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Abstract

In recent years, machine learning (ML) has become increasingly important across science,
industry, and daily life. Simultaneously, quantum computing has emerged as a field with
the potential to revolutionize computation. This thesis explores the application of ML to
quantum and optical systems. We present two main results: the proposal of a quantum
recurrent neural network (QRNN) architecture and the use of reinforcement learning (RL)
for experimental fiber coupling, a common task in quantum labs.

When data is quantum in nature, quantum ML techniques may be better suited than clas-
sical approaches. One such technique is the feed-forward dissipative quantum neural net-
work (DQNN), which learns general quantum channels from independent and identically
distributed data. However, many quantum tasks involve sequential data, such as learning
quantum state evolution under time-dependent Hamiltonians or interacting with quantum
environments. In classical ML, such tasks can, e.g., be handled by recurrent neural networks
(RNNs). This thesis proposes a fully quantum RNN structure designed for qudits, named
dissipative quantum recurrent neural network (DQRNN). Extending the DQNN framework
to the recurrent case, DQRNNs can approximate general causal quantum automata. We
present both quantum and classical training algorithms for DQRNNSs, showing that the re-
source requirements scale with the width of the underlying DQNN but not with its depth.
Numerical results show that DQRNNs solve memory-dependent tasks beyond the capacity of
DQNNSs, generalizing well from limited data. One promising future application of DQRNNs
is model-based RL in quantum environments.

Although RL is inherently well-suited for control tasks, RL agents for applications in optical
experiments have mostly been trained in simulation. Taking the example of fiber coupling,
we show that it is feasible to apply RL directly in experiments. This saves us the time
of extensive system and noise modeling. Still, intermediate challenges needed to be over-
come such as time-consuming training, noisy actions, and partial observability. For shorter
training times, we use a simple virtual testbed for environment tuning and algorithm selec-
tion. We demonstrate that an RL agent can learn to overcome noisy actions and partial
observability. In four days of training time directly in the experimental setup, using sample-
efficient algorithms such as truncated quantile critics (TQC) and soft actor-critic (SAC), it
learns to achieve coupling efficiencies comparable to human experts.

This thesis takes key steps toward integrating machine learning in quantum control, intro-
ducing DQRNNs that could serve as a powerful tool for modeling quantum environments
and highlighting the role of RL in experimental physics. By showing how RL can be applied
successfully directly in an optical experiment using the example of fiber coupling, this work
paves the way for applying RL to more intricate quantum systems.

Keywords: Machine learning, quantum computing, recurrent neural networks, reinforce-
ment learning, fiber coupling
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Introduction

In the last years, machine learning (ML) has become more visible in our everyday life through
tools [1-5] like ChatGPT [6,7], or DeepL [8]. However, the use of ML, a subfield of artificial
intelligence (AI) that relies on data rather than explicit instructions to perform tasks, is
not always immediately apparent in our daily lives. Applications include personalized rec-
ommendation systems [9-11], traffic estimation [12], social media algorithms [13-15], credit
fraud detection [16,17], and credit scoring [18,19]. This increasing presence in our everyday
life ultimately even led to the development of new laws that regulate the use of Al based on
risk factors [20].

Furthermore, ML is applied in various industries and scientific disciplines, including political
and social sciences [21-23], medicine [24-26] and biology [27, 28], chemistry [29-31], and
physics [32-34]. In 2024, both the physics [35] Nobel prize and half of the chemistry [36] one
went to ML methods and applications. As anticipated, given its broad range of applications,
the field of ML includes a diverse array of methods. Generally speaking, one can divide ML
into three fields: supervised, unsupervised, and reinforcement learning [37]. In supervised
learning (SL), specific function approximators are fit to a given set of input-output pairs [38].
This can, for example, be applied to breast cancer diagnosis [39,40] or to predict whether
an error has occurred in a quantum error correction (QEC) code [41]. Unsupervised learning
refers to ML methods dealing with an unlabeled data set, such as for denoising images [42],
or by clustering the data, i.e., sorting it into groups [37]. The field of reinforcement learning
(RL) is the most general of the three, in the sense that supervised and unsupervised learning
tasks can be written as RL tasks. An agent interacts with its environment by receiving
rewards and performing actions that can change the state of the system [43]. Applications
include playing games like Go [44, 45] or correcting errors in a QEC code [46]. Neural
networks (NNs) are a type of function approximator used in all of the three disciplines [37,47].
A particular area of interest in this thesis is the application of ML to quantum mechanical
systems [48-50].

The simulation of many quantum mechanical systems is hard for classical computers, in the
sense that more than polynomial resources in system size would be needed [51]. Hence, in
1982, R. Feynman proposed the idea of using a fixed quantum system, a quantum computer
(QC), to simulate any quantum system [52]. Instead of relying on electrical circuits to
perform calculations, QCs use quantum circuits to perform computations [51]. However,
quantum mechanical tasks are not the only ones hard to perform on a classical computer
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with current algorithms. There are a number of quantum algorithms that offer a speed-up
over current classical algorithms for specific tasks, given access to a QC [53-55]. This field of
research has become increasingly important in recent years, as Moore’s law, which describes
the prediction from 1965 [56] that the computing power doubles every 1.5 to two years at
constant cost, is faltering [57]. So, next to improving classical processors, research now also
focuses on finding other computational resources, in particular quantum processors. In the
last years, significant progress has been made on the experimental realization of QCs [58-63].

Due to the relevance of ML, it is not surprising that several quantum algorithms for ML
are proposed [64-66]. So, not only is ML used to analyze quantum mechanical data, but
quantum algorithms are used for ML. Quantum machine learning (QML) is the field on the
intersection of quantum information (QI) and ML. It is split into four subfields characterized
by the type of data (first letter) and algorithm (second letter) used (see, e.g., [66—68]). In the
context of QML, the term CC ML describes studying classical data using classical algorithms
employing methods such as tensor networks [69] that are inspired by quantum mechanics.
CQ ML employs quantum algorithms for studying classical data with the main aim of
speeding up classical ML [70-72]. Examining quantum systems using classical algorithms,
for example, for quantum error correction (QEC) [73-76] or simulating quantum many-body
systems [77], falls into the field of QC ML. When analyzing quantum data, it can be helpful
to employ quantum ML algorithms [78-81]. This field is called QQ ML. An example of
a quantum neural network (QNN) architecture in the context of QQ ML is a dissipative
quantum neural network (DQNN). These networks are able to approximate any map from
quantum states to quantum states, called quantum channels [82]. In this thesis, we want
to focus on using quantum or classical ML algorithms for quantum mechanical or optical
problems.

One of the most typical problems in theoretical physics is determining the time evolution of
a system given an initial state or values of variables fully categorizing it [83]. A prominent
example is the movement of celestial objects, where the state is fully described by the
momenta and positions of the celestial objects [84,85]. One can think of two main variants
using SL in such a task: either predicting the future value of a variable based on its past
values or predicting the value of a correlated variable using the historical data of the first
variable. These time series prediction tasks fit into a broader class of SL problems for which
the standard assumption of independent and identically distributed (i.i.d.) data points does
not hold. Those data sets in which one data point depends on other data points in the
set are called sequential [86]. Such tasks can, for example, be found in natural language
processing (NLP) [87,88]. In ML, the standard NN architecture for analyzing sequential
data, especially time series, is a recurrent neural network (RNN). In these networks, when
inputting data sequentially, the output at time ¢ will not only depend on the input at time
t but also the earlier inputs at times ¢/ < ¢ [89].

Quantum processes, for which outputs at time ¢ only depend on inputs at times t' < t,
are referred to as causal quantum automata. These processes can be written as quantum
channels with memory, which are similarly constructed from quantum channels [90] like
RNNSs from NN blocks [89]. A standard example of a quantum channel with memory is the
delay channel, for which the output at time ¢ is given by the input at time ¢ — & [90].

In order to approximate such causal quantum automata, we propose a type of quantum
recurrent neural network (QRNN) structure called dissipative quantum recurrent neural

network (DQRNN). Those are based on a certain type of QNN, called DQNN, first presented
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in [82]. Some of the total output of the DQNN is used again as part of the total input
of the DQNN to form a DQRNN. This process of iterating over an underlying DQNN is
similar to quantum channels with memory and classical RNNs. Since DQNNs are able to
approximate any quantum channel [82], and causal quantum automata can be written as
quantum channels with memory [90], DQRNNs are able to approximate any causal quantum
automaton.

Building on this structure, we present quantum and classical training algorithms for both
a local and global cost using quantum data as input and output. These algorithms scale
with the width of the underlying DQNN, but not its depth. In the global case, the quantum
algorithm additionally scales with the number of iterations over the DQNN, and the classical
algorithm with the bond dimension of the input and output states. One can either see the
classical algorithms as a simulation of training a DQRNN on a QC or as using a tailored
network architecture when given classical representations of quantum states. They exhibit a
similar structure to the training algorithms of classical NNs, consisting of feed-forward and
backpropagation parts. We evaluate the performance of most classical training algorithms
numerically on two key examples: the delay channel and the time evolution of a state under
a time-dependent Hamiltonian.

Beyond QNNs, ML techniques can also be employed in the control of experimental setups
needed for the implementation of QCs. In the realization of many of the current candidates
for QCs, complicated laser systems are used [91]. These laser systems regularly have to be
aligned and/or controlled. Fibers are a standard tool to guide a laser beam from one place
to another in many of those laboratories [91-94]. If a fiber is used after the free propagation
of light, the optical path has to be aligned so that the laser beam is guided through the fiber.
This is called fiber coupling, and the efficiency of this procedure is given by the percentage
of light exiting the fiber compared to the power which is put into the fiber.

While RL is the ML technique most suited for control tasks [43], it has mostly been ap-
plied to simulated or toy environments [95-99]. RIL agents are rarely trained directly in
experiments [99] as this induces several challenges, such as time-consuming training, noise,
and partial observability [97,98]. The latter means that the state of the system is not fully
observable, and only some features of the state can be observed [47]. If those challenges
are overcome, RL could be used to automate alignment in experiments, saving time for the
human experimenters.

In this thesis, we discuss how an RL agent successfully learns to couple a laser beam into a
fiber. It starts from a low coupling efficiency, and uses two mirrors with two motorized axes
each to reach a coupling efficiency comparable to human experts. For it to be successful, we
had to deal with three main challenges. First, the actuator movements are imprecise, which
makes our actions noisy and leads to us not being able to rely fully on the absolute position
of the actuators in the reset method. We find that using a reset method that mostly relies
on relative positions and training the agent directly in the experiments helps deal with this.
Second, each environment step takes about a second in the experiment. This is a hard con-
straint set by the actuators we used and leads to time-consuming training. We implemented
a simplified virtual testbed, not including noise, to test out several different environment
designs and algorithms in a short time. As we ultimately train our agents directly in the
lab, we had to pay special attention to requiring a limited number of agent-environment
interactions. Hence, we focus on algorithms reusing samples from those interactions, like
soft actor-critic (SAC) [100,101], truncated quantile critics (TQC) [102], and twin delayed

3



1. INTRODUCTION

deep deterministic policy gradient (TD3) [103]. Third, we built the environment in a way
that the agent can only observe the power behind the fiber, not the absolute position of
the actuators, as we want to be able to realign the experiment if the optimal positions
change. This makes our environment partially observable and underdetermined, as we only
have a scalar feedback for four actuators. Using the virtual testbed, we can design a fitting
observation.

Outline

As we need basics from both ML and QI, we will introduce them in the first chapters.
Depending on their background, the reader can skip one or both of them.

Chapter 2 introduces ML. Unsupervised learning is not needed in the later parts of the
thesis, so we focus on SL and RL. In Section 2.1, we establish a SL. framework and discuss
(recurrent) neural networks and their training algorithms which we need for two reasons.
First, introducing the classical variant facilitates a clearer understanding of DQRNNs. Sec-
ond, NNs are used in most modern RL algorithms, which we employ to fiber couple. Those
algorithms will be discussed in Section 2.2 after defining the RL framework.

We lay the foundations needed from QI in Chapter 3. Especially sections 3.1-3.5, 3.7,
and 3.10, where we recap basic definitions, are aimed at people not familiar with QI. To
better understand the general structure of DQRNNSs, we introduce quantum channels with
memory. For SL of quantum states, we need distance measures and a way to sample quantum
states. Additionally, we establish the notion of tensor networks (TNs) to deal with entangled
states more efficiently. Lastly, we explore QML, particularly DQNNs.

In Chapter 4, we propose a recurrent version of DQNNs as presented in [104]. After showing
that they can be used to approximate any causal quantum automaton, we compare them
to other QRNN architectures. We then define loss functions for different kinds of training
data, for which we develop training algorithms. Using classical training algorithms, we
present numerical results. The derivation of the classical training algorithms can be found
in Appendix A.

We discuss using RL for fiber coupling in Chapter 5 as presented in [105]. After introducing
the task of fiber coupling from an RL perspective, we design the RL environment. Using a
virtual testbed, we tune environment parameters and select training algorithms. We then
finally present results from a fiber coupling experiment in a laboratory. Further results can
be found in Appendix B.

The thesis finishes with a conclusion and outlook in Chpter 6.
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Classical Machine Learning

Consider the task of developing a computer program that distinguishes handwritten digits.
It is hard to determine which pixels exactly have to be of a certain color, especially if
multiple people write the handwritten digits not perfectly. Still, for handwritten digits,
we can at least look at the picture and know the right answer. That makes it possible to
label thousands of pictures with the correct answer. For other tasks like learning how to
play games such as Go or Football, it is not so clear what the label would be. Even as a
human expert, determining how to act in every situation is difficult. So, how do humans
learn how to evaluate such complex situations? Instead of being exactly instructed on what
to do in every possible situation, we get to see a lot of examples, e.g., handwritten digits,
or repeat games many times and maybe observe other people’s gameplay to determine the
best strategies. As humans, we learn from examples and interactions with our environment.
The field of machine learning (ML) imitates this kind of behavior - taking a lot of examples,
called experience, and using them to predict labels of later seen inputs, cluster data, i.e.,
sort data into groups, or improve performance in a game [37,38].

We can sort most ML algorithms into three main categories by their human supervision
requirements: supervised, unsupervised, and reinforcement learning. In supervised learning
(SL), the learner or agent is given a labeled data set or, more generally, an input-output
set and must find a function fitting the data. Then, the agent predicts the output/label
of future instances. Examples of this are classification tasks, like recognizing handwritten
digits, and regression tasks, like predicting the measured power in an optical experiment.
In wunsupervised learning, the agent receives an unlabeled data set. Here, tasks include
clustering or estimating the density distribution of data. In reinforcement learning (RL), the
agent can interact with a given environment, e.g., a game, by performing actions, observing
the state of the environment, and being rewarded for these actions [37].

In this thesis, we focus on supervised and reinforcement learning, so in this chapter, we
highlight the parts of these fields we later need and disregard unsupervised learning at this
time. In Section 2.1, we introduce SL and then provide an overview of RL in Section 2.2.

2.1 Supervised Learning

In supervised learning (SL), we are given input-output pairs and want to find a map from
the inputs to the outputs fitting the data as best as possible. One example of this is the
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recognition of handwritten digits. Here, inputs consist of pictures of handwritten digits,
i.e., matrices of pixels, and the output consists of the corresponding digits. We are given
a number of examples of input-output pairs, 60000 if we are using the standard data set
MNIST [106]. Then, we fit function approximators like neural networks (NNs) to this data
and try to predict the outputs of unseen inputs. Employing these function approximations,
we can then automate tasks like the recognition of handwritten digits [107].

This section is structured as follows. First, we give a formal introduction to the SL frame-
work in Section 2.1.1. Then, we consider different losses to assess the performance of a given
function approximation in Section 2.1.2. These definitions reveal different kinds of errors,
which we discuss in Section 2.1.3. We then discuss today’s most common function approx-
imator, NNs in Section 2.1.4. This includes the definition of perceptrons and feed-forward
NNs, showing that they are universal approximators, their training algorithm, and the defi-
nition of recurrent NNs. In Section 2.1.5, we discuss hyperparameters, i.e., parameters that
have to be chosen before training a function approximator. Furthermore, we discuss how to
handle data sets and discuss the generalization behavior of approximators in Section 2.1.6.

2.1.1 Formal Framework

We formalize the SL framework by adapting from [38,89,108]. Let X and ) be measurable
spaces, where X, also known as domain, feature or instance set, is associated with the
input system and ), also known as label set, with the output system. A SL algorithm
A uses a data set S = (z;,¥;)i=1,.. N € (X X V)N as input and returns a hypothesis
hs : X — Y. For now, we assume that the data in S is independent and identically
distributed (i.i.d.) w.r.t. a probability measure P on X x ). We call the set of functions
available to the learning algorithm F C M(X,Y) the hypothesis class, where M(X,Y) is
the set of measurable functions from X to Y. With every SL task, we associate a loss
function I : M(X,Y) x (X x V) — Ry that can be used as a measure of performance for a
hypothesis h € F. We write P 4[B] for the probability of an event B, given the constraint
A and E[X] for the expectation value of a stochastic variable X. Furthermore, we write
a ~ P to express that a is sampled from X x Y w.r.t. P. We define

Rp () = Equpll(h. ()] = | | dwdy U, (2,9) (2.1.1)

to be the risk or true error of h and, given a set S = ((z;,9:))i=1,..n ~ P~ we define

N
Rs(h) 5= Cs(h) i= - > Ulh, ) (2.1.2)

as the empirical risk or cost, which is often used as an approximation for the risk. In short,
we sometimes write

C; = l(h’7 (mia yl))
Given X, Y and P, we say a hypothesis h* € M(X,)) is optimal iff it minimizes the risk.
Its risk is also called the Bayes risk

Rp=Rp(h)= min_ Rp(h). (2.1.3)

A learning algorithm A : (X x )V — F uses a data set S = (x;, Yi)i=1,. N ~ PN as input
and returns a hypothesis hg € F. The goal of the learning algorithm is to minimize Rp(hg)

6



2.1. Supervised Learning

by finding h*. To do so, it only has access to S, not P, so Rp(hg) cannot be directly
evaluated. Instead, it has to rely on Rs. Additionally, the optimal hypothesis h* could even
be unreachable to the learning algorithm as it could not be in the hypothesis class F chosen
by us [38,89,108].

2.1.2 Loss Functions

Common loss functions for classification tasks, i.e. SL tasks, where the label set ) is finite,
are the the 0-1-loss [38,108]

lofl(hv (.’If,y)) =1- (Sh(x) y

where 0 is the Kronecker delta, or the relative entropy or Kullback—Leibler (KL) diver-

gence [109]
ZU
l )In —==
KL (R, Z ply)yin h(z)
yey

if we focus on learning a target probability distribution p over the target set [109]. Other
choices include losses usually used for regression, which are SL tasks with V) = R. Given a
metric space ) with metric d, two very common loss functions are the quadratic loss

lSQ(hv (.’17, y)) = d(ya h(l‘))Q

or the absolute error loss
lae(h7 (.’177 y)) = d(y’ h((E))

For YV = R with the usual metric, the associated costs are called the mean squared error
(MSE) and the mean absolute error (MAE), respectively [38,108,110]. In the MSE, outliers
get more weight compared to the MAE, which can make it less robust. On the other hand,
the MAE is not differentiable at y = h(x). This can make it hard to use for optimization.
By combining the two, using the Huber loss

1 _ [ zd(y, h(@))?, it d(y,h(z)) <&
ln (h, (Z‘,y)) - { H(d(y,h(ﬁC)) _ %KJ), else

where k € Rs¢, we can use the advantages of both [111,112].

2.1.3 Error Types

As discussed before, the learner’s task is to get the optimal hypothesis h* € M(X,)) for
the underlying probability measure P on X x ) using a given loss function [ : M(X,Y) x
(X x Y) — Ry as its measure of performance. It does not have access to P and usually not
all of M(X,Y) to do so, but only S = (z;, y;)i=1,... N ~ PN and functions in the hypothesis
space F C M(X,Y). We write Bg £ for the hypothesis minimizing the empirical risk on
F and h’% p for the hypothesis minimizing the risk on F . The error €, i.e. the difference
between the risk Rp(h) for a picked hypothesis h and R}, can then be decomposed into
three parts

¢ = Rp(h) — R
= Rp(h) — Rs(h) + Rs(h) — Rs(h5 p) + Rs(h p) — Rp(h%.p) + Rp(h¥ p) — Rp

gen opt approx _ opt gen approx
<eFsptersph) tergp e =ergplh)+2e5gp+e
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with the approzimation error
approx __ * *
erp = Bp(hzp)— Rp,

the optimization error

P p(h) = Rg(h) — Rs(hy p),

and the generalization error
&% p = sup [Rp(h) — Rg(h)].
heF

The approximation error serves as an indicator of how well the hypothesis class F can ap-
proximate the optimal hypothesis 2% p. The optimization error quantifies how good the
hypothesis h found by the optimization process is compared to ideal empirical risk mini-
mization. The generalization error serves as an indicator of the quality of the approximation
of the true risk by the empirical risk on the hypothesis class, which in turn can indicate
how well a trained hypothesis can generalize to unseen data. When minimizing the approx-
imation error by choosing a larger hypothesis class, we usually get a higher generalization
error. This is known as the bias-variance trade-off, as a general hypothesis class usually is
not very biased but the trained hypotheses vary a lot, and a very simple hypothesis class
is very biased to its definition but the trained hypotheses are nearly the same. We usually
want to balance both extremes [89,108].

2.1.4 Neural Networks

A commonly used hypothesis class, inspired by models of the human brain, are neural
networks (NNs). The way humans and animals process information is very different from
how conventional digital computers do so. Depending on the task, this leads to an advantage
or disadvantage of conventional digital computers compared to humans. In highly simplified
terms, the brain is given a structure built from connected neurons and learns to establish
some connections via experience and interaction with the environment. In 1943, McCulloch
and Pitts published a mathematical formalization of a model of human neurons [113]. Based
on their results, (artificial) neural networks (NNs) were built to model human information
processing. NNs should process different information paralleled and acquire knowledge from
an environment via learning, and its knowledge should be stored in the connection strengths
(weights) between neurons [114].

Nowadays, (deep) NNs are the outstanding technique, not only in SL but in ML in gen-
eral [89]. They are used, e.g., for the classification of images [115, 116], natural lan-
guage processing (famously in ChatGPT) [7,117], for playing games (in the context of
RL) [44,45,118-120], and in various fields of science [41,121,122].

Perceptrons

Based on the work by McCulloch and Pitts, Rosenblatt developed a certain type of artificial
neuron [123] starting in the 50s and 60s. His model is called the perceptron, Rosenblatt
perceptron or Rosenblatt neuron depending on how narrow the perceptron is defined. The
model is the following:
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Figure 2.1: Perceptron with inputs z = (2;)i=1,..m € {0,1}", a bias b € R, weights
w = (W;)i=1,....m € R™ and an output a, ,(z) € {0,1}. The map consists of weighing the
inputs, summing them up, adding the bias, and then using the step function to calculate
the output.

Given m € N inputs & = (@;)i=1,....m € {0,1}", weights w = (w;)i=1,...m € R™ and a bias
b, the output is given by

(S ) 2 [ L D w520
wp(z) =0 (Z;wlxﬂrb) = { 0. S s +b <0 (2.1.4)

where 0 is the step or Heaviside function. The perceptron is depicted as shown in Fig-
ure 2.1 [107,114].

This output rule has one main problem that makes the learning process hard: the Heaviside
function is not continuous, i.e., a small change in the weights or the bias can lead to a big
change in the output. This is why other functions are used instead of the Heaviside function
in most cases today [107]. In the following, we adopt the convention of also calling these
neurons perceptrons. In general, we have

awp(T) = ¢ <Z wiz; + b) = p(2) (2.1.5)

where ¢ : R — R is called the activation function and z = 27;1 w;x; + b. As explained in
more detail later, we usually choose ¢ to be non-linear and continuous, where we need the
non-linearity for the universality of neural networks and the continuity for most learning
algorithms. Examples of activation functions with a similar global form (compared to the
step function) are the hyperbolic tangent (tanh) [89] or the sigmoid or logistic function

1

Psigmoid,a (Z) = m .

Neurons with this activation function are often called sigmoid neurons [114]. These functions
are well suited if we want our outputs to be confined to an interval, but they have the
disadvantage of vanishing gradients for large input variables, i.e., ¢'(z) — 0 for |z| > 1. If
one wants to deal with this issue and does not need the outputs to lie in a given interval,
piece-wise linear functions can be a good choice. An example of one such activation function
is the rectified linear one ¢reLu(z) = max(0,z), whose neurons are often called rectified
linear unit (ReLU) [108].



2. CLASSICAL MACHINE LEARNING

input layer hidden layers output layer

Figure 2.2: Classical feed-forward neural network. A ff NN consists of connected
perceptrons.  With neuron j in layer [ , we associate a bias b}, and a weight w!; with

every connection to a node k in layer [ — 1. Neuron j in layer [ outputs aé, where aé. =

@ (ZZZ? wékaﬁc_l + bé) for I > 1 using activation function ¢'.

Feed-Forward Neural Networks

These perceptrons are then connected in layers to get a basic (or vanilla) neural network
(NN). The first layer is called the input layer (layer 0). These neurons do not have any
input, and they output the input of the NN. The last layer is called the output layer, and its
output is the output of the NN. The layers in between are called hidden layers. A connection
between two neurons means that the output of one neuron is used as input for the other
neuron.” For now, let us assume that information flows from layer [ — 1 to layer [ (or left to
right). NNs with this property are called feed-forward (ff ) NNs. If all neurons in each layer
of a NN are connected to all neurons in the next layer, we call it fully connected (fc) [89,107].

We use the following notation: Let ¢! be the activation function and m; be the number of
neurons in layer [ € {0, ..., L + 1}. The upper index of a variable always signifies the layer,
and the lower index is the position of the perceptron in that layer (counted from the top).
For perceptron j € {1,...,m;} in layer I, we write al; for it’s output, b} for it’s bias, and w!,
for it’s weight associated with the connection to neuron k in layer [ — 1. This means we have

mp—1
U1 Uo1-1 gl
a; = g wigay - +b; .
k=1

n cases where it is unclear which neuron is the output and which is the input neuron, we will indicate
the direction of the information flow with an arrow.

10
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We can also vectorize this notation by writing
al bt w W
1 1 11 Imi_q
al = . s bl = s Wl = . (216)
™my my myl st mpmg—1
The forward process then becomes
al _ SDl (Wlal—l + bl) _ Sol (Zl) , Zl _ Wlal—l + bl (217)
where ¢! acts component-wise. We can formalize NNs with the following definition [107].

Definition 2.1 (Fully connected feed-forward neural network (adapted from [89])). Let L €
N, m = (my)i=o....n+1 € NF*2 o = (p!)i—0.. 41 where o' :R =R forl e 1,..,L+1. On
vectors the activation functions (@l)l:07,,,7L+1 are applied component-wise. An architecture
(m, ) defines a function class of fully connected feed-forward neural networks given by

Py = { Iy R RO (0°) = bt = ! (Wl 1)
Wwhe Rm>mi—1 pl e RM | =1, L+ 1,

W=WY2 141, b= (bl)l—l,...,L+1}~

The width of the network is maxco,... r+1 M, and it’s depth is L. We say the network is
shallow if L = 2 and deep if L > 2.

Universality

Neural Networks are said to be universal approrimators, i.e., given a high enough number of
neurons, they can approximate any continuous function to any given degree. The following
theorem is an example of a universal approximation theorem, showing that when using
any non-constant, bounded, monotonously increasing, and continuous function on [0, 1] as
activation function, we can approximate every continuous function by a neural network with
1 hidden layer and a linear output layer.

Theorem 2.1 (Universal Approximation Theorem [114]). Let C(K) denote the continuous
functions from a set K to R. Let ¢ € C(R) be non-constant, bounded and monotonously
increasing, mo € N. For all f € C([0,1]™°) and € > 0, there is m; € N, a, € R™ and
w € R™ x R™° such that

|F(-T17 ~--7xm0) - f(xla "'axm0)| <e€
with

ma mo
F(:z:l,...,xmo) :Zalqﬁ waijrbz
=1 j=1

The presented theorem considers the bounded depth (number of layers) and arbitrary-width
(maximum number of neurons per layer) case. Other theorems for this case can be found
in [124-127]. But there are also a number of theorems for the arbitrary depth and bounded
width case [128-130] and even for the bounded depth and width case [131,132].

11
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Gradient Descent

Often, when trying to minimize the cost given a certain NN architecture, the learner has to
do so w.r.t. a large number of parameters. Hence, it usually cannot just set the gradient to
zero as we would do for analytically finding the extrema since it takes too long to solve the
equation. Instead, one usually employs a kind of iterative algorithm. Variants of gradient
descent are the standard learning algorithms for NNs [107]. But it is, more generally, an
algorithm for numerically finding local minima of differentiable functions and, in the context
of convex unconstrained minimization, even the global minimum [133].

First let us define the problem: Given a function f : R™ — R with input v € R, we want to
find
v* = arg min f(v).
g min f(v)

An iterative algorithm is an algorithm that iteratively outputs a sequence of points v(¥),
ie., v =g ((v(k_i))izl m) for some function g : R — R™ and some m € N. One

easy example for an iterative algorithm is to determine a step direction Av¥)| a step size
or, in the context of ML, learning rate n and choose v**t1) = y*) 4 nAy(*)  Algorithms
like this solving a minimization problem are called descent algorithms. The gradient is a
common choice for the step direction, i.e., we take Av*¥) = —Vf (v(k)). This algorithm is
called gradient descent [133].

Translated to NNs, this means that the weights and biases are updated in each step according

to

o7 U5 j e
o, ol

l l
wjk — w]k —

In practice, if we are given a big training set of ten- or hundred-thousands of training samples,
it can take long to calculate the gradient of the cost, as defined in Equation (2.1.2),

N
1
VuCs(w,b) = N Z Vool (Pwbs (i, 4i)) -

=1

A more efficient method, called stochastic gradient decent, divides the training set randomly
in sets S = (51, ..., Sm), called mini-batches, of size n € N each, called mini-batch size. If n
is big enough, it is

Vw,bCS(w, b) ~ waszi (w, b)

The training is then divided in epochs. Each epoch consists of steps in which the weights
and biases are updated according to the i*® mini-batch. In doing so, fewer terms of the
cost have to be computed per update. The epoch is finished after a step with each of the
mini-batches was performed [107].

Backpropagation

As NNs can have a high number of parameters, we need a more efficient algorithm than brute-
force computing all derivatives. Such a method is backpropagation. It was first introduced in
the 70s [134] but only fully appreciated after a 1986 paper [135]. When changing the variable

zé slightly by Azg7 the cost will approximately change as %(’;ls Azé». Hence, we introduce
J

J l
8zj

12
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as the error in neuron j in layer [. We can easily derive the error in the last layer using the
chain rule as”

gt 9Cs _ 9Cs da; ™ 8Cs 1
T 9 gkt g Al geltt ()
J J J J

)

Using the Hadamard product “o,” i.e., the elementwise product (sot); = s;t;, we can write

this as

dL+1 = VaL+1CS [e] (pl (ZL+1> . (2.1.8)
Again, using the chain rule, we can trace the error back through the network via

d = (W) d ) oy () (2.1.9)

for I = 0, ..., L where AT denotes the transpose of a matrix A. This is why the algorithm
is called the backpropagation algorithm. We then can write the partial derivatives over the
weights and biases as

0Cys . 0Cg

— =d., —> =dd! (2.1.10)
! ’ l k
ov} J owly, J

foralll=1,..,L+1,5=1,...my [107].

Recurrent Neural Networks

Until now, we looked at ff NNs, that is, NNs without loops, where information flows from one
layer to the next. In contrast, NNs with loops of any kind are called recurrent neural networks
(RNNs). In RNNs [89], the input of a layer [ can also depend on the outputs of layers [ to
L+ 1 and not only 0 to I — 1 (see Figure 2.3 (a)). This means that computations of the
internal state of the NN {al}l:07,,_, L+1 cannot simply be performed layer-by-layer. Instead,
we introduce a time parameter t. In each timestep ¢ — ¢ + 1, all possible computations to
the current internal or hidden state h; of the RNN are applied to get a new hidden state
hit1. We can make this clear by unfolding the RNN as shown in Figure 2.3 (b). If our
input data is a sequence, where we input an element ai® in each time step, the output at
time ¢ can depend on all inputs ai? for ' < t. We can thus say that it exhibits a memory.
Because of its definition, RNNs are especially useful for learning sequential data, like time
evolution [136], speech recognition [137], the prediction of electric power demand [138], and
machine translation [139]. Particularly, in natural language processing (NLP) RNNs were
widely used [140].

