Anisotropy in Final temp. (CMB) Final flow profile
Penetrating probes Photons Photons, jets
Chemical probes Light nuclei Various hadron species
Colour shift Red shift Blue shift
Tools COBE, WMAP, Planck SPS, RHIC, LHC
Starting years 1989, 2001, 2009 1987, 2000, 2009

For reviews of charmonium and/or bottomonium production in heavy-ion collisions, see [75-78].
For a review of heavy-flavour probes of the QCD matter formed at RHIC, see [79].

4 Big Bang and Little Bang

Having described the various stages in the relativistic heavy-ion collisions and the most important ob-
servables and probes in this field, let me bring out the striking similarities between the Big Bang and the
Little Bang. In both cosmology and the physics of relativistic heavy-ion collisions, the initial quantum
fluctuations ultimately lead to macroscopic fluctuations and anisotropies in the final state. In both the
fields, the goal is to learn about the early state of the matter from the final-state observations. See Table
1 for the comparison of these two fields. Here 2.73 K and 1.95 K are photon and neutrino decoupling or
freezeout temperatures, respectively. T.;, and Ty;, are the chemical and kinetic freezeout temperatures
mentioned in section 1. The last two rows list the various experimental ‘tools’ and the years in which
they were commissioned. For a more detailed comparison, see [5, 80, 81].

5 Fluid dynamics

The kinetic or transport theory of gases is a microscopic description in the sense that detailed knowledge
of the motion of the constituents is required. Fluid dynamics (also loosely called hydrodynamics) is an
effective (macroscopic) theory that describes the slow, long-wavelength motion of a fluid close to local
thermal equilibrium. No knowledge of the motion of the constituents is required to describe observable
phenomena. Quantitatively, if [ denotes the mean free path, 7 the mean free time, k£ the wave number,
and w the frequency, then kl < 1, wr < 1 is the hydrodynamic regime, kI ~ 1, wr ~ 1 the kinetic
regime, and k! > 1, wr > 1 the nearly-free-particle regime.

Relativistic hydrodynamic equations are a set of coupled partial differential equations for number
density n, energy density ¢, pressure P, hydrodynamic four-velocity u*, and in the case of imperfect hy-
drodynamics, also bulk viscous pressure 11, particle-diffusion current n*, and shear stress tensor 7#¥. In
addition, these equations also contain the coefficients of shear and bulk viscosities and thermal conduc-
tivity, and the corresponding relaxation times. Further, the equation of state (EoS) needs to be supplied to
make the set of equations complete. Hydrodynamics is a powerful technique: Given the initial conditions
and the EoS, it predicts the evolution of the matter. Its limitation is that it is applicable at or near (local)
thermal equilibrium only.

Relativistic hydrodynamics finds applications in cosmology, astrophysics, high-energy nuclear
physics, etc. In relativistic heavy-ion collisions, it is used to calculate the multiplicity and transverse
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momentum spectra of hadrons, anisotropic flows, and femtoscopic radii. Energy density or temperature
profiles resulting from the hydrodynamic evolution are needed in the calculations of jet quenching, J /1
melting, thermal photon and dilepton productions, etc. Thus hydrodynamics plays a central role in
modeling relativistic heavy-ion collisions.

Hydrodynamics is formulated as an order-by-order expansion in the sense that in the first (second)-
order theory, the equations for the dissipative fluxes contain the first (second) derivatives of u*. The
ideal hydrodynamics is called the zeroth-order theory. The zeroth-, first-, and second-order equations
are named after Euler, Navier-Stokes, and Burnett, respectively, in the non-relativistic case (Fig. 15).
The relativistic Navier-Stokes equations are parabolic in nature and exhibit acausal behaviour, which
was rectified in the (relativistic second-order) Israel-Stewart (IS) theory [29]. The formulation of the
relativistic imperfect second-order hydrodynamics (2’ in Fig. 15) is currently under intense investiga-
tion; see, e.g., [82—-86] for the recent activity in this area. Hydrodynamics has traditionally been derived
either from entropy considerations (i.e., the generalized second law of thermodynamics) or by taking the
second moment of the Boltzmann equation.

Boltzmann Equation

(Coarse | Graining)

Hydrodynamics
Nonrelativistic Relalivistic
Ideal Nonideal Ideal Nonideal
Perfect Imperfect ‘

Nondissipative Dissipative 1 ’

Fig. 15: Coarse-Graining of the Boltzmann equation

For a comprehensive treatment of relativistic hydrodynamics, numerical techniques, and appli-
cations, see [87]. For an elementary introduction to relativistic hydrodynamics and its application to
heavy-ion collisions, see [88]. For a review of new developments in relativistic viscous hydrodynamics,
see [89].

6 LHC highlights
6.1 RHIC-LHC comparison

Table 2 compares some basic results obtained at LHC soon after it started operating, with similar results
obtained earlier at RHIC. Here d N}, /dn is the charged particle pseudorapidity density, at mid-rapidity,
normalized by (Npq¢) /2 where (Npqr¢) is the mean number of participating nucleons in a nucleus-
nucleus collision, estimated using the Glauber model [25]. €p; is the initial energy density estimated
using the well-known Bjorken formula [5,7]. 7; is the initial or formation time of QGP. Assuming
conservatively the same 7; ~ 0.5 fm at LHC as at RHIC, one gets an estimate of eg; at LHC. T; is the
initial temperature fitted to reproduce the observed multiplicity of charged particles in a hydrodynamical
model. Note that the ~ 30% increase in T is consistent with the factor of ~ 3 rise in €g;. Vy, is the
volume of the system at the freezeout, measured with two-pion Bose-Einstein correlations. v ;4 is the
radial velocity of the collective flow of matter. vs is the elliptic flow. It is clear from Table 2 that the
QGP fireball produced at LHC is hotter, larger, and longer-lasting, as compared with that at RHIC.
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Table 2: RHIC-LHC comparison

RHIC (AuAu) | LHC (PbPb) | Increase by factor or %

Vsnn (GeV) 200 2760 14

ANy Jdn/ (D) 3.76 8.4 22
ep;7i (GeV/fm?) 16/3 16 3
ep; (GeV/fm?) 10 30 3

T; (MeV) 360 470 30%
V.o (fm®) 2500 5000 2

Lifetime (fm/c) 8.4 10.6 26%

U flow 0.6 0.66 10%

< pr > (GeV) 0.36 0.45 25%

Differential va(pr) unchanged
pr-integrated vo 30%

6.2 Some surprises at LHC
6.2.1 Charged-particle production at LHC

Figure 16 presents perhaps the most basic observable in heavy-ion collisions — the number of charged
particles produced. This observable helps place constraints on the particle production mechanisms and
provides a first rough estimate of the initial energy density reached in the collision. The left panel com-
pares the charged-particle production in central A A and non-single-diffractive (NSD)!'” pp(pp) collisions
at various energies and facilities. The curves are simple parametric fits to the data; note the higher power
of sy in the former case. The precise magnitude of dNN,j,/dn measured in PbPb collisions at LHC
was somewhat on a higher side than expected. Indeed, as is clear from the figure, the logarithmic ex-
trapolation of the lower-energy measurements at AGS, SPS, and RHIC grossly under-predicts the LHC
data. The right panel highlights an even more surprising fact that the shape of the plotted observable
vs centrality is nearly independent of the centre-of-mass energy, except perhaps for the most peripheral
AA collisions. Studying the centrality dependence of the charged-particle production throws light on the
roles played by hard scatterings and soft processes. For details, see [91].

_— = N
¢ | @ PbPb(0-5%)ALICE 2 pp NSD ALICE e T ¢ E
S10- = PbPb(0-5 %) NASO © pp NSD CMS R gl b o 4 o
= 4 AuAu(0-5%)BRAHMS + pp NSD CDF i ot ¥ e S
W | * AuAu(0-5%)PHENIX o pp NSD UAS ccsk® | g L o Gev o ° £
o 8 [ AuAu(0-5%)STAR * pP NSD UA1 = b Gagl® g =
= ¥ AuAu(0-6 %) PHOBOS x pp NSD STAR 6— 4 .
= | ) 4 )
3 e [ +4 1 7%
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= =" a4 12 2=
A X | 0 PbPb276TeVALICE ©Au-Au 02TeV | X
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Fig. 16: Charged-particle pseudorapidity density (at n = 0) per colliding nucleon pair vs /syn (left panel) and
(Npart) (right panel). Figure from [90].

1"Non-single-diffractive pp collisions are those which exclude the elastic scattering and single-diffractive events.
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6.2.2 Particle ratios at LHC — Proton anomaly

We described above in section 3.2 the success of the thermal/statistical hadronization model in explaining
the ratios of particle abundances measured at AGS, SPS, and RHIC. When extended to the LHC energies,
however, the model was unable to reproduce the p/7" and /7~ ratios; the absolute p, p yields were
off by almost three standard deviations (Fig. 17). Current attempts to understand these discrepancies
focus on the possible effects of (a) as yet undiscovered hadrons, or in other words, the incomplete hadron
spectrum, (b) the annihilation of some p, p in the final hadronic phase, or (c) the out-of-equilibrium
physics currently missing in the model. None of these effects has been found to be satisfactory because
while reducing the (Data-Fit) discrepancy at one place, it worsens it at other place(s) [92]. Finally, Fig.
17 also shows that most antiparticle/particle ratios are unity within error bars indicating a vanishing
baryo-chemical potential at LHC.

> 10°F, = = ° r —
o s Pb-Pb s =2.76 TeV = = = 3[Pb-Pb s =2.76.TeV
= E E iT P B ra 3
.i ek e e . o Fit: T=156 Me ,ut_OMe , _5~80.fm
5 R € 8 or =
S 10 " E = I
S = : = ..
1? 3 E F n n
C E 0 L
10—1§ el = [ e ]
g € : "
102 = i
F = Data, ALICE, 0-10% . r
-3 — -]
10 g Statistical:model § 2’ |
[~ Fit: T=156 MeV,j1 = 0 MeV, V=5380 fm 2~z - F n
10%E . T-164 MeV,p = 1 MeV A -af n ]
T KKKKY pp AZEQQd3HH r KKKK% ppAzTaodd?iHA

Fig. 17: Left: Hadron yields from ALICE (LHC) together with the fit based on the thermal model (solid black
lines). The data point for K°* is not included in the fit. Blue dotted lines show results of the model for the indicated
values of T" and py, normalized to the value for 7. Right: Deviations between the thermal fit and the data. Note
that the p and p yields are below the thermal fit by 2.7 and 2.9 sigma, respectively, whereas the cascade yields are
above the fit by about two sigma. Figures from [92].

6.2.3 Quarkonium story at LHC

We described above in section 3.4 the melting of heavy quarkonium as a possible signature of decon-
finement or colour screening effects in QGP. Anomalous suppression of .J/1 was first seen at SPS. No
significant differences in the suppression pattern were observed at RHIC. LHC, however, has thrown
some surprises which are not yet fully understood. Figure 18 presents the nuclear modification factor
R4 of J/1 as a function of centrality (left) and pp (right), at similar rapidities. Note the differences
between the PHENIX and ALICE measurements. Differences at low pr in the right-hand panel are
possibly because of the larger recombination probability at ALICE than at PHENIX; this probability is
expected to decrease at high p7. Sequential suppression of upsilon states was observed by CMS in PbPb
collisions at 2.76 TeV: The R 44 values for T(1S), T(2S), and Y (3S), were about 0.56, 0.12, and lower
than 0.10, respectively [94]. For the status of the evolving quarkonium saga, see [95].

7 Concluding remarks

(1) Quark-gluon plasma has been discovered, and we are in the midst of trying to determine its thermo-
dynamic and transport properties accurately.

(2) Data on the collective flow at RHIC/LHC have provided a strong support to hydrodynamics as the
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Fig. 18: Nuclear modification factor R4 4 of J/v vs centrality (left) and pr (right). Figures from [90] and [93].

appropriate effective theory for relativistic heavy-ion collisions. The most complete event-to-event hy-
drodynamic calculations to date [43,96] have yielded /s = 0.12 and 0.20 at RHIC (AuAu, 200 GeV)
and LHC (PbPb, 2.76 TeV), respectively, with at least 50% systematic uncertainties. These are the av-
erage values over the temperature histories of the collisions. Uncertainties associated with (mainly) the
initial conditions have so far prevented a more precise determination of 7/s.

(3) Surprisingly, even the pp collision data at 7 TeV are consistent with the hydrodynamic picture, if the
final multiplicity is sufficiently large!

(4) An important open question is at what kinematic scale partons lose their quasiparticle nature (evident
in jet quenching) and become fluid like (as seen in the collective flow)?

(5) QCD phase diagram still remains largely unknown.

(6) RHIC remains operational. ALICE, ATLAS, and CMS at LHC all have come up with many new
results on heavy-ion collisions. Further updates of these facilities are planned or being proposed. Com-
pressed baryonic matter experiments at FAIR [10] and NICA [97], which will probe the QCD phase
diagram in a high baryon density but relatively low temperature region, are a few years in the future.
Electron-ion collider (EIC) has been proposed to understand the glue that binds us all [98]. So this
exciting field is going to remain very active for a decade at least.

Many review articles have been cited throughout the text above. Here are a few more published
in the last 2-3 years [99, 100]. See also these two talks given at the ‘2013 Nobel Symposium on LHC
Physics’ for an overview of the status of this field: [101, 102].
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Abstract

This report summarizes a series of three lectures aimed at giving an overview
of basic particle detection principles, the interaction of particles with matter,
the application of these principles in modern detector systems, as well tech-
niques to read out detector signals in high-rate experiments.

