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INTRODUCTION

Throughout its history, fundamental research on theoretical high-energy physics has
had an undoubtedly essential constituent; mathematics. Not only does it enter the
playing field as a strong driving force enabling new results, but new mathematics
is also often born by drawing inspiration from physics. This is perhaps most vividly
encountered in the field of string theory, where many advances have been made thanks
to that dynamic. Another field where mathematics and physics frequently come
together in fruitful ways holds the imaginative name “moonshine”. It is this field that
all the topics discussed in this thesis revolve around.

Moonshine prominently features an important aspect of contemporary research: con-
nections and correspondences between different or loosely related fields and topics.
Mathematically speaking, it comprises a - not yet fully understood - relationship be-
tween representations of finite groups and modular objects of various flavours. These
two mathematical structures, finite groups and modular objects, have a priori little
conceptual overlap with each other; moonshine provides the glue that seems to be
tightly tying them together. Furthermore, both facets of this relationship attain a
manifestation in physics; groups appear naturally as the mathematical structure that
describes symmetries, whereas modular objects, such as modular forms, appear fre-
quently when one is counting the states of certain two-dimensional conformal field
theories, often arising in the context of string theory. It is mostly through the eyes
of such two-dimensional conformal field theories that we will be exploring aspects
related to moonshine in this thesis.

A natural research direction in moonshine is to explicitly construct realizations of such
relations, known as moonshine modules. Whereas proving their existence is more of a
mathematical endeavour, their construction can sometimes be facilitated by drawing
inspiration from physics. Chapter 3 of this thesis is focused on constructing one such
module for a specific case of moonshine, by using elements, ideas and language that
are more readily available in the toolkit of a physicist.



1. Introduction

Moonshine ..
Modular forms Finite groups
. A
States counting ™. Symmetries
Physics

Looking at this interplay between physics and mathematics from the other direction,
constructions born out of moonshine may inspire results that are independently use-
ful for physics. An example of this is detailed in Chapter 4 of this thesis, where a
correspondence between a vertex operator algebra, a structure originating from moon-
shine, and a whole family of sigma models, theories that appear in string theory, is
established. This result is a product of inspiration from the world of moonshine,
demonstrating how physics and mathematics can interact in productive ways.

Being written by a physicist, this thesis does not always use the language that a
mathematician would when describing moonshine-related topics; it instead opts for
one more familiar to physicists. For the sake of clarity, and for the sanity of the
author, attempts have been made to make this thesis as self-contained as possible, to
the benefit of the reader. This is the goal of Chapter 2, which attempts to capture
the depth at which most relevant topics and tools, regardless of their complexity, are
utilized in the later chapters. A much more detailed introduction to the main pillar
of this thesis, moonshine, is also part of that chapter.



Outline of this thesis

Chapter 2 contains background material on finite groups, modular objects and two-
dimensional conformal field theories. It also contains an introduction to moonshine
both as a general topic, but also focusing more specifically on the type of moonshine,
umbral moonshine, that is encountered in the later chapters.

Chapter 3 focuses on the construction of a module for the D case of umbral moon-
shine. All the steps taken to arrive at the final construction are detailed, together
with some motivation material and a discussion on possible future directions.

Chapter 4 describes a correspondence between a vertex operator superalgebra (one
based on the Fjg lattice) and the family of sigma models with target space consisting
of complex four-dimensional tori (7%). The nature of this correspondence is made
precise, and connections with previous works are discussed.

Finally, five appendices are also included, handling miscellanea topics and holding
tabular data tied to the main material.
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BACKGROUND

The goal of this chapter is to introduce the main concepts and tools used in the rest
of the thesis. As we aim for a self-contained approach as much as possible, in this
chapter we include both basic and advanced topics that the reader can refer back to
when needed. Most of the material is presented as in the lectures notes [1] co-written
by the author.

2.1 Finite groups and representations

Finite groups do not only play a central role in moonshine, but also capture special
symmetries of several CFTs that appear throughout this thesis. Here we establish
some notations and go over some basic and more specialized concepts, pertaining to
the role that finite groups take for us. For more complete expositions see [5-7] (see
also [8]).

2.1.1 Basics

A group is a set G, together with a “multiplication” operation « : G x G — G,
formally denoted as (G, «). The symbol for this operation is usually implicit, and we
often write ab for a+b. A group must satisfy the following axioms:

1. Closure: ab = c € G for any a,b € G.
2. Associativity: (ab)c = a(bc) for any a,b,c € G.

3. Identity: There exists a unique identity element e € GG, such that eg = ge =g
for any g € G.

4. Inverses: For every g € G, there exists a unique inverse element g=! € G, such
that gg—! = g~'g = e. We also have that e™! = e.

Notice that ab # ba in general. In the case that ab = ba for every a,b € G, i.e.
the group operation is commutative, the group is called Abelian. The number of
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elements of G is called the order of G, and it can be either finite or infinite. We also
define the order of an element, |g|, to be the minimum number of times we need to
multiply it with itself in order to reach the identity, i.e. gl9l = e (the order can also
be infinite).

Next we give a brief summary of a few important notions of group theory.

Group homomorphisms. We say that a map ¢ : G — F between two groups
(G, +) and (F,*) is a group homomorphism if it preserves the group structure of G.
In other words, ¢ must satisfy

p(asb) = ¢(a) x ¢(b) , (2.1.1)

for all a,b € G. If there also exists an inverse homomorphic map ¢~! : F — G, then
G and F are isomorphic; such groups are abstractly the same, but they may still have
different realisations. An isomorphism G — G is called automorphism, and is often
called a symmetry of G. The set of all automorphisms of G, denoted Aut G, forms a

group.

Conjugacy classes. Two group elements a,b € G are said to be conjugate to
each other if there exists an element g € G such that gag™!
symbolically write a ~ b. Conjugation is an equivalence relation, since it is reflective

= b. In this case, we

(a ~ a), symmetric (a ~ b iff b ~ a) and transitive (if @ ~ b and b ~ ¢ then a ~ c¢).
Such a relation implies that G can be split into disjoint subsets [a] C G, called
conjugacy classes, each containing all elements that are conjugate to each other:

[a) ={be G |gag~' =0b for some g€ G} . (2.1.2)

Obviously, a conjugacy class can be represented by any one of its elements, i.e. [a] = [b]
for all b ~ a. The number of distinct conjugacy classes is referred to as the class
number of G, denoted here as CI(G). All elements of a class have the same order. Tt
is easy to see that an element constitutes a conjugacy class of its own if it commutes
with all other elements of the group. As a result, in an Abelian group each class
contains only one element and the class number equals the order of the group.

A common notation for conjugacy classes is to write the order of its elements, followed
by an alphabetical letter. For example, 4A denotes a class of order four, 4B a different
class of order four, 6A a class of order six, and so on. The identity is always a class
of its own, namely 1A, the unique class of order one.
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Subgroups. A subgroup H is a subset H C G which is itself a group, with the
group structure inherited from G. Note that the identity element e always forms a
subgroup {e} of order 1, called the trivial subgroup. Subgroups H other than the
trivial subgroup and G itself are called proper subgroups of G, and the notation H < G
is used for them (we use the notation H < G if we can have H = G).

A normal subgroup N, also denoted as N < G, is a subgroup of G that is invariant
under conjugation by all elements of G:

NaG & gNg '=Nforallge G . (2.1.3)

As such, N is necessarily a union of conjugacy classes. A maximal normal subgroup
of G is a normal subgroup which is not contained in any other normal subgroup of
G, apart from G itself. Normal subgroups play a prominent role in quotient groups
and group extensions (see below).

The centre Z(G) of a group G is the set of all elements that commute with every
other element, i.e.

Z(G):={ae€Glab="ba forallbe G} . (2.1.4)

The centre is always a normal subgroup of G. The centralizer of an element g € G is
similarly defined by
Ccl(g) ={a € Glag = ga}, (2.1.5)

being the set of all elements that commute with g. Clearly, the centralizer of an
element is always a subgroup of G.

Cosets. Let H be a subgroup of G, and take g € G. We define the left coset of H
in G with respect to g as the subset

gH ={gh | he H} . (2.1.6)

The set of all left cosets of H in G is denoted by G/H := {gH | g € G}. Similarly,
the right coset of H in G with respect to g is defined as

Hg:={hg|he H}, (2.1.7)

and the set of all right cosets of H in G is denoted by H\G :={Hg | g € G}.

One can more intuitively define left cosets in terms of an equivalence relation on G
(not to be confused with conjugation); namely, for a,b € G we set a ~ b iff ah = b
for some h € H, i.e. a and b are related by multiplication of an element in H to
the right. Then a, b represent the same equivalence class, which is exactly the coset

7
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aH = bH. All such classes make up G/H, which is viewed as a disjoint partition of
G, as a set. The corresponding statements also hold for right cosets. Some useful
facts about cosets include:

e The number of left cosets is always equal to the number of right cosets, and is
known as the indez of H in G, denoted by [G : H|.

e If G is a finite group, then Lagrange’s theorem states that the index equals
the quotient of the order of G over the order of H, i.e. [G : H||H| = |G|.
This is indicatory of how G is partitioned under the coset equivalence relation
associated with H.

e The left and the right cosets of H have the same number of elements, which is
equal to the order of H.

e The left and right cosets of a normal subgroup coincide, as can be easily seen
from its definition.

Quotient groups and group extensions. Cosets, like conjugacy classes, are in
general not subgroups. However, given a normal subgroup N, the set G/N of right
cosets (which coincides with the set of left cosets) inherits the group structure of
G, and is called the quotient group. This can be seen from (aN)(bN) = (ab)N.
The normal subgroup N can then be viewed as the kernel of the homomorphism
¢ : G — G/N. Note that in general G/N is not isomorphic to any subgroup of G.
Moreover, the order of G/N is equal to the index [G : N| = |G|/|N|.

Consider now a short exact sequence of groups

1-M35a5 Q1. (2.1.8)

This means that ¢(M), the embedding of M inside G, by ¢ is the kernel of the
homomorphism v; in other words M is isomorphic to a normal subgroup N <G, and
Q = G/N. We then say that G is an extension of @ by M. An extension, as well as the
corresponding sequence, is called split if there exists a homomorphism (embedding)
1} : @@ — G such that ¢ o J = idg, the identity map on . We use the semi-direct
product to denote such a split extension, G = N x ). Otherwise, the extension is
called non-split, and we write G = N.Q .

2.1.2 Classification of finite groups

Finite groups are, as the name suggests, groups with finite number of elements. The
problem of classifying them can be reduced to the classification of finite simple groups,
i.e. the ones that have no proper normal subgroups. If a finite group G is not simple,
then it can always be “decomposed” into a series of smaller groups, by considering
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quotients by maximal normal subgroups. To be precise, one can consider the compo-
sition series, which has the form

14N <9Ny<---<aN,_1<N, =G . (2.1.9)

Here 1 denotes the trivial group, and every step of the series involves a maximal
normal subgroup N;_; of N;, as well as the implied quotient group N;/N;_1. It can
be shown that all the resulting quotient groups are simple, and the Jordan—Holder
theorem guarantees that for given G, two different composition series lead to the same
simple groups. As a result, studying finite simple groups is to a large extent sufficient
to understand general finite groups.

After heroic efforts spanning over half a century and involving many dozens of mathe-
maticians and thousands of pages of proofs, all finite simple groups have been classified
(see [9, 10] for historical remarks). Each one belongs to one of the following four cat-
egories: cyclic groups Z, for prime p, alternating groups A, (n > 5), 16 families
of Lie type and 26 sporadic groups. Unlike the rest of finite simple groups, the 26
sporadic groups appear “sporadically” and are not part of infinite families. We next
discuss these special sporadic groups in more detail, since they are of instrumental
importance for moonshine.

2.1.3 Sporadic groups and lattices

The largest sporadic group is the Fischer—Griess Monster group M, which gets its
name from its enormous size. The number of its element is

M| = 2%6.320.5%.76.11%2.13%.17-19-23-29-31 -41-47-59 - 71 ~ 8 x 10° |

which is roughly the same as the number of atoms in the solar system! The Monster
contains 20 of the 26 sporadic groups as its subgroups or quotients of subgroups, and
these 20 is said to form 3 generations of a happy family by Robert Griess. In particular,
the happy family includes the five Mathieu groups My, Mio, Mas, Mos, Mas. They
are all subgroups of My, which is in turn a subgroup of the permutation group Say,
and are the the first sporadic groups that were discovered. The rest 6 which are not
related to the Monster are called the pariahs of sporadic groups.

The sporadic nature of the sporadic groups makes their existence somewhat myste-
rious and one might wonder what their “natural” representations are. An important
hint is that many of the sporadic groups, especially those connected to the Monster,
arise as subgroups of quotients of the automorphic groups of various special lattices.
The appearance of moonshine involving sporadic groups sheds important light on the
question, and the construction of moonshine often relies on the existence of these
special lattices. As a result, in what follows we will briefly review the definition of
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lattices and their root systems, and introduce the special lattices relevant for moon-
shine.

Let V be a finite-dimensional real vector space of dimension r, equipped with an inner
product (-,-). A finite subset X C V of non-zero vectors is called a root system of
rank r, if the following conditions are satisfied

e X spans V.

(o, B)
(o, )

e The only multiples of @ € X that belong to X are a and —a.

e X is closed under reflections. Namely, 8 — 2 a€ X forall a,0 € X.

2
For all «, f € X, we have a

The elements o € X of a root system are called roots. A root system X is said to be
irreducible if it cannot be partitioned into proper orthogonal subsets X = X; U X5.
It turns out that the roots of such a system can have at most two possible lengths. If
all roots have the same length, then the irreducible root system is called simply-laced.
One can choose a subset ® of roots f; € X with ¢ = 1,...,r, such that each root
can be written as an integral combination of f; € ® with either all negative or all
positive coefficients. Such a subset is called a set of simple roots, and is unique up to
the action of the group generated by reflections with respect to all roots, called the
Weyl group of X and denoted by Weyl(X).

To each irreducible root system we can attach a connected Dynkin diagram. Each
simple root is associated with a node, and nodes associated to two distinct simple
roots f;, f; are connected with NN;; lines, where

Nij = 2&&1122?j1@;ﬁ&,6 {0,1,2,3} . (2.1.10)

<fu.fz> <fj,fj>

For simply-laced root systems we only have N;; € {0,1}. These correspond to the
Dynkin diagrams of type A,,, D, Es, E7, Es with the subscript denoting the rank of
the associated root system, as shown in figure 2.1.

Each irreducible root system contains a unique highest root 6 with respect to a given
set ® of simple roots, whose decomposition

0="> afi (2.1.11)
=1

10
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Figure 2.1: The ADE Dynkin diagrams.

fi fa f3 fa f5

E, o o

fi fa f3 fa fs fe

Es o o
fi fa f3 fa fs fe fa

maximizes the sum Y a;. The Cozeter number of X is then defined by
Cox(X) =1+ a;. (2.1.12)
i=1

The Coxeter number can also be defined in terms of Weyl(X). The product of re-
flections with respect to all simple roots w = rpry, -1y, € WX is called Cozeter
element, and its order equals the Coxeter number m.

A lattice L of rank n is a free Abelian group isomorphic to the additive group Z",
equipped with a symmetric bilinear form (-, -). Embedding L into R™ gives the picture
of a set of points inside the vector space R™. A few properties some lattices have that
will be useful for us include the following:

e Positive-definite: the bilinear form induces a positive-definite inner product on
R™.

o Integral: (\,p) € Z for all \,u € L.
o Even: (\,A\) € 2Z for all A € L.

o Unimodular: the dual lattice, defined by L* := {A € L @z R| (\,L) C Z}, is
isomorphic to the lattice itself.

All elements A € L such that (A, \) = 2 are called the roots of L.

Even, unimodular, positive-definite lattices in 24 dimensions play a distinguished role

11
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in several instances of moonshine, as we will discuss later in this chapter. It was proven
by H. V. Niemeier in 1973 that there are only 24 inequivalent such lattices [11]. One
of them, first discovered by J. Leech in 1967 and named the Leech lattice, is the only
one of the 24 that has no root vectors [12-14]. The other 23, which we refer to as
the Niemeier lattices, have non-trivial root systems. In fact, one useful construction
of the Niemeier lattices is by combining the root lattices with the appropriate “glue
vectors” [15]. It turns out that the 23 Niemeier lattices are uniquely labelled by
the root systems X, called the Niemeier root systems, which are precisely one of
the 23 unions of simply-laced (ADE) root systems X = U;Y; satisfying the following
conditions: 1) All components have the same Coxeter number, Cox(Y;) = Cox(Yj;);
2) the total rank equals the rank of the lattice >, rk(Y;) = 24. Some examples out
of the 23 include AP?*, AR, EP? and DysFg (where X®" denotes a direct sum of n
copies of X).

For each of these 24 even, unimodular, positive-definite lattices of rank 24 N we define
a finite group
Gn = Aut(N)/Weyl(N), (2.1.13)

where Weyl(N) denotes the Weyl group of the root system of N. In particular,
when N = A is the Leech lattice, the Weyl group Weyl(A) is the trivial group and
GA = Coy is the Conway group Cop. By considering the quotients of this group and
subgroups stabilising various structures we can obtain many of the sporadic groups.
For instance, the sporadic simple group Co; is given by the quotient by the centre
Coy = Cop /{+£1}, and the Mathieu group M3 arises as the subgroup fixing a specific
rank-2 sublattice. See Chapter 10 of [15] for a detailed discussion. If instead we
choose N to be the Niemeier lattice with root system A?M, for instance, the finite
group Gy = My, is given by the largest Mathieu group. For the Niemeier lattice with
root system AY 12 "the finite group is 2.Mis, the non-trivial extension of the Mathieu
group Mjs. These groups play an important role in several instances moonshine (cf.

§2.4).

2.1.4 Representations and characters

Groups offer the mathematical tool that is best suited to describe symmetries. In order
to have concrete descriptions we furthermore need the concept of representations of
groups. In what follows we limit our discussion to complex representations; namely we
consider the group action on a complex vector space V. More precisely, consider the
group homomorphism p : G — GL(V). We can think of the images p(g) as invertible
n X n complex matrices. In particular we have p (gfl) = (p(g)) L. The vector space
together with the map (V,p) is called a representation of dimension n. Often one
refers to either V' or p as the representation, while implicitly referring to the full data.
The vector space V is also called a G-module in this context, and is said to carry a

12



2.1. Finite groups and representations

G-action. We say that the G-action is faithful, if no two distinct elements g,9’ € G
lead to p(g) = p(g’) (the corresponding representation is also called faithful).

Irreducible representations and dual representations. Given two representa-
tions (V, p) and (V’, p’) one can define their direct sum and their tensor product in a
straightforward way, which leads to new representations V& V' and V @ V.

Two representations p, p’ are equivalent if there exists an invertible n X n matrix M
such that Mp'(g) = p(g)M for all g € G. A subrepresentation of a representation
(V, p) is a representation (U, p’), where U is a subspace U C V that is preserved by
the action of G, and p’ is the restriction of p to U. A representation V is said to be
irreducible if it does not contain any proper subrepresentation, and indecomposable if
it cannot be written as a direct sum of two (or more) non-zero subrepresentations.
For finite groups, these two notions coincide. A representation is called completely
reducible if it is a direct sum of finitely many irreducible representations, i.e. if it
can be fully decomposed into irreducible pieces. An irreducible representation of G
can become reducible if we restrict to a subgroup H < G, and its decomposition into
irreducible representations of H is given by the so-called branching rules.

Maschke’s theorem states that all (finite-dimensional) representations of a finite group
are always completely reducible. There are two steps for proving this. First we show
that a unitary representation is always completely reducible, by using the fact that
given an inner product {-,-} : V x V — C, the orthogonal complement of U in V is
also a subrepresentation if U itself is a subrepresentation of V. Next we show that
any representation is unitary with respect to the group-invariant inner product

{v,w} = ﬁ Z(p(g)v,p(g)w}7 v,weV, (2.1.14)
geG

which then completes the proof.

We also mention the dual representation p* of a representation p, defined by

@) =(plg) . geq, (2.1.15)

which is the natural group action on the dual space V* = End(V,C). Taking p to be
unitary, we have p*(g) = p(g). In other words, the dual representation is equivalent
to the complex conjugate representation.

Characters. The character x, of a representation (V,p), with V' a vector space
over C, is a map G — C defined by the trace of the representation matrices,

Xp(9) =Tr(p(g)) , g€G. (2.1.16)

13



2. Background

We will also often denote this trace by Try g. If p is irreducible, x, is called an
irreducible character. Some properties of characters (for finite groups) are summarized
below:

o The character is a class function, i.e. x, (hgh™) = x,(9) V g,h € G. This
follows directly from the cyclic property of the trace.

e Two complex representations for a finite group have the same characters if and
only if they are equivalent, which can be shown using the orthogonality property
discussed below.

e The restriction of a character of G to a subgroup H < G is a character of H.

* Xp (g_l) = X,(9), as follows from the fact that all eigenvalues of p(g) are |g|-th
roots of unity.

« For two representations p, p’ of G and g € G, we have:

Xpop' (9) = Xp(9) X0 (9) s Xpop (9) = Xp(D)Xp (9) s Xp+(9) = Xp(9) - (2.1.17)

This means that the characters form a commutative and associative algebra.

Characters are extremely important for theories with finite symmetry groups, as well
as moonshine; they provide a way to ”"count* states, thus providing the building blocks
for calculating various indices.

Orthogonality. Due to Schur’s orthogonality relations (e.g. §4 of [6]), characters
of unitary representations are equipped with a Hermitian inner product,

(Xps Xp) = . > xo(@)x(9) - (2.1.18)
|G| geG

When p and p’ are irreducible representations, one can show that (x,,x,) = 1 if
the two irreducible representations are equivalent, and it vanishes otherwise. As a
result, characters of irreducible representations are orthonormal vectors in the space
of class functions. In fact, it is possible to show that they span this space, from which
one can conclude the important fact that the number of (inequivalent) irreducible
representations equals the number of conjugacy classes (see for instance §3-7 of [5]).
Moreover, one can show that there is another orthonormality property,

> xo(9) xp(h) = {'CG(9)|’ held (2.1.19)

0, otherwise

where the sum is over inequivalent irreducible representations, and |Cg(g)| denotes
the order of the centralizer of g € GG, which is equal to the order of the group divided
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2.1. Finite groups and representations

y \ | IAJ2A [ 3A [ 3B [ 4A [ 5A | 5B |

2P | 1A | 1A | 3A | 3B | 2A | 5B | 5A

3P | 1A | 2A | 1A | 1A | 4A | 5B | bA

5P | 1A | 2A | 3A | 3B | 4A | 1A | 1A
Y1 T [ L]t ]1]1]1]1
X2 5 1 2 -1 ] -1 0 0
X3 5 1 -1 2 -1 0 0
X4 8 0 -1 ] -1 0 A | A
X5 8 0 -1 ] -1 0 |*A | A
X6 9 1 0 0 1 -1 ] -1
X7 10 | -2 1 1 0 0 0

Table 2.1: Character table for Ag, where A = 1_2‘/‘?’ and *A = 1_5_2\/5'

by the number of elements in the conjugacy class [g].

Character table. We have already mentioned that the number of irreducible rep-
resentations of a finite group G is equal to the number of conjugacy classes of G.
We can group all characters of G into its character table, which is a square table of
size Cl(G) x Cl(G), with rows labelling the different irreducible representations and
columns labelling the different conjugacy classes. In other words, the (4,5) compo-
nent of the character table is the character y;(g) of the i-th irreducible representation,
evaluated at any g in the j-th conjugacy class . As an example, the character table for
the alternating group Ag is displayed in Table 2.1. Note that there is an additional
piece of information in the above table, the so-called power map. The row starting
with sP gives the conjugacy classes [¢g°]. Character tables are a very useful tool to
visualize the characters of finite groups, and come in handy in all studies that focus
on moonshine and their modules (see for example §C).

Supermodules. We say that a G-module on a superspace (Zz-graded vector space)
is a G-supermodule. Explicitly, if V' is a G-supermodule it has the structure

V=v®H gy (2.1.20)

where V() and V(=) are both G-modules. We will sometimes refer to V as a virtual
representation of G. The supertrace Str is defined to act with a minus sign on the
odd subspaces: Stry g := Try. () g — Try(-) g. Not surprisingly, supermodules become
relevant when there is some amount supersymmetry involved, which is often the case
in both moonshine and CFTs.

Cycle shapes and Frame shapes. As the name suggests, an N-dimensional per-
mutation representation p, of a group G has as its representation matrices N x N
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permutation matrices (all elements zero, apart from a single entry of 1 in each row
and column). Given such a representation, to each conjugacy class in such a rep-
resentation we can associate a cycle shape, which encodes the number and type of
permutation cycles that elements of this class correspond to. A cycle shape has the
general form

r
n?lngz L. nﬁr , Zesns =N, (2.1.21)
s=1

where ng, s are all positive integers, and n denotes an n-cycle, i.e. it represents a
permutation of n elements. The exponents £ count the number of ns-cycles. Clearly,
an order k element can only have cycles of size ng which divides k. Note that the cycle
shapes can be read directly off the character table, including the power map.

More generally, we can define the Frame shape of g € G given any representation
p, provided that all characters of p are rational numbers. Their rationality ensures
that if A is an eigenvalue of ¢, then \* is also an eigenvalue when k is co-prime
to |g| [16]. Denoting by A1, Ag,...,An the g-eigenvalues, then there exists a set of
positive integers i1, i, . . ., is and a set of non-zero integers ¢1, (o, . .., {s with the same
cardinality such that

N s

det(1 —tp(g)) = [J(1 — i) = (A =) . (2.1.22)

i=1 r=1

Clearly one must have S 0_, £sis = N and we call i35 - - - i’ the Frame shape of the

conjugacy class [g] for the representation p.

We will see these shapes appear prominently when discussing umbral moonshine
§2.4.2.

2.2 Modular objects

Here we introduce the concept of modular forms and their extensions, including mock
modular forms, Jacobi forms, and mock Jacobi forms, all of which appear in various
instances of moonshine.

2.2.1 Modular forms

One of the standard references on modular forms, which we partially follow here, is
[17]. We start by considering the well-known fact that SLy(R) acts on the upper-half
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2.2. Modular objects

plane H := {7 € C| S(7) > 0} by a fractional linear (Mdbius) transformation:

a b at+b
'y—(c d).ﬂ-]I—HHI7 T T = — . (2.2.1)

In order to define various modular forms we also need to consider discrete subgroups of
SLs(R), an important example of which is the modular group SLy(Z). It is generated

by
11 0 1
T = (0 1) and S = (_1 0) ) (2.2.2)

which satisfy (ST)® = 1 and S? = —1. We will often work with PSLy(Z) =
SLy(Z)/{%1}, which is also the mapping class group of the torus (cf. §2.3). Moreover,
we will often consider the upper-half plane extended by adding the cusps {ico} U Q,

on which SLy(Z) acts transitively, as is evident from the fact that yoo = ¢

2.
We first define weight zero modular forms on the modular group SLy(Z), which are sim-
ply holomorphic functions on H that are invariant under the action of SLy(Z):

f(r)=f(yr) V€ SL(Z). (2.2.3)

In particular, f has to be holomorphic as 7 approaches the boundary of H at the
cusps {ico} UQ. But this turns out to be too restrictive: basic complex analysis tells
us that constants are the only such functions. As a result, we would like to further
generalise the above definition in the following directions:

1. Analyticity: the function is allowed to have exponential growth near the cusps.
Such functions are said to be weakly holomorphic modular forms.

2. Weights: one allows for a scaling factor in the transformation rule. See (2.2.6).

3. Other Groups: one replaces SLy(Z) by a general I' < SLy(R) in the transforma-
tion property (2.2.3).

4. Multipliers: one modifies the transformation rule (2.2.3) by allowing for a non-
trivial character ¢ : SLy(Z) — C*. See (2.2.6).

5. Vector-Valued: instead of f : H — C we consider a vector-valued function
f+H — C™ with n components.

Of course, the above generalisations can be combined. For instance one can consider
a vector-valued modular form with multipliers for a subgroup I' of SLy(R). In the
vector-valued case the character 1 is, of course, no longer a phase but a matrix.
Also, the above concepts are not entirely independent. For instance, a component
of a vector-valued modular form for SLy(Z) can be considered as a (single-valued)
modular form for a subgroup of SLy(Z), and vice versa.
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Let’s start with the first generalisation and introduce the concept of modular func-
tions. We say that f : H — C is a modular function if f is meromorphic in Hi,
satisfies the transformation rule (2.2.3), and grows like €>™™™ for some m > —oo. In
fact, modular functions form a function field with a single generator, called the Haupt-
modul or principal modulus. This is because the fundamental domain SLy(Z)\H is a
genus zero Riemann surface when finitely many points are added. Writing the upper-
half plane with the cusps attached as H=HU {ico} U Q, the Hauptmodul has the
property that it is an isomorphism between the two spheres SLQ(Z)\I/H\I and C. Such
a Hauptmodul is unique up to Mobius transformations, or the choice of three points
on the sphere. As a result, there is a unique Hauptmodul with the expansion

J(1)=q¢ 14+ 0(q) (2.2.4)

near 7 — ioo. Here and in what follows we will write ¢ := e(7), where e(z) := i@

for x € C. In terms of the Eisenstein series and Dedekind eta function (cf. (2.2.7)
and (2.2.19)), the J-function is given by

E}(7)
n?4(7)

In general, a Hauptmodul can be defined as the generator of the field of modular
functions for I’ < SLy(R) whenever T\H is genus zero. These Hauptmoduls play an

J(T) = j(r) — T44 = — 744, (2.2.5)

important role in moonshine.

Apart from the definition given above, there are three other equivalent ways of viewing
modular functions. First, due to (2.2.3) we can view f as a function from the suitably
compactified fundamental domain SLy(Z)\H to the Riemann sphere C=Cu {o0}.
Second, due to the relation between SLy(Z) and rank two lattices we can associate to
each 7 a complex lattice A, := 1-Z+7-Z, and identify f as a function that associates
to each such lattice A, a complex function f(7), which is moreover invariant under a
rescaling of the lattice. The third way, which plays an important role in the a relation
between modular forms and 2-dimensional conformal field theories, stems from the
interpretation of SLy(Z)\H as the complex structure moduli space of a Riemann
surface of genus one. This can be easily understood from the fact that a torus can
be described as the complex plane modulo a rank two lattice, and is therefore up to
a scale given by C/A. for some 7 € H. The modular function can then be thought
of as associating to each torus a complex number which only depends on its complex
structure modulus 7. In this context, the group PSLy(Z) := SLo(Z)/{1,—1} plays
the role of the mapping class group of a torus (cf. §2.3), where the Zo = {1,-1}
central subgroup acts trivially on H.

Next we turn to the second generalisation and introduce modular forms on the mod-
ular group SLy(Z) of a general weight k. They are defined as holomorphic functions
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on H that transform under the action of SLy(Z) as:

Fr) = (er +d) " f (‘;i;) y <Z Z) € SLy(Z) . (2.2.6)

From the lattice point of view, we consider complex functions f associated to a lattice
A that scale like f — A~*f under a rescaling A — AA, X € C, of the lattice. We will
consider integral and half-integral weight k.1

With this definition we start to get some non-trivial examples, even when holomor-
phicity at the cusps is required. For instance the following Eisenstein series

> 3.,n
Ey(r)=1+240_ 1n_qqn = 1+240q+2160¢> + ...
n=1
(2.2.7)
> 5. n
Eg(r)=1-504" 1”_qqn =1-504q—16632¢> +...
n=1

are examples of modular forms of weight 4 and weight 6, respectively. But the defi-
nition is still somewhat too restrictive as these two Eisenstein series are all there is:
the ring of modular forms on SLy(Z) is generated freely by E4 and Fg. Namely, any
modular form of integral weight k can be written (uniquely) as a sum of monomials
EfEﬁ’B with &k = 4a+68. We denote the space of modular forms of weight & for group
T by Mg(T'). Among modular forms, the so-called cusp forms are often of special
interest. We say that a modular form f of weight k is a cusp form if yk/2f(x +1iy) is
bounded as y — oo. This condition guarantees that f has vanishing constants in its
Fourier coefficients at all cusps.

In the third type of generalisation, we often encounter the SLy(Z) subgroups defined
by the following congruences. For a positive integer N, we define

To(N) = {(‘C‘ Z) € SLy(Z) | ¢ = 0mod N} . (2.2.8)

Below we will illustrate the generalisations above with some examples, which will also
come in handy in the next chapters.