By assigning a hidden state of the RNN, we can simplify Figure 2.3 to Figure 2.4 [141].
For vanilla RNNs, all of the cells are basic ff NNs. Essentially, an unfolded RNN can be
seen as a very deep fI NN sharing a lot of parameters between layers. As such, a learning
algorithm often used is backpropagation through time [142]. On the downside, this also
means that vanilla RNNs, like the ones discussed until now, share a major problem with
deep ff NNs: The gradients are often either exploding or vanishing, i.e., get extremely large
or small with rising depth of the NN, which makes such NNs hard to train. This is why
special structures, like long short-term memory (LSTM) cells [143] or gated recurrent units
(GRUs) [144], were introduced [89]. The two most used RNN structures today are GRUs
and LSTM cells. Instead of the basic fI NNs, the cells in Figure 2.4 are then replaced by
LSTM cells or GRUs. As we will only explore vanilla quantum recurrent neural networks
later on, we will not further discuss these more advanced structures.

2Note that we do not use Einstein’s sum convention here.

13
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(a) (b)
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Figure 2.3: Classical fully connected recurrent neural network. Panel (a) shows the
compressed version of a fc RNN with two input and three output neurons and no hidden
layers. Panel (b) shows the same RNN in its unfolded version. The colors indicate the
different weight matrices: blue for the weights between the 0" and the 1% layer, purple for
the ones between the 15 and 0*" layer and orange for the ones between the 15* and 1%t layer.

2.1.5 Hyperparameters

In the last section, we saw that there are some parameters, like the learning rate or NN
architecture, one has to choose before training the NN. Parameters like this that have to be
chosen and are not determined by the learning algorithm are called hyperparameters [145].
For the rest of this section, we adapt from [107].

In general, these parameters include the loss function and the encoding of the input and
output on which we train the hypothesis. In some cases, these are very clear, but in other
cases, that is not the case. For example, when training a NN to recognize handwritten
digits, one can either choose the outputs to be natural numbers from 0 to 9 and the loss to
be the 0 — 1—loss, or the outputs to be probability distributions over those numbers and the
loss to be the quadratic loss or the cross-entropy.

When using (stochastic) gradient descent, the learning rate n and the number of steps or
epochs used are standard hyperparameters. If the learning rate is chosen too high, the
optimizer usually just jumps over the optimum in some steps, which leads to oscillations
in the cost during training. On the other hand, choosing it too low leads to the training

14
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Figure 2.4: Classical recurrent neural network structure. General structure of RNNs.
The left-hand side shows the compressed version and the right-hand side shows the same
unfolded version. For vanilla RNNs, the squares are simple NNs, but they can also be more
complicated, e.g. LSTM cells or GRUs.

being very time-consuming. This sometimes makes it beneficial to adjust the learning rate
gradually during training. Furthermore, if we choose the number of epochs or training
steps to be too low, we will interrupt training before it is finished. However, choosing a
too high number of steps or epochs can lead to overfitting, i.e., the hypothesis better fits
the training data but does not generalize well to unseen data. This issue can be overcome
by implementing a termination condition known as early stopping, i.e., interrupting the
training when the cost on a data set not used for training (the validation set, as discussed
in Section 2.1.6) saturates. Of course, the learning rate and number of training steps or
epochs are related: the lower the learning rate is, the higher the number of steps or epochs
has to be, as training, generally, takes more time with a lower learning rate (if we do not
change any other parameters).

More specifically, when using stochastic gradient descent, the mini-batch size is a hyper-
parameter. If we choose it too big, the updates of the weights and biases become too
time-consuming. In contrast, if we make it too small and use efficient methods such as
specialized libraries for matrix multiplication, which we usually do, we will not take enough
advantage of them. When using a NN as a function approximator, its architecture, i.e.,
its width, depth, and activation functions, and the initialization of weights and biases are
hyperparameters.

Most people use some kind of heuristics like the ones presented above for choosing the
hyperparameters. Still, the coupling between the different parameters can make the choice
difficult. One strategy is to start with simpler data, e.g., only 0’s and 1’s for handwritten
digit recognition or less noisy data, and a simple NN architecture - first, we want to learn
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anything. Then, we optimize the hyperparameters for this easier case. We then make the
task gradually more difficult and optimize the other hyperparameters in each step.

Of course, there are also automated techniques. The easiest is a simple grid search, i.e., an
algorithm searches through the hyperparameter space by trying out parameters in a kind
of grid, always raising them by a specific amount. But there are also more sophisticated
methods, like the Bayesian approach. However, usually, the optimizing process is never
really finished: There are almost always better hyperparameter combinations to find. To
determine when we are finished, we need to weigh the potential better performance of a
model against the resources needed for further optimization.

2.1.6 Generalisation and Data Sets

As a measure of performance for a hypothesis, we are often not only interested in its cost but
also in how well the hypothesis works on unseen examples compared to already seen ones,
which provides an estimate for the generalization error. Given a hypothesis class F, a data
set S and a learning algorithm A, : (X x Y)Y — F depending on some hyperparameters v,
we often split the data set into three different data sets: The training set, the validation set
and the test set. Here, the training set is the set used as input by the learning algorithm,
i.e., the set used by the learning algorithm to fit the parameters of the classifier. In the
case of neural networks, this would be the set on which the weights and biases are learned
using backpropagation. The wvalidation set is the set we use to tune the hyperparameters
v of the learning algorithm. In the case of NNs, as discussed earlier, this would, e.g., be
the selection of the architecture, the learning rate, or the mini-batch size. The test set is
only used once in the end to measure the performance of a fully specified hypothesis. We
do this so we get an unbiased measure of how well our hypothesis generalizes. In total, we
would use several different learning algorithms A, , ...., A, on the training set leaving us
with different hypotheses h, g+, ...., hy,, 6+, then choose the hypothesis h,« g« with the best
performance on the validation set and then evaluate the performance of h,« g- on the test
set to get a final performance measure. After using the test set, the hypothesis or learning
algorithm should not be updated anymore [146].

If the data set is small, we sometimes do not have enough data points for a separate validation
set. We then, e.g., can use a method called cross-validation or other information criteria
further explained in [37].

Now, let us consider reinforcement learning, which is more general but still uses a lot of
concepts from SL, as we will see later.

2.2 Reinforcement Learning

Currently, reinforcement learning (RL) is the ML form closest to the way humans and
animals learn. In RL, we are given an agent in an environment that can interact with this
environment. The agent could, e.g., be a chess player, and the environment could be the
chess board with all the figures on top of it and the opposing chess player. At a time ¢,
the environment is in a certain state; in our example, that could be the position of the
chess pieces on the board. The agent can perform actions, e.g., moving a chess piece, which
can change the state of the environment. Sometimes, the agent receives a reward from the
environment, e.g., a +1 for winning and a —1 for losing. The agent then wants to maximize
his received cumulative reward, called return. This back-and-forth between the agent and
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Figure 2.5: Reinforcement Learning Framework. Given the environment is in state Sy,
the agent can choose to perform the action A;. The state afterwards is S;+1 and the agent
receives the reward R;. This back-and-forth process is repeated in a loop.

the environment is depicted in Figure 2.5. The setup shares many similarities with the field
of optimal control, in which a controller is designed to maximize or minimize a measure of
the behavior of a dynamical system controlled by the controller. In fact, many of the earlier
developments in the field of RL stem from the field of optimal control, e.g., Markov decision
processes (MDPs) and some of the earlier algorithms like dynamic programming for solving
those. In a control setting, the agent would be called the controller, the environment would
be the controlled system or plant, and the action would be called the control signal. In the
remainder of this thesis, we will stick to the RL terms [43].

Especially in games, RL was used with a lot of success: Famously, in 2016, as the first
program AlphaGo beat the world champion Lee Sedol in Go 4-1, although it was seen as
the hardest classical game for AT [44,45]. AlphaGo used a combination of SL from human
expert movements and RL from self-play; the later published AlphaGo Zero relied solely on
RL for reaching superhuman play [45]. Even more general, AlphaZero is not specialized in
only one game but was shown to beat state-of-the-art programs specializing in chess, shogi
and Go [147]. But RL was used in not only classical but also computer games: Already in
2015, an RL agent reached superhuman levels in a number of Atari Games [148]. Two years
later, AlphaStar [120] defeated the world’s strongest player in Starcraft II, and another year
later, OpenAl Five [119] defeated the world champions in Dota 2 [47].

Apart from games, AlphaZero was successful in a completely different area: AlphaTensor,
built on AlphaZero, was used to discover faster algorithms for matrix multiplication than
the ones previously known [149] and optimize quantum circuit design [150].

For the basics of RL, we would recommend [43] or [151]. For a more practical approach,
see [47] or [152]. We now first describe the formal RL framework in Section 2.2.1 and then
explain different RL algorithms in Section 2.2.2.

2.2.1 Framework

The framework can be split into two parts: first, the description of the environment, detailing
how the states change and which rewards are given under an action. This is done with the
help of a Markov decision process (MDP). Second, the description of the agent, detailing
which action it outputs in which state, which can be described using a policy.

The Environment

First, we define the environment. To do so, we need to define stochastic processes.
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Definition 2.2 (Stochastic process [153]). A stochastic process is a family S = {S;}ier of
random variables indexed by a parameter (usually the time) t € T, where T is the index set.
Its values are called states, and the set of possible states is called the state space S.

Examples of stochastic processes modeling physical systems are the weather, particle motion,
or the number of cars parking in a parking lot at any given time [153].

In the following, we will take the parameter ¢t to be the discretized time. For simplicity,
we write down the definitions for finite action, reward, and state spaces. However, these
definitions are easy to generalize by taking integrals instead of sums and “<” instead of “="
in probability distributions.

A special case of a stochastic process is a Markov process, where the next state depends on
the current state and only the current state, not on the full history of states:

Definition 2.3 (Markov process (adjusted from [153] to fit [43])). A Markov process is a
stochastic process S = { St }rer with

P[St+1 = 8t+1|St = St] = P[St+1 = St+1|51 = 81y .eny St = St] VteT

where T € NU {0}, S; € S, and S is a finite set. The Markov process is called time-
homogeneous iff

P[StJrl = 3t+1|5t = St] = P[Sl = 31|SO = 80] VieT.

A time-homogenous Markov process is then fully defined by the tuple (S,p) and a starting
state sg or a distribution q over them where

o S is a finite set of states, and
e p is a transition probability defined via

p(s'|s) =P[Siy1 =5|Si =] Vs, s€eS.

From now on, we will assume that our Markov processes are time-homogenous. With the
following definition, we can now incorporate actions and rewards into our Markov processes.

Definition 2.4 (Markov decision process (MDP) (adjusted from [43] to fit [151, 153])).
A Markov decision process (MDP) is a time-homogeneous Markov process with associated
stochastic variables Ay € A and Ry € R in each time step. Thereby, the actions A; can
influence the transition probabilities, and the rewards R; have real values, i.e., R CR. A
discounted MDP has a discount factor v € [0,1) associated with it. For an undiscounted
MDP we set v =1. For an MDP, with an episode ending after T € NU {co} timesteps, we
define the return at time t as

T
Gt =Riy1 +7Riq2+ ... = Z ’ykit*le.
k=t+1

We call an MDP with T € N episodic, and one with T = oo continuing. A finite MDP is
fully defined by the tuple (S, R, A,p,v) where
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e S is a finite set of states,
e R CR is a finite set of rewards,
o A is a finite set of actions,

e p is a transition probability defined via
p(s',r|s,a) = P[Siy1 =8, Rip1 =7|S; = s, Ay = al.
forall s,s € S,r € R,a € A, and

e v €[0,1] is a discount factor.

We included the discount factor so that the return can be properly defined for sequences
that do not terminate, i.e., continuing tasks have to be discounted, and to be able to give
immediate rewards more weight than later rewards. The return can be defined sequentially,
i.e., we have

T T
Z AR = Ry 4y Z ARt 2Ry = Ryt + Gy
1 k=t+2

MDPs are the usual formulation of environments in a mathematical framework. Often,
instead of giving a transition probability as a probability over new states and rewards, we
are given a state-transition probability

p(s'|s,a) == P[Siy1 = 8|Sy = s, Ay = a (2.2.1)
and an expected reward for state-action pairs
r(s,a) = E[R|Si—1 = s, A1 =a (2.2.2)
or state-action-state pairs
7(s,a,s") == E[R|Si—1 = s, As—1 = a,S; = §']. (2.2.3)

Fully known finite MDPs can be mathematically solved, in the sense that we find an op-
timal policy, as we will discuss later. To do so, we only need to know the functions in
Equation (2.2.1) and Equation (2.2.2) or (2.2.3). However, Definition 2.4 makes it clearer
how to sample from an MDP, i.e., what happens in each agent-environment interaction.
Furthermore, we can write

(8'|s,a) Zp (s',r|s,a) (2.2.4)
reR
a) = Z r Z p(s',r]s, a), (2.2.5)
reR s'eS
7 (s,a,s") Z p > /1"|s a , (2.2.6)
reR ‘S a

i.e., we can write p(s’|s,a), r(s,a), 7(s,a,s’) in terms of p(s’,r|s,a), which makes Defini-
tion 2.4 more general [43].
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Sometimes, however, the underlying state is unknown to the agent, and the agent only has
access to observations that are not a full Markov state. An environment like this can be
described by a partially observable Markov decision process (POMDP), which is defined in
the following [154].

Definition 2.5 (Partially observable Markov decision process (POMDP) (adjusted to fit [43]
from [153,154])). A finite partially observable Markov decision process (POMDP) is a finite
MDP with an additional stochastic observable variable, called observation, O; assigned in
every time step. It can be defined by a tuple (S, R, A, Q,p,~) where

o S is a finite set of states,
e R CR is a finite set of rewards,
o A is a finite set of actions,
e ) is a finite set of observations,
e p is a transition probability defined via
p(s',r,0ls,a) = P[Si11 =8, Riy1 =1,0011 = 0|S; = 5, Ay = a
foralls,s € S,re R,ae A,0e€, and

e v €[0,1] is a discount factor.

For POMDPs, we can introduce the notion of a belief state, which is a probability distribution
over the states in S signifying the agent’s belief on which state it is in. We can think of this
as the state of a belief MDP [154].

We now have several ways on how an environment can be represented — depending on the
information known to the agent, either as an MDP or a POMDP.

The Agent

Given an environment, the agent can decide what action to perform in the state it is in. We
call the function it uses to make that decision its policy.

Definition 2.6 (Policy [43]). Let A, S be finite sets. A policy 7 is a map from a state s € S
to a probability distribution over the action space A, denoted as 7(+|s), i.e., we have

w(-]s) : A — [0, 1]

with

Z w(als) = 1.

acA

We write
w(al|s) = P[A; = a|S; = s].

We say 7 is deterministic iff for all s € S there exists a; € A such that w(als) = 6a,q,-
Then, we often write w(s) = as.
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2.2. Reinforcement Learning

Note that the state in this definition does not have to be a Markov state; it can also be
an observation in a POMDP. The agent then wants to find the policy that maximizes the
expected return in each state. To define the optimal policy, we need the notion of value
functions [43].

Definition and Proposition 2.1 (Value functions [43,155]). Given a finite MDP with
tuple (S, R, A,p,v), and a policy w, we define the state-value function v, to be

T
Un(s) == Ex [G4] S = 5] = Ex [ D T RS = S] ,
k=t+1

and the action-value function ¢, to be

T
qr(s,a) == E [G¢|S; = 5, Ay = a] = E, [ Z ’Yk_t_le|St =54 =a
k=t-+1

They fulfill the Bellman (expectation) equations

ve(8) = Z w(als) Z p(s',rls,a) (r + yva(s')),

acA s’eS,rerR
q=(s,a) = Z p(s',r|s, a) (r +7 Z 7r(a/|s’)qﬂ(5/,a/)> .
s'eS,reR a’€A

We define the advantage function to be

Aﬂ'(s’a) = Q‘rr(sva) - vrr(s)'

Proof. The Bellman expectation equation for v follows from
UW(S) = Eﬂ— [Gt|St = S} = Eﬂ— [Rt+1 + ’YGt—&-lISt = S]
= D mlals) D0 pls'rls.a) (r +1Ex [Graa| Sear = 5)

acA s'€S,reR
=Y wlals) Y p(sirls,a) (r+qva(s).
acA s'€S,reR
The Bellman expectation equation for g follows similarly. O

By their definition, a value function tells us the expected return in a given state or of a
given state-action pair. As such, they inform us how valuable a certain state or state-action
pair is. Thus, it is no wonder that we can use them to define a notion of optimality.

Definition and Proposition 2.2 (Optimality [43]). Let (S, R, A, p,~) define a finite MDP.
Given two policies m and 7', we say m > 7 iff v.(s) > vy (s) Vs € S. There always is at
least one policy w, s.t. me > m for all other policies w. Such a policy is called an optimal
policy. In case we do not want to distinguish them, we denote all optimal policies by m,;
otherwise, we add an index. We define the optimal state- and action-value functions to be

v.(8) = maxvg(s), ¢«(s,a) =maxq:(s,a).
T ™
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2. CLASSICAL MACHINE LEARNING

We then have
Vs = Un,, qx = qnr,

for all optimal policies ©*. The optimal value functions obey the Bellman optimality equa-
tions

v4(s) = max Z p(s',rls,a) (r + yvi(s')),

acA
s'eS,reR

— / / /
¢(s,a) = Z p(s',rls, a) (r—l—’yir,lgﬁq*(s,a)).

s'eS,reR

This gives us a notion of optimality when considering different policies [43].

2.2.2 Algorithms

In RL, the agent has to find the optimal policy. The different algorithmic approaches to do so
can be sorted into the following categories. The algorithms mentioned in this categorization
as examples will be explained later in this section.

Model-based vs. model-free In very few cases, we know the MDP we want to solve.
This can be seen as a model of the environment. Then, we can use the information provided
by the model to find the optimal policy, e.g., with dynamic programming. Sometimes, we
are provided with an approximate model of the environment, and sometimes, an algorithm
solves the RL task by building/learning a model and then optimizing the policy in that given
model. Algorithms like this are called model-based. Other algorithms, known as model-free
algorithms, do not make use of any model and are trial-and-error learners interacting directly
with the environment. Most algorithms we will discuss here are model-free algorithms. We
can also use hybrid algorithms, i.e., combinations of model-free and model-based algorithms.
Examples include Dyna-Q and 12A, which we will not discuss in this section [43,47].

Value-based vs. policy-based Some algorithms, known as value-based algorithms, first
learn the value function and generate policies based on that. This is usually done iteratively.
They are commonly built on dynamic programming (for small state and action spaces) and
SARSA. Most algorithms today use NNs to approximate the Q-function, in the form of
deep Q-networks (DQNs), as a basis. Other algorithms directly optimize the policy w.r.t.
the return. They are called policy-based. REINFORCE forms the foundation for most of
these algorithms. Both have their advantages and disadvantages: Policy-based algorithms
are more general and hence easier to use in infinite action spaces (at least in their standard
definition, the above-mentioned value-based algorithms cannot be used for infinite action
spaces), and they are guaranteed to converge to a local optimum. On the other hand, value-
based algorithms are, generally speaking, more sample-efficient and have a lower variance.
Again, there are a lot of hybrid models that make use of both of these methods, e.g., actor-
critic methods like A2C, PPO, and SAC [47].

On-policy vs. off-policy Some RL algorithms are trained on-policy, i.e., the current
policy can only be updated with samples generated from that same policy. Other algorithms,
however, can also be trained off-policy. That is, the current policy can also be updated
with samples generated from other policies. Off-policy algorithms are generally much more
sample-efficient as training samples can be used several times instead of only once [47].
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2.2. Reinforcement Learning

First, we will explore dynamic programming, which can be used for small-size, known MDPs.
Secondly, we will look at the algorithms developing from that, i.e., SARSA and DQNs, which
can be used for unknown environments, either again only for small-size MDPs or small action
spaces, respectively. Thirdly, we are looking at REINFORCE as the basis of policy-based
algorithms, and lastly, we will explore combined algorithms like PPO, TD3, and SAC.

Dynamic Programming

For this section, assume that we are given an MDP with the tuple (S, R, A, p,¥), and |S|, | A|
are relatively small. In this case, we can always find a deterministic optimal policy. The
algorithm for finding this optimal policy is split into two parts: evaluating and improving
the current policy. We use [43] for this part.

Evaluating the policy To evaluate a policy 7, we make use of the Bellman expectation
equation for the state-value function

ve(s) =Y wlals) D p(ssrls,a) (r+ yoe(s))

acA s’eS,reR

This is a system of |S| linear equations of |S| variables, which are the v, (s). In our case, it
is best to use an iterative solution method. Let vg, vy, vs, ... be a sequence of approximations
for v,. We can choose vy as we like, except for the terminal state. If there is one, it has
to have the value 0, as the episode ends after reaching the terminal state, and hence no
reward can be obtained after reaching it. Then we obtain the approximation vg11 from vy
by setting
Vg1 = Z m(als) Z p(s'r]s,a) (r +qup(s)) -
ac€A s’eS,reR

The point vy = v, is a fixed point in this search, and we can show that the sequence {vy}
converges to v, for k — co. We call this algorithm iterative policy evaluation. As one can
see, the updates are performed w.r.t. the expectation value. That is why they are called
expected updates. In practice, we usually update the vy in-place, i.e., if we already updated
the values for some of the states, we use these updated versions to update the values for
other states. This makes the algorithm converge faster. However, the convergence rate
heavily depends on which states are evaluated first. Also, we usually only update until
maxgses |Ug(s) — vp41(8)| < 6 for a small threshold 6 > 0, so that the algorithm, combined
with improving the policy, converges faster.

Improving the policy How we improve our policy is largely based on the following
theorem.

Theorem 2.2 (Policy improvement Theorem [43]). Let (S,R,A,p,7) define a finite MDP.
Given two deterministic policies m and ©' with ¢(s,7'(s)) > ve(s) for all s € S, we know
> .

Hence, the policy m’ we choose after evaluating v, for our current policy 7 is defined by

/ — _ / /
7'(s) = argmaxqe(s,a) = argmax > p(s',7ls,0) (7 +70e(s")
s'eS,reR

where we abuse the notation arg max,c 4 slightly and choose one of the actions maximizing
gr(s,a). This kind of policy update is called greedy as we always choose the best action
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possible for the state we are in, according to the given value function. If we have v, = v,,
it is
vw () =max Y p(srls, ) (r 4+ yve()
s’eS,reR

which is the Bellman optimality equation, i.e. m and 7’ are optimal and we can stop our
iterative process. Although we only considered deterministic policies, the results easily carry
over to non-deterministic policies.

Policy iteration We then iterate over both algorithms. After initializing a policy, we
always first evaluate and then improve the policy until we reach a steady state. This is
detailed in Algorithm 1.

Algorithm 1 Policy Iteration for finding an optimal policy [43]

Choose v(s) € R and 7(s) € A arbitrarily Vs € S > Initialization
Set v(Sterminal) < 0 for any terminal state Sterminal
policy — stable < False

A0
while not policy — stable do > Policy Iteration
while A > 6 do > Policy Evaluation
A0
for s € S do

v+ v(s)

o(s) - argmasaea Yy es er P 7ls, @) (r + 70())

B A+ max(A, [v —v(s)])

policy — stable + False

for s € S do > Policy Improvement
Aold < 7T(8)

m(s) - argmax,ea D s per P(S'7]8, @) (1 +yv(s'))

| If7(s) = aca then policy — stable < True

return v ~ v, and T ~ m,

If the MDP is not known anymore, we can, e.g., use SARSA.

SARSA

Now, let us assume that we still have a small-scale MDP, but we do not know the transition
probabilities anymore. Instead, we interact with the environment, i.e., sample from it. This
section is adapted from [43,151].

Evaluating the policy In this case, we will directly evaluate the action-value function
to make it easier. Of course, we cannot use the Bellmann expectation equations anymore to
do so as we cannot calculate the expectation values. Instead, we can use the actual returns
or rewards. Monte-Carlo (MC) methods wait for the end of the episode and then update
the value ¢ of each visited state S; and action A; via

q(St, At) < q(St, At) + Oé(Gt — q(St, At))

where « is a hyperparameter. If we choose o to be one over the number of times the
state has been visited, we get ¢(s,a) = E[G¢|S: = s, Ay = a] in the limit of infinite runs,
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which coincides with the definition of ¢ in Definition and Proposition 2.1. Another possible
protocol is to update the value function in each time step using the estimate of the return
Riy1 4+ vq(St41, Arr1) instead of the observed return. We then get the update

Q(StaAt) — Q(St, At) + @(Rtﬂ + ’YQ(StJrh At+1) - Q(Sty At))-

This kind of update is called a temporal difference (TD(0)) update, and we call

0t = Rey1 +7q(Sta1, A1) — (S, Ar)

the TD-error. The TD approach has the upside of not having to wait for the end of the
episode to update the value function, which makes it more efficient. It also has a lower
variance than the MC approach, but it has a higher bias to the initial value function. We
can get an in-between-picture when we consider the n-step return

t+n

Giign = Z YRR + Y"'q(St4n, Atin),
k=t+1

and update our value function w.r.t. this, i.e.,
q(St, At) < q(St, A¢) + a(Grppn — q(St, Ar)).

Using these n-step returns, we define the A-return

oo

G? =(1-2) Z N G

n=1

for A € [0,1]. This gives rise to the update
a(Se, Ar) + q(Si, Ar) + (G — q(Si, Ar))

and TD(A). Instead of this forward view of TD(A) and having to wait until a number of
rewards happen before we can update our value function, we can take a backward approach:
We keep track of all states we visited. In each step, using the reward in that step, we update
the value for all visited states and actions that could have influenced the reward. We achieve
this with the help of eligibility traces defined by

EO(Sa Cl) = 07
Ei(s,a) = yAEi_1(s,a) + ds,,s04, a-

In each timestep, we then perform the updates

0 = Riv1 + vq(Se41, Aryr) — q(Se, Ar),
Et(sa Cl) = 7AEt_1(57 a’) + 6St75614t7a’
q(St, Ar) <—q(St, At) + a0, By (Se, Ap).

This is then called TD()) in its backward view.

Improving the policy In improving the policy, now that we are not given the full MDP
anymore and can only sample from our environment, we are faced with the exploration vs.
exploitation trade-off. This means that in each state, we have to decide between exploiting
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what we already know, i.e., taking the action with the best mean return until now, and
exploring different options, i.e., taking an action we have not performed as often until now.
There are a lot of different examples of policies aiming at balancing this trade-off. One
possible policy that also explores but for which a kind of policy improvement theorem still
holds is the e-greedy policy for € € (0,1). We still act greedily with probability 1 — ¢ but
explore and choose a random action with probability e, i.e., we choose

€

1—e+ ﬁ’ if a = a, = arg maxge 4 q(s,a)
m(sla) = T else

as our policy.

Policy iteration We then again iterate over both the policy evaluation and improvement,
but now, we usually do the iteration after every timestep to ensure faster convergence. This
is called SARSA()\) and shown in Algorithm 2.

Algorithm 2 SARSA()) [43,151]

Choose ¢(s,a) € R arbitrarily Vs € S,a € A > Initialization
Set q(Sterminal, *) < 0 for any terminal state Sterminal
while True do
E(s,a) < 0VseS,ae A
Choose S € § at random from the starting state distribution
Choose A € A ~ 7(:|S), where 7 is derived from ¢, e.g. e-greedy
while § # Sterminal qo
Take action A, observe reward R and state S’
Choose A’ € A ~ m(:|S"), where 7 is derived from ¢, e.g. e-greedy
§+ R+7q(8", A") —q(S, A)
E(S,A)« E(S,A)+1
for s € S,a € Ado
L 4(s,a) + q(5,0) + a6 E(s, a)
E(s,a) < YAE(s,a)
S, A+ S A

If the state space is not finite anymore, we need to use different algorithms such as DQNs.

Deep Q-Network (DQN)

Now let us assume we are given an unknown MDP with a small-size action space A but a
large, possibly infinite, state space S. Then, we can not use SARSA() in its tabular form
anymore. Instead, we can use function approximation to approximate ¢. In principle, we
can use any function approximator to do this, although the most common ones are linear
approximators or NNs [151]. Here, we want to talk about approximating the ¢ function with
NNs. Its parameters, i.e., weights and biases, we will call 8. Also, instead of R+~q(S’, A") —
q(S, A), we will use R+ vy max,caq(S5’,a)—q(S, A) as the TD-error. This makes it possible
to learn off-policy about the greedy policy while using, e.g., an e-greedy policy in practice.
For training the NN, we use a series of quadratic loss functions

ci(go, ((sia),y:) = (yi — qo(si,0:))” .
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Here and from now on, s does not have to be a Markov state but can also only be features
of the state or observations [118].

Experience replay As this algorithm can be used off-policy, we are not restricted to
using each sample once, but we can use them again in a later round of training. Each state-
action-state-reward tuple is saved in a replay buffer, which is in turn used to optimize the
DQN. This process is called experience replay and leads to Algorithm 3 [118]. Today, there
are different, more sophisticated variants of experience replay, e.g., prioritized experience
replay (PER) [156] and hindsight experience replay (HER) [157].

Algorithm 3 DQN with Experience Replay [118]

D <+ {} with capacity N > Initialization
Choose weights 6 for ¢y at random

while True do

Choose S € S at random from the starting state distribution

Choose A € A ~ 7(-|S), where 7 is derived from gy, e.g. e-greedy

while § # Gterminal qo

Take action A, observe reward R and state S’

D« DU{(S, A R,S}

Sample random minibatch {(S;, A;, Ri, S})}i=1.....m from D

Update 6 according to the stochastic gradient descent step

IR ,
0 0+ i i) &) i Ai i Ai
co+ ; (R +ymaxqp (S5, a) — go(S )> Voqo(Si, Ai)
S8

Choose A € A ~ 7(-|S), where 7 is derived from g, e.g. e-greedy

Double DQN In the vanilla DQN algorithm, we use the same value function approximator
to select actions and evaluate these actions. This can lead to overestimating their values.
Instead, we can use different weights, 6 and ¢, for those two tasks and use

yi = R + vqe (S;, arg 1maxdg (Sz/u a))
acA

as a target for input (S;, 4;). For example, we can update the target network less frequently
than the one giving rise to the policy but still use the same network. This leads to better
convergence [158]. Other algorithms like dueling DQNs are built on this [159].

REINFORCE

Now consider the general case of an unknown MDP with arbitrary S,./A. REINFORCE
is the classic policy gradient algorithm first presented in [160]. We directly parametrize
the policy 7y, e.g., using a NN, with parameters 6. We then use this policy to generate a
trajectory 7 = Sy, Ag, R1, 51, ..., Ar_1, Ry, ST where St is the terminal state or T is the
episode length. We want to maximize the expectation value of the return Gy, i.e., we want
to find the parameters 6 that maximize

J(0) = Errny [Go(T)].
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This function to maximize is called the objective function. Its gradient is given by

T
Vo (0) = Ernry | GiVologmo(Ay]Sh)

t=0

This is the same gradient we get when considering the often-used objective function

T
J(0) = Ermn, lz Gy log mg(Ay|Sy)

t=0

Again, because the MDP is unknown, we cannot calculate the above expectation value but
have to sample from the MDP. Updating the policy after every episode leaves us with the
Algorithm 4. From the definition, it is clear that this algorithm is an on-policy algorithm
that cannot use past data for updates [47].

Algorithm 4 REINFORCE [47]

Choose NN architecture and learning rate n > Initialization
Choose weights 6 for my at random my
while True do

Sample trajectory 7 < Sg, Ag, R1, 51, ..., Ar_1, Ry, ST according to my

G + Zgzt yF=t=1R, for t =0,....,T — 1

VoJ(0) « 31 GiVelogme(A]Sh)

0« 0+nVeJ(6)

This algorithm uses an unbiased estimate for the policy gradient, which leads to high vari-
ance. To reduce this variance (but introduce a bit of bias), we often subtract a baseline b
in each state and use

T
J(0) = Erry | >_(Ge = b(Si)) log mo(A¢|Sy)
t=0

as our objective function. One example of this is using the value function as a baseline,
which is, e.g., one of the tricks in advantage actor-critic (A2C) [47].