1 Introduction

“New directions in science are launched by new tools much more often than by new concepts” is a fa-
mous quote from Freeman Dyson’s book Imagined Worlds. This is certainly true for the field of particle
physics, where new tools such as the cloud chamber, bubble chamber, wire chamber, solid-state detectors,
accelerators, etc. have allowed physicists to enter into unchartered territory and to discover unexpected
phenomena, the understanding of which has provided a deeper insight into the nature of matter. Looking
at all Nobel Prize winners connected to the Standard Model of particle physics, one finds many more ex-
perimentalists and “instrumentalists” than theoretically orientated physicists, which is a strong indicator
of the essence of new tools for advancing our knowledge.

This report will first discuss a few detector systems in order to illustrate the detector needs and
specifications of modern particle physics experiments. Then the interaction of particles with matter,
which is of course at the heart of particle detection, will be reviewed. Techniques for tracking with gas
detectors and solid-state detectors as well as energy measurement with calorimeters are then elaborated.
Finally, the tricks on how to process the signals from these detectors in modern high-rate applications
will be discussed.

2 Examples of detector systems

The Large Hadron Collider (LHC) experiments ATLAS, CMS, ALICE and LHCb are currently some
of the most prominent detectors because of their size, complexity and rate capability. Huge magnet
systems, which are used to bend the charged particles in order to measure their momenta, dominate the
mechanical structures of these experiments. Proton collision rates of 1 GHz, producing particles and
jets of TeV-scale energy, present severe demands in terms of spectrometer and calorimeter size, rate
capability and radiation resistance. The fact that only about 100 of the 10” events per second can be
written to disk necessitates highly complex online event selection, i.e. “triggering’. The basic layout of
these collider experiments is quite similar. Close to the interaction point there are several layers of pixel
detectors that allow the collision vertices to be distinguished and measured with precision on the tens of
micrometres level. This also allows short-lived B and D mesons to be identified by their displaced decay
vertices. In order to follow the tracks along their curved path up to the calorimeter, a few metres distant
from the collision point, one typically uses silicon strip detectors or gas detectors at larger radii. CMS has
an “all-silicon tracker” up to the calorimeter, while the other experiments use also gas detectors like so-
called straw tubes or a time projection chamber. The trackers are then followed by the electromagnetic
and hadron calorimeter, which measures the energy of electrons, photons and hadrons by completely
absorbing them in very large amounts of material. The muons, the only particles able to pass through
the calorimeters, are then measured at even larger radii by dedicated muon systems. The sequence of
vertex detector, tracker for momentum spectrometry, calorimeter for energy measurement followed again
by tracking for muons is the classic basic geometry that underlies most collider and even fixed-target
experiments. It allows one to distinguish electrons, photons, hadrons and muons and to measure their
momenta and energies.
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The ALICE and LHCb experiments use a few additional detector systems that allow different
hadrons to be distinguished. By measuring the particle’s velocity in addition to the momentum, one can
identify the mass and therefore the type of hadron. This velocity can be determined by measuring time of
flight, the Cerenkov angle or the particle’s energy loss. ALICE uses, in addition, the transition radiation
effect to separate electrons from hadrons, and has therefore implemented almost all known tricks for
particle identification. Another particle detector using all these well-established techniques is the Alpha
Magnetic Spectrometer (AMS) that has recently been installed on the International Space Station. 1t is
aimed at measuring the primary cosmic-ray composition and energy distribution.

More “exotic” detector geometries are used for neutrino experiments, which demand huge detector
masses in order to make the neutrinos interact. The IceCube experiment at the South Pole uses one cubic
kilometre of ice as the neutrino detection medium to look for neutrino point sources in the Universe.
Neutrinos passing through the Earth from the Northern Hemisphere interact deep down under the ice
and the resulting charged particles are travelling upwards at speeds larger than the speed of light in
the ice. They therefore produce Cerenkov radiation, which is detected by a series of more than 5000
photon detectors that are immersed into the ice and look downwards. An example of an accelerator-
based neutrino experiment is the CERN Neutrino to Gran Sasso (CNGS) beam. A neutrino beam is sent
from CERN over a distance of 732 km to the Gran Sasso laboratory in Italy, where some large neutrino
detectors are set up. One of them, the OPERA detector, uses more than 150 000 lead bricks as neutrino
target. The bricks are built up from alternating sheets of lead and photographic emulsion, which allows
tracking with the micrometre precision necessary to identify the tau leptons that are being produced by
interaction of tau neutrinos. This “passive” detector is followed by trigger and tracking devices, which
detect secondary particles from the neutrino interactions in the lead bricks and identify the bricks where
an interesting event has taken place. To analyse the event, the bricks have then to be removed from the
assembly and the photographic emulsion must be developed.

These are only a few examples from a large variety of existing detector systems. It is, however,
important to bear in mind that there are only a few basic principles of particle interaction with matter that
underly all these different detectors. It is therefore worth going through them in detail.

3 Basics of particle detection

The Standard Model of particle physics counts 17 particles, namely six quarks, six leptons, photon,
gluon, W and Z bosons, and the hypothetical Higgs particle. Quarks, however, are not seen as free
particles; rather, they combine into baryons and mesons, of which there are hundreds. How can we
therefore distinguish all these different particle types in our detectors? The important fact is that, out
of the hundreds of known hadrons, only 27 have a lifetime that is long enough such that they can leave
a track > 1 pm in the detector. All the others decay “on the spot” and can only be identified and
reconstructed through kinematic relations of their decay products like the “invariant mass”. Out of these
27 particles, 13 have lifetimes that make them decay after a distance between a few hundred micrometres
and a few millimetres at GeV energies, so they can be identified by their decay vertices, which are only a
short distance from the primary collision vertex (secondary vertex tagging). The 14 remaining particles
are the only ones that can actually “fly” though the entire detector, and the following eight are by far
the most frequent ones: electron, muon, photon, charged pion, charged kaon, neutral kaon, proton and
neutron. The principle task of a particle detector is therefore to identify and measure the energies and
momenta of these eight particles.

Their differences in mass, charge and type of interaction are the key to their identification, which
will be discussed in detail later. The electron leaves a track in the tracking detector and produces a shower
in the electromagnetic (EM) calorimeter. The photon does not leave a track but also produces a shower
in the EM calorimeter. The charged pion, charged kaon and the proton show up in the tracker but pass
through the EM calorimeter and produce hadron showers in the hadron calorimeter. The neutral kaon and
the neutron do not show tracks and shower in the hadron calorimeter. The muon is the only particle than
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manages to pass through even the hadron calorimeter and is identified by tracking detectors behind the
calorimeters. How to distinguish between pion, kaon and proton is typically the task of specific particle
identification (PID) detectors.

4 Interaction of particles with matter

The processes leading to signals in particle detectors are now quite well understood and, as a result
of available computing power and simulation programs like GEANT or GARFIELD, one can simulate
detector responses to the level of a few percent based on fundamental microphysics processes (atomic and
nuclear cross-sections). By knowing the basic principles and performing some ‘“back-of-the-envelope
calculations”, it is possible to estimate detector response to the 20-30% level.

It sounds obvious that any device that is to detect a particle must interact with it in some way. In
accelerator experiments, however, there is a way to detect neutrinos even if they do not interact in the
detector. Since the total momentum of the colliding particles is known, the sum of all momenta of the
produced particles must amount to the same number, owing to momentum conservation. If one uses a
hermetic detector, the measurement of missing momentum can therefore be used to detect the momentum
vector of the neutrino!

The electromagnetic interaction of charged particles with matter lies at the heart of all particle
detection. We can distinguish six types of these interactions: atomic excitation, atomic ionization,
bremsstrahlung, multiple scattering, Cerenkov radiation and transition radiation. We will discuss them
in more detail in the following.

4.1 Ionization and excitation

A charged particle passing through an atom will interact through the Coulomb force with the atomic
electrons and the nucleus. The energy transferred to the electrons is about 4000 times larger compared to
the energy transferred to the nucleus because of the much higher mass of the nucleus. We can therefore
assume that energy is transferred only to the electrons. In a distant encounter between a passing particle
and an electron, the energy transfer will be small — the electron will not be liberated from the atom but
will just go to an excited state. In a close encounter the energy transfer can be large enough to exceed
the binding energy — the atom is ionized and the electron is liberated. The photons resulting from de-
excitation of the atoms and the ionization electrons and ions are used in particle detectors to generate
signals that can be read out with appropriate readout electronics.

The faster the particle is passing through the material, the less time there is for the Coulomb force
to act, and the energy transfer for the non-relativistic regime therefore decreases with particle velocity
v as 1/v?. If the particle velocity reaches the speed of light, this decrease should stop and stay at a
minimum plateau. After a minimum for Lorentz factors v = 1/4/1 — v2/¢? of ~ 3, however, the energy
loss increases again because the kinematically allowed maximum energy that can be transferred from the
incoming particle to the atomic electron is increasing. This rise goes with logy and is therefore called
the relativistic rise. Bethe and Bloch devised a quantum-mechanical calculation of this energy loss in the
1930s. For ultra-relativistic particles, the very strong transverse field will polarize the material and the
energy loss will be slightly reduced.

The energy loss is, in addition, independent of the mass of the incoming particle. Dividing the
energy loss by the density of the material, it becomes an almost universal curve for all materials. The
energy loss of a particle with v & 3 is around 1-2 X p|g/ cm?’] MeV/cm. Taking iron as an example, the
energy for a high-energy particle due to ionization and excitation is about 1 GeV/m. The energy loss is
also proportional to the square of the particle charge, so a helium nucleus will deposit four times more
energy compared to a proton of the same velocity.

Dividing this energy loss by the ionization energy of the material, we can get a good estimate of
the number of electrons and ions that are produced in the material along the track of the passing particle.
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Since the energy deposited is a function of the particle’s velocity only, we can use it to identify particles:
measuring the momentum by the bending in a magnetic field and the velocity from the energy loss, we
can determine the mass of the particle in certain momentum regions.

If a particle is stopped in a material, the fact that the energy loss of charged particles increases
for smaller velocities results in large energy deposits at the end of the particle track. This is the basis of
hadron therapy, where charged particles are used for tumour treatment. These particles deposit a large
amount of dose inside the body at the location of the tumour without exposing the overlying tissue to
high radiation loads.

This energy loss is, of course, a statistical process, so the actual energy loss will show fluctua-
tions around the average given by the Bethe—Bloch description. This energy-loss distribution was first
described by Landau and it shows a quite asymmetric tail towards large values of the energy loss. This
large fluctuation of the energy loss is one of the important limiting factors of tracking detector resolution.

4.2 Multiple scattering, bremsstrahlung and pair production

The Coulomb interaction of an incoming particle with the atomic nuclei of the detector material results
in deflection of the particle, which is called multiple scattering. A particle entering a piece of material
perpendicular to the surface will therefore have a probability of exiting at a different angle, which has
a Gaussian distribution with a standard deviation that depends on the particle’s properties and the mate-
rial. This standard deviation is inversely proportional to the particle velocity and the particle momentum,
so evidently the effect of multiple scattering and related loss of tracking resolution and therefore mo-
mentum resolution is worst for low-energy particles. The standard deviation of the angular deflection
is, in addition, proportional to the square root of the material thickness, so clearly one wants to use the
thinnest possible tracking devices. The material properties are summarized in the so-called radiation
length Xy, and the standard deviation depends on the inverse root of that. Materials with small radiation
length are therefore not well suited to the volume of tracking devices. This radiation length X is propor-
tional to A/pZ? where A, p and Z are the nuclear number, density and atomic number of the material.
Tracking systems therefore favour materials with very low atomic number like beryllium for beampipes,
carbon fibre and aluminium for support structures, and thin silicon detectors or gas detectors as tracking
elements.

The deflection of the charged particle by the nuclei results in acceleration and therefore emission
of electromagnetic radiation. This effect is called “bremsstrahlung” and it plays a key role in calorimetric
measurements. The energy loss of a particle due to bremsstrahlung is proportional to the particle energy
and inversely proportional to the square of the particle mass. Since electrons and positrons are very
light, they are the only particles where energy loss due to bremsstrahlung can dominate over energy
loss due to ionization at typical present accelerator energies. The energy of a high-energy electron or
positron travelling a distance x in a material decreases as exp(—x/Xj), where X is again the above-
mentioned radiation length. The muon, the next lightest particle, has about 200 times the electron mass,
so the energy loss from bremsstrahlung is 40 000 times smaller at a given particle energy. A muon must
therefore have an energy of more than 400 GeV in order to have an energy loss from bremsstrahlung that
dominates over the ionization loss. This fact can be used to distinguish them from other particles, and it
is at the basis of electromagnetic calorimetry through a related effect, the so-called pair production.