First we consider the Jacobi theta functions. Consider a 1-dimensional lattice with
bilinear form (x,z) = 2. The associated theta function is

O3(r) =Y " /2. (2.2.9)

nez

LClearly, special care needs to be taken when k is half-integral. Strictly speaking, one should
work with the metaplectic double cover of SL2(Z). However we will avoid discussing the subtleties
here as they will not cause any difficulty for us. We will refer the reader to [18] for more details.
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This simple function turns out to admit an expression in terms of infinite prod-

ucts -
2
O3(r) =3 " 2 =] — M +q" 7?2, (2.2.10)
ne”Z n=1

and has nice modular properties. To describe the modular properties, it is most
natural to introduce another two theta functions,

bo(r)= > ¢ =2 [0 - g1 +q")?,
n=1

n+3€z

. (2.2.11)
0a(r) = > (1" 7 = [T g1 g2
ne”Z n=1

It turns out that they are the three components of a vector-valued modular form for
SLy(Z)

92(7’) .
()= [ 65(r) |, @(T):\/ZS@( i) =TO(r+1), (2.2.12)

where

00
0 1]. (2.2.13)
10

To illustrate the relation between vector-valued modular forms and modular forms
for a congruence subgroup, consider (1) := 03(27). This transforms in the following
way as a weight 1/2 modular form for I'g(4) with a non-trivial multiplier:

o(r) = (2) eq (cr+d)"% O(y7) (2.2.14)
for all v € T'g(4), where

S 1, d=1mod4

71 i, d=3mod4

and the Legendre symbol used above is defined as?
+1, if k# 0mod A and « is a quadratic residue modulo A

(E> =< —1, if K #0mod X and « is not a quadratic residue modulo A
0, if kx=0mod A\

2k is said to be a quadratic residue modulo A if 3 # € Z such that 2 = k mod A.
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Later we will see that these theta functions can be naturally considered as the special-
isation at z = 0 of the two-variable Jacobi theta functions, defined either as infinite
sums or infinite products:

491(7’,2) = — Z (_1)n—2ynqn 2/2

n-Q—%eZ

= —ig /8" ? =y ) [ =g —yg™) (1 -y '),
n=1

Z yn n?

n+ €7

- (2.2.15)
=W +y PO =) +yaM (1 +y ',
n=1
=Ny 2 =T - ) +ya" A4y ),
neZ n=1
6a(r,2) = Y (=1)"y " 2 = [T —a")(1 —yg" 21—y~ 1q" 112
nez n=1
They transform in the following way. Let
91(7‘, Z)
Os(T, 2)
= . 2.2.1
o= [ (%) (2216)
04(7—3 Z)
Then we have (cf. §2.2.2),
@(72)—\/76(—2’2)8’@(—12) T O(r+1,2) (2.2.17)
N 2T T T T o
where
i 00 0 e(—1/8) 0 0 0
y 0 0 01 , 0 e(—1/8) 0 0
= = 2.2.1
S 001 0} T 0 0 0 1 ( 8
01 00 0 0 10

Another modular form one frequently encounters is the Dedekind eta function
o0
=g/ JJ1-q"). (2.2.19)
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It is a weight 1/2 modular form with a non-trivial multiplier, satisfying
n(r) = in( - 1)7 n(r) =e( - i) n(r+1). (2.2.20)
T T 24

It is related to the theta functions by
1
0(7)* = 502(7)03(7)0a(7). (2.2.21)

Its 24-th power A := n??* is the familiar weight 12 cusp form for the modular group
SLy(Z).

2.2.2 Skew-holomorphic modular forms

Here we collect the definitions of (skew-)holomorphic Jacobi forms. These types of
objects play a crucial role in moonshine and its connection to physics, especially for
chapter §3. This subsection, consisting mostly of definitions, follows §3.1 of [19] very
closely.

We first define elliptic forms [20]. For m an integer define the index m elliptic action
of the group Z? on functions ¢ : H x C — C by setting

(Bl (N 1))(7, 2) = e(MmA*T 4 2mA2) ¢(7, 2 + AT + ) (2.2.22)

for (A, ) € Z2. Say that a smooth function ¢ : H x C — C is an elliptic form of index
m if z — ¢(7, z) is holomorphic. Denote by &,, the space of elliptic forms of index m.
Observe that any elliptic form ¢ € &, admits a theta-decomposition

$(r2) =Y he(T)0ma(r,2) (2.2.23)

r mod 2m

where the theta series are given by

Omr(rz) = > g lmyt (2.2.24)

¢=r mod 2m

for some 2m smooth functions h, : HH — C. To see this, note from ¢(7, z) = ¢(7,2+1)
that we have ¢(7,2) = >,z ce(7)y" for some ¢, : H — C. Then the identity
®|m(1,0) = ¢ implies that cT(T)q*’”Q/‘“" depends only on 7 mod 2m. The 2m func-
tions h,.(1) = CT(T)q’Tz/‘Lm are precisely the theta-coefficients of ¢ in the theta-
decomposition.

It will be convenient to regard h, and 6,,, in (2.2.23) as defining 2m-vector-valued
functions h := (Ay)r mod 2m and Op, := (01,.1)r mod 2m- Then the theta-decomposition
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(2.2.23) may be more succinctly written as ¢ = h'6,,, where the superscript ¢ denotes
matrix transpose. It follows from the Poisson summation formula that the vector-
valued function 6, = (6,,,) has the following behaviour under SLy(Z):

1 z\ 1 mz?
)= - ) = 1 = 2.
Hm( T,T) ﬁe( . ) 80,,(1,2), Op(T+1,2) =TO0pn(r,2), (2.2.25)
where S = (Syv) and T = (T;) are unitary matrices defined for a fixed positive
integer m, given by S,/ := M%im e (—% — ;—1’;;) and T, 1= e (%) drp. (Cf. eg. §5

of [21].) This suggests that we obtain elliptic forms ¢ = h'6,, € &,, with good modular
transformation properties SLo(Z) by requiring suitable conditions on h.

To formulate these notions precisely, define the weight & modular, and skew-modular
actions of SLy(Z) on &,,, for k and m integers, by setting

(Wlem) (7,2 ::¢<a7'+b’ z ) 1 ke(_ cm22>

ct+d er+d) (et +d) \ et +d (2.2.26)
([ = ar+b z 1 c¢+de 7cmz2
k) ' ct+d cr+d) (eF +d)F |er + d] etr+d)

for ¢ € &y, and vy = (2 4) € SLy(Z).

Roughly speaking, a Jacobi form of weight k and index m is an elliptic form ¢(r, 2),
holomorphic in the 7-variable, which is moreover invariant under | 7y for all v €
SLy(Z). Note that @[k (1) = ¢ implies the expansion

$(r,2)= Y. Cy(D,f)g P/Amgt/amyt (2.2.27)
D (€7
D=¢? mod 4m

where Cy(D, () depends only on ¢ mod 2m, corresponding to the theta decomposi-
tion

he(r)= > Cy(D,r)g Pl*m . (2.2.28)
DEZ
D=r? mod 4m

The invariance under SLy(Z) of ¢ = h'f,, leads to the modularity of the vector-
valued function h = (h,). In other words, h = (h,) transforms as a vector-valued
modular form and contains precisely the same information as the Jacobi form. To
complete the definition, we also need to specify the growth behaviour of h(7) near
the cusp. We say that ¢ € &, invariant under |,y for all v € SLy(Z), is a weak
holomorphic/holomorphic/cuspidal holomorphic Jacobi form if the Fourier coefficients
satisfy Cy(D,r) = 0 unless —D + 12 > 0 for all v’ = r mod 2m, Cy(D,r) = 0 for
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D > 0, or Cy(D,r) = 0 for D > 0, respectively. We denote the space of weak
holomorphic Jacobi forms of weight £ and index m by Jl:“,‘n Notice that, at odd
weight, applying (2.2.26) to the case v = —(§ () shows that the Jacobi form must be
odd under z «» —z. It will therefore be convenient to introduce

Omr = Omg — Om —r . (2.2.29)

)

We now turn to the closely related skew-holomorphic Jacobi forms. An elliptic form
¢ € &y is called a weak skew-holomorphic Jacobi form if it meets the following con-
ditions. First, its theta-coefficients are anti-holomorphic functions on Hj; second, it is
invariant for the weight k skew-modular action (2.2.26), so that ¢|i{‘m7 = ¢ for all
v € SLy(Z); finally, 7 +— ¢(7, z) remains bounded as §(7) — oo for fixed z € C. Thus
a weak skew-holomorphic Jacobi form admits a Fourier expansion of the form

orz)= S ColD0)gP g iyt (2.2.30)
D, (€L
D=¢% mod 4m
for some 2m functions D — Cy4(D, ), and we recover its theta-coefficients by writ-
ing

he(r) = > Cy(D,r)g”/*m. (2.2.31)
DeZ
D=r2 mod 4m

A weak skew-holomorphic Jacobi form ¢ is called a skew-holomorphic Jacobi form,
or a cuspidal skew-holomorphic Jacobi form, when the Fourier coefficients satisfy
Cy(D,r) =0 for D <0, or Cy(D,r) =0 for D < 0, respectively.

We will close this subsection with an example that will come in handy later. De-

fine
0i T,
gf)O’l(T,Z) =4 Z (GiET (Z);)2 )
=234 (2.2.32)
¢ _ _01(7-7 Z)2
T

The ring of weak Jacobi forms of even weight is freely generated by ¢o; and ¢_21
over the ring of modular forms for SLy(Z):

m
T3 = Moyy2j(SLa(Z)) ¢ 5 10077 (2.2.33)
=0
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The function ¢¢ 1 plays an important role in Mathieu and umbral moonshine, since
2¢,1 coincides with the K3 elliptic genus EG(r, z; K3). See §2.3.3 for a definition of
the elliptic genus.

2.2.3 Mock modular forms

Here we introduce mock modular forms and the closely related concept of mock Jacobi
forms. We follow the treatment of §7.1 of [20] and §3.2 of [19] closely. The subject,
initiated by the legendary mathematician Srinivasa Ramanujan, has a fascinating
history. We recommend [22] for a short account of it.

Let w € %Z and let A be a holomorphic function on H with at most exponential
growth at all cusps. We say that h is a (weakly holomorphic) mock modular form of
weight w for a discrete subgroup I' < SLy(R) if there is a modular form g of weight
2 — w such that the sum h = h + g* transforms like a holomorphic modular form
of weigh w for I". Moreover, we say that ¢ is the shadow of the mock modular form
h and h is its completion. In the above we have used the following definition of g*.
Writing the Fourier expansion of g as g(7) = )", ~ ¢g(n)q", then

9" (7) ;:cg(())( i(T +Z —dmn)® Ve, (n)g "T(1 — w, 4mnS(7)) , (2.2.34)

where T'(1 — w,z) = [ e 't"“dt denotes the incomplete gamma function. When
¢g(0) = 0, the above coincides with the so-called non-holomorphic weight w Eichler
integral of g, given by

g°(r) = (2ot [ ey g (2.2.35)
Note that
—2@%(7)10%9*(7) =g(7), (2.2.36)

and hence h is annihilated by the weight w Laplacian A, := 3(7)2%8,3(7)“d;.
Such functions are called harmonic Maass forms, and one can identify h as the
(uniquely defined) holomorphic part of the harmonic Maass form h. Finally, note
that from (2.2.34) it is obvious that the harmonic Maass form A transforms with a
multiplier which is the inverse of that of the modular form g.

Just as in the case of usual modular forms, one can generalise the above definition of
mock modular forms in various directions, including incorporating non-trivial multi-
plier systems and considering vector-valued mock modular forms. Next we turn our
attention to a specific type of vector-valued mock modular forms, namely those arising
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2. Background

from the so-called mock Jacobi forms. For integers k and m, we say that an elliptic
form ¢ € &,, is a weak mock Jacobi form of weight k and index m if the following
is true. Write the theta-decomposition of ¢ as ¢ = > hy0p, . First, 7 — ¢(7,2)
is bounded as (1) — oo for every fixed z € C; second, all the h, are holomorphic;
finally, there exists a skew-holomorphic Jacobi form o = > G0, € Sglj koo
that & =, Bremm is invariant for the weight & modular action |, of SL2(Z) on
Em (cf. (2.2.26)) with the definition

such

ho(7) = ho(7) + \/%g;:m . (2.2.37)
As was discussed in [23] and analysed carefully in [20, 24], meromorphic Jacobi forms
— what one obtains when relaxing the condition on Jacobi forms to allow for poles at
torsion points z € Q + Q7 — naturally give rise to mock Jacobi forms. In particular,
all the mock Jacobi forms featured in umbral moonshine can be viewed as arising
from meromorphic Jacobi forms.

From a physical point of view, as demonstrated in a series of recent works, the “mock-
ness” of these mock modular objects is often related to the non-compactness of rele-
vant spaces in the theory. See, for instance, [20, 25-28]. Let us take 2d CFTs with a
non-compact target space as an example. The non-compactness of the target space
often leads to a continuous part of the spectrum. In this case the standard CFT argu-
ments might fail. In particular there could be imperfect pairing between the bosonic
and fermionic states in the continuous part of the spectrum and we could end up with
a non-holomorphic BPS index, given by the completion of a mock modular object,
as a result. See for instance [26, 29-33] for details for some specific examples, and
see the remark at the end of §2.3.3 for a more detailed discussion in the context of
elliptic genus. Another context in which non-compactness appears and leads to a role
for mock modular forms is wall-crossing (when approaching the wall, the distance
of the bound black hole centers goes to infinity). The BPS counting of the black
hole microstates hence depends on the moduli and correspondingly the countour of
integration [34], and the result of the integration is mock modular [20].

Another source of mock modular forms in physics is the characters of supersymmetric
infinite algebras, such as the N' = 2 and A/ = 4 superconformal algebras mentioned in
§2.4.2. Some more examples can be found in for instance [35] and references therein.
Interestingly, as we will explain in §3.1, the mockness of the mock modular form in
(2.2.42) can be seen as either arising from CFT with non-compact target space or as
a result to the mockness of characters of the N' = 4 superconformal algebra.

We now provide a couple of examples.

e Ramanujan wrote down the following simple-looking Eulerian series in his 1920
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2.2. Modular objects

letter to Hardy [36],

n

q

=1 2109034+,
Qg A2 Q) | TITCrRe T

M

Xo(q)
0

g 1

n

q
T =g (1= q72). (L= (1 - ")

x1(q)

n

as two of the examples of his mock theta functions (of order 5). In fact, they
are closely related to mock Jacobi forms.

Define I%¢° = {1,7}, A = {1,11,19,29}, and

@3
E8

_ E93
Hy® (1) =q Y (2x0(q) —4) , H;® (1) =2¢""x1(q), (2.2.38)

@3
then (Hf 5 ) (588 is a vector-valued mock modular form of weight 1/2 for the
rel 8

modular group. Its shadow is given by the index 30 theta functions

@3
gt =3 Oy, (2.2.39)
a€A

EEBS @3

~p®3 E
Writing H,® (1) = H,.® + (¢9-° )*, we have

A eo(—ik) 0 N\ ([HF
1 1)=( * 120 1 2.2.4
(B) o= () () e

~p®3 1 1— 1 1 1 + 1 ~p®3
H® 1 , H®
<A1E®3> (_> N T1/223/2 2\/ \/g 2\/ \/g <A1E@3> (T)

T

E$? . . o
Moreover, H;® can be viewed as arising from the theta composition of the

. £o3 E$? FES? .
mock Jacobi form % (7,2) := > pes Hr® Y _.0a7 . More specifically,
8
3

rel
P (1,2) =

rel

forms as a Jacobi form of weight 1 and index 30. As the notation suggests,
@3

Hf 8 encodes the graded dimension of the umbral moonshine module under-

lying the case of umbral moonshine corresponding to Niemeier lattice N with

~ O3 _p®
4 03 ..
5®3 H., Zae 4047 is non-holomorphic in 7 and trans-

root system E§93, as we will discuss in §2.4.2.

27

=142¢g+2¢3+3¢+...,



2. Background

e Let H:H — C be given by

2B, e
H(r) = 25 27(4;;1381?2 @)

=275 (~1+45¢+231¢° +7704°...) ,
(2.2.42)

By=1-24%" 1”q
_qn
n=1

is the weight two Eisenstein series (which is not a modular form) and

= Y (—)sq =g+ -+t
rf\::>181?12d 2
Note that the first few Fourier coefficients of H/2 : 45, 231 770, 2277 , 5796,
coincide with dimensions of certain irreducible representations of the sporadic
group Ms4! Indeed, in umbral moonshine H = H Ay plays the role of the
graded dimensions of the underlying Mss-module. See §2.4.2.

This function is a mock modular form with shadow 2473(7) (and therefore with
a multiplier given by the inverse of that of 73(7)). In other words,

(r) = H(r) + 20 (a0) 7 (e BPa, (2.2.43)

-7

transforms as a weight 1/2 modular form for the modular group SLz(Z).

Moreover, the two-variable function A% (1,2) := H(7)f2, is a mock Jacobi
form of weight one and index two. This mock Jacobi form can be seen as arising
from a meromorphic Jacobi form by subtracting its “polar part”. To see this,
consider the weight one index two meromorphic Jacobi form
3 3
P(r,2) = —22’91(;’%2’)2)(7)%,1(7,2) = —iWEG(T,z;K?u) ,
(2.2.44)
(cf. (2.2.32)) which has a simple pole at z € Z+Z7. Then the following identity
holds,
_ AR @ |y +1
(1, 2) =™ (1,2) — 24 Av [y—l] . (2.2.45)

In the above Av(™ denotes the index-m averaging operator

AYMIE@y)] =D ¢ P F(dby)
kEZ
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2.3. 2d CFT

with the elliptic symmetry AvU™ [F(y)]|m (A, 1) = Av™[F(y)] for all A,y € Z,
and the second term in (2.2.45) can be interpreted as the canonical “polar part”
of the meromorphic Jacobi form ¢.

2.3 2d CFT

Here we provide a brief summary of some key ingredients of two-dimensional conformal
field theories (CFTs) that we will need. CFTs are relevant for moonshine, since in
the cases that are known so far the corresponding moonshine modules feature vertex
operator algebra (VOA) structures, which capture the structure of the chiral algebra
of a two-dimensional CFT. Instead of the more formal VOA language, we opt for the
CFT language which is more familiar to physicists. This section is also useful for the
discussion on sigma models in §4, especially with regards to orbifolds. More complete
references on the basics of CFT include [37-41].

2.3.1 General structure

A conformal field theory is a quantum field theory with conformal symmetry. Confor-
mal transformations are coordinate transformations that preserve the conformal flat-
ness of the metric. Focusing on Riemannian manifolds of Euclidean signature, a metric
is said to be conformally flat if it can be written in the form ds? = e“’(x)cilwdx“d:r”.
Conformal transformations locally preserve the angles but may deform the lengths
arbitrarily, so conformal symmetry is typically associated with the absence of an
intrinsic length scale. On the conformal compactification (by adding the point at in-
finity which is necessary for the special conformal transformation to be well-defined)
of R™? for n > 3, all conformal transformations are globally well-defined and form a
group isomorphic to SO(n + 1,1,R). The corresponding local transformations thus
form a finite-dimensional Lie algebra isomorphic to so(n+1,1,R). In two dimensions,
however, the condition of conformal invariance is equivalent to the Cauchy-Riemann
equation and any holomorphic function gives rise to an infinitesimal conformal trans-
formation. Using the generators

b, =—z""o,, 0, =—-2"T10; (2.3.1)

for n € Z, we see that the local conformal transformations form an infinite-dimensional
Lie algebra, which contains two commuting copies of the Witt algebra with commu-
tation relations

Witt : [ly, bn] = (M — n)lppin (2.3.2)

It is important to emphasise that most of the conformal generators in 2 dimensions are
purely local, i.e. they do not generate globally well-defined transformations. Consider,
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2. Background

for example, the Riemann sphere C=Cu 00, i.e. the Riemann surface of genus zero.
On C, only ¢y, £11 generate global conformal transformations, which form the Mébius
group SO(3,1,R) = PSL(2,C).

The quantisation of a 2-dimensional CFT is typically done on C. The theory on
the Riemann sphere determines the theory on any other Riemann surface uniquely,
but does not guarantee their consistency, as one must also require crossing symmetry
and modular invariance of the torus partition function (see below). To see how to
quantise on C, we note that C with origin removed is conformally equivalent to a
cylinder S* x R. Denoting by y and ¢ the coordinates for S' and the Euclidean time
R, the conformal map z = e!*® maps the cylinder to C\{0} and in particular maps
the infinite past to the origin. The usual time ordering on the cylinder becomes radial
ordering on the plane, and the associated space of states is built on radial slices.

Anything that resembles a local field ¢(z, z) is called a field in CFT. If a field depends
only on the holomorphic variable z we call it chiral field (or anti-chiral if it depends
only on z). Upon quantisation, fields become operator-valued distributions that create
states in the space of states H, by acting on the vacuum |0) € H. This is called the
state-field correspondence, which maps an field ¢ to a state

0 10) = lim 6(2,2)[0) (2.3.3)

created at the origin on the plane (or past infinity on the cylinder). A crucial property
of a CFT is that the above map is bijective; every state corresponds uniquely to a
single local operator, whereas for a typical QFT different fields can produce the same
asymptotic state. This can be understood through the fact that under conformal
transformation ¢ — —oo is mapped to a single local point on C.

The product of two fields inserted at the same point is generically singular. The singu-
larity structure is captured by the so-called operator product expansion (OPE)

01(2)p2(2) ~ Z D,(z — 20, (¢, (2.3.4)
n=0

where ~ means that we only keep the singular terms. Here O, (z) are fields of the
theory and D, (z — 2’) are complex-valued functions with polynomial or logarithmic
singularities when z — z’. The non-singular part of ¢;(z)¢2(2’) is captured by the
normal-ordered product, which can be defined as

o0

:01(2)pa(2): i= p1(2)pa(2) — Z D, (z — 2O, (7). (2.3.5)

n=0

When there are only polynomial singularities in D,,(z — 2z’) we say that the fields ¢
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2.3. 2d CFT

and ¢4 are local with respect to each other, in the sense that there are no branch cuts
and contour integrals are well-defined.

The conserved current associated with the continuous conformal symmetry of a 2d
CFT is the stress-energy tensor, and we denote T(2) := T..(z) and T(2) := T:z(2).
Classically, these are the only non-vanishing components. Upon quantisation on
a generic Riemann surface this is broken to (1'}) = —;5R where R is the Ricci
scalar.

Since the treatment of the chiral and anti-chiral parts is identical, we will from now
on focus on the former. The holomorphicity of the stress-energy tensor T'(z) follows
from the fact that the associated conserved charges are precisely the generators of
infinitesimal holomorphic conformal transformations (2.3.1). Specifically, we have
the mode expansion

1
L, :=—
21

T(2)z""dz & T(z) = Z Lz~ "%, (2.3.6)
nez

The modes L,, however, do not generally satisfy the Witt algebra (2.3.2). This is
because the conformal symmetry is typically “softly” broken by quantum effects. The
OPE of T'(z) with itself,

c/2 N 2T (w) +3T(w)

T(2)T(w) ~ 2.3.7
ETW) ~ it oo T 2w (23.7)
is equivalent via the mode expansions to the commutation relations
c
[Liny Ln] = (m —n)Lyytn + —m(m?® = 1)dpmino - (2.3.8)

12

In the above, the real constant c is called central charge, and the new algebra is the
Virasoro algebra Uir, which is a central extension of 20itt by the term containing the
central charge. Moreover, the two resulting Uit copies commute, i.e. [Lm,f/n] =0,
and there is a central charge ¢ associated with the anti-chiral part, which can in
principle be different from ¢. The central charge captures important information of
a CFT and gives a measure for the number of degrees of freedom, but there can
exist multiple different CFTs with the same central charge. It is related to a “soft”
breaking of the conformal symmetry because it indicates that the stress-energy tensor,
which generates conformal transformations, transforms anomalously under conformal
mappings. For instance, for the transformation z = e, w = ¢t + iy from the cylinder
to the Riemann sphere, we have

T(2) = 272 (Top(w) + i) : (2.3.9)
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which leads to the following relation between the Hamiltonian §,. . dw(Tey(w)+

Teyi(w)) and §, & (T(2) + T(2)):

adial—slice =z

H = Lo+ Lo — S5°

. 2.3.1
51 (2.3.10)
Similarly, we have the momentum (or spin)
~ c—¢
P=Ly—Ly— . 2.3.11
0 0 oY (2.3.11)

As a result, the eigenvalues of Ly plays the role of the chiral part of the energy, and
the central charge gives rise to non-vanishing ground state energy. The eigenvalue h
under Lg of an eigenstate |h) € H, i.e. Lolh) = h|h), is called the conformal weight of
|h). If, moreover, L,|h) = 0 for all n > 0, then |h) is called a Virasoro primary state
and the corresponding field called a primary field. This terminology also extends to
the corresponding fields ¢, via the state-field correspondence. A state of the form
L_pL_y,---L_y, |h) (k; > 0) is called a Virasoro descendant of |h). If |h) is a
primary state, then along with all of its descendants they form a so-called Verma
module for Viv. The primary state |h) is then called the highest-weight state of the
module, since it has the lowest (somewhat confusingly) conformal weight among all
of its descendants.

Since the states organise themselves into Virasoro representations, one can decompose
the space of states of a CFT into a direct sum of Uit and Vit modules. In general,
focussing on the chiral part, one can have an enlarged symmetry algebra that contains
Gir. This is called the chiral algebra of the CFT, and is denoted here by V. We are
mainly interested in rational conformal field theories (RCFTs), which contain a finite

number of such modules; let ®(V), (V) denote the sets of these (chiral and anti-chiral
respectively). The space of states can then be written as

H = b Zyw(MaN) . (2.3.12)
Med(V),Ned(V)

The states in such RCFTs get organized in V-modules, whose highest-weight states
correspond to chiral primaries, which are not only Virasoro primaries, but also pri-
maries with respect to V. The chiral descendants are generated by acting with V
on the chiral primaries. This means that if A(z) € V, then A(z)M C M for any
M e (V).

The subspace V' C H, corresponding to the chiral algebra V via the state-field corre-
spondence, always forms an irreducible V-module V := M; € ®(V), which contains
the vacuum and all states corresponding to the Virasoro primaries generating V, also
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2.3. 2d CFT

commonly called currents, along with their chiral descendants. Modular invariance
requires that the eigenvalues of Lo — Lg are integers, which also means that all states
in any M € ®(V) have the same weight up to an integer. Specifically, all states in
the vacuum module V should have integer weights. However, by dropping modular
invariance as an initial requirement, the chiral algebra can possibly contain currents
of half-integer weights (fermionic currents), or any rational weight (parafermions).
The price to pay is that these currents have non-local OPEs (in the sense discussed
previously), with the corresponding branch cuts leading to the introduction of vari-
ous sectors (for fermionic currents these would be the Ramond and Neveu-Schwarz
sectors). The modular invariant theory can then be constructed by a suitable projec-
tion.

The chiral algebras themselves are the central objects in the theory of Vertex Operator
Algebras (VOAs), where they are discussed in an axiomatic manner. In the context
of moonshine, an important property of a chiral algebra is the finite group part of
Aut(V). The most famous example is the Monster CFT V¥, which is a VOA with
Aut (V%) = M, the Monster group. Furthermore, V¥ is an example of a holomorphic
VOA, i.e. a VOA that has a unique irreducible V-module, namely the space V.

In 2d CFT one is interested in calculating correlation functions of fields, inserted
at specific points on a Riemann surface ¥. These can be cast in terms of chiral
quantities called chiral blocks. Writing ¥ = ¥, ,, with genus g and n marked points
P1,---,Pn, & chiral block is a multilinear map from M; ® - - - ® M, to a meromorphic
function. This notation means that a field in M; € ®(V) is inserted at the point p;.
In the case of RCFT, they can often be obtained as solutions to certain differential
equations [42—44]. The chiral blocks form representations of the mapping class group
Iy n, which captures the discrete (and almost always infinite) symmetries of 3, ,,. It
can be defined by the quotient 'y ,, = Aut(3, )/ Auto(X,,,), where Auto(Z, ) is the
component of Aut(X, ) that is connected to the identity. Hence, Iy ,, maps between
equivalent Riemann surfaces 3, ,,, which only differ by a discrete automorphism. As
a result, the moduli space My, which parametrises the conformally inequivalent
Riemann surfaces, has naturally the following quotient form,

Mgn =Tgn/Tgn (2.3.13)

where 7y 5, is the so-called Teichmiiller space.

Chiral blocks have in general non-trivial monodromy as functions of the moduli space
Mg (see for example [39] for more details). Chiral blocks will thus generally be
multi-valued functions on Mg ,,, and in order to make them well-defined one should
lift them to 7g,. As a result, they will then carry a representation of the mapping
class group I'y ,,. This is one way to understand the origin of the modular properties
of torus blocks, and in particular moonshine modules.
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To explain this, let us now focus on the case of ¥ ;, i.e. tori with a single marked
point. As discussed in §2.2.1, a torus can be described up to a scale by C/A,, where
A is the lattice in C generated by the vectors 1 and 7 € H. An SLy(Z) transformation
leaves the lattice invariant and as a result the mapping class group I'y ¢ = PSLs(Z)
is given by the part of SLy(Z) that acts non-trivially on the Teichmiiller space H. As
any point is equivalent to any other point on a torus due to its translation symmetries,
we also have FI,O = F171 and Ml,O = Ml,l-

Chiral blocks on ¥ 1, when lifted to 77 1, will consequently be functions of the mod-
ular parameter 7. For RCFTs, they form a space of finite dimensions, and the di-
mension is given by the number of irreducible modules in ®(V). They admit a nat-
ural basis given by the graded dimensions, or characters, of the irreducible modules
M e d(V)

Ch]w(T) = TIM qLU_C/24 s (2314)

2miT a5 before. As discussed previously, the characters furnish a rep-

resentation of I'1; = PSL(2,Z), so that the chp(7) are components of a weakly

where ¢ = e

holomorphic vector-valued modular form for PSL(2,Z). In other words, they mix
with each other under the action of the modular group and the way they mix deter-
mines their OPE via the Verlinde formula. The modularity of characters of RCFTs
is rigorously shown in the context of VOAs by Zhu’s Theorem [45].

The partition function of a 2d CFT is defined as the 0-point correlation function
on the torus, which encodes the spectrum of the theory. In the operator formalism,
a torus with modular parameter 7 = 71 + i79 can be obtained from the Riemann
sphere by first conformally mapping it to the cylinder S' x R, and then imposing
periodic boundary conditions on the Euclidean time direction R. The Hamiltonian
and momentum operators H, P then propagate states along both cycles of the torus,
so the spectrum is embodied in the trace of the corresponding evolution operator over
the space of states,

Z(7,7) 1= Ty e2mimP=2mml (2.3.15)

Using (2.3.10)-(2.3.11), we can rewrite it as

P

Z(1,7) = Try qlo~Figho = | (2.3.16)

making it manifest that it is a generating function of the multiplicities of states at
given chiral and anti-chiral conformal weights in H. From (2.3.12) we see that it has
the following decomposition in terms of chiral blocks

Z(r,7) = > 2y 7 chu(T)chyg(r) . (2.3.17)
Me®(V),Necd(V)
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The partition function (2.3.15) can also be computed using the path integral formalism
when a Lagrangian description of the CFT is available. In this language, we have
7 = f D¢ eS¢ with the fields having appropriate boundary conditions on the
two cycles of the torus. Also from this point of view, it is clear that the partition
function should be modular invariant. This invariance imposes severe constraints
on the spectrum of 2d CFTs. For instance, modular invariance was used to classify
supersymmetric minimal models and further extensions. See [46, 47] and references
therein for some of these results. In the context of moonshine, we are mainly interested
in the chiral CFT, where the modular properties are not as stringent.

2.3.2 Orbifolds

A special class of CFTs which is of particular interest for moonshine is the so-called
orbifold CFTs [48]. The orbifold construction essentially entail “gauging” a discrete
symmetry group G of the chiral algebra V. More precisely, it builds a theory whose chi-
ral algebra contains the G-invariant subalgebra V& of V, by retaining the G-invariant
states of the original theory and introducing new “g-twisted” sector states, for every
g €q.

There are two important ways orbifold considerations enter the study of moonshine.
First, we will see in §2.4.1 explicit constructions of moonshine chiral CFTs obtained
by Zs-orbifolds. Second, the partition functions twined by the finite group symmetries
provide the necessary information about the group actions on the moonshine CFT
and constitute the modular objects playing a central role in moonshine. Generalising
this to the twisted sectors leads to the so-called generalised moonshine, which we will
briefly mention in the next section.

Apart from moonshine considerations, we will also encounter orbifolds when discussing
sigma models on four-tori and K3 surfaces in §4, where they will play an important
role in providing further evidence that the proposed correspondence is a natural con-
struction.

Orbifold chiral algebra. Here we are mainly interested in orbifolds of chiral
RCFTs (rational VOAs). We are interested in automorphisms of the operator al-
gebra. If such an automorphism acts trivially on the operator algebra, i.e. without
permuting the modules M7, then it is said to be inner. In particular it preserves the
chiral algebra of the chiral CFT. Let V denote the chiral algebra, G C Aut()) a finite
symmetry group, and My, ..., MY its irreducible V-modules. Here e € G denotes the
identity element which will later be generalised to arbitrary g € G. In particular, we
have M7 =V, the vacuum module corresponding to V.

Given such a symmetry, the chiral algebra is decomposed in G-representations
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as

where the corresponding spaces V,, contain states that transform under the irreducible
representations p, of G, and a runs over all of them. The G-invariant subalge-
bra

Ve .={pecV|hp=¢ VheG}, (2.3.19)

corresponding to the trivial representation pg of G, is called the orbifold chiral alge-
bra in this setup. Note that while V is irreducible as a V-module, it is generically
reducible as a V“-module, as shown in (2.3.18). We instead identify the corresponding
space V,, corresponding to V,, as the irreducible V-modules relevant for the orbifold
CFT.

An analogous statement holds for the rest of the V-modules, and we have decompo-
sitions

M =P pa® M, . (2.3.20)

An important subtlety is that p now runs over all irreducible projective representations
of G. Projective representations generalise the usual notion of representations intro-
duced in §2.1.4, by allowing them to respect the group operation up to a phase,

p(hih2) = ce(h1, ha)p(h1)p(h2) (2.3.21)

where c.(h1, he) is a U(1)-valued 2-cocycle, representing a class in the group cohomol-
ogy H?(G, U(1)) of G. This type of behaviour is allowed in CFT because such a phase
cancels when the chiral and the anti-chiral contributions are combined and hence is
not in conflict with the modular invariance of the final theory. See [49] for a nice
survey on projective representations of finite groups. Also note that the G-invariance
of the vacuum implies that the vacuum module V' carries true representations in the
decomposition V = P, po ® V,.