Another way to improve the performance and help with exploration is to add an entropy
term

he(als) = —Inmg(als)
to the objective function as first introduced in [161]. The objective function then becomes

T
J(0) = Ermy | > (Gt — b(Sy)) log mo(A¢|S) + Bha(Ay]St)
t=0

where [ is a hyperparameter. As the entropy is higher the more uniform the policy is,
this reinforces exploration. The hyperparameter 5 can help to balance exploration with
exploitation. This is also called entropy regularization, also, e.g., used in A2C, which we will
discuss now [47,161].
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Advantage Actor-Critic (A2C)

Actor-critic algorithms combine the ideas of REINFORCE with the ones of (double) DQNs.
We have two NNs, the actor representing the policy 7y, with parameters 64 and the critic
representing the state-value function vg, with parameters 6c. This helps to stabilize policy
gradient algorithms while still keeping a lot of their advantages. Advantage actor-critic
(A2C) algorithms use the advantage as the parameter to optimize. Given an estimate for
the value function vy, ~ Ur, ,» We get approximately

Ar,  (st,a1) = Gt — vg. (st)
with n < T for the advantage Ar, . Our objective function for the actor NN then becomes

T

J(04) = Ermg, | D_(Gr = voc () log ma, (Ar]St) + Bha,y (A¢]St)
t=0

and our cost for training the critic after each episode is given by

T
Z Gt —’Ugc St)) .
t=0

The algorithm following from this is presented in Algorithm 5. As a generalization, in the
case where our environment is replicable, we can use asynchronous advantage actor-critic
(A3C). There, we let each episode run on several copies of the same environment to better
estimate the gradients for the updates [47,162].

Algorithm 5 Advantage actor-critic (A2C) [47,162]

Choose weights 0¢ for vg, and 04 for mg, at random > Initialization
while True do
t«0
Choose Sy € S at random from the starting state distribution
while S; # Sterminal or ¢t < T do

t—t+1

Choose A; € A~ 7y, (-|5)

Take action A;, observe reward R;;; and state S;i1
y <0
Y Vg (ST) if ST 7& Sterminal
for i=t-1,...,0 do

yewt R

dfc < dbc + Voo (y — Voo (Si))z

dfs + dfs+ Vo, (logmg, (Ai]S:)(y — v (Si)) + Bho(As]St))
Update ¢, 0 4 using gradients df¢c, df 4

Trust Region Policy Optimization (TRPO)

Both presented algorithms using policy gradients have a major problem: Sometimes, the
performance collapses because a small change in parameters can lead to a big change in the
policy. This unsuccessful trajectory is then used to generate more data, which can lead to
an even worse policy, which can make it harder to recover from the performance collapse.
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Trust region policy optimization (TRPO) is a way of dealing with this problem. Instead of
directly optimizing the return, we optimize the change in return

T ’
AlSt)
J(n') = J(7) % Ermr | D AT(S:, A (A Se) | . jopr
) ™) =0 (5 t>7r(At|St) ()

where 7 is our old policy, 7’ our new one and CPI stands for conservative policy iteration.
This is called a surrogate objective. The error in this approximation is bounded by the
expectation value of the KL divergence, which is given by

™ (als)

KL(x'(als)|[w(als)) = Y «'(als)

a€Acal 7T(CL|8)

for finite A [109]. So, if we do not want our policy to get much worse in one training step,
the KL divergence has to be small enough. This leads to an algorithm called TRPO, which
was first presented in [155], where we consider the optimization problem

W&(At‘st) T,1q
|:7T901d (At|St)At :|
E; [KL(mo(als)|7mo.4 (als))] <6,

max E;
0

i.e., we maximize the surrogate objective while keeping the KL divergence small. We can
use this objective both for REINFORCE and Actor-Critic algorithms [47].

Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO) aims at keeping the data efficiency and reliable perfor-
mance of TRPO while simplifying its implementation. We want to incorporate the constraint
on the KL divergence directly in the objective function. This is done by using the objective

. 7T6(At|5t) ) . ( W@(At|5t) o ))]
J(0) = E; |lmin | ——————A, " cli — A M T —€1+4¢€
(=& [min (T Tyl (T

in actor-critic or other policy-gradient-based algorithms. Hereby, € is a hyperparameter and

1—€ ifz<]l—c¢
cip(z,1—€l4+¢ =4 = fl-e<z<1l+ce¢
1+e ifx>1+c¢

This clipping function makes sure that the policy does not change too much in each timestep,
just like the constraint in TRPO. We will not write down the algorithm as its form basically
stays the same as in Algorithm 5. Only the objective gets replaced [163].

Deep Deterministic Policy Gradient(DDPG)

Until now, the presented algorithms available for continuous actions are on-policy algorithms
and do not use a replay buffer, making them sample-inefficient. The only ones that did were
the purely value-based DQN variants. An algorithm changing that is deep deterministic
policy gradient (DDPG). As in the DQN, we use a NN with parameter 6¢ to approximate
the value function and use experience replay to train it. However, instead of acting e-greedily
w.r.t. gp., which is not easily possible for infinite action spaces, we also parameterize the
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deterministic policy mp, and add a little continuous noise for exploration. We use a policy
gradient to update g ,, which is purely based on gg, and no real-world returns. This makes
it possible to perform the algorithm off-policy and thus makes it more sample-efficient than
the policy gradient-based algorithms considered before [164].

We will not present the algorithm here as it is very similar to TD3, which is presented next.
In Algorithm 6, to get DDPG, just replace the two critics with one critic, ignore the target
networks, and set d = 1.

Twin Delayed Deep Deterministic Policy Gradient (TD3)

As for the DQN, we also get a problem with overestimating values in DDPG. That is why
the following changes were made to DDPG, in order to get twin delayed deep deterministic
policy gradient (TD3) as presented in Algorithm 6.

Algorithm 6 TD3 [103]

D «+ {} with capacity N > Initialization
Choose weights 0c1, 002,04 for go.,, Qoc., To, at random

0y < 0c1,005 < 0c2,0" < 04 > Target Networks
n=20 > Step Counter

while True do

Choose S € S at random from the starting state distribution
A« 7y, (S) + € where € ~ N (0,0) and N is the exploration noise
while § # Gterminal qo

n—n+1l

Take action A, observe reward R and state S’

Choose A’ + 7y, (S) + € where € ~ N (0,0)

D+ DU{(S,AR,S5)}

S, A« S A

Sample random minibatch {(S;, 4;, Ri, S7) }i=1,...,m from D
for i=1,....m do

A; « my, (S) + € where € ~ clip(N(0,0), —c, c)
¥ < Ry yminj— 2 qe,, (5, Ai)
Update fc; according to loss Loy = = 577 (y; — QQCj(Si,Ai))Q > Update critics
if n mod d then > Update targets and actor only every d steps
B 0+ 15 Va,ten (510 lacry (o) Vo 0 (51) > Update actor
0c; < i + (1 —7)0¢, > Update target critics
L 0y 104+ (1 —7)0, > Update target actor

Firstly, the policy is updated only every d steps, i.e., less often than the value function. Sec-
ondly, a second critic is introduced so that, when updating the value function, we always take
the minimum over both critics as a target, and do not overestimate the Q-value, similarly
to double DQN. Thirdly, the target is further modified by introducing target parameters
that are also only updated every d steps smoothly, i.e., we do not replace the target param-
eters with the current parameters but incrementally adjust the target parameters towards
the current parameters. Lastly, we not only use the target parameters and both critics to
update the value network, but we also do it w.r.t. a clipped target action sampled from the
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2. CLASSICAL MACHINE LEARNING

policy plus noise that is clipped to certain boundaries. This improves the performance in a
lot of tasks by reducing overestimation bias [103].

Soft Actor-Critic (SAC)

Soft actor-critic (SAC) was published around the same time as TD3 and aims at extending
DDPG to stochastic policies while reducing its overestimation bias. It is based on the
maximum entropy framework, where we try to maximize

T
J(m) = E[R + Bh(A|Sy)] .

t=0

In this kind of setting, we can look at the soft value function, recursively defined via

Q(S, a) = Er,s’~p(~,~\s,a) [7’ + ’YV(SI)}

and
V(s) = Eann(|s) [Q(s,a) — logm(als)],

instead of the value function. Note that this differs from our earlier definition of the value
function by the inclusion of the term logm(als). In the original paper [100], the soft state-
value function Vjp, , a target soft state-value function Vjp, , the soft action-value function Q,
and the policy 7y, are parametrized. All seen state-action-reward-state tuples are again
stored in a replay buffer D. As objective functions, we use quadratic losses for the critics,
ie.,
1 2
Jo(60.) = 5Eep | (Va, = Eamry_ 1) [Qo, (5, ) —log o, (als)])”]
1 2
Jq(oq) = §E(s,a7r,s’)~D |:(Q9q (57 CL) - Tr—= 7%{, (S/)) :| .

For the actor, we employ the KL divergence between the given policy and the softmaz [37,47]

policy

exp Q, (5, )
Z@q (S)

Tsoftmax ( | 5) =

. Zp,(s5) = ZGXP Qo,(s,a)

of the soft Q-values, i.e.,

Jo(05) = Eoop {KL (ngw(.|s)||m2"q(s">)] .

Z@q (s)

Together, we get Algorithm 7, where we calculated some gradients more explicitly [100].

In newer versions of the algorithm, only the action-value function is parametrized, and
similar tricks as in TD3, i.e., using two parametrizations of ) functions, separate target )
functions, and minimizing over the two target networks to get the target, are employed [101].

Truncated Quantile Critics (TQC)

A way to deal with the overestimation of the @ function we discussed earlier is to use two
critic networks and use their minimum as a target for updating them. Truncated quantile
critics (TQC), as presented in [102], adds another layer to this: for the actor, we still
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2.2. Reinforcement Learning

Algorithm 7 SAC [100]

D «+ {} with capacity N

Choose weights 0,,0,, 0, for Vy,, Qq,, e, at random
0!« 6,

while True do

Choose S € § at random from the starting state distribution
Choose A € A~ my_(:]S)

for each environment step do

Take action A, observe reward R and state S’
Choose A € A~ my_(-|5)

D+ DU{(S,AR,S5)}

S A S A

for each gradient step do

Sample random minibatch D from D

b 0, — 1uE, 5 [(Va, Vo, (8)) (Va, (5) — Euomy. (o) [Q0, (5.0) — logmo_(als)])]
0, 9q 14E (s,0,r,5)B [(V0,Q0,(5,0)) (Qo, (5,0) — 1 — Vg, (5))]

Or < Or — 1By 0y | Vo KL (m(-|5)||%)}

0! 10, + (1 —71)0,

parametrize the policy 7 as usual with a parameter ¢. For the critic, instead of the value
function, we estimate the distribution over return values G™ (s, a). In particular, we train N
networks 0y, : S x A — RM n=1,.,N to estimate G™(s,a) with a mixture of M atoms
(first introduced in [165] for DQN5s)

M
Gy, (s,a) Z (0 (s, )
m=1

e., Dirac delta distributions at positions (9% (s,a))m=1,....m- This is called a quantile
distribution. To get the target distribution, we pool these atoms into one set

g(s',a’) = {0y (s',a")n=1,..,N,m=1,.., M}

for target networks (6y: )n=1,... n. Sorting them in ascending order, we name G’s elements
gi(s,a) for i = 1,..., MN. We then truncate the set by choosing the kN smallest elements
(where k € {1,..., M}) of G(s',a’) to define atoms

yi(s,a) =1+ (z(s',a") — Blogmy(d|s"))

of the target distribution
kN

1
Y(s,a) = EN 25(%(37 a)).
We then minimize the 1-Wasserstein distance between Gy, (s,a) and Y (s,a) by quantile
regression. Using the Huber quantile loss leads to the objective function

M kN

1 H
JG'(wn) = E(s,a,r,s’)N'D m Z Zprm (yi(sva') - ewn<5aa))

m=1 i=1
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2. CLASSICAL MACHINE LEARNING

where

Ly? i < 2m —1
“" if ful <1 = m m=1,..,M.

H( N\ _ [~ _ 2
Pr (u) - |7_ 1u<0| { (|u _ %)7 else 5 Tm M 5
For updating the policy, we use the full ensemble G(s,a) and the objective

M,N
J‘n’(¢) = Es~D,a~ﬂ¢(~|s) [B IOg 7r¢,(a|s) o W Z ea)nn (S,CL)

m,n=1

We dynamically update the entropy temperature coefficient 3 using gradient steps with the
objective
J(ﬁ) = _ESND,a~ﬂ¢(-\s) [lOgﬂ (log 7T¢(CL|S) + HT)]

where the target entropy Hr is heuristically set to dim.A [102,165]. The full algorithm is
presented in Algorithm 8.

Algorithm 8 TQC [102]

D+ {},Hr+ —dimA, 5 + 1, + 0.005

Choose weights ¢, 1n, 1, for 7y, Gy, , Gy, n=1,..., N at random
for each iteration do

Choose S € § at random from the starting state distribution
Choose A € A ~ my_(+]5)

for each environment step do

Take action A, observe reward R and state S’

Choose A € A~ mg_(-|5)

D+ DU{(S,AR,S5)}

S A S A

for each gradient step do

Sample random minibatch D from D

B B—nsVsJ(B)

¢ A d) - 777rv¢J‘n'(¢)

U ¢ Y — WGVWJG(I%), n=1,.,N

L Ypay, (1), n=1,..,N
return 74, Gy, n =1, ...,
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Quantum Information

Solving some problems on a classical computer needs more than polynomial resources in
problem size. Examples of problems for which no effective classical algorithm guarantees a
solution but whose solutions can be quickly checked are factorizing an integer into prime
numbers or the traveling salesman problem. Furthermore, simulating general quantum
systems is hard for classical computers. With the aim of solving the last problem, in 1982,
R. Feynman proposed the idea of using a fixed quantum system to simulate any quantum
system and called this a quantum computer (QC) [52]. Where classical computers use bits
and electrical circuits in computations, quantum computers rely on quantum mechanical
systems, e.g., qubits, to perform calculations. The field of quantum computing (QC) is a
sub-field of quantum information (QI), which arose in the 1970s and 1980s in discussions on
the use of quantum mechanical systems as an informational resource instead of only a way
to explain natural phenomena [51].

Starting in the 1990s, quantum algorithms which, at least theoretically, outperform the
best-known classical algorithms, e.g., the Deutsch-Josza algorithm [53] for determining if a
function on bits is constant or balanced (i.e., 1 for half of the inputs and 0 for the other half),
Grover’s algorithm for unstructured searches [54], or Shor’s algorithm [55] for factorizing an
integer into prime numbers, were developed. In the last years, significant progress has been
made on the experimental realization of quantum computers [58-63].

Most sections of this chapter (Sections 3.1-3.5, 3.7, 3.10) are aimed at readers who are not
familiar with QI and establish basic definitions. The other parts introduce more specialized
concepts needed in this thesis. Quantum mechanical systems are commonly described in
terms of Hilbert spaces [166], which is why we start with revisiting some basic definitions
of operators on Hilbert spaces in Section 3.1. In Section 3.2, we introduce the quantum
mechanical description of the most basic experiments consisting of the preparation and
measurement of a system. As an easy example, we discuss qudits and qubits in Section 3.3.
Next, we consider composite systems in Section 3.4. We then establish the notion of quantum
channels describing operations on quantum states in Section 3.5. For these first sections, we
use [167] as a source. For our later discussion of recurrent structures, we define quantum
channels with memory in Section 3.6. As we want to perform supervised learning on quantum
states down the line, we need to define norms and distance measures on quantum states,
which we will address in Section 3.7. In Section 3.8, we present the Haar measure as
a way of sampling random unitaries and pure states. For tedious derivations in finite,
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3. QUANTUM INFORMATION

composite systems, we introduce tensor network notation in Section 3.9. We discuss QCs in
Section 3.10. Last but not least, to set the stage for the remainder of the thesis, we highlight
some results from the field of quantum machine learning in Section 3.11, setting an explicit
focus on dissipative quantum neural networks (DQNNSs).

3.1 Operators on Hilbert Spaces

A complex Hilbert space is a complex vector space H with a scalar product (-|-) : HxH — C
that is complete w.r.t. the norm |[|-||3, = (-|-) induced by the scalar product. In the following,
we assume all Hilbert spaces to be complex. As usual in quantum mechanics, we will use
the convention that the scalar product is linear in the second argument, i.e.,

(Pl M) = Mely) = (Apl) ¥V p,9p € H,AeC.

Each Hilbert space has at least one orthonormal basis (ONB), i.e., a labelled list of vectors
{etn CH with (eu,e.) =6 and o =37 (e, p)eu Vo € H. When we say basis, we usually
mean an ONB. A Hilbert space with a countable basis is called separable. If not specified
otherwise, we will assume that all infinite-dimensional Hilbert spaces are separable in the
following. Let us now define bounded operators.

Definition and Proposition 3.1 (Bounded operators [167,168]). Let H1, Ho be Hilbert
spaces, A : Hy — Ha be linear. In shorthand, we write Ay := A(y) Yo € Hy. A is called a
bounded (linear) operator iff there exists ¢ > 0

[APllae, < clllla, Vi € Ha.

We write B(H1,Hs2) for all bounded operators from Hi to Ho and B(H1) for all bounded
operators from Hy to itself.
Let A be bounded. Then, we define its operator norm by

A
||A|| — sup ” w”'Hz
vern 20 1Yl

We define its adjoint At : Hy — H1 by
(ol AT)gy, = (Ap|ih),y, Vo € Hayth € Ha.

It is |AT|| = ||A| and (AT)T = A. For ¢ € C and B : H1 — Ha bounded, it is (cA+ B)' =
cAl + BT,

We say A is an isometry iff ||A¢|ln, = |l¢llu, for all ¢ € Hy which is equivalent to
AYA = 14, AAY = 13,. An isometry A : H — H is called a unitary. We then have
ATA = AAT = 14.

We call A : H — H Hermitian or self-adjoint iff A = Af.

A Hermitian operator A € B(H) is called positive (semidefinite) iff (p| Ap) > 0 Vo € H.
We then write A > 0. This is equivalent to all eigenvalues of A being greater or equal to 0.
For A, B € B(H), we write A> B iff A— B > 0.

Every finite-dimensional Hilbert space H is isomorph to C? for a given d € N, i.e., there is
an isometry mapping H to C?. This means that we can think of finite dimensional Hilbert
spaces as C? with the usual scalar product. In C?, bounded operators are given by matrices,
and their adjoint is obtained by complex conjugation and transposition.
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3.1. Operators on Hilbert Spaces

For ¢ € H we define the maps

lp): C — H, (p|:H—C
zr @)z = zp Y= ().

Here, (-] is called a bra and |-) is called a ket as their combination

((plol¥))z = (ol (2¢) = 2(pl¥) Vo, veH, z€C

is the scalar product, which was also called bracket by Dirac [169]. The bra is the adjoint
of the ket, i.e.,

(bl=1p) VeeH.

For simplicity, in C?%, we can think of kets as column vectors and the belonging bras as the
complex conjugated row vectors obtained by transposing the column vector.

Other important concepts in QI, among others, are the trace of an operator, projections,
the notion of convexity, and tensor products of vectors, Hilbert spaces, and operators.

Definition and Proposition 3.2 (Trace [170]). Let H be a Hilbert space of dimension
deNU{oo}, A B(H), and {p;}j=1,..a an ONB of H. We define

d
tr(A) = (4] Ad;)
j=1
to be the trace of A. The trace of A is independent of the chosen ONB. If tr(]A|) < oo,
where |A| = VATA, we say A is in the trace class of H and write A € T(H).

Definition and Proposition 3.3 (Projections). Let H be a Hilbert space. An operator
P € B(H) is called a projection iff P?> = P. We then write P € P(H). Operators of the form
P = |n) (n|, where n € H is a unit vector, are projections and are called one-dimensional
projections.

Definition 3.1 (Convexity [171]). A subset S of a real or complex vector space V is called
convex iff tf+(1—t)g € S for allt € [0,1], f,g € S. Let h € S. If there existt € (0,1), f,g €
S such that h = tf + (1 —t)g, we say h is an interior point of S. If not, we say h is an
extremal point of S.

Definition and Proposition 3.4 (Tensor product). Let Ha and Hp be Hilbert spaces. We
can define a Hilbert space Ha ®Hp, called tensor product of Ha and Hp, by the completion
of the span of {p @ p | € Ha, ¢ € Hp}, where ¥ Q ¢ is linear w.r.t. both arguments, i.e.,

c(P®p)=(c) ®p =1 (cp)
(1 +12) Q=1 @+ ®@¢
PR (p1+p2) =0 @1+ pa

where ¥, 11,909 € Ha, o, 01,02 € Hp,c € C. On Ha ® Hp, we define addition of two
elements v = 3,0 @ p; € Ha@Hp and w = 3,0 ® p; € Ha®@Hp byv+w =
i @i+ ® g, and their scalar product by (v |w) =37, > (Wi [¥5) o (i l¢5) g-
Given ONBs {;}; and {¢;}; of Ha and Hp, {¢; @ p;}ij forms an ONB of Ha @ Hp.
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,

F

ANNANANNNNNNNANS —————— a < X
preparation measurement result

Figure 3.1: Preparation and Measurement. We prepare the state p € D(H) and perform
a measurement using an observable F' = {F, },cx on H. With probability p, = tr(pFy), we
get the measurement result a € X.

Let A€ B(H,) and B € (Hp). We define AQ B € B(Ha® Hp) by
(A®B)(y®p) =AY @By, Vo €Ha ¢ €MNp

and its linear extension.

The tensor product of two spaces C? and C% is isomorph to C?% and the tensor product
between operators is simply given by the Kronecker product.

Example 3.1 (Kronecker product [172]). For two matrices A € B(C%,C4), B € B(C%,Cd),
their Kronecker product is defined as

A® B =1(a;jB)i=1,...dy; j=1,..ds

which is in B(Chds Cd2d4) . Hence, for

A— (an a12>7 B— (bn b12> c B(CQ,CQ)

az1 A22 ba1  bao
it 1s
a11byr  aiibiz  arebir  aizbia
a1B a;2B a11b21  a11baa  aizbar  ai2ben
A®B:(

a1 B agB a21b11  a21biz  agebii  azzbia
a21bo1  a21baz  agebar  agaban

3.2 Preparation and Measurement

At its core, quantum mechanics is a probabilistic theory. That means that we generally
cannot predict the measurement result of an individual measurement, but only probability
distributions over measurement results. Most physical experiments can be divided into a
preparation and a measurement phase, as depicted in Figure 3.1.

3.2.1 Preparation

We collect all information on the preparation in a quantum state or density operator defined
as follows.

Definition and Proposition 3.5 (Density operator). A density operator on a Hilbert
space H is a positive operator p € T(H) with trp = 1. We write

DH)={peT(H)lp=0, trp=1}
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3.3. Qudits

for the set of all density operators on H. It is convex, and its extremal points are given by
one-dimensional projections, i.e., they are of the form p = |¢) (Y| for a unit vector ¢ € H,
and called pure states. Sometimes, we then also call |¢b) a state. All other states are called
mized states.

3.2.2 Measurement

The measurements are in all features commonly described by positive operator valued mea-
surementss (POVMs). Essentially, we associate a set of operators with a measurement, one
for each possible measurement result, and write the probability distribution as the trace of
the state times the different operators, as formalized in Definition and Proposition 3.6.

Definition and Proposition 3.6 (POVM). An operator F' € B(H) on a Hilbert space H
with 0 < F < 1 is called an effect. The set of effects is convex, and its extremal points are
given by the projections.

Given a countable' set of possible measurement results X, we call a collection of effects
F = {Fa}aex with ) ,cx Fa = 1 a positive operator valued measurements (POVM) or
observable. The probability of measuring a € X can then be written as

pla) = tr(pF).

We need these restrictions on the state and operator space so that for every state p and every
observable F', the distribution defined by p(a) = tr(pF},) is a proper probability distribution.

3.3 Qudits

Every Hilbert space of finite dimension d is isomorph to C?. The simplest non-trivial Hilbert
space is H = C2. Its standard basis vectors are given by

()= ()

and we often write |0) = |eg) and |1) = |e;). The states on C? are called qubits and are
usually considered the quantum informational analog to the classical bits 0 and 1. More
generally, states on C% are called qudits. The space of operators is then given by the d x d
matrices. On H = C2,? we can write every operator in terms of the identity oo = 1 and the
traceless and Hermitian Pauli operators

/01 (0 —i (10
=41 0)>27\i o) 7 \o -1/

Every state p € D(C?) can be written as p = 314 7- & with 7 € R%,|f] < 1 and & =
(01,02,03). We can then depict the set of density operators on C? in R? as the sphere with
|7] < 1. This is shown in Figure 3.2 and is often called the Bloch sphere. The pure states
can be found on the surface of the sphere, and the mixed states can be found in its interior.

1If X is not countable, the sum changes to an integral.
2We can do a similar construction for # = C¢ but will leave it out for simplicity.
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Figure 3.2: Bloch sphere. Quantum states on C? can be depicted in a coordinate system
with axes tr(o;p), ¢ = 1,2,3. In this coordinate system, the pure states are on the surface

of the sphere with radius 1, and the mixed states are in its interior. The states |0) and |1)
can be found on its south and north poles, respectively.

3.4 Composite Systems

Consider two (distinguishable) systems, A and B, described by Hilbert spaces Ha and Hp.
The Hilbert space corresponding to the composite system AB is then given by their tensor
product Hap = Ha ® Hg. We then say A and B are subsystems of AB. As not all operators
in B(Hap) can be written as A ® B with A € Ha,B € Hp, we introduce the notion of

entanglement.

Definition 3.2 (Entanglement). Let Ha, Hp be Hilbert spaces, Hap = Ha @ Hp. We say
the state p € D(Hap) is

e a product state iff p = pa ® pp for pa € D(Ha),pp € D(Hp). We then write
pE DfaC(HAB).

e a separable state iff p = 3>\_ papax ® ppa for pax € D(Ha),ppr € D(Hp),
pa > 0,5"%_, pa = 1,n € N. We then write p € D*?(H ap).

e an entangled state iff p ¢ D*P(Hap).

All separable pure states are also factorized.

40



3.5. Quantum Channels

e e |

)

N ———a€e X
€ D(Hin) € B(Hout)
preparation operation measurement result

Figure 3.3: Channel. First, we prepare a state p € Dy, . We then use an operation N,
changing the Hilbert space describing the system from H;, to Hoyut. Lastly, we measure the
state by a POVM F = {F,},cx providing the measured value a € X.

Assume we are given a bipartite system with Hilbert space Hap = Ha ® Hp but we only
have access to one subsystem, w.l.o.g. system A, i.e., we can only operate on Ha. Given a
joint state pap € D(Hap), we might be interested in the measurement statistics if we only
measure subsystem A and ignore subsystem B. This information is given by the reduced
state on system A

pa = tre(paB)

where trg is the partial trace w.r.t. subsystem B that is defined as follows. We also say we
trace out subsystem B.

Definition and Proposition 3.7 (Partial trace). Let Ha, Hp be Hilbert spaces, and
Hap =Has® Hp. We define the partial trace over subsystem A as the map

tra T(HAB) — T(HB)
that fulfills
tr(tra (T)E)=tr (T(E®1p)) VT €T(Hap), F € B(Hp).

Given ONBs {1;} of Ha and {om} of Hp, tra can be written as

tra(T) = > (10 @ em|T¥; ® 0n) lom) (nl = > (5] @ 1p) T (|t);) ® 15)

Jim,m J

fo all T € T(Hap). The partial trace is independent of the used ONB and is defined
analogously on subsystem B.

If the reduced states are pure, the joint state is a product state.

3.5 Quantum Channels

Up until now, we discussed experiments split into a preparation and a measurement phase.
This is a coarse picture as, for many experiments, either the measurement, the preparation,
or both can be split into several phases. This introduces the notion of an operation, as
depicted in Figure 3.3.

This operation can be seen either as part of the preparation phase or the measurement phase,
which is called Schrddinger or Heisenberg picture, respectively, and shown in Figure 3.4. In

41



3. QUANTUM INFORMATION

Schrédinger Hin Hout
pictureg p N ANNANNANNNNNANS Fa —a € X
S D(Hin)
N(p) S D(Hout) € B(Hout)
preparation measurement result
Heisenberg Hin Hout
. P N~ A~~~ ae X
picture
S B(Hout)
€ D(Hin) N*(Fa) € B(Hin)
preparation measurement result

Figure 3.4: Schrédinger vs. Heisenberg picture. In the Schrédinger picture, we see
the evolution as part of the preparation. After preparing the state p € D(Hi,), we apply
the evolution AV to get the state N'(p) € D(Hout). This state is then measured by a POVM
F = {F,}acx on Hoyut providing the result a € X with probability p, = tr(N(p)F,). In the
Heisenberg picture, we see the evolution as part of the measurement. We prepare the state
p € D(Hin). The evolution N and the measurement given by the POVM F = {F,},ex on
Hout are reduced to a measurement {N,(F,)}.cx providing results a € X with probability

= tr(pNs(Fa)).

the Schrodinger picture, we regard the operation N as a map N : T(Hin) — T (Hout)
mapping density operators again to density operators. In the Heisenberg picture, we regard
it as a map N, : B(Hout) — B(Hin) mapping POVMs again to POVMs. As the output
probabilities have to be the same after a measurement, regardless of our description in the
Schrodinger or Heisenberg picture, N, is the Banach space adjoint to /. We will focus on
the Schrodinger picture here.

We have to make sure that A/ correctly maps density operators to density operators. This
means that A should preserve the trace and positivity of its input. In fact, this should
not only be true in the system N is acting on but also if it only acts on a subsystem of a
composite system, i.e., when there is an innocent bystander as depicted in Figure 3.5. This
leads us to the definition of positivity and complete positivity.

Definition 3.3 (Positivity and Complete Positivity). Let Hin, Hous be Hilbert spaces, and
N : B(Hin) — B(Hout). We say N is positive iff N(A) > 0 for all A € B(Hin), A>0. We
say N is completely positive iff

N®1,)(A) >0 YneN, Ae BHu®C"), A>0
where 1, : B(C™) — B(C™) is the identity.
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€ D(Hin @ Huy) € B(Hout @ Huy)

Figure 3.5: Operation with an innocent bystander - A state p € D(Hpy ® Hin) is prepared.
Then, the evolution N is applied to the subsystem with Hilbert space H;,. The state is
then measured by the POVM F = {F,},ex on Hpy ® Houy providing the result a € X.

Not every positive operation is also completely positive. We can now define a channel, the
most general map N : T(Hin) = T (Hous), mapping density operators to density operators
without classical in- or outputs.

Definition 3.4 (Channel). Let Hin, Hous be Hilbert spaces, N : T(Hin) = T (Hous). We
say N is a channel iff it is linear, completely positive, and trace preserving, i.e.,

tr(N(A)) = tr(A) ¥ A€ T(Hi).

The easiest example of a channel is a unitary channel.

Example 3.2 (Unitary Channel). Let H be a Hilbert space. For every unitary U € B(H),
the map Ny : T(H) = T(H) ,

Ny(X)=UXU' V X € B(H)

is a channel. We call channels of this form unitary channels.

A special case of this is the time evolution of states.

Example 3.3 (Time evolution [51]). In quantum mechanics, the time evolution of states
i an isolated system described by the Hilbert space H is governed by the Hamiltonian.
The Hamiltonian is a Hermitian operator on said Hilbert space. If the Hamiltonian H is
independent of the time, the time evolution of states is then governed by

ptz) = Ults, t2)p(t1)U (b1, t2)"
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where -
—i
Ul(ty,tz) = exp (h(tz - tl))

s the time evolution operator and h is Planck’s constant.

Another example is the partial trace. In fact, we can write every channel as a combination
of tensoring to a pure state, using a unitary and a partial trace. This is formalized in
Stinespring’s theorem for channels.

Proposition 3.1 (Stinespring’s theorem for channels). Let H be a Hilbert space. The map
N :T(H) = T(H) is a channel iff there exists a Hilbert space Hg, a pure state 1 € D(Hg),
and a unitary U € B(H @ HE) such that

N(p) =trp(U(p@1)UT) V¥ pc D(H).

Another way to write down channels is via their Kraus decomposition.

Proposition 3.2 (Kraus decomposition). Let H be a Hilbert space. The map N : T(H) —
T(H) is a channel iff there exists a sequence of operators {K;};, called Kraus operators,
such that
N(A) =D KAK] VAeBH), Y KIKj=1 K;eBH).
J J

If dim'H < oo, we can choose a finite number of Kraus operators.

3.6 Quantum Channels with Memory

A causal quantum automaton is a map on quantum states, for which outputs at time ¢ only
depend on inputs at times ¢’ < ¢. All such maps can be written as a concatenated quantum
channel with memory preceded by an initialization of the memory [90].