A high-energy photon has a certain probability of converting into an electron—positron pair in the
vicinity of a nucleus. This effect is closely related to bremsstrahlung. The average distance that a high-
energy photon travels in a material before converting into an electron—positron pair is also approximately
given by the radiation length X. The alternating processes of bremsstrahlung and pair production result
in an electromagnetic cascade (shower) of more and more electrons and positrons with increasingly
degraded energy until they are stopped in the material by ionization energy loss. We will come back to
this in the discussion of calorimetry.
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4.3 Cerenkov radiation

Charged particles passing through material at velocities larger than the speed of light in the material
produce an electromagnetic shock wave that materializes as electromagnetic radiation in the visible and
ultraviolet range, the so-called Cerenkov radiation. With n being the refractive index of the material,
the speed of light in the material is ¢/n, so the fact that a particle does or does not produce Cerenkov
radiation can be used to apply a threshold to its velocity. This radiation is emitted at a characteristic
angle with respect to particle direction. This Cerenkov angle ©. is related to the particle velocity v by
cos ©, = ¢/nv, so by measuring this angle, one can determine the velocity of a charged particle.

4.4 Transition radiation

Transition radiation is emitted when a charged particle crosses the boundary between two materials of
different permittivity. The probability of emission is proportional to the Lorentz factor vy of the particle
and is only appreciable for ultra-relativistic particles, so it is mainly used to distinguish electrons from
other hadrons. As an example a particle with v = 1000 has a probability of about 1% to emit a photon on
the transition between two materials, so one has to place many layers of material in the form of sheets,
foam or fibres in order to produce a measurable amount of radiation. The energy of the emitted photons
is in the keV region, so the fact that a charged particle is accompanied by X-rays is used to identify it as
an electron or positron.

5 Detector principles

In the previous section we have seen how charged particles leave a trail of excited atoms and electron—ion
pairs along their track. Now we can discuss how this is used to detect and measure them. We will first
discuss detectors based on atomic excitation, so-called scintillators, where the de-excitation produces
photons, which are reflected to appropriate photon detectors. Then we discuss gaseous and solid-state
detectors based on ionization, where the electrons and ions (holes) drift in electric fields, which induces
signals on metallic readout electrodes connected to readout electronics.

5.1 Detectors based on scintillation

The light resulting from complex de-excitation processes is typically in the ultraviolet to visible range.
The three important classes of scintillators are the noble gases, inorganic crystals and polycyclic hydro-
carbons (plastics). The noble gases show scintillation even in their liquid phase. An application of this
effect is the liquid argon time projection chamber where the instantaneous light resulting from the pas-
sage of the particle can be used to mark the start signal for the drift-time measurement. Inorganic crystals
show the largest light yield and are therefore used for precision energy measurement in calorimetry ap-
plications and also in nuclear medicine. Plastics constitute the most important class of scintillators owing
to their cheap industrial production, robustness and mechanical stability. The light yield of scintillators is
typically a few percent of the energy loss. In 1 cm of plastic scintillator, a high-energy particle typically
loses 1.5 MeV, of which 15 keV goes into visible light, resulting in about 15000 photons. In addition
to the light yield, the decay time, i.e. the de-excitation time, is an important parameter of the scintillator.
Many inorganic crystals such as Nal or CsI show very good light yield, but have decay times of tens,
even hundreds, of nanoseconds, so they have to be carefully chosen considering the rate requirements of
the experiments. Plastic scintillators, on the other hand, are very fast and have decay times on only the
nanosecond scale, and they are therefore often used for precision timing and triggering purposes.

The photons produced inside a scintillator are internally reflected to the sides of the material,
where so-called “light guides” are attached to guide the photons to appropriate photon detection devices.
A very efficient way to extract the light is to use so-called wavelength shifting fibres, which are attached
to the side of the scintillator materials. The light entering the fibre from the scintillator is converted into
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a longer wavelength there and it can therefore not reflect back into the scintillator. The light stays in the
fibre and is internally reflected to the end, where again the photon detector is placed.

The classic device used to convert these photons into electrical signals is the so-called photo-
multiplier. A photon hits a photocathode, a material with very small work function, and an electron is
liberated. This electron is accelerated in a strong electric field to a dynode, which is made from a mate-
rial with high secondary electron yield. The one electron hitting the surface will therefore create several
electrons, which are again guided to the next dynode, and so on, so that out of the single initial electron
one ends up with a sizeable signal of, for example, 107-108 electrons.

In recent years, the use of solid-state photomultipliers, the so-called avalanche photodiodes (APDs),
has become very popular, owing to their much lower price and insensitivity to magnetic fields.

5.2 Gaseous detectors

A high-energy particle leaves about 80 electron—ion pairs in 1 cm of argon, which is not enough charge
to be detected above the readout electronics noise of typically a few hundred to a few thousand electrons,
depending on the detector capacitance and electronics design. A sizeable signal is only seen if a few
tens or hundreds of particles cross the gas volume at the same time, and in this operational mode such
a gas detector, consisting of two parallel metal electrodes with a potential applied to one of them, is
called an “ionization chamber”. In order to be sensitive to single particles, a gas detector must have
internal electron multiplication. This is accomplished most easily in the wire chamber. Wires of very
small diameter, between 10 and 100 pm, are placed between two metallic plates a few millimetres apart.
The wires are at a high voltage of a few kilovolts, which results in a very high electric field close to the
wire surface. The ionization electrons move towards the thin wires, and, in the strong fields close to
the wires, the electrons are accelerated to energies above the ionization energy of the gas, which results
in secondary electrons and as a consequence an electron avalanche. Gas gains of 10*~10° are typically
used, which makes the wire chambers perfectly sensitive to single tracks. In this basic application, the
position of the track is therefore given by the position of the wire that carries a signal, so we have a
one-dimensional positioning device.

One has to keep in mind that the signal in the wire is not due to the electrons entering wire; rather,
the signal is induced while the electrons are moving towards the wire and the ions are moving away from
it. Once all charges arrive at the electrode, the signal is terminated. The signals in detectors based on
ionization are therefore induced on the readout electrodes by the movement of the charges. This means
that we find signals not only on electrodes that receive charges but also on other electrodes in the detector.
For the wire chamber one can therefore segment the metal plates (cathodes) into strips in order to find
the second coordinate of the track along the wire direction. In many applications, one does not even
read out the wire signals but instead one segments the cathode planes into square or rectangular pads
to get the full two-dimensional information from the cathode pad readout. The position resolution is in
this case not limited by the pad size. If one uses pad dimensions of the order of the cathode-to-wire
distance, one finds signals on a few neighbouring pads, and, by using centre-of-gravity interpolation, one
can determine the track position, which is only 1/10 to 1/100 of the pad size. Position resolution down
to 50 ;m and rate capabilities of hundreds of kHz of particles per cm? per second can be achieved with
these devices.

Another way to achieve position resolution that is far smaller than the wire separation is the so-
called drift chamber. One determines the time when the particle passes the detector by an external device,
which can be a scintillator or the accelerator clock in a collider experiment, and one uses the arrival time
of the ionization electrons at the wire as the measure of the distance between the track and the wire. The
ATLAS muons system, for instance, uses tubes of 15 mm radius with a central wire, and the measurement
of the drift time determines the track position to 80 ym precision.

The choice of the gas for a given gas detector is dominated by the transport properties of electrons

246



PARTICLE PHYSICS INSTRUMENTATION

and ions in gases, because these determine the signal and timing characteristics. In order to avoid the
ionization electrons getting lost on their way to the readout wires, one can use only gases with very small
electronegativity. The main component of detector gases are therefore the noble gases like argon or neon.
Other admixtures like hydrocarbons (methane, isobutane) or COs are also needed in order to “tune” the
gas transport properties and to ensure operational stability. Since hydrocarbons were shown to cause
severe chamber ageing effects at high rates, the LHC detectors use almost exclusively argon, neon and
xenon together with CO; for all wire chambers.

Typical drift velocities of electrons are in the range of 5—10 cm/us. The velocity of the ions that are
produced in the electron avalanche at the wire and are moving back to the cathodes is about 1000-5000
times smaller than the electron velocity. The movement of these ions produced long signal tails in wire
chambers, which have to be properly removed by dedicated filter electronics.

During the past 10-15 years a very large variety of new gas detectors have entered particle physics
instrumentation, the so-called micropattern gas detectors like the GEM (gas electron multiplier) or the
MICROMEGA (micro mesh gas detector). In these detectors the high fields for electron multiplication
are produced by micropattern structures that are realized with photolithographic methods. Their main
advantages are rate capabilities far in excess of those achievable in wire chambers, low material budget
construction and semi-industrial production possibilities.

5.3 Solid-state detectors

In gaseous detectors, a charged particle liberates electrons from the atoms, which are freely bouncing
between the gas atoms. An applied electric field makes the electrons and ions move, which induces
signals on the metal readout electrodes. For individual gas atoms, the electron energy levels are discrete.

In solids (crystals), the electron energy levels are in “bands”. Inner-shell electrons, in the lower
energy bands, are closely bound to the individual atoms and always stay with “their” atoms. However,
in a crystal there are energy bands that are still bound states of the crystal, but they belong to the entire
crystal. Electrons in these bands and the holes in the lower band can move freely around the crystal, if
an electric field is applied. The lowest of these bands is called the “conduction band”.

If the conduction band is filled, the crystal is a conductor. If the conduction band is empty and
“far away” from the last filled band, the valence band, the crystal is an insulator. If the conduction band
is empty but the distance to the valence band is small, the crystal is called a semiconductor.

The energy gap between the valence band and the conduction band is called the band gap F,. The
band gaps of diamond, silicon and germanium are 5.5, 1.12 and 0.66 eV, respectively. If an electron in
the valence band gains energy by some process, it can be excited into the conduction band and a hole
in the valence band is left behind. Such a process can be the passage of a charged particle, but also
thermal excitation with a probability proportional to exp(—FEy/kT’). The number of electrons in the
conduction band therefore increases with temperature, i.e. the conductivity of a semiconductor increases
with temperature.

It is possible to treat electrons in the conduction band and holes in the valence band similar to
free particles, but with an effective mass different from elementary electrons not embedded in the lattice.
This mass is furthermore dependent on other parameters such as the direction of movement with respect
to the crystal axis. If we want to use a semiconductor as a detector for charged particles, the number
of charge carriers in the conduction band due to thermal excitation must be smaller than the number
of charge carriers in the conduction band produced by the passage of a charged particle. Diamond can
be used for particle detection at room temperature; silicon and germanium must be cooled, or the free
charge carriers must be eliminated by other tricks like “doping”.

The average energy to produce an electron—hole pair for diamond, silicon and germanium, respec-
tively, is 13, 3.6 and 2.9 eV. Compared to gas detectors, the density of a solid is about a factor of 1000
larger than that of a gas, and the energy to produce an electron—hole pair for silicon, for example, is
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a factor 7 smaller than the energy to produce an electron—ion pair in argon. The number of primary
charges in a silicon detector is therefore about 10* times larger than in a gas and, as a result, solid-state
detectors do not need internal amplification. While, in gaseous detectors, the velocities of electrons and
ions differ by a factor of 1000, the velocities of electrons and holes in many semiconductor detectors are
quite similar, which results in very short signals of a few tens of nanosecond length.

The diamond detector works like a solid-state ionization chamber. One places diamond of a few
hundred micrometres thickness between two metal electrodes and applies an electric field. The very large
electron and hole mobilities of diamond result in very fast and short signals, so, in addition to tracking
application, the diamond detectors are used as precision timing devices.

Silicon is the most widely used semiconductor material for particle detection. A high-energy
particle produces around 33 000 electron—hole pairs in 300 um of silicon. At room temperature there
are, however, 1.45 x 10'° electron—hole pairs per cm®. To apply silicon as a particle detector at room
temperature, one therefore has to use the technique of “doping”. Doping silicon with arsenic makes it
an n-type conductor (more electrons than holes); doping silicon with boron makes it a p-type conductor
(more holes that electrons). Putting an n-type and p-type conductor in contact realizes a diode.

At a p—n junction the charges are depleted and a zone free of charge carriers is established. By
applying a voltage, the depletion zone can be extended to the entire diode, which results in a highly
insulating layer. An ionizing particle produces free charge carriers in the diode, which drift in the electric
field and therefore induce an electrical signal on the metal electrodes. As silicon is the most commonly
used material in the electronics industry, it has one big advantage with respect to other materials, namely
highly developed technology.

Strip detectors are a very common application, where the detector is segmented into strips of a few
50-150 pum pitch and the signals are read out on the ends by wire bonding the strips to the readout elec-
tronics. The other coordinate can then be determined, either by another strip detector with perpendicular
orientation, or by implementing perpendicular strips on the same wafer. This technology is widely used
at the LHC, and the CMS tracker uses 445 m? of silicon detectors.

In the very-high-multiplicity region close to the collision point, a geometry of crossed strips results
in too many “ghost” tracks, and one has to use detectors with a chessboard geometry, so-called pixel
detectors, in this region. The major complication is the fact that each of the chessboard pixels must be
connected to a separate readout electronics channel. This is achieved by building the readout electronics
wafer in the same geometry as the pixel layout and soldering (bump bonding) each of the pixels to its
respective amplifier. Pixel systems in excess of 100 million channels are successfully operating at the
LHC.

A clear goal of current solid-state detector development is the possibility of integration of the
detection element and the readout electronics into a monolithic device.

6 Calorimetry

The energy measurement of charged particles by completely absorbing (“stopping”) them is called
calorimetry. Electromagnetic (EM) calorimeters measure the energy of electrons and photons. Hadron
calorimeters measure the energy of charged and neutral hadrons.