Twinings. Foreach h € G, acting as an inner automorphism of the operator algebra,
we define the twined characters?

chi (WD 37) = Trare [ gk 5] . (2.3.22)

Note that the the special case h = e simply gives the usual character or graded-
dimensions, of M¢. In terms of the decomposition into irreducible V¥-modules, the

3Note that throughout this thesis orbifolds will arise frequently, and each time our notation will
vary accordingly in order to better accommodate the task at hand.
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twined characters are expressed as
ch; (hD ;7') = ZXa(h) ch (M;f,) , (2.3.23)

where Y, are projective characters of G, and ch (Mfa) are the graded dimensions of
M. Using the orthogonality of the projective representations analogous to (2.1.18)

one can obtain the character ch; (h a ;7') from the 2-cycle and the character of the
e

projective representation p,.

In a similar fashion, we define the twined partition function as

2 (n0 i, 7) = Tey |h gho Figho ] (2:3.24)
€

In the path integral language, the twined partition function is obtained by imposing h-
twisted boundary condition for the fields on the cycle of the torus which is identified
with the “temporal” circle, while the boundary condition along the spatial circle
remains unchanged, i.e. ¢(z+7) = h- ¢(z) and ¢(z + 1) = ¢(z). From this point of
view, it is clear that Z hlg ;7,7 | should be invariant under a subgroup of SLy(Z)

that preserves the h-twisted boundary condition (SLy(Z) transforms the boundary
conditions on the two independent cycles of the torus as in (2.3.27) below).

Twisted sectors. Provided that V is sufficiently nice, in the sense that it satisfies
the so-called Ca-cofiniteness condition (see [39] for the definition), then for any g €
Inn(V), the inner automorphisms of V, one can define an irreducible g-twisted V-
module MJ for each ¢ = 1,---,n [50]. In an orbifold theory these modules make up
the g-twisted sector of the theory. Clearly, G is no longer a symmetry group for these
modules; only the centraliser subgroup Cg(g) (cf. §2.1.1) remains as a symmetry of
the g-twisted sector. As a result, for any commuting pair g, h € G, we can analogously
define the twisted-twined characters

ch; (hl:l ;T> = Trpyo [h qL"*Til] , (2.3.25)
g i

i.e. the twined characters in the twisted sectors (of which (2.3.22) is a special case).
In the path integral language, they are obtained by additionally imposing g-boundary
conditions for the spacial cycle of the torus, i.e. we have ¢(z+1) = g- ¢(z) as well as
¢(z+7) = h-¢(z). They similarly admit the decomposition

M = pa® M, (2.3.26)
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where the sum now runs over all irreducible projective representations of Cg(g).
Accordingly, an obvious generalisation of (2.3.23), obtained by replacing e with g and
G with Cg(g), also holds for the twisted sectors.

We have already mentioned that the twined partition functions enjoy modular prop-
erties. Similarly the characters (2.3.25) form vector-valued modular forms for some
congruence subgroup with certain multiplier systems. This can be understood
via the SLy(Z)-action on the boundary conditions: under modular transformations
(2 %) € SL(2,Z) on the torus, the boundary conditions (g, k) on the two cycles change
as

(9,h) — (kg% h%g") . (2.3.27)

As a result, the twisted-twined characters transform as
n

at +b
. O - — - . a b o - 3.
ch; (h 7 or + d) j§:1 ¢(7a97h)1] ch; (h g hegd ,T) s (2 3 28)

where (v, g, h) is an n xn matrix with scalar entries. The special case of holomorphic
VOAs , i.e. those that contain only a single irreducible (untwisted) V-module H, is
the easiest to describe. In this case, the chiral partition function coincides with the
character of the chiral algebra and (2.3.28) becomes [51]

Z<hD ;7'—|—1> =c4(9,h)Z (ghD ;7') ,
9 9

1 -
Z (hD ;—) =cn (9,972 (g‘lD ;T) ,
g T h

where now the phases are given by a 2-cocycle representing a class in H2(Cg(g),U(1))
as in (2.3.21). Moreover, all the phases for all g should descend from a 3-cocycle
representing a class in H3(G,U(1))[51, 52].

(2.3.29)

In a non-chiral CFT, the spectrum consists of the G-invariant parts of all the twisted
sectors, leading to the following expression for the partition function

1 _
Z(r,T) = mghz_%gZ <h|§ i, 7'> (g, h) (2.3.30)

where €(g, h) is a phase called the discrete torsion, which is just 1 in the simplest cases
of orbifold constructions. As usual, the above partition function is modular invariant
in a consistent orbifold CFT.
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2.3.3 Elliptic genus

So far we have discussed conformal theories in general, but we often encounter 2d
CFTs with supersymmetries. Here we will introduce introducing some necessary
background on superconformal algebras and their representations, and in particular
explain what an elliptic genus is, first from a physics point of view and then from a
geometric point of view.

With supersymmetries, the presence of fermions leads to many new features, stem-
ming from the fact that there is now an extra Z, grading on the Hilbert space:
V = Vo ®Vi. (In the context of moonshine, this leads to supermodules of finite
groups, cf. (2.1.20). ) For instance, in the context of type II superstrings compacti-
fied on Calabi-Yau manifolds, the relevant “internal” CFT is a non-linear sigma model
with A/ = 2 supersymmetry. The Calabi-Yau structure of the target space guarantees
that the theory has the N’ = 2 extension of Virasoro symmetry, given by the so-called
N = 2 superconformal algebra (SCA). In particular, superstrings on K3 manifolds
and the corresponding elliptic genus will play an important role in §3. Moreover, the
elliptic genus will be the main tool we use in order to establish the correspondence
between sigma models and VOAs in chapter §4.

The terminology “N = 27 refers to the fact that we include 2 fermionic currents in the
algebra on top of the bosonic energy-momentum tensor 7'(z). Furthermore, there’s
now an extra automorphism, called the R-symmetry, that rotates different fermionic
currents onto each other. We denote the two fermionic currents by G4 (z) and G_(z)
and the U(1) R-symmetry current rotating the two by J(z). The algebra reads

[Lymy L) = (m—n)Lpygn + %m(m2 — 1) dmtn0
[y Jn] = §m5m+n70
(Lo, Jm] = —mJmin
[L.,GE] = (g —r)GE, (2.3.31)
[Jn, G?] = :I:GTi-l-n
(65,67} = 2Lpiat (0= sMrsa b 5 (7 = D) rsao

and all other (anti-)commutators are zero. As before we have two possible boundary
conditions for the fermions

2r = 0 mod 2 for R sector
(2.3.32)
2r =1 mod 2 for NS sector
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Two comments about this algebra are in order here. First, we have now two generators,
Ly and Jy, of the Cartan subalgebra. As a result, the representations will now be
graded by two “quantum numbers”, given by the eigenvalues of the Ly and Jy of the
highest weight vector. The second new feature is that there is a non-trivial inner
automorphism of the algebra, which means that the algebra remains the same under
the following redefinition

L,— L,+nJ,+ m772 On,0
SF,: Jp—= Jy+2mndno (2.3.33)

+ +
Gy = Gy,

with 7 € Z. This automorphism is called spectral flow, and in the above we have
written m := ¢/6. If instead we choose n € Z + 1/2 we exchange the Ramond and
the Neveu-Schwarz algebra. Note that the only operator (up to trivial rescaling and
the addition of central terms, of course) invariant under such a transformation is
4mLgo — JZ. Recall also that NS sector states give spacetime fermions and Ramond
sector states give spacetime bosons in the context of string theory. Hence the spectral
flow operator has an intimate relation to spacetime supersymmetries.

Ramond ground states and the Witten index. In what follows we will focus
on the Ramond algebra and define the Ramond ground states of N' = 2 SCFT. As
usual, we require the ground states to be annihilated by all the positive modes:

Ln|®) = Jm|@) = GF|¢) =0 forall m,n,7>0.
Moreover, they have to annihilated by the zero modes of the fermionic currents
Gylo) =0.
This condition fixes their Lg-eigenvalue to be
G563 )16) = (Lo~ ) 1) = 0
g L0 O JIRE A0 T o) T
Let’s ignore the right-moving part of the spectrum for a moment and consider a chiral
Hilbert space V. We define its Witten index as
WI(7,V) = Try ((—1)7glo=) .

If a state 1) is not annihilated by G{, then the states [1)) and Gg|t)) together
contribute 0 to WI(7, V) since [Lo, G§] = 0 while [Jo, G§] = G&. The same argument
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holds for G; and we conclude that only Ramond ground states can contribute to the
Witten index. As a result, the Witten index WI: {N =2 SCFT} — Z is independent
of 7 and counts (with signs) the number of Ramond ground states in V.

Notice moreover that the Witten index for A/ = 2 SCFT acquires an interpretation
as computing the graded dimension of the cohomology of the G{ operator, satisfying
(G§)? = 0. For {G¢,(GI)T} = {GF.Gy} = Lo — &, the Ramond ground states
have the interpretation as the harmonic representative in the cohomology. This fact
underlies the rigidity property of the Witten index and the elliptic genus which we

will define shortly.

The same analysis can be trivially extended when one has a non-chiral theory with
both left- and right-moving degrees of freedom: the Witten index

WI(T77:,V) = TI'V ((_1)J~O+J()q*z/0—§ql/0_7c4)

counts states that are Ramond ground states for both the left- and the right-moving

copy of N' =2 SCA.

The N = 2 elliptic genus. It is fine to be able to compute the graded dimension
of a cohomology, but we can go further and compute more interesting properties of
this vector space. For instance, we have learned that the representations of AV = 2
SCA are labelled by two quantum numbers corresponding to the Cartan generators
Ly and Jy. It will hence be natural to consider the following quantity which com-
putes the dimension of G[)F cohomology graded by the left-moving quantum numbers
Lo, Jo.

The elliptic genus of a N/ = (2,2) SCFT is defined as the following Hilbert space
trace

BG(r, 2) = Trpgy, (1) oyPoghoe/2ighoel2t) -y = 7z (23.30)

where Hgrgr denotes the Hilbert space of states that are in the Ramond sector of the
N = 2 SCA both for the left- and right-moving copy of the algebra. From the same
argument as that for the Witten index, this quantity will be independent on ¢ and
will hence be holomorphic as a function of both 7 and z.

Note that the elliptic genus can be seen as something between the partition function
and the Witten index. While the former counts all states and the latter counts only
RR ground states, the elliptic genus counts states that are Ramond ground state on
the one side and unconstrained on the other side. It contains a lot more information
but still has the rigidity property of the Witten index which makes it possible to
compute for many SCFTs, and as such it offers a good balance between information
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content and computability.

When the theory has a finite group symmetry G which commutes with the supercon-
formal symmetries, one can define the elliptic genus twined by g € G as

EGg(T7 Z) — TI"HRR (g (_1).]0+joyJ0qL07C/24q—iofc/24)' (2335)

These objects will play an important role in the rest of the thesis.

Modular properties. As in the case of partition functions (cf. §2.3.1), a path
integral interpretation of the elliptic genus suggests it has nice transformation prop-
erty under the torus mapping class group. Moreover, the inner automorphism of the
algebra (the spectral flow symmetry) implies that the graded dimension of a Lg-, Jo-
eigenspace should only depends on its eigenvalue under the eigenvalue of the com-
bined operator 4mLg — Jg and the charge of Jy mod 2m where m = ¢/6. Hence, the
Fourier expansion of the elliptic genus should take the form

EG(r,z) = Z "y c(4mn — £2)0) .

n,f

where ¢(D, ¢) only depends on D and ¢ mod 2m (cf. (2.2.27)). From these facts one
can deduce that the elliptic genus of an N' = (2,2) SCFT with central charge ¢ = 6m
is a weak Jacobi form of weight zero and index m. Similarly, following the same
argument and that in §2.3.2, the twined elliptic genera are also weak Jacobi form
of weight zero and the same index, but with the modular group SLy(Z) in (2.2.26)
replaced by a certain subgroup which depends on the twining symmetry g.

The geometric elliptic genus. For a compact complex manifold M with
dimcM = dy, we can define its elliptic genus as the character-valued Euler char-
acteristic of the infinite-dimensional formal vector bundle [53-57]

Eq,y = yd/z/\—y—lTJT/I®n21 /\ —y‘lanJT/I ®n21 /\ 7yq“TM ®n20 Sq" (TM & Tf\})»

where T)s and T, are the holomorphic tangent bundle and its dual, and we adopt
the notation

AV =14+¢qV+@ENV+..., and S,V =1+4qV +¢25V...,

with S*V denoting the k-th symmetric power of V. In other words, we have

EG(T,Z;M):/Mch(E(M)Td(M). (2.3.36)
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From the above definition we see that this “stringy” topological quantity reduces to
the familiar ones: the Euler number, the signature, and the A genus of M, when we
specialise z to z = 0,7/2, (7 4+ 1) /2, respectively.

When M has vanishing first Chern class, in particular when M is a Calabi—Yau
manifold, its elliptic genus EG(r,2; M) can be shown to be a weak Jacobi form
of weight zero and index dp/2 [57]. Note that the supersymmetric sigma model
on a Calabi—-Yau manifold flows to a superconformal SCFT in the infrared. The
elliptic genus of this N' = (2,2) SCFT, defined as in (2.3.34), then coincides with the
geometric elliptic genus defined in (2.3.36) of the Calabi—Yau manifold.

Examples: K3 and T%. There are two topologically distinct Calabi-Yau two-folds:
K3 and T*, which are also the main focus of §4. Since both are equipped with a hyper-
Kahler structure, extending the Kéhler structure of generic Calabi—Yau manifolds, the
superconformal symmetry is enhanced from N = (2,2) to N' = (4,4). From the above
argument, we expect their elliptic genus to be weight zero weak Jacobi forms with
index 1. Coincidentally, the space of such a form is one-dimensional and is spanned
by ¢o.1(7,2) (cf. (2.2.32)), and hence we only need one topological invariant of the
Calabi-Yau two-folds to fix the whole elliptic genus. From

EG(1,2=0;T")=x(T*) =0 , EG(r,z=0;K3)=x(K3) =24

and
¢0,1(’T,Z = 0) = 12

we obtain
EG(T,Z;T4) =0 , Z(r,2z,K3)=2¢01(7,2).

This clearly demonstrates the power of modularity in gaining extremely non-trivial
information about the spectrum of a SCFT.

Remark. The argument for the holomorphicity of the elliptic genus fails in an in-
teresting way for theories whose spectrum contains a continuous part. Due to the
possible spectral asymmetry (i.e. non-perfect pairing between bosonic and fermionic
states), the elliptic genus, when defined as a trace/integral over the full Hilbert space
with continuous spectrum included, of such a theory could develop a non-trivial g-
dependence. For such an object the usual path-integral intuition still holds and the
resulting non-holomorphic function transforms as a Jacobi form. Restricting to the
discrete part of the spectrum, the analogous trace will be holomorphic but will no
longer be modular. In particular, it will be a mock Jacobi form. As a result, in this
context the holomorphic part of the elliptic genus is a well-defined notion both from
a physical and mathematical point of view. From the physics perspective, the holo-
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morphic part corresponds to the contribution from the discrete part of the spectrum
[26, 29, 32, 58]. From the mathematical point of view, the holomorphic part corre-
sponds to the holomorphic part of the harmonic Maass form [59]. We will encounter
such a situation in §3.1.1.

2.4 Moonshine

In this section we give an introduction to moonshine, starting from the classic case
of monstrous moonshine and moving on to other instances that we will encounter in
the next chapters. The different cases are organised in terms of the weights of the
modular objects involved.

2.4.1 Moonshine at weight zero: monstrous and Conway

Here we review the two moonshine connections, monstrous and Conway moonshine,
that occur at weight zero. They are the moonshine cases that are best understood
at the moment, in terms of the specification of the modular objects, the origin of the
symmetries, and their physical context. In the case of monstrous moonshine we will
provide more details than we actually need for this thesis, with the goal of acclimating
the reader to the general concepts that carry on to all instances of moonshine.

Monstrous moonshine

Monstrous moonshine is arguably one of the most fascinating chapters of mathematics
in the last century, where finite groups and modular objects were first noticed to
be related via physical structures. As the theory of moonshine further develops,
we believe that monstrous moonshine will remain the most distinguished example of
moonshine phenomenon from various points of view. In this section we briefly describe
the features of monstrous moonshine, and we refer to [39, 60, 61] and references therein
for other excellent reviews of this beautiful story, in particular the historical aspects
of it.

The term monstrous moonshine, coined in [62], refers to the unexpected connec-
tion between the representation theory of the Monster group M and the modular
form

J(r) = Z an " = ¢~ ' 4 196884q + 21493760¢> + 864299970¢° + --- ,  (2.4.1)

n>—1

which we encountered in (2.2.5). The development of monstrous moonshine was ini-
tiated with the key observation, due to McKay, that the coefficient 196884 in the
g-expansion of J can be decomposed as 196884 = 1 + 196883, where the summands
are the dimensions of the two smallest irreducible represenations of M. Similar de-
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compositions were observed for the next few coefficients by Thompson in [63]:

1=1
196884 = 196883 + 1
21493760 = 21296876 4 196883 + 1 (2.4.2)

864299970 = 842609326 + 21296876 + 2 - 196883 + 2 - 1

where 1, 196883, 21296876, and 842609326 are dimensions of certain irreducible repre-
sentations of M. The observation led to the conjecture of the existence of an infinite-
dimensional Z-graded Monster module,

V=@ V., (2.4.3)

n>—1

such that dimV,, = a,, for all n > —1. In other words, J acquires the interpretation
as the graded dimension of V'

J(r)= Y dimV,q". (2.4.4)

n>—1

Notice that V[ is empty, corresponding to the vanishing constant coefficient of
J.

The conjecture. This conjecture as stated above is not interesting since one could
take each V,, to contain ¢(n) copies of the trivial representation of M to make (2.4.4)
true, given the fact that all a,, are non-negative integers. To access the information
on the M-action, Thompson also proposed in [64] to look at the graded characters of
V', the so-called McKay-Thompson series defined by

Ty(r) =Y Try,(9)q" , (2.4.5)

n>-—1

for each element g € M (with T, = J). Note that the g-series T,(7) must also have
vanishing constant term. As is clear from the definition, the T} are class functions, i.e.
Ty = Thgn-1. As a result, there are at most 194 distinct T, as M has 194 conjugacy
classes. In fact, it turns out that 7, only gives rise to 171 distinct functions. The
main point of monstrous moonshine lies in the fact that these graded trace functions
also exhibit modular properties and are moreover the unique Hauptmoduls with no
constant terms (cf. §2.2.1), as stated in the following astonishing conjecture made by
Conway and Norton [62]:
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Conjecture 1. (Monstrous Moonshine Conjecture)

For each g € Ml the McKay-Thompson series Ty coincides the unique Hauptmodul Jr,
with expansion ¢~ 4+ O(q) near T — ico, for some genus zero subgroup I'; < SLa(R).
Furthermore, each I'y contains T'o(N) as a normal subgroup, for some N dividing the
quantity |g| ged(24, |g]).

Given the importance of this conjecture, we will pause to make a few com-
ments. Note that I'y is often not a subgroup of SLy(Z); only for some g we have
Iy = To(N) (cf. (2.2.8)), for some N satistying the conditions mentioned above.
In general, 'y is a normaliser of I'y(N) in SLy(R), which in general involves the
so-called Atkin-Lehner involutions. For later purpose we will be particular interested
in the groups of the form

1
PNHE = {\/ﬁ (Z\”‘[ di) | adn —beNjn =1, n € K} : (2.4.6)

where K < Exy is a subgroup of the group of exact divisors of N. We say that e is an
exact divisor of N if e|N and (f, %) =1, and they form a group with multiplication

fxf = % An especially simple case is when N is a prime number p, and the
full normaliser (corresponding to K = {1, p}) is given by

1 /0 -1
Lo(p)+ = <Fo(p), 7 (p 0 ) > . (2.4.7)
A harbinger of monstrous moonshine, predating the observation by McKay, is the
following observation made by Ogg [65]. He noted that I'g(p)+ defines a genus zero
quotient on the upper-half plane if and only if

p€{2,3,5,7,11,13,17,19, 23,29, 31, 41, 47,59, 71}, (2.4.8)

and this is precisely the set of primes dividing the order of the Monster group, and
subsequently offered a bottle of Jack Daniel’s to anyone who can explain the coinci-
dence [65]. Monstrous moonshine sheds light on this mysterious coincidence through
the fact that the Hauptmoduls of all the genus zero I'y(p)+ feature in moonshine as
the McKay-Thompson series T, for a g € M of order p. In the case I'y ¢ SLy(Z)
the modularity of CFT does not help to explain the appearance of modularity for
I'y, since in CFT modularity arises from the mapping class group of the torus (cf.
§2.3). The crucial genus zero property of monstrous moonshine received a useful
paraphrasing [66] as the property that these Hauptmoduls can be obtained (up to a
constant) as a Rademacher sum, a regularised sum over the images of the polar term
(in this case ¢~!) under the action of the appropriate subgroup of SLy(R) (in this
case I'y). This Rademacher summability property subsequently played a key role in
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the discovery of umbral moonshine (cf. §2.4.2). Recently, the genus zero property is
explained by noting that I'y plays the role of the stringy symmetry group in the string
realisation of the Monster theory and by requiring a physical analyticity condition on
the supersymmetric index of the theory [67, 68].

The moonshine module. This conjecture was verified numerically by Atkin, Fong
and Smith (cf. [69, 70]), following the idea of Thompson (see [39] for references). To
be more specific, they showed that, for each n > —1, the ¢"™-coefficient of the Haupt-
moduls specified in [62] coincide with the characters of a certain virtual representation
of M. A constructive verification was later obtained by Frenkel, Lepowsky and Meur-
man [71, 72], with the explicit construction of a Monster module V' = V% This
module has the structure of holomorphic VOA, i.e. a VOA with a single irreducible
Vi-module, namely itself.

The starting point for constructing V¥ is 24 chiral bosons X*(z), compactified on the
24 dimensional torus R?*/A defined by the Leech lattice A. This results into a VOA
V(A) with central charge ¢ = 24, leading to a partition function whose g-expansion
starts with Zy () (1) = ¢~ ' +.... This, together with the modular invariance, fixes
the function to be the same as J(7) up to an additive constant. At the same time,
we know what this constant has to be since the Leech lattice has no root vectors and
hence ©5(7) =3, ca ¢t/2 =14 0(¢?), leading to

Oa(7)
Zyny(T)= ——==J(1)+24 . 2.4.9
V( )( ) ,'724(7_) ( ) ( )
In other words, thanks to the root-free property of the Leech lattice, the lattice vertex
ik-®

operators of the form e all have weight larger than one, and the only remaining

weight one primaries are the 24 fields 0.X*.

In order to have an exact matching with J we would like to remove these primaries,
which can be achieved by a simple Zy orbifold of V(A), acting as X* — — X, which
corresponds to the {id, —id} = Zs symmetry of A, contained in Aut(L) = Coy. In-
deed, one can easily compute the partition function of the orbifolded theory explicitly
as follows. Note that the Zs-twined partition function of 24 chiral bosons is given

by
1 277(T)>12
(o) - st - (6 410
The orbifold entails that V¥ is the direct sum of the Zy-invariant projections of the
untwisted and twisted sectors respectively (cf. (2.3.30)). From (2.3.29) and (2.2.12)
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we have

Zys(T) = . (J(T) +24+ (ZZE:;)H - (Zzg)))u + (ZZ((:DH) (2.4.11)

It remains to see that Aut(V?) is the Monster. Note that AutV(A) has a continuous
piece T which is a 24-dimensional torus corresponding to the translation symmetry of
the chiral bosons and to the 24 weight-one primary fields 9X*. The total symmetry
is captured by the (non-split) short exact sequence

1=T— AuwtV(A) = Cop — 1. (2.4.12)

The Zs-orbifold breaks the automorphism group to its discrete part 224. Cog, which
preserves the decomposition Vi = VJE @ V7 and is suggestively similar to a certain
maximal subgroup 2'124. Co; of M. It is clear from the contribution to the weight
two (and similarly for weight three, four, ...) states in V? from VJE and V7 that the
Monster must mix them and hence cannot preserve the (un)twisted sector individually.
Note that the 196884-dimensionl space of weight two states of V¥ has the structure
of a commutative and non-associative algebra (as is true for any VOA), and can be
shown to be precisely the Griess algebra constructed in 1980 and used to construct
the Monster group itself [73]. From this and the VOA structure of V% one can show
that Aut(V?) is indeed the Monster, and can be obtained by adjoining a certain order
two symmetry mixing Vih to the discrete part of Aut(V(A)).

The proof of monstrous moonshine. To prove that the V% constructed by
Frenkel, Lepowsky and Meurman indeed “does the job”, one needs to show that

)" (7) == Trys g gho e/ (2.4.13)

coincides with the corresponding Hauptmodul Jr, specified in [62]. It was known that
the coefficients of Hauptmoduls satisfy certain recursive formulas and one can deter-
mine all coefficients from just a handful of them. In the simplest case the recursive
formulas are encoded in the remarkable identity

p I i =pmg) = J(p) = I(7) (2.4.14)

ez
independently discovered by Zagier, Borcherds and others. Here p = €2, and a;
denotes the ¢* coefficients in the g-expansion of J (cf. (2.4.1)). This identity results
in infinitely many relations between a;, which enables one to completely fix all the
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coefficients from just aq, as, as, as. Clearly, the proof can be achieved if one can show
the existence of the same type of identities among the coefficients of TgV tl(T)7 and
just explicitly compare the handful of coefficients that are necessary to fix the whole
functions on both sides.

This is precisely what Borcherds did, and he obtained the replication formulas by
introducing the notion of a generalised Kac-Moody algebra, which can be viewed as a
generalisation of Kac-Moody algebras that allows for imaginary simple roots. Sub-
sequently, he constructed a generalised Kac-Moody algebra (also called “Borcherds-
Kac-Moody algebra”) m, called the Monster Lie algebra. Roughly speaking, the con-
struction was achieved by studying the cohomology of a BRST-like operator, which
acts on V? x TH1 where T'h! is the unique unimodular lattice of signature (1, 1).
This construction has a natural interpretation in string theory of considering second
quantised strings in the background of V¥ [67, 68].

Borcherds managed to derive the replication formulas (2.4.14) as the denominator
identities of the Monster Lie algebra m that he attached to V! As in usual Kac—
Moody algebras, the denominator identity results from applying the Weyl-Kac char-
acter formula of a Lie algebra to the trivial representation, and in this case relates an
infinite sum to an infinite product, precisely the structure we see in (2.4.14). More-
over, by considering the M-action on V% one can also obtain from m the analogous
identity

mk nk

Lexp Z Z gk ba q =Jr,(2) = Jr, (1), (2.4.15)

>0
k>0 TZEZ

satisfied by the other Hauptmoduls, where af

Combining the above components then proves the validity of V¥ as the module of

are the g-expansion coeflicients of Jr,.

monstrous moonshine.

Generalised monstrous moonshine. In [74] Norton proposed a generalisation
of monstrous moonshine under the name of generalised monstrous moonshine. He
suggested that there is a rule to assign to each element g € M a graded projective
representation V(g) = @,,cq V(9)n of the centralizer group Ci(g), and to each pair
(g, h) of commuting elements of M a holomorphic function T, ) on the upper half-
plane H, which satisfies the following conditions:

. ar . a b .
(i) Tigene,gonay(T) =7 Tig.n) (CTIZ) with (c d) € SLy(Z) and ~y being a
24th root of unity.

(ii) T(g,h)(T) = T(kflgk,kflhk) (7’) with k € M.
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(iii) There is a lift & of & to a linear transformation on V(g) such that

Tign (1) = Z Try g, (hq"7") . (2.4.16)
neQ

(iv) Tig,n)(7) is either a constant or a Hauptmodul for some genus-zero congruence
subgroup of SLy(Z).

(v) T(e,ny(T) coincide with T, (7), the McKay-Thompson series attached to h € M
by monstrous moonshine.

As we can see from the discussion in §2.3.2; all of these properties, apart from (iv),
can be understood in the framework of holomorpic orbifolds [75], applied to V. In
particular, the function 7{, ) can be thought of the h-twined character of the twisted
module Vg“. The proof of generalised monstrous moonshine was carried out recently in
[76], where a generalised Kac-Moody algeba mg, generalising the monster Lie algebra
m, is constructed for all g € M.

Conway moonshine

Conway moonshine establishes the relation between Coy, related to Conway’s sporadic
group Co; by Co; = Cog/{£ld}, and Hauptmoduls of certain genus zero subgroups

Recall from §2.1.3 that Cog is isomoprhic to the automorphism group of the Leech
lattice A. In this context, hints of Conway moonshine had already appeared in the
original montrous moonshine paper [62], where the authors assigned genus zero groups
I'y < SLy(R) to elements g € Cop: let { A, A" }Zl be the 24 eigenvalues of the natural
g-action on the Leech lattice A ®7z C (embedded in a complex vector space), then I,
is given by the invariance groups of the holomorphic function

to(r)=a [T TT =A™ (=271 =7 = xy +O(g) . (24.17)

n>0i=1

Note that x, = >_;(\; + A; ') is generically non-vanishing, and ¢, has non-zero con-
stant terms unlike the monstrous moonshine functions discussed in the previous sub-
section.

Conway moonshine, on the other hand, introduces a Conway module V*% whose
McKay—Thompson series coincide with Hauptmoduls with vanishing constant terms.
It was developed in [77, 78] (see also [79], [80] and [81] for nice summaries of the
construction). The Conway module Vs is the unique, up to isomorphisms, vertex
operator superalgebra (VOSA) with ¢y« = 12 and N = 1 superconformal structure,
which has no states with weight 1/2. It can be constructed as a Zg orbifold of the
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theory with eight bosons on the Fg torus together with their fermionic superpart-
ners. Alternatively, it can be constructed as a Zs orbifold, acting as k, — —k,, of 24
free chiral fermions k., a = 1,2,...,24. This is to be compared with the monstrous
moonshine module V¥ where the corresponding Monster module V¥ is built as a Zs
orbifold of the Leech lattice VOA (24 chiral bosons compactified on R?4/A), resulting
in theory with c¢ys = 24 and no states of weight 1. It turns out that V*% has an
interesting relation to stringy symmetries of K3 surfaces, as we will see in §3. In what
follows we will give more details on the Conway module V8.

Consider 24 real chiral fermions k, and the corresponding complex fermions

1 _ .
) = 7 (koj_1 £ike;) , j=1,...,12, (2.4.18)

with the following non-vanishing OPEs and stress-energy tensor

12
P (2)F (w) ~ i , L= —% > ow; + g ouf (2.4.19)
=1

Z—w

Denote by a the 24-dimensional vector space spanned by the fermions. Since fermions
allow for both periodic and anti-periodic boundary conditions, there exist two sectors
in the theory. The antiperiodic (Neveu-Schwartz) sector contains a single ground state
|0) and excitations of half-integer weight, while the periodic (Ramond) sector contains
integral-weight excitations and has 2'2 degenerate ground states. The degeneracy is
due to the Clifford algebra satisfied by the zero modes,

{vio ¥y =0, {09} =65 . (2.4.20)

which moreover commute with Ly. As a result, one can build the Ramond ground
states by acting with 1); ; on a ground state |s) satisfying ¢: ols) = 0. Namely, the
Ramond ground states are given by the mononomials

"/);170"'1/)1‘;,0|3> ) (2.4.21)

which form a spinor in twenty-four dimensions with Euclidean signature.

Next we want to construct an action of Cog on the states described above. To do
so, recall that Cog = Aut(A), so the Conway group is isomorphic to a subgroup of
S0O(24) and we can make the natural identification a = A ®z C, i.e. let fermions
“live” on the Leech lattice. Then consider a group element g € Coy with complex
eigenvalues /\iil, and choose the basis of a such that the fermions wli are acted upon
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as eigenvectors:
g = FlyE . =T i=1,...,12. (2.4.22)

Moreover, since the ground states in the Ramond sector form a representation of the
Clifford algebra associated to a, we should lift G < SO(24) to a subgroup G < Spin(a).
An element z € Spin(a) has the property zuz=! € a for u € a. We define the /ift
§elG< Spin(a) of g € G < SO(a) by requiring that it results in the same action as
g when acting on a,

gu):=gug ' =gu, Yuca. (2.4.23)
The map u +— §(u) is a linear transformation on a belonging to SO(a), so § — §(-)
defines a map Spin(a) — SO(a) with kernel {£1}, i.e. Spin(a) is a double cover of
SO(a). It turns out that for G 2 Coq there exists a unique lift G = Cog (sce [78] for
more details).

While the NS ground state |0) is invariant under Cop, the group action on the 2!2
Ramond ground states turns out to be

12 12
gls)y = He”aﬂs) =vls), v= HI/Z' . v =emi = )\;/2 , (2.4.24)
i=1 1=1

where |s) is the ground state described in (2.4.21). Notice that a priori there is
a sign ambiguity for v;, since it is the square root of \;. But actually the choice
of sign is unique since the lift of Cog is unique. There is a further ambiguity in the
definition of the g-action on the fermions, in that we can swap the complex eigenvalues.
This translates into setting \; <» —\; " in (2.4.22), and is referred to as a choice of
polarisation.

The last step is to consider a Zs = {1,3} orbifold of the theory described so far,
acting as g,@/}ijE = fw;t on the fermions. In other words, it acts as (—1)F where F is
the fermion number. Supposing that it acts trivially on both ground states |0) and
|s)[78], it splits the two sectors into even/odd eigenspaces,

NS=NS’@Ns!, R=R&R', (2.4.25)

where the eigenvalues of NS//R? are given by (—1)7. From this point on, one can
construct two closely related VOSAs. A useful description is by exploiting the fact
that NS° forms a (bosonic) VOA on its own, that of the lattice D15. Equivalently,
it is the VOA associated to the affine Kac-Moody algebra $0(24);, at level 1. The
latter has four irreducible integrable modules, namely the vacuum module A =2 NS,
the vector module V', the spinor module S and the conjugate spinor module C. By
extending the D15 VOA NS° by either of the spinor modules, one arrives at two
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VOSAs:

VT =NS’q S = NS’ @R

0 o L (2.4.26)
VeE=NS’aC=NS"@R'.