Definition 3.5 (Quantum channels with memory [90]). Let H®, H°" and H™™ be Hilbert
spaces. A quantum channel with memory is represented by a quantum channel N : T (H™™)®
T(H™) — T(H) @ T(H™™). We call H™™ the memory, H'™ the input, and H" the
output Hilbert space. An input sequence of length N € N is processed by the N-times con-
catenated channel My : T(H™™) @ T(H)EN — T(HOW)ON @ T(H™e™) given by

My =" N1 ®@N)o- 0o ("N ®1Y y)o (N®1P y).

.....

In the same way as for classical RNNs (see Section 2.1.4), we can again depict a quantum
channel with memory in a compressed version and an unfolded version. Both versions are
shown in Figure 3.6.

An example of such a quantum channel with memory is the SWAP or delay channel.

Example 3.4 (SWAP/delay channel [173,174]). Now choose H'™ = HOU = H, HWe™ =
HEE, and define the memory channel Nyeiay by & : B(H™™) @ B(H™) — B(H) @ B(H™e™)
by
Ndelay by k(pmem,l ®R-® pmem,k ® pin> _ pmem,l R ® pmem,k: ® pin
= pout ® ﬁmemJ ®R® ﬁmem,k.
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N

B o | N ouT

— N
N

Figure 3.6: Quantum channel with memory. General structure of a quantum channel
with memory with underlying channel A/. The left-hand side shows the compressed version
and the right-hand side shows the same unfolded version with N iterations. The purple
lines are registers with Hilbert space H°“', the orange ones registers with Hilbert space
H™em - and the blue ones registers with Hilbert space H®. Given an input state p'N on

HIN = gqmem & 2N the gutput is a state pOUT on HOMEN @ gmem

mem,1

Hence, the output is given by p , and the new memory state is p™™2®- - -.®pMme™k g pin

This channel can be achieved by a number of SWAPs in the memory register and between
the memory and the input/output register. Given N consecutive inputs pi, and assuming
the memory was initialized in a product state p™™ ! @ - - @ pme™mk e,

,OIN:pmem’l®"'®pmem’k®piln®-~-®pif\},

after applying the N -times concatenated channel, we get the output
pOUT _ MN(pIN) _ pmem,l R ® pmem,k ® plln R ® p}{}
= pcl)ut R ® p?\}lt ® ﬁmcm,l ® - ® ﬁmcm,k.
Hence, the x'" output is given by

out __ mem,x _
o =p ,x=1,..,k

ngt = piwn—kﬁ Tr = k+ 1) )N

This means the channel essentially delays the output of each input pi* by k time steps.

3.7 Norms and Fidelity

For many ML applications, we need some notion of distance between data points, and in
the case of data consisting of quantum states, between quantum states. In more detail, we
want to consider different norms on B(#) for a Hilbert space H and the fidelity between
states.

An already introduced norm in Definition and Proposition 3.1 is the operator norm of an

operator A € B(H). A family of norms on B(#) including the operator norm, called the
Schatten-p-norms, is defined as

[A]lp = (tr (JAD")? (3.7.1)
for 1 < p < oo, where |A| = (ATA)% = (AAT)%7 and
[Alloe = [IA]l
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for all A € B(#H) [175]. The Schatten-2 norm is also called the Hilbert-Schmidt norm,
and the Schatten-1 norm is called the trace norm. When we compare two quantum states
p1, p2 € D(H) via the trace distance, we get

1
Sllor = p2lli = sup ltr(p1 F) — tr(p2F)].
FEB(H),0<F<1

This is the largest difference in comparing the probability distributions after measuring the
two states.

The most used criterion for the closeness of two states, however, is the fidelity. The fidelity
of two states pi1, p2 € D(H) is defined as®

F(p1,p2) = (tr ((\/[71/,2\/[71)1/2»

It takes on values between 0 and 1 and is optimal, i.e. p; = p2, at 1. If one of the two states
is pure, the fidelity simplifies to

F () (4], p) = Wl ple) = tr ([9) (& p) - (3.7.2)
We can see that it is the overlap between the two states [176]. The fidelity and trace distance

relate via
p1 — p2lli < V1= F(p1, p2)

with equality for pure states, which makes the fidelity often the slightly stronger crite-
rion [51].

2

3.8 Sampling Unitaries and Pure States

We later need a way to sample random unitaries and quantum states, which we will do w.r.t.
the Haar measure. The Haar measure is a unique probability measure that can generally be
defined on locally compact topological groups, such as the unitary group [177] on C"

Un)={U eB(C") | UU* =U*U =1,},

and is left-invariant w.r.t. multiplications with elements of the group [178]. We can then use
the Haar measure on unitaries not only to sample unitaries but also to sample pure states.
To sample a pure state |¢), we fix a pure state, e.g., |0), sample a unitary U w.r.t. the Haar
measure and then set |¢)) = U |0). This gives us a unique uniform probability measure on
pure states that is invariant to left multiplication with a unitary [179-181].

3.9 Tensor Networks

This section follows [182] if not mentioned otherwise.

In many quantum algorithms, we deal with operations on Hilbert spaces of the form C* ®
Ch ®..® Cdr = Chxd2X..xdr FElements of these vector spaces are called rank-r tensor. A
rank-0 tensor is simply a scalar, a rank-1 tensor is a vector, and a rank-2 tensor is a matrix.
Tensor network notation (TNN) can be used to simplify calculations with tensors and get a
visual representation of tensor calculations.

31t is also commonly defined as the square root of that to fit the classical fidelity [51], but we stick with
this definition here to simplify the optimization problems later.
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3.9.1 Tensor
A tensor of rank r is simply represented by a geometrical shape with r legs. For example,

a rank 5 tensor R = (R%i) can be written as

In some cases, the color, shape, and direction of the body or legs can have a meaning. For
quantum states, kets and bras usually point their legs in different directions.
3.9.2 Tensor Product
A tensor product of a rank-r tensor A and a rank-s tensor B is given as
(A® By, iy in,ede = Ainie - B
In TNN, we e.g. write

forr=3,s=2.

3.9.3 Trace

A (partial) trace over index m and n with the same dimension d = d,, = d,, of a rank-r
tensor A is given by

Ai1;~-~77;'rn71ya7i7n+1y~~~7in71y0¢77:n+1)~~-7i7" .
1

d
(trm;n(A))il ;‘“77;'m71)i7rL+17-~y7;n7177:n+1y~~7ir

[

In TNN, we, e.g., for a rank-3 tensor A, write

GD-we{ G ) -5( )

3.9.4 Contraction

Another much-used operation is the contraction of two tensors, corresponding to first ten-
soring the two and then tracing out the indices between the two tensors. We write, e.g.,

G- (<G, Jor)
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Standard examples for this are the scalar product of two vectors 1, ¢ € C%, the multiplication
of a vector 1) € C% and a matrix U € C%*%  and matrix multiplication of two matrices
U e Chxdx | e Cd2%ds which we write as

in TNN.

3.9.5 Grouping and Splitting

Essentially, C%%-¥dr =~ CIliz1 & hence, the rank of a tensor is a fluid concept. This means,
we can group indices i1, ..., i, with dimensions dy,...,d, to a new index a = iy + dyio + ... +
(dn-1in), and split an index i into several indices («, 8, ...). By doing so, we lower or raise
the rank of the given tensors. In TNN, this corresponds to grouping or splitting legs, e.g.,

}3{)}=Eo:<%=—o—<%-

In this way, every contraction of higher rank can be written as matrix multiplication, which
simplifies the computation of TNs due to the highly optimized matrix multiplication algo-
rithms.

3.9.6 Singular Value Decomposition (SVD)

Given a matrix 7' € C™*", we can use singular value decomposition (SVD), to diagonalize
T and write T = USVT where U € C™*™ V € C"*" are unitary and S € C"™*" is diagonal
with non-negative, real entries. By grouping the indices, we can perform SVD on any
rank-m + n tensor. We then again split the indices, which, e.g., leads to

5] - <D= D) - D]

3.9.7 Tensor Network

We can now combine the above operations to define tensor networks (TNs) consisting of
single tensors. The rank of the TN is given by the number of unconnected legs and its value
by the sum over all internal indices of the product of the values of the single tensors that
constitute the TN.

For bigger TNs, it is often unfeasible to resolve all contractions in one go. Luckily, the
contractions can be performed one at a time in any order. The order in which we introduce
and contract the tensors is known as bubbling and heavily influences the efficiency with
which we can calculate the values of a TN.
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3.9.8 Matrix Product States

Now assume we are given a pure state on n qudits, i.e.,

It’s Schmidt decomposition is
d
1 n
W)= el @ o If™),
i=1

where the {f*)} form a basis of the Hilbert space of the k" qudit Hj [51]. We can then
get this Schmidt decomposition by using SVD and grouping and splitting as explained in
Section 3.9.6, e.g.,

where the \ are diagonal matrices of singular values. Contracting the singular values into
the local tensors M leads to the form

1Y) =]ﬁUHﬁmHﬁaHﬂﬂ.

This kind of decomposition of a state is a so-called matriz product state (MPS). Note that
the name “matrix” product state can be misleading, as most involved tensors have a rank
higher than two. Often, we instead use the convention*

%) ZQAﬁHAfHAﬁHAfP

or more generally,

d
[AD, .. A = Y upﬁméﬂm”%y (3.9.1)

B1y0eyin =1

In the translationally invariant case, i.e., A1) = ... = A =: A this becomes

WA = S8 o tr[An Ay fin i) =

The uncontracted indices are referred to as physical indices, and the contracted indices are
referred to as virtual or bond indices. The dimension of the bond indices is called the bond
dimension. Writing states as MPS is only useful if the bond dimension is reasonably small.
While most states cannot be written as an MPS with reasonably small bond dimension,
many physical states can or can be approximated as such. One example is the GHZ state.

4This is an example of a (periodic) boundary condition.

49



3. QUANTUM INFORMATION

Example 3.5 (GHZ state). By choosing A according to

10 0 0
w=(s) 4=(i1)

and normalizing, we get the Greenberger-Horne-Zeilinger (GHZ) state

1
[Yauz) = E(|OO)+\11))

The mapping of a state to an MPS representation is usually ambiguous. This is known as
gauge freedom. Two examples of gauge transformations are basis transformations on the
virtual legs and blocking.

3.9.9 Matrix Product Operators

The equivalent of a MPS for operators, e.g., density operators, is a matriz product operator
(MPO). In the same way as before, we can write operators as

|

| | |
QATMAT»--#AT1>HA<\n>P

or

L 1]
AT} THa

where we again want to keep the bond dimension as low as possible.

3.10 Quantum Computers

Quantum computers rely on quantum mechanical systems for computations. Based on
logical gates, we name unitaries quantum gates. Examples of quantum gates on 1 or 2
qubits are

L —a=(1 o) _Jswar] = X -

o O o
o= OO
o o= O
— o o o

where the X gate performs a bit-flip on 1 qubit, and the SWAP gate swaps one qubit with
another. Referring to classical computers being built from electrical circuits with wires and
logical gates, quantum circuits are combinations of quantum state preparations, quantum
gates, and measurements, which we have to add here due to the probabilistic nature of
quantum mechanics. The way of depicting circuits is mostly the same as for classical circuits
and tensor networks. For example, the circuit depicted in Figure 3.7 shows the preparation
of two states p4 and pp, the use of a unitary on their tensor product, and the subsequent
tracing out of system A. The resulting state is then p = tra(U(pa ® pg)UT) [51].
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PA
U
PB

Figure 3.7: Example Quantum Circuit. First, the states p4 and pp are prepared, then
the unitary U is applied to their tensor product, and then system A is traced out.

Many current candidates for quantum computers focus on qubits as the fundamental units
of information; other possibilities are, e.g., continuous-variable quantum computing [58] or
quantum annealers [91]. Contenders for implementing qubits include trapped ion qubits [59,
183], superconducting qubits [184—188], photonic qubits, and neutral atom qubits [60-63,
189]. Current leading implementations have either a comparatively low number of physical
qubits (up to 200) paired with high fidelities (more than 0.98, often higher, up to 0.997
for 1 qubit gates) and low noise [59, 63, 183, 185, 187-189], or a higher number of qubits
(up to 1180) and unspecified fidelity and noise [61,62,184,186,190,191]. Thus, with these
current implementations, we are still in the era of noisy intermediate-scale quantum (NISQ)
devices [192].

3.11 Quantum Machine Learning

The field of quantum machine learning (QML) is an emerging field combining the fields of
ML and QI. One can generally divide it into the following sub-fields (see, e.g., [66-68]) by
the type of data (first letter) and processing (second letter) used. The letter “Q” is then
short for “quantum” and the letter “C” short for “classical”.

CC ML encompasses methods using classical algorithms to process classical data, in the
context of QML, with approaches derived from quantum information research, e.g., employ-
ing tensor networks to train NNs [66, 69].

QC ML uses classical algorithms to process quantum data for tasks in, e.g., quantum
metrology [193], simulating quantum many-body systems [77], adaptive quantum computa-
tion [194], or quantum error correction (QEC) [41,195-203]. A review of this field can be
found in [204].

CQ ML uses quantum algorithms to process classical data mainly with the aim to speed
up classical learning algorithms [65,70—-72]. This is by far the most explored subject under
the term QMTL, so much so that other scenarios are not even mentioned in some reviews on
QML [205]. One approach is to replace classical models in traditional ML algorithms with
quantum ones [66,206]. Although the literature on these methods outperforming classical
ones is overwhelmingly positive, a metastudy found that when benchmarking influential
quantum models [207-217] and out-of-the-box classical models on simple classical SL tasks,
classical algorithms systematically outperform the current quantum ones. Additionally, the
quantum algorithms usually perform better without entanglement [218]. Another potentially
more promising field of study is creating CQ ML algorithms based on quantum subroutines
with an already known speed-up [66]. An example of this is using Grover’s algorithm for
RL [64,219]. An introduction to the field of CQ ML can be found in [220].

QQ ML uses quantum algorithms to process quantum data [221-230]. For quantum data
as input of a SL algorithm, as opposed to only classical data, it has been shown that fully-
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quantum protocols can be helpful [78-81], e.g., some problems with quantum states as input
are learnable in polynomial time with quantum algorithms but not classical algorithms [231].
As for the other sub-fields, RL is much less explored than (un-)supervised learning and, in
this case, much harder to define. Possible scenarios are, e.g., discussed in [232].

In this thesis, we want to focus on using either classical or quantum ML techniques for
quantum data. As we already reviewed the classical ML methods needed, we will now
discuss the QQQ ML method we use in this thesis: dissipative quantum neural network
(DQNN). Before, we will briefly describe other proposed quantum neural network (QNN)
approaches.

3.11.1 QNN approaches

An overview of different QNN architectures is given in [233].

Most approaches of so-called (QNNs fall into the field of CQ ML and are given by a combina-
tion of classical pre-processing, simple variational quantum circuits (i.e., quantum circuits
depending on certain trainable parameters that are optimized classically) repeated in layers
and classical post-processing [207,208,210-212,218,233-236]. The name is chosen in this
way as classical NNs can generally be incorporated in QNNs [237]. In order for the QNNs
to be expressive and not only able to approximate simple sine functions, one often has to
make use of data re-uploading of classical data [209,238]. The circuits can then be written
as

—

Ugnn(0) = [[ S@U ()W

—-

i
h

where S(F) is a data uploading scheme of a classical input &, U'(6) are variational gates,
and the W' are fixed, typically entangling gates. Many different QNNs in the context of
CQ ML use this ansatz [217,218].

Fewer QNN approaches exist in the context of QQ ML, e.g., quantum generative adversarial
networks (QGANSs) [239,240] or quantum convolutional neural networks (QCNNs) [241,242]
for many-body physics or QEC. In [243], the authors present a NN for cv QC able of approxi-
mating any unitary on N modes. Each layer of the QNN consists of a trainable parametrized
Gaussian unitary, which leads to a linear transformation in phase space, and any fixed non-
Gaussian gate on each of the modes, which leads to a non-linear transformation in phase
space. Note that, without additional systems, this only leads to being able to approximate
unitaries, not channels, on the N modes. Another example are DQNNs discussed next.

3.11.2 Dissipative Quantum Neural Networks

Dissipative quantum neural networks (DQNNs) were first introduced in [244] and further
used and described in [104,245-251]. If not mentioned otherwise, we will follow [244].

When dealing with quantum input and output data in the SL framework, we face training
data of the form

S=((p1,09") ooy (PR, 0%")) € (D(H™) x D(H™M))

XN

In the case of Hi* = C?", Hout = C4" for some d, d°** € N for which there exist
m%, mitl d € N such that d® = m°d, d°** = mZ*'d, we can employ DQNNs for SL.
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(a) L i

U
AR
%Q%
p - P
BN —

pini T ] ﬁL

00— % A

0 o

10) — U

|O> out
> P

|0

Figure 3.8: DQNN architecture. Panel (a) shows the graphical representation, and
Panel (b) the corresponding quantum circuit of a fc ff DQNN with a two qudit input and
output, and one hidden layer consisting of three neurons. With neuron j in layer I, we
associate a qudit, and a unitary U]l- that acts on qudit j in layer [ and the connected
neurons in layer [ — 1. Given an input p'®, the output of the DQNN is given by p°'* =
tro. (U (p™ @10...0);.,,,(0...0[)U), where U = ULFL UM Uy =UL+ UL

mi+1

A DQNN is a quantum circuit organized in layers similar to an NN. We also use the same
names to describe the different layers, i.e., input, output, and hidden layers as in the classical
case. Kach node represents a qudit, and with a connection between nodes of layer [ — 1 and
node j of layer [, we associate a unitary U Jl acting on the qudits which are represented by
the connected nodes. In this way, only the connected neurons interact with each other. All
unitaries associated with connections between layers | — 1 and [ are pooled together in a
layer unitary Ul = U,lnl ...U! where m, is the number of neurons in layer /. Here, and in
the following, we do not write down the identities on other neurons and assume them to be
absorbed in the unitaries implicitly. To transfer a state p' from layer [ to layer [ + 1, we
tensor p! to the ground state on the layer [ + 1 qudits [0... 0>l+1 (0...0|, apply the layer
unitary U'*! to the composite state, and then trace out the qudits of layer I. Hence,

pitl =gt (pl) = try (UH'1 (pl ®10... 0>l+1 ... O|) Ul'HT) .
With L hidden layers and input p'®, the output of the DQNN becomes
P = tro., (U (P @10...0)y.,,, (0...0) UT), (3.11.1)
where U = UL .U is the network unitary, we write i : j short for 4, ..., j, and index the
input layer by 0 and the output layer by L + 1. The graphical and circuit representation

of a DQNN and the notation are shown in Figure 3.8. DQNNs can be formalized with the
following definition.
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Definition and Proposition 3.8 (Fc ff dissipative quantum neural network (DQNN)).
Let L € N, (m)i=o,....1+1 € NE+2. An architecture m defines a function class, i.e., a set of
functions, of fc I dissipative quantum neural networks (DQNNSs) given by

FROw {Nu L TET™) = TE™ ) | Nu(p) =

o= e (Ul (pH ®10...0) <o...0|) U”) ,
Ul = (1l1:ml71 ® Urlnl) te (U{ ® 1l2:ml)7

l dmi—1t1 It
UjEB(C )7 U]U] =1,

U= (10:L—1 ® UL+1) o (Ul ® 12:L+1)}

Given an input state p° € D(C*""), and a DQNN Ny, its output is
pE = Ny (p°) = tro.r, U (P° ®10...0),,,, (0...0) UT) e DEC ).

We call the {UJI} the perceptron unitaries, the {U'} the layer unitaries, and U the network
unitary. The width of the DQNN is ||m||s and it’s depth is L. We say the network is
shallow if L = 2 and deep if L > 2.

If we do not include additional measurements, DQNNs are not classical NNs in the narrower
sense of the word as they do not use a non-linear activation function. However, due to
Stinespring’s theorem (see Proposition 3.1), they have the same property of being universal
approximators, not for all classical functions, but quantum channels, which are the most
general maps with (only) quantum states as input and output, i.e., the following proposition
holds.

Proposition 3.3 (Universality of DQNNs [82]). Every DQNN is a channel and for every
channel £ : T(C") — T(C*™) with d™ = m°d, d°** = mLd, d, m®, mE+! € N there
exists a DQNN architecture m € NET2 where L € N, and network unitary U s.t. € = Ny.

Training Data and Cost Function
The training data for a DQNN is of the form

S = (P 09" oo (P, 0%)) € (D(H™) x D).

We write '
o = Nu()

for the output of the DQNN when inputting pi* and want this to be as close to the target

output o9 as possible.

If all target outputs o2" are pure, i.e., we can write g9 = [0 )" | Vz € {1, ...,n}, the

fidelity (see Equation (3.7.2)) is the essentially unique measure of closeness. We then use
the infidelity as our loss

l(./vz,{, (pin7o,0ut)) —1— F(/\[u(pin)7JOUt)), (3112)
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and hence the cost function

N N
— N Z out out Z out out (3113)

If not all target outputs are pure, the fidelity becomes hard to handle in the derivation
of the training algorithm. Thus, we then use the squared Hilbert-Schmidt distance (or
Schatten-2-distance, see Equation (3.7.1)) as our loss

[Ny, (0, 0°)) = [Nu(p™) — 0”13, (3.11.4)

and hence

N
Z out out)Z) (3115)

as the cost instead [104,252].

Classical Training

First, let us look at a way to train DQNNs classically. We can either see this as a simulation
of training DQNN5s on a general quantum computer or as a training algorithm for classically
training DQNNs on classical representations of quantum states, which is further discussed
n [253]. During training, we update each unitary U Jl by multiplying it with a matrix
exp P} = expieK Jl By choosing Hermitian matrices K é, we make sure that the unitaries U Jl
stay unitary. By minimizing the difference after and before the update for ¢ — 0, we get
Algorithm 9. The derivation can be found in Appendix A.1 and [244,245] for pure states
and in Appendix A.2 and in [252] for mixed states.

Similar to classical NNs, the optimization algorithm can be split into a feed-forward part,
where the input is layer-by-layer propagated forward through the DQNN, and a backpropa-
gation part, where the target output or error is layer-by-layer propagated backward through
the DQNN. The update matrices are then given by a trace over a commutator between those
parts, each multiplied by a part of the unitaries in that layer. We used the notation that
Ut . = Ujl,z . U;l for j1 < jo, and UL . =1 for j; > jo. Numerical results can be found

J1:J2 Ji:j2
in [244,245] for pure states and in [252] for mixed states.

NISQ Devices

On NISQ devices, we can only use certain parametrized unitaries and build general unitaries
out of those. A DQNN is then written by parametrized unitaries with a total of N, param-
eters. The parameters are stored in a vector p; € RNP that is initialized and then updated
using classical gradient descent, i.e., p;11 = p; + dp where dp nVC (p;). We estimate the
gradient using

C (pt + eck) — C (pt — eci)

(VC (), = 26

with (6';;)j = 6%, k,j=1,...,N, and the cost function by using the SWAP method (further
described in [245]) for pure outputs [250].
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Algorithm 9 Classical Training Algorithm of ff DQNNs

Input: ((p},09™))e=1,...5, (M)i=o,....4+1 OF (U})j=1,...m)i=1,...04+1, 1, T

> Training set, network architecture or unitaries, learning rate, number of training steps <
if (ml)lzl,...,L-i-l not given then > Calculate architecture if none is given

for [ =0, ...,LEN(((UJZ-)]':L_“,mZ)l=1,...,L+1) do
my +LEN((UY);=1.....m,)
L «LEN((my)i=1,.. +1)—1

for 1=1,...,.L+1 do

for j=1,...,m; do
> Random unitary w.r.t. Haar measure on m;_1 + 1 qudits
U} +—RANDOMUNITARYHAAR(m;—1 + 1 qudits)

L U 00 @ 1,

for t=1,...,T do

for x=1,...,N do

Pa & Py

for I=1,...,.L+1 do
pb oo ot (Ul (pggl ©10...0) <o...0|) U”)

if Vo € {1:n} Iy € H'™ such that o0 = [p2u%) (12| then

T [0 (|
else

okt e g
for 1=0,...,L do

ob e (0o 0.0+ 0. o) U (1 @ o) )

it -1 l l
Uj+1:mz (1 ® Ux) Uj+1:ml]
Pl —2moipt (6, (M0)
. U exp(P)U;
> Calculate Cost
if Vo € {1:n} IS € H" such that o0Ut = [h2u%) (12"t| then
G 1= ANt (peos)
else )
CCe T (o - o))

else if ((U;)jzl,,..,ml)121’.,,,L+1 not given then > Initialise unitaries if none are given

> Feed-forward

for x=1,....N do > Backpropagation

for 1=1,...,.L+1 do > Update matrices
for j=1,...,m; do
1 & l it
M > {Uf:j<pé_l ®10...0) <o...0|)U1:j,
r=1
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3.11. Quantum Machine Learning

3.11.3 Challenges

While the main reason for looking into quantum algorithms in ML is the potential for a
quantum advantage, especially when analyzing data from quantum mechanical processes,
there are also challenges. As an example, we discuss two of them; others include the search
for QML architectures and the noise in current quantum systems. This section is adapted
from [254].

Barren plateaus. Like in classical ML, algorithms making use of quantum information
often have to deal with local minima in the loss function. However, this is not the only
challenge we face regarding the loss landscape. We also encounter Barren plateaus, i.e.,
the loss landscape grows exponentially flatter, and the valley of the global optimum shrinks
exponentially with growing system size [255,256] (strategies for dealing with this are, e.g.,
explained in [257]). This phenomenon appears in many QNNs [255, 258, 259], including
DQNNSs [248]. Tt arises due to the hypothesis space being too expressive [258,260] (strategies
for dealing with this are explored in [261-263]), global observables [264,265], noise [266], or
too much entanglement [248,267] (strategies for dealing with this are explored in [268]).

Data sets. As for any ML algorithm, we need datasets for benchmarking in QML. In CQ
ML, embedding the classical data in quantum states is still an active field of research [269].
Although some proposals exist [213,217,270], it has been shown that embeddings that are
both hard to simulate classically and practically useful can still lead to further Barren
plateaus [271]. In QQ ML, only a few data sets (e.g. [272,273]) exist.
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A

Dissipative Quantum Recurrent Neural
Networks

The just considered ff DQNNs serve as a powerful technique for analyzing independent
and identically distributed (i.i.d.) quantum data. However, in quantum mechanics, we
are faced with a number of tasks where the data is not i.i.d. but sequential. Examples
include the time-evolution of states w.r.t. a time-dependent Hamiltonian, applications in
quantum control [274,275], or the examination of quantum channels with memory [90]. As
we discussed in Section 2.1.4, RNNs are a key resource for processing sequential data. Hence,
we want to explore a recurrent version of DQNNSs, called dissipative quantum recurrent
neural network (DQRNN), which we will introduce in Section 4.1. Since we use DQNNs as
a base, they are universal for analyzing sequential quantum data in the sense that they can
approximate any causal quantum automaton. We will further discuss this in Section 4.2.

Especially in the context of CQ ML, there exists a number of different so-called quantum
recurrent neural network (QRNN) architectures [276-279]. In the context of QQ ML, this
is less so, and only unitary QRNNSs in the cv context are discussed [243]. These approaches
are reviewed in Section 4.3.

Section 4.4 focuses on the different kinds of training data and cost functions we will discuss
in this chapter. As we are still in the NISQ era, we simulate our results in this chapter
on a classical computer. Hence, at the heart of this chapter, we develop classical training
algorithms in Section 4.5 for the presented data sets and cost functions. These algorithms
can be seen either as a simulation of employing DQRNNs on a QC or as a classical learning
algorithm if we are given or obtain a classical representation of the training data. We
then use these algorithms to analyze the delay channel, a standard example for a quantum
channel with memory, and the time evolution of states under a time-dependent Hamiltonian,
as time predictions are a standard use case for classical RNNs. These numerical results are
presented in Section 4.6. In Section 4.7, we present a possible training algorithm on NISQ
devices.

Most of this chapter, except for the case of entangled training data, is discussed in the
work [104].
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4. DISSIPATIVE QUANTUM RECURRENT NEURAL NETWORKS

AN IN| ouT

Figure 4.1: Dissipative quantum recurrent neural network (DQRNN) Architec-
ture. We define a DQRNN as an iteration over the memory system (orange) of a ff DQNN
with L hidden layers (here L = 1) where the 0" layer is split into input neurons (blue, here
1) and memory neurons (here 1) and the L + 1*h layer is split into output neurons (purple,
here 1) and memory neurons (here 1). For a concrete number of iterations N, we can input
any state p'N on HP M @HP®- - -@HT and get out a state pOUT on HYM @ - - @HE@H ™.

4.1 Architecture

In classical RNNs, the output of some layers of a NN is used again as input in the same
or previous layers. The same idea can be utilized with DQNNs. As DQNNs are linear, we
can assume, w.l.o.g., that part of the output of a DQNN is used again as part of the input.
The reused part is called the memory, referring to quantum channels with memory and
classical RNNs. In particular, we split both the Hilbert space of the 0" layer (total input)
Hintotal — 240 and (L + 1) layer (total output) Heutotal = HL+1 into two Hilbert spaces
each, i.e., we write H? = H™™ @ H™ and HETT = HOU @ H™™ . A part of the neurons in
the last layer (neurons in H™°™) is reused as input for a part of the neurons in the 0" layer
(again, neurons in H™e™). This, in total, defines a dissipative quantum recurrent neural
network (DQRNN). If we assume that all neurons are associated with qudits on the same
d-dimensional Hilbert space, the number of memory qudits in the 0** and (L + 1)*" layer
has to be the same. This is due to us not employing a channel between memory output and
memory input and to the impossibility of copying or cloning quantum states [280,281].

Like for classical RNNs, discussed in Section 2.1.4, and quantum channels with memory,
discussed in Section 3.6, we can depict a DQRNN either in a compressed or an unfolded
version. These are both shown in Figure 4.1. The compressed version shows a DQNN
in which the output of some of the neurons in the last layer is used as input of the same
number of neurons in the 0" layer. In the figure, the output of the first neuron in the second
layer is used as input of the second neuron in layer zero. Figure 4.1 can, in particular, be
understood as a special case of Figure 3.6, showing the compressed and unfolded version of
a quantum channel with memory. The general channel in Figure 3.6 is replaced by a DQNN
in Figure 4.1. For N iterations of the underlying DQNN N, the DQRNN can thus, in the
same way as a quantum channel with memory for N iterations of the underlying quantum
channel, be written as

Muyu= (1" vy 1 @Ny) o0 (T QN @15 y) o (M @13 y).

The input can then be any state p'™ on HYY := HP"@H"®- - -@HY, and the corresponding
output is given by

pOUT = My (p™)
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which is a state on HRUT 1= H" @ - @ HY' @ Huem. DQRNNs are formalized in the
following definition.

Definition 4.1 (Fc dissipative quantum recurrent neural network (DQRNN)). Let H™,
HOU, and H™™ be Hilbert spaces of dimension m™d, m°*d, and m™™d where d, m",
me mmem e N. Let L € N, (my)i=o,....+1 € NP2, where my = m™™ + m® and
mpy1 = mPem 4 meut A fe dissipative quantum recurrent neural network (DQRNN) is
represented by an underlying DOQNN Ny @ T(H™™) @ T(H™) — T(HO) @ T(H™™)
with architecture m. The tuple (m™™, m) defines the architecture of the DQRNN. This
architecture (m™™, m) and an iteration number N € N define a function class, i.e., a set
of functions,

FDARNN | = {MW L T(H™™) @ T(H™EN - T(HEEN @ T(H™™)| Ny € FRY,

My = (18" vy 1 @Ny) o0 (13" RNy @15 y)o (M ® 13 y) }

in which we iterate over the underlying DQOQNN N times.

In the same way as classical RNNs can be seen as very deep, sparse ff NNs sharing a lot of
their parameters in their unfolded versions, we can see unfolded DQRNNs as deep, sparse
ff DQNNSs sharing a lot of unitaries.

In addition to indexing the Hilbert spaces, states, unitaries, and channels by layer, we also
use the number of iterations of the underlying DQNN as an index when handling DQRNNs;
we write, e.g., '

Ny, =19 . 1 ONu @1, N

for the z** iteration, where x = 1, ..., N. Hence, we can write
MN,L{ ZNMN (O O./\/‘z,{1
and

pOUT = Mg (p™N) = Wity © -+ 0 Nity) (0Y) . (4.1.1)

4.2 Universality

DQRNNSs can be used to describe any quantum channel with memory with finite input,
output, and memory spaces.