6.1 Electromagnetic calorimeters

As discussed above, high-energy electrons suffer significant bremsstrahlung owing to their small mass.
The interplay of bremsstrahlung and pair production will develop a single electron or photon into a
shower of electrons and positrons. The energy of these shower particles decreases exponentially until all
of them are stopped due to ionization loss. The total amount of ionization produced by the electrons and
positrons is then a measure of the particle energy. The characteristic length scale of this shower process
is called the radiation length X, and in order to fully absorb a photon or electron one typically uses a
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thickness of about 25 X(y. One example of such an EM calorimeter at the LHC is the crystal calorimeter
of CMS, which uses PbW, crystals. The radiation length X of this crystal is 9 mm, so with a length
of 22 cm one can fully absorb the high-energy electron and photon showers. In these crystals the light
produced by the shower particles is used as the measure of the energy.

Liquid noble gases are the other prominent materials used for EM calorimetry. In these devices, the
total amount of ionization is used as a measure of the energy. The NA48 experiment uses a homogeneous
calorimeter of liquid krypton, which has a radiation length of 4.7 cm. Liquid argon has a radiation length
of 14 cm, so one would need a depth of 350 cm to fully absorb the EM showers. Since this is not
practicable, one interleaves the argon with absorber material of smaller radiation length, such as lead,
to allow a more compact design of the calorimeter. Such an alternating assembly of absorber material
and active detector material is called a sampling calorimeter. Although the energy resolution of such a
device is worse compared to a homogeneous calorimeter, for many applications it is good enough. The
ATLAS experiment uses such a liquid argon sampling calorimeter. Other calorimeter types use plastic
scintillators interleaved with absorber materials.

The energy resolution of calorimeters improves as 1/v/E where E is the particle energy. This
means that the energy measurement becomes “easier” at high-energy colliders. For homogeneous EM
calorimeters, energy resolutions of og/E = 1%/+/F (GeV) are achieved; typical resolutions of sam-
pling calorimeters are in the range of o /E = (10-20%)/+/E (GeV).

6.2 Hadron calorimeters

While only electrons and photons have small enough masses to produce significant EM bremsstrahlung,
there is a similar “strong-interaction bremsstrahlung effect” for hadrons. High-energy hadrons radiate
pions in the vicinity of a nucleus, and a cascade of these pions develops, which also fully absorbs the
incident hadron, and the total ionization loss of this cascade is used to measure the particle energy.
The length scale of this shower development is the so-called hadronic interaction length A, which is
significantly larger than the radiation length X¢. For iron the radiation length Xg is 1.7 cm, whereas the
hadronic interaction length A is 17 cm. Hadron calorimeters are therefore significantly larger and heavier
than EM calorimeters. The energy resolution of hadron calorimeters is typically worse than that of EM
calorimeters because of the more complex shower processes. About 50% of the energy ends up in pions,
20% ends up in nuclear excitation and 30% goes into slow neutrons, which are usually not detected. A
fraction of the produced pions consists of 7y, which instantly decay into two photons, which in turn start
an EM cascade. The relative fluctuations of all these processes will result in a larger fluctuation of the
calorimeter signal and therefore reduced resolution. Hadron calorimeters are also typically realized as
sampling calorimeters with lead or steel plates interleaved with scintillators or liquid noble gases. Energy

resolutions of o/ E = (50-100%)/+/ E (GeV) are typical.

7 Particle identification

By measuring the trajectory of a particle in a magnetic field, one measures the particle’s momentum, so
in order to determine the particle type, i.e. the particle’s mass, one needs an additional measurement.
Electrons, positrons and photons can be identified by electromagnetic calorimetry, and muons can be
identified by the fact that they traverse large amounts of material without being absorbed. To distinguish
between protons, kaons and pions is a slightly more subtle affair, and it is typically achieved by measuring
the particle’s velocity in addition to the momentum.

For kinetic energies that are not too far from the rest mass of the particle, the velocity is not yet
too close to the speed of light, such that one can measure the velocity by time of flight. With precision
timing detectors like scintillators or resistive plate chambers, time resolutions of less than 100 ps are
being achieved. For a time-of-flight distance of 1 m, this allows kaon/pion separation up to 1.5 GeV/ec,
and proton/pion separation up to about 3 GeV/c.
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The energy loss of a particle also measures its velocity, so particle identification up to tens of GeV
for pions and protons can be achieved. In gas detectors with pad readout and charge interpolation, the
signal pulse height is measured for centre-of-gravity interpolation in view of precision tracking. Since
the pulse height is a measure of the energy loss, it can in addition be used for particle identification. Time
projection chambers are the best examples of combined tracking and particle identification detectors.

For larger velocities, one can use the measurement of the Cerenkov angle to find the particle
velocity. This radiation is emitted at a characteristic angle that is uniquely related to the particle velocity.
Using short radiators this angle can be determined simply by measuring the radius of the circle produced
by the photons in a plane at a given distance from the radiator. Another technique uses a spherical mirror
to project the photons emitted along a longer path onto a plane that also forms a circle. Detectors of this
type are called ring imaging Cerenkov detectors (RICH). Since only a “handful” of photons are emitted
over typical radiator thicknesses, very efficient photon detectors are the key ingredient to Cerenkov
detectors. Using very long gas radiators with very small refractive index, kaon/pion separation up to
momenta of 200 GeV/c has been achieved.

8 Signal readout

Many different techniques to make particle tracks visible were developed in the last century. The cloud
chamber, the bubble chamber and the photographic emulsion were taking actual pictures of the particle
tracks. Nowadays we have highly integrated electronic detectors that allow high particle rates to be
processed with high precision. Whereas bubble chambers were almost unbeatable in terms of position
resolution (down to a few micrometres) and the ability to investigate very complex decay processes, these
detectors were only able to record a few events per second, which is not suitable for modern high-rate
experiments. The LHC produces 10° proton—proton collisions per second, of which, for example, 100
produce W bosons that decay into leptons, 10 produce a top quark pair and 0.1 produce a hypothetical
Higgs particle of 100 GeV. Only around 100 of the 10° events per second can be written to tape, which
still results in petabytes of data per year to be analysed. The techniques to reduce the rate from 10° to
100 Hz by selecting only the “interesting” events is the realm of the so-called trigger and data acquisition.
With a bunch crossing time of 25 ns, the particles produced in one collision have not even reached the
outer perimeter of the detector when the next collision is already taking place. The synchronization of
the data belonging to one single collision is therefore another very challenging task. In order to become
familiar with the techniques and vocabulary of trigger and data acquisition, we discuss a few examples.

If, for example, we want to measure temperature, we can use the internal clock of a PC to peri-
odically trigger the measurement. If, on the other hand, we want to measure the energy spectrum of the
beta-decay electrons of a radioactive nucleus, we need to use the signal itself to trigger the readout. We
can split the detector signal caused by the beta electron and use one path to apply a threshold to the sig-
nal, which produces a “logic” pulse that can “trigger” the measurement of the pulse height in the second
path. Until this trigger signal is produced, one has to “store” the signal somewhere, which is done in the
simplest application by a long cable where the signal can propagate.

If we measure the beta electrons, we cannot distinguish the signals from cosmic particles that are
traversing the detector. By building a box around our detector that is made from scintillator, for example,
we can determine whether a cosmic particle has entered the detector or whether it was a genuine beta-
decay electron. Triggering the readout on the condition of a detector signal in coincidence with the
absence of a signal in the scintillator box, we can therefore arrive at a pure beta spectrum sample.

Another example of a simple “trigger” logic is the measurement of the muon lifetime with a stack
of three scintillators. Many of the cosmic muons will pass through all three scintillators, but some of
them will have lower energy such that they traverse the first one and get stuck in the central one. After a
certain time the muon will decay and the decay electron produces a signal in the central and the bottom
scintillators. By starting a clock with a signal condition of 1 AND 2 ANDNOT 3 and stopping the clock
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with NOT 1 AND 2 AND 3, one can measure the lifetime of the muons.

At the LHC experiment some typical trigger signals are high-energy events transverse to the proton
beam direction, which signify interesting high-energy parton collisions. High-energy clusters in the
calorimeters or high-energy muons are therefore typical trigger signals, which start the detector readout
and ship the data to dedicated processing units for further selection refinement.

In order to cope with high rates, one has to find appropriate ways to deal with the “processing”
time, i.e. the time while the electronics is busy with reading out the data. This we discuss in the following.
First we assume a temperature sensor connected to a PC. The PC has an internal clock, which can be
used to periodically trigger the temperature measurement and write the values to disk. The measurement
and data storage will take a certain time 7, so this “deadtime” limits the maximum acquisition rate. For
a deadtime 7 = 1 ms, we have a maximum acquisition rate of f = 1/7 = 1 kHz.

For the example of the beta spectrum measurement, we are faced with the fact that the events
are completely random and it can happen that another beta decay takes place while the acquisition of the
previous one is still ongoing. In order to avoid triggering the readout while the acquisition of the previous
event is still ongoing, one has to introduce a so-called “busy logic”, which blocks the trigger while the
readout is ongoing. Because the time between events typically follows an exponential distribution, there
will always be events lost even if the acquisition time is smaller than the average rate of events. In order
to collect 99% of the events, one has to overdesign the readout system with a deadtime of only 10% of the
average time between events. To avoid this problem, one uses a so-called FIFO (first-in first-out) buffer
in the data stream. This buffer receives as input the randomly arriving data and stores them in a queue.
The readout of the buffer happens at constant rate, so by properly choosing the depth of the buffer and
the readout rate, it is possible to accept all data without loss, even for readout rates close to the average
event rate. This transformation from random input to clocked output is call “de-randomization”.

In order to avoid “storing” the signals in long cables, one can also replace them by FIFOs. At
colliders, where the bunch crossing comes in regular intervals, the data are stored in so-called front-end
pipelines, which sample the signals at the bunch crossing rate and store them until a trigger decision
arrives.

The event selection is typically performed at several levels of increasing refinement. The fast trig-
ger decisions in the LHC experiments are performed by specialized hardware on or close to the detector.
After a coarse events selection, the rates are typically low enough to allow a more refined selection using
dedicated computer farms that do more sophisticated analysis of the events. The increasing comput-
ing power, however, drives the concepts of trigger and data acquisition into quite new directions. The
concepts for some future high-energy experiments foresee so-called “asynchronous” data-driven read-
out concepts, where the signal of each detector element receives a time stamp and is then shipped to a
computer farm where the event synchronization and events selection is carried out purely by software
algorithms.
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Abstract

A pedagogical selection of topics in probability and statistics is presented.
Choice and emphasis are driven by the author’s personal experience, predom-
inantly in the context of physics analyses using experimental data from high-
energy physics detectors.

1 Introduction

These notes are based on a series of three lectures on probability and statistics, given at the AEPSHEP
2012 physics school. While most of the attendance was composed of PhD students, it also included
Master students and young post-docs; in consequence, a variable level of familiarity with the topics
discussed was implicit. For consistency, the scope of the lectures spanned from very general concepts
up to more advanced, recent developments. The first lecture reviewed basic concepts in probability and
statistics; the second lecture focussed on maximum likelihood and multivariate techniques for statistical
analysis of experimental data; the third and last lecture covered topics on hypothesis-testing and interval
estimation. Whenever possible, the notation aligns with common usage in experimental high-energy
physics (HEP), and the discussion is illustrated with examples related to recent physics results, mostly
from the B-factories and the LHC experiments.

2 Basic concepts in probability and statistics

Mathematical probability is an abstract axiomatic concept, and probability theory is the conceptual
framework to assess the knowledge of random processes. A detailed discussion of its development
and formalism lies outside the scope of these notes. Other than standard classic books, like [1], there are
excellent references available, often written by (high-energy) physicists, and well-suited for the needs
of physicists. A non-comprehensive list includes [2-5], and can guide the reader into more advanced
topics. The sections on statistics and probability in the PDG [6] are also a useful reference; often also,
the large experimental collaborations have (internal) forums and working groups, with many useful links
and references.

2.1 Random processes

For a process to be called random, two main conditions are required: its outcome cannot be predicted
with complete certainty, and if the process is repeated under the very same conditions, the new resulting
outcomes can be different each time. In the context of experimental particle physics, such an outcome
could be “a collision”, or “a decay”. In practice, the sources of uncertainty leading to random processes
can be

— due to reducible measurement errors, i.e. practical limitations that can in principle be overcome
by means of higher-performance instruments or improved control of experimental conditions;

— due to quasi-irreducible random measurement errors, i.e. thermal effects;

— fundamental, if the underlying physics is intrinsically uncertain, i.e. quantum mechanics is not a
deterministic theory.
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Obviously in particle physics, all three kinds of uncertainties are at play. A key feature of collider physics
is that events resulting from particle collisions are independent of each other, and provide a quasi-perfect
laboratory of quantum-mechanical probability processes. Similarly, unstable particles produced in HEP
experiments obey quantum-mechanical decay probabilities.

2.2 Mathematical probability

Let Q2 be the total universe of possible outcomes of a random process, and let X, Y ... be elements (or
realizations) of €2; a set of such realizations is called a sample. A probability function P is defined as a
map onto the real numbers:

P{Q} — [0:1],
X = PX). (1)

This mapping must satisfy the following axioms:

P = 1,
fXNY = 0,thenP(XUY)=P(X)+P(Y), )

from which various useful properties can be easily derived, i.e.