From the orbifold point of view we have the identifications S = R® and ¢ = R! in
our notation.

The two VOSAs V7t and V*% are isomorphic as VOSAs, and are uniquely character-
ized by their central charge cy v = ¢yt = 12 and the absence of weight 1/2 states.
In [77] is was shown that the N = 1 supercurrent of V/% is fixed by a subgroup
of Spin(24) isomorphic to Cog, which is identified by the group G in the notation
above. In particular, note that Z(Spin(24)) = Zs x Zg where the first Zy factor can
be identified with the kernel of Spin(24) — SO(24) and the latter with the center of
SO(24). The centre Z(G) = Z; can be identified with the second Z, in Z(Spin(24)),
and has the same action as the Zs in the orbifold construction. As a result, it follows
immediately from (2.4.26) that Cog does not act faithfully on V/%, since the latter is
invariant under the action of the centre Z (@) Instead, V/% carries a faithful action
of the quotient group G /75 = Coy. On the other hand, Coy acts faithfully on V'*8,
and this is ultimately the reason why we consider V*! instead of V/¥ in what follows.
Another notable difference between V#% and V*! is that the ' = 1 supercurrent in
Vft fixed by Cop is not contained in V*f, but rather in Vtsv'vh (inside the R® part).
A “canonically twisted” (or Ramond sector) module for V%% can also be constructed
as

Vi =NS'aR?, (2.4.27)

~

which is twisted with respect to the Z(G) symmetry. The action of Coy on this
twisted module is also faithful.

In order to formulate the Conway moonshine statement, first define the func-
tions

oo 12
neg(m) =q [T [T A F A e™) L F Xig™)
n=11i=1

Y (2.4.28)

12
Cig IZVH(liF)\Zl) ZH(I/i:FI/;1) .
i=1

i=1

The twined partition functions of Conway moonshine are then given by

o T T T/2
T;(T) = Strvsh |:qu0 1/2:| == trvsh [quLO 1/2:| - ng( / ) + g
1g(7) (2.4.29)
Tgs,tw(T) = Strv&h {quoq/z} = trvtfj [5@‘]%71/2] = Cgﬁg(T) — Xg >
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where the super-gradings can be defined by inserting (—1)f into the trace, whose
action coincides with that of 3 (recall that we identified Zs = {1,3} with the centre
of Cop). The main theorem of Conway moonshine states [78]:

Theorem 2. The function T;(21) = q~' + O(q) is a Hauptmodul for a genus zero
group T'y < SLy(R) that contains some I'o(N), for every g € Coy. If g has a fized
point in its action on A, then T, () is equal to the constant —x4. Furthermore,
if g has no such fived point, then T2, (7) is also a Hauptmodul for a genus zero

g,tw
subgroup of SLa(R).

In §3.1.2 we will see a way that Conway moonshine relates to the symmetries of K3
CFTs.

2.4.2 Moonshine at weight one-half: Mathieu and um-
bral

Somewhat unexpectedly, a wave of moonshine development started in 2010 which
led to the discovery of many more examples of moonshine connections. The modern
examples share some similarities, but also display important differences with the clas-
sical moonshine examples discussed in §2.4.1. The modular objects in these examples
are typically mock modular forms, an important and natural generalisation of mod-
ular forms introduced in §2.2.3, which furthermore have non-vanishing weights. The
first and very fruitful arena that was explored is that of weight 1/2 mock modular
forms. Here we aim to describe umbral moonshine, which is the main focus of §3, by
first discussing its precursor, Mathieu moonshine. Both are examples of moonshine
relating finite groups and weight 1/2 mock modular forms.

Mathieu moonshine

The first example of the new type of moonshine, Mathieu moonshine, was initiated
with certain observations about the weight 1/2 mock modular form H introduced in
(2.2.42), in an analogous fashion as how observations about the classical J function
initiated the development of monstrous moonshine. In [82] it was pointed out that
the first few Fourier coefficients of H coincide with twice the dimensions of certain
irreducible representations of the largest sporadic group May.

By now we have understood that, from many different points of view, Mathieu moon-
shine should really be thought of as a component of umbral moonshine, which we will
review in the next subsection. However, in many ways Mathieu moonshine stands out
among the other cases of umbral moonshine, not just historically but also in terms
of its direct relation to the K3 elliptic genus. As a result, we will devote a separate
subsection to Mathieu moonshine before discussing umbral moonshine.
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Recall that the mock modular form H (2.2.42) can be viewed as arising from a mero-
morphic Jacobi form ¢ given in (2.2.45). Using the relation between v and the K3
elliptic genus (2.2.44), as well as the identity (621 — 62,-1)(7,2) = —i61(7,22), we
obtain the following relation between the elliptic genus of K3 (cf. §2.3.3) and the
mock modular form H:

2
EG(T, 2; K3) = 0117:(:(—’ ;) (24 pu(r,2) + H(7)) , (2.4.30)
T
where
7 y+1 _Z‘yl/2 St (_1)€quZ(Z+1)/2
_ Ap® _ EDYe 77 (9431
1) = g™ ) S et X i (2451)

l=—

Note that while none of the two summands at the right-hand side of (2.4.30) trans-
forms modularly, their modular anomalies cancel and the left-hand side is a perfectly
well-behaved Jacobi form, as discussed in §2.2.1 and §2.3.3. In particular, a sim-
ple way to derive the shadow of H is by studying the modular properties of the
Appell-Lerch sum p(7, z) [23, 83]. We will see in §3.1.1 the two interesting physical
interpretations of the above splitting (2.4.30) of EG(K3), one in terms of the char-
acters of AN/ = 4 superconfomal algebra and one in terms of the elliptic genus of du
Val singularities.

The aforementioned observation on the conspicuous relation between the first few coef-
ficients of the mock modular form H and certain representations of Moy led to the sus-
picion that there exists a Z-graded, infinite-dimensional Ms4-module K = @le K,
underlying H, namely H(7) = s ( =243 " (dim(Kn)). A natural question is
thus whether the other summand in the splitting of the Jacobi form EG(K3) (2.4.30)
harbors an action of Mss as well. A simple guess arises from the fact that M, is a
subgroup of the permutation group Ss4 and as a result has a defining permutation
representation R, of dimension 24. A natural proposal for the “twined” version of
(2.4.30) is therefore

03(7, 2)
¢g(732) = 773(T> ((Tng) /L(T,Z) +H9(7_)) ) (2432)

where H, denotes the graded characters of the Ms4 module K. Following the spirit

of monstrous moonshine, we say that there is a non-trivial moonshine connection
if all such ¢, transform nicely as Jacobi forms under some I'y C SLy(Z). Physical
considerations reviewed in §2.3.2 moreover suggest that I'g(|g|) C T'.

Fortunately, the possibility for this type of Jacobi forms is very limited and we are
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constrained to consider

p=cho1+Fp_o1, (2.4.33)

where ¢o 1 and ¢_z 1 are given in (2.2.32), ¢ € C, and F is a weight two modular form
for I'y, possibly with a non-trivial multiplier system when ¢ = 0. The dimension of
the space of possible F is often small for the SLy(Z)-subgroup I'; we are interested in.
For instance, when I'j = SLy(Z) the only possible weight two form is F' = 0. Hence,
knowing the first few of the Fourier coefficients of ¢,, dictated by our guesses for the
first few Mo4-representations, is often sufficient to fix the whole function. As a result,
not long after the original observation [82], candidates for the McKay-Thompson
series were proposed for all conjugacy classes [g] C May4 in [84-87], and they take the
form

Py(1,2) = % G0.1(7,2) + Ty(7) ¢-2.1(7, 2) (2.4.34)

where the functions T, () are weight 2 modular forms explicitly specified in the ref-
erences given above and collected in Table 2 of [88]. More precisely, these ¢, for any
g € My, are weak Jacobi form of weight zero and index one satisfying the elliptic
invariance ¢g|1(\, p) = ¢y for all (A, p) € Z? (cf. (2.2.22)), and transform as

2
, B ez ;0T +b oz
d)g(T)Z)_p’ﬂghg(’Y)e( CT+d> ¢g(CT+d7CT+d) ?

for v € T'y(|g]), where the multiplier p,, |, is summarised in [88].

In terms of the weak Jacobi forms (2.4.34), the main statement of Mathieu moonshine
is the following.

Conjecture 3. There exists a naturally defined Z-graded, infinite-dimensional May
module K = @, K,, such that for any g € Maa, the graded character

Hy(r)=q % (=2+ > ¢"(Tig, 9)) (2.4.35)

satisfies ¢g = ¢, where ¢y is as defined in (2.4.32) and ¢y, is the explicitly given
weak Jacobi form (2.4.34). Moreover, the representations K, are even in the sense
that they can all be written in the form K, = k, ® k,5 for some May-representations
kn and their dual representation k.

A proof of the key fact in the above conjecture, namely the existence of an Moy-
module K = @.- | K,, such that (2.4.37) holds, has been attained in [89]. However,
a construction of the module K, analogous to the construction of V¥ by Frenkel-
Lepowsky—Meurman in the case of monstrous moonshine, is still absent. Therefore
in no way do we know why K should be “natural”. As explicit data, the first few
Fourier coefficients of the ¢-series H,(7) and the corresponding May-representations
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are given in [88].

Note that the above implies that there is a Msy-supermodule underlying all terms
in the ¢-, y-expansion of the K3 elliptic genus. It is hence tempting to endow the
McKay-Thompsen series ¢, with the physical interpretation as twined elliptic genera
of K3 CFT (cf. (2.3.35)). This however turns out to not be entirely possible for all
g € Masy; namely the symmetry group of any individual K3 sigma model needs to
be a 4-plane preserving subgroup of Cop [90, 91] (also see §3), which is not true for
My4. Finally, note that the modular form property of ¢4, as well as the mock modular
property of p(7, z), immediately lead to the fact that H, are also mock modular forms.
Explicitly, they are given by
Trr g o(T)
24 H(r) - n(T)3 ’

Hy(r) = (2.4.36)

and they are weight 1/2 mock modular forms with shadows given by (Trr g)n*(7),
generalising the mock modular property of H(7) discussed around (2.2.43).

Umbral moonshine

A few years after the discovery of Mathieu moonshine, it was realised that it is in
fact just one instance of a larger system of moonshine, called “umbral moonshine”
[92, 93]. There are in total 23 instances of umbral moonshine, which admit a uni-
form description (see Figure 2.2). The main statement of umbral moonshine is as
follows.

Conjecture 4. Let GX be one of the 23 finite groups specified in (2.4.38), m be the
corresponding positive integer specified in (2.4.43), and IX be the specific subset of
{1,2,...,m—1} described in (2.4.44). Then there exists a naturally defined bi-graded,
infinite-dimensional GX -module

X _ X
KX=@ @D Kb
relX D<0
D=r? mod 4m

such that for any g € GX and for any r € IX, the graded character (“corrected” by a
polar term f2q7ﬁ as in below) coincides with the component H_;;fr of a vector-valued
mock modular forms Hy = (H)X,)repx:

oo

_ _D/am
HY, =—=2" %60 + ) g P/ (Trgex, 9)- (2.4.37)
D<0
D=r?mod 4m

In what follows we will briefly describe the specification of the main players, the finite

groups GX and the mock modular forms HX

5 » in the above conjecture. See Figure
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2.2.

The starting point of this uniform construction are the 23 Niemeier lattices NX
introduced in §2.1.3. Recall that they are uniquely labelled by their root systems.
We will denote by X the root systems, by N¥ the corresponding Niemeier lattices, and
by GX the finite groups arising from the automorphisms Aut(NX) via (2.1.13):

GX = Aut(N™)/Weyl(X) (2.4.38)

These are the finite groups relevant for umbral moonshine and we will refer to them
as the umbral groups.

On the modular side, we use the root system X to specify certain mock modular
forms related to the finite group GX. To explain how this is done, first recall that the
McKay—Thompson series Ty in monstrous moonshine and the mock modular forms H,,
in Mathieu moonshine have very special properties. First, once their (mock) modular
data (consisting of the group I'y, the weight, and the multiplier) are specified, the
functions are completely determined by the analyticity property of how they grow near
the cusps ico U Q. Second, they have “optimal growth” in the following sense. These
functions 1) are bounded at all cusps that are not I'j-equivalent to ico and 2) have
the slowest possible growth near ioo that is compatible with the modular data. For
instance, in the case of monstrous moonshine it is elementary to see that a modular
form satisfying condition 1) for I’y D (T') must behave like ¢~ (1 + O(q)) for some
integer n near the cusp ico. As a result, the condition 2) states that n = 1, which is
indeed the case for the moonshine functions 7. Another way to state the above is to
say that the functions in monstrous and Mathieu moonshine can be written (up to a
constant) in terms of Rademacher sums over the minimal polar term in the expansion
near ico [66, 94]. See also §2.2.3 for a discussion on Rademacher sums.

The functions of umbral moonshine turn out to have analogous uniqueness properties,
and the relevant concept here is the notion of optimal mock Jacobi forms. We will
first focus on the case g = e and I'y = SLy(Z). Let ¢ = . hy0,,, be a mock Jacobi
form of weight one and index m. We say it is an optimal mock Jacobi form if

he(T) = O(q” ) (2.4.39)

as (1) — oo, for each r € Z/2m. For instance, the function PP defined in §2.2.3
@3
is an optimal mock Jacobi since it has index 30 and HlE8 (1) = —2¢~ 1 (1 + O(q)),

D3
while Hfg vanishes at (1) — oo (cf. (2.2.38)). Similarly, A7 s an index 2

optimal mock Jacobi form.

At weight one, the space of such optimal mock Jacobi forms turns out to be very
restricted: the mock modular transformation property together with the pole struc-
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ture of the functions near the cusps are sufficient to determine the whole g¢-series.
In particular, they can be obtained as simple Rademacher sums involving only the
polar parts as input. Such forms are even more scarce if we want them to have
non-transcendental Fourier coefficients. Note that this must be the case for the func-
tion to play a role in moonshine, since the graded dimensions are necessarily integers
and of course non-transcendental. In [19] it is shown that if ¢ is such a form, it
must lie in a 34-dimensional space, irrespective of its index. Moreover, inside this
34-dimensional space there are 39 special elements (which span the 34-dimensional
space) distinguished by their special symmetries. Recall that Atkin-Lehner symme-
tries normalising I'g(m) are specified by a subgroup K of the group of exact divisors
Ex;, (cf. (2.4.6)). Given such a pair m and K, we say that an index m mock Jacobi
form ¢ is K-symmetric if

p= D Mbmr= Y hlbpamy forallneK, (2.4.40)

r mod 2m r mod 2m

where, for a given n, we define a(n) to be the unique element in Z/2m satisfying

a(n) = { 1 mod 2m/n

—1 mod 2n

Note that the symmetry is an involution, since a®> = 1mod 2m. For instance,

the mock Jacobi form wEga * introduced in (2.2.38) is invariant under the action of
K ={1,6,10,15} < Exsq, corresponding to a(n) = 1,11, 19,29. The surprising result
in [19] then states that a non-vanishing K-symmetric index m optimal mock Jacobi
form at weight one has non-transcendental coefficients if and only if the correspond-
ing SLy(R) subgroup I'+¥ defines a genus zero quotient in the upper-half plane.
Recall that these genus zero groups also play an important role in monstrous moon-
shine. Note that we necessarily need to have m ¢ K (referred to as the “non-Fricke”
property) for the mock Jacobi form to be non-vanishing, since at weight one has
Yoy il ==, hebpy — and a(m) = —1. There are just 39 such non-Fricke genus
zero groups I'™TX < SL,(R) and we will denote the corresponding unique optimal
mock Jacobi form, with the normalisation

hy = —2¢"7 (1+ 0(q)) , (2.4.41)

by ™+ In fact, these 39 distinguished optimal mock Jacobi forms ¥™+% turn out
to have Fourier coefficients that are not only non-transcendental, but also integral.
Moreover, 23 among the 39 have positive coefficients in the following sense. By writing

(cf. (2.2.29))
1/} = Z hrém,r )

1<r<m-—1
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h, has the expansion

, (2.4.42)

m

hy, = =2¢7 VM 4 3T g erng™t™, i 7% =1 mod 4m
' ano Cr,nqn/4 > otherwise

with ¢, € Z>¢. This positivity property makes it possible for it to be the graded

4

dimensions of finite group representations®. To sum up, for any index, there are 23

special mock Jacobi forms of weight one for SLy(Z) distinguished by
1. the optimality growth condition (2.4.39),
2. the Atkin—Lehner symmetries (2.4.40),
3. the normalisation (2.4.41),
4. the positivity and integrality of the coefficients (2.4.42).

The interesting observation is that these 1™+ with positivity properties are in one-
to-one correspondence with the 23 Niemeier root systems X! To explain this corre-
spondence, first recall the ADE classification of the modular invariant combination of
A, affine Lie algebras [46], which has led to a classification of A” = 2 superconformal
minimal models with spectral flow symmetries. Their classification gives rise to a
square matrix QY of size 2m for each simply-laced root system Y, where m coincides
with the Coxeter number of Y. Moreover, the term (QY, — Q) _) coincides with
the multiplicity of r as a Coxeter exponents (the degrees of the invariant polynomials
shifted by one) of Y and takes values in {0, 1,2}. The above can be generalised to a
union of simply-laced root systems with the same Coxeter number (recall that this is
indeed the case for Niemeier root systems) X = U;Y; by defining Q¥ = Y, Qi. Then
the mock Jacobi form ¢X = ¢™*X with theta-decomposition X = Do HX0,, .,
corresponding to the Niemeier root system X, display the following relations to X.

s

1. The Coxeter number of X coincides with the index of the ¢¥,

m = Cox(X) . (2.4.43)

2. The matrix QX and the form X = ¢™*X have the same Atkin-Lehner sym-
metries: (%), = (QX),.@(,L),./ for all n € K. Using these symmetries, it is
convenient to define a set IX of the orbits of the Atkin-Lehner symmetry group
acting on {1,...,m — 1} (in Z/2m), labelling the independent components H; X
of the vector-valued mock modular form (H;X) and leading to

WX =" HY Y Oy - (2.4.44)

relX nekK

41t is believed [19] that the remaining 16 optimal mock Jacobi forms ™% with positive and
negative integral coefficients have also umbral type moonshine attached to them, but with additional
supermodule structure that accounts for the minus sign.
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3. The shadow of ¥ is determined by Q%. More precisely, the completion of )X
is specified by the skew-holomorphic Jacobi form ¢ = ) 9},17,.®fr,9,n,7./ (cf.
(2.2.37) and the preceeding text).

The mock Jacobi form 1% then gives us the vector-valued mock modular forms HX =
(HX) which will play the role of the graded dimensions of the module for the umbral
group GX. In other words, we have HX = He)fr in Conjecture 4. For the case
X = AP?* this is the Mathieu moonshine function A7 we discussed in §2.2.1 and
§2.4.2. Another simple example is X = Agalz, where X =3 HTX9~3T (som=3
and IX = {1,2}), with

r=1,2

HY (1) = 247 /12 (=1 4+ 16 g +55¢° + 144 ¢° +...)

2.4.45
H3 (1) =2¢%"(10 + 44 q + 110¢* + ...). ( )

At the same time, the symmetries of the corresponding Niemeier lattice gives
GX >~ 2.M;5. The relation between the finite group GX and the vector-valued mock
modular form H¥ can be observed from the fact that the group 2.Mjs has irreducible
representations of dimensions 16, 55, 144 as well as 10, 44, 110.

Niemeier Lattice

NX
lattice symmetry shadow + optimality
Finite Group b K* _ | Mock Modular Form
GX - K w HX
Umbral Moonshine g

Figure 2.2: The construction of umbral moonshine.

After specifying the mock Jacobi forms for SLy(Z), in order to describe the moonshine
relation we also need a set of mock Jacobi forms 7,/15( =>,.H gfrﬁm,r, one for each
conjugacy class [g] C G, for subgroups of SLy(Z). The mock modular forms H éX =
(H, ;fr) will then play the role of graded characters of the umbral moonshine module,
as described in Conjecture 4. This can be achieved in a way largely analogous to the
SLs(Z) case, though additional subtleties do emerge and extra care needs to be taken.
We refer to [95] for more details.

Once the mock modular forms H, !}X are specified, it is trivial to verify the existence of
the GX-module K fD in Conjecture 4 term by term, namely one D at a time. Further-
more, the existence of the whole umbral module K* = @, KT{(D has been proven
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2. Background

mathematically using properties of (mock) modular forms [89, 96]. However, the con-
struction, or even an understanding of the exact nature of KX, is not yet obtained
in general. Construction of KX has so far only been achieved for certain particularly
simple cases of umbral moonshine, corresponding to Niemeier root systems 3Eg [97],
AP* and AT? (98], DE*, D3, DT? and Doy [99], as well as D° [2], which is the main
topic of §3. The construction in [97] relies on special identities satisfied by the mock

modular forms H,f %e ’ relating it to a lattice-type sum, while in [98, 99] the modules
are constructed using the interpretation of the meromorphic Jacobi forms associated
to \Il;( as the twined partition function of certain vertex operator algebras (or chiral
CFTs). As we will see, in [2] the module for the D¢ case of umbral moonshine is
constructed by exploiting the relation between the (twined) K3 elliptic genus, umbral
and Conway moonshine. Note that, so far, this is the only constructed module for
which the corresponding umbral group (when embedded in Cog) does not fix a 4-plane
in the 24-dimensional representation of Coy. The significance of this will be discussed
in §3.

Moreover, generalised umbral moonshine, analogous to the generalised monstrous
moonshine discussed in §2.4.1, has been established in [100], hinting that some el-
ements of CFT/modular tensor category structure should be present at the umbral
moonshine module KX . Despite these results, it is fair to say that a uniform construc-
tion of the umbral module, reflecting the uniform description of umbral moonshine,
is currently one of the biggest challenges in the study of moonshine.

We will end our review on umbral moonshine by noting a special property, called dis-
criminant property, of umbral moonshine. It relates the discriminants D (the power
of individual terms ¢~ P/4™ in the g-series HX) and the number field generated by the

characters of representations showing up in K fD. For instance, in the case X = A?M,
' 24 @24
the Mayy-representation underlying the ¢7/® term in H, = H:i is Kf% =p@p",

where p is a 45-dimensional irreducible representation and p* is the dual representa-
tion. At the same time, Tr, g (and hence also Tr,« g) generates the field Q(v/=7).
Analogous relations continue for larger g-power as long as Q(D) = Q(—7), and similar
properties hold uniformly for all 23 cases of umbral moonshine. At present there is
no physical understanding of this surprising and profound-looking property.
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A MODULE FOR THE Df°
CASE OF UMBRAL MOONSHINE

This chapter is dedicated to the construction of an umbral moonshine module for the
case X = D?G as in [2], where the umbral group is GPP® 3.56. Specifically, we
will see how to construct three infinite-dimensional bi-graded GPY 6—Supermodules,
whose second grading (corresponding to the powers of y) turns out to be trivial and
whose odd part turns out to vanish. As a result of this, we will be left with three Z-
graded GP5°-modules, corresponding to the three components (H{X, HX | HX) of the
vector-valued mock modular forms for the X = D case of umbral moonshine.

The first element of this construction is that the weak Jacobi form ¢§( , which arises
from an association between umbral moonshine and elliptic genera of ADE singular-
ities that K3 surfaces can develop, coincides in many (but not all) cases with one
of the functions ¢, ¢ arising from Conway moonshine (see §3.1). In particular, for
the case X = D?G7 for all g € GP £° there is some Conway element ¢’ and a certain
sign € such that gb?‘? - @e,q'- However, GDT° ~ 3.5¢ is a subgroup of Coy which is
not 4-plane preserving, and as such the (twisted) Conway module cannot be directly
used to construct a module for the X = DP° case of umbral moonshine since the
corresponding U(1) grading that appears in the characters is not preserved by the
umbral group action.

The second ingredient is constructing a chiral conformal field theory 7 which strongly
resembles the (twisted) Conway module but does not have the aforementioned diffi-
culty related to the U(1) grading. This is achieved by taking an Z/2-orbifold of 24
free chiral fermions and 2 pairs of fermionic and bosonic ghost fields. The theory 7
is such that when graded by the charges of the ghost U(1) current in a specific way,
its twined partition function coincides with ¢, 4. The crucial difference, however, is
that the symmetry of this chiral theory accommodates the full Coy, and thus also
GPY° ~ 3.5g, without the 4-plane preserving constraints. As a result, in a sense T
plays the role of a bridge between Conway and umbral moonshine.
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3. A module for the DZBG case of umbral moonshine

The above two elements together with a special property (cf. §3.3.3 and Conjecture
6.2 of [93]) of the D§® module then leads to a construction of the umbral module.
We will also comment on how one can recover all H, ;( for X = 14?4D47 A?QD?Q ,
A1 D7Eg, A17E7, and D10E§92, and some of the Héx for X = A?M, Agaw, A?g, A§93,
EEBG using the same ingredients.

This chapter is organised as follows. In §3.1 we review how umbral and Conway
moonshine lead to the weak Jacobi forms qﬁ;( and ¢4 4 respectively, for every g €
GX in the former case and every 4-plane preserving element g of Cog in the latter
case. In §3.2 we present the construction of the chiral conformal field theory T
and demonstrate that its graded twined partition functions coincide with ¢+ , when
making a specific choice of chemical potentials for the ghost U(1) currents. In §3.3
we combine these ingredients and explicitly describe the G 7 _action on the infinite
dimensional Z/2-graded vector space underlying the D?G case of umbral moonshine.
In §3.4 we describe how to recover umbral moonshine functions for certain other cases
of umbral moonshine from the twined parition functions of 7 and the singularity
CFTs, and comment on a few open questions.

Furthermore, there are three appendices associated with this chapter. In §A we
elaborate more on the ghost ground states appearing in the chiral CFT in §3.2. In
§B we comment on the supersymmetry associated with the aforementioned ghosts,
while in §C we present the character table of the umbral group GDE* along with some
other useful information about it.

3.1 Umbral moonshine and K3 elliptic genus

Here we review the construction developed in [28] and [79] of certain weak Jacobi forms
that play the role of twined elliptic genera of K3 sigma models [91, 101], originating
from umbral and Conway moonshine.

3.1.1 Umbral Twining Genera

As mentioned in the previous chapter, the first case of umbral moonshine, namely
Mathieu moonshine which corresponds to the Niemeier root system X = A?M, was
discovered in the context of the K3 elliptic genus. In [28] it was proposed that all 23
cases of umbral moonshine, not just Mathieu moonshine, are relevant for describing
the symmetries of K3 sigma models. In particular, one can associate in a uniform
way, using (twined) elliptic genera of ADE singularities as one of the main ingredients,
a weak Jacobi form (of weight 0 and index 1) ¢§( to each of the 23 root systems X
and each conjugacy class [g] € GX. This proposal was further tested in [102] and
refined in [91]. This weak Jacobi form qﬁé( consists of two parts: one is the (twined)
elliptic genus of the SCFT describing the surface singularities corresponding to the
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3.1. Umbral moonshine and K3 elliptic genus

root system X, and the second comes from the contribution of the umbral moonshine
mock modular forms.

We start by reviewing the first part, the singularity elliptic genus. The type of sin-
gularities a K3 surface can develop are given by the so-called du Val or Kleinein
singularities, which admit an ADE classification. These singularities are isomorphic
to C?/T", where T is a finite subgroup of SU(2) as in the McKay correspondence. Let
m denote the Coxeter number of the corresponding root system. Recall that A = 2
superconformal minimal models (which have spectral flow symmetries) also admit an
ADE classification [46], and the central charge ¢ := 3¢ is given by

. 2

e=1-~. (3.1.1)
The classification of these supersymmetric minimal models stems from the classifica-
tion of modular invariant combinations of left- and right-moving characters of affine
sly, given in terms of a 2m x 2m matrix, which we denote by Q% for the minimal
model corresponding to the simply-laced root system ®. The explicit expression for
Q% can be found in [46]. In terms of these matrices, the elliptic genus of the super
minimal model is given by [56]

Zama (1, Q)= Y QAL (1, ¢) = Ta(Q - ). (3.1.2)
r,r' €L/2mZ

In the above, x5(7,¢), with |s] < r —1 < m are the corresponding minimal model
characters, that are furthermore related to parafermionic characters [103], as reviewed
in appendix B of [28].

In [104], a 2d CFT description of type II string theory compactified on C?/I" was
proposed to be given by an Z,,—orbifold of the corresponding supersymmetric minimal
model tensored with a non-compact CFT, and takes the form

(Nz 2 minimal ® A" = 2 (W)m coset) o, (3.1.3)

where the second factor, the (55((21’]5)) supercoset model, describes the geometry of
m

a semi-infinite cigar [105] and has central charge
e=14+—.
m

The spectrum of the theory contains a discrete part as well as a continuous part;
the latter exists due to the fact that the theory is non-compact and gives a non-
holomorphic (in the 7-variable) contribution to the elliptic genus of the theory [26].
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3. A module for the DZBG case of umbral moonshine

Both mathematically and physically, there is a well-defined way to isolate the holo-
., corresponding to the
contribution from the discrete part of the spectrum. It is given by [26, 29, 32]!

morphic part of the elliptic genus, which we denote by Zp,

ZLm (T’ C) = % Z Chx(ri)ssless(7-7 C’ m+2— S) + Chl(’nlz)ssless(7—7 C7 5)
s=1 (3.1.4)
_ 1 C 7101 (Ta C)
gt ( m) N’

In the above equation, we make use of the Ramond character (the sum over spectral
flow images of the characters of Ramond vacuum representation of AV = 2 SCA at
¢=1+ 2 [29]) graded by (—1)

s—1

; 161 (7, ¢) 2 (yg™")
Ch(R) co) — WA, 2k _mk
massless (T7 C’ S) 773 (T) ]% Yy 4q 1— quk

where s encodes the U(1) charge of the highest weight, and the (specialized) Appell-
Lerch sum

m 2 m 1 + qu
pm (T Q) = = "y (3.1.5)
keZ — Y

which is responsible for the mock modularity of Zj, .

Putting it together using the “orbifoldization formula”[57] , the (holomorphic part of
the) elliptic genus of the orbifold theory is given by

1
EG(r.Gi®) = — > ¢y Zihimn(r.C + a7 + 621, (7.C + a7 +b). (3.16)
a,beEZ/mZ

See also [31, 33, 106]. Here we use the following definition: given X = &1 & P2 @ ...
a union of simply-laced root systems ®; with the same Coxeter number, we write
EG(X) := EG(®;) + EG(®) + ... . For instance, when X = DJ° we have
EG(7,(; D§°%) = 6 EG(7,(; Dy).

;{ , arising from the con-
tribution of the umbral moonshine mock modular forms. It is shown in [28] that for
each of the 23 Niemeier lattices N, the following function

Now we discuss the second part of the weak Jacobi form ¢

0% (r 0
X (1,¢) == EG(r,(; X) + 21156£f)) <23m’aw‘1’§(7’”>> LZO, (3.1.7)

IThe factor of 1/2 appears just due to certain identities among characters, as explained in footnote
6 of [30]
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3.1. Umbral moonshine and K3 elliptic genus

is always equal to EG(7,(; K3). In other words, the above expression gives us 23
ways to split EG(K3) into a part given by the singularity elliptic genus and a part
given by umbral moonshine mock modular forms. Moreover, for each g € GX umbral
moonshine gives us a natural analogue for the second part by replacing UX with
the graded character \Ifé( of the umbral moonshine module. At the same time, the
explicit GX-action on the Niemeier root system X translates into an GX-action on
the singularity CFT which preserves its superconformal structure, and leads to a
definition of its twined elliptic genus EG4(X) := Tr(g...). As a result, it is natural
to define

2
¢§((T, ¢) =EGy(1,(; X) + Zl?ngE; (21771'80:’1;\1];((7—’ w)) ‘w:O. (3.1.8)
It can be shown that for all 23 Niemeier root systems X and g € G¥X the above
definition leads to a weak Jacobi form for certain I'y; C SLy(Z), possibly with a non-
trivial multiplier system. Conjecturally, when ¢ is a 4-plane preserving element, these
play the role of twined elliptic genera that are realised at certain points in the moduli
space of K3 sigma models (see [91]).

3.1.2 Conway Twining Genera

Another moonshine connection to K3 sigma model comes from Conway moonshine.
In [107], a generalisation of the Mukai theorem states that the physical symmetries
relevant for twining the K3 elliptic genus are given by 4-plane preserving subgroups
of the Conway group Cop, the automorphism group of the Leech lattice Apeccn.?
This classification inspired the interesting construction that associates to each 4-
plane preserving conjugacy class [g] € Cop two (possibly coinciding) weak Jacobi
forms [79], denoted ¢+ 4. Furthermore, it was proposed that they play the role of
twined elliptic genera of K3 sigma models. Inspired by the above results and relying
on various empirical evidence, in [91] (Conjecture 6) it was conjectured that all the
weak Jacobi forms arising from (the 4-plane preserving part of) Conway and umbral
moonshine are realised as K3 elliptic genera twined by a supersymmetry-preserving
symmetry of the sigma model at certain points in the moduli space. Conversely, every
K3 twined elliptic genus (at any point in the moduli space) coincides with one of the
moonshine Jacobi forms alluded to above. Physical arguments given in [101] promote
this conjecture to a near-theorem.