Lemma 4.1. Every DQRNN is a channel with memory, and for every channel with memory
£ T(CM™™) @ T(CL") = T(C¥) @ T(CH™™) with d™ = mOd, d°"* = mE+ld, dmem =
mmemd d, m® mEtl € N there exists a DQRNN with architecture (m, m™°™) and an un-
derlying DQNN Ny, with network unitary U, and architecture m € NY+2, where L € N, s.t.
E=Ny.

Proof. The strategy for building DQRNNs from DQNNSs described above is the same as the
one for concatenated memory channels as described in Definition 3.5. As every DQNN is
a channel, and every channel with finite in- and output can be written as a DQNN, the
Lemma follows by construction. O
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4. DISSIPATIVE QUANTUM RECURRENT NEURAL NETWORKS

This means that DQRNNs, like quantum channels with memory [90], together with ini-
tialization, can be used to represent any causal quantum automaton with finite input and
output spaces. Hence, DQRNNSs are universal approximators for causal quantum automata.

4.3 Related Approaches

Many very different quantum recurrent neural network (QRNN) architectures were already
presented, most of them being hybrid quantum-classical models [276-279] missing a fully
quantum RNN for qudits. We now summarize a widely used approach (mainly applied
to stochastic filtering, i.e., extracting a signal from a noisy signal) and the ones sharing
similarities with our approach (used primarily for time series prediction).

A popular approach first presented in [282] under a different name uses a classical input
fed into a classical NN. The function defined by that NN then gives rise to a potential and,
hence, to a (nonlinear) Schrodinger equation solved by a wave function. By determining the
position’s expectation value, a classical output is generated that is also subtracted from the
following input. Thereby, the recurrency is generated. This ansatz is mainly used for stochas-
tic filtering [283,284], e.g., of EEG [285] or EMG [286] signals, for describing target tracking
through eye movement [286] or in continuous-variable quantum key distribution [287].

Other approaches like the ones from [288] or [289] include a kind of quantum neural network
(QNN) instead of classical NNs in LSTM cells, GRUs or encoder-decoders. Thereby, the
QNN often consists of assigning a quantum state to a classical input, applying a variational
quantum circuit, making a measurement on the result or determining the expectation value
of some operator, and sometimes using some activation function on it. The variational
quantum circuit, then, is the subject of the optimization.

Similar to that ansatz and ours is the approach to encode classical data in an input state on
qubits, apply a (highly-structured) parametrized quantum circuit, and measure a portion of
the qubits. The remaining qubits are left untouched, and the next state coming from the
classical input is tensored to them, which generates the recurrence. As before, the variational
quantum circuit is optimized in the training process. This ansatz is then used for classical
data [290-292].

The only fully quantum RNN was presented in [243] for a system of continuous variables that
also can be used to encode classical data in quantum states. To construct QNNs, Gaussian
gates are used instead of the affine transformations in classical NNs and a specific but
arbitrary non-Gaussian gate is used instead of the activation function. In the recurrent case,
a part of the output is again used as part of the following input. Example calculations were
only provided for the hybrid quantum-classical feedforward case. Here, only the Gaussian
gates are optimized.

As already explained, we use the ansatz from [82] for QNNs and introduce the recurrence
in the same way as in [243] to construct fully quantum RNNs. While the underlying QNN
in [243] can only approximate unitaries, DQNNs have the capability to approximate more
general channels. This allows us to learn general quantum channels with memory.

Another approach sharing similarities with several others to QRNNs is the one of quantum
reservoir computing (QRC). Here, a classical input is encoded in a quantum state on system
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A and tensored to a state on system B (the reservoir). This state then evolves w.r.t. an (up
to some point) random Hamiltonian before a partial measurement is performed. The result
is then used as input for a linear map, which yields the output. The major difference between
QRC and most of the similar QRNN approaches is that in QRC, the linear map yielding the
output is optimized. In contrast, in the QRNN approaches some kind of quantum circuit —
corresponding to the Hamiltonian here — and not the output function is optimized [293-296].

4.4 Training Data and Cost

As already discussed, for a DQRNN with N iterations over the underlying DQNN, the input
has to be in B(HY), and the output is in H{UT, where

HIN — Jymem ® Hin®N’ H]OVUT _ Hout®N ® Jmem

We also call H®, H™™ and H°" the local input, memory and output Hilbert spaces,
respectively, and /HE\I}I and ’H%UT the global input and output Hilbert spaces, respectively.
Each of our training pairs should be a global input-output pair consisting of quantum states
on those same global input and output Hilbert spaces, i.e.,

a ) (e

So = (pa', 00T € D(HRY) x D(HRYT).

As we want learn the unitaries of the underlying DQNN, not all of the training pairs have
to have the same N,. Thus, most generally, the training set consists of M training pairs
Sq € D(HEY) x D(HJUT), where a = 1,..., M. Hence, the training set is of the form

S = (S}, = {02} € X (DO ) x D)) (4)

a=1

where M is the number of runs of the DQRNN and N, is the number of iterations over the
underlying DQNN in run a.

Like for the DQNNSs (see Section 3.11.2, Equations (3.11.2) and (3.11.4)), we use the infidelity
as loss function [ if the target states are pure and the Hilbert-Schmidt distance if they are
not. We can compare the network output to the target output either globally (on HOUT)
or locally (on H°U).

Globally comparing
PV = M, (P8)

to cQUT leaves us with the loss

Lgtobal, pure(Mn2t, (0™, 0OUT)) =1 — F(My 1 (p™), 0OT))

1 (M (o) 97T,
for pure target outputs oOUT = [pOUT) (pOUT] for OUT € HH*, and

Igobal, mixed (M, (0, 0°UT)) = My u(p™) = a®U)|I3

=tr (\/(MN,M (pN) — JOUT)T (Mu .y (pN) — gOUT) > ’
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4. DISSIPATIVE QUANTUM RECURRENT NEURAL NETWORKS

for mixed outputs, where we used the definition of the fidelity (Equation (3.7.2)) and Hilbert-
Schmidt norm (Equation (3.7.1)) in the last steps.

According to Equation (2.1.2), the cost C' is then given by

1
IN OUT
C’global7 pure,S — M Z lglobal, purc(MN,Z/{, (pa y 0, ))

a=1
M
OUT _OUT
:1iﬂztr(pa Oa )
a=1
for pure target outputs cQUT = |QUT) (OUT| for OUT ¢ H%ET, and
| M
C'global, mixed,S — M Z lglobal, mixed (MN,LH (pLNa SUT))

a=1

M 2
1
o <¢ (P9UT — 0QUT) (p9UT — 5QUT) )

_ Z tr OUT OUT) )

for mixed targets as both pQUT and oQUT are quantum states, which are by definition

Hermitian, and hence (pQUT — gQUT)T = (pQUT — sOUT),

If the states p}l and oQUT are product states, i.e., plN = pmhem @ pin e ® pij{}aa and

T .
oVt =000 @ - @ o, ® oW, we can write

S—=1g9 M mem in out) ) Ne mem M
_{ Oé}a_ PO« ’((pxowaza))x=17o—Naa a—1
instead of Equation (4.4.1). Then, it can make sense to compare the separate outputs locally,
i.e., comparing o2% to
t
o =t (Mu(ps)))

where tr traces out everything but the indicated layer. For this task, we use the local loss

N
1 —.ou ou
hocat, pure (Mo, (P, 00UT)) = 1= = 3 TP (Myu(p™)) . 02™)), (4.4.2)
=1
and cost
C(local, pure,S — 1—— Z Z tI‘ 2‘2 ;)125 (443)

for pure target outputs oQUt = [)U0) (U] for ¢;"ﬁ; € ’Hout and the local loss

N
1 —_ou
hocal, mixed(Mn s (0,007 T)) =1 = = STES (Mya(P™) = oQVTB,  (4.4.4)

r=1

and cost

1 M 1 Na
Coca mixe = 35 ~ t out out)2 4.4.5
local, d,S M O; Na ; r pxa za) ) ( )
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for mixed targets.

Often, we will leave out oy, and/or pf's™ when they are unknown. In that case, we will
set o = 17 and pf's™ = 10...0)w" (0...0] as these are the terms that would appear
if we calculate the cost or its derivatives in the case of unknown memory states.

Note that, for pure states, the local cost is always smaller or equal to the global cost, as
shown in the following Lemma.

Lemma 4.2 (Comparison of the local and global cost [104]). Let H™, HOU, H™™ be finite
dimensional Hilbert spaces, N € N, Myy a DQRNN, p'™ € D (H™™ @ (H™)®N), and
oOUT € D ((Hou)ON @ H™em). It then is

locat, pure(Mn.u, (0™, 0%Y)) < lgiopar, pure(Mu s (0™, 0°0T)).

Proof. The fidelity fulfills the data-processing inequality [297], i.e., for two Hilbert space
H1,Ha, two states 7,€ on H; and a channel € : T(H1) — T (Ha), it is

F(E(),£(8) = F(7,).

The partial trace is a channel and o2 = 19" (cQUT)

, hence
llocal, pure(MN,Ma (PIN7 JOUT =1-— Z F ( OUt MNZ/{(,DIN)) 7Ugut)

—1-— Z F (6" (M) 55" (°UT))

r=1

N
1 IN ouT
§17N;F(MN7u(p ),0’ )
=1—F (Myu(p™),0%"")
- lglobal, pure (MN,Z/{; (pINv JOUT))'

O

Note that this inequality does not hold for the mixed loss as the Hilbert-Schmidt distance
is not contractive [298]. For pure states, however, because of this lemma, we know that
the local cost is automatically minimized when the global cost is minimized, but not the
other way around. In that sense, the global cost is stronger than the local cost for pure
states. Furthermore, using the global cost, a DQRNN can be able to learn the entanglement
structure between the target outputs. Even for product targets, when employing the local
cost, there is no guarantee that the global output of the DQRNN will also be a product
state. If the global cost between a product state and the global output of the DQRNN is
zero, however, the global output of the DQRNN will also be a product state.

On the other hand, the local cost can be easier to optimize classically and compute on NISQ

devices: Numerically, before applying some tricks like scaling the learning rate, we had more
problems with plateaus when classically optimizing the global cost. Although it was only
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shown for shallow DQNNs (which DQRNNs are not, but they share a lot of unitaries), this
falls in with sparse DQNNs (which DQRNNs are when the underlying DQNNs are not too
big) not experiencing Barren plateaus when trained with a local cost [248]. On a QC, under
the assumption that qudits can be reset and used again, fewer qubits are needed for the
local cost than for the global cost. To compute the global cost on a quantum computer,
one would have to evaluate the full DQRNN and compare the full output to the full target
output using the SWAP trick. This means one would require at least 2Nm,, qudits for N
iterations. To compute the local cost, we would need to repeat the experiment N times as
often but require at most 2||m||« qudits, which in most cases is smaller than the number
of qudits needed for estimating the global cost. For each x € 1,..., N, we would ignore or
reset the output in the first © — 1 iterations and then compare the z'® output to the z'P
target output. On NISQ devices, repeating the measurement is not as problematic as a high
number of (logical) qubits (see Section 3.10). Hence, the local cost can be easier to optimize
classically and on NISQ devices.

4.5 Classical Training Algorithm

Now, let us take a look at training algorithms on a classical computer. These can either be
seen as a simulation of training DQRNNs on a QC or as using a tailored network architec-
ture when given classical representations of quantum states. We will sketch the derivation
of the algorithm here. The full derivation can be found in appendix A. We focus on a
DQRNNSs on qubits here, but the algorithm can easily be extended to qudits. As explained
in Section 3.11.2 in more detail, for the underlying DQNN of the DQRNN, we associate a
perceptron unitary U Jl for each connection between the nodes of layer [ — 1 and node j of
layer [. The unitaries acting on qudits of layer [ — 1 and [ can be pooled together to a layer
unitary U' = U}, ... U{ where m is the number of neurons in layer I.

In the same way as for classical NNs and DQNNSs, the algorithms for training DQRNNs
consist of four major steps: Before training, the parameters of the network are initialized.
For classical NNs, these are the weights and biases, for ff DQNNs, the perceptron unitaries,
and for DQRNNSs, the perceptron unitaries of the underlying DQNN. This initialization can
either consist of randomly choosing parameters or loading a specific set of parameters, e.g.,
parameters obtained through pre-training. During training, the following three steps are
repeated: First, the input is fed forward through the network. Second, some form of error,
whose form depends on the cost function, is computed for the last layer and then propagated
back through the network. Third, the feed-forward part and backpropagated error are used
to update the parameters.

4.5.1 Local Cost with Product In- and Output

Consider the local costs

Clocal, pure,S — 1-— Z Z tI‘ g]g gl(l)f (451)
a
for pure target outputs g0ut = [p2uF) (h2U¢| for 1)out € HOU* and
1 1 2 out out\2
Clocal, mixed,S = M Z Ni Z tI‘ pxa za) ) (452)
a= Y =1
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for mixed target outputs. This cost makes more sense to use with product inputs and target
outputs. Hence, for now, only consider product inputs and product target outputs, i.e.,
Pa = PE @ P @@ PN, 0T =0t @ @ oM, © o, and

. M
S = {8abily = { (s, (e o2i)) o, o ) |

a=1 '

Initialization

We first have to initialize the underlying DQNN;, either by loading pre-trained unitaries or
by randomly choosing them. For each neuron j in layers 1 to L 4 1, we choose a unitary U, ]l
on my_1 + 1 qubits at random w.r.t. the Haar measure. We then tensor it to identities on
the other qubits in layer [.

Feed-forward

We know from our discussion on ff DQNNs how to feed the state on the 0" layer to the
last layer layer-by-layer. In each iteration of the DQRNN, the same layer-by-layer-channel
is used to propagate the total input to the total output, as for the underlying DQNN (see
Algorithm 9 or Equations (A.1.4) and (A.1.7)), i.e.,

pho = E (phh) = tr'? (Ul (p;—o} ®10...0)' (0. .. 0|) U”) (4.5.3)
for I =1,...,1 which leads to
L= Ay (00,) = tr%F (u (pga ®10...00" (... 0|) uT) (4.5.4)

where we write ¢ : j for i,...,5 for ¢ < j. The proof for this statement can be found in
appendix A.1.2 or [82,245].

We now need to discuss how to get from one network to the next. Most generally, we tensor
all inputs pi", together and use the concatenated DQRNN on the full input pN. However,
this is not very efficient. When only considering a local cost, we only compare the state put
to 02U locally instead of comparing pQUT to 09U @ - -+ ® 02U, As shown in appendix A.3.2,
in classical simulation, we can then write the network-to-network process more efficiently

by setting

P90 = PET, © Pt (4.5.5)
e — grout (pL41) (4.5.6)
P =t (ppdt) (4.5.7)

for x = 1,..., No. This means we trace out the memory and output after each network to
get a local output p"* and memory p™°™ state, respectively. Then, the memory state is

tensored to the next local input pi®. This is then used as input for the DQNN in the next
iteration.

Backpropagation

We need to back-propagate some form of error to compute the derivative of the cost function
efficiently. The backpropagation process is defined as follows:
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For all x = N, ..., x, we set

oltl — gout g qmem (4.5.8)
if all target outputs are pure and
okid =2 (o - ) o 13 (459

if not. The difference is due to the cost being different for pure and mixed target outputs.
Note that the latter is no state anymore and looks more like the error propagated through
classical NNs. This is similar to our definition of oZ*! for the DQNN (see Algorithm 9)
with the addition of the identity on the memory system.

After that, we propagate oZ+! not only back through the z** DQNN iteration but through

rTr o

all iterations beforehand. For all z =x — 1, ..., 1, we set
olfa = ol L @12, (4.5.10)
mem 1,in in
Ozza = W00 <(Pz+1a ®17'®]0.. >z+1 (0. 0|> z+1 (12+1 & U;-l-l:c a) Uz1+1) . (4.5.11)

For all x = N,,...,1, z = x,..., 1, we get through each network in the same way as for the
DQNN (see Algorithm 9 or Equations (A.1.9) and (A.1.5)), i.e., for I = L, ..., 0, we set

oLy =& (oL = l+1((1l®|o 0)+1(0. |)Ul+”(1l®ag+l)al+l). (4.5.12)

We will need these later for updating the unitaries.

Update of Unitaries

In each training step, we update our unitaries according to
l v jeKLrrl
Ui = U; =e*iU; (4.5.13)

where we want to choose the K jl in a way that the change in the cost function is minimized for

bounded K ]l This way, for Hermitian K 31»7 the perceptron unitaries stay unitaries throughout
the training procedure. We then find the following term for the change in the cost function
in the first order.

Proposition 4.1 (Change in Local Cost). Let {Mn_ 11}o be DQRNNs with an underlying
DQNN Ny, and architecture (m™™,m), where m € N2 Lo m™e™ € N. Let the training

M mem out Na mem M
set be of the form S = {Sa},_, = {(poa , ((piny, 09 ))x 1,0Naa>} and the pt. ol

be defined according to Equations (4.5.3) to (4.5.12). Performing an update on the unitaries
of the form U} — U]l»/ = eiekK; Ujl- leaves us with the updated cost

1
Cllocal, pure/mized,S =1- M Z llocal, pure/mized(MNa U’ (p}xN, OUT)) (4514)
a=1

We then have

L+1 my
0C = lim ¢ -

6'_}0 :szZu(MlKl)

=1 j=1
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with

M N
M;:_%ZN%Z [U;...Ul(pm 210...0) <0...0\)U{T Lol

Q
I
—
8
I
-
N
—

Ozz 0 mg

vl T(1l L ol )Ul . UIH} (4.5.15)
Proof. See Appendices A.3.4 and A.3.6. O

The {M!} in Equation (4.5.15) are a sum over commutators between a forward and a
backward part. In the forward part, we feed the inputs {pi*,} forward through all iterations
of the underlying DQNN up to the 2™ iteration, and forward to the (I — 1) layer, resulting
in pi7!l. We then apply the unitaries up to neuron j, which leads to the state

1-1,1 l al i

A = Ul Ul (ol @00 0. ool ot
In the backward part, we start with the target output of the 2™ iteration 02" (minus the
b network output pSu¢ in the case of mixed target outputs) and go back to the zth iteration

(Where z < z) and back to the I'® layer, leading to o', ,. We then apply the adjoint unitaries

back to neuron j + 1, which results in

(e

-1, 1l lT -1 ! l
O’j+1zma UJ+1 . U <1 ®Uzza)Uml"'Uj+1

The {M Jl} are then calculated as a sum over the commutator between the feed-forward and
the backpropagated part via

x

M N
1—1,1 l 1,1
p]za’ jtlzza

Note that the matrix MJI is defined in the same way for mixed and pure target outputs
although the cost is different, because we also chose the starting state in the backward
process slightly differently for mixed and pure target outputs.

As 0C is linear in K!, it would be minimized by an infinite matrix [82]. However, we want
the K ]l to be bounded, so we have to introduce a constraint, which results in the following
proposition.

Proposition 4.2 ( [82]). Let L € N, m € Nt+2, Kl e Clmimrthx(mizitl),
MJZ e Clm—tm)x(mi—itmi) for i =1, my, 1 =1,...,L+ 1. The minimization problem

L+1 my

mm—zZZtr Ml 1llj 1®Kl®lj+1ml))

=1 j=1

E Kl 0."/1 Q. ’)’ml 1+1
2

g KJZA = const.

— 5

i

69
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has the solution

2mi-1j
l : l l l
Kj=i—— trl:j—l(trjﬂ:ml (Mj))

where A is a Lagrange multiplier introduced to solve the constrained minimization process
and the o are the Pauli matrices.

Proof. The proof can be found in [82] or Appendix A.1.4. O

Hence, in each training step, we perform the update
l N 77l
Uj — exp (Pj) U;
with

P} =iekj = -2t (tfé‘ﬂ:mz (815) )

where 7 = £ is the learning rate.

The algorithm

Together, this leaves us with Algorithm 10 where we write U}lzh = U}Q e U;l for j1 < jo,
and U} ., = 1for j; > jp. The algorithm uses the training set S = ((p§'S™, (P, 09%))a)as
the learning rate 7, the number of training steps 7', and either a DQRNN architecture
(m, m™°™) or a list of perceptron unitaries ((Ujl»)j)l and the number of memory qubits
(m™e™) as input. In the first step, the unitaries are randomly initialized, or the architecture
calculated, if not already given. Then, in each training step, the inputs are fed forward
through the DQRNN. Afterward, the error, depending on the cost, is calculated in the last
layer of each DQNN iteration and propagated back through the full DQRNN. For each
l=1,.,L+1, 7 =1,...,m;, we then compute an update-matrix le». It is essentially a
sum over training pairs o = 1,..., M, and DQNN iterations x = 1,..., N, z =1, ...,z of the
partial trace of a commutator of feeding the input forward to neuron j in layer [ of DQNN
iteration z and propagating the error back from the output of DQNN iteration x to neuron
j + 1 in layer [ of DQNN iteration z. The unitaries are then updated as U} — enPs Ujl-. To
keep track of the progress, the cost is calculated in each training step.

Note that the size of the used matrices scales only with the width, not the depth or number
of iterations of the underlying DQNN.

The here presented algorithm corresponds to the vanilla gradient descent algorithm for clas-
sical NNs. It can easily be generalized to include adjustments like mini-batches, validation
data, or early-stopping conditions.

4.5.2 Global Cost and Pure Target Outputs

Now, consider the global cost

M
1
C'global, pure,S — 1- M aZ:l tr(pSUTUSUT)
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4.5. Classical Training Algorithm

Algorithm 10 Classical Training Algorithm of DQRNNs with and product in- and output
local cost

Input: ((pF<™, (P, 02%))am1,... N)a=1,...M+ Mmem, (M1)i=0,...,L+1 OT
((U]l)JfLm,ml)171,~~,L+1ﬂ , T
> Training set, network architecture or unitaries, learning rate, number of training steps <
if (ml)lzl,...,L+1 not given then > Calculate architecture if none is given
for [ =0,. LEN(((UZ)] 1,..my)i=1,... L+1) do
e LEN(UD) )
L <—LEN((ml)l 1,.., L+1)_1
else if ((U;)j:L...,ml)l:l,...,L+1 not given then > Initialise unitaries if none are given
for 1=1,...,L+1 do
for j=1,...,m; do
U]l» +RANDOMUNITARYHAAR(m;—1 + 1 qudits) > Random unitary w.r.t. Haar
measure on my_1 + 1 qudits

Ul<—111] QU@ 1L

L J+1lmy o
for t ., T do > In each training step
for a=1,...,M do > Feed-forward
for x— ..N do
mem

pxa <; Pz=1a ®pxa
for I=1,....L+1 do

Pt (Ul (pg;al ®10...0) <o...0|) U”)

pglgm . trout (pLzl)

e )

fora=1,...,M do > Backpropagation
forz=1,..., N, do

if Va e {1 M}, x € {1: N} 328 € H™ such that o0t = [p9ut) (1)0U¢| then
‘ L+1 — O.out ® ] mem

Ozza
else

L+1 out out mem
L Uzzae2( pza)®lz

for z =z, ..., 1 do
for l = .,,0do

L ol e trl+1 ((1l ©10...0)+1(0...0|) it (1l ®olt) Ul+1)

gmem 4 gyLin ((pi;a ©17,®0...0).(0.. |)U1T (10 ® azm)Ug)
L el e I e,

for 1:1,...,L+1 do > Update matrices
for j =1,. ml do

a T

N
1 1
ZN S k(@0 . 0ol
¥ p=12=1
l - l T
U-‘rlml(l 1®Uzwa>U+1ml:|
Pl —momput o (L, (D)
Ul<—exp(Pl) Ul
> Calculate cost N
if Va e {1: M}, xe{l N} 390U € HI® such that o0 = |0u8) (40U | then

Na
G 1= el X tr (o)
else

M N, 2
G i e (o - oot)’)
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4. DISSIPATIVE QUANTUM RECURRENT NEURAL NETWORKS

for pure target outputs eQUT = |pQUT) (OUT| for 4)OUT ¢ ’HOUT The global cost is not
only useful for analyzing product data but also for data that is entangled between different
iterations of the underlying DQNN. Hence, we drop the assumption that the in- and outputs
of the DQRNN are product states. Then, as discussed before, the training set is, in general,
of the form

S ={(PN.02") ), € ><( (HR,) x DHRT))

a=1

if we do M runs of the DQRNN and iterate over the underlying DQNN N, times.

In this case, we have to handle — on potentially many sites — entangled states, which can
result in high dimensional matrices. Hence, it makes sense to use TNN for computations
and the derivation of the training algorithm. Every entangled state can be written as a
matrix product operator (MPO), so we can write

in

- Y
""" | (4.5.16)
and
-
(4.5.17)

Here, and in the following, we use different colors for the input (blue), memory (orange),

output (purple), and hidden (green) layers. For now, consider only pure target output states
gOUT — [yOUT) (yOUT| for 4OUT ¢ HOUT

The output of the network is then given by
ngT (NUN 'ONZ/h) (pIN) = (NMN O"'ONLh) (pIN)
= 0L (uNa U (pIN @0...0) L <0...0|) uf...u}va) .

For the output in TNN, see Figure 4.2.

We can then write the cost function

Cvglobaul, pure,S — 1- M Z tI' OUT OUT)
1 M
=1-+ Ztr( (oY @ 1%k Yun, ... U (pIN ®10...0) 5 (0. .0\)
a=1
uf ..uf,)

in TNN, as depicted in Figure 4.3 which is the sum of the trace of the product of the output
with the target output. Hence, in TNN, we only connect the red lines in Figure 4.2 with
the ones in Equation (4.5.17) and sum over the result.

The training algorithm is then derived using the same update as before, and careful bubbling.
The perceptron unitaries are again initialized as before, and the training procedure again
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4.5. Classical Training Algorithm

Figure 4.2: Network output of a DQRNN with N, iterations over the underlying DQNN
with input p™N as given in Equation (4.5.16).
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|0>1:L+1 |0>1ZL+1 |0>12L+1

C=1-L>M, oY e | EN B

<O|1:L+1 <0|11L+1 <0|1:L+1

Figure 4.3: Global Cost of a DQRNN for global inputs and target outputs given as
detailed in Equations (4.5.16) and (4.5.17).
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4.5. Classical Training Algorithm

consists of a feed-forward, a backpropagation, and an update part. The derivation of the
training algorithm can be found in Appendix A.4.

Feed-forward

We define our way forward similarly to before with two differences: First, we have to keep
track of the virtual legs. Second, we modify the way from one iteration of the underlying
DQNN to the next, as we do not want to throw away the outputs.

To simplify the calculation of the cost, for all a =1, ..., M, set

= if pg*e™ is given and otherwise.
(4.5.18)
Forx =1,...,N,, set
Vool — = .
Px
(4.5.19)
Forli=1,..,L+1, set
[
| 0
Vool — = —H{vbd!
| (o'
Ut
(4.5.20)

Until now, this is the same as for the local cost if we had kept track of the virtual legs.
However, in order to not have to keep every output leg open until the last iteration, which
would result in a matrix of size Nm°", we already group the z' target output and the last
layer output of the x*" iteration of the underlying DQNN together, i.e.,

I/l’,‘:‘r]
(4.5.21)
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This means that this is not the forward propagated state but some kind of error depending
on the cost, as in the backpropagation part of the local cost. The cost is then given by

M
C:]‘iﬁzazl

(4.5.22)
as further explained in appendix A.4.1.

Note that Equations (4.5.19) and (4.5.21), especially, are only useful if we want to calculate
the cost. The full output state will not arise from this feed-forward procedure. To obtain
the full output, we instead have to skip Equation (4.5.21) and use yiflla instead of VT,
in Equation (4.5.19). We refer to the corresponding states as pl , and set

— if p§*e™ is given and otherwise

(4.5.23)

for o = 1,..., M. For notational clearance, we abuse notation and set pOLJr1 = pp'e™ although
there is no 0" iteration and p{f“ is not acting on H°"*. In the next two equations, the
output legs also only appear for z > 1. They are nevertheless depicted to keep things
shorter. For x =1, ..., N,, set

0 — L+1
= |

(4.5.24)

Furthermore, this and the following states are not only acting on one layer of the DQNN
iteration x, but also on the (0 : z — 1) output layer. For I = 1,..., L + 1, set

(i

! — -1
=

(4.5.25)

Following these equations, we would get the output state, but we would have to use states
of up to Nm°U + ||m|| qubits. So, the computation of these states and computations with
them would not be efficient anymore. In particular, the size of the matrices would scale
exponentially with the number of iterations N over the underlying DQNN as om™N
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4.5. Classical Training Algorithm

Backpropagation

The backpropagation again mimics the one of the local case. For later calculating the update
matrices, it is useful to define define, for « =1, ..., M,

mem

77 = ONa it o™ is given and otherwise.
(4.5.26)
For x = Ng, ..., 1, set
e = o] e
‘ (4.5.27)
Forl=1L,...0, set
|O>l+l
I+1
(0]
(4.5.28)
Set
— pianrla L/
(4.5.29)
Update
In each training step, our unitaries again get updated according to
l U _ ieKlrrl
U= U; =e“U; (4.5.30)

where we choose the K jl in a way that the change in cost function is minimized for bounded
K.
J
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Proposition 4.3 (Change in Global Cost). Let My, iy be DQRNNs with N € N iterations
over an underlying DQNN Ny, and architecture (m™™ m), where m € NL+2 [ mmem ¢

N. Let the training set be of the form S = {(p&", USUT)}L exM, (DHR) x D(HRYT))

with pure cQUT | where the pN, oQUT are written as in Equations (4.5.16) and (4.5.17).
We define V., 7L, according to Equations (4.5.18) to (4.5.21), and (4.5.26) to (4.5.29).

Performing an update on the unitaries of the form U]l» — Ujl./ = eiK; UJI» leaves us with the
updated cost

M
1
C;lobal, pure,S — 1- M Z lglobal, pure(MNa,Z/l'a (,OLN,USUT)). (4531)
a=1
We then have
' C, o C ‘L+1 my .
o0 =i =€ = 375 ()
=1 j=1
with
l 1
Ul:j Ujl'+1;ml
I+1
|U>[ Tz a
1/17(}1 [ Ul
l 1 M N, <0‘l
Mj = M Za:l Za:;l - |0>[
v 2
l
il (©
| |
l
Ujtrom ul,!
(4.5.32)
Proof. See Appendix A.4.3. O

The Mjl in Equation (4.5.32) are again commutators between a forward and a backward
part and derived by bubbling TNs. In the forward part, we feed the input error forward
through all iterations of the underlying DQNN up to the z'! iteration and forward to the
(I —1)*" layer. We then apply the unitaries in layer [ up to neuron j. In the backward part,
we start with the output of the N*! iteration and go back to the z'" iteration and back to
the I*! layer. We then apply the adjoint unitaries back to neuron j + 1.
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4.5. Classical Training Algorithm

Optimizing 6C w.r.t. Ké under the constraint that KJl» is bounded, using Proposition 4.2,
again yields

P2y 1 1
Kj = ZTtrl:j71 (trj+1:ml (M]) )

where X is again the Lagrange multiplier introduced to solve the constrained minimization
process. Hence, in each training step, we perform the update

Ul + exp (P}) U}
with

P; = ieK§ = —2ml*177trllzj_1 (tr§-+1:ml (Mjl) ),

where 7 = £ is the learning rate.

The Algorithm

The initialization is performed in the same way as discussed for the local cost. This yields
Algorithm 11. Again, the algorithm uses the training set S = ((pB<™, (pin,, 02%%)),. )0 (nOW
consisting of MPS representations), the learning rate 7, the number of training steps T', and
either a DQRNN architecture (m, m™™) or a list of perceptron unitaries ((Ujl.)j)l and the
number of memory qubits (m™™) as input. In the first step, the unitaries are randomly
initialized, or the architecture calculated, if not already given. Then, in each training step,
one kind of error is computed in the input layer of the first DQNN iteration and fed forward
through the DQRNN. Afterward, another kind of error is calculated in the last layer of
the last DQNN iteration and propagated back through the DQRNN. For each j, [, we then
compute an update-matrix P}, which is essentially the trace of a commutator of feeding one
error forward to neuron j in layer [ and propagating the other error back to neuron j + 1 in
layer [. The unitaries are then updated as U jl —e"hiU Jl To keep track of the progress, the
cost is calculated in each training step.