P(X) = 1-P(X),
PXUX) = 1,
P(@) = 1-PQ)=0,
P(XUY) = PX)+PY)-PXNY), 3)

(where X is the complement of X). Two elements X and Y are said to the independent (that is, their
realizations are not linked in any way) if

PXNY)=PX)PY). (€]

2.2.1 Conditional probability and Bayes’ theorem

Conditional probability P(X | Y) is defined as the probability of X, given Y. The simplest example of
conditional probability is for independent outcomes: from the definition of independence in Eq. (4), it
follows that if X and Y are actually independent, the condition

P(X | Y) = P(X) 5)

is satisfied. The general case is given by Bayes’ theorem: in view of the relation P(X NY) = P(Y N X),
it follows that

P | X)P(X)

PX 1Y) = =5

(6)
An useful corollary follows as consequence of Bayes’ theorem: if {2 can be divided into a number of
disjoint subsets X; (this division process is called a partition), then

P | X)P(X)

PEIY) = o Tx)Px) ”
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2.2.2 The probability density function

In the context of these lectures, the relevant scenario is when the outcome of a random process can be
stated in numerical form (i.e. it corresponds to a measurement): then to each element X (which for
HEP-oriented notation purposes, it is preferable to design as an event) corresponds a variable x (that can
be real or integer). For continuous , its probability density function (PDF) P(z) is defined as

P(X found in [z,z + dz]) = P(x)dzx, (8)

where P(x) is positive-defined for all values of z, and satisfies the normalization condition

+oo
/ dr'P(z') = 1. )

—0o0

For a discrete x;, the above definition can be adapted in a straightworward way:

P(X found in x;) = p;,

with ij =1land pg > 0Vk. (10)
J

Finite probabilities are obtained by integration over a non-infinitesimal range. It is sometimes convenient
to refer to the cumulative density function (CDF) :

X
C(x) = / dx'P(z') (11)
—00

so that finite probabilities can be obtained by evaluating the CDF on the boundaries of the range of
interest :

Pla< X <b) = C(b)—Cl(a) = /b do'P(z') . (12)

Other than the conditions of normalization Eq. (9) and positive-defined (or more precisely, to have a
compact support, which implies that the PDF must become vanishingly small outside of some finite
boundary) the PDFs can be arbitrary otherwise, and exhibit one or several local maxima or local minima.
In contrast, the CDF is a monotonically increasing function of x, as shown on Figure 1, where a generic
PDF and its corresponding CDF are represented.
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Fig. 1: Left: a probability density function (PDF) for a variable z; the PDF is assumed to have negligible values
outside of the plotted range. Right: the corresponding cumulative density function (CDF), plotted in the same
range.
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2.2.3 Multidimensional PDF's

When more than on random number is produced as outcome in a same event, it is convenient to introduce

a n-dimensional set of random elements X = {X1,Xs,..., X, }, together with its corresponding set of
random variables & = {z1, z2, ..., z,} and their multidimensional PDF:
P(¥)dx = P(x1,x9,...,xy)dr1dxs . .. dz), (13)

Lower-dimensional PDFs can be derived from Eq. (13); for instance, when one specific variable x = x;
(for fixed j, with 1 < j < n) is of particlar relevance, its one-dimensional marginal probability density
Px () is extracted by integrating P(Z) over the remaining n — 1 dimensions (excluding the j-th):

+o0 +oo +oo +oo
Px(x)dz = dx/ dxy .. / drj_q / dzjiq .. / dyn_1 . (14)

Without loss of generality, the discussion can be restricted to the two-dimensional case, with random
elements X and Y and random variables X = {z,y}. The finite probability in a rectangular two-
dimensional range is

b d
Pla< X <bande<Y <d) = / da;/ dyP(x,y) . (15)

For a fixed value of Y, the conditional density function for X is given by

Pl ) = o) D) (16)

~ JdyP(z,y)  Pr(y)
As already mentioned, the relation P(z,y) = Px(z)- Py (y) holds only if X and Y are independent; for

instance, the two-dimensional density function in Figure 2 is an example of non-independent variables,
for which P(z,y) # Px(x) - Py (y).

3 Parametric PDFs and parameter estimation

The description of a random process via density functions is called a model. Loosely speaking, a para-

metric model assumes that its PDFs can be completely described using a finite number of parameters .

A straightforward implementation of a parametric PDF is when its parameters are analytical arguments
of the density function; the notation P (x,y,... ;01,02,...) indicates the functional dependence of the
PDF (also called its shape) in terms of variables x1, y2, . . . and parameters 61,0, . ..

3.1 Expectation values

Consider a random variable X with PDF P(z). For a generic function f(z), its expectation value E[f]
is the PDF-weighted average over the x range :

Elf] = / dzP(x)f(z) . (17)

Being often used, some common expectation values have their own names. For one-dimensional PDFs,
the mean value and variance are defined as

Mean value : pu = FElz] = /de(x)m, (18)

Variance : 02 = Viz|] = E[z%] - y? = E[(z — p)?; (19)

!"This requirement needs not to be satisfied; PDFs can also be non-parametric (which is equivalent to assume that an infinite
number of parameters is needed to describe them), or they can be a mixture of both types.
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Fig. 2: A two-dimensional probability density function (PDF) for non-independent variables x and y: the pattern
implies that in general, the probability densities are larger when x and y are both large or both small (i.e. they are
positively correlated), and thus the variables are not independent. The PDF is assumed to have negligible values
outside of the plotted two-dimensional range.

for multidimensional PDFs, the covariance C;; = C(x;,x;) and the dimensionless linear correlation
coefficient p;; are defined as:

Covariance : Cyjj = FElxiz;] — pipy = El(xs — pa) (x5 — pj)] (20)
O

Linear correlation : p;; = Y 21
0i0;

By construction, linear correlation coefficients have values in the —1 < p;; < 1 interval. The sign of the
p coefficient indicates the dominant trend in the (x;; z;) pattern: for positive correlation, the probability
density is larger when x; and x; are both small or large, while a negative correlation indicates that
large values of x; are preferred when small values of z; are realized (and viceversa). When the random
variables X; and X are independent, that is P(z;, z;) = Px,(w;) Px;(;), one has

E[$Zl‘]] = //dﬂjzd.’E]P(l‘l,Zﬂj)xlSﬂj = ,U,l'/tj, (22)

and thus p;; = 0: independent variables have a zero linear correlation coefficient. Note that the converse
needs not be true: non-linear correlation patterns among non-independent variables may ‘“‘conspire”
and yield null values of the linear correlation coefficient, for instance if negative and positive correlation
patterns in different regions of the (x;, x;) plane cancel out. Figure 3 shows examples of two-dimensional
samples, illustrating a few representative correlation patterns among their variables.

3.2 Shape characterisation

In practice, the true probability density function may not be known, and the accessible information can
only be extracted from a finite-size sample (say consisting of NV events), which is assumed to have been
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Fig. 3: Examples of two-dimensional probability density functions, illustrating four typical correlation patterns.
From left ro right, the figures show two variables which exhibit: a large, positive linear correlation (with p = +0.9);
no correlation, with a zero linear correlation coefficient; a slightly milder, negative correlation (with p = —0.5);
and a more complex correlation pattern, with variables very strongly correlated, but in such a way that the linear
correlation coefficient is zero.

originated from an unknown PDF. Assuming that this underlying PDF is parametric, a procedure to esti-
mate its functional dependence and the values of its parameters is called a characterisation of its shape.
Now, only a finite number of expectation values can be estimated from a finite-size sample. Therefore,
when choosing the set of parameters to be estimated, each should provide information as useful and com-
plementary as possible; such procedure, despite being intrinsically incomplete, can nevertheless prove
quite powerful.

The procedure of shape characterisation is first illustrated with the one-dimensional case of a single
random variable z. Consider the empirical average T (also called sample mean)

1 N
T = Nz;x (23)

As shown later in Sec. 3.3.1, 7 is a good estimator of the mean value p of the underlying distribution
P(x). In the same spirit, the quadratic sample mean (or root-mean-square RMS),

RMS = /a2 - (@)*, 24

is a reasonable estimator of its variance % (an improved estimator of variance can be easily derived from
the RMS, as discussed later in Sec. 3.3.1). Intuitively speaking, these two estimators together provide
complementary information on the “location” and “spread” of the region with highest event density in x.

The previous approach can be discussed in a more systematic way, by means of the characteristic
function, which is a transformation from the xz-dependence of the PDF P(x) onto a k-dependence of
C'[k], defined as

ko= (ik)’
C[k] :E[ez -~ } -y il 25)

J
The coefficients p of the expansion are called reduced moments; by construction, the first moments are
w1 = 0 and pg = 1; these values indicate that in terms of the rescaled variable 2’ = (z — u) /0o, the PDF
has been shifted to have zero mean and scaled to have unity variance.

In principle, the larger the number of momenta . that are estimated, the more detailed is the char-
acterisation of the PDF shape. Among higher-order moments, the third and fourth have specific names,
and their values can be interpreted, in terms of shape, in a relatively straightforward manner. The third
moment is called skewness: a symmetric distribution has zero skewness, and a negative (positive) value
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indicates a larger spread to the left (right) of its median. The fourth moment is called kurtosis; it is a
positive-defined quantity, that (roughly speaking) can be related to the "peakedness" of a distribution: a
large value indicates a sharp peak and long-range tails (such a distribution is sometimes called leptokur-
tic), while a smaller value reflects a broad central peak with short-range tails (a so-called platykurtic
distribution). Figure 4 shows a few distributions, chosen to illustrate the relation of momenta and shapes.
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Fig. 4: Examples of probability density functions, illustrating the role of momenta in the characterization of PDF
shapes. For all PDFs plotted, their mean values are O and their variances are 1. Top plots : the PDF on the left
(resp. right) exhibits an asymmetric, non-gaussian tail to the left (resp. right) of its peak, and thus has a positive
(resp. negative) skewness. Bottm plots: the PDF on the left (resp. right) shows a narrow peak and long-range
tails (resp. broad core and short-range tails), and has a large (resp. small) kurtosis. In each plot, a Gaussian PDF
(dashed line) with mean value 0 and variance 1, is also overlaid.

3.3 Parameter estimation

The characterization of the shape of a PDF through a sequential estimation of shape parameters discussed
in Sec. 3.2, aimed at a qualitative introduction to the concept of parameter estimation (also called point
estimation in the litterature). A more general approach is now discussed in this paragraph.

Consider a n-dimensional, k-parametric PDF,
P(xl)‘r2a"'7xn;917927"°79k)7 (26)

for which the values 64, . .., 0 are to be estimated on a finite-sized sample, by means of a set of esti-
mators denoted él, ey 0. The estimators themselves are random variables, with their own mean values
and variances: their values differ when estimated on different samples. The estimators should satisfy two
key properties: to be consistent and unbaised. Consistency ensures that, in the infinite-sized sample limit,
the estimator converges to the true parameter value; absence of bias ensures that the expectation value of
the estimator is, for all sample sizes, the true parameter value. A biased, but consistent estimator (also
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called asymptotically unbiased) is such that the bias decreases with increasing sample size. Additional
criteria can be used to characterize the quality and performance of estimators; two often mentioned are

— efficiency: an estimator with small variance is said to be more efficient than one with larger vari-
ance;

— robustness: this criterion characterizes the sensitivity of an estimator to uncertainties in the under-
lying PDF. For example, the mean value is robust against uncertainties on even-order moments,
but is less robust with respect to changes on odd-order ones.

Note that these criteria may sometimes be mutually conflicting; for practical reasons, it may be preferable
to use an efficient, biased estimator to an unbiased, but poorly convergent one.

3.3.1 The classical examples: mean value and variance
The convergence and bias requirements can be suitably illustrated with two classical, useful examples,
often encountered an many practical situations: the mean value and the variance.

The empirical average ¥ is a convergent, unbiased estimation of the mean value y of its underlying

distribution: i = . This statement can easily be demostrated, by evaluating the expectation value and
variance of T:

1 N
Elz] = ) Bl =u, 27)
i=1
0.2
Vel = BEl@-p?] = & (28)

In contrast, the empirical RMS of a sample is a biased, asymptotically unbiased estimator of the variance
o2: this can be demonstrated by first rewriting its square (also called sample variance) in terms of the
mean value:

N N
1 1
2 _ 2 b N2 = N2
RMS* = N.El (x; — @) = N El (r; —p)" — (T —p)*, (29)
and so its expectation value is
N -1
E[RMS?*] = o -V [7] = ~ o?, (30)

which, while properly converging to the true variance o2 in the N — oo limit, systematically underesti-
mates its value for a finite-sized sample. One can instead define a modified estimator

N
N 1
" RMS2 — 2 1
that ensures, for finite-sized samples, an unbiased estimation of the variance.

In summary, consistent and unbiased estimators for the mean value . and variance o of an un-
known underlying PDF can be extracted from a finite-sized sample realized out of this PDF:

| X
o= ) (32)
i=1
-2 1 2
0" = ]\7—1;(%_’“) : (33)

As a side note, the 1/N and 1/(N — 1) factors for /i in Eq. (32) and for 62 in Eq. (33) can be intuitively
understood as follows: while the empirical average be estimated even on the smallest sample consisting
of a single event, at least two events are needed to estimate their empirical dispersion.
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3.3.2 Covariance, correlations, propagation of uncertainties

These two classical examples discussed in 3.3.1 refer to a single random variable. In presence of several
random variables, expressed as a random n-dimensional vector # = {x1,...,x,}, the discussion leads
to the definition of the empirical covariance matrix, whose elements Clp can be estimated on a sample
of N events as

N

Cop = —— Tai — ta) (Tpi — fip) - 34
ab N _1 ;( a,i ,Ufa) ( bi Ub) ( )
(the a, b indices run over random variables, 1 < a,b < mn). Assuming the covariance is known (i.e.
by means of the estimator above, or from first principles), the variance of an arbitrary function of these

random variables f (&) can be evaluated from a Taylor-expansion around the mean values i as

, ~ df X
1@ = ()+Z (o) (35)
which leads to E [f(Z)] ~ f(fi); similarly,
. G “~ df df A
BIP@] = £+ > gl Cabs (36)
a,b=1 a =
and thus the variance of f can be estimated as
"\ df d A
> ray e, (37)
dxre dry |- >
a,b=1 T=H

This expression in Eq. (37), called the error propagation formula, allows to estimate the variance of a
generic function f(Z) from the estimators of mean values and covariances.