To describe this in more details, consider the %Z—graded infinite-dimensional Coyp-
module V*¢ [78], which we reviewed in §2.4.1. Given a fixed n-dimensional subspace

2We say that a subgroup of Cog or GX is n-plane preserving if it fixes pointwise an n-dimensional
subspace in the natural 24-dimensional representation, given by the corresponding lattice Arcecnh Or
NX.
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3. A module for the DZBG case of umbral moonshine

in Apeech ®7 R, there are different ways to build U(1) currents from the fermions of
V#4[79, 80]. Here we are interested in the case when a U(1) current J is constructed
from fermions associated to a subspace of dimension n = 4. Fixing this U(1) together
with the compatibility with A/ = 1 supersymmetry breaks the symmetry of the theory
from Cogy to the subgroup of Coy that preserves the given 4-plane. Conversely, given
a 4-plane preserving G C Cop one can construct a U(1) current J such that the
twisted module Vg@f, when equipped with a module structure for J and for the N’ =1
superconformal algebra, has symmetry G. Interestingly, the U(1)-charged partition
function of V¥ coincides with EG(K3) (up to a sign) [79]. More generally, one can
consider the U(1)-graded character of the twisted Conway module twined by a 4-plane
preserving element of Coy:

¢gi=—Trye [3 §ygto=], (3.1.9)

where Jy is the zero mode of the aforementioned U(1) current. In the above § denotes
the lift of g from SO(24) to Spin(24), which is necessitated by the fact that the ground
states in the Ramond sector form a 4096-dimensional spinor representation (Clifford
module) that we denote by CM, and 3 is the lift of —Id € Coy. Explicitly, it is given
by

2 (1) 0a(r,0)2 my(7)

aC)2 01 (7_7 C)Q
Wc—gﬁ—g(ﬂ - WDgng(T)

_ 1 [6s(7, 0)?n_g(7/2)  04(1,)* ny(7/2)
0q(7,C) = 2 03(7,0)

(3.1.10)

The notation and functions used above follow §2.4.1 and 2.2.15. Note that C_, =
Trewm § and this is what determines the branch choice of v; (see [79] for more details).
Furthermore, assume that g € Cop fixes at least a 4-plane in the 24-dimensional
representation. Then D, is defined by

12 12
! !
_Dg = | | (1 — )\;1) = | I (Vi — V;l) . (3.1.11)
i=1 i=1

where H, skips two pairs of eigenvalues for which )\iﬂ = 1. Notice that D, is non-
vanishing if and only if it fixes exactly a 4-plane. In the latter case, D, is determined
up to a sign by the eigenvalues of g, since we are free to exchange what we call \;
and \; 1. As a result, for exactly four-plane preserving elements there are in fact two
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3.2. Chiral CFT

choices of ¢, depending on the choice of the sign of D, and we define

03(7,G)? n—g(7/2)  04(7,¢)% ng(7/2)
05(7,0)2 n_g4(7) 04(1,0)2 n4(7)
L st 2 Dy gy

1
¢e,g (7—7 C) = §
(3.1.12)

where € = £1 encodes the sign ambiguity of D,. In all cases, it was shown that ¢, are
Jacobi forms of weight 0 and index 1, at some level, for every g € Coy that fixes at
least a 4-plane. As mentioned earlier, they play the role of a twined K3 elliptic genus
in the study of symmetries of K3 sigma models. Shortly we will see how they differ
from the chiral CFT that we present in the next section, and which plays a crucial
role in the construction of the Dfl% umbral moonshine module.

3.2 Chiral CFT

Here we present the construction of a chiral CFT T, by Zs-orbifolding a free theory
consisting of 12 complex chiral fermions, 2 fermionic and 2 bosonic ghost systems.
Its symmetries accommodate the umbral group we are interested in, and its twined
partition functions reproduce (among others) the weak Jacobi forms ¢4 reviewed in
§3.1.

3.2.1 The Fermions

The first ingredient to build our chiral theory 7 is 24 real chiral fermions 1, . . ., ¥y,
similar to the starting point of the Conway module discussed in §2.4.1. Equlvalently,
this theory, which we call Ty, is given by 12 complex chiral fermions, ¥ := \f(dzz

“/Ji+12), with the action

Sy = ﬁ / d*z i (07 00+ dvf) . (3.2.1)
i=1
Their OPEs take the form
VERWF () ~ Oz = 2), dFWT(E) ~ % (3.2.2)
The associated Viraroso operator is given by
LV = 3L = (U + U 0u))%, (3.2.3)

neZ

69



3. A module for the DZBG case of umbral moonshine

with respect to which @/}f are holomorphic primary fields with weight 1/2. The open
dots denote the regular part of the associated expression; we refer to this as the
canonical ordering?. In terms of modes, it means that the annihilators are always put
to the right. By expanding the fields in modes,

UE() =Y v 2, (3.2.4)
the OPEs lead to the standard anti-commutation relations
i =0, {viuf} =600 (3.2.5)
The SL(2, R)-invariant vacuum |0) satisfies the usual highest weight condition
¥510) =0 Vr>0. (3.2.6)

Note that, in terms of modes, here the canonical ordering coincides with what we
usually refer to as normal ordering, where the positive modes annihilate the above
canonical vacuum.

To compute the characters of the theory, consider the conformal mapping from the
complex plane to the cylinder given by z = e”. We denote the Virasoro zero mode
on the cylinder by

LYo =L - % (3.2.7)
where ¢, = 12 is the central charge. Consider general boundary conditions
parametrized by p

YE(w 4 2mi) = eFPYE (). (3.2.8)

The periodic (P, p = 0) and anti-periodic (A, p = 1/2) cases correspond to the usual
Ramond and NS sectors. Note that the 1/}?: must acquire opposite phases as in (3.2.8)
so that the Virasoro operator remains periodic.

The A sector Hilbert space Ty, a is built by acting on the ground state |0) with the
creation operators %i,r with r < —1/2, and its character is given by

P
X (r) =Ty, [aono]

oo 12 - 12 (3.2.9)
= e = (B2

n=11:=1

We also define an operator (—1)¥ which has the property that it anticommutes with

3To avoid confusion, note that this is the same as the normal-ordered product that is mentioned
in §2.1.1. Here we use the name canonical ordering to differentiate it from the normal ordering in
terms of modes. See the next subsection for more details on this.
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3.2. Chiral CFT

all the fermionic modes, squares to the identity, and acts trivially on |0). Note that
(—=1)F commutes with the Virasoro operator and hence we can define the following
character,

- P
Xﬁ(T) = TrTw,A |:(—1)FqLcyl,0:|

oo 12 12 3.2.10)
_ —1/2 _ o on=1/2y2 _ 04(7,0) (
N C e

n=1i=1

In the P sector Ty p, the ground states form a 212_dimensional representation of the
24-dimensional Clifford algebra. Explicitly, a basis can be given by the mononomi-
als

Vi o Wi, 0l8)s (3.2.11)

where we single out |s) to be the state annihilated by all the 77/12'0 and we require
that (—1)¥ acts trivially on |s). The conformal weight of the P ground states is
equal to % = %,
contributes 1—26 due to the presence of twist fields that interpolate between the A and P

sectors. Putting things together, we obtain the following P sector characters.

as each of the complex fermions (along with its complex conjugate)

Xu (1) = Trr, . [q%ﬂ} =2'% ﬁ ]1_2[(1 +q")? = (0217((:’)0)>12 , (3.2.12)

n=11i=1

n(7)
The latter vanishes because half of the ground states have —1 eigenvalue under (—1)%,
while the rest have +1.

X (7) o= Trp [(—1)Fquyw] = (91(7’ 0)>12 = 0. (3.2.13)

Later we will consider an orbifold of 7, by a Zs generated by &, which acts on the
fermions by

&7 = -7, (3.2.14)

and trivially on the A ground state. Note that any state with an odd (resp. even)
number of excitations is an eigenstate of £ with eigenvalue —1 (resp. +1), and hence
¢ acts in exactly the same way as (—1)¥ on the quantum states in both A and P
sectors. Therefore we conclude that

Trr, s [6 quy”’] = Xo(7) = (9‘;((1’)0))127 (3.2.15)

w ~
Trr, o [5 qLCYl’O] = Xy(r) =0. (3.2.16)
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3. A module for the DZBG case of umbral moonshine

3.2.2 The Ghosts

The next ingredients we need are the fermionic and bosonic ghost systems (see [108],
[109-113] and references therein for related discussions). They are described by the
action

1 _
Sgn = — /sz boc, (3.2.17)
2w

where b and ¢ are holomorphic fields of weights h and 1 — h respectively. We focus
on the cases where h € %Z. Since there are many similarities between the fermionic
and bosonic cases, we use the boldface notation to refer to either. When we need to
make the distinction, we use b, ¢ to denote the fermionic ghosts and 3, v to denote
the bosonic ghosts. We will also use a parameter x, which equals +1 for the fermionic
case and —1 for the bosonic case.

The OPEs between the ghost fields have the form

b(=)e(w) ~ - _”w b(2)b(w) = c(z)e(w) ~ O(1) (3.2.18)

and the Virasoro operator is given by
L& = (1 — h) 3(db)cs —h 8b(dc)s, (3.2.19)

with respect to which b, ¢ are primary. The central charge of the ghost system is
then given by
cbe = k(1 — 3Q%), (3.2.20)

where we have introduced @ := k(1 —2h) for later convenience. The mode expansions
on the complex plane are

b(z) =) bz, e(z) =) ez, (3.2.21)

and canonical quantization leads to the (anti)commutation relations
{b,,cs}, :=brcs + Kb, = Kbrys 0. (3.2.22)

From (3.2.19) and (3.2.21) we see that the SL(2, R)-invariant vacuum |0) is determined
by the highest weight condition
b.0) =0V r>1—h,

(3.2.23)
c|0)=0Vr>h.

Consequently, in this case the canonical ordering does not generally coincide with the
usual normal ordering, where the positive modes are annihilators (see footnote 3). As
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3.2. Chiral CFT

before, we consider the p-twisted sectors for the ghost systems corresponding to the
boundary conditions

b(w + 27i) = e *"b(w), c(w + 27i) = *™Pc(w), (3.2.24)

where w is the natural coordinate on the cylinder and is given by z = e”. The
periodic case p = 0 corresponds to the P sector, while the anti-periodic case p = 1/2
corresponds to the A sector?.

The natural ground states on the cylinder are defined as the states annihilated by
all positive modes, b,.,c, with » > 0. Note that, for the ghost systems, these are
in general different from the SL(2, R)-invariant ground state |0). The corresponding
oylo = L%h — ¢pe/24, of the P and A sector

K

ground states are given by {5 and — g% respectively, as is calculated in §A.

energies, namely the eigenvalues of Leh

Another important feature of the ghost systems is that they have the following U(1)
current
J=— %bes . (3.2.25)

In fact, as we show in §A, the A sector ground states for both fermonic and bosonic
ghosts are unique. The P sector has two degenerate ground states for the fermonic
ghost system due to the presence of the fermonic zero modes by, ¢y, while it has a
single ground state for the bosonic system. We denote the (unique) A sector ground
states for the fermonic (F) and bosonic (B) ghosts by |Q) and |QF), respectively.
The (unique) P sector ground state for the bosonic ghost is denoted by |Q8), and the
two degenerate P sector ground states for the fermionic ghost system are denoted by
|QE’ 4). They are distinguished by

bol QP ) =0, bolQF ) =[P ), ol ) =0, <l _)=I2%_). (3.2.26)

Next we derive the characters of the ghost systems, defined by
h
XE(7,€) 1= Tig [0 gPoio] (3.2.27)

where S = {P,A} denotes the sector and a = {F,B} distinguishes between the

fermionic and bosonic ghosts, respectively. Note that the other commonly used char-
h

acter, defined by Trg [(fl)chlvOchylvo quth], is simply given by the above by a shift

(—(+ 13

Building on the unique ground state |QX), the A sector Hilbert space of the fermionic

4We introduce both sectors irrespective of the statistics of the fields, since they will both appear
when we consider the Zs orbifold.
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3. A module for the DZBG case of umbral moonshine

ghost system leads to the character

e (O =] (1 - yq”‘l/g) (1 +y gt 1/2) = 93”((77’)0. (3.2.28)
n=1

Similarly, by taking into account for all possible states in the Fock space created by
the negative integral modes of the ghost fields b, ¢ acting on both of the ground states
|QF 1), we obtain the character

oo 9 7
XE (7, ¢) = ¢'/"? (y1/2 +y‘1/2) IT(+va™ (1+y'q") = 277((:)4) (3.2.29)

n=1

For the bosonic ghost system, the A sector character is given similarly by

wB(r0) = I (1~ yq”‘l”)_1 (1-ytg2) g 04"((:)0. (3.2.30)
n=1 )

In the P sector, care has to be taken due to the presence of the bosonic zero mode
Yo. As we will see in §3.2.4 (also see [111]), the contribution of 4o can be regularised
and the total character is given by

oo

X5 Q) = 2 21—y [ 1y ) = z‘ef’((f)o. (3.2.31)

n=1

Finally, we would like to consider a Zs-orbifold of the ghost systems, where the non-
trivial group action is given by (b = —b and £c = —c. The resulting characters will
be related to the characters x5 (7, ¢ + 1/2) we calculated above, since the action of
the corresponding group element & corresponds to including the operator (—1)7e1.0
similarly to the case of the chiral fermions discussed in §3.2.1. The only nontrivial part
of this implementation is the sign of the ground state(s) under £, which is analysed
in §A. The results are given by

h
Xp(7,¢) := Trg [5 y"“y"Oquyw} = (=17 xB(r, ¢ +1/2) (3.2.32)
for the fermionic ghosts, while for the bosonic ghosts we have
h
XB(7,¢) := Trg [& y"cyqufw,o} = (—1)3E \S(r, ¢ +1/2), (3.2.33)

where S denotes either of the two sectors. Notice that all the characters we have
computed in this section coincide with the standard characters of the usual charged
bosons/fermions [111], and do not depend on the central charge of the ghost systems.
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3.2. Chiral CFT

However, we will see that by requiring the final CF'T to have certain supersymmetry
we can completely fix the central charge of the ghosts systems.

3.2.3 The Orbifold Theory

After describing the basic ingredients, we now put them together and construct the
chiral CFT that will reproduce the K3 elliptic genus and its twinings. Let 75 denote
the theory of 2 copies of the bosonic ghost system and the theory of 2 copies of the
fermionic ghost system. We will later see that 7 can be equipped with an N/ = 4
superconformal symmetry for certain choices of hg and hg. We will let hg = % and
hy = 1, corresponding to the total central charge ¢ = —4 — 24 12 = 6 (along with

the free fermions).

We want to consider a Zy orbifold of the theory
Thee =T @ Te @ Ty, (3.2.34)

where Zy = {1,¢} acts on the individual components of 7¢ as we have described in
the previous sections. Specifically, we want to consider

T=(TBa®TEA®Tpa)® (Tep®Trp @ Typ)- (3.2.35)

where the 0,1 superscripts denote respectively the invariant and anti-invariant part
under the orbifold, in the corresponding sector denoted by the subscript. Notice that
T4 A®T, p is isomorphic (as a VOA) to the Conway module V54 (2.4.26), and as such
the individual components 7, ,, 7, p admit a Spin(24) action as described in §2.4.1
(and hence the umbral group acts on the by automorphisms). Abusing the notation
slightly, we will use the symbol T for the theory as well as its space of states.

Introducing chemical potentials y; = €2™¢t and y» = 2™ for the bosonic and

fermionic ghosts respectively, we now define the following partition function

JE o 5
Z(r, 1, Go) 1= Ty |yt oy ghs = | (3.2.36)
where L is the total Virasoro zero mode of the theory, and JB oyl = chl ng 120’

and J5, o = chl JCI;]Q o are the zero modes of the U(1) currents of the two bosonic

and two fermionic ghosts, respectively. Using the results of the previous sections, we
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3. A module for the DZBG case of umbral moonshine

compute

1 JB JF o 1 JB .]F o
Z(1,¢1,62) = TrT,im [2(1 + ﬁ)ylcyl"oyzcyl'oq% tzﬁ‘l] + TrTgr“ {2(1 - f)ylcyl’OyQCyl’OqLa -

T2 04(r,0)2 \ n(7) 03(7,¢1)* \ n(7) 01(7,¢1)2 \ n(7)
(3.2.37)

! [93“’ G)° (Gs(ﬂO))” _ Oa(r.G2)? (em, 0))” _ Oa(r,2)? <9Q<T, 0))121 |

We observe that, by specializing to {; = 1/2 and ¢, := (, we retrieve the K3 elliptic
genus in the non-standard form presented in [79]

1 tot 5
EG(,; K3) = 2 (T, 5 c) = Tey |(—1) e yPino g |

o 1 03(7—7 ()2 93(Ta O) 2 _ 94(7—7 C)Z 94(7—7 0) 2 _ 92(7—’ C)Q 92(7—7 O) 2
2 [93(T,O)Q< n(7) ) 94(7,0)2( n(7) ) 92(7,0)2< n(7) ) 1
(3.2.38)

Note that, while in principle it is possible to consider more elaborate ghost theories
and obtain a theory with the same symmetry and having the same partition func-
tion as above, our choice corresponds to the most minimal ghost systems with these
properties, which moreover have the feature of rendering a CFT with central charge
6. Moreover, it is possible to equip our chosen 7 with an N = 4 superconformal
structure at ¢ = 6. We will however not make use of this superconformal structure
in the rest of the paper, since preserving it would reduce the symmetries of 7 that
we want to exploit. Especially, different from the construction in [79], the symmetry
groups of our theory T are not restricted to be 4-plane preserving subgroups of Coy
since we do not require the symmetry to preserve the U(1) current constructed from
fermions. Correspondingly, note that in computing the partition function (3.2.36)
we only introduce chemical potentials for U(1) of the ghost theories (3.2.25). For
completeness we discuss the N' = 4 superconformal symmetry of 7 in §B.

3.2.4 The Twined Characters
We can consider the twined partition function

B F
J, J, tot _ 6
eyl,o L™ —o%

Zg (1,¢1,¢2) :=Trr |g ?hcywyg q 2, (3.2.39)

by an element g € Spin(24), which has a manifest action on 7Ty (as in §2.4.1) and acts
trivially on the ghost systems. We now specialize to the case g € Coy < Spin(24).
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The relevant characters are twined as follows

]3 F B 2 9 2
TrTfree |:g ylcyl Ochyl,OqLO —2(1:| — n Q(T/ ) 3(7—7 CQ) = (3.2.40)
N-g(7) 64 (r,G1—3)
tot 2 0 2
TrTfrcc |:€ g ylcyl Ochyl,OqLO 264:| — _7]9(7-/ ) 4(7—7 CQ) = (3241)
n9(T) 6, (r,G1—3)
tot 0. 2
Trgseee [g 1oy gLy ‘264} = —C—gn—g(T)Z)(T’—Cg)lw (3.2.42)
02 (1,¢1 — 3)
oo 12
JE tot _ 6 e 0 T, 2
TrTfree |:§gy1°y10y CyIOqL 264:| _qVHH 1_ zq )(1_/\ 1 1) 9(1(6:4‘2)1)2
n=11i=1 1 (7, ¢ — 5
(3.2.43)

where the factors 0;(7,(2)?/0;(7,(1 — 1/2)? originate from the ghosts contribu-
tion.

In order to make contact with K3 and the umbral module discussed in the next
section, we further specialize to a subgroup G of Cog, such that each g € G generates
a 4-plane preserving subgroup of Coy. Note that by requiring that g € G is 4-plane
preserving does not imply in general that G is 4-plane preserving. For instance, in
the case G = 3.55 that is of special interest for us, different g € 3.5 do not in general
fix the same 4-plane, and thus 3.Sg does not preserve a 4-plane.

Finally, we specialise the fugacities of the ghost currents to the values (5 = ( and
¢1 = 1/2. Note that care has to be taken when taking the ¢; — 1/2 limit in (3.2.43).
On the one hand, the degeneracy of A ground states in 7, and the fact that at
least two of the twelve pairs of g-eigenvalues are given by unity leads to a zero in
the numerator. On the other hand, the infinite degeneracy of bosonic ghost ground
states requires regularisation when taking (; — 1/2. As a result, we regularise the
partition function by introducing an adiabatic shift in boundary condition given by
a small positive parameter 7. We consider the boundary conditions p = 0 4+ 7 and
p=1/2+n as in (3.2.8), (3.2.24), and compute the n — 0T limit of the partition
function Z7 (T, %, C) with the regulator n present. This is straightforward for all the
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3. A module for the DZBG case of umbral moonshine

terms except for (3.2.43), which receives the following contributions

~P 7;(7_ 1/2) 72/12 1 _ q H 1— qn+n (1 . qn717)727
n=1
(T, 0)? = ¢ (iyl/gq” - iy—1/2)2 [T —ya )’ 1=y ),
n=1
0o 9 9 10
56111)1 77( ) = qu H (1 _ qn—'r]) (1 _ qn—l-‘rn) H (1 _ )\iqn—n) (1 _ A;lqn—1+n) )
n=1 i=1

(3.2.44)

We see that, upon multiplying the above expressions, the potentially problematic
factors (1 — ¢")*2 drop out and we get

0 JLy 0 tot _ 6 , P
i, e {5 gy} Oy gh 24} = lim, " 1/2)° 307,07 %, (7)
01(7,¢)?
= ———7D,n,.
n(rye o
(3.2.45)
Putting everything together, we get
2 2
lim Z7 <T717<> {93(7 )2 N-g(7/2)  Oal(r, C)2 14(7/2)
S0+ 05(7,0)2 n_g(7) 94(7, 0)2 ng(7) (3.2.46)
Oa(r, )20 n_ (T)*MDH (1)
Oa(r 02 n(r) 9

We observe that this equals with ¢, 4 as defined in (3.1.10) and (3.1.12), the Conway
twining graded by a k = 1 U(1) current. In particular, note that the same sign
ambiguity in Dy in the twining of the Conway CFT described in §2.4.1 is also present
here, leading to the sign € in the definition of the twining functions. However, the
crucial difference, and what we are aiming for, is that the U(1) grading in T is
preserved by the G-action since it is constructed out of the ghost fields, instead of
the free fermions, which the group acts trivially on. We also stress that this equality
holds for any 4-plane preserving Conway element and is not restricted to the specific
groups we consider in this paper.

3.3 Module

Here we explain how the ingredients of the previous sections lead to a Zs-graded
6
infinite dimensional vector space admitting a GPY°action that underlies the D?ﬁ
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3.3. Module

case of umbral moonshine. In particular, we will describe how the umbral mock

modular forms HgD 7 for all elements g of the umbral group GPL° are recovered
from the twined partition functions of the chiral CFT 7. In §3.3.1 we describe an
explicit construction of the group. In §3.3.2 we explain the action of the group on
the BPS states of 6 copies of the CFT describing a smgulamty of Dy type. In §3.3.3
we combine the ingredients and give expressions for H in terms of them. As this
section is completely devoted to the DSP case of umbral moonshine, we will denote
by & the umbral group GPY" 2~ 3.5¢. Similarly, we will denote the mock modular

@6
forms H, Pi* (Hg]:?, ) simply by Hy = (Hy,,), and denote the weak Jacobi forms
D$°
¢g* simply by ¢g.

3.3.1 The Group

For completeness, we describe a concrete realization of the group 3.Sg, following
[114]. The hexacode is the unique three-dimensional code of length 6 over Fy that is
Hermitian and self-dual. It is the glue code of the Niemeier lattice IV DY with root
system DFC [15], and for this reason it plays a significant role in the case of umbral
moonshine corresponding to N D, Moreover, this code also plays an important role
in the construction of the largest Mathieu group Ms4. Its automorphism is given by
3.Ag, which can be explicitly constructed in the following way. Write Fy = {0, 1,w,w}
with
w2:o§, @2:w, wd=1.

The triple cover of the alternating group Ag can be generated by the permutations
(1,2)(3,4), (1,2)(5,6), (3,4)(5,6), (1,3,5)(2,4,6), (1,3)(2,4), as well as the compo-
sition of the permutation and multiplication (1,2,3)diag(1,1,1,1,w,w). This group
acts on the 6 coordinates and in particular induces all even permutations. It also
contains the element corresponding to scalar multiplication by w and by w. Hence we
have constructed a group with centre 3 = Z/3 and we will call z the generator of the
center corresponding to diag(w,w,w,w,w,w), the scalar multiplication by w.

The group 3.4 can be enlarged to our umbral group & = 3.S¢ by adjoining an
extra generator which acts on a vector in F§ by permuting the last two coordinates
followed by a complex conjugation: w <+ w. This group is often referred to as the
semi-automorphism group of the hexacode, since it leaves the code invariant but does
not act linearly on it.

From the above description, we can define a representation for the group & given by
the group homomorphism € : & — {1, -1}, where ¢, = 1 (—1) when g induces an
even (odd) permutation on the 6 coordinates. In the notation in Table C.1, this is
given by the irreducible character yo. This representation will play an important role
in describing the umbral module.
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3. A module for the DZBG case of umbral moonshine

More generally, the action of & on F§ determines the umbral moonshine module for
the DY case of umbral moonshine. For later use we will now describe this action
in more detail. Writing the natural basis of F§ as given by e}, ei, el and e} for
i=1,...,6, we obtain a 24-dimensional permutation representation of &. The cor-
responding 24-dimensional cycle shape is denoted by ﬁg in Table C.2. Furthermore,
from the above construction of & it is clear that the action of ® does not mix e}, with
el, el and e, and hence we arrive at a six-dimensional representation of &. The
corresponding 6-dimensional cycle shape is denoted by l:Ig in Table C.2, and the cor-
responding character denoted by x. One has Y = x1 + X3 in terms of the irreducible
representations (cf. Table C.1). Alternatively, one might think of the 6-dimensional
representation as spanned by the 6 vectors of the form e! + e!, + eL. Similarly, we
also define another character x by x4 = X4€g. One has x = x2 + x4 in terms of the
irreducible representations. Finally, we have the 12-dimensional representation with
basis e} —e!, and e} — el for i = 1,...,6. We denote the corresponding character by
X, given by X = x14 in terms of the irreducible characters. Moreover, we denote by

~

R, R, R the representations corresponding to the characters y, x, x.

One can translate the above description of the group action on the hexacode into an
action on the root systems foﬁ in a straightforward way. First one identifies each
copy of Fy with a copy of Dy, ey with the central node of the dynkin diagram, and
e1, €,, €; with the three nodes connected to the central node.

3.3.2 The Singularities

As reviewed in §3.1.1, there are 23 different natural ways to decompose the K3 elliptic
genus (and twinings thereof) into two parts, corresponding to the 23 Niemeier root
systems X. The first part is given by the elliptic genus of the CFTs that describes
the singularities associated with X. The second part is the contribution from the
umbral moonshine vector-valued mock modular forms H¥. Since the umbral group
G naturally acts on the singularities X as well as on the umbral moonshine module,
we can generalise the construction and define a g-twined weak Jacobi form (bff as in
(3.1.8).

In this subsection we describe the construction of the twined singularity elliptic genus
EG,(7,¢; X) for X = DS explicitly, for all g € & = GPY® ~ 3.5 This is expressed
via (3.1.2) in terms of the elliptic genus of the D4 supersymmetric minimal model,
given by
1 62 (T 2¢ )
ZPs  (r.¢) = = Tr (QP+ . 3(1,0)) = 22330 3.3.1
mmlmal( C) 2 ( X( C)) 9% (7_7 %C) ( )
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where the Cappelli-Ttzykson-Zuber [46] omega matrix QP4 is given by

267",7”(12) ) r= O7 3 mod 6
(QD4)T "= 5r,r’(12) + 5r,—r’(6)5r,r’(4)7 r= 17 5 mod 6 ’ (332)

\T

51”,7“’(12) + 57’,—7"(6)57’,7"’(4)7 r= 274 mod 6

and the indices r, 1’ take values in Z/12. Using the property X% (7,{) = —x; " (7, () of
the parafermion characters, we can rewrite (3.3.1) as
Zimar = Th (QD“ : x) (3.3.3)

minima

where (§D4),«,S = (QP4), s — (QP4), _5 and is expicitly given by

(3.3.4)

e}
.}
N
I
= O O O =
O O O O O
S O N OO
o O O o O
= O O O

and we have used the notation Tr. to denote tracing over the indices {1,2,3,4,5}.
Then from (3.1.6) this gives the corresponding singularity elliptic genus

EG(r,(;Dy) = Tr, (§D4 L=, g)) (3.3.5)
where we have defined
1
Ei(r. Q) = 8 > ¢V, C+ar +b) 2, (1,C +ar +b) (3.3.6)
a,beZ/6Z

which has integer coefficients in the ¢, y expansions. This can be understood from the
fact that it is the graded dimension of an infinite-dimensional vector space, which we
denote by V.. Specifically, the space V", which has

sdim“@YV! = E5(r,¢) ,

can be constructed explicitly from the above Z/6 orbifold projection, the
parafermionic construction of the AN/ = 2 minimal model characters . (cf. (3.1.2)),
and the construction of Zy  in terms of the (—1)¥-graded Ramond characters (cf.
(3.1.4)). In the above, we have introduced the graded super-dimension for a bi-graded
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vector space

V= P V)

ee{+,—}
n,lEL

by defining

sdim @YV = > gy (dim(V“'))me —dim(V(‘))n,g). (3.3.7)
n,l€Z

Similarly, if V' admits an action by a finite group G, we define the corresponding
graded super-character as

strltVg = 3 gy (tr(vw))n’zgftr(v(_n"lg) (3.3.8)
nlEL

for g € G.

Recall that the automorphism group of the Dy root system is generated by an order
2 element go and an order 3 element g;. The corresponding action on the minimal
model is then captured by Z24 = Tr, (§D4 . )Z), where the so-called twined

minimal,ga 3 92,3

Omega matrices for Dy are given by

1 00 0 -1 10 0 01
0 0 0 0 O 00 0 0O
D oD
Q= 0 0 0 0 O , Q=100 -1 0 0 (3.3.9)
0 000 O 00 0 00
-1 0 0 0 1 10 0 01

From this and the explicit description of the group action of & on the root system
DPC given in §3.3.1, we can construct a bi-graded supermodule of @:

Ving = (ReV3) @ (Ro VD) @ (Re V) (3.3.10)
with the property that
L PO6y _ p(a.y)
EGy(r,(;Dy”) =stry, " g, g€ ® (3.3.11)

where R, R, R are the specific &-representations described by the end of §3.3.1 and
& acts trivially on V.

Explicitly, we have
- ~ b6
EG,(r,¢: D{%) = Tr. (05" -E), (3.312)
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@6
4

where the g-twined omega matrix QgD is given by the group charaters x, X, X

discussed in §3.3.1 as

Xg 0 0 0 x4
0 0 0 0 O
~ D6
Q= 0 0 x4 0 O (3.3.13)
0 0 0 0 O
X¢g 0 0 0 x4

for g € 3.5.

3.3.3 The Module

Recall that for the X = D% case of umbral moonshine, we have three non-vanishing
mock modular forms Hg)fr, for r =1,3,5 (cf. (2.4.37)). In this subsection we will tie
together the different elements discussed thus far and construct three -modules K"
with » = 1,3, 5, with infinite dimensions, a bi-grading, and an additional (a priori)
Z+ grading, such that

strgg;y)g =H,,(r), forall g € ®. (3.3.14)

As mentioned before, our main strategy is to employ the relation between the moon-
shine mock Jacobi forms ¥y (7,() := dorezjom HX\.(7)0m.r(7,¢), the weak Jacobi
forms gb;(, and the singularity elliptic genus EG(X), summarised in (3.1.8), for the
specific case X = Diee’. Explicitly, in this case we have

Hg1(7) = €gHg5(T) (3.3.15)
and (3.1.8) gives
1 1 1 n°(7) 6
Hy 1 (1) (06,1(7) + €906,5(7)) + Hg,3(7)05 (1) = 2(r.() (69 — EGy(1,(; DF®))
1 ’
(3.3.16)
where 0}, . are the unary theta functions defined by (cf. 2.2.24)
1 0
0, = (5= 2:0m.r ’ . 3.1
r ()= (55 5¢0mr )], (3.3.17)

We will do this in a few steps.
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Step 1: Obtaining the weak Jacobi forms ¢,

It was shown in appendix D of [91] that, for any embedding ¢ : & — Coy we
have

¢eg,L(g) = ¢gv (3318)

where we are using definition (3.1.12) with e given by €, : & — {1, —1}, the character
defined in §3.3.1. Applying the result of §3.2.4 and letting & act on 7 according to
the above embedding into Coy, we obtain the above functions as twining partition
functions of 7. This results in the structure of 7 as a bi-graded &- supermodule with
graded super-characters given by

@©6
strig = ¢ | forall g € &, (3.3.19)

Step 2: Obtaining the mock Jacobi forms (¢, — EG,(7,(; DY)

Combining 7 with the ®-supermodule Vi, constructed in §3.3.2, we arrive at a
bi-graded ®&-supermodule

where we use © to denote the following operations on vector spaces with super-
structures (see (2.1.20)),

VieW)® =P e VP, (3.3.21)
From (3.3.19) and (3.3.11), it follows immediately that
Str{g? g = e, (1, ¢) — EG,(r, ¢; DYY) (3.3.22)

for all elements g of &.

Step 3: Introducing the auxiliary spaces

In the next step of the construction, we define the following “auxiliary” (in the sense
of not arising directly from the two CFTs discussed in previous sections) bi-graded

supermodule H. . with a simple & action, satisfying

aux

6 T _1
0%5,2) (06,1(7) + €405 5(7))_1 , or=1
Stry!) g = 971](72) (eg0h1(T) +055(r)) , r=5 . (3.3.23)
S(r —1
97%((7,2) (9613,3(7)) , =

Step 4: The projection
In the final step, we recall that there are two types of irreducible representations for &:
those that are faithful and those that factor through Sg C ® = 3.5g. This distinction
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is featured prominently in the present case of umbral moonshine due to the property
that each component of the umbral mock modular form receives only contributions
from one type of the irreducible representations (see Conjecture 6.2 of [93], proven
in [96]). To implement this, we introduce the corresponding projection operator P:
we write P (resp. 1 — P) to denote the projection operators that project out the
irreducible representations which are faithful (resp. factor through Ss.) Explicitly,
let n; € Z and denote by V; the irreducible representation corresponding to the
character y; in Table C.1. Then P acts on a virtual representation V' = Zil n; Vi of
& by VIP = leil n;V;, and similarly 1 — P acts as V|(1 — P) = 23212 n;V;. At the
level of characters, one has

(Trv(g) + Try (z9) + Trv (2%9)) (3.3.24)

Wl =

Trypg =
where z is a generator of the center subgroup of &.