Note that the size of the matrices used in this algorithm scales with the bond dimension of
the global input and output MPS and the width of the underlying DQNN but not its depth
or the number of iterations.

Product data

If the input and target output of our training set are product states, we can simply ignore
the virtual legs in Algorithm 11. Then, the size of the matrices used in this algorithm scales
with the width of the underlying DQNN but not its depth or the number of iterations.

During our initial numerical experiments with N = 20, with a constant learning rate, we
struggled with a plateauing cost at the start of training or oscillations in the cost at the end
of training. This is because the M Jl can be very small if pQUT and 0% @ - - @ o, @ olpem
are far away from each other, i.e., the cost is close to one. However, during training, when
the pQUT and o™ @ - -+ @ ot ® o™ are closer together, i.e., when the cost is closer to
zero, the size of the M Jl increases. This falls in line with cost function landscapes getting
exponentially flatter and minima getting narrower for a global cost [248,254]. Hence, with a
constant learning rate, updates at the start of training would be very small and become larger
during training. However, in view of our discussion of the learning rate in Section 2.1.5,
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Algorithm 11 Classical Training Algorithm of DQRNNs with global cost, MPS data and
pure target output

Inputs (™, (6 092 )omt,...v 8™ )act....ar, where a2 pure,
(mi1)i=o,...,.L+1, Mmem OF ((Ujl')jzl,“.,ml)l:l,...,L—i—ly n, T
> Training set, network architecture or unitaries, learning rate, number of training steps <
if (mq);=1,... r+1 not given then > Calculate architecture if none is given
for [ = 0, ~~'aLEN(((UJl‘)j:1,H.,ml)l:l,...,LJrl) do
- my < LEN((UD)j21,.mi)
L «LeN((mq)i=1,....041)—1
else if ((Ujl-)j=17.,_,ml)l=17___,L+1 not given then > Initialise unitaries if none are given
for 1=1,...,.L+1 do
for j=1,...,m; do
> Random unitary w.r.t. Haar measure on m;_1 + 1 qudits N
Ul +~RANDOMUNITARYHAAR(m;_1 + 1 qudits)
L Ul oUe L,
for t=1,...,T do > In each training step
fora=1,...,M do > Feed-forward
Calculate vi’e™ according to Equation (4.5.18)
for x=1,...,N do
Calculate 10, according to Equation (4.5.19)
for I=1,....L+1 do
 Calculate v}, according to Equation (4.5.20)
B Calculate v2$™ according to Equation (4.5.21)
for a =1,...,M do > Backpropagation
Calculate i, according to Equation (4.5.26)
for x =1,...,N, do
Calculate 7271 according to Equation (4.5.27)
for [ =0,..,L do
L Calculate T;a .. according to Equation (4.5.28)
Calculate 7, according to Equation (4.5.29)
for 1=1,... L+1 do > Update matrices
for j=1,...,m; do
Calculate MJl according to Equation (4.5.32)

Pl —Zmlflr]trllzj71<tr§+1:ml (M;.))
L UJZ» < exp (le) Ujl-
Calculate C; according to Equation (4.5.22) > Calculate cost
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this is the opposite of what we usually want to do. The updates should get smaller during
training. In our numerical results, it helped to rescale the learning rate to 77 = %, where
7 is constant. This makes the learning rate larger for big costs and pulls the size of the
updates closer together. Maximizing In(1— C'), which is equivalent to minimizing C, instead
of minimizing C' results directly in the modified update rule. The update rule then changes

to
l mi—1 N l l l
Pj = 2™ —c, try 1 (trj“:ml (Mj)) (4.5.33)

which leads to Algorithm 12.

4.6 Numerical Results

All numerics were performed on up to 3 qubits per layer, product data, up to N = 100
iterations over the underlying DQNN, and M = 1.

4.6.1 Local Cost and Product Data with Pure Target Output

Most numerical experiments were performed using the local cost, product training data, and
pure target outputs. The number of channels that do not entangle the different outputs are
very limited, which is why we focus on only two examples here.

Delay Channel

The first example is a standard example used when talking about quantum channels with
memory: the delay channel we already discussed in Example 3.4. Before discussing training
a DQRNN on the delay channel, let us review it. We obtain the delay channel by using the
SWAP gate as the underlying channel of a quantum channel with memory, where we, in
each step, swap the input/output with part of the memory system. This results in the first
outputs being the initial memory qubits and the later ones being the earlier inputs. We use

HP = C2, Hout = C2, Hmem = (C2)k. Given an input state
PN =(PFN @@ (P @ P @ © Py,
the output and memory of the delay-by-k channel after IV iterations will be
O =" @ o R (R @ @ (RN,

where

g

out __ (p{)nem)w7 lf x S ka
S if k <ax <N,
( mem

ON)e = PN—pye forz=1.k

and we assumed the different inputs and also the initial memory to be in a product state.
We can use this to generate training and testing data sets. First, the input states are chosen
at random w.r.t. the Haar measure discussed in Section 3.8 as pure states. Then, we apply
the delay-by-k channel to generate outputs. This results in sets of the form

S=(leg ™), (1647) 105 ™)1)) 5+ (165) 105 k)) o (108) - |6 1))

which are then used to train DQRNNs and ff DQNNs. For this example, it is clear that a
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Algorithm 12 Classical Training Algorithm of DQRNNs with global cost, product data,
and pure target outputs

mem

Input: ((pg<™, (P, 025 ))o=1,... N+ TN )a=1,....M» (M)i=0,..., L+1, Mmem OT

(U=t cim)i=1,..Ls1, 0, T

> Training set, network architecture or unitaries, learning rate, number of training steps <

if (my)i=1,... r+1 not given then

for

> Calculate architecture if none is given
for | = 0, ...,LEN(((U})j:l)“.7mL)l:l’.”,L+1) do

t my (—LEN((U;—)j:l,...,mz)

L +LEN((my)i=1,.. 14+1)—1

. l . GO o PR o oL . . o .
else if ((Uj)jzl,.»-,ml)l:L---,L+1 not given then > Initialise unitaries if none are given

for 1=1,....L+1 do
for j=1,...,m; do
> Random unitary w.r.t. Haar measure on m;_1 + 1 qudits N
Ul < RANDOMUNITARYHAAR(m;—1 + 1 qudits)
1 l l 1
U1 00U 0 L m,
t=1,...,T do > In each training step
for a =1,...,M do > Feed-forward
e < ppem
for x=1,...,N do
W0 -, @ e,
for I=1,...,.L+1 do
_ t
Ly%+¢m4@w4;®mmmﬂu“ww).

e a2t
fora=1,...,M do > Backpropagation
Calculate 70 < oi™
forx =1,..., N, do

TE - TR @ o9

for(=1L,...0do

L Tho < trign ((1l ®10...0),4, (0. .0|)Ul+1f(1l ® Taz:_gl)UHl)

B Calculate 720, «— tr'" (127 @ pir )70,)
Cr+1-L Zi/le tr (pe™) > Calculate cost
for 1=1,....L+1 do > Update matrices

for j=1,...,m; do

_ t
Ui, (Vi) ®10...0),(0...0)) UL,

l Trqi— l l
Uj+1:mz (1 1®Txo¢) Uj+1:ml

! - ! l ;
Pj — =2t 1th tI'1:j—1 (trj+1:ml (Mj) )

U]l» < exp (P]l) Ujl.
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(a) (b)
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Figure 4.4: Learning the delay-by-1 and -2 channel with pure states and the local
cost. Panel (a) shows the average fidelity on the training (drawn-through) and the validation
(dashed) set for each training step for ff DQNNs with different architectures (yellow to red
tones) and a simple DQRNN (blue) with 1 memory qubit learning the delay-by-1 channel.
Panel (b) shows the average fidelity on the training (drawn-through) and the validation
(dashed) set for each training step for a simple ff DQNN (red), a simple DQRNN with 1
memory qubit (blue), and a simple DQRNN with 2 memory qubits (green) learning the
delay-by-2 channel. In both panels, we used N = 20 training pairs and a learning rate of
n = 0.06.

memory of k qubits should suffice as the DQRNN can then simply swap the inputs in the
memory and output them at a later point. It would essentially save the last inputs in the
memory. Less than k£ qubits should not be enough to learn the delay-by-k channel well, as
we cannot save the last k inputs in the memory.

As a proof-of-concept, we look at the examples of £ = 1,2 and check how well ff DQNNSs,
and DQRNNSs learn the delay channel using mainly the (validation) cost as the figure of
merit. The training and validation costs for each training step are shown in Figure 4.4.

For k = 1, Panel (a) shows the average fidelity for each training step for four different fI
DQNN architectures and a simple DQRNN with 1 memory qubit and no hidden layers. We
can see that the DQRNN learns the delay-by-1 channel well, i.e., the cost on the training set
reaches nearly 1, and also generalizes well to the validation set, as the cost on the validation
set reaches nearly 1. While the ff DQNNs seem to learn a bit, in particular, the cost on the
training set rises from 0.5 to 0.7, they do not generalize at all, since the cost on the validation
set does not (except for a small bump) rise at all. Independent of the architecture, even at
the end of the training, the average fidelity on the validation set is 0.5, which is the average
fidelity between two pure states chosen randomly w.r.t. the Haar measure. That means that
the ff DQNN at most learned some of the training samples by heart and overfits. This is
expected since there is no direct relation between the ' input and z*" output of the delay
channel.

For k = 2, Panel (b) shows the average fidelity for each training step for a ff DQNN,
a DQRNN with 1 memory qubit, and a DQRNN with 2 memory qubits. None of the
architectures have hidden layers. As expected, the DQRNN with 2 memory qubits learns
and generalizes well, the DQRNN with 1 memory qubit learns and generalizes less well, and
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Figure 4.5: Generalization behavior for the delay-by-1 channel. We train two ff
DQNNSs (red and orange) and a DQRNN without hidden layers on the delay-by-1 channel
with N = 1,...,10 training pairs and learning rate n = 0.06. The average fidelity is then
evaluated on the training set and on a validation set of size 30 (stars). This process is
repeated 50 times. The plot shows the average fidelity for each number of training steps.

the ff DQNN learns a map fitting the training data even worse and does not generalize. The
DQRNN with 2 memory qubits has the same number of memory qubits as the delay-by-2
channel, which swaps the input qubits into the memory space and stores them there. So, in
principle, the DQRNN with 2 memory qubits can learn to do the same, essentially saving
the last 2 inputs in the memory, which is not at all possible for the ff DQNN. The DQRNN
with 1 memory qubit can only store part of that information in the memory.

Additionally, we studied the generalization behavior for k¥ = 1 with two ff DQNNs and a
DQRNN without hidden layers. To do so, we repeat the following process 50 times for each
number of training pairs N = 1, ..., 10: We generate a training set of size N and a validation
set of size 30. Then, we train the DQNNs with the learning rate n = 0.06 for 1000 steps
on the training set. Subsequently, we evaluate the average fidelity on both the training
set and the validation set. Figure 4.5 shows the average over the evaluated fidelities for
each number of training pairs IN. One can see that, independent of the number of training
pairs, the DQRNN learns almost perfectly if we only take the training cost into account.
The average fidelity on the validation set rises with the number of training pairs up until
N = 8, where it is close to perfect. Hence, with a DQRNN with 1 memory qubit, only 8
training pairs are required to learn the delay-by-1 channel and generalize to unseen data.
On the other hand, if we only look at the training cost, independent of the used architecture,
both ff DQNNs can still predict the output for N = 1. Their performance on the training
set drops with each added training pair approaching an average fidelity of approximately
0.7 because each added training pair makes it harder to find a relationship between the
seemingly random inputs and outputs the DQNNs are trained on. For N = 1, the ff DQNN
can still easily find a unitary mapping the input to the output of the training set, which gets
harder with every seemingly random input-output pair. The ff DQNNs do not generalize
at all. The average fidelity on the validation set stays at 0.5, which is the average fidelity
between two states chosen randomly w.r.t. the Haar measure. We again see that the ff
DQNNSs can only learn the training examples by heart and overfit.
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Figure 4.6: Time evolution of |0) w.r.t. a time-dependent Hamiltonian and 7 = 0.5.
Panel (a) shows the (y, z)-plane of the Bloch sphere. Stars mark the time evolution of the
state |0) under the Hamiltonian in Equation (4.6.1) with 7 = 0.5, i.e., we show [¢(0)) =
10), [9(7)) = | =3}, [(27)) = 1), [(37)) = [=d), [1(47)) = [0) , and s0 on. We use N = 10
training points produced by this time evolution to train a ff DQNN (red) and a DQRNN
with 1 memory qubit (blue) using the learning rate n = 0.05 for T = 1000 training steps.
The DQNNs are then used to predict the time evolution for the next 20 time points. These
predictions are shown in Panel (a) with colored circles. Panel (b) shows the average fidelity
for each training step for both the training set (drawn-through) and the prediction (dashed).

As expected, for the studied examples of the delay-by-k channel with £ = 1,2, the DQRNNs
with &k memory qubits generalize best to unseen data. In contrast, the ff DQNNs do not gen-
eralize at all, independent of the underlying architecture. The performance of the DQRNN
with one memory qubit performs somewhat in the middle for k¥ = 2. With k£ = 1, the
DQRNN with one memory qubit only requires N = 8 training pairs to generalize nearly
perfectly.

Time evolution

The other task we consider is the time evolution of a state governed by a time-dependent
Hamiltonian. It is defined as follows: we know the time evolution of a pure state |¢(¢)) in a
given time interval [T7, T3] on N equidistant points ¢t = Ty, Ty + 7, ..., T» where 7 = %
Our task is then to predict the time evolution on the interval (Ts,T5], where T3 = T + Nt
for some N € N.

We choose H = C2, the Hamiltonian

1, te2k2k+1)

, keN, 4.6.1
-1, te2k+1,2k) ( )

H(t) = ZFO(1—0"), f(t) = {

and [¢(0)) = |0). Under time-evolution, this leads basically to a rotation from |0) to |1)
and back in the (y, z)-plane of the Bloch sphere. It is tr(po,) = 0, tr(poy) < 0, and tr(po)
oscillates between —1 and 1.

For 7 = 0.5, the state starts in |0), then evolves to |—i) = - |0)

V2 >7t0|1>7t0|7i>7t0

*ﬁu
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Figure 4.7: Time evolution of |0) w.r.t. a time-dependent Hamiltonian and 7 =
0.1. Panel (a) shows the (y, z)-plane of the Bloch sphere. Stars mark the time evolution
of the state |0) under the Hamiltonian in Equation (4.6.1) with 7 = 0.1, i.e., we show
[¥(0)), |(T)), ... [ (NT)). We use N = 100 training points produced by this time evolution
to train a ff DQNN (red) and a DQRNN with 1 memory qubit (blue) using the learning
rate 7 = 0.06 for T' = 2500 training steps. The DQNNs are then used to predict the time
evolution for the next 200 time points. Panel (b) shows the average fidelity for each training
step for both the training set (drawn-through) and the prediction (dashed).

|0), to |—i), and so on. This time evolution is marked with stars in Panel (a) of Figure 4.6,
which shows the (y, z)-plane of the Bloch sphere. We use N = 10 training points produced
by this time evolution to train a ff DQNN (red) and a DQRNN with 1 memory qubit (blue)
using the learning rate 17 = 0.05 for 1000 training steps. The DQNNs are then used to predict
the time evolution for the next 20 time points. These predictions are shown in Panel (a)
with colored circles. Panel (b) of the same figure shows the average fidelity for each training
step for both the training set (drawn-through) and the prediction (dashed). We can see in
Panel (b) that the average fidelity for the DQRNN reaches higher values near 1, both in
training and prediction, than the ff DQNN even if the difference is not as pronounced as for
the delay channel. The predicted states in Panel (a) for the ff DQNN are all very close to
|—4), and the time-evolution is not predicted at all. This is probably due to |—i) appearing
most often in the training set and the ff DQNN not being able to predict in which direction
to turn from there. On the other hand, the DQRNN is also able to store the last visited
state and get some kind of direction from that. We can see that the predicted states by
the DQRNN are nearly on top of the actual time evolution. In total, the DQRNN performs
much better for this task.

For 7 = 0.1, we visit nine states in between |0) and |1). The visited states are again marked
with stars in Panel (a) of Figure 4.7, which shows the (y, z)-plane of the Bloch sphere. We
use N = 100 training points produced by this time evolution to train a ff DQNN (red) and
a DQRNN with 1 memory qubit (blue) using the learning rate n = 0.06 for 2500 training
steps. The DQNNSs are then used to predict the time evolution for the next 200 time points.
Panel (b) of the same figure shows the average fidelity for each training step for both the
training set (drawn-through) and the prediction (dashed). Compared to the case 7 = 0.5,
with 7 = 0.1 the difference in performance of the DQRNN and the ff DQNN is not as
pronounced, and the performance of the DQRNN is not optimal. However, the DQRNN
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Figure 4.8: Learning the delay-by-1 channel with mixed states and the local cost.
The plots show the average Hilbert-Schmidt distance (Panel (a)) and fidelity (Panel (b)) on
the training set (drawn-through) and the validation set (dashed) for each training step. We
used 1 = 0.05 as the learning rate and N = 20 training pairs.

still performs better than the ff DQNN and reaches fidelities of approximately 0.931.

For both values of 7, the DQRNN performs better than the ff DQNN. The difference in
performance is not as pronounced as for the delay channel, especially for 7 = 0.1. Note
that there is virtually no difference in performance on the interval [T, T3] and the interval
(T, T5). For this periodic time evolution, the DQNNs can hence learn the time evolution
on an interval as well as they can predict the time evolution on the next interval.

4.6.2 Local Cost and Product Data with Mixed Target Output

In this section, we focus on mixed target outputs. As a proof of concept, we use the
same example of the delay-by-1 channel discussed before with mixed outputs. The results
are shown in Figure 4.8. We show both the average Hilbert-Schmidt distance (Panel(a))
on which the DQNNs were trained and the more physically relevant fidelity (Panel(b)).
Panel (b) looks similar to the plot with pure target outputs, only that the starting fidelity
and fidelity reached by the ff DQNN are higher as the average fidelity of two random mixed
states chosen via purification and the Haar measure is higher than the one for pure states.

4.6.3 Global Cost and Product Data with Pure Target Output

In contrast, when we consider the global cost with pure target outputs, we see that the cost
is generally much smaller than the local cost as it translates to the product instead of the
average of the individual fidelities. For N = 20, it has values around 107 for randomly
chosen states. We again use the delay-by-1 channel discussed before for a proof-of-concept.
The results are shown in Figure 4.9. Panel (a) again shows the fidelity for each training
step. As the fidelity at the start and for the ff DQNN is so low that we cannot see any
training process for the ff DQNN, we show its logarithm in Panel (b). Other than the lower
starting cost, the results look similar to before.
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Figure 4.9: Learning the delay-by-1 channel with pure states and the global cost.
The plots show the fidelity (Panel (a)) and its logarithm (Panel (b)) on the training set
(drawn-through) and the validation set (dashed) for each training step. We used n = 0.005
as the learning rate and N = 20 training pairs.

4.7 Implementation on NISQ Devices

Implementing the DQRNNs on NISQ devices works analogously to the realization of ff
DQNNs described in [250]. To implement the underlying DQNN of the DQRNN we use N,
parametrized unitaries. The parameter vector p € R™V» is updated using gradient descent,
ie., p— p+ d_]} where d_;b = —nVC (p;) and 7 is the learning rate. The gradient is estimated
numerically, i.e.,

. C (p; + eep,) — C (pr — €€,
(VC’ (pt))k ~ (pt € k) > (pt € k)

with (e_;;)j = 5%, k,j =1,..,Np, € > 0. If the target output is pure, the cost can be
estimated with the SWAP trick as described in [82,245].

As already discussed, we can either use the global or local cost. The global cost has the
advantage that we can also learn correlations between the outputs, so after training, the
DQRNN can be completely used on different states, and the output is either correctly
entangled or correctly separable. In the following, we assume that qudits can be reset and
used again.

When employing the global cost, we first evaluate the full DQRNN and then use the SWAP
trick on the global output and target output. This requires at least 2Nmqy qudits for N
iterations.

When estimating the local cost at the z'" output, we use the underlying DQNN z times
on the local input and memory. The local output of the first x — 1 iterations and the local
memory of the z'" iteration can be ignored or reset, and the SWAP test only has to be
performed on at most 2||m|« qudits. For this, x iterations of the DQNN are required. The
process then has to be repeated for x = 1,..., N. In total, we have to iterate over the
underlying DQNN at least N(INV + 1)/2 times for each data point estimating the cost and
necessitate not more than 2||m||» qudits. This makes the local cost easier to estimate on
NISQ devices.
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4.8 Conclusion and Outlook

In conclusion, we presented a fully quantum RNN architecture capable of learning general
causal quantum automata. As our architecture is based on dissipative quantum neural
networks (DQNNSs), we name it dissipative quantum recurrent neural network (DQRNN).
We presented different classical training algorithms for both product and entangled data.
The size of the needed matrix multiplication only scales with the width of the network and
the bond dimension of the input and target output of the training data, but not the depth
of the network. The presented examples, the delay channel and the time evolution of a state
under a time-dependent Hamiltonian, show that the DQRNN is able to deal with this kind
of sequential data better than ff DQNNs. For the delay channel, the DQRNN is able to
generalize from a few training points.

Several promising applications remain to be explored, particularly in the study of entangling
channels with memory, the generation of entangled states of varying lengths, and potential
applications in solid-state physics. Moreover, it is important to delineate the specific prob-
lems for which quantum memory offers advantages over classical memory. Future work
could also investigate the relationship between this method and TN approaches for training
classical NNs; as outlined in [69]. A common strategy for handling sequential data in ff NNs
is to incorporate a history, where not only the input at time ¢ is used but also inputs from
previous time steps t — n, ..., t, thereby increasing the dimensionality of the input space. As
discussed in Section 3.11.3, DQNNSs encounter the issue of barren plateaus, where the cost
landscape becomes exponentially flatter as system size increases. A potential avenue for fu-
ture research is to compare the barren plateaus encountered in lower-dimensional DQRNNs
with those arising from history states in DQNNs. Additionally, when studying the global
cost, we noticed that it can help with performance to scale the learning rate with the inverse
of the fidelity. Further developments in this area could involve studying if this can help more
generally with the trainability issues of (shallow, sparse) DQNNs with a global cost.

Data availability The python code is available at https://github.com/qigitphanno
ver/DeepQuantumNeuralNetworks/tree/master/QRNN.
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Reinforcement Learning for Fiber Coupling

This chapter is based on the work [105].

Current candidates for implementing qubits include trapped ion qubits, superconducting
qubits, photonic qubits, and neutral atom qubits. Many of those approaches use complicated
laser systems in their realization [91]. In those laser systems, many control and alignment
tasks must be repeated frequently, either by hand or automatically. Here, aligning an
experiment means steering a laser beam correctly through an optical experiment. Control,
most of the time, refers to keeping a dynamic experiment at a given fixed point. In many labs
using lasers [299,300], including quantum information labs [91-94], optical fibers, consisting
of glass or plastic, are used for the transmission of light [301]. Fiber coupling, i.e., guiding
a laser beam into the fiber, is employed to transition from free-space optics to fiber optics.

The ML technique natively most suited for control tasks is RL [43]. In the field of optics,
RL has mainly been employed in adaptive optics [302-307], optical networks [308-316], thin
films, optical nanostructures, and optical layers [317-320]. It has been less used in optical
table-top experiments, on which we focus here. Like in the general control field [95-99],
RL has mostly been applied in simulated environments. Either the training and testing
were performed in simulation [321-324], or the training was performed in simulation, and
the trained agents were tested in an experiment [325-329]. Training in an experiment is
very rare [99]. Examples include combining two pulsed laser beams [330] and generating
a white light continuum [331]. Applying RL to real-world scenarios comes with several
challenges, such as time-consuming training, partial observability, and noise [97,98]. When
overcoming these challenges, RL could help simplify lab work. Hence, in this chapter, we
discuss employing RL for fiber coupling, which is a part of many optical experiments.

Using RL for fiber coupling, we had to overcome three main challenges: imprecise actuators,
partial observability, and time-consuming training. In our initial experiment, we used PPO
and the typical reset method of choosing random actuator positions in a given interval. Even
after two weeks of continuous runtime in the laboratory, the return stayed at its minimal
value because light exiting the fiber was rarely observed by the agent. This was mainly
due to the speed and inaccuracies of the simple open-loop stepper motors employed in the
experiment. We thus had to change our reset method to not fully rely on absolute actuator
positions. This change in the reset method led us to always start our episodes with actuator
positions at which a fraction of power behind the fiber could be observed. Additionally,

91



5. REINFORCEMENT LEARNING FOR FIBER COUPLING

the imprecise actuators lead to our actions being very noisy. Note that this noise is not
artificially introduced in the actions for exploration, as done, e.g., in [332-336], but the
noise is inherent to the environment. We deal with this by directly training our agent
on the experiment, so we do not need an accurate noise model. Hence, using a relatively
sample-efficient algorithm is critical. As discussed in Section 2.2.2, PPO does not use a
replay buffer, which makes it less sample-efficient than value-based methods. Those, in
turn, historically were mostly used on discrete action spaces. In the last few years, more
sample-efficient algorithms for continuous action spaces like DDPG, TD3, SAC, and TQC
were developed. This makes one main problem — the time-consuming training — of using RL
in real-world scenarios less severe. Another important modification was the design of the
environment, especially of the observations and rewards. To save time, we used a virtual
testbed for tuning the environment so that the agent needs fewer interactions with it and
can better deal with the partial observability of its environment.

Despite the challenges, particularly the noisy actions, we demonstrate how an RL agent
successfully learns to steer two mirrors with two axes each to couple light into a fiber. Our
main figure of merit is the fiber coupling efficiency, which is the power of the outcoming
laser beam divided by the power of the incoming beam. The agent reliably reaches its goal
of 90% + 2% efficiency, which is comparable to human experts, starting from a low coupling
efficiency (mostly between 20% and 40%). For this, it needs around 4 days of training time
on the experiment and no pre-training on the virtual testbed. If the goal is lower, e.g.,
87% + 2%, an agent can be trained in less than a day. These training times were made
possible by careful tuning of the environment and algorithm selection in the virtual testbed.
Using these trained RL agents in the lab, given some starting efficiency, fiber coupling can
be performed remotely and automatically, saving the human experimenter time.

In Section 5.1, we describe the task of fiber coupling from an RL perspective. Afterward,
the design of our environment is presented in Section 5.2, which we tune using a virtual
testbed in Section 5.3. In Section 5.4, we discuss results from the lab.

5.1 Fiber Coupling

We will restrict our discussion of fiber coupling to the aspects important for the environment
design and leave out the experimental design aspects, which can be found in [105]. The
experimental setup is depicted in Figure 5.1. The goal of fiber coupling is to guide an
incoming laser beam into an optical fiber so that either a given percentage of its power or as
much light as possible is observed exiting the fiber. The fiber’s output power is influenced
by the beam’s shape and waist size and the position and angle at which the beam enters the
fiber [337]. The beam’s shape and waist size cannot be changed by the agent in our setup. As
light has to impinge both at a specific position and with a specific angle to efficiently couple
to the fiber [301,337], we need at least two mirrors, each tiltable in both the horizontal (x)
and vertical (y) axis, for fiber coupling. The setup includes two mirrors with two motorized
axes each for automated fiber coupling and two hand steering mirrors for fiber coupling by
a human experimenter.

The only sensors we employ are two power meters. One is used to estimate the input power
P, of the setup, and the other measures the output power P,,.. We can then calculate
the coupling efficiency or (normalized output) power P = é:t. Without other sensors that
would complicate the setup, our environment is partially observable.
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Figure 5.1: Fiber Coupling: Setup and Dead-Zone Characterization [105].
Panel (a) shows the schematic setup of the experiment. Note that the lenses can be used
to manually adjust the beam size to fit the mode of the fiber coupler. Panel (b) shows a
picture from the lab with the laser beam drawn in. Panel (c) shows the dead-zone size for
the four actuators.

Additionally, the motors used are inaccurate. They exhibit dead-zones, which arise from
mechanical hysteresis of the motor gearbox. Within the dead-zone, the mirror tilt angle is
unchanged while the motor rotates until it overcomes the hysteresis. The size of the dead-
zone is dependent on the movement history and is maximized by large movements in the
opposite direction before changing direction. The actual amount of steps needed to overcome
the dead-zone is stochastic, with samples depicted in Figure 5.1 (c). More information on
the reasons for this can be found in [105]. This leads to our actions given by the movement
of the actuators being very noisy and us not being able to fully depend on absolute motor
positions for our reset method.

5.2 Environment Design

Our Environment can be seen as an unknown episodic POMDP. Sampling from it, we get
a stochastic process of observations, actions, and rewards Og, Ag, R1,01, ..., A7, R-,O; up
to the end of the episode at time t = 7 < T', where T is the maximum episode length. We
now describe the definition of our POMDP by specifying our actions, observations, rewards,
and episodes and resets, i.e., specifying when an episode ends and what happens afterward.
The default parameters for the number of parameters used are shown in Tables 5.1 and 5.3.
The environments - both the experimental and the virtual environment - are implemented
using Gymnasium [338].
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5.2.1 Action

Like in most control environments [43], the action corresponds to moving the actuators,
i.e., tilting the mirrors in our case. The agent controls four actuators, and thus, the action
space is four-dimensional. As we want it to be able to do larger movements at the start of
each episode and smaller movements for fine-tuning, we choose a continuous action space.
As ML algorithms usually deal better with values on the same scale [339], we choose our
action space to be [—1,1]*%4. Each action 4; = (Amiz, Amiy, Am2z, Amz2y) is then multiplied
with the maximal action apax, rounded to the next integer, and send to the controller. For
example, A1, belongs to the actuator tilting mirror 1 in the horizontal (z) direction. The
exhibited dead-zone of the actuators and other noise sources lead to the actions being very
imprecise or noisy in the experimental environment.

5.2.2 Observation

We do not have any access to the exact mirror positions and beam angles. Even if we had,
we would not want the absolute positions to be part of our observation, as this would lead
to the agent learning to move to specific optimal positions. If the experiment is then aligned
differently at some earlier point of the experiment, the agent would still move to the earlier
optimal positions, which would not be optimal anymore (see Section 5.2.2). Hence, the agent
would not be able to find the optimum again and would be useless in the very situations in
which we want to use it. Therefore, we avoid using the absolute actuator positions as part
of the observation.

The power exiting the fiber P,,; and a portion of the light entering the experiment P, are
measured much more frequently than the agent performs actions. Using these measurement
results, we can get the coupling efficiency or normalized power behind the fiber P, = %
at nearly all times ¢ € R. However, many different positions can lead to the same power out-
put. This makes our environment partially observable and underdetermined. For this kind
of environment, people usually use a history of observed quantities after each action as obser-
vation (see e.g. [325,330]). This would leave us with the observation O; = (Py—y,, ..., Pi—1, P})
at time ¢t € N, where n € N is the history length. As already mentioned, in addition to
observing the normalized power between actions, we can also observe it while performing
the actions. During each action A;, we can record a list of powers (P, Piy1/m,s s Pri1)-
The number of measurements m; performed while executing the action A; heavily depends
on the size of the action, i.e., m; is not the same in each environment step. That makes
it hard to use the full list of powers as observation, as classical ff NNs, which are used in
modern RL algorithms by default, need their input to be of the same size. Instead, we use
the average power

my

1
Pave,t - my + 1 ;PtflJri/mu

the maximum power

Pmax,t = . ax PtflJri/mt = Pt—1+xmax7
1=0,...,m¢

and its relative position

1
mt+1

LTmax,t = arg i—glaxmt Pt71+i/mt
=Useeey
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Table 5.1: Environment parameters. The table shows the default environment parame-
ters for experiments. The parameter P,,;, corresponds to the power over which we want to
start our experiment (realistically, this is closer to Py, — 0.1 in the experiment), P is the
power at which the agent fails, Pyoa1 is the power at which the agent reaches its goal, amax
is the maximum action, T is the maximum episode length, n is the history length. At the
start of each reset, we move to the neutral positions if the power is smaller than Pycutral,1
or if the reset number is divisible by . During the resets, we move to the neutral positions
if the power is smaller than Ppeytral,2-

Pmin Pfail Pgoal Pneutral,l Pneutral,Z Amax T n l
0.2 0.05 [0.75,0.91] 0.09 0.04 6-10> 30 4 10

to be part of the observation. In addition, we include the actions in the observation so that
the RL agent still remembers what it had to do to get the observed powers. This leaves us
with the observation

Ot = <(Pk71, Akfla Pave,k» Pmax,kv xmax,k)k:t,n’m’t ) Pt) .