A few particular examples of error propagation deserve being mentioning explicitly:

— If all random variables {z,} are uncorrelated, the covariance matrix is diagonal, C,j, = agéab and
the covariance of f(Z) reduces to

52 | (38)

=2 ()],

a=1

— For the sum of two random variables S = x1 + x9, the variance is
agv = O'% + O'% +2C1 = O'% + O'% + 20109p12, 39)

and the corresponding generalization to more than two variables is straightforward:

= Z 0a0bPab - (40)

In absence of correlations, one says that absolute errors are added in quadrature: hence the expres-
sion in Eq. (39) is often written as g = o1 P 09.
— For the product of two random variables P = x; x5, the variance is

9 2 2
(%) = (‘”) +<“2> 12782, 1)
P T T2 T1 X2
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with its generalization to more than two variables:
op ) 2 Oq Op
—) = — —Pab - 42
(F) = X2 ew 42)

In absence of correlations, one says that relative errors are added in quadrature, and Eq. (41)
op/P =o01/x1 ® 09/x2.

— For a generic power law function, Z = x’fla:;” ..., if all variables are uncorrelated, the variance
is
0z 01 g2
— = —Png—P... 43)
A T T2

4 A survey of selected distributions

In this Section, a brief description of distributions, often encountered in practical applications, is pre-
sented. The rationale leading to this choice of PDFs is driven either by their specific mathematical
properties, and/or in view of their common usage in the modellingi of important physical processes;
such features are correspondingly emphasized in the discussion.

4.1 Two examples of discrete distributions: Binomial and Poisson
4.1.1 The binomial distribution

Consider a scenario with two possible outcomes: “success” or “failure”, with a fixed probability p of
“success” being realized (this is also called a Bernouilli trial). If n trials are performed, 0 < k& < n may
actually result in “success”; it is assumed that the sequence of trials is irrelevant, and only the number of
“success” k is considered of interest. The integer number & follows the so-called Binomial distribution
P(k;n,p):

n! n—
pF(L=p)" (44)

Phinomial (kz;n,p) = m

where k is the random variable, while n and p are parameters. The mean value and variance are

E[k] = ) kP (kn,p) = np,
k=1
VIk] = np(l-p). (45)

4.1.2 The Poisson distribution

In the n — oo, p — 0 limit (with A = np finite and non-zero) for the Binomial distribution, the random
variable k follows the Poisson distribution P(k; ),

Nee=A
PPoisson (ka )\) = %l , (46)
for which X is the unique parameter. For Poisson, the mean value and variance are the same:
E = VK = A. @7)

The Poisson distribution, sometimes called law of rare events (in view of the p — 0 limit), is a useful
model for describing event-counting rates. Examples of a Binomial and a Poisson distribution, for n =
10, p = 0.6 and for A = 6.5, respectively, are shown on Figure 5.

262



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICISTS

Relative probability (a.u.)
Relative probability (a.u.)
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Number of Counts

Fig. 5: Examples of a Binomial (left) and a Poisson (right) distributions, with parameters n = 10, p = 0.6 and

A = 6.5, respectively.

4.2 Common examples of real-valued distributions

The first two continuous random variables discussed in this paragraph are the uniform and the exponential

distributions, illustrated in Figure 6.
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Fig. 6: Examples of a uniform (left) and an exponentially-decreasing (right) distribution. For the uniform distri-
bution, values used for the boundary parameters are a = —1, b = 1; for the exponential, two values £ = 1 (solid

line) and ¢ = 2 (dashed line) are used.

4.2.1 The uniform distribution

Consider a continuous random variable x, with a probability density P(x;a,b) that is non-zero only

inside a finite interval [a, b]:

- a<z<b,

Puniform (7;0,b) = { 8_a 7 otherwise

For this uniform distribution, the mean value and variance are

Bl = 422
_ )2
Viz] = (b12) .

(48)

(49)

(50)

While not being the most efficient one, a straightforward Monte-Carlo generation approach would be
based on a uniform distribution in the [0, p| range, and use randomly generated values of z in the [0, 1]

range as implementation of an accept-reject algorithm with success probability p.
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4.2.2 The exponential distribution

Consider a continuous variable x, with a probability density P(z;¢) given by

Le—w/¢ x>0
Pex onentia ; = §€ ’ =7 51
ponenial (%3 §) { 0 , otherwise , D
whose mean value and variance are
Elz] = ¢, (52)
Vi = &. (53)

A common application of this exponential distribution is the description of phenomena occuring inde-
pendently at a constant rate, such as decay lengths and lifetimes. In view of the self-similar feature of
the exponential function:

Pt —to|t > tg) = P(t), (54)

the exponential distribution is sometimes said to be memoryless.

4.2.3 The Gaussian distribution
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Fig. 7: A Gaussian PDF, with parameter values ;4 = 3.5 and o = 1.5.

Now turn to the Normal (or Gaussian) distribution. Consider a random variable x, with probability
density

1 _@w?

e 202 55
V2o (55)

PGauss (.T; N7U) =

and with mean value and variance given by

Eld] = u, (56)
Vig] =o. (57)

The PDF corresponding to the special i = 0, o = 1 case is usually called “reduced normal”.

On purpose, the same symbols 1 and ¢ have been used both for the parameters of the Gaussian
PDF and for the mean value and variance. This is an important feature: the Gaussian distribution is
uniquely characterized by its first and second moments. For all Gaussians, the [ — o; i + o] covers
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68.3% of PDF integral, and is customary called a “one-sigma interval”; similarly for the two-sigma
interval and its 95.4%.

The dispersion of a peaked distribution is sometimes characterised in terms of its FWHM (full
width at half-maximum); for Gaussian distributions, this quantity is uniquely related to its variance, as
FWHM = 2v/21In2 ~ 2.350; Figure 7 provides a graphical illustration of the Gaussian PDF and its
parameters.

In terms of conceptual relevance and practical applications, the Gaussian certainly outnumbers all
other common distributions; this feature is largely due to the central limit theorem, which asserts that
Gaussian distributions are the limit of processes arising from multiple random fluctuations. Consider

n independent random variables # = {z1,x2,...,z,}, each with mean and variances y; and 03; the
variable S(Z), built as the sum of reduced variables
1 o=z — i
S=-——=) 4, (58)

can be shown to have a distribution that, in the large-n limit, converges to a reduced normal distribution,
as illustrated in Figure 8 for the sum of up to five uniform distributions. Not surprisingly, any measure-
ment subject to multiple sources of fluctuations is likely to follow a distribution that can be approximated
with a Gaussian distribution to a good approximation, regardless of the specific details of the processes
at play.
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Fig. 8: A graphical illustration of the central limit theorem. The top left plot compares the histogram (dashed
curve) of a sample realization from a uniform variable x1, with a normal PDF (solid line) of same mean and
variance; similarly, the plots on the top right, bottom left and bottom right plot the corresponding histograms for
the sums So, S3 and S5 of two, three and five reduced uniform variables x1, . . ., x5, respectively. The sequence of
variables follow distributions that quickly converge to a reduced Gaussian.

The Gaussian is also encountered as the limiting distribution for the Binomial and and Poisson
ones, in the large n and large A limits, respectively:

Phinomial (k;n — 00,p) —  Pgauss (k;np,np(1 —p)) , (59)
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PPoisson (ka A= OO) — PGauss (k; )\7 \/X> . (60)

Note that, when using a Gaussian as approximation, an appropriate continuity correction needs to be
taken into account: the range of the Gaussian extends to negative values, while Binomial and Poisson are
only defined in the positive range.

4.2.4 The X2 distributions
Now the x? (or chi-squared) distributions are considered. The following PDF

gn/2—1lg—x/2
on/2—11(n\ 7 :C > 0 b
P (z3n) = 27/2710(3) N (61)
0 , otherwise ,

with a single parameter n, and where I" (n/2) denotes the Gamma function, has mean value and variance
given by

E[z] =n,

Viz] = 2n. (62)

The shape of the x? distribution depends thus on n, as shown in Figure 9 where the x? PDF, for the first
six integer values of the n parameter, are shown. It can be shown that the x? distribution can be written

3 0.5 I T T T T T T T T i
= -
[72] .
S B
° 0.4 —
g B
= -
k] ]
3 . |
2 0.3 5
<
& B
® 1
0.2 —
0.1 _|
0 A I PSRN IR EPEPETE PR rare:
0 1 3 8 9 10

Fig. 9: The first six y? probability density functions, for integer numbers of degrees of freedom n. The width of
solid lines increases monotonically with n inthe n = 1,..., 6 range.

as the sum of squares of n normal-reduced variables x;, each with mean u,; and variance af:

Ppe(zin) = Y <T‘> . (63)

i=1

In view of this important feature of the x? distribution, the quantity n is called “number of degrees of
freedom”; this name refers to the expected behaviour of a least-square fit, where n, data points are used
to estimate n, parameters; the corresponding number of degrees of freedom is ng — n,. For a well-
behaved fit, the y? value should follow a y? distribution. As discussed in 7.1, the comparison of an
observed x? value with its expectation, is an example of goodness-of-fit test.
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4.2.5 The Breit-Wigner and Voigtian distributions

The survey closes with the discussion of two physics-motivated PDFs. The first is the Breit-Wigner
function, which is defined as
1 r/2

Pew (23T, 29) = E(x7x0)2+112/4’ (64)

whose parameters are the most probable value xy (which specifies the peak of the distribution), and
the FWHM I'. The Breit-Wigner is also called Lorentzian by physicists, and in matematics it is often
referred to as the Cauchy distribution. It has a peculiar feature, as a consequence of its long-range tails:
the empirical average and empirical RMS are ill-defined (their variance increase with the size of the
samples), and cannot be used as estimators of the Breit-Wigner parameters. The truncated mean and
interquartile range, which are obtained by removing events in the low and high ends of the sample, are
safer estimators of the Breit-Wigner parameters.

In the context of relativistic kinematics, the Breit-Wigner function provides a good description of
a resonant process (for example the invariant mass of decay products from a resonant intermediate state);
for a resonance, the parameters x and I' are referred to as its mass and its natural width, respectively.

Finally, the Voigtian function is the convolution of a Breit-Wigner with a Gaussian,

+o0o
Pyoigt (25 20,1,0) = / dx’ Pqauss (x/; 0, U) Ppw (x — 2’5z, F) , (65)
—0oQ

and is thus a three-parameter distribution: mass xg, natural width I and resolution ¢. While there is no
straightforward analytical form for the Voigtian, efficient numerical implementations are available, i.e.
the TMath: : Voigt member function in the ROOT [7] data analysis framework, and the RooVoigtian
class in the RooFit [8] toolkit for data modeling. For values of I' and o sufficiently similar, the FWHM
of a Voigtian can be approximated as a combination of direct sums and sums in quadrature of the I" and
o parameters. A simple, crude approximation yields :

FWHMyoig ~ [(T/2) @ 0] +T/2. (66)

When the instrumental resolutions are sufficiently well described by a Gaussian, a Voigtian distribution
is a good model for observed experimental distributions of a resonant process. Figure 10 represents an
analytical Breit-Wigner PDF (evaluated using the Z boson mass and width as parameters), and a dimuon
invariant mass spectrum around the Z boson mass peak, as measured by the ATLAS experiment using 8
TeV data [9]. The width of the observed peak is interpreted in terms of experimental resolution effects,
as indicated by the good data/simulation agreement. Of course, the ATLAS dimuon mass resolution is
more complicated than a simple Gaussian (as hinted by the slightly asymmetric shape of the distribu-
tion), therefore a simple Voigtian function would not have reached the level of accuracy provided by the
complete simulation of the detector resolution.

5 The maximum likelihood theorem and its applications

The discussion in Section 3.3 was aimed at describing a few intuitive examples of parameter estimation
and their properties. Obviously, such case-by-case approaches are not general enough. The maximum
likelihood estimation (MLE) is an important general method for parameter estimation, and is based on
properties following the maximum likelihood (ML) theorem.

Consider a sample made of N independent outcomes of random variables Z, arising from a n-
parametric PDF P (Z;04,...,0,), and whose analytical dependence on variables and parameters is
known, but for which the value(s) of at least one of its parameters # is unknown. With the MLE, these
values are extracted from an analytical expression, called the likelihood function, that has a functional
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Fig. 10: Left: the probability density function for a Breit-Wigner distribution, using the PDG [6] values for the Z
boson mass and width as parameters. Right: the invariant dimuon mass spectrum around the Z boson mass peak;
the figure is from an ATLAS measurement using 8 TeV data [9].

dependence derived from the PDF, and is designed to maximise the probability of realizing the observed
outcomes. The likelihood function £ can be written as

N
L0, 00 %) = [[P(@:61,....00) . (67)
i=1
This notation shows implictly the functional dependence of the likelihood on the parameters 6, and on
the IV realizations & of the sample. The ML theorem states that the 61, . . . , 8, = 6,, values that maximize
L,
g(él,...,énf) = max], {£(61,...,0,)} . (68)

are estimators of the unknown parameters 6, with variances &y that are extracted from the covariance of
L around its maximum.