Finally, we define

K" = Hyux ©

: (3.3.25)

w|pP r=1,5
Wl(1-P) r=3

where under the tensor product the bi-gradings are additive. Putting (4.18) and
(4.19) together, and employing the aforementioned property of the umbral moonshine
module, we arrive at (3.3.14) and thereby complete the construction of the relevant
B-supermodule. We will next discuss features of this construction further.

3.4 Discussion

We have described the construction of a module for the Df® case of umbral moon-
shine, as it appeared in [2]. This is the first time that the module is constructed
for a case of umbral moonshine with a non-4-plane preserving umbral group, which
is moreover significantly more sizeable compared to the previously constructed cases
(with |GD§B 6| ~ 103, this group is larger than the cases discussed in [97-99], where
the groups have order dividing 24). This is also the first construction of the um-
bral module which utilises the connection to symmetries of K3 string theory. At the
same time, there are clearly important open questions remaining. In the following we
discuss a few of them.

« Note that our construction naturally leads to a super-module for G P However,
apart from the virtual representation corresponding to the leading polar term (cf.
(2.4.37)), the umbral module is known to constitute the even part. Moreover, our
construction gives a priori a bi-graded super-module (3.3.14), whose components
corresponding to a non-trivial y-grading happens to be empty. In other words, the
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3. A module for the DZBG case of umbral moonshine

characters we computed via (3.3.14) is a priori a ¢, y-series that happens to be just
a g¢-series. It would be nice to make the positivity and y-independence manifest.

What is the physical or geometric meaning of the chiral CFT 77 The relation
between the Conway CF'T, which is closely related to T, and a specific K3 sigma
model has been elucidated in [79, 115, 116]. It would be interesting to understand
the physical role played by the ghost systems.

An obvious question is whether one can employ a similar construction for the other
cases of umbral moonshine. Note that the chiral CFT T has Spin(24) symmetry
which preserves the fermionic and bosonic U (1) ghost currents. It is hence possible
to define the regularised twined partition function lim, o+ ZJ (7, (1, (2) (cf. §3.2.4)
for any element of any of the 23 umbral groups. To make contact with weak
Jacobi forms of the type of K3 elliptic genus, one has to specialise the fugacity
to (1 = % However, this leads to a finite answer only when taking n — 07 if
g is 4-plane preserving. To construct umbral moonshine modules for cases where
not all group elements are 4-plane preserving (X = A?M, A;em, and 6A4), one
needs a construction that works with the two-elliptic-variable functions Zy(7, (1, (2)
directly.

Note that the contribution of the vector-valued umbral moonshine mock modular
forms (H, ;fr) to the twined partition function of the theory 7T is basically given by

a single g-series 5= -2 UX (7,w). See (3.1.8). What allows us to recover from it
the individual components HZ, of the mock modular forms is the following two

g.r
facts. First, there are just two independent components in the case X = D?ﬁ,

which can be taken to be H ;7),(1 and H ;’(3. Second, the representations underlying
the 1st resp. 3rd component have the feature that they factor through Sg resp. are
faithful representations. As a result, it is possible to use the projection operator
(3.3.24) to isolate the contributions from the two independent components from
the twined partition function of 7. A similar projection property also holds for
other 14 cases of umbral moonshine (cf. Conjecture 6.3 in [93]).

In view of this, another challenge when attempting to generalise the current con-
struction to other cases of umbral moonshine is how to disentangle the contri-
butions from different components of the vector-valued umbral moonshine mock
modular forms (H, g)fr) in the twined partition functions for the cases of X with
many independent components. Recall that an important feature of umbral moon-
shine is the “multiplicative relations” relating H, ;f "and H ;JX for specific pairs of
Niemeier root systems (X, X’) and group elements g € G¥X and ¢ € GX' (cf. §5.3
of [93]). As we will see in more detail below, these relations together with the pro-
jection property enable us to disentangle different components in the vector-valued
functions H, ;( in various cases.
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3.4. Discussion

Finally, we point out that for the cases that g is a 4-plane preserving group element
of a umbral group G*, many mock modular forms H, éx for many different X and ¢
can be obtained in a similar way as discussed in §3.3.

®24
AP

Exactly the same procedure as discussed in the main part of this paper can be used

to obtain a supermodule for the group Mss < GAY™ that is compatible with the Moy

moonshine, or equivalently the X = A?m case of umbral moonshine.

©12,
AP,

An analogous procedure, using a projection operator projecting out representations
factoring through M, < G4z APV 2 M12, recover from twined parition functions
(3.2.39) the mock modular forms H 2 for g € 2. M5 that are not in the conjugacy
classes 11AB,12A,20AB,22AB. (Here and below we use the same naming of the
conjugacy classes as in [93].) As a result, one can construct modules for G' < 2.M,
compatible with the corresponding case of umbral moonshine, for three of the maximal
subgroups of 2.M;5. For completeness we list the explicit generators of these three
maximal subgroups in terms of permutation groups on 24 objects:

Gy = ((1,18,5,9,24,16)(2,6,8,11,17,20)(3,12, 23, 13,22, 14)(4, 10, 19, 15,21, 7),
(1,9)(2,19)(3,13(4, 10)(5, 24)(6, 17)(7, 11)(8, 23) (12, 22) (14, 20) (15, 21)(16, 18))

Gy = ((1,13)(2,19)(3,9)(4,18)(5,21)(6,17)(7,11)(8, 20)(10, 16)(12, 22)(14, 23) (15, 24),
(1,5,11)(2,9,16)(3,18,8)(4, 17, 7)(6, 19, 15)(10, 12, 23)(13, 24, 20)(14, 21, 22),
(1,9)(2,11)(3,13)(4, 15)(5, 16)(6, 17)(7, 19)(8, 20)(10, 21)(12, 22) (14, 23)(18, 24))

Gs = ((1,12,18)(3,15,6, 21,16, 14)(4, 17, 10, 5, 23, 13)(7, 20)(8, 19) (9, 22, 24),
(1,11,22,24)(2, 12, 18,9)(3, 20, 10, 19)(4, 5)(6, 23)(7, 13,8, 21)(14, 17)(15, 16))

ATS, A3, EO4.

Using similar analysis as above, one can recover H, gX for all elements of g € G < G,
for X = A?8 and A??’. In particular, in the X = A?S case we also make use of
the multiplicative relations between H. !}X and H ;,( ", where X' = A?Q‘l and ¢’ € GX "
and thereby obtain all H ;( except for ¢ € [84]. In the X = A?® we make use
of the multiplicative relations between HgX and H;,(/, where X' = A§912 and
g € GX', and thereby obtain all HgX except for g € [34] and g € [64]. In the
X = E$* we make use of the multiplicative relations between H, gX and H ;f ', where

X' = AP'? and ¢’ € GX', and thereby obtain all H_¥ except for g € [84] and g € [8B].

AP*D,, AP2DP? | A\ D7Es, A17E7, DygES%:
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3. A module for the DZBG case of umbral moonshine

For X = A?4D4 all non-vanishing components of H;( = (H;(T), r=1,2,...,5, can
be recovered from the twined partition functions, by relating them to the umbral
moonshine mock modular forms for X’ = D§% that we constructed in the main part
of the paper, and for the X" = A§912 case that we described above. Explicitly, we
have

HY\(7) = HX\(7) + Hy'5(7) (3.4.1)
for the pairs
(¢'.9) = (1A4,14/24),(24,2B), (24,44), (3B,3A/6A), (4A,8AB), (3.4.2)
and
Hg, \(r) = Hyy (m) — H's(7) (3.4.3)

for the pairs (¢”7,9) = (2B,1A4/2A), (2B, 2B), (2C,4A),(6B,3A/6A), (4B,8AB). For
the 3rd component we make use the relation

1

H;,(S(T) =9

HY'y(7) (3.4.4)
for the same pairs (¢’,g) as in (3.4.2). The even components satisfy
Hyop = —HZy o, TE€L[3 (3.4.5)

where z denotes a generator of the center subgroup (z) = Zy < GX. This forces the
even components of the vector-valued mock modular forms H, gX to vanish for elements
g in conjugacy classes 2B,4A,8AB. The rest of H g),(% can be recovered by using the
relation to X" = A$'? case of umbral moonshine:

Hy%(7) = Hy'y(7) = Hy o(7). (3.4.6)

for the pairs (g,¢') = (14,2B), (3A,6C). Note that the two terms on the left-hand
side contribute to different powers of ¢ when regarding the whole function as a g-series
and the above relation is therefore enough to determine both the 2nd and the 4th
components of the mock modular forms H,*.

Using similar analysis as above, one can recover all H, ;( for all g € GX, for X =
A;BzDgez, A1 D7Eg, A17E7, and DloEéez. The only things that remains for these cases
is to construct an explicit group action which reproduces these functions, something
that is beyond the scope of this thesis.
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VERTEX OPERATOR

SUPERALGEBRA - SIGMA

MODEL CORRESPONDENCE:

4 THE T CASE

The goal of this chapter is to explain the correspondence between the vertex operator
superalgebra (VOSA) Vés (to be defined shortly) and the nonlinear sigma models
on complex four-dimensional tori (T'%), as presented in [3]. In order to provide some
context for this correspondence, first recall from the previous chapter that the re-
lation between sporadic finite simple groups and symmetries of K3 surfaces and K3
sigma models has attracted a lot of attention since the pioneering work of [117] and
[82] (for some instances of this see [84-87, 92, 93, 102, 118-124]). Apart from the
Mathieu groups featured in [82, 117], symmetries of ' = (4,4) supersymmetric non-
linear sigma models on K3 surfaces have also been related to other groups, including
the sporadic simple Conway groups [79, 107, 125], and the groups of umbral moon-
shine [28, 91]. Moreover, recall that the twined elliptic genera play a critical role
in quantifying this relation since they are sensitive to the way that symmetries act
on quantum states. Of special interest is the fact that many of the twined elliptic
genera of sigma models on K3 surfaces can be reproduced by the vertex operator
superalgebra (VOSA) V%, which has played a prominent role in Conway moonshine
[77-79]. (Here and in the remainder we use sigma model as a shorthand for N = (4, 4)
supersymmetric non-linear sigma model.)

As a final reminder from the previous chapter, recall that the analysis of [91] indicates
that not all the twined K3 elliptic genera can be reproduced by Conway group sym-
metries of V*!. It is nonetheless interesting that the single VOSA V! can capture
the symmetry properties of a large family of sigma models in the K3 moduli space,
especially given that V! is, in physical terms, a chiral theory, with central charge
¢ = 12, while the K3 sigma models are non-chiral theories, with ¢ = ¢ = 6. This
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novel chiral/non-chiral connection between V% and K3 sigma models has been made
precise at a special (orbifold) point in the moduli space, where V*% can be retrieved
as the image of the corresponding K3 theory under reflection: a procedure explored in
[79] for the specific case of V% and later formerly investigated in more generality by
Taormina—Wendland in [115]. (See also [116] for a complementary approach).

To put this connection in a more structured context let us consider sigma models with
target space X within one connected component of the full moduli space M = M(X)
of sigma models on X, and denote the corresponding sigma models by X(X; ), for u
a point in M. For instance, for X = 7% or X = K3 the moduli space consists of a
single component, and takes the form

M(T*) = (SO(4) x SO(4))\SO* (4,4)/SO* (T4 ,
(4.0.1)
M(K3) = (SO(4) x 0(20))\OT(4,20)/0H(1*29)

Here I'*? denotes an even unimodular lattice of signature (a, b).

The chiral /non-chiral connection between V*% and K3 sigma models discussed above
now motivates the following question:

Are there pairs of VOSA/sigma model family pairs (V, M(X)) such that
the following properties hold?

1. The symmetry group of V.=V (X) contains the symmetry groups of
(X5 p) for every u € M(X).

2. The twined partition functions of V capture all the twined elliptic
genera arising from the 3(X; u) for all p € M.

8. There exists a particular point u* € M such that the reflection pro-
cedure maps L(X; u*) to V.

We will refer to pairs (V, M) satisfying these 3 properties as VOSA /sigma model
correspondences.

As we have explained, (V*%, M(K3)) comes tantalisingly close to being an example
of such a VOSA /sigma model correspondence. However, there are (conjecturally) a
handful of twined elliptic genera of ¥(X;u), with p lying in certain high codimen-
sional subspaces of M(X), that do not arise from V*!. See Conjectures 5 and 6, and
Table 4 of [91]. As a result, Property 2 above fails to hold for the (V% M(K3)) pair.
Our main objective in this work is to illustrate a complete example of the correspon-
dence, where K3 surfaces are replaced by (complex) four-dimensional tori (T%). The
counterpart to V*¢ in this case is the VOSA naturally associated to the Fg lattice,
which we here denote Vgs (as in [72, 77]). With the K3 case in mind this is per-

haps unsurprising, given that V*% can be written as a suitable Zy orbifold of V]gg (see
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Figure 4.1: VOSA /sigma model connections and the orbifold procedure.

[72, 77]), while on the orbifold locus of M(K3), the corresponding sigma models can
also be obtained as Zy orbifolds of four-torus sigma models (see Figure 4.2.2). In fact,
as we will see, the VOSA /sigma model correspondence works better in the four-torus
case since it holds for all points in M(T*): The twined elliptic genera of any % (T*; )
can be reproduced by the supersymmetry preserving twined partition functions of
Vgs. (See Theorem 6.) So all three properties of our proposed VOSA /sigma model
correspondence, including the one which failed for the (V*% M(K3)) example, indeed
hold in this case. It would be very interesting to understand whether a complete re-
alization of the VOSA /sigma model correspondence might exist even for K3 surfaces.
Our results can be regarded as encouraging evidence in this direction.

The rest of this chapter is organized as follows. In §4.1 we discuss the supersymmetry-
preserving symmetries of 3(7%; i) across the moduli space, as well as the correspond-
ing twined elliptic genera. In §4.2 we summarise important results on the groups
arising in §4.1. In §4.3 we discuss the VOSA VEfs, naturally associated to the Eg
lattice, and show that its supersymmetry-preserving symmetry group contains all the
symmetry groups discussed in §4.1. Hence we obtain that Property 1 of VOSA /sigma
model correspondences holds for (VEfS, M(T*)). We then prove in Theorem 6 that the
VOSA VEfs recovers all the twined elliptic general of the X(T%; i), thereby proving
Property 2.

In §4.4 we elaborate on the relation between the VOSA /sigma model correspondences
for T* and the closely related example for K3 via orbifolding. In particular, we
prove in Proposition 7 that the diagram in Figure 4.1 commutes, for all orbifolding
procedures of the theory. Then in §4.5 we demonstrate that VEfS can be obtained as
the image of X(T*; u*) at a particular special point p* € M(T*) under reflection,
thus establishing the final VOSA /sigma model correspondence property (Property 3)
for (Vlg87 M(T*)). This is the content of Theorem 8.

There are also two appendices associated with this chapter. In §D we provide further
information on the supersymmetry-preserving symmetries of four-torus sigma mod-
els. In §E we describe how automorphisms of a lattice lift to automorphisms of a
co;responding lattice VOSA, and detail the workings of this in the specific case of
Vig-
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4.1 The Sigma Models

Here we setup some notation and discuss T# sigma models and their symmetries,
following [126].

4.1.1 Symmetries

A sigma model on T* is a supersymmetric conformal field theory defined in terms
of four pairs of left- and right-moving bosonic u(1) currents j%(z),j%(z), with a =
1,...,4, four pairs of left- and right-moving free real fermions ¥%(z), 1)*(2), as well as
exponential (primary) fields Vi (z, Z) labelled by vectors k = (kr, kgr) € T’ .

To explain nature of the lattice I‘iﬁm,
signature (4,4). The real vector space

let T'** denote an even unimodular lattice of

I=T**g@R=R* (4.1.1)

admits orthogonal decompositions into positive- and negative-definite sub-
spaces
II=1I; &, IIg. (412)

Correspondingly, we decompose k € II as k = (kr,0) + (0, kg), where the two sum-
mands lie in the positive- and negative-definite subspaces respectively. The relative
position of II;, and IIp uniquely determines each four-torus sigma model, and the
corresponding Narain moduli space is as in (4.0.1), where O(I'**) acts as T-dualities
and we restrict to the T-dualities that moreover preserve world-sheet parity (cf. [91]).
We use Fi,’fm to denote the lattice I'** equipped with a choice of an orthogonal
decomposition into positive- and negative-definite subspaces. This structure is also
known as the winding-momentum or Narain lattice in this context.

The chiral algebra of every four-torus sigma model contains an u(1)* algebra generated
by the currents j¢, as well as an so0(4); Kac-Moody algebra generated by : ¢%° :,
with a,b = 1,...,4. Tt also contains a small N' = (4,4) superconformal algebra at
central charge ¢ = ¢ = 6, whose holomorphic part is generated by the holomorphic
stress tensor T'(z), four supercurrents G*(z), G'*(z) of weight (3/2,0) that consist of
linear combinations of terms of the form : 1)%;® :. In particular, the fermionic so(4);
algebra contains an su(2); ‘R-symmetry’ Kac-Moody algebra, generated by currents
J1, J?,J3. Since the anti-chiral discussion is completely analogous, from now on we
focus just on the chiral part.

To describe the superconformal algebra in detail, it is convenient to define complex
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fermions
1 L o1, .3 1 L o1 .3
X == +i?), x =720 —iv?),
V2 V2
1 1 (4.1.3)
2 2 4 2 2 .4
=— +1 , = — —1 ,
X ﬂw ), X \/5(1/) v7)
obeying the standard OPEs
i j i i i* j 6ij
X (2 (w) ~ Oz —w) , x'(2)x? (W) ~x" (2)x7 (w) ~ — (4.1.4)
In terms of the complex fermions, the stress tensor is given by
4 12 _ _
T = —Z N —3 Z( Xox" i +ixtox' ), (4.1.5)
a=1 i=1
while the R-symmetry currents are given by!
J! :i(1X1X2 : +:X1*X2* :) ’ J? — 1X1X2 : _:X1*X2* :
(4.1.6)

J3::xlxl* :+:x2x2* D

The symmetry groups occuring at different points in the moduli space of sigma models
on T* that preserve the N = (4, 4) superconformal algebra were fully classified in [126].
To describe these groups, let U(1)} and U(1)% be the Lie groups generated by the
zero modes j§ and 53 respectively. They describe the (independent) translations along
the four-torus. Apart from the R-symmetry su(2); algebra with generators (4.1.6),
there is another copy of su(2); algebra in the fermionic so(4); algebra, generated by
the currents

Al:i(:xlxy 3+3X1*X2 :> ’ AQZ:X1X2*:_:X1*X2:’

i ) (4.1.7)
A3 = I B
Focussing on the zero modes, we have the relation
SO()L, = (SU@)] x SU2)2)/(—1)40+ %, (4.1.8)

where (—1)‘43/‘]8 is the non-trivial central element of SU(Q)é/J, and similarly for

the right-moving side. Preserving the N' = 4 superconformal algebra restricts us
to the subgroup SU(2)% which commutes with the R-symmetry SU(2){. Moreover,

INote that this normalisation for the currents, while convenient and common in the physics
literature, differs by a factor of % from the normalisation that is common in the Kac-Moody algebra
context.
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identifying SO(4)r with SO(II;), we need to consider subgroups that induce an
automorphism of rid 2

w—m *

These considerations lead to the following specification of the symmetry groups of the
four-torus sigma models. They take the form

G= (U] xU1)R).Go . (4.1.9)
The group Gy here is given by the intersection
Go = (SU2)2 x SU@2)3) N O (Taly) (4.1.10)

where the above identification is understood.

Notice that the groups Gy defined in (4.1.10) manifestly do not mix the spaces I, and
IIg, and always contains a central Zs subgroup generated by (—1,—1) € SU (2)? X
SU(2)4. Consider the set of all possible groups arising as

Gi = Go/(—1,-1). (4.1.11)

This set turns out to be bijective to the set of subgroups of the group of even-
determinant Weyl transformations of Fg, denoted by W¥(Eg), that fix an Fs-
sublattice of rank at least 4. See [126] for a complete and descriptive list of all the
possible groups Gog. We note here that the groups Gy and G are interesting finite
groups only at certain special points in the moduli space M(T*) of sigma models on
T*. Generically, Gy is isomorphic to Zy and G, is trivial.

4.1.2 Twined Genera

The elliptic genus of an A/ = (4,4) superconformal theory is defined in terms of
the superconformal algebra generators as the following trace over the RR sector (see
§2.3.3),

¢(7,2) = Trrr [(—1)Fy"3 gl ghomsi| | qi= T yi= e (4112)

where Lg is the zero mode of the stress energy tensor 7', and the fermion number
operator (—1)f will be discussed in more detail later. It receives non-vanishing con-
tributions only from right-moving BPS states and thus does not depend on 7. For the
N = (4,4) theories that we are considering, it is also a weak Jacobi form of weight
0 and index 1, and does not depend on the moduli. For four-torus sigma models,

2The identification between SO(4), with SO(IIy,) is given by the choice of the A" = 1 supercurrent

such that its generator is proportional to 22:1 : %5 ;. Different choices of the N' = 1 supercharge
lead to different isomorphisms that are related to each other by R-symmetry transformations in

SuU(2)f.
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we have ¢ = ¢ = 6 and the elliptic genus is in fact identically zero due to cancelling
contributions from the BPS states, which form an even-dimensional representation
of the Clifford algebra of the right-moving fermionic zero modes X, )Zf;. When the
theory has additional symmetries G preserving the superconformal algebra (i.e. at
special points in the moduli space), we can also consider the elliptic genus twined by
an element g € G acting on the RR states,

¢C(r,2) = Trrr |g (—1)F 70 qLo= 5 Qio‘ﬁ} , (4.1.13)

where the upper-script in the notation serves to remind us about moduli dependence?.
The twined genus gb? depends only on the conjugacy class of g in G and is a weak
Jacobi form of weight 0 and index 1 for some congruence subgroup I'; C SLy(Z). Note
that the normal subgroup U(1)] x U(1)% of G (4.1.9) acts trivially on all oscillators.
For this reason we will first focus on the Gy part when computing the twined elliptic
genera.

To compute the elliptic genus twined by g € Go C SU(2)% x SU(2)4, let us first
describe the Fock space representation of the RR states in the present theory. This is
built from all possible combinations of the free fermionic X%, X%, X%, X&* and bosonic
oscillators j2, ]Z, witha=1,...,4,9=1,2 and n € Z<_,, acting on the Fock space
ground states. The latter has a convenient basis given by

|kL, kgr; S> , S= (81, S2; 81, 52) , S1,82,51,82 € {;, —;} . (4114)
Here s is an index for the 24-dimensional representation of the eight-dimensional Clif-
ford algebra generated by the fermionic zero modes ), x5, X4, X&', which correspond
to the fermionic RR ground states |s) := |0, 0; s). The indices k1, and kg label points in
the winding-momentum lattice, k = (kz,kgr) € Tk, In terms of the primary opera-
tors Vi (z, Z), the ground states in (4.1.14) are given by |k, kg; s) := Vi (0,0)|s).

In this basis, the eigenvalues of the fermionic ground states under the operators Jg
and J3 are given by

Jols) = (s1+s2)ls) . Jgls) = (31 + 32)ls) (4.1.15)

and similarly
Ajls) = (51— s2)ls) , AQls) = (31 = 32)ls) , (4.1.16)

3Specifically, here G (see (4.1.9)) is not viewed as an abstract group, but rather as the specific
symmetry group at a single point in the moduli space, equipped with the representation of the RR
spectrum.
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while the J3 charges of the fields are given by

X x| g
4.1.17
=10 ( )

and similarly for the right-movers. In these terms, the fermion number operator is
defined as (—1)F := (—=1)%+75,

Let py denote the 8-dimensional representation of Gy on the space spanned by
bt and @, ... 4% For a given element g € G, choose the parametrisation
of the complex fermions such that g acts as (cf. Table D.1)

=yt (4.1.18)

<

pu(9)x" =Cx',  pylg)

Since g € SU(2)4 x SU(2)4, it follows that g acts on the eight-dimensional represen-
tation py as

pu(@)x" = Coxt s pe(@X' =X pula)X =X, pula) X =GRt

p

CrRX
w2 = pelo =X L pe@XP =P pe(@)X® =CrYE
(4.1.19)

and similarly on the bosonic currents since the superconformal algebra is preserved.
Note that the choice of parametrisation in (4.1.18) is always possible, since by con-
jugations in SU(2)% x SU(2)4 we can let g to be contained in the Cartan subgroup
generated by A3 and A3.

From the preceding discussion we conclude that the twined elliptic genus of the four-
torus sigma model factors as

05 (1,2) = 657(7,2)0% (2)dy ™ (7) , (4.1.20)

where the three factors capture the contributions from the oscillators, the fermionic
ground states, and winding-momentum (i.e. primaries V}), respectively. In what
follows we will discuss them separately.

The action of g € Gy on the ground states is given by
_ A AAY _ S1—sS2 ~81—382 4.1.21
gls) = CL Crls) = (' 2GR T s) - (4.1.21)
Summing over the 2 ground states |s) we arrive at

¢8(2) =y (1= Coy)(1 = ¢l y) (1 = Cr) (1 — CR1)

- (4.1.22)
=2(1-RCr) (" +y—2R()) ,
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where R(z) denotes the real part of z. From (4.1.19), we compute that the total
contribution from the fermionic and bosonic oscillators is

oo n —1 n —1 . n -1 -1 n
o<(r,2) = [ (1 —Cryg") (A — ¢ yg") A — Cry” ¢") A~ ¢ y™ ¢") (4.1.23)
n=1

(1—¢rgm)?(1 — ¢, qn)?

Notice that the contribution from the right-moving oscillators, and thus the 7 dependence,

cancels out completely.

Finally, the contribution from winding-momentum is given by

k2 k2
gt (4.1.24)

¢y (r) = > &k kr) 4% q

k=(kr,kr)e(Th %)’

Here (Fév’ilm)g is the g-fixed sublattice of I'4*., and &y (kr,kr) are suitable phases that
depend on the choice of the lift of g from Go to G. As discussed in §E one can always choose

the standard lift, where the phases &, (kL, kr) are trivial for all (kr,kr) € (Fév’fm)g.

Notice that if g acts trivially on the right-movers, then (r = 1 and ¢5°, and therefore qﬁgG
vanishes. On the other hand, if both (g and (r, are different from one, then (Fév’fm)g = {0}
and ¢y ™ = 1. Thus, determining ¢y ™ is nontrivial only when (r # 1 and {1z = 1. As a

result, we can rewrite

G R DR Pe s (1.1.25)

k=(kz,0)€(Tw4n)?

which is indeed holomorphic in 7 as required.

4.2 The Symmetry Groups

In this section we summarise important results on the groups that we will make use of later.
In particular, we will show that the Gy, related to the total symmetry groups of the four-
torus sigma models via (4.1.9), are all subgroups of W (Es), the group of even-determinant
Weyl transformations of Eg. This fact will be crucial in §4.3, as it makes it possible to equate
the twined elliptic genera of the four-torus sigma models and the twined traces of the Ejy
lattice VOSA.

By definition, W (Fsg) has a natural action on the Eg lattice via its unique eight-dimensional
irreducible representation, and as such is a subgroup of SO(8). Under the inclusion map
W (Es) < SO(8), the center of W (Es) is mapped to the central Zs subgroup of SO(8),
acting as —id in the eight-dimensional vector representation of SO(8) in the former case,
and in the eight-dimensional non-trivial representation of W' (FEg) in the latter case. We
denote by i, the generator of this latter central subgroup (i,) = Zo < WT(Es). The
corresponding central quotient is isomorphic to the finite simple group Og‘ (2), the group of
linear transformations of the vector space F$ preserving a certain quadratic form. (See e.g.
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[127] for a discussion of this.) In other words, we have

WT(Es) 2 (1,).08 (2) .

Recall that G, related to Go as in (4.1.11), can be identified with subgroups of W (Es)
that fix an Fs sublattice of rank at least 4 [126]. Since ¢, does not preserve any subspace in
the eight-dimensional vector representation of W™ (Fs), we conclude that ¢, ¢ G1, and by

combining the inclusion G1 < W (Es) and the projection W (Es) - Of (2) we obtain an
injective homomorphism G1 — OgF (2). As a consequence, the group G4 is always isomorphic
to a subgroup of OfF (2).

To show that the discrete part of the sigma model symmetry group Gy is always a subgroup
of W (Eg), it will be useful to consider the group Spin(8). The kernel of the spin covering
map Spin(8) = SO(8) is an involution {(15) = Z,. Considering W' (Es) < SO(8), the
preimage of the spin covering map is {ts). W (Fs) < Spin(8). Its center can be identified
with the center of Spin(8), given by (is,ty) = Z2 X Z2. We thus have that

(Ls). W (Es) 2 (15,1,).08 (2) .

The kernel of the spin covering map Spin(8) = SO(8) is naturally identified with the
kernel of the quotient map Go — G1 (cf. (4.1.11), Table 4.2.2). Indeed, the preimage of
G1 < WH(Es) < SO(8) in (15).W™(Es) < Spin(8) is precisely the group Go = {15).G1. As
we have seen in §4.1.2; in the sigma models ¢s acts by flipping the sign of all the fermions in
the representation py (cf. (4.1.19)).

At this point it is crucial to recall that Spin(8) has a triality symmetry, i.e. an S3 outer
automorphism group. Also, it has one vector and two spinor eight-dimensional irreducible
representations, which we will denote by pj,, pe and pg respectively, and the action of triality
on the group Spin(8) extends to an S3 permutation action on the three representations py;,
pe and p;. This S3 group also permutes the three non-trivial generators ¢y, ts, tyts of the
center of Spin(8), and in each of the three aforementioned eight-dimensional representations
one of these generators acts trivially. Triality for Spin(8) induces an Ss3 group of outer
automorphisms of (ts). W' (Es) = (15, 1,).05 (2).

As a result, the Gy subgroup of (15).W*(Es) has three representations, which we denote
Pv, pe and po, corresponding to three eight-dimensional representations of Spin(8), that are
permuted by the outer automorphisms of (¢5). W™ (Fs). As we have seen in (4.1.19), in the
sigma model the representation p, captures the action of the symmetry group Go on the
eight (left- and right-moving) NS-NS fermions x*, xi* X, Xi*. The other two representations,
Pe TESP. po, capture the action of Go on the Ramond-Ramond sector quantum states with
even resp. odd fermion numbers. As mentioned before, in the representation py the central
involution ¢s acts by flipping the signs of all fermions as well as all bosons (which has to
be the case since Go preserves the superconformal algebra). On the other hand, in the
representation p. the central element of Go acts trivially, so that only the quotient G acts
faithfully on the RR ground states of even fermion numbers. This is also the representation
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where G fixes a 4-dimensional subspace (cf. Table D.1).

Now the S3 outer automorphisms of (is,t,).Of (2) guarantee that the quotient by any of
the three generators of the central subgroup {ts,t,) is a group isomorphic to W+ (Es). In
particular, since ¢, € G1 and hence Go ¥ (15).G1 < <LS>.W+(E8) does not contain the central
involution ¢, the homomorphism Go — W™ (FEs) induced by the projection

(1) WH(Es) = (10, 1).08(2) = ({10,0).07 (2)) /(1) = WH(Eq) (4.2.1)
is injective. Thus we have proved the following result.

Proposition 5. For any four-torus sigma model the corresponding group Go is isomorphic
to a subgroup of Wt (Es).
The discussion of this section is visually summarized in the following diagram.

Spin(8) N S0(8)

(SN
(SN

(L) WH(Es) & {10, 15).0§ (2) — WT(Es) 2 (1,).03 (2)

«—
—
:]\

(4.2.2)

1~
O
o}
©

(15).08 (2) = W (Es)

—
—

4.3 The VOSA

In this section we discuss the VOSA side of the VOSA /sigma model correspondence; in this
case the Eg lattice VOSA Vgg. In §4.3.1 we introduce the theory, and in §4.3.2 we outline
the computation of the twined traces of this VOSA and prove the main theorem (Theorem
6) of this chapter.

4.3.1 The Theory

The VOSA Vgs is a ¢ = 12 chiral superconformal field theory (SCFT) with eight free chiral
fermions 3%(z) and eight free chiral bosons Y*(z), with a = 1,...,8. Moreover, it has chiral
vertex operators Vi (z) = ¢(A) : e*Y : corresponding to the Eg lattice. In the above, we have
X € Eg and ¢()\) is the standard operator needed for locality [128, 129]. The stress tensor is

given by
8 8
a a 1 . Qa a
T:—Z;:ay oY .—ZZ;B oB° -, (4.3.1)

and an N = 1 structure is provided by the supercurrent @, proportional to the combina-

tion
8

Z : B0V . (4.3.2)

a=1
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The 8 currents 9Y?° form a u(l)8 bosonic algebra, while the 28 currents : 523° : generate
a fermionic Kac-Moody algebra s0(8);1. Let F be the eight-dimensional real vector space
spanned by the fermions 8. To facilitate the comparison with the sigma models, we split F’
into two four-dimensional subspaces F = X ®X such that X is spanned by 8 fora =1,...,4
and X is spanned by 8° for b=5,...,8. As usual, it is convenient to work with the complex
fermions

7= (B i),
(4.3.3)

-5

i i+4 | . pit6
= +1 s
gl ﬁ(ﬁ B)
for ¢ = 1,2. The splitting of F' leads to the subalgebra so(4); @ s0(4)1 of the fermionic
Kac-Moody algebra s0(8);. Focussing on the first s0(4); 2 su(2); x su(2)1, corresponding to
X C F, the two factors of su(2); are generated by J)l(’2‘3 and Aﬁf’?’ respectively, completely
analogous to the sigma model case ((4.1.6) and (4.1.7)) upon replacing the xs with vs.