This means the agent observes the power before taking an action, the action it took, the
average power, maximum power and its relative position while taking an action, and the
power after taking an action' in each of the last n steps.

5.2.3 Episodes and Resets

We define our environment as an episodic POMDP, i.e., we repeat the following in a loop:
First, the environment is reset to a certain distribution over starting states. Then, the agent
performs actions, leading to changes in the environment and rewards until the episode ends.
We then reset again, and the cycle starts anew.

The end of an episode is usually reached when a certain termination condition is met. This
can, e.g., be reaching a terminal state or a maximum number of environment steps. In our
environment, we employ the following termination conditions: Firstly, the episode ends after
t =T € N environment steps. This is needed so that the episodes cannot go on forever,
the agent does not get caught up in certain situations, and the return between episodes is
comparable. Secondly, we implement a failing condition, i.e., the episode ends if P; < Pfaj.
This termination condition is required for practical reasons in the experimental environment,
in particular, to not lose track of the power because the signal becomes indistinguishable
from the noise. As the absolute actuator positions are not reliable, they cannot be used to
reset the environment. Hence, we have to rely on relative positions for the reset, which would
easily get intractable if we perform too many environment steps outside of any feedback.
Instead of complicating the setup with additional sensors, we decided to end the episode
(with a negative reward) if the power drops below a failing power Ppj. Thirdly, we set a
goal, i.e., the episode ends (with a positive reward) if P, > Pgoa. This last termination
condition is more of a design choice and less necessary. In most experimental settings, it
is enough for us to exceed a certain power. After reaching that power, it is less important
to get the maximum possible power and more important to have a constant power output.
Thus, we set a goal power Py.,. However, on the virtual testbed, we also analyze what

IThis is the same as the power before taking the next action, which is why it does not appear explicitly
in the history part of the observation.
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happens if we do not set a goal and the agent’s aim is to optimize the power. Those results
can be found in Appendix B.4.

After an episode ends, we reset the environment. It is common to reset all actuators to
a given parameter range but that does not work in the experimental environment due
to the motors’ imprecision. Instead, we perform the procedure detailed in Algorithm 13,
where get_power() gets the normalized power, move_by(v) moves the actuators by v, and
move_to(z) moves the actuators to position z. The so-called neutral positions Tpeutral are
actuator positions at which the power is high at the start of training, which in later stages
is not guaranteed anymore due to the motors’ inaccuracies. The reset method is a com-
bination of moving to the neutral positions, doing random steps while the power is high
(P > Piim, where Pjin is a random power in the interval [Pupin + 0.1, Pgoa1]), and moving in
a direction in which the power increases while the power is low (P < Ppi,). This procedure
makes the episodes not fully independent of each other. However, this generally has only a
small impact that is even smaller for small [; see Section 5.3.6. Due to the dead-zone of the
actuators, full independence would not have been possible in the experimental environment.

5.2.4 Reward

Let us now design the reward. In each step, our agent can reach a goal, fail, or none of
these. For each of these cases, we have to define a reward which we call 7goa1, Tail and
Tstep, Tespectively. A common choice in modern RL environments for classic games like
chess or Go is to choose rgoal = +1, Tl = —1 OF Tyt = 0, and rgpep = 0 [44,45,147]. In
those games, it usually does not matter by how much the agent wins and how it performs
while playing. This kind of sparse reward is usually more accurate, in the sense that no
false bias is introduced, than dense rewards. However, sparse rewards can lead to longer
training times, as dense rewards provide the agent with more feedback in the early stages
of training [47]. Because we want to train on an experiment, sample efficiency is of utmost
importance. Thus, we define intermediate rewards and choose rgtep 7 0.

We start with designing the reward the agent gets in every step. The reward should be
higher for higher power values. Additionally, it should be rewarding for the agent to go
from a small power, e.g., 0.2, to a higher power, e.g., 0.5, but it should still be rewarding to
go from high powers, e.g., 0.85, to slightly higher powers, e.g., 0.86. This means that both,
r(P =0.5) —r(P =0.2) and r(P = 0.86) — r(P = 0.85), should not be too small. Hence,
we combine an exponential and a linear function and get

Ag
Tstep = ? ((1 - as) exp (/Bs(Pt - Pgoal)) + o (Pt - Pmin)) .

We can use as € (0,1) to tweak the importance of the agent noticing a difference in high
powers vs. low powers. The pre-factor Ay € R can be used to adjust the impact of the step
reward in comparison to the fail and goal reward. We divide it by the maximum episode
length T' to make this comparison easier when summing up rgep over the full episode and
to not need to adjust the pre-factors when we change the episode length. The factor in the
exponent 35 € R- can be used to tweak the slope of the exponential function.

Now, let us design the reward in the case of failure. The reward for failure should be negative
and smaller than the lowest step reward. To us, it matters how fast the agent is failing and
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Algorithm 13 Reset method for fiber coupling environment

P+ Pv <+ —m,p +reset number > Initialize power P as the last power observed,

direction v as normalized negative last action and p as the reset number
if P < Py then

move_by(—Atamax) > Reverse the last action in case this leads to an increase in power
. P <+ get_power() > get_power measures the normalized power
if p mod =0 or P < Pyeutral,1 then > Every | € N resets or if power still small

move_to(xneutral) > Move actuators to neutral positions x ,eytral

P + get_power()

if P, < Phcutral,2 then > If it is even smaller, do random steps

Choose w € [—~10%,10%]*4 at random (uniform distribution)
move_by(w)
P + get_power()

if P, > Py, then > If the power is relatively high
Choose Piim € [Pmin + 0.1, Pyoa1] at random (uniform distribution)
while P > Pj, do > While P > P, do random steps with the actuators

Choose w € [—10%,10%]*4 at random (uniform distribution)

move_by(w)

| P <« get_power()

while P < P, do > If the power is relatively small
if P, < Phcutral,2 then > If power is very small, move to neutral positions
move—to(zneutral)

P + get_power()

if P; < Phcutral,2 then > If it is still small, do random steps
Choose w € [—10%,10%]** at random (uniform distribution)

move_by(w)

. P <+ get_power()

else> If it is not that small, but still small, move actuators as long as power increases
for i € random_permutation(1,2,3,4) do > Move the actuators in a random order
P« P

Choose w € [5-103,2 - 10%] at random (uniform distribution)

move_i_by(wv;) > Move current actuator a random step in current direction
P + get_power()

while P — P > 0 do > If power increased
P« P

Choose w € [5-10%,2 - 10%] at random (uniform distribution)
move_i_by(wv;) > Move current actuator a random step in current direction
. P <+ get_power()

if P— P < —0.002 then > If power decreases significantly, reverse last steps
move_i_by(—wwv;)

B P + get_power()

L v —o > Reverse movement direction
Choose w € [—103,103]** at random (uniform distribution)

move_by (w)

P + get_power()

p+—p+1
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Table 5.2: Reward hyperparameters. The table shows the default reward hyperparam-
eters for experiments.

Parameter Ay Ay Ay, a5 oy o Bs Br1i Bz Bgr Bg2
Value 10 100 100 0.9 05 05 5 5 5 5 1

by how much. Hence, we define

Tiail = —Af <(1 —ay) exp (— 1) + g exp (—Bra & )) '
T Prain
In this way, the agent is punished less the later it fails and the higher the power is with
which it fails. Again, we can use a;y € (0, 1) to weigh the importance of both of these factors,
B¢1,B¢1 € Rso to determine the reward functions’ curvature, and Ay € Ry to weigh the
fail reward in comparison to the other two.

Lastly, we design the reward in the case of the agent reaching the goal. This reward should
be positive and higher than the maximum step reward. To us, it matters how fast the agent
is reaching the goal and how high the power is that it reaches. Hence, we define

t P,
Tgoal = Ag ((1 — Q) exp (‘59&?) + agexp (59,213 : 1)) .
goa

In this way, the agent is rewarded more the earlier it reaches the goal and the higher the
power with which it reaches the goal. Again, we can use a4 € (0, 1) to weigh the importance
of both of these factors, 841,841 € R>o to determine the reward functions’ curvature, and
Ay € Ry to weigh the goal reward in comparison to the other two.

So, in total, we have

—Ay ((1 — o) exp (—Bf,l%) +apexp (—By2 P]Zu)) if Py < Pran
= A, ((1 — ag)exp (—Bg1%) + agexp (By2 Pijotal )) if Py > Pyoal
‘%’ ((1 — ag) exp (Bs(Pr — Peoal)) + s (Pe — Pin))  else

In order to make sure it is worse to stay just below the goal power than to reach the
goal and better to stay just above the fail power than to fail, we choose Ay, A; > A,. In
Appendix B.4, we discuss simplified versions of this reward.

5.3 Virtual Testbed

We design a virtual testbed to test different environment hyperparameters and algorithms
in a shorter time. By scanning through each of the actuator axes separately and measuring
the power, we get a Gaussian distribution on each of the axes, which we fit with a Gaussian.
We can then combine these Gaussians by multiplying them and setting an amplitude, and

get
Ll (2w = pan\* (g1 =
P(xmlaymlvxm%me) :Aexp<—2<<M> + (M>
Ozl Oy1

Tmz = pa2 | ((Ym2 — 12\’
+ ( m2 x2 ) + < m2 y2 ) ) >
02 Oy2
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5.3. Virtual Testbed

Table 5.3: Fit parameters: The power as a function of the position of each actuator was
fitted by a Gaussian. Their standard deviations, means, and assumed amplitude can be seen
here in the number of actuator steps (incl. fitting error, except for the assumed amplitude).

A M1z Olg 24 02 Hiy O1y M2y 02y
0.92 5470785 11994 5461786 12769 H573194 19145 5178016 17885
+41 +34 +46 +37 +40 +33 +47 +39

for the power as a function of the mirror positions with the parameters given in Table 5.3.
We chose A = 0.92 as that was the highest value observed by us until then. The high-
est amplitude we observed by now is slightly higher with 0.93 £ 0.02 but still within the
measurement uncertainty.

We then use this function to build a virtual testbed in which we model the environment
using the above fit. This virtual testbed has one big downside: It does not include the noise
present in the experiment, especially in the actions. To get a better noise model, we could,
e.g., sample from the noise observed during the dead-zone characterization. We decided not
to do this, as more characterization is needed to describe the noise accurately. The simple
testbed without noise still helps immensely with environment tuning and picking algorithms.
It turns out that an agent trained fully on this virtual testbed still can fiber couple to a
certain degree in the experiment, as we will see in Section 5.4.3.

We implement the environment using Gymnasium [338] and use StableBaselines3 [340] for
the algorithmic implementation with standard hyperparameters (see Appendix B.1). In all
figures, we include error bars or bands of size 20, consisting of standard deviations of several
runs, which for the return are calculated using ewm.std() from pandas [341,342], and the
(smoothed) mean. If the z-axis says “training steps (rounded to...),” we mean that before
plotting and calculating the mean or standard deviation, we had to round the training steps
as the saved values are different for each training run.

In this section, we test different environment parameters and algorithms. The usual figure
of merit for choosing parameters is the return in dependence of the training step. Some
parameters, however, appear in the reward, making it impossible to use the return as a
figure of merit. Instead, in those cases, we test the agent every 10* training steps for 100
episodes and note the probability of reaching the goal, failing, and the average power at
the end of the episodes. Mainly, we use the probability of reaching the goal as the figure of
merit but also take the others into account. Only the figures of merit used in the decision
process are shown here. Each experiment in the virtual testbed is run 5 times.

In each test, the parameters that are not explicitly given are specified in Tables 5.1 and 5.2.
If not mentioned otherwise, we use Pgoa = 0.85 and TQC.

5.3.1 Reward Hyperparameters

First, we varied the pre-factors of the fail and goal reward Ay, A, = 10,100, 1000 for different
goal powers Pyoa = 0.75,0.8,0.85,0.9. Figure 5.2 shows the probability of reaching the
goal against the training step for 10° training steps in total. As one can see, the optimal
pre-factors heavily depend on the chosen goal power Pyoa. For Pyoa = 0.75, A, = 100
and Ay = 1000 perform best. In contrast to that, except for the very start and end, for
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Figure 5.2: Prefactor tuning results. We plotted the probability of reaching the goal
If’[goal] against the training step for different reward pre-factors A;, A, and goal powers Py,
(short for Pyoa1) using the parameters in Table 5.1 and TQC. The error bars have a size of
20 in each direction, where o is the standard deviation of the five tests.
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Figure 5.3: Prefactor tuning for FPyqa = 0.9. We plotted the probability of reaching
the goal If’[goal] against the training step for different reward pre-factors Ay, A, using the
parameters in Table 5.1, Pyoa = 0.9 and TQC. The error bands have a size of 20 in each
direction, where o is the standard deviation of the five tests.

Pyoa1 = 0.85, Ay, = 10 achieves the best results. For Py = 0.9, the probabilities of reaching
the goal stay low, so we also perform the same tests again with a total of 5 - 10° training
steps. The results are shown in Figure 5.3.

Generally speaking (except for Pyoa = 0.75), we can discard Ay, A; = 1000 from our
candidate list. For Py = 0.75,0.8, A, = 100 outperforms the others. In the first 10°
training steps for Pyoal = 0.85,0.9 this either is not so clear anymore or A, = 10 achieves
the best outcome. However, at the end, we can see the A, = 100 curve slowly overtaking
the Ay, = 10 curve, especially for Pyoa1 = 0.85. Considering the plot with Py = 0.9 and
5-10° training steps, we again see that A, = 100 performs best. Additionally, A; = 100
yields slightly better results than the other two.

The step reward is especially important in the early stages of training, and the fail and
goal rewards become more and more important in the later stages of training (see e.g. [47]).
This can also be seen in Figures 5.2 and 5.3: For Pyoa > 0.85, at some of the earlier stages
of training, Ay = 10 or A; = 10 perform better than Ay = 100 and A, = 100, which
perform better in later stages. This led us to investigate what happens if we decrease the
step reward, i.e., As over time. Starting from A, = 100,10, we decreased A linearly over
the course of the first 10%,2-10° training steps to 10,0. The results are shown in Figure 5.4
(a) for Pyoa1 = 0.85. In both cases where we started with A; = 10 and either held the value
constant or decreased it to 0 over the first 10° training steps, the probability of reaching the
goal rose to approximately 1 but the performance suffers from a small plateau around 10*
to 7-10* training step. On the other hand, leaving the value constant at 100 led to a better
performance in the early stages of training, but the probability of reaching the goal did not
reach as high values after 2-10° training steps. By far, the best results can be seen when we
start our training with A, = 100 and decrease its value over the first 10° or 2 - 10° training
steps to 10 or 0. Between the three tested combinations, there is not much of a difference.
For Pyoa1 = 0.9, this trick does not work as well anymore, as discussed in Appendix B.2.

Except for B2, the other reward parameters do not have that much of an effect. Because

of that, they are discussed in Appendix B.2. For the other tests, we use the parameters in
Table 5.2.
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Figure 5.4: Prefactor changes over time, maximum action. Panel (a) shows the
probability of reaching the goal |5[goal] against the training step for different pre-factors
of the step reward that change over the course of training. In particular, A, is decreased
linearly from a starting value of 10, 100 to an ending value of 0, 10 over the course of the first
10%,2 - 10° training steps. Panel (b) shows the return against the training step for different
values of the maximum action anax. Both panels use the parameters in Tables 5.1 and 5.2,
Pyoa1 = 0.85 and TQC. The error bands have a size of 20 in each direction. For Panel (a), o
is the standard deviation of the five tests. For Panel (b), o represents a composite standard
deviation, combining the standard deviation calculated across five training runs grouped
into buckets with the training step rounded to 500, along with the standard deviation of the
corresponding smoothed values.

5.3.2 Action

We also tested different maximum actions amax = (2,4,5,6,7,8,9,10) x 103. Since this
parameter does not appear in the reward, we can simply take the return as a figure of merit.
The results are shown in Figure 5.4 (b). As one can see, for more than 7-10* training steps,
the return is highest for am.x = 6 - 102, which is approximately half of o1, or os,. Before
that, amax = 4-10% performs better. In the experiment, we decided on amax = 6-10% as the
action noise usually leads to the action being smaller, not larger than anticipated.

5.3.3 Episode Length

Now, consider the maximum episode length T. This parameter again appears in the reward,
so we employ the same method as for the reward parameters. We evaluated the probability
of reaching the goal Is[goal] against the training step for different maximum episode lengths
T = 5,10, 20, 30,40,50. The optimal episode length could depend on the maximum action,
as for very small actions, it would not be possible to reach the goal in the same number
of steps as for large actions. Hence, we also tested T' = 20,30 for two different maximum
actions amax = 2 - 103,1-10%. The results are shown in Figure 5.5. Independent of the
maximum action am.x, we find the higher the episode length, the higher the probability of
reaching the goal. This is only logical as the agent has more time to reach the goal. On the
other hand, the longer the episodes, the fewer resets are happening in a certain time frame,
which leads to the agent seeing fewer different starting conditions. Starting from many
different positions in a short time is especially important in the experimental environment,
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Figure 5.5: Episode length. We plotted the probability of reaching the goal P[goal] against
the training step for different maximum episode lengths 7" and maximum actions amyax using
the parameters in Tables 5.1 and 5.2, Pyoa1 = 0.85 and TQC. The error bars have a size of
20 in each direction where o is the standard deviation of the five tests.

as each step takes approximately a second. So, we want to balance the two. Between T' = 20
and T = 30, there is still a big difference in performance, which gets smaller between T' = 30
and T =40 or even T = 50. That is why we decided to set T = 30 by default.

5.3.4 Observation

Let us study the observation now. As discussed in Section 5.2.2, we use

O = ((Pk—h Ag—1, Poye ks Pmax, ks xmax,k)k:t_n“_.’t > Pt)

as our observation. We want to answer three questions: First, is it useful to include the
power P, the action a, the average power P,., maximum power P ., and its relative
position ., in the observation? Second, what is the optimal history length n? Third,
would it be useful to include the absolute position in the observation?

Regarding the first question, we evaluate the return against the training step for different
configurations of the observation, i.e., using the full observation and leaving out Pi, Paye,
Prax, Tmax, or a. The results are shown in Figure 5.6 (a). As we can see, the most important
part of the observation is the performed action a. The second most important part is the
relative position of the maximum z,,x. Each individual power in the observation, i.e., Paye,
Piax, and P, is not that important, as the returns when leaving out one of them is very
close to the one with the full observation. While leaving out P,. and P; has a small, overall
negative effect, leaving out Py, actually helps during the early stages of training and only
has a slightly negative impact in the later stages.

For the second question, we consider the return against the training step for different history
lengths n = 1,...,6,30. The results are shown in Figure 5.6 (b). We can easily see that
n = 3,4 perform better in the end than the others (although n = 2,5, 6 are close). However,
n = 4 performs better around 2-10* — 5 - 10* training steps, which is why we choose n = 4.
It makes sense that observation lengths of approximately four perform best, as we have four
actuators and one scalar sensor. After four actions, if we assume that the action vectors are
linearly independent, one could be able to find out analytically which actuator had which
effect. Hence, it is reasonable that the RL agent can also determine the next best action
better than with n = 2,1. On the other hand, if n > 4, the agent does not get much

more information that would be analytically helpful, but the observation would get higher
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Figure 5.6: Observations. Panel (a)-(c) show the return against the training step for
different observations using the parameters in Tables 5.1 and 5.2, Pyoa1 = 0.85 and TQC.
Panel (a) shows what happens if we leave out different parts of the observation with n = 4.
In Panel (b), we vary the history length n = 1,...,6. Panel (c) shows the return if we include
the absolute actuator positions in the observation or not. These ten agents (five with or
without absolute positions in the observation each) are then tested in environments where
1o-shifts are applied to the optimal positions, i.e., u; = p; 0y, of k actuators (k =0,...,4).
Each of the combinations is tested 100 times. Panel (d) shows the probability of reaching
the goal Is[goal] against k. The error bars and bands have a size of 20 in each direction.
For Panels (a)-(c), o represents a composite standard deviation, combining the standard
deviation calculated across five training runs grouped into buckets with the training step
rounded to 500, along with the standard deviation of the corresponding smoothed values.
For Panel (d), o is the standard deviation of the tests.
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dimensional. Then, the underlying NNs of the agent would have more parameters and hence
require more samples of the agent-environment interaction. Therefore, it is plausible that
n = 4 performs best numerically.

To answer the third question, we train five agents, each in environments without and with
the absolute position in the observation. The return against the training step is shown in
Figure 5.6 (c). Each of these agents is then tested in environments in which the optimal
positions p; are shifted by +o, i.e., u; = p; £0;, for k actuators where k € {0,...,4}. Each
of the possible combinations is tested 100 times. Figure 5.6 (d) shows the probability of
reaching the goal against the number of shifts k. During training, the return is much higher
if we include the absolute position in the observation. The probability of reaching the goal is
also slightly higher with them if the optimal position stays the same. However, if the optimal
position of only one actuator is shifted, the probability of reaching the goal plummets. On
the other hand, if we do not use the absolute position as part of the observation, the
probability of reaching the goal stays the same. An agent not using the absolute position as
part of the observation can, therefore, generalizes well to different optimal positions. As the
fiber coupling agent is needed in the experiment in case the experiment before the motorized
mirrors is aligned differently, it has to be able to reach the goal regardless of changed optimal
positions. Hence, we do not use the absolute actuator positions as part of the observation
and can thus realign the experiment even if another part was aligned differently.

5.3.5 Goal Power

We can choose the goal power depending on our needs. We now investigate at which point
the training converges for different goal powers. Figure 5.7 (a) shows the return against
the training steps for different goal powers Pgoa1 = 0.8,0.85,0.86, ...,0.91. As expected, the
higher the goal power, the lower the value to which the return converges and the later the
point of convergence. Furthermore, for the same gap between two different goal powers, the
gap between the two returns associated with these goal powers gets bigger with higher goal
powers.

This makes it much harder to train on high goal powers like Pyoa1 = 0.9, especially in the
experiment where each environment step takes approximately a second. We now want to find
out if it could make sense to pre-train the agent on lower goal powers and raise it over the
course of training. Starting from a goal power of Pstart, goat = 0.5,0.7,0.8,0.85,0.875,0.9,
we raised the goal power to Pend, goal = 0.9 over the course of 10° training steps either
linearly, i.e., increasing the goal power by a small amount in each training step, or in a
step-wise manner, i.e. increasing it every 10* training steps by a bigger amount. Again,
this is a parameter appearing in the reward, so we cannot take the return as our figure of
merit. Figure 5.7 (b) shows the probability of reaching the goal Pend, goat = 0.9 after 10°
training steps against the starting goal power Psiart, goal for both ways of increasing the
power. We can see that it can be beneficial to increase the goal power in a step-wise manner
for Piart, goal € [0.7,0.85], especially Pitart, goal = 0.85. This can be seen as an instance of
curriculum learning, where an agent is trained on successively more difficult tasks [343].

5.3.6 Reset Methods

A way often used for resetting is to choose parameters at random in a given interval. We
now want to compare this method to the reset method discussed in Section 5.2.3 for different
values of [, the number of resets after which we move to the neutral positions. First, we
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Figure 5.7: Goal Power. Panel (a) shows the return against the training step for different
values of the goal power Pyoa1. Panel (b) shows the probability P[goal] of reaching the goal
Pyoa1 = 0.9 after 10° training steps against the starting goal power Pyoal, start- Thereby, the
goal power of the environment is increased either linearly (blue) or in a step-wise manner
(orange) from Pyoal, start 10 Pgoal = 0.9 over the course of the 10° training steps. Both panels
use the parameters in Tables 5.1 and 5.2 and TQC. The error bars and bands have a size of
20 in each direction. For Panel (a), o represents a composite standard deviation, combining
the standard deviation calculated across five training runs grouped into buckets with the
training step rounded to 1000, along with the standard deviation of the corresponding
smoothed values. For Panel (d), o is the standard deviation of the tests.

compare the returns for the different reset methods. This is shown in Figure 5.8 (a). For
the interval reset method, we choose a radius of 2.1 - 10* around the mean to get a similar
median of starting power (in comparison with our reset method). For [ = 1 and the interval
method, consecutive episodes are independent of each other — at least in the virtual testbed.
This is not the case anymore for [ > 1 or in the experiment. The mean of the return is
quite similar for the different parameters of [, and we cannot make out a trend of changes in
the return with rising [. The return when using the interval method stays below the others
for the radius we have chosen and the form of the curve is slightly different. However, it is
unclear if that is due to the radius chosen.

For better comparison, we also denote the actuator positions and starting powers after
resetting when testing the agent for 100 consecutive episodes. The power distribution and
actuator position distribution for some of the reset methods are shown in Figure 5.8 (b)
and (c), respectively. In Panel (b), we can see that the starting power for the interval
method is distributed over nearly the full range [0,0.9] and is centered around [0.15,0.4].
In contrast, the other reset methods yield starting powers in the range [0.19,0.82] and are
centered around [0.19,0.35]. Their distribution is more skewed to 0.2, with medians still
being slightly smaller than for the interval method. Still, the return stayed smaller for the
interval method, which could be due to the agent directly failing in some cases. The median
and 75*" percentile for | = 1 are slightly bigger than for [ > 1 at the start of training,
although — at least for [ = 10 — this difference gets smaller during training.

In Panel (c), we can see the distribution over starting actuator positions of the first mirror
for the interval method, { = 1 and [ = 10°. The star marks the mean of the Gaussian distri-

106



5.3. Virtual Testbed

() (b)

150 08
=1
= — =2
@ 0.6
% 100 — =5
[} —— =10
& <
< 50 0.4 — =20
c — =107
5
3 —— =il
0 0.2 — [ =10°
—— interval
0.0
0 20000 40000 60000 80000 100000 interval =1 =10, 1= 10, 1= 10°,
training steps (rounded to 500) start after training  start
reset method
(c) interval =1 1 =107, start
5.61 5.61 5.61
5.60 5.60
5.59 5.59
& 5.58 2 5.58
= =
£ 557 £ 557
5.56 5.56
5.55 5.55
5.54 5.54 5.54
5.44 5.46 5.48 5.50 5.44 5.46 5.48 5.50 5.44 5.46 5.48 5.50
21 [109) 2 [10°] T [10°]

Figure 5.8: Reset methods. Panel (a) shows the return against the training step for
different reset methods. Panel (b) shows the starting power of 100 consecutive episodes
against the used reset method. For [ > 1, this depends on the agent used, which is why we
also state if we use the agent at the start of training or after training in that case. Panel (c)
shows the starting actuator positions of mirror 1 for the 100 episodes and different reset
methods. The stars show the mean of the Gaussians as described in Table 5.3. For all
plots we use the parameters in Tables 5.1 and 5.2, Pgoa = 0.85 and TQC. The error bands
in Panel (a) have a size of 20 in each direction, where o represents a composite standard
deviation, combining the standard deviation calculated across five training runs grouped
into buckets with the training step rounded to 500, along with the standard deviation of the
corresponding smoothed values.

butions used for the virtual testbed. As expected, for the interval method, the distribution
is more quadratic with the highest probability in the middle. For our reset method, the
distributions become more toroidal. For | = 1, we can see that the highest probabilities can
be found on a ring around the mean of the Gaussians. This is to be expected as we designed
our reset method in a way that our episodes do not often start with powers above the goal
or below the failing power. For [ = 10° at the start of training, we see that this distribution
gets a little wider, and there are fewer and bigger areas of the highest probability. This
is probably due to the episodes not being independent of each other. However, this does
not have a noticeable impact on the return. We nevertheless have to keep in mind that not
returning to the neutral positions can lead to some areas not being visited as often as others.
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Figure 5.9: Algorithms. All plots show the return against the training step for different
algorithms using the parameters in Tables 5.1 and 5.2. For the different panels, we use
different goal powers, and for Panel (b), we decrease the pre-factor of the step reward A;
from 100 to 10 in the first 10° steps. The error bands have a size of 20 in each direction, where
o represents a composite standard deviation, combining the standard deviation calculated
across five training runs grouped into buckets with the training step rounded to 500, along
with the standard deviation of the corresponding smoothed values.

5.3.7 Algorithms

Last, but not least, we tested out different RIL algorithms, in particular SAC, TQC, TD3,
DDPG, PPO and A2C with standard hyperparameters as explained in Appendix B.2, in
our environment for Py = 0.8,0.85,0.9. As it was beneficial to decrease the step reward
over the course of training when using TQC, we also tested how or if this would change the
comparison between algorithms for Pyo,1 = 0.85. The results are shown in Figure 5.9.

At the start of training, all plots show the worst performance for A2C and PPO. This is to
be expected, as both these algorithms, in contrast to the others, do not use replay buffers,
which makes these algorithms less sample-efficient. They are closely followed by DDPG. For
higher goal powers, PPO catches up or starts catching up with DDPG in the later stages of
training. SAC, TQC, and TD3 show a much better performance. SAC performs consistently
slightly better than TD3. For a constant Ag = 10, TQC starts off and ends with about the
same performance as SAC but suffers from a drop in performance in the middle stages of
training. The higher the goal power, the more significant this drop is. As we discussed in
Section 5.3.1, starting from As; = 100 and decreasing it during training helps significantly in
dealing with this drop when using TQC. We can also see this in Figure 5.9 (b). Interestingly,
this has the most effect on TQC, which leads to TQC outperforming SAC, and PPO and
DDPG to perform worse.
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Overall, SAC achieves the best results for this task when considering a constant A; = 10
and TQC when considering a start value of A; = 100 and decreasing it linearly to A; = 10
over the course of the first 10° training steps, at least for Pyoa = 0.85.

5.4 Experimental Results

We used the results from the virtual testbed to select algorithms and shape the environment
by choosing the parameters in Tables 5.1 and 5.2 for the experimental environment. Now,
we present the results from the experimental environment appearing in [105]. To run the
experiments, we use, in addition to the usual packages [344-347], PyLabLib, Thorlabs Ki-
nesis, PyVisa, Keysight Connection Expert and safe-exit [348—-352] for communication with
the experiment. All training and testing runs presented here took around 20 days in total
(with an NVIDIA GeForce RTX 4070 GPU). The training runs for Pyua < 0.87 took around
20 hours or 4 - 10* training steps. For Pyoar = 0.9, this went up to nearly 4 days or 2 - 10°
training steps. All training runs were performed with the parameters in Tables 5.1 and 5.2.

5.4.1 Algorithms

For Pyoa1 = 0.85, we tested both SAC and TQC two times each. The results are shown in
Figure 5.10 (a). Although the two are very similar, TQC is performing slightly better in
the experiment for a goal power of Pyoa = 0.85. Therefore, we carried out the following
experiments presented here using TQC. However, we only performed this comparison for
Pyoal = 0.85, and not Pyoa = 0.9. As we know from Section 5.3.7, the difference in per-
formance for TQC and SAC gets more favorable for SAC with rising goal power. Hence,
a promising future direction is to test the performance of SAC and TQC for a higher goal
power like Pgoa = 0.9.

5.4.2 Goal Powers

We also performed experiments using TQC and goal powers Pyoa = 0.85,0.86,0.87,0.88,0.9
until the training runs started to converge. The return against the training step is shown in
Figure 5.10 (b). For Pyoa1 < 0.87, the training converges around 4 - 10* training steps, which
corresponds to approximately 20 hours. For Pyo. = 0.88, this takes significantly longer,
i.e. nearly 6-10* training steps or 30 hours. For Pyoar = 0.9, we even see a pronounced
dip in performance, which we also saw in the virtual environment with TQC. This training
takes about 2 - 10° training steps or nearly 4 days to stabilize. Additionally, as expected,
the return does not reach as high values anymore.