In a few cases, the MLE can be solved analytically. A classical example is the estimation of the
mean value and variance of an arbitrary sample, that can be analytically derived under the assumption
that the underlying PDF is a Gaussian. Most often though, a numerical study of the likelihood around the
0 parameter space is needed to localize the 0 point that minimizes — In £ (the “negative log-likelihood”,
or NLL); this procedure is called a ML fit.

5.1 Likelihood contours

Formally speaking, several conditions are required for the ML theorem to hold. For instance, £ has to
be at least twice derivable with respect to all its # parameters; constraints on (asymptotical) unbiased
behaviour and efficiency must be satisfied; and the shape of £ around its maximum must be normally
distributed. This last condition is particularly relevant, as it ensures the accurate extraction of errors.
When it holds, the likelihood is said (in a slightly abusive manner) to have a “parabolic” shape (more in
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reference to — In L than to the likelihood itself), and its expansion around 6 can be written as

1 1 /5 - 5
0,9,2) SR = (ev—e.) »1 (9-—94) . 69
f( 1/27T|2|6Xp{ ) ? ? i J J ( )
In Eq. (69) the covariance matrix X has been introduced, and its elements are given by :

{8111[,8111[3]

> = p|Ei=0 s
90; 00,

p (70)

When moving away from its maximum, the likelihood value decreases by amounts that depend on the
covariance matrix elements:

2AInL = —2 [mﬁ(*) - 1nc(§)} = (ei - 9) ;! (91- - 9}) . (1)
.3

This result, together with the result on error propagation in Eq. (37), indicates that the covariance matrix

defines contour maps around the ML point, corresponding to confidence intervals. In the case of a single-

parameter likelihood £(6), the interval contained in a —2AIn £ < 1 contour around 6 defines a 68%

confidence interval, corresponding to a —oy < 6 — 6 < oy range around the ML point; in consequence
the result of this MLE can be quoted as (9 + &9).

5.2 Selected topics on maximum likelihood
5.2.1 Samples composed of multiple species

In a typical scenario, the outcome of a random process may arise from multiple sources. To be specific,
consider that events in the data sample are a composition of two “species”, called generically “signal”
and “background” (the generalization to scenarios with more than two species is straighforward). Each
species is supposed to be realized from its own probability densities, yielding similar (but not identical)
signatures in terms of the random variables in the data sample; it is precisely these residual differences
in PDF shapes that are used by the ML fit for a statistical separation of the sample into species. In the
two-species example, the underlying total PDF is a combination of both signal and background PDFs,
and the corresponding likelihood function is given by

N

L(0:7) = [] [fsiePeis(#:0) + (1 — fuig) Porg(&: 0)] , (72)
=1

where Fsie and P, are the PDFs for the signal and background species, respectively, and the signal
fraction fgg is the parameter quantifying the signal purity in the sample: 0 < fi, < 1. Note that, since
both Pz and P, satisfy the PDF normalization condition from Eq. (9), the total PDF used in Eq. (72)
is also normalized. It is worth mentioning that some of the parameters 6 can be common to both signal
and background PDFs, and others may be specific to a single species. Then, depending on the process
and the study under consideration, the signal fraction can either have a known value, or belong to the set
of unknown parameters 6 to be estimated in a ML fit.

5.2.2 Extended ML fits

In event-counting experiments, the actual number of observed events of a given species is a quantity of
interest; it is then convenient to treat the number of events as an additional parameter \ of the likelihood
function. In the case of a single species, this amounts to “extending” the likelihod,

N_—-x N
e TP . (73)

N!
i=1

LN 6;7) =
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where an additional multiplicative term, corresponding to the Poisson distribution (c.f. Section 4.1), has
been introduced. (the N! term in the denominator can be safely dropped; a global factor has no impact
on the shape of the likelihood function nor on the ML fit results). It is straightforward to verify that the
Poisson likelihod in Eq. (73) is maximal when X = N, as intended; now, if some of the PDFs also depend
on ), the value of ) that maximises £ may differ from V. The generalization to more than one species
is straightforward as well; for each species, a multiplicative Poisson term is included in the extended
likelihood, and the PDFs of each species are weighted by their corresponding relative event fractions; in
presence of two species, the extended version of the likelihood in Eq. 72 becomes:

L (Nsiga kage; j) = (Nsig + kag) e (Neig+Nokeg) H N51gP51g 9) + -Z\[bkg-Pbkg(:C 0)] (74)
=1

5.2.3 “Non-parabolic” likelihoods, likelihoods with multiple maxima

As discussed in Section 5.1, the condition in Eq. (69) about the asymptotically normal distribution of
the likelihood around its maximum is crucial to ensure a proper interpretation of —2A In £ contours in
terms of confidence intervals. In this paragraph, two scenarios in which this condition can break down
are discussed.
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Fig. 11: Left: two-dimensional likelihood contours in the m,, — m; plane, obtained from a global electroweak fit
(EW) performed by the gFitter collaboration [10]. Center: the change in the EW likelihood as a function of m,
expressed in terms of §x2 = —2A In L. Both plots illustrate the non-parabolic shape of the EW likelihood.

A first scenario concerns a likelihood that is not totally symmetric around its maximum. Such
a feature may occur, when studying low-statistics data samples, in view of the Binomial or Poissonian
behaviour of event-counting related quantities (c.f. Figure 5). But it can also occur on larger-sized data
samples, indicating that the model has a limited sensitivity to the parameter § being estimated, or as a
consequence of strong non-linear relations in the likelihood function. As illustration, examples of two-
and one-dimensional likelihood contours, with clear non-parabolic shapes, are shown in Figure 11.

Also, the likelihood function may possess one or more local maxima, or even completely degen-
erate maxima. There are various possible sources for such degeneracies. For example in models with
various species, if some PDF shapes are not different enough to provide a robust statistical discrimina-
tion among their corresponding species. For example, if swapping the PDFs for a pair of species yields
a sufficiently good ML fit, a local maximum may emerge; on different sample realizations, the roles of
local and global maxima may alternate among the correct and swapped combinations. The degeneracies
could also arise as a reflexion of explicit, physical symmetries in the model: for example, time-dependent
asymmetries in B — 7+ 7~ decays are sensitive to the CKM angle «, but the physical observable is a
function of cos 2(« + §), with an addtional phase 0 at play; in consequence, the model brings up to eight
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Fig. 12: The change in likelihood, expressed in terms of a variant called “confidence level” CL, shown as a
function of the CKM angle «; the definition of CL is such that CL = 0 at the solutions of the ML fit. An eight-fold
constraint on « is extracted from measurements in B — 77 decays by the BABAR experiment [11]. The two pairs
of solutions around ~ 130° are very close in values, and barely distinguishable in the figure.

indistinguishible solutions for the CKM angle «, as illustrated in Figure 12.

In all such cases, the (possibly disjoint) —2A In £ < 1 interval(s) around the 0 central value(s)
cannot be simply reported with a symmetric uncertainty 64 only. In presence of a single, asymmetric
solution, the measurement can be quoted with asymmetric errors, i.e. éfgf, or better yet, by providing
the detailed shape of —2A In £ as a function of the estimated parameter 6. For multiple solutions, more
information needs to be provided: for example, amplitude analyses (“Dalitz-plot” analyses) produced
by the B-factories BABAR and Belle, often reported the complete covariance matrices around each local
solution (see e.g. [12, 13] as examples).

5.2.4 Estimating efficiencies with ML fits

Consider a process with two possible outcomes: “yes” and “no”. The intuitive estimator of the efficiency
€ is a simple ratio, expressed in terms of the number of outcomes 7y and n,, of each kind:

g = = (75)
Nyes + Mno
for which the variance is given by
. E(l—¢€
Vg = (n) , (76)

where 1 = nyes + 7y 18 the total number of outcomes realized. This estimator ¢ clearly breaks down for
low n, and in the very low or very high efficiency regimes. The MLE technique offers a robust approach
to estimate efficiencies: consider a PDF P(x;6) to model the sample, and include in it an additional
discrete, bivariate random variable ¢ = {yes, no}, so that the PDF becomes

P(z,c;0) = d(c —yes)e(z,0) + 0(c —no) [1 — &(z,0)] . 77)

In this way, the efficiency is no longer a single number, but a function of x (plus some parameters 6 that
may be needed to characterize its shape). With this function, the efficiency can be extracted in different
x domains, as illustated in Figure 13, or can be used to produce a multidimensional efficiency map.
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Fig. 13: Left: the frequency of events in a sample, as a function of a variable x. The sample contains two categories
of events: “accepted” and “rejected”. The red dots indicate the bins of the histogram for those “accepted” only, and
the black dots for the two categories cumulated. Right: the efficiency as a parametric function of x, with parameter
values extracted from a ML fit to the data sample. Figure extracted from the RooFit user’s guide [8].

5.3 Systematic uncertainties

As discussed in Section 5.1, in MLE the covariance of £ is the estimator of statistical uncertainties.
Other potential sources of (systematical) uncertainties are usually at play, and need to be quantified. For
this discussion, a slight change in the notation with respect to Eq.(67) is useful; in this notation, the
likelihood function is now written as

L(pryesphp, 01,...,0:7) (78)
where the parameters are explicitly partitioned into a set y1, . . ., j1p, called parameters of interest (POI),
that correspond to the actual quantities that are to be estimated; and a set 61, ..., 0, called nuisance

parameters (NP), that represent potential sources of systematic biases: if inaccurate or wrong values
are assigned to some NPs, the shapes of the PDFs can be distorted, the estimators of POIs can become
biased. The systematic uncertainties due to NPs are usually classified in two categories.

The first category refers to “Type-1" errors, for which the sample (or other control data samples)
can (in principle) provide information on the NPs under consideration, and are (in principle) supposed
to decrease with sample size. The second category refers to “Type-1I"” errors, which arise from incorrect
assumptions in the model (i.e. a choice of inadequate functional dependences in the PDFs), or uncon-
trolled features in data that can not be described by the model, like the presence of unaccounted species.
Clearly, for Type-II errors the task of assigning systematic uncertainties to them may not be well-defined,
and may spoil the statistical interpretation of errors in termos of confidence levels.

5.3.1 The profile-likelihod method

To deal with Type-I nuisance parameters, a popular approach is to use the so-called profile-likelihood
method. This approach consists of assigning a specific likelihood to the nuisance parameters, so that the
original likelihood is modified to have two different components:

L (:U'v 9) = 'CM (/J’v 9) [’9 (9) . (79)

Then, for a fixed value of u, the likelihood is maximized with respect to the nuisance 6; the sequencial
outcome of this procedure, called profile likelihood, is a function that depends only on p: it is then said
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that the nuisance parameter has been profiled out of the likelihood.

As an example, consider the measurement of the cross-section of a generic process, o (initial — final)

If only a fraction of the processes is actually detected, the efficiency ¢ of reconstructing the final state is
needed to convert the observed event rate Nevent into a measurement &. This efficiency is clearly a nui-
sance: a wrong value of ¢ directly affects the value of &, regardless of how accurately Nevent may have
been measured. By estimating € on a quality control sample (for example, high-statistics simulation,
or a high-purity control data sample), the impact of this nuisance can be attenuated. For example, an
elegant analysis would produce a simultaneous fit to the data and control samples, so that the values and
uncertainties of NPs are estimated in the ML fit, and are correctly propagated to the values and variances
of the POls.

As another example, consider the search for a resonance (‘“a bump”’) over a uniform background.
If the signal fraction is very small, the width I" of the bump cannot be directly estimated on data, and the
value used in the signal PDF has to be inferred from external sources. This width is clearly a nuisance:
using an overestimated value would translate into an underestimation of the signal-to-background ratio,
and thus an increase in the variance of the signal POIs, and possibly biases in their central values as
well, i.e. the signal rate would tend to be overestimated. Similar considerations can be applied in case
of underestimation of the width. If an estimation I" & or of the width is available, this information can
be implemented as in Eq. (79), by using a Gaussian PDF, with mean value I and width T, in the Lp
component of the likelihood. This term acts as a penalty in the ML fit, and thus constraints the impact of
the nuisance I on the POlIs.

6 Multivariate techniques

Often, there are large regions in sample space where backgrounds are overwhelming, and/or signals are
absent. By restricting the data sample to “signal-enriched” subsets of the complete space, the loss of
information may be minimal, and other advantages may compensate the potential losses: in particular
for multi-dimensional samples, it can be difficult to characterize the shapes in regions away from the
core, where the event densities are low; also reducing the sample size can relieve speed and memory
consumption in numerical computations.

The simplest method of sample reduction is by requiring a set of variables to be restricted into
finite intervals. In practice, such “cut-based” selections appear at many levels in the definition of sample
space: thresholds on online trigger decisions, filters at various levels of data acquisition, removal of
data failing quality criteria... But at more advanced stages of a data analysis, such “accept-reject” sharp
selections may have to be replaced by more sophisticated procedures, generically called multivariate
techniques.

A multi-dimensional ML fit is an example of a multivariate technique. For a MLE to be considered,
a key requirement is to ensure a robust knowledge of all PDFs over the space of random variables.