At the level of the zero-modes, we have

SO(X) = (SU2)4 x SU(2)%)/(~1,-1) = S0(4) ,

_ o = (4.3.4)
SO(X) = (SU@2)% x SU(2)%)/(~1,-1) = SO(4) .

Note that all four SU(2)s above preserve the A/ = 1 superconformal algebra.

Next we discuss the quantum states of the above model. We will sometimes refer to the space
of states of this VOSA as an NS sector, since the chiral fermions satisfy the antiperiodic
boundary condition. One can also construct a canonically twisted module for this VOSA,
i.e. a Ramond sector with periodic boundary conditions for the fermions. The Ramond
sector contains 28/2 = 16 ground states, forming a representation of the Clifford algebra of
the fermionic zero modes. A convenient basis for these ground states may be denoted
1 1

|ry :=|r1,r2,r3,74) , T1,T2,73,74 € {5,75} . (4.3.5)
Similar to the case of the sigma models (4.1.14), the Fock space ground states are then given
by |A;7) := Vi (0)|r), where X\ € Es.

With the sigma model elliptic genus (4.1.12) in mind we define the following twisted module
trace,
X,3

Z(7,2) i= Trow [(71)’7 ot go—F| (4.3.6)

3 on the oscillators and the ground states is completely

The action of the operator Jé{ ’
analogous to its counterpart in the sigma models. Namely, it acts as a number operator for
the fermionic oscillators, counting 77, excitations (with n < —1) as +1 and ’yZL* excitations

as —1, for j = 1,2, while on the ground states (4.3.5) it acts as

TP = (r1 4+ )l (4.3.7)
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3
Similarly, the fermion number operator is defined as (—1)F := (—1)” , and acts on

the ground states as
X,3, 1X,3
(—1)F‘r> = (_1)‘]0 +J5 |r) = (_1)T1+T2+T3+T4‘7.> ) (4.3.8)

From this it follows immediately that states built on the ground states |r) with opposite
signs of r3 (or r4) lead to opposite contributions to the trace Z(r,z) and hence the trace
vanishes. In the next subsection we will see that, similar to the sigma models, the trace is
generically not vanishing when twined by a symmetry.

4.3.2 Twined Traces

Recall (Proposition 5) that the symmetry groups Go of the T* sigma models may be regarded
as subgroups of W+ (Es). We may thus identify them with symmetry groups of Vés which
act on the Fg lattice by even-determinant Weyl automorphisms, according to the vector
representation p,. The lattice Eg is naturally contained in F', the 8-dimensional real vector
space spanned by the fermions 3%, so we have Gy < W1 (Es) < SO(F). As discussed in
§4.1.1, the groups Gy are contained in an SU(2) 1 x SU(2)r subgroup of SO(4)r x SO(4)r C
SO(8), and thus they do not mix the spaces II;, and IIg. We can further identify the vector
spaces X = II and X = IIg, so that Gy is contained in SU(2)% x SU(2)%4 (and commutes
with SU(2)% and SU(2)%) when acting on the Es lattice of the VOSA. The action of Go
is then lifted to automorphisms of the Es VOSA that preserve the A/ = 1 supercurrent Q.
(One may choose lifts where all phases are trivial. Consult §E for details.) As a result, for
each g € Go we may define the following g-twined trace in the twisted module for the Ejg
VOSA

JX,S

Zg(7,2) = Trew [g (-1 yho qLO_i} , (4.3.9)
generalising (4.3.6).

Analogous to the sigma models (4.1.20), the above g-twined trace naturally decomposes into

three factors,
Zy(1,2) = Z9%(1,2) 28 (2) ZY3 (1), (4.3.10)

capturing the contribution from the oscillators, the fermionic ground states, and the FEjs
lattice chiral operators, respectively.

Choosing a convenient basis for the fermions we observe that the action of g is precisely the
same as in (4.1.19), with x* replaced by v* and Xi* replaced by 'yi*, %° replaced by 74 and
)Zi* replaced by "yi*, for i = 1,2. As a result, the oscillators give a factor of

1qn)2

75 :ﬁ 1 — Cryg") (1 — ¢y (1 — Cy ') (1~ ¢y~ '™ (1~ Cra")* (1~ Cp
(1= ¢Lg™)?(1 = ¢ am)2(1 = Cra™)2(1 = Cx'q™)?
_ ﬁ (1 —Cryg™) (1 — ¢ lyg™) (1 - Ly’lq")(l—CL1 NN
(1= Cgm)*(1 = ¢ 'qm)?

(4.3.11)
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Similarly, the group action on the fermionic ground states is given by

X,3 AX,S

glry = o e ) = R ) (4.3.12)

leading to the contribution

ZF(mz) =y (1= Gy =y = Cr)(1 =) =2(1 = RCr)) (Y +y —2R(CL)) -
(4.3.13)

Finally, the contribution from the Fg lattice is
A2
Zm = Y, &7, (4.3.14)

)\E(E8>P¢(9)

where (Eg)?*9 is the sublattice of Es fixed by g (which acts on the lattice according to
the py representation of Go), and &;()) are phases analogous to those in the sigma models
(4.1.24) that can be chosen to be trivial.

We now state and prove the main result.

Theorem 6. For every g € Go for any of the possible groups Go we have

Zy(1,2) = 3 (1,2) . (4.3.15)

Proof. To begin we note that, from the preceeding discussion, it is evident that for each
g € Go we have
ZgC = ¢, ZE =¢5 . (4.3.16)

So we require (see (4.1.20), (4.3.10)) to show that Z/® = ¢%™. Since we have Z5° = ¢& =0
whenever (g = 1, we may focus solely on the case where (g # 1. Moreover, if both (1, (r # 1
then Z/® = ¢J™ = 1, as in this case both lattices (Eg)pw(Q) and (Fév’fm)g are empty.
Therefore, we only need to prove that whenever (, = 1 and (r # 1, the fixed sublattice
(Eg)p”(g) is isomorphic to (Fiﬁfm)g. We will achieve this by performing a case-by-case
analysis. There are only four conjugacy classes in py with {f = 1 and (g # 1. In the
notation explained in §D, they are 2A, 2E, 3E, 4A (see Table D.1).

To proceed we note that by inspecting the character table of W (FEs) we may deduce that
the aforementioned classes are necessarily fixed by the action of any outer automorphism.
Since the representations py and pe are related by such triality outer automorphisms (cf.
§4.2), we deduce that for these classes we have (Fg)”*? = (Eg)<(9) | the latter being the
lattice fixed by (g) C Go in the representation p.. In §4 of [126], both lattices (Es)**? and
(Fﬁv’fm)g were described in detail. In particular, it was shown that they are as follows:

2A | 2E | 3E | 4A
(Bs)@ (g (E )pw(g)) D.l A |l A2 | D (4.3.17)
S = (Es 4 1 2 4 e
(T3h)? Dy | Al | A3 | D4

We thus see that the fixed sublattice of the winding-momentum lattice of the T sigma model
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and the fixed sublattice of the Fs lattice are isomorphic in each case. This completes the
proof. O

4.4 Orbifolds

In this section we investigate the extent to which the diagram Figure 4.1 commutes, or not,
with an arbitrary symmetry in place of the specific Zs action indicated. We will demonstrate
that in fact the diagram commutes for all possible choices, at least if we assume a certain
claim about orbifolds of T* sigma models. We regard this result—Proposition 7—as further
evidence that the VOSA /sigma model correspondence for T* sigma models proposed herein
represents a natural structure.

The claim about orbifold sigma models we will require to assume is the statement
that:

The orbifold of a T* sigma model by a discrete supersymmetry-preserving sym-
metry is either a sigma model with T* target or a sigma model with K3 target.

This claim follows, for example, from the conjecture that the only N' = (4,4) SCFTs with
four spectral flow generators, central charge ¢ = ¢ = 6 and discrete spectrum come from
sigma models with 7% or K3 target space. This conjecture is widely believed to be true (see
e.g. [130]) and was implicitly assumed in early string theory literature. Here we refer to it
as the uniqueness conjecture.

Alternatively, the above claim on four-torus sigma model orbifolds is supported by the follow-
ing heuristic argument which is independent of the uniqueness conjecture. Call a symmetry
g of a sigma model 7 with target X geometric if it is lifted (cf. §E) from a symmetry g of
the target space X. Then the orbifold of 7 by g should be a sigma model on the orbifold of
X by g. Any orbifold of a four-torus is a singular limit of K3 surfaces, so the claim about
orbifolds should hold at least for geometric symmetries.

For more general symmetries note that it can be shown, independently of the uniqueness
conjecture (see e.g. [130]), that the elliptic genus of an N = (4,4) SCFT with four spectral
flow generators and ¢ = ¢ = 6 is either 0 or coincides with the K3 elliptic genus. Furthermore,
if the elliptic genus is 0 then the corresponding sigma model has T target[130]. So, if the
elliptic genus of an orbifold is 0, there is no doubt that it is a sigma model on 7.

To handle the case that the elliptic genus of the orbifold is non-vanishing we recall the reverse
orbifold construction: If T is a sigma model and g is a discrete supersymmetry preserving
symmetry of 7 then the orbifold 7’ of 7 by g has a distinguished symmetry g’ with the
property that the orbifold of 77 by g’ is T. (See e.g. [131] for an analysis of this in the VOA
setting.)

The supersymmetry preserving symmetries of sigma models with K3 target have been clas-
sified in [107], and this allows us to determine the pairs (7, ¢’), with 7' a K3 sigma model
and ¢’ a symmetry of 77, for which the orbifold of 7’ by ¢’ is a sigma model on T*. (One
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just checks if the elliptic genus of the orbifold vanishes or not.) So by the reverse orbifold
construction we obtain a corresponding set of pairs (7,g), with 7 a sigma model on T
and g a symmetry of 7, for which 7 is an orbifold of a K3 sigma model 7' and g is the
corresponding distinguished symmetry such that the orbifold of 7 by g is 7'. Finally, we
can check case-by-case that every non-geometric four-torus sigma model symmetry, for which
the corresponding orbifold elliptic genus is non-vanishing, occurs in such a pair. So there
are simply no candidates for four-torus sigma model orbifolds by non-geometric symmetries
with non-vanishing elliptic genus except for K3 sigma models.

Note that the claim above on T* sigma model orbifolds has a rigorous counterpart for
VOSAs. Namely, if § € Aut(VEfs) is the standard lift (cf. §E) of a T* sigma model symmetry
g € W (Eg), then the orbifold of Vgs by § is either isomorphic to Vgg or to the Conway
moonshine module V** (see §2.4.1). We will establish this in the course of proving our next
result, Proposition 7. Note that a more general orbifolding of Vgg might result in the VOSA
that describes 24 free fermions (cf. e.g. [116]).

We now prove the main result of this section. For the formulation of this we assume the
notation of (4.1.9).

Proposition 7. Let T be a T* sigma model and let g € Go < W1 (Eg) be a symmetry
of T that preserves the N = 4 superconformal algebra. Let § denote the standard lift of
g < WT(Es) to a symmetry of the VOSA Vés as described in §E. If we assume that any
orbifold of a T* sigma model by a discrete supersymmetry-preserving symmetry is either a
sigma model on T* or a sigma model on K3, then the orbifold of VEfs by § is isomorphic to
beg or V% according to whether the orbifold of T by g is a sigma model on T* or a sigma
model on K3, respectively.

Proof. The orbifold of VEf8 by § can be Vgg, V%, or the VOSA associated to 24 free fermions
according to Theorem 3.1 of [116]. To tell the three possibilities apart we can simply com-
pute the partition function Zg o, (7) of the orbifold theory. It will develop that either
Zg-orn(T) = Z(VEfg;T) or Zgom(T) = Z(V**;7), where Z(V;7) is the partition function of
V. (In particular, the free fermions model will not arise.)

Let us denote the anti-periodic and periodic boundary conditions for the fermions by A and
P, respectively. We are interested in the case where the fermions are in the [A, A] sector.
The bosons will always have periodic boundary condition in the current context so we will
not explicitly specify the boson boundary condition in what follows.

Let Bzg (7) denote the h-twisted, g-twined partition function of beg in the sector where
the fermions have [D, D] boundary conditions, with D, D € {A, P}. The orbifold partition
function is then given by

1 v
Zyrore(T) = o0 > azim), (4.4.1)
k,e€Z/|g|

@
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so we need to compute ngz for all k,£ € Z/|§].* We have |g| = |g| for all cases except for

when g lies in the class 2F, in which case |2/L\?| = 2|2E| = 4. More details on this can be
found in §E.

Recall (see §2.3.3) that modular transformations change the twisting and twining boundary
conditions according to

PSL2(Z) > v = (Z Z) (h,g) — (g°h%, g*hb) . (4.4.2)

Notice that v € PSL2(Z) implies that (h,g) and (h™',g™") correspond to equal partition
functions, since in our case all fields are invariant (self-conjugate) under charge conjuga-
tion C = S? = (ST)3. Additionally, modular transformations also mix the fermionic sec-
tors [A, A], [A, P], [P, A], while leaving the bosonic sector [P, P] invariant. In particular,
for a holomorphic VOSA of central charge ¢, the partition functions 42, 47, #Z span a
3-dimensional representation p. : PSL2(Z) — GL(3) given by

47z ) 4z 10 0
B2) () =r | 52) ) pds=[0 0 1],
4z 4z 0 1 0 (44.3)
4z Az 0 e(-31) 0
A2+ ) =p(T) | XZ | (1) s pe(T) = | e(—51) 0 0
27z 27 0 0 e(35)
Combining the above, we conclude that
Az Arg’
Ang A1
‘n _ ’ ar +b
L2 | () =ele) o (0 (52 | (S5) (1.4.4)
P A

for some (2%) € PSL2(Z) that can be determined from (4.4.2), some ¢’ € (§) and some
phase e(a) :=

Let us use the fact that the VOSA V'Ef8 is the product of a (bosonic) holomorphic lattice VOA
based on the Es lattice, and the VOSA generated by 8 real (or four complex) free fermions,
and that the symmetry § acts independently on these two algebras. As a consequence, the
twisted-twined partition functions f\Zg,i factorize as

L L L
z‘zgk = Q‘F;k B, (4.4.5)

~L Al
into the product of the twisted-twined partition functions ﬁF;k and ng of the fermionic
VOSA (with [A, A] boundary conditions) and the bosonic VOA, respectively.

We will consider the fermion and boson contributions separately, and then combine the
results. Consider first the four free complex fermions, with ¢ = 4. Let us denote the

4The notation k € Z/|§| means that k =0,...,|§| — 1.
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partition function in sector [D, 5] by BF. Then we have

A _ 9:%(7')
AF(T) - 774(7_) )
Br(r) = 50
n (4.4.6)
AR(r) = 02(7) ,

T

> 3
~— —

“(
4

P (T
PF(T): 4(7_) :07

where we write 6;(7, z) for the usual Jacobi theta functions (see §2.2.15) and set 6;(7) :=
0,(7,0). The sectors 4 F(7),% F(7)$F(r) transform as in (4.4.3) under PSL2(Z), with ¢ = 4.

3

Now consider a symmetry § acting on the fermions, with eigenvalues determined by the
representation py, and denoted (1 = e(ar) and (r = e(ar), where {r and (r are as in
(4.1.19). Then the §*-twisted §*-twined partition function in the four sectors is given by

A 2g* i (d2+5¢2’)k29%(7’,&L(k7’—|—£))0§(7—7&R(l€7—+£))
Al (1) =q"EToR e ,
2 A 2 «
iFéf (r) = q(aiﬁ-a%)z@ 05 (T, b (kt +€)2(04 (1, ar(kT + 1)) 7
n*(r)
2(+ & 2 «
’gF;}f(T) — q(aiJfazR)k? 92(7’7 0@(1@7—!—()2(02(7', OcR(ij +£)) 7
n*(7)
X a2 +a2 2 03 (1, & (k7 + £)) 02 (7, & (kT +
gF;k (1) = ¢\oLTeR* i(7,au( 77)2(;)( Rr( ) 7

where 0 < k,£ < N, and &r,r = ar,r(k) are rational numbers such that e(dr,r) = Cr,r

(4.4.7)

and —% < ark,ark < % Up to a possible redefinition (1, +> CL_I or (r < (1;17 one can
restrict 0 < &rk,ark < % Notice that the expressions (4.4.7) are in general not invariant
under k — k+ N and £ — £+ N, but they can change by a multiplicative constant phase (an
N-th root of unity). This phenomenon reflects an ambiguity in the definition of the phases
of BFgg,f, that depend on the choice of the action of (§) on the §*-twisted module.

Next we consider four free complex bosons on the Es torus, with ¢cg = 8. The bosons
naturally have periodic boundary conditions on both cycles of the torus. The corresponding
partition function is

) . 9B (T)
B(r) == e (4.4.8)
where 1
Ory(7) = 5 (02(7)° + 03(7)° + 04(7)®) = Ea(7) (4.4.9)

is the theta series of the Fg lattice, equal to the Eisenstein series of weight 4. Under modular
transformations the partition function transforms according to

B(-1)=B(r), B(r+1)=e(-3)B(7) . (4.4.10)
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A symmetry § acts on the four complex bosons in the same way as for the fermions, leav-
ing invariant the supersymmetry of the Fs VOSA. The corresponding untwisted §"-twined
partition function is thus given by

%) 1 2 1 2 1 2 1 2
0" () = g b
Bi (=4 H(l—g"qu) (1—<L“qk) (1—<§qk> (1-¢R"qk> Oaenir)

k=1

(4.4.11)

where O ,4n (1) is the theta series of the sublattice fixed by §" (except for the case that g is

of class 2F, and n = 2, wherein © , 4~ takes a slightly different meaning, as explained below).
When (7, (g # 1, one has ©,4» = 1 and the above may be conveniently written as

n(r)!

. 4.4.12
T,nar)0? (T, nar) ( )

B (1) = (6~ GG~ g

The cases for which © 4~ (7) is not identically 1 are summarized in Table 4.1, so that © 4~
is the theta series of the Dy lattice, for example, when g is of class 2A or 44 and n = 1. As
hinted above, the case that g belongs to 2F and n = 2 is a bit more subtle. This is because

§% is non-trivial, even though g has order 2. We have

§°(Va) = (=)D (4.4.13)

and the result of this is that ©,,2 should be interpreted as 658 (1) := 05(7)03(7), rather
than just the theta series (4.4.9) of Es, when g is of class 2FE.

|24 | 26 | 3B | 44 | Zaa | 3B | 6BC

Dy | AT | A2 | D, | — — —

Es | A3 | Dy | Dy | A2 —
. Dy

@

Q>
1

>
w

Table 4.1: Fixed sublattices of Fs in py, by powers of conjugacy classes of W™ (Fs)

0
The whole set of bosonic twisted-twined partition functions ng can be recovered from the

untwisted ones Bfn using the analog of (4.4.4) for the bosonic case, namely

Am

B () = e(an)BY (

g

aT—!—b)

4.4.14
ct+d ( )

for some phases e(ap) := e2™"*5.

We need to have some control over the phases e(ap) in (4.4.14). For orbifolds of holomor-
phic VOAs by cyclic groups, these phases were discussed in [132]. More precisely, if V is
a simple, rational, Cs2-cofinite, self-contragredient vertex operator algebra and g is an auto-
morphism of V' of order N then the phases are governed by a 2-cocycle representing a class
in H*(Zn,Zn) = Zn. According to Proposition 5.10 of [132], the cohomology class depends
on 2N2%p; mod N, where p; is the conformal weight of the irreducible g-twisted V-modules
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4 P peralg g D

V(g). Different cocycles in the same class correspond to different choices for the action of
(g) on the twisted sectors.

It turns out that, upon comblmng Zthe fermions and bosons into the full twisted twined
partition functions B2? o e = DFg Bg «» the phases e(ap) always cancel against the analogous
phases for the fermionic contrlbutlon so that the phases e(«) in (4.4.4) are trivial.

For example, when (7, (3 # 1, where n = ged(k, £), one obtains

g _(rE T 2 —(&7 +af)k? 77(7-)4
Bl (1) = (¢ —¢. ° B (s Rt e P ar (b T 0P antr 1) (4.4.15)
where 0 < &r,ar < 1/2, so that, combining the fermions and bosons, we obtain

Aggt _ B B 2 03(1, ar (kT 4 £))03 (1, ar (kT + £))
Ang - (CL CL ) (CR CR ) 9%(7_ CVL(kT—Fé))@%(T, CVR(]{JT—FZ)) )
Poat _ B —Big B 2 03(1, ap (kT 4 £))03 (1, ar (kT + £)) 441
Ang - (CL CL ) (CR CR ) 9%(7_ OéL(kT-FZ))@%(T,OJR(kT-FZ)) ’ ( o 6)
Agat _ B —Bio. B 20%(7' ozL(kTJré))@%(T, ar(kT +0))
M= G = GG G a0 et D)

Using the modular properties of Jacobi theta functions, it is easy to verify that (4.4.4) holds
with p. given by (4.4.3) with ¢ = 12 and with trivial phases e(a). An analogous result holds
when (F =1 or (g = 1, n = ged(k, £), although the formulae (4.4.16) are not valid in this
case.

Combining the above we may verify case-by-case that Zy o (7) = Z (Vgs; 7) whenever the
g-orbifold of the four-torus sigma model is again a four-torus sigma model, and Zg-or,(7) =
Z(Vsh; 7) whenever the g-orbifold of the four-torus sigma model is a K3 sigma model, which
is what we required to show. O

4.5 Reflection

The procedure of reflection on a non-chiral theory entails mapping all right-movers to left-
movers, resulting in a holomorphic theory that may or may not be consistent. In [115]
such a procedure was used to show that the K3 sigma model with Z§ : Map symmetry can
be consistently reflected to give the Conway moonshine module VOSA V*%. Moreover, the
necessary and sufficient conditions that allow for reflection in a general theory were studied
in detail.

In this section we demonstrate that a similar reflection relation holds between a specific 7%
sigma model and the VOSA Vgs. In other words, we verify that Property 3 of VOSA /sigma
model correspondences holds for bes and T* sigma models. To formulate this result precisely
we first note that, according to [126], there exists a unique point u* € M(T*) such that the
corresponding sigma model E(T4;u*) has Go = T24 Xy T2a. Now we may state the main
result of this section.
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4.5. Reflection

Theorem 8. The image of (T*; u*) under the reflection operation is a VOSA isomorphic
to Vg .
8

For the proof of Theorem 8 it will be convenient to use a quaternionic description of the
relevant lattices. Let H be the space of quaternions, and write i,j,k for the imaginary
units satisfying the usual quaternionic multiplication rule. Then ¢ € H can be written as
q = q1 + g2 + g3j + quk, where ¢1,q2,q3,q2 € R. We will often denote an element ¢ € H
in terms of its components (q1,¢qz,q3,q1) € R*, and write ¢ = (¢1,q2,d3,qa). We use the
following norm on H:

4
lall* ==, (4.5.1)
i=1

and the following notation for elements of H? and H**

H* > (plq) == (p1,p2, 3, Pala1, 42, q3,q4)

. (4.5.2)
H"" > (p;q) := (p1,P2,D3,P4; q1, G2, G3,q4)

where the corresponding norms are given by

4 4
Il :=> pi+a, ol => p—a. (4.5.3)
=1 =1

The following lemma details a quaternionic realisation of the Fg lattice.

Lemma 9. The eight-dimensional lattice defined by

4
s, = {\}i(cﬂb) | ai,bi € Z, Zbi €27, ai—bi=a; —b;, mod?2 V i,je{1,2,3,4}}
i=1

(4.5.4)
is a copy of the Fs lattice.
Proof. Recall that the Hurwitz quaternions are defined by
1 1\*
H=<qgeH]| (q1,92,q3,q1) EZ U<Z+§) CH. (4.5.5)

Then, according to §2.6 of [15], for example, we obtain a copy of the Es lattice in H? by
considering

[ L i —1ill1—1 .O.
AES—{\@(ZIOH\@(I [1—1) Ip,q€H}7 (4.5.6)

where we write ¢’ (p|q) := (¢'p|l¢'q). In this realisation the 240 roots of Es are expressed as
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follows,

16 roots of the form (£2,0,0,0/0,0,0,0) ,

\o}

32 roots of the form —(£1,+1,+1,+£1/0,0,0,0) , (4.5.7)

-5

192 roots of the form E(:I:l, +1,0,0/ £ 1,£1,0,0) ,

where at the first line the 42 can be in any position, at the second line the four factors of 41
can be either all at the left or all at the right, and at the last line the pair of +1 at the right
can either be at the same positions as the pair at the left or at complementary positions.

We claim that the sets defined by (4.5.6) and (4.5.4) are the same. For this note that in
terms of components we have

p(2|0) + q(1 — i|1 — i) = 2(p1, p2, p3, p4/0)

(4.5.8)
+(+ @2, 1 +92,¢3 — qa, @3 + qalqn + g2, —q1 + G2, G3 — Q4,93 + q4),

and it follows that Ag, C I'§.... To check that I'%_ | C Ag,, we define, for every %(a\b) €

FS
pi=a; — b, 1 € {172,3,4} (4.5.9)
and 1 1
q2i—1 = 5(521'71 —boi), q2i = 5(522'71 +boi), i€{1,2}. (4.5.10)

Then the condition a; — b; = a; —b; mod 2 guarantees that (p1,pz, p3,ps) € Z* U (Z + %)4,

and the condition Zle b; € 27 guarantees that (q1, g2, q3,q1) € 74U (Z + %)4. This finishes
the proof. m

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Recall that E(T4; 1) has a simple description in terms of Fock space
oscillators and vertex operators based on the winding-momentum lattice I'w_m (1) corre-
sponding to the point u € M(T?). Since all right-moving oscillators are straightforwardly
reflected to left-moving ones, the only non-trivial part of the proof is to show that the
reflection of the winding-momentum lattice I'v_m (™) is isomorphic to the Eg lattice.

At the moduli point p* of four-torus sigma model labelled by Ap,, where the symmetry
group is given by Go = 724 X, T24 in the notation of [126], the even unimodular winding-
momentum lattice is given in quaternionic language by

4
1
Fé;flm: {\/E(a,b) | ai,b; € Z, ZaiEQZ, ai—biEaj—bj mod 2 V i,j€{1,2,3,4}

i=1

(4.5.11)
Reflecting I'ez%, amounts to changing the signature from (4,4) to (8,0), by sending (a;b) —
(a|b) for all lattice vectors. This results precisely in the lattice I'S_ which according to

110



4.5. Reflection

Lemma 9 is simply the Ejg lattice. This finishes the proof.
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MORE ON (GHOSTS

In this appendix we discuss the ground states of the ghost systems in both the P and A
sectors, as well as the action of the Zs orbifold on them, as a complement to §3.2.2.

The ghost ground states

The first thing to note is that for the ghost systems the ordering prescription generally
changes when we go from the complex plane, where we use canonical ordering, to the cylinder,
where it is natural to use normal ordering. By expressing the Virasoro zero mode in terms of
the normal ordering, a constant B will appear in the following way (see [133, 134]),

LE" =) (=n) 8buc 3= (—n) buc_n: +B. (A.1)

n

We define a ground state on the cylinder as a state that is annihilated by the normal ordered
term above, so it will still have weight B. Thus, this state will not generally be the SL(2, R)-
invariant vacuum |0). In order to treat both cases together, denote the ground state(s) in
the A and P sectors of either ghost system by |Q2a) and |Qp) respectively. The constant B
depends on the central charge and the sector as

BA:ngQ, Bp =

S- Q). (A.2)

We can also compute the eigenvalues of the ground states under the Virasoro zero mode

sh L%h — Cbe/24. We notice that the -dependence cancels and we

on the cylinder L) , =

get
K h K
LEol) = —571924), L& 0l0%) = 5190), (A-3)

cyl,0 cy

for any value of cp.. Note that all the characters we use in this paper are defined in terms
of the canonically ordered operators, rather than the normal-ordered ones.

As we have mentioned in §3.2.2, the ghost systems possess a U(1) current J = — cbcs. Note
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A. More on Ghosts

that J is not a primary field, and the failure to be so is captured by the quantity Q:

Q | Jw) 9w

80 () J(w) ~ .
L)) ~ s T 2T

(A.4)

Accordingly, upon going to the cylinder the charge operator is shifted as Jey1,0 = Jo+ % This
U(1) current can be used to define an infinite family of primary operators [108], which will
eventually be related to the cylinder ground states. First we introduce a new (bosonic) field
¢ of zero weight so that J(z) = k9¢(z), which results in the OPE ¢(2)¢(w) ~ k1n(z — w).
We then define a vertex operator by V,(z) :=2e%*(*)8 which is primary and obeys the
OPEs

3ra@+Q) 9

(z — w)? + > —w Va(w),  J(2)Vg(w) ~ ﬁ Va(w). (A.5)

LE (2)Vy(w) ~

Acting on |0), this operator defines the state
lg) := V4(0)]0), (A.6)

which has the following weight and U(1) charge

LEq) = %qu(qu Qlg) , Jolg) = qlg). (A7)

These states can be regarded as vacuum states (for the Fock space) on the plane. Note that
each such g-vacuum is annihilated by a different set of modes of the ghost fields, depending
on the eigenvalue ¢. In particular, we have

b.l¢) =0 Vr>rqg+1—h,

(A.8)
crlg) =0 Vr>—kqg+h.

These vacua belong to the periodic sector on the plane if ¢ € Z, and to the anti-periodic
sector if ¢ € (Z + %) One way to see this is from (A.8), since r £ h is should always be an
integer in the periodic sector on the plane, and half-integer in the antiperiodic sector. Also
note that the vertex operators V4, interpolate between the above two sectors, and hence
can be regarded as twist fields.

The space of states on the cylinder is built by acting with the creation operators on the
ground states |Qs), where S = {P, A} denotes the two sectors. These are equal to some
of the g-vacua described above. By equating the weight Bs and the weight of the ¢g-vacua
(A.7), we find that they have the following eigenvalues under Jo:

1 1
o, = 7§Q7 qap = 75(@ F k). (A.9)
Accounting for the shift Jeyi,0 = Jo + %, the corresponding U(1) charges on the cylinder
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are

Q) =0,
Qp) = igmpy

chl,O
(A.10)

chl,O

We see that in the A sector we have a single ground state, denoted |Q%) and |QF) for the
fermionic and bosonic system respectively. In the P sector of the fermionic ghosts the zero
modes bg, co form a Clifford algebra, which results in two degenerate ground states with
opposite U(1) charges, which we denote by |Qg’i>4 They obey

bolQp._) =0, bo|Qp ) =198 _), clQb ) =0, colQp_)=]00). (A.11)

In the bosonic case, we have to single out one of the two possible ground states in the
P sector since they do not belong in the same representation of the 3, algebra. In other
words, the zero modes 3o, yo do not form an analogue of the Clifford algebra of their fermionic
counterparts, so one of them must be an annihilator. We choose to use the ground state
with positive charge for the torus characters that will follow, which corresponds to o being
a creation and (o being an annihilation operator.

The ghost orbifold

We now treat the Zs orbifold for both fermionic and bosonic ghosts, generated by (b = —b
and éc = —c. In terms of the field ¢ introduced earlier, the ghost fields are expressed
as

b(z) =S¢ *¢, c(z) =8¢*Pg,

A.12
B(z) =2 *P2 A(2), a() =2°)8 (). (412

where we introduced two auxiliary fields n, A. These form a free fermionic ghost system by
themselves, with h,x = 1 and central charge c,» = —2. They need to be introduced because
the Virasoro operator that is build out of J,

T, = - (% S 73 —%Q@J) , (A.13)

is not enough to describe the bosonic ghosts [108]. In particular, there is a “residual”
Virasoro operator T_2 that needs to be added, so that the total ghost Virasoro operator is
given by L = Ty +T_42, where T_» is precisely the Virasoro operator of the fermionic ghosts
7, A

One can implement the action of £ on the “bosonized” form of the ghost fields (A.12) in both
cases by setting

Ep=0¢+(2k+ )i, keZ,  En=n, EX=A (A.14)
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Consequently, for the vacuum state |¢) with ¢ € Z we get

o o +|q>7 qeven
€la) =€ 33 10 :{ :
“ U= o), aodd

while for g € Z + % we have

_ g spm0s gy = | Fi=D g, (- 1/2) even
Sloy =€ 22 |0 {—i(—1>k|q>, (¢ 1/2) odd

For convenience, we will choose k = 0 without loss of generality.

(A.15)

(A.16)

As we have seen, the ground states on the cylinder correspond to certain states |¢) on the

plane, with charge ¢ under Jy. Specifically, for the ground states |Q%) and |Qg,i) in the

corresponding sectors of the fermionic system, we have already seen that
o =|-2), ko =|-3@7F1).
From (A.15) and (A.16) we have that
flof) = (RIaR),  €laf L) = £emM0E L),
Combining the € action on the ground states and the oscillators, we get
%R(r¢) 1= Tea [¢ y‘fcyh“qu?w}

_ (h—13) 7510_0[ g 1/2) (17y lqn 1/2

= (_1)h_§ XF (T7 ¢+ 1/2)7

gh
RE(,) = Trr [g y7ovn0g oo
— Tz (y12 =y 1) YT -y (1-v'a"
n=1

= ()" \E(r, ¢+ 1/2),

Similarly, on the bosonic system ground states
1
%) =[-2), 19 =|-3@-n),
the orbifold acts as

il — 1 Ti(—
g%y = e (M 2)|0R),  gaB) = MM |0R).