Consider a set of n random variables & = {z1,x3...,z,}. If all variables are shown to be un-
correlated, their n-dimensional PDF is completely determined by the product of their n one-dimensional
PDFs; now, if variables are correlated, but their correlation patterns are completely linear, one can in-
stead use variables ¢/, linear combinations of & obtained by diagonalizing the inverse covariance. For
some non-linear correlation patterns, it may be possible to find analytical descriptions; for instance, the
(mildly) non-linear correlation pattern represented in Figure 2, was produced with the RooFit package,
by applying the Conditional option in RooProdPdf to build a product of PDFs. In practice, this ele-
gant approach cannot be easily extended to more than two dimensions, and is not guaranteed to reproduce
complex, non-linear patterns. In such scenarios, the approach of dimensional reduction can potentially
bring more effective results.

A typical scenario for dimensional reduction is when several variables carry common information
(and thus exhibit strong correlations), together with some diluted (but relevant) pieces of independent in-
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formation. An example is the characterization of showers in calorimeters; for detectors with good trans-
verse and/or longitudinal segmentation, the signals deposited in nearby calorimetric channels can be used
to reconstruct details from the shower development; for example, a function that combines informations
from longitudinal and transverse shower shapes, can be used to discriminate among electromagnetic and
hadronic showers.

The simplest algorithm for dimensional reduction is the Fisher discriminant: it is a linear func-
tion of variables, with coefficients adjusted to match an optimal criterion, called separation among two
species, which is is the ratio of the variance between the species to the variance within the species, and
can be expressed in a close, simple analytical form.

In presence of more complex, non-linear correlation patterns, a large variety of techniques and
tools are available. The TMVA [14] package is a popular implementation of dimensional-reduction
algorithms; other than linear and likelihood-based discriminants, it provides easy training and testing
methods for artificial neural networks and (boosted) decision trees, which are among those most often
encountered in HEP analyses. As a general rule, a multivariate analyzer uses a collection of variables,
realized on two different samples (corresponding to “signal” and “background” species), to perform
a method-dependent training, guided by some optimization criteria; then performances of the trained
analyzer are evaluated on independent realizations of the species (this distinction between the training
and testing stages is crucial to avoid “over-training” effects). Figure 14 shows a graphical representation
of a figure-of-merit comparison of various analyzers implemented in TMVA.

| Background rejection versus Signal efficiency |
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Fig. 14: A figure-of-merit comparison between various different multivariate analyzer methods using the TMVA
package. The training was performed on two simulated samples (“signal” and “background”), each consisting
of four linearly correlated Gaussian-distributed variables. The various lines indicate the trade-off between signal
efficiency and background rejection. The figure is taken from [14].

7 Statistical hypothesis testing

Sections 3 and 5 mainly discussed procedures for extracting numerical information from data samples;
that is, to perform measurements and report them in terms of values and uncertanties. The next step in
data analysis is to extract qualitative information from data: this is the domain of statistical hypothesis
testing. The analytical tool to assess the agreement of an hypothesis with observations is called a test
statistic, (or a statistic in short); the outcome of a test is given in terms of a p-value, or probability of a
“worse” agreement than the one actually observed.
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7.1 The x? test

For a set of n independent measurements x;, their deviation with respect to predicted values p;, expressed
in units of their variances o; is called the X2 test, and is defined as

n 2
2 _ Ti — i
X = E <Ui ) . (80)

i=1

An ensemble of X2 tests is a random variable that, as mentioned in Section 4.2, follows the PX2 distribu-
tion (c.f. Eq. 61) for n degrees of freedom. Its expectation value is n and its variance 2n; therefore one
does expect the 2 value observed in a given test not to deviate much from the number of degrees of free-
dom, and so this value can be used to probe the agreement of prediction and observation. More precisely,
one expects 68% of tests to be contained within a n & v/2n interval, and the p-value, or probability of
having a test with values larger than a given x? value is

—+o00
p = / dg Py (g;n) . 81
X2

Roughly speaking, one would tend to be suspicious of small observed p-values, as they may indicate a
trouble, either with the prediction or the data quality. The interpretation of the observed p-value (i.e. to
decide whether it is too small or large enough) is an important topic, and is discussed below in a more
general approach.

7.2 General properties of hypothesis testing

Consider two mutually excluding hypotheses Hy and H;, that may describe some data sample; the
hypothesis testing procedure states how robust is Hy to describe the observed data, and how incompatible
is H; with the observed data. The hypothesis Hy being tested is called the “null” hypothesis, while H
is the “alternative” hypothesis,

Note that in the context of the search for a (yet unknown) signal, the null Hy corresponds to a
“background-only” scenario, and the alternative H; to “signal-plus-background”; while in the context of
excluding a (supposedly inexistent) signal, the roles of the null and alternative hypotheses are reversed:
the null Hy is “signal-plus-background” and the alternative H; is “background-only”.

The sequence of a generic test, aiming at accepting (or rejecting) the null hypothesis Hy by con-
fronting it to a data sample, can be sketched as follows:

build a test statistic g, that is, a function that reduces a data sample to a single numerical value;

define a confidence interval W — [qio : qnil;

measure q;
— if ¢ is contained in W, declare the null hypothesis accepted; otherwise, declare it rejected.

To characterize the outcome of this sequence, two criteria are defined: a “Type-I error” is incurred in, if
Hj is rejected despite being true; while a “Type-II error” is incurred in, if Hj is accepted despite being
false (and thus H; being true). The rates of Type-I and Type-II errors are called o and [ respectively,
and are determined by integrating the Hy and H; probability densities over the confidence interal W,

l—a = /dqmqmo),
W

= d Hy) . 82
5 /W 4P (q|Hy) 82)

The rate « is also called “size of the test” (or size, in short), as fixing « determines the size of the
confidence interval W. Similarly, 1 — /3 is also called “power”. Together, size and power characterize
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the performance of a test statistic; the Neyman-Pearson lemma states that the optimal statistic is the
likelihood ratio gy,

L (data|Hy)
data) = ————+ . 83
o (data) L (data|Hq) (83)
The significance of the test is given by the p-value,
+oo
p= [ PGl (84)
q

which is often quoted in terms of “sigmas”,

too 1 > 1 n
= dz e 2 = 1— Zerf <> , 85
P - or 2 NG (85)

so that for example a p < 0.0228 outcome can be reported as a “two-sigma” effect. Alternatively, it is
common practice to quote the complement of the p-value as a confidence level (C.L.).

The definition of a p-value as in Eq. (84) (or similarly in Eq. (81) for the example for a X2 test)
is clear and unambiguous. But interpretation of p-values is partly subjective: the convenience of a
numerical “threshold of tolerance” may depend on the kind of hypothesis being tested, or on common
practice. In HEP usage, three different traditional benchmarks are conventionally employed:

— in exclusion logic, a 95% C.L. threshold on a signal-plus-background test to claim exclusion;

— in discovery logic, a three-sigma threshold (p < 1.35 x 10~3) on a background-only test to claim
“evidence”;

— and a five-sigma threshold (p < 2.87 x 10~7) on the background-only test is required to reach the
“observation” benchmark.

7.3 From LEP to LHC: statistics in particle physics

In experimental HEP, there is a tradition of reaching consensual agreement on the choices of test statistics.
The goal is to ensure that, in the combination of results from different samples and instruments, the
detector-related components (specific to each experiment) factor out from the physics-related observables
(which are supposed to be universal). For example in the context of searches for the Standard Model (SM)
Higgs boson, the four LEP experiments agreed on analyzing their data using the following template for
their likelihoods:

Nch Ng — .
8aSa(Z5) + by By (T
ﬁ(Hl) = HPPoisson (na73a+ba)H ( ])—i-b ( ]) s
a=1 j=1 Sa T Ya
Nch Na
L(Ho) =[] Proisson (nasba) [ ] Bal)) - (86)
a=1 j=1

where N, is the number of Higgs decay channels studied, n, is the observed number of event candidates
in channel a, S, and s, (B, and b,) are the PDF and event yield for the signal (background) species in
that channel. Also, the test statistic \, derived from a likelihood ratio, is

L(Hy) |
L (Ho)’

A= —2InQ, withQ (87)

so that roughly speaking, positive values of A favour a “background-like” scenario, and negative ones are
more in tune with a “signal-plus-background” scenario; values close to zero indicate poor sensitivity to
distinguish among the two scenarios. The values use to test these two hypotheses are:

276



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICISTS

— under the background-only hypothesis, CL(b) is the probability of having a —2In ) value larger
than the observed one;

— under the signal+plus+background hypothesis, CL(s + b) is the probability of having a —21n Q
value larger than the observed one.

Figure 15 shows, for three different Higgs mass hypotheses, the —2 In @) values from the combination of
the four LEP experiments in their searches for the SM Higgs boson, overlaid with the expected CL(s+b)
and 1 — CL(b) distributions. Figure 16 shows the evolution of —2In () values as a function of the
hypothetized Higgs boson mass; (as stated in the captions, the color conventions in the one- and two-
dimensional plots are different) note that for masses below ~ 115 GeV, a positive value of the —21n @
test statistic would have provided evidence for a signal; and sensitivity is quickly lost above that mass.
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Fig. 15: Combined results from the search for a SM Higgs boson, performed by the four LEP experiments. From
left to right, the my = 110,115,120 GeV hypotheses for the Higgs mass are used. The dashed blue and dashed
red lines correspond to the PDFs for the background-only and signal-plus-background hypotheses, respectively.
The observed values of the test statistic —2 In () are marked by black vertical lines. The yellow areas indicate the
1 — CL(b) values for the background-only hypothesis, and the green areas the CL(s + b) value for signal-plus-
background. The three figures are taken from [17].

7.3.1 The modified CL(s) hypothesis testing

The choice of CL(s + b) to test the signal-plus-background hypothesis, while suitably defined as a p-
value. may drag some subjective concern: in case of a fortuitous simultaneous downward fluctuation in
both signal and background, the standard 95% benchmark may lead to an exclusion of the signal, even if
the sensitivity is poor.

A modification of the exclusion benchmark called CL(s), has been introduced in this spirit [18],
and is defined as

CL(s +b)

CL(s) = T-CLO) -

(88)
This test, while not corresponding to a p-value (a ratio of probabilities is not a probability), has the de-
sired property of protecting against downwards fluctuations of the background, and is commonly used
in exclusion results, including the searches for the SM Higgs boson from the Tevatron and LHC experi-
ments.
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Fig. 16: The test statistic —2In @ as a function of the Higgs boson mass m j, obtained by combining the data of
the four LEP experiments. The dashed line is the mean value of the background-only distribution at each mass
mpy, and the green and yellow areas represent 68% and 95% contours for the background-only distribution at each
mass my. The black line follows the —2 In @) value observed in data as a function of m g . Figure taken from [17].

7.3.2 Profiled likelihood ratios

Following the recommendations from the LHC Higgs Combination Group [19], the ATLAS and CMS
experiments have agreed on using a common test statistic, called profiled likelihood ratio and defined as

~ c(wd)
Gu(p) = —2In——£ , with 0 < i < g, (89)
2(5)

where the PIO p1 = o /og is the “signal strength modifier”, or Higgs signal rate expressed in units of

the SM predicted rate, 0 are the fitted values of the NPs at fixed values of the signal strength, and /i and
0 are the fitted values when both 1 and NPs are all free to vary in the ML fit >. The lower constraint
on 0 < i < p ensures that the signal rate is positive, and the upper constraint imposes that an upward
fluctuation would not disfavor the SM signal hypothesis.

For an observed statistic value (?/u the p-values for testing the signal-plus-background and background-
only hypotheses, p(s + b) and p(b), are

p(s+b) = /Qooqu(q;u—/fc,é), (90)
Q,Léo )
1—p(b) = /éu qu(q;u:O,H). 1)

*The test statistic actually reported in [19] is slightly different than the one described here, but in the context of these notes
this subtlety can be disregarded.
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and the results on searches are reported both in terms of the exclusion significance using the CL(s)
observed and expected values, and the observation significance expressed in terms of the “local” 3 p(b)
expected and observed values.

To conclude the discussion on hypothesis testing, there is certainly no better illustration than Fig-
ure 17, taken from the results announced by the ATLAS and CMS experiments on July 4th, 2012: in the
context of the search for the SM Higgs boson, both collaborations established the observation of a new
particle with a mass around 125 GeV.
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Fig. 17: The expected distributions and observed values for the exclusion (left) and the observation significances
(right) in searches for the SM Higgs boson presented by the ATLAS [21] (top) and CMS [22] (bottom) collabora-
tions on July 4th, 2012. Both experiments find a significant excess around 125 GeV.

8 Conclusions

These lectures aimed at providing a pedagogical overview of probability and statistics. The choice of
topics was driven by practical considerations, based on the tools and concepts actually encountered
in experimental high-energy physics. A bias in the choices, induced by the author’s perspective and
personal experience is not to be excluded. The discussion was completed with examples from recent
results, mostly (although not exclusively) stemming from the B-factories and the LHC experiments.

3In short, the observation significance must be corrected for the trials factor, or “look-elsewhere effect”; in the case of
the search for the SM Higgs boson in a wide Higgs mass interval, this effect translates into a decrease of the significance, as
different Higgs masses are tested using independent data, and thus the probability of observing a signal-like fluctuation depends
on the mass interval studied and the experimental resolution.
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