116

)

)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)



Thus we calculate

gh
TR, 0) = Tua [ y'oviog o]

_ 67ri(7h+%)q1/24 H (1 + yqn71/2)—1 (1 + yflqnfl/Q)_l (A.23)

n=1

— (—1)*"2 (7, ¢+ 1/2),

gh
i (7,¢) = Trp [5 y‘]“yl*‘)qLcylv“}

omi(=h+1) 71/12 1/2 -1 i 1+ yq") (1-i-y*1q")71 (A.24)

n=1

= (—1)*"2 \B(r, ¢ +1/2).

Also note that all traces over the ghost Hilbert space involve defining a dual Fock

space: corresponding to each in-state |z) = [[. c_, Hj b_s,|q) there us an out-state
t

(yl = (d']| (Hic_” Hj b_sj> such that their inner product is (y|z) = 1. Due to the

charge asymmetry [108], namely J¢ = —Jo — @, the dual to the vertex state |q) is
(—q — Q] := (0] 8= D¢()8  while the duals of the oscillator modes are c', = b, and
b’, = c,. The latter is compatible with transposing the (anti-) commutation relations
{b,,c_,}» = K, and we have have L{ = Lo.
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SUPERCONFORMAL
STRUCTURE OF T

In this appendix we discuss the supersymmetry of 7. We will see that an N' = 4 super-
conformal structure is possible when we choose the ghost central charge such that the total
theory is ¢ = 6. In the following sections we will not make use of this N' = 4 structure.
First, one can equip the theory 7Ty of 12 complex fermions with the structure of N’ = 1
superconformal field theory [77]. To preserve this A/ = 1 superconformal symmetry, the
manifest Spin(24) symmetry is broken to Cop. Moreover, it is also possible equip 7y with
an N = 4 structure (at ¢ = 12), which breaks Coy symmetry to its 3-plane preserving sub-
groups depending on the choice of the SU(2) current [80]. One can also equip the whole
theory T, for certain choices of the ghost conformal weights, with an N' = 4 superconformal
symmetry by combining the N' = 4 structure of 7y with an N' = 4 structure of the ghost
theory. In particular, for our choice hg = 1/2 and hr = 1 the total theory has an N' = 4
superconformal algebra at ¢ = 12 — 6 = 6, precisely the superconformal symmetry of K3
non-linear sigma models. However, since we do not wish to break the Conway symmetry
and in particular the compatibility with the action of the umbral group 3.Ss, we will not
make use of the AV = 4 structure in the following.

If the conformal weights of a pairs of bc — v ghost system satisfy hx = hg + %, there exists
an N = 1 current of weight 3/2. In our case with two pairs of bc — 8y ghosts, it is given

by
2
1 2hr — 1
G=> (—5363‘03' + 7F2 A(Bjcs) — Qbﬂj) : (B.1)
j=1

To enhance this to N/ = 4, we need an SU(2) subalgebra generated by J; with i = 1,2, 3.
One can show that such currents are given by

1

; 1
Ji = %(ﬁl% —fav1), J2= §(ﬁ172 + Bay1), Jz= 5 By — Pay28 . (B.2)

From now on we will choose 1
hF =1 5 hB - 5, (BS)
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so that SU(2) cuurent algebra is given by

0ij kgh/Q ’iéijkjk(w)
+ .
(z —w)? z—w

Ji(2)J;(w) ~

(B.4)

with kgn = —1. Acting with the generators J; on G (with hr = 1) to construct the rest of
the supercurrents, we get

Ji(2)Gw) ~ 2 ! —Gi(w) (B.5)
One can check that, together with the Virasoro field
2 1 1
e — Z 8=bidei + 5087 — 5Bi0%:8, (B.6)
=1

the fields G, G; and J; indeed form an N' = 4 SCA with central charge cgn = —6 and level
kenh = —1. As in [80] we can further define

1
Gt .= E(G:tiGg), Gt = %

which transform in the representation 2 + 2 of SU(2), and reproduce the standard small

(Gl :|:ZG2) (B7)

N = 4 SCA. We note that the supercurrents, as well as the J;, survive the orbifold, since
they are all bilinears in the ghost fields.
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CHARACTER TABLES

Table C.1: Character table of GX ~ 3.S5, X = D§

l[9] | Fs | 1A 3A 2A 6A 3B 3C 4A 12A 5A 15A 15B 2B 2C 4B 6B 6C
[g2] 1A 3A 1A 3A 3B 3C 2A 6A 5A 15A 15B 1A 1A 2A 3B 3C
193] 1A 1A 2A 2A 1A 1A 4A 4A 5A 5A 5A 2B 2C 4B 2B 2C
[g5] 1A 3A 2A 6A 3B 3C 4A 12A 1A 3A 3A 2B 2C 4B 6B 6C
X1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 + 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X3 + 5 5 1 1 2 -1 -1 -1 0 0 0 3 -1 1 0 -1
X4 + 5 5 1 1 2 -1 —1 —1 0 0 0 —3 1 —1 0 1
X5 + 5 5 1 1 -1 2 -1 -1 0 0 0 -1 3 1 -1 0
X6 + 5 5 1 1 -1 2 -1 -1 0 0 0 1 -3 -1 1 0
X7 + 16 16 0 0 -2 -2 0 0 1 1 1 0 0 0 0 0
X8 + 9 9 1 1 0 0 1 1 -1 -1 -1 3 3 -1 0 0
X9 + 9 9 1 1 0 0 1 1 -1 -1 —1 -3 -3 1 0 0
X10 + 10 10 -2 -2 1 1 0 0 0 0 0 2 -2 0 —1 1
X11 + 10 10 -2 -2 1 1 0 0 0 0 0 -2 2 0 1 —1
X12 ° 6 -3 —2 1 0 0 2 —1 1 bis b1s 0 0 0 0 0
X13 ° 6 -3 -2 1 0 0 2 -1 1 b1 b1s 0 0 0 0 0
X14 + 12 -6 4 -2 0 0 0 0 2 -1 -1 0 0 0 0 0
X15 + 18 -9 2 -1 0 0 2 -1 -2 1 1 0 0 0 0 0
X16 + 30 —15 —2 1 0 0 —2 1 0 0 0 0 0 0 0 0
Table C.2: Twisted Euler characters and Frame shapes at £ =6 + 3, X = D¢
9] |1A 3A 2A 6A 3B 3C 4A 12A 5A 15AB 2B 2C 4B 6B 6C
nglhg | 1/1 13 2|1 213 3133 4]2 416 5|1 513 2(1212 471 6/1 6|6
Xg 6 6 2 2 3 0 0 0 1 1 4 0 2 1 0
Xg 6 6 2 2 3 0 0 0 1 1 -4 0 -2 -1 0
Xg 12 —6 4 -2 0 0 0 0 2 -1 0 O 0 0 0
o, 16 161222 1222 1331 32 2141 2141 1151 1151 1421 23 1241 112131 ¢!

I, 1241636 1828 12223262 1636 38 2444 214161121 1454 113151151 1228 212 142244 12223262 ¢
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SIGMA MODEL SYMMETRIES

In this appendix we record the cyclic symmetry subgroups of four-torus sigma models. Given
that G1 < Of (2) and Go < W (Es), we require to consider the lifts of relevant classes X
of OF (2) to WT(FEs). See (4.2.2). If there are two classes in the lift, they are denoted +X.
We use the notation 2.2C' to refer to the lift of the class 2C C OF (2) to W (Es), which is
a single class of order 4 rather than two classes £2C. We follow [127] for the naming of the

classes.

Class pe Non-trivial eigenv. in pe Class py, Eigenv. in py (twice each) o(g) orb (ES)/’&(Q)
1A - R - - 1A 1 1 1 1 1 i rk> 4
—1A - - - - —1A -1 —1 —1 —1 2 K3 rk> 4
2B - - -1 -1 2.2C e(d) e($) e($H) e($) 4 K3 rk> 4
3A - - ¢ SIRYE | 3BC e(d) e(%) e(d) e(2) 3 K3 rk> 4
—3A - - () () —3BC e(d) e(2) e(%) e(2) 6 K3 rk> 4
24 -1 -1 -1 -1 24 1 -1 -1 2 T4 Dy
—2A -1 -1 -1 -1 24’ -1 -1 1 1 2 T4 Dy
2FE —1 —1 —1 —1 2E 1 1 —1 —1 2 T4 At
—2B —1 —1 —1 —1 2B/ —1 —1 1 1 2 74 Al
3E () (%) ed) e®) 3E 1 1 e($) o(2) 3 T4 A2
3E’ e(d)y e2) o) e« 3E’ e($) e(2) 1 1 3 T4 A2
—3E e(%) e(%) e(%) e(%) —3E -1 -1 e(%) e(%) 6 K3 Ag
—3E’ e(d)y e2) o) e« —3E’ e(%) e(2) -1 -1 6 K3 A2
1A e(d)y o) b)) e 1A 1 1 e(d) e(2) 4 T4 Dy
a4’ () ed) el ed) a4’ e($) e($) 1 1 4 T4 Dy
—4A e() e(2) () e(d) —4A -1 -1 e() e(2) 4 K3 Dy

—aa’ () ) el o) —aa’ e($) e($) -1 -1 4 K3 Dy
1c e(H e($) —1 —1 8A e($) e(g) e() e($) 8 K3 AjAg
—4c e(d) e} -1 —1 —8A e($) e($) e(d) (% 8 K3 AjAg
54 e(l) ed) 2 e« 5BC e($) e($) e(2) e(2) 5 K3 Ay
547 () e(d) e« D) 5BC! (%) e($) e($) e($) 5 K3 Agq
—5A e($) e($) () () —5BC e($5)  e(F) el e($5) 10 K3 Ay
—5A e($) e($) () () —s5BC’ e(f5) el e(Hp e(%) 10 K3 Ay
6A e($) e(2) -1 —1 6BC e($) (%) e($) e(2) 6 K3 Dy
—6A e($) e(2) -1 -1 6BC’ e($) e(2) e(d) e(2) 6 K3 Dy
6D c(%) c(%) -1 -1 12BC e(f5)  e(H) (&) e(%) 12 K3 A2 Ay
—6D e($) e(%) -1 -1 —12BC’ e($5) e(%) e(15) () 12 K3 A%AQ
Table D.1




D. Sigma Model Symmetries

Note that the set of possible G1 is bijective to the set of subgroups of W (Es) which fix
an Fjg-sublattice of rank at least four, since there is always a rank four subspace in the

” records the non-trivial

representation pe in Go. The column “non-trivial eigenvalues in pe’
eigenvalues in each case. Correspondingly, the W' (Fs) classes =X in the columns “Class

pe” denotes the preimage of the class X C Og (2) under the projection 7’ of (4.2.2).

In §4.2 we have learned that this is not the only way to obtain a lift of a class of OF (2) in
the context of four-torus sigma models. In the column “Class p,” we record the preimage
of the class X C Of (2) under the projection 7’ in (4.2.2). Note that the “Class p,” and
“Class pe”, are of course related by a triality transformation which exchanges ¢s and ¢,, and
correspondingly py and pe. By (4.1.19), each eigenvalue appears twice in py, and we therefore
group the eight eigenvalues in four pairs (of identical values) and record just representative
eigenvalues for each of these pairs. In the notation of (4.1.19), the first two eigenvalues are
Cr and QL_I while the last two are (g and (jgl. The notation =X’ is a reminder that, the
same W (FEs) class can act differently on a four-torus sigma model by exchanging left- and
right-movers.

In the last part of Table D.1 we write o(g) for the order of the element in Gy (i.e. in the
faithful representation py ), while the order in G1 = Go/Zs2 (i.e. in the unfaithful represen-
tation pe,) can be read off from the symbol of the class, since G1 < OF (2). We also indicate
whether the orbifold by g is a sigma model on 7% or K3. Finally, we indicate the p.(g)-fixed
sublattice of Fjg if it has rank four, in which case the symmetry g is non-geometric and ap-
pears only at a single point in the moduli space characterized by the fixed sublattice, which
we record. If the rank is larger than four then the symmetry is geometric and it occurs in
some family of models.
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COCYCLES AND LIFTS

In this appendix, we review some well-known results about the OPE of vertex operators in
toroidal sigma models and in lattice vertex operator algebras, with a particular focus on the
so called ‘cocycle factors’. Some early references on the subject are [128, 135] in the VOA
literature and [136] in string theory; further references include [129, 132, 137]. In this section,
we adopt the language of two dimensional conformal field theory: the lattice VOA version
of our statements can be easily derived from the particular case of chiral CFTs.

Let us consider a (bosonic) toroidal conformal field theory, describing d4 chiral and d— anti-
chiral compact free bosons, whose discrete winding-momentum (Narain) lattice is an even
unimodular lattice L of dimension d = d4 + d—, whose bilinear form (-,-) : L x L — Z has
signature (d4,d_). Note that such a lattice exists only when d4 —d— =0 mod 8. If d_ =0,
then the conformal field theory is chiral, and it can be described as a lattice vertex operator
algebra based on the even unimodular lattice L. On the opposite extreme, if d4 = d— = d/2,
the CFT can be interpreted as a sigma model on a torus T%2. The supersymmetric versions
of these models are obtained by adjoining d* chiral and d~ anti-chiral free fermions. The
properties we are going to discuss do not depend on whether the toroidal CFT is bosonic or
supersymmetric, so we will focus on the bosonic case for simplicity. As discussed in §4.1.1,
for a given unimodular lattice L, there is a whole moduli space of toroidal models based on L,
whose points correspond to different decompositions L&R = II;, ®1Ilr into a positive definite
subspace II;, and a negative definite one I1g. Every vector v € L ® R can be decomposed
accordingly as v = (vr,vr). We can define positive definite scalar products on II; and on
IIr, that are uniquely determined by the condition

(AMp)=AL-pL —Ar-pr (E.1)
forall \,p € L®R.
The CFT contains the vertex operators Vi(z, ), for each A € L, with OPE satisfying
Va(z, 2) Vo (w, @) = e\, 1) (z — w) P2 (Z — @) RHRY, | (w, D) + . .. (E.2)

where ... are subleading (but potentially still singular) terms. In the chiral (d— = 0) case,
one can simply set A\, = A and Ag = 0 and similarly with u. Here, ¢ : L x L — U(1) must
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E. Cocycles and Lifts

satisfy

e\ p) = (1) Me(p, A)
e(A, p)eA+ p,v) = e\, p+v)e(p, v) (cocycle condition) (E.4)

—
=
w

N

in order for the OPE to be local and associative. Given a solution €(\, i) to these conditions,
any other solution is given by
b(A)b(k)

€A, 1) = e(A, ) b(

Bt (E.5)

for an arbitrary b : L — U(1). This change corresponds to a redefinition of the fields Vi:
if VA(z, %) obey the OPE (E.2) with cocyle €, then the operators Vi(z,2) = b(\)Va(z, Z)
obey (E.2) with the cocycle é&. Notice that if b(A 4+ p) = b(A\)b(u) for all \,u € L (ie.
if b: L — U(1) is a homomorphism of abelian groups), then € is unchanged, and the
transformation Vi (z, 2) = b(A\)Vi(z, Z) is a symmetry of the CFT, which is part of the U(1)%
group generated by the zero modes of the currents.

One can show that e(A, 1) satisfying the conditions (E.3) and (E.4) can be chosen to take
values in {£1}. Furthermore, one can use the freedom in redefining V) to set

€(0,\) = €(\,0) =1, YAe L, (E.6)

so that Vo(z,z) = 1. Cocycles satisfying this condition are sometimes called normalized.
Finally, one can choose € such that!

eA+2v,p) =N\ u+2v) =€\, pn) , YA pveL. (E.7)

If we require all these conditions, then e determines a well defined function L/2L x L/2L —
{1}

More formally (see for example [128]), the cocycle e represents a class in the cohomology
group H?(L,Z/27Z), where the lattice L is simply regarded as an abelian group. These
cohomology classes are in one to one correspondence with isomorphism classes of central
extensions

1—>2/27 —-L—L—1,

of the abelian group L by Z/27Z. The specific cohomology class that is relevant for the
toroidal CFT is uniquely determined by the condition (E.3). Using this formalism, the CFT
can alternatively be defined by introducing a vertex operator Vj for each element Nel
in this central extension. Then, the OPE of Vj(z,2)Vs(w,w) is analogous to (E.2), with
€(A, )Vatp replaced by V5, (here, X - fi denotes the composition law in the extension L,
which is possibly non-abelian). Our previous description of the CFT can be recovered by
choosing a section e : L — L and defining the vertex operators Vy := V,(,) for each A € L.
This leads to the OPE (E.2), where the particular cocycle representative € depends on the

1 for all A € L. With this choice
V_x. Another common choice is

LOne further condition that is usually imposed is €(—\, \)
the general relation (Vy)T = e(\, =A\)V_y simplifies as (Vy)T
e(—\A) = (71)A2/2. We will not impose any of these conditions.
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choice of the section e via e(A)e(u) = e(A, p)e(A + w).

An automorphism g € O(L) can be lifted (non-uniquely) to a symmetry § of the CFT such
that

I (2,2)) = &N Va0 (2, 2) (E.8)
where £, : L — U(1) must satisfy
§sWN& () _ e\ p) (E.9)

g+ n)  e(g(N),9(w)

As shown below, £, satisfying this condition always exists, and any two such &g, ég are related
by £4(\) = p(g9)€y(\), where p: L — U(1) is a homomorphism. Furthermore, one can always
find &, taking values in {£1} and such that

£4(0) =1 (E.10)
GoA+2m) =6,(0)  VAueL. (E.11)

With these condition, £, induces a well-defined map &, : L/2L — {£1}.

A constructive proof of these statements is as follows (see [129]). Choose a basis ey, ..., eq
for L. Define an algebra of operators v; = 7e,, 4 = 1, ..., d, satisfying?
=1 =Dy, (E.12)

and for every A = 37 a;e; € L, set

a = Ayl (E.13)
Then, the following properties hold:
Yo =1 Trtou =" N = (1) (E.14)
Define € : L x L — {£1} by
YA = €A 1) vatu (E.15)

and, for every g € O(L), define &, : L — {£1} by

Yoo = €M Vglery  Volen) - (E.16)

It is easy to verify that € and £, satisfy all the properties mentioned above. In particular,
this choice of &, is such that £(e;) = 1 for all the basis elements e;. It is clear that v, and
therefore also € and &;, depend on A only mod 2L.

The constraints that we imposed on &, still leave some freedom in the choice of the lift.
There are two further conditions that one might want to impose:

2A slightly modified definition sets ’Yi2 = (—1)6?/2. With the latter choice, one obtains €(\, —\) =

(—1)/\2/2 for all A € L, and v, depends on A mod 4L rather than 2L. However, both € and £, are
still well defined on L/2L.
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E. Cocycles and Lifts

(A) One might require § to have the same order N = |g| < oo as g. Notice that if § is a
lift of a g of order N, then

gV (Va) = Es(N&a(g(N) -+~ &g (g™ T )V (B.17)

so that §~ =1 if and only if
E(NE(9(N) &gV '(\) =1 WAeL. (E.18)
(B) Alternatively, one might want £,(\) to be trivial whenever X is g-fixed
&N =1 Vael?, (E.19)

or, equivalently,
g(VA) =V VYA eLd. (E.QO)

Lifts satisfying this property are usually called standard lifts.

Proposition 10. Every g € O(L) admits a standard lift g, i.e. such that §(Vi) = Vi for
all x e LY.

e(g(X),9(1))
€(A,p1)

&g to LY is a homomorphism LY — {41}, and it is trivial if and only if it is trivial on all

Proof. For all A\,u € L7, one has obviously = 1. Therefore, the restriction of
elements of a basis of LY. By the construction described above, one can always find a lift §
such that &g is trivial for all the elements of a given basis of L. Choose a basis of L7; since
L9 is primitive in L, this can be completed to a basis of L. By choosing &, to be trivial on
the elements of this basis, we obtain a lift § satisfying condition (B). O

Standard lifts are not unique, but they are all conjugate to one each other within the symme-
try group of the CFT, as the following proposition shows. (The following two propositions
are proved in [132].)

Proposition 11. Let g € O(L) and g, §’ be two lifts of g with associated functions &g, &, :
L — {£1}. Suppose &, = &, on the fized-point sublattice L. Then § and §' are conjugate
in the group of symmetries of the CFT.

Since the order and the twined genus of a lift § depends only on its conjugacy class within
the group of symmetries, this proposition then tells us that these quantities only depend on
the restriction of &; on the fixed sublattice L?. In particular, when g fixes no sublattice of
L, all its lifts § are conjugate to each other.

The following result gives, for the standard lifts (i.e. for £, = 1 on LY), the order of § and
k
the action of every power §* on the corresponding g"-fixed sublattice L9

Proposition 12. Let g € O(L) and § be a standard lift (i.e. €g(N) = 1 for all X € L9).
Then:

1. If g has odd order N, then §*(Vy) = Vi for all X € L. In particular § has order N.
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2. If g has even order N, then for all A € Lgk,
Vi for k odd
~k )
Vi) = E.21
(%) { (—1)“’916/20‘))‘& for k even. ( )

In particular § has order N if (A, gN/?(\)) is even for all A\ € L and order 2N otherwise.

For practical applications of this proposition it is important to have an easy way to determine
if (A, g™/2()\)) is even for all A\ € L. Consider g of order 2 (these are the important cases,
since g™/? is always of order 2). One has

1+g

A+g)?=2(—2()° mod2. (E.22)

(g) = :

N | —

Since HTQ is the projector onto the g-invariant subspace LY @ R of L®R, by self-duality of L,
one has 1% (L) = (L%)*. Therefore, the existence of A € L with (), g(\)) odd is equivalent
to the existence of v € (L9)* with half-integral square norm v> € 3 + Z. This condition is
quite easy to check, once the lattice LY is known. When the fixed sublattice LY is positive
definite, the order of the standard lift can also be related to properties of the lattice theta
series Or¢ (T) = Z)\ELE, qAQ/2

r is the rank of LY, for a congruence subgroup of SL3(Z). Its S-transform 0p¢(—1/7) is

. This is well known to be a modular form of weight r/2, where

proportional to the theta series 619y« (7) of the dual lattice (L9)*. If (L) contains a vector
2

v with half-integral square norm v? € % + Z, then the g-series of 09y« (T) = Zve(w)* qv7
contains some powers ¢ with n € iZ. As a consequence, the standard lift of g of order 2
has order 2 if and only if the theta series 0r¢(7) is a modular form for a subgroup of level 2,
while it has order 4 if it is only modular under a subgroup of SLz(Z) of level 4.

When g has even order N and its standard lift § has order 2N, it is sometimes convenient to
choose a non-standard lift § with the same order N as g. The next proposition shows that
for N = 2 such a lift always exists.

Proposition 13. Let g € O(L) have order 2. Then, there is a lift § of g of order 2.

Proof. Let §’ be a standard lift of g. If (A, g()\)) is even for all A € L, then by the previous

proposition §’ has order 2 and we can just set § = §’. Suppose that (X, g()\)) is odd for some

(Atg))? Atg()?
A € L. One has (=1)*9) = (—1) e , and the map X + g(A) — (—1) 2 s a

2
homomorphism (1+ ¢g)L — {£1}. Thus, there is w € ((1+ g)L)* such that (—1) (o))
(=1)w A+9) for all X € L. Notice that (1 + g)L C L9, so that (L9)* C ((1+4 g)L)*. On
the other hand, it is easy to see that w € (L7)*, i.e. that (v,w) € Z for all v € LY. Indeed,

if v € LY, then either v € (1 4 g)L (in which case, (v, w) € Z is obvious) or 2v € (1 + g)L

@v)?
(because 2v = v + g(v) for v € L9). In the latter case. one has (—1)®V%) = (—=1)" =2 =1,

so that (2v,w) must be even, and therefore (v,w) € Z. Finally, by self-duality of L, for

every w € (LY)* there always exist w € L such that (w,v) = (w,v) for all v € L?. In
particular, (—1)@A9N) — (_1)*9)) for all X € L. Then, we can define the lift § by
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E. Cocycles and Lifts

Eg(N) = £,(N)(=1)™N | where &, is the function corresponding to a standard lift. Thus, for

all A e L,

52 (A, g(N)
=&4(A A =&\ A))———= E.2
3(4) = &GV = &0+ g LAV, (8.2
= €A+ g (1) IO )R v (5.24)
where we used the condition (E.9), and the fact that £ (X + g(\)) = 1, since A + g(A) € L?
and ¢’ is a standard lift. We conclude that § has order 2. O
Applications

Let us now apply the results described in the previous section to the cases we are interested
in, namely the sigma model on T* and the SVOA based on the Fjg lattice. As explained in
the article, there is a correspondence between automorphisms g of the lattice I'** lifting to
symmetries that preserve the N' = (4, 4) superconformal algebra, and certain automorphisms
of the lattice Fs. One needs to choose a lift of these lattice automorphisms to symmetries of
the corresponding conformal field theory or SVOA. As explained above, a lift is determined,
up to conjugation by CFT symmetries, by the restriction of the function &, to the g-fixed
sublattice. The most obvious choice is to consider the standard lift both for the sigma model
and for the SVOA, so that &, is trivial on the fixed sublattices. In general, the order of the
standard lift is either the same or twice the order of the lattice automorphism. Therefore,
it is not obvious a priori that the standard lifts in the sigma model and in the SVOA have
the same order; we will show now that this is always true in the present the case.

Let g be an automorphism of the lattice T**. We denote any such automorphism by the
class of py, as in Table D.1. Using Propositions 11 and 12, the orders of the standard lifts
are as follows.

o Classes of odd order N (1A, 3BC, 3E, 3E’, 5BC, 5BC’): since N is odd, the standard
lift has also order N. This conclusion holds also for the lift of the corresponding
automorphisms of the Fg lattice.

e Class -1A: an automorphism g¢ in this class flips the sign of all vectors in I'**. There-
fore, it acts trivially on T'%*/2T**  so that one can set £,(A\) = 1 for all A € "%,
and this lift has obviously order 2. Since g fixes no sublattice, any other lift of g is
conjugate to the lift above and has order 2. This also implies that any lift § of a lattice
automorphism g of even order N, and such that g™ /2 is in class -1A, has order N.
Indeed, §V/? is a lift of a symmetry in class -1A, so that it must have order 2. This
argument applies to all g in the classes 2.2C, -3BC, -3E, -3E’, 8A, -8A, -5BC, -5BC’,
12BC, -12BC’. An analogous reasoning holds for the automorphism of the lattice Fg
corresponding to class -1A, which flips the sign of all vectors in Es. This automor-
phism has no fixed sublattice and acts trivially on Fs/2FEs, so that one can take &
to be trivial. The same reasoning as for the sigma model case shows that all lifts of
this symmetry are conjugate to each other and have order N = 2. More generally,
all automorphisms of Fs in the classes 2.2C, -3BC, -3E, -3E’, 8A, -8A, -5BC, -5BC’,
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12BC, -12BC’ lift to symmetries of the SVOA of the same order.

e Classes 2A and 2A’: the fixed sublattice is isomorphic to the root lattice D4, and its
dual Dj is an integral lattice. In particular, D} contains no vector of half-integral
square norm, and therefore the standard lift has order 2. Furthermore, for any g of
even order N such that ¢™/? is in class 2A or 2A’, one has that (), g"/?()\)) is even
for all A, so that a standard lift has the same order N. This applies to all g in the
classes 4A, 4A’, -4A, -4A’, 6BC, 6BC’. For automorphisms of the Eg lattice in classes
2A and 2A’, the fixed sublattice is also isomorphic to Dy, so the standard lift has the
same order N = 2. The same reasoning holds for the standard lifts of automorphisms
in the classes 4A, 4A’, -4A, -4A’, 6BC, 6BC".

« Classes 2E and 2E’: the fixed sublattice is A7, and its dual (A?)* contains vectors
of square length 1/2. Thus, the standard lift has order 2N = 4. The corresponding
automorphism of the Es lattice also fixes a sublattice isomorphic to A}, so its standard
lift has order 4.

The conclusion of this analysis is that, both for toroidal sigma models and for the Fg SVOA,
the only case where the standard lift has twice the order of the corresponding lattice auto-
morphism is for the class 2E.

If g is in class 2E, the twined genus for the standard lift (which has order 4) involves the
theta series of the A} lattice
©41(7) = 03(27)" . (E.25)

This theta series (and the corresponding twined genus) is a modular form of level 4. This is
consistent with the analysis above.

One can also focus on a (non-standard) lift of order 2, with £4(\) = (fl)Az /2 for all A €
(1 + ¢g)T**. For any g of order 2, one has (1 4 ¢)I'** = 2((I'**)?)*; in particular, for g in
class 2E or 2F’, one has (I'**)9 = A, so that (14 g)T** = 2(A1)* = AT = T9. For this lift,
the twining genus involves the theta series with characteristics

1
Ouie, (M= (1) =0,(r+ 5) = ba(2r +1)" = ba(2r)* (E.26)

1
4
AEAT

which is modular (with multipliers) for T'o(2) (its S-transform is proportional to 64(7/2)%).
As for the EFs SVOA, since the sublattice fixed by the automorphism is also isomorphic to
Ay, one can choose an analogous (non-standard) lift with the same &, on the fixed sublattice,
which is also of order 2.

For a general class, it is difficult to define a reasonable correspondence between non standard
lifts in the sigma model and the Es SVOA, since the fixed sublattices are, in general, not
isomorphic.
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SUMMARY / SAMENVATTING

Mathematics lies at the heart of theoretical physics. Whether used as a strong basis, as
an inspiration, or merely as a tool, it has always played a part in shaping our theoretical
understanding of not only what nature does, but also what it can or cannot do. This
is especially relevant for fields like string theory that can not easily get an experimental
treatment, where theories are less restricted and mathematics is essential in exploring many
possibilities that may ultimately be of physical significance. And even if they end up not
having such significance, simply interacting with ideas from physics has the potential to
boost mathematical research significantly as well.

In this thesis we have discussed some examples that lie in the intersection between math-
ematics and physics, admittedly mostly through the lens of the latter. We have seen how
one can use chiral conformal field theories along with careful orbifolding and projecting,
tools familiar to a physicist that is occupied with two-dimensional conformal field theories
in general, in order to “engineer” an umbral moonshine module, something that one could
say is in itself of pure mathematical interest. We have also seen how a relatively simple
chiral conformal field theory, or vertex operator algebra, contains information about a whole
family of sigma models, non-chiral conformal field theories from the realm of string theory,
giving rise to an interesting correspondence that draws inspiration and resources from both
sides.

As is evident, chiral conformal field theories play an important role in this thesis. They
constitute a prime example of a tool that is brought into the spotlight thanks to the in-
teraction between moonshine and string theory. Being essential ingredients of the former,
representations of finite groups and modular objects have also featured prominently in most
of our discussions. The (twined) partition function in particular, is a central object that ties
in all of the above areas and provides us with a tangible way to build new constructions
and complete many associated proofs. Together with several others we have used, all of the
aforementioned fields and tools come together to form an exciting and still ongoing chapter
in the conjoined story of mathematics and theoretical physics.
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Summary / Samenvatting

Wiskunde vormt de kern van de theoretische natuurkunde. Of het nu fungeert als sterke basis,
als inspiratiebron, of slechts als hulpmiddel, het heeft altijd een rol gespeeld in niet alleen het
het begrijpen van de natuur, maar ook in wat wel of niet zou kunnen. Dit laatste is vooral
relevant in vakgebieden die niet gemakkelijk kunnen worden geverifieerd met behulp van
experimenten, zoals snaartheorie, waar theorieén minder begrenst zijn en wiskunde essentieel
is bij het verkennen van de vele mogelijkheden die uiteindelijk van natuurkundig belang
kunnen zijn. En zelfs als blijkt dat zo’n betekenis afwezig is, kan de connectie met ideeén
uit de natuurkunde mogelijk het wiskundig onderzoek ook aanzienlijk stimuleren.

In dit proefschrift worden enkele voorbeelden besproken die op het grensvlak tussen wiskunde
en natuurkunde liggen, weliswaar meer bekeken vanuit het oogpunt van de tweede. We
hebben gezien hoe men chirale conforme veldentheorieén kan gebruiken in combinatie met
zorgvuldig orbifolden en projecteren, hulpmiddelen die bekend zijn bij een fysicus die zich
in het algemeen bezighoudt met tweedimensionale conforme veldentheorieén,om een umbral
moonshine module te “maken”, iets wat op zichzelf een puur wiskundige belang heeft. We
hebben ook gezien hoe een relatief eenvoudige chirale conforme veldentheorie, of vertexop-
eratoralgebra, veel informatie bevat over een gehele familie van sigma modellen, niet-chirale
conforme veldentheorieén uit de wereld van de snaartheorie, dit geeft een interessante wis-
selwerking tussen beide kanten.

Het is duidelijk dat chirale conforme veldentheorieén een belangrijke rol spelen in dit
proefschrift. Ze vormen een belangrijk voorbeeld van een hulpmiddel dat in de schijn-
werpers is gezet door de interactie tussen moonshine en snaartheorie. Representaties van
eindige groepen en modulaire objecten zijn ook prominent aanwezig in de meeste discussies,
aangezien ze een essentieel rol spelen in moonshine. Met name de (twined) partitiefunctie is
een centraal object dat alle bovengenoemde gebieden met elkaar verbindt en biedt ons een
tastbare manier om nieuwe constructies te maken en veel bijbehorende bewijzen te voltooien.
Alle bovengenoemde vakgebieden en hulpmiddelen, en nog een aantal andere die onbenoemd
zijn gebleven, komen samen in een opwindend en voortdurend hoofdstuk in het verstrengelde
verhaal van de wiskunde en de theoretische natuurkunde.

Vertaald door Solange Van Velzen.
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