Compare the plots for the virtual testbed in Figure 5.7 (a) and the experiment in Fig-
ure 5.10 (b). The trend in both plots is similar, but in the virtual testbed, the training
generally reaches higher values for the higher goal powers and stabilizes later. Furthermore,
in the virtual testbed, the return already has a small drop for Py = 0.85 and not only
starting from Pyoa = 0.88 as in the experiment. The fact that the return for higher goal
powers Pgoa1 > 0.88 already stabilizes at much lower values could be due to the action noise,
making it harder for the agent to reach high goal powers. A possible explanation for the
later convergence and larger drop in performance in the virtual testbed for the same goal
power is that we chose the maximum possible power A in the virtual testbed to be too low.
When designing the virtual testbed, we had to choose the amplitude A of the Gaussian,
which serves as the base for our virtual testbed. As fibers are not loss-free, this amplitude
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Figure 5.10: Different algorithms and goal powers in the lab. Panels (a) and (b) show
the return against the training steps for training in the experiment with the parameters
in Tables 5.1 and 5.2. In Panel (a), we use Pgoa = 0.85 and SAC or TQC. For both
algorithms, we performed two training runs. In Panel (b), we use TQC and vary the goal
power Pyoa1. We tested the agents marked with stars 100 times in the experiment by resetting
the environment, starting a timer, and letting the agent try to reach the goal. If the agent
did not reach the goal in a certain episode, we reset and keep the timer running. This is
repeated until the agent reaches its goal. Panel (c) shows the time each agent needed to
reach their goal, Panel (d) shows the number of resets each agent needed to do so, and
Panel (e) shows the number of steps it took each agent to reach the goal in the last episode.
The error bands in Panels (a) and (b) have a size of 20 in each direction. In Panel (a),
o represents a composite standard deviation, combining the standard deviation calculated
across two training runs grouped into buckets with the training step rounded to 100, along
with the standard deviation of the corresponding smoothed values. In Panel (b), o is given
by the standard deviation arising from smoothing. The whiskers of the boxplots in Panels (c¢)
and (e) show the 0" and 100*® percentile.
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had to be smaller than 1. On the other hand, it had to be at least as high as the maxi-
mum observed power. Conservatively, we chose it as the maximal power observed until the
design of the testbed, which led to A = 0.92. However, by now, we also observed values of
0.93 £ 0.02. This is a reasonable explanation for the difference in the figures. Nonetheless,
the virtual testbed is helpful in the selection of environment parameters and algorithms.

Now, consider the testing results. We tested the agents marked with stars in Figure 5.10 (b)
100 times each by resetting the environment, starting a timer, letting the agent try from
there, and resetting the agent in between while keeping the timer running if it did not reach
the goal in a given episode. The results are displayed in Figure 5.10 (c)-(e). Panel (c)
shows the time it took each agent to reach its goal. As expected, this time goes up with
the goal power. Still, each agent reliably reaches its goal. Panel (d) shows the probability
of each agent taking a certain number of resets to reach the goal. We can see that the
probability of reaching the goal in the first episode decreases with an increasing goal power
while the probability of needing more episodes increases. However, even for Py, = 0.9, the
probability of reaching the goal in the first episode is more than 80%. Panel (e) shows the
number of steps it took each agent to reach the goal in the last episode. Again, as expected,
this number rises with the goal power. Hence, both the increase in time for reaching the
goal (Panel (c)) and the decrease in the return (Panel (b)) with rising goal power are due
to both an increasing number of resets needed (Panel (d)) and the number of an increasing
number of time steps needed in each episode (Panel (e)).

5.4.3 Pre-training

As the standard agent needs many training steps for high goal powers like Pyoa = 0.9, we
want to see if pre-training helps us. Pre-training means that we train an agent first in a
different environment and then transfer it to the environment we are interested in to train
the agent further. When transferring the agent, we can either keep the replay buffer of the
old environment or not. The environments we pre-trained our agent on were either the lab
environments with lower goal power or the virtual testbed.

Pre-training on the virtual testbed We trained a TQC agent in the virtual testbed
with Pgoal = 0.9 for 5 - 10° training steps. Then, we further trained the agent in the lab
environment for 2.18 - 10° training steps.

Pre-training on lower goal powers We trained two TQC agents in the lab first with
Pyoar = 0.85 for 3.8 - 10* training steps, then with Pyoar = 0.875 for 2.5 - 10* training
steps, then with Pgoa = 0.89 for 3.5 - 10* training steps, and finally with Pyoar = 0.9 for
1.14-10% — 1.26 - 10° training steps. In one of them, we kept the replay buffer at each change
in goal power except the last. In the other one, we reset the replay buffer at each change in
goal power.

Figure 5.11 shows the training and testing results obtained in the same way as discussed in
Section 5.4.2.

Panel (a) shows the return against the training step for these three agents and the one
without pre-training for comparison. Both the agent pre-trained on lower goals with deleted
replay buffer and the agent pre-trained on the virtual testbed performed better than the
one without pre-training. They perform similarly to each other. However, for the one pre-
trained on the virtual testbed, the person using this algorithm would need to spend time
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Figure 5.11: Different pre-training regimes in the lab. Panel (a) shows the return
against the training steps for training in the experiment with the parameters in Tables 5.1
and 5.2 and TQC. Except for one agent (dark blue), which was fully trained with Pgoa = 0.9
in the lab, each agent is pre-trained in a certain manner. The green agent was first pre-
trained in the virtual testbed and only then further trained in the lab, in both cases with
Pyoa1 = 0.9. Both orange ones were pre-trained on lower goal powers, first with Pyoa = 0.85
for 3.8 - 10* training steps, then with Pyoal = 0.875 for 2.5 - 10* training steps, then with
Pyoa1 = 0.89 for 3.5 - 10% training steps, and finally with Pyoa1 = 0.9 for 1.14 - 10° —1.26 - 10°
training steps. These changes in goal power are marked with black vertical lines. For the
lighter orange, the replay buffer was deleted after each stage except the last one. For the
dark orange one, the replay buffer was kept throughout the training. We then tested the
agents marked with stars 100 times in the experiment by resetting the environment, starting
a timer, and letting the agent try to reach the goal. If the agent did not reach the goal in
a certain episode, we reset and keep the timer running. This is repeated until the agent
reaches its goal. Panel (b) shows the time each agent needed to reach their goal, Panel (c)
shows the number of resets each agent needed to do so, and Panel (d) shows the number of
steps it took each agent to reach the goal in the last episode. The error bands in Panel (a)
have a size of 20 in each direction, where o is given by the standard deviation arising from
smoothing. The whiskers of the boxplots in Panels (b) and (d) show the 0 and 100"
percentile.
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building a virtual testbed, which is not required for pre-training on lower goals in the lab.
So, examining the return, we would not recommend building a virtual testbed with the only
purpose of pre-training. Note that we would get better results if we included noise in the
virtual environment, e.g., by sampling from the dead-zone characterization in Figure 5.1 (c).
However, we would then need to spend more time characterizing the noise than it would
save us in training time in the laboratory, which is why we decided against pre-training on
a virtual testbed with noise.

Panels (b)-(d) again show the testing results using the same metrics as in Figure 5.10 but
with different agents. In Panel (b), we can see that all agents trained in the lab reach the
goal in a similar time frame. The one without pre-training took the longest time, then
the one pre-trained on lower goals, and the one pre-trained on the virtual testbed was the
fastest, but these differences are very small. The agent only trained on the virtual testbed
takes more time (almost double on average) to couple the light into the fiber but still does
so consistently and, on average, similarly fast as the human experimenter [105]. As the
training times on the virtual testbed are much shorter, however, it can still make sense to
train exclusively on the virtual testbed. Let us now look at Panels (¢) and (d) to understand
where these differences come from. The agent only trained on the virtual testbed takes the
most resets and the most steps in the last episode to reach the goal, which makes it clear
that it is the slowest. If we compare the other three, however, we see that regarding the
probability of reaching the goal in the first episode, the agent pre-trained on lower goals
performs best, then the agent not pre-trained, and the agent pre-trained on the virtual
testbed comes in last. Regarding the number of steps to reach the goal in the last episode,
the agent pre-trained on the virtual testbed performed best, then the agent pre-trained on
lower goals, and then the agent without pre-training. This is interesting because, apparently,
the agent pre-trained on the virtual testbed can make up for not reaching the goal in each
episode reliably by being very fast if it does so. On the other hand, the agent without
pre-training cannot make up for not reaching the goal as fast in each episode by reaching it
more reliably in the first episodes.

Overall, from this data, we conclude that pre-training on lower goals (when refreshing the
replay buffer after bigger goal jumps) or in the virtual testbed can be very beneficial. How-
ever, the latter only makes sense if such a virtual testbed already exists and does not have
to be designed for only this purpose because it does not drastically reduce training time.
If we did not have enough time to train on the experiment, training only on the virtual
testbed can be a possibility. This agent still couples in reliably although it is not as fast as
its counterparts trained in the lab.

5.5 Summary and Outlook

We designed an RL environment for experimental fiber coupling, where the agent has to
reach a goal of a certain coupling efficiency Pyoa1 starting from a small coupling efficiency.
Fitting a scan of each actuator axis by a Gaussian, we obtained a virtual testbed. Both
the lab environment and virtual testbed were implemented using Gymnasium [338], and as
agents, we used the StableBeselines3 [340] implementations with standard hyperparameters
as discussed in Appendix B.1. Using the virtual testbed, we carefully tuned the environment
and selected RL algorithms. Our main focus was using as few samples as possible, as each
environment step takes about 1 second in the lab. We then trained RL agents in the lab
environment, using different algorithms, in particular, SAC and TQC, goal efficiencies Pgoal
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or pre-training regimes.

In the lab, we successfully trained TQC agents with different pre-training regimes to reliably
reach coupling efficiencies of more than 90% + 2% over the course of approximately 4 days.
For reference, the highest efficiency reached by the human experimenter was 92% + 2%, and
the highest observed during the training of the agents was 93%. Both pre-training on lower
goals (when refreshing the replay buffer after bigger goal jumps) and in the virtual testbed
were very beneficial for us. For the purpose of spending as little time as possible in the
lab, we only recommend the latter if the virtual testbed already exists or is used for other
reasons than speeding up the training. Although being much slower, even an agent only
trained in the virtual testbed reliably reaches this goal without training in the experiment.
Lower goals, i.e., Pyoa1 < 87%, were already reached with a training time in the laboratory
of less than a day. Although SAC performed better in the virtual testbed, for Pyoar = 85%,
TQC performed slightly better in the lab.

The two papers using RL experimentally in optical table-top experiments use significantly
simpler environments. For the combination of coherent beams in [330], only one actuator is
used. The training time for their experiment is much shorter (4 hours). However, the authors
show in simulation that with the same number of actuators we use, the training times would
quickly rise to 1 —2 days, which is comparable to our training times for moderately high goal
efficiencies like Pyoa1 = 85—88%. In [331], the authors use the actuator positions as both their
actions and state, which makes the problem an MDP, that is, in principle, fully observable,
with an optimal action. Additionally, their action space is only three-dimensional. They
claim that their TD3 agent learns in 20 minutes.

The here presented agents learn to deal with the noise in our lab environment. The actuators’
imprecision makes it infeasible to use classical methods like gradient descent directly. To use
them, we would, for example, need additional feedback loops observing the actual distance
traveled by the actuators. With RL, we can avoid them, which simplifies the experiment.
The automation of experiments not only frees up time for human experimenters but also
makes remote control much easier, which can be crucial in environments like vacuum tanks,
cleanroom facilities, underground, or space.

Regarding fiber coupling, future directions could include studying model-based or hybrid
algorithms for fiber coupling. This has the upside of probably needing fewer samples in the
given environment and the downside of algorithmic implementations not being as readily
available as the model-free variants we tried here. Another direction would be testing how
well a decay of the dense reward over training steps would work in the lab environment. We
could evaluate how well the trained agents do on non-Gaussian modes of light or directly
train agents on a variety of modes. Additionally, we could introduce more degrees of freedom
by also motorizing the lenses. Furthermore, here we only discuss starting with a small
coupling efficiency because, if we had no light, the agent could only do random movements
as it cannot get any feedback. It would be interesting if we could start with no light behind
the fiber, either by using additional sensors or cameras or by combining RL with algorithms
like a grid search. Other types of observations that are not the history, like PID-inspired
RL [353], could be explored. We can scale the presented task of fiber coupling to more
complex alignment tasks by dividing systems into mirror-mirror-sensor blocks and solving
them in sequence. Hence, we have shown everything needed for the spatial alignment of
light.
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We also see our experiments as a first step for using RL for experimental alignment and
control of other optical experiments. An example of a future experiment could be stabilizing
a cavity. This is usually done using the Pound-Drever-Hall procedure (see [354] for an in-
troduction) which requires a number of additional components like phase modulators [355],
homodyne detectors [356,357], or split detectors [358,359]. Instead, an RL agent could rely
solely on the reflection or transmission power, which not only uses fewer components but
could also open the door to novel control strategies, e.g., for the phase control of squeezed
vacuum states, particularly relevant for on-chip squeezing experiments for quantum informa-
tion. Current strategies include auxiliary laser fields [360] or introduce unwanted noise [361].
RL has the potential to perform these tasks without additional laser fields or noise.

Data availability The python code and experimental data is available at https://gith
ub.com/ViktoriaSchmiesing/RL_Fiber_Coupling.
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Conclusion and Outlook

In this work, we studied the application of machine learning (ML) to quantum mechanical
and optical systems. To lay the groundwork for the discussion of dissipative quantum
recurrent neural networks (DQRNNSs) and the application of reinforcement learning (RL) to
fiber coupling, we first introduced key concepts from both classical machine learning (ML)
and quantum information (QI) theory.

We began by providing an overview of classical ML, focusing on supervised learning (SL)
and RL. After presenting the SL framework for independent and identically distributed
(i.i.d.) data, we discussed feed-forward (fI') and recurrent neural networks (NNs), along with
their respective training algorithms, as a foundation for understanding DQRNNs. We then
introduced the RL framework and detailed the algorithms used later in experimental fiber
coupling.

Moving on, we covered essential topics in QI, including quantum states, measurements,
composite systems, and channels. We introduced qubits and quantum circuits as quantum
analogs to bits and logical circuits, respectively. Furthermore, we discussed relevant norms
and distance measures, such as the fidelity, that are crucial for defining cost functions
for learning quantum states. The sampling of quantum states and unitaries is critical for
applying ML to quantum data, so we discussed the Haar measure. In light of its relevance
to DQRNNs, we explored quantum channels with memory. Additionally, we introduced
tensor networks (TNs), which are instrumental in the development of some of the classical
DQRNN training algorithms. We concluded by exploring quantum machine learning (QML),
categorizing it into four types — CC ML, CQ ML, QC ML, and QQ ML — based on the nature
of the data (first letter) and the algorithms (second letter) involved. Our focus was on
dissipative quantum neural networks (DQNNs) for learning quantum data and its training
data, costs, and training algorithms. Furthermore, we examined the specific challenges faced
in QML, particularly the issue of barren plateaus, where the optimization landscape flattens
exponentially as system size increases, complicating the training process.

We developed a fully quantum recurrent neural network (QRNN) architecture, called dissi-
pative quantum recurrent neural network (DQRNN), which combines the concepts of RNNs
and quantum channels with memory. In each run of the DQRNN, we iterate over the un-
derlying DQNN, using a part of the DQNN output in one iteration step as part of the next
iteration steps DQNN input. The DQRNN can be viewed as both a recurrent version of
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the DQNN and as a quantum channel with memory, where a DQNN replaces the general
channel. As a result, together with an initialization, DQRNNSs can approximate any causal
quantum automaton on qudits, making them universal in that sense.

In a DQRNN run, the full input and output are referred to as the global input and output,
while the inputs and outputs at each DQNN iteration are called the local input and output.
Unlike classical RNNs, where the global input and output are simply lists of the local inputs
and outputs, DQRNNs can represent any quantum channel with memory, resulting in local
DQRNN outputs that can be entangled with each other, even if the local inputs are not.
Hence, we consider two different kinds of training data: product data, where the global
input and target output are product states, and MPS data, where the global input and
target output are entangled and can be handled as an MPS.

As our cost function, we use the infidelity for pure target outputs and the squared Hilbert-
Schmidt distance for mixed target outputs. We can evaluate the DQRNN’s outputs and
target outputs either globally or locally by considering local and global costs. The local
cost is particularly useful for product data. For both local and global costs and pure target
outputs, we present quantum training algorithms. The number of required qudits increases
with the width but not the depth of the underlying DQNN or, in the case of using the
local cost, the number of iterations over the underlying DQNN. However, when using the
global cost, the number of needed qudits also scales with the number of iterations over the
underlying DQNN, making the local cost easier to compute on near-term quantum devices.
Regardless of the cost, if we want to use the network to produce global DQRNN outputs, the
number of needed qubits naturally scales with the number of iterations over the underlying
DQNN.

We presented classical training algorithms for the local cost with pure and mixed product
training data and the global cost with product or MPS training data and pure target out-
puts. Those classical algorithms can either be seen as a simulation of training DQRNNs
on a quantum computer or as classically training DQRNNs on a classical representation of
quantum states. The size of the matrices used in the training algorithm scale only with the
width of the underlying DQNN and the bond dimension of the MPS training data, in case
we use MPS and not product data. It explicitly does not scale with the number of iterations
over the underlying DQNN or its depth and is efficient in that sense. However, if we want
to calculate the global output of the DQRNN, like in the quantum algorithm, the size of the
needed matrices scales with the number of iterations over the underlying DQNN.

The classical algorithms were numerically tested on tasks needing memory. We created the
data with the delay channel, a standard example for a channel with memory, and the time
evolution of a state under a time-dependent Hamiltonian. For these tasks, as expected,
DQRNNSs perform better than ff DQNNs on both the training and validation sets. For the
delay channel, DQRNNs can generalize to unseen data with only a few training samples.
Although both tasks need some form of memory, for the delay channel, quantum memory
is needed, which is not apparent for learning the time evolution of a state w.r.t. a time-
dependent Hamiltonian. In the latter task, classical memory or introducing a classical
parameter into the unitaries of the ff DQNN might be enough. Future work could focus
on categorizing tasks by the kind of memory needed or exploring DQNNs with additional
classical parameters and comparing those to DQRNNs. Furthermore, we could investigate
the relation between the presented DQRNN training algorithms and TN approaches for
training classical NNs [69].
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Many open questions remain regarding the trainability of DQRNNs. As shown in [248],
when training deep fc ff DQNNs, we face Barren plateaus independent of whether the cost
is local or global, which is not the case for shallow, sparse ff DQNNs. Those DQNNs only
exhibit Barren plateaus if a global cost is used and not if a local cost is used. DQRNNs of
small or fixed width can be seen as deep, sparse DQNNs sharing many parameters across
layers. Although [248] does not consider this case, we numerically saw only a few small
plateaus using the local cost but initially had problems with plateaus using the global cost.
However, dividing the learning rate by the infidelity helps. One potential avenue for further
investigation is to examine if this could be a general strategy for dealing with Barren plateaus
in DQRNNs and DQNNSs, at least when the DQNNs are shallow and sparse. Beside RNNs,
a common way of dealing with sequential data is using a history of states as input of a ff NN,
i.e., not only the input at time ¢ is used but also inputs from previous time steps t —n, ..., t,
which increases the dimensionality of the NN. Hence, a future direction of research could be
to evaluate if using a DQRNN would lead to fewer trainability issues than using a history
and a ff DQNN of higher dimension.

Another application of RNNs is found in environment models for RL or algorithms. In this
line of thought, DQRNNSs, together with measurements, could be used to learn an environ-
ment model when using model-based RL methods in quantum mechanical environments.
The agent-environment interaction of a classical or hybrid agent and a quantum environ-
ment can be modeled with a quantum observable Markov decision process (QOMDP), which
involves a quantum state space, an instrument and a reward operator for each action, and
observations as the measurement results [362]. Combining DQRNNs with measurements
on the output states, the DQRNN outputs could model observations and rewards, while
the memory could model the environment state. This opens another line of research for
DQNNs, training DQNNs using measurement results and using DQRNNs with measure-
ments for model-based RL in quantum environments.

Generally, studying the use of RL in quantum mechanical environments is of interest to
the number of control tasks faced in QI laboratories. One of the tasks often repeated
in optics labs and, in particular, in QI labs is coupling a laser beam into an optical fiber.
Although light is generally a quantum mechanical system, this task - at least in the standard
mode - can be fully described by Gaussian beam optics. Nevertheless, we see it as a first
step towards using RL for the control of quantum mechanical systems. We designed an
RL environment for experimental fiber coupling and successfully trained several agents to
perform fiber coupling in the lab.

The RL environment is designed as a partially observable Markov decision process (POMDP)
with a goal. Each episode starts with a relatively low coupling efficiency, in particular,
coupling efficiencies in the range of 10% to 80% coupling and medians around 25%. The
agent can then perform continuous actions by moving four actuators to tilt two mirrors
both in the horizontal and the vertical direction, which changes the spot and the angle with
which the beam hits the fiber. Its observations are purely based on the coupling efficiency
and past actions. If the actuator’s positions are part of the observation, at least when only
training with a specific optimal position, the agent can simply learn to find the optimal
positions during training. However, if the experiment before the fiber is aligned differently,
the optimal positions change, which renders the mentioned agent unusable for its specific
use case. Hence, the actuator’s positions are not part of the observation. The agent reaches
its goal if the coupling efficiency reaches a specific goal power, which we varied between 75%
and 91%, and fails if the coupling efficiency drops below 5%. It is rewarded based on the
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coupling efficiency. Although our main aim is to train the agent directly in the experiment,
we develop a simple virtual testbed for testing. Both the lab environment and the virtual
testbed are implemented with Gymnasium [338].

Using the virtual testbed, we test different model-free algorithms and hyperparameters of the
environment, which significantly reduces training time in the lab. As each training step in the
lab takes about a second, we put a special focus on sample efficiency. For this limited amount
of training time, algorithms using a replay buffer perform better than algorithms that do
not, as expected. Soft actor-critic (SAC) performed best in the virtual testbed, closely
followed by truncated quantile critics (TQC) and twin delayed deep deterministic policy
gradient (TD3). Advantage actor-critic (A2C) performed worse, followed by proximal policy
optimization (PPO) and deep deterministic policy gradient (DDPG). In particular, we tuned
the following environment parameters: the maximum action, the reward parameters, the
observation, and the maximum length of the episodes. We found that employing curriculum
learning [343] by slowly increasing the goal power over time can be beneficial for high goal
powers. Furthermore, although the design of the reset methods leads to consecutive episodes
not being entirely independent, this has no major impact on the agents’ performance.

In the laboratory, we used the parameters optimized in the virtual testbed and tested both
TQC and SAC for a moderately high goal power. As TQC performed better, we used
TQC for the other experiments in the lab. We showed how a TQC agent, over four days,
successfully and reliably learns to couple the beam into the fiber with an efficiency of 90%
without pre-training on the virtual testbed. For moderately high goal powers in the range
of 85% to 87%, this training time is reduced to approximately 20 hours. In doing so, the
agents learn to deal with the significant imprecision in the employed actuators. Furthermore,
curriculum learning with lower goals and pre-training on the virtual testbed without noise
can be helpful, although the first is more suitable and does not need time spent on developing
a virtual testbed. However, an agent trained solely in the virtual testbed without noise still
performs remarkably well in the lab environment. Although it is significantly slower than
the agents trained in the lab, it still reaches a goal of 90% reliably in approximately the
same amount of time as a human.

Future directions for using RL for fiber coupling include applying model-based RL, evalu-
ating RL for fiber coupling of other modes of light, or combining RL with other methods to
start the alignment without any light exiting the fiber. The task of fiber coupling can easily
be scaled to more complex spatial alignment tasks by dividing systems into mirror-mirror-
sensor blocks and solving them in sequence. Hence, we can use RL agents trained for fiber
coupling on general spatial alignment problems.

A number of different alignment and control tasks in the optics lab could be automated using
RL. Cavities are, for example, usually stabilized using the Pound-Drever-Hall procedure; see,
e.g., [354] for an introduction. This procedure needs a number of additional components
like phase modulators [355], homodyne detectors [356,357], or split detectors [358,359]. An
RL agent could possibly simplify this setup by only using one additional sensor and no
modulation and relying solely on the reflection or transmission power for decision-making.
This would not only simplify the task of stabilizing cavities but pave the way to novel control
strategies, such as for the phase control of squeezed vacuum states, whose current control
strategies rely on introducing auxiliary laser fields [360] or unwanted noise [361]. RL could
potentially perform these tasks without introducing additional laser fields or noise.
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This thesis contributes to the goal of using ML for quantum control. Long-term research
goals include the direct use of RL in quantum environments. Here, RL was successfully
used in an optical environment that can still be modeled by Gaussian beam optics. One
research branch is to employ RL for the control of more intricate quantum experiments
directly in the lab. Another branch is to develop specialized RL methods for quantum
environments, either using quantum, hybrid, or classical algorithms. Possibly, DQRNNs
together with measurements can be used to model such environments and can hence influence
this development. Ultimately, one could consider using ML methods for full quantum control
like coherent control [363,364] or coherent quantum noise cancellation [365].
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=A

Derivation of Training Algorithms for
Different DQNN architectures

A.1 Feed-forward DQNN with Pure Output

This section is based on calculations performed in [244,245], which are presented here to
make the subsequent sections easier to understand.

Here, we are faced with a single feed-forward DQNN trained on a set of the form

S = (o 01") s (PR 0R))

where

out |wout ><wout I

We use the infidelity as our loss
[N, (p™,0°")) = 1 = F(Ny(p™), o)), (A.11)

and hence the cost function

N
— Z out out -1 Z tI‘ out out (A12)

with
out NL{( )

Notation wise, we use out and L + 1 as well as in and 0 interchangeably.

A.1.1 Layer-to-Layer channels

We can write
pu Tt =Ny (p2) = X (EF (.1 (D)) (A.1.3)

where
EUXIY) = i1 (Ul (XH ®00...0Y (0. .. 0|) U”) (A.1.4)
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A. DERIVATION OF TRAINING ALGORITHMS FOR DIFFERENT DQNN ARCHITECTURES

as we will show later (see Equation (A.1.12)). Now, let us find the adjoint channel ghof &1,
Let {|7)} be an orthonormal basis on the I — 1*} layer, |a), |3) any vectors on that layer,
and i), |j) any vectors on the ['! layer. Then it is

e (£ 0 )l 481) = o5 (1) i€ (G 610) = Gl €2 1) 3D )
- <z frt=1 (Ul (Ja) (8| ®10...0)0...0]) U”) (g>
=3 (7 U (ja) (Bl @ 10...0)0...0)) U], 5)
= (wil U’
=3 (p.0...0"

0...0|ut (17 @ [5)(i]) U'a,0...0)
8] tr! ((11—1 ©10...00...0) U (1" @ [j)(i]) Ul) ‘a>

0,0...0)(8,0...0[U" |5, 5)

¥, 5){(7,i|U'|,0...0)

- tr(trl (@ @0...00..0)U" (1 e |j)]) U')
)

o))
Hence, we get

el (xt) = ! ((1H ®10...0)10...0) U (11 @ X1 Ul) . (A.1.5)

A.1.2 Feed-forward and feed-backward

We define a forward and backward motion by setting

e = Py (A.1.6)
ph=¢E(pY), 1=1,..,L+1, (A.1.7)
oLt — gout, (A.1.8)
o =g (ot 1=1,..0. (A.1.9)

Next, we want to write down non-recursive formulas for p!, and 0. To do so, we use that
for A€ B(Ha) and B € B(Ha ® Hp) for some Hilbert spaces H4 and Hp it is

trp((A®1p)B) = Y (1a® ()(A®1p)Bla@ k) =) A(la @ (k[)B(La ® [k))
k

k
=AY (14 @ (k))B(1a ®|k)) = Atrp(B). (A.1.10)
k
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A.1. Feed-forward DQNN with Pure Output

By keeping in mind that U! = 1%71 @ U! @ 142L+1 where i : j = 4,...,5 for i,j € N,
implicitly, and using this identity, we get

=& (o 1) =E (€71 (7))
— gl (Ul (trl_2 (Ul—1 <p§;2 ©10..0)"" (0...0|) Ul—”) ©10...0)" <0...0|) U”)
— grl-ti-2 (Ul (Ul—1 (pgg2 ©10..0)"" <0...0|) U= 0...0)! <o...0|) U”)
=t =12 (U (U1 (p 2 @10..0) 0.0 ) @11 (U T @)
(11*”*1 ®0...0)" <o...0\) U”)
= gyl 112 (Ul (Ul—1 (p§;2 ©10...0y" ! <0...0|) ® 1l) (1“2:1—1 ©0...0Y! <0...0|)
(v et o)
— grl— 112 (UlUH (pf;? ©0...0)' 1 <o...0\) UHTU”) :
Doing the same thing recursively, we end up with
ph=E(... (62)...) (A.1.11)
= 012 (U“*1 (pg ®10...0)%"(0...0] )U“*”). (A.1.12)

where we set Ultt2 = U2 . Ul for I} <y, and Uhi2 =1 for Iy > lo. For I = L + 1, this
proves Equation (4.5.4). In the same way, we can write

ol = gi+tt (5z+2T (Uz+2))

— o+ ((1l ®10...0)*10...0) U (11 @ 42 (14 @ 10...0)1+2(0...0])

et (1! © o1+2) Uz+2)) Ul+1)
x

— gpltlit2 ((11 ®10...0)7%10...0/® 1z+2) (Uz+1T ® 1z+2) (1l:l+1
®|0m0>l+2<0m0|) (11 ® Ul+2T> (1l:l+1 ® U?L?) (11 ® Ul+2) (Uz+1 ® 1l+2)>

=t (1P ®10...0)"710...0| @ 12) (1**1 ®10...0)'"2(0...0|)
(UHN ® 1z+2> (11 ® UHQT) (14 @ oh2) (1 @ UH2) (U @ 1z+2))

— gyl ((11 ®0...0) 210 ..0]) it (1l:l+1 ® okt?) Ul+2Ul+1> .

Doing this recursively, we end up with

ol =g+t ( L gl (gouty ) (A.1.13)
— trl+1lL+1 ((ll ® |0 o O>l+1ZL+1 <0 o 0|> U'l+1:L+1]L (1l:L ® o_gut) Ul+1:L+1) ]
(A.1.14)

A.1.3 Change of Cost function

In each training step, we call the unitaries before the training step Ujl-. The unitaries are
then updated according to

1

Ul Ul = e U! (A.1.15)
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A. DERIVATION OF TRAINING ALGORITHMS FOR DIFFERENT DQNN ARCHITECTURES

for some small number € and a hermitian matrix K jl In shorthand, we omit the dependence
on U Jl for most other variables depending on those unitaries and write them with a prime
after the update. For example, during each training step, the cost changes from C to C’,
and we try to minimize the change in the cost function for small e

Bl
5Czlim0 C.

e—0 €

(A.1.16)
To calculate §C, we first want to look at pS"*. It is
P = N ()

ieK Lt ;
:tIO:L<e Kmp gLt ...e“KllUl1 (P ®10...0)1.241(0...0])

mrL+41
1T —iek! L1 T —ieKEH!
Uj'e VooUnp, e L+t ).

By Taylor expansion of the matrix exponential, we get

pLt = tr0=L< (1L+1 +ieKLt! ) UL (1 +ieK]) UL (p) ®10...0)1:141(0...0])

mr41 mr41

ML+1 mrL41

Uf' (1 —iekl) L UEELT (19 e >

Only writing down the second-order terms, it is

L+1 my
=t (UL UL (S @10 01 (0. O) UL UKL ) +ie >0

=1 j=1

ML41 mL41

tr0: (UL“ UL KLU U (0 ®10...0)1.041(0...0]) Uit yLa f

ML 41 JU g+ Y mn g

— Ukt Ul (pg®|o...o>1:L+1<o...0\)U}T...U;TKlle ..UL“’T) + O(e?)

L+1 mg
=p£+1+iezztr“<[fﬂil~"Ual'1 KLup. Ul (pd®10...0)1.041(0...0])

1=1 j=1

oot

mr+1

U;L...UHH) + O(e?)

=pit +ebprtt + 0.

with
1
opy = i — (p;“rl - pﬁ“) (A.1.17)
L+1 my
=iy >t (UHLL“U;HW KLUL U (o @ 0.0y 0. .. 0])
=1 j=1
UU*NU{JT Ujl_+1:mlTUl+1:L+1T> (A.1.18)
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A.1. Feed-forward DQNN with Pure Output

where we write U]l1 g = U]l»2 . ..U;l for j1 < js, and UJ1 g = =1 for j; > jo.

Furthermore, it is

N
1
=1 D0 (AT 0] et 0 0E ™) + (@)
$
1
=C—ex D (@M opr T o) + O() = —G—Ztr (021 6pi ™) + O(€)
z=1
and hence,
C-C'_ 1g P
— — )i S A.1.19
Nz i) a
N L+l my
_ Z Z ir L+1tr0L(Ul+1 Ligl [Kl.
J+1limy 77
z=1 [=1 j=1
Ul Ul:l—l ( 0 ® ‘0 >1 L+1< |) Ull 1TU :|Ul TUl+1;L+1T))
1:5 Pz Jj+1limy
7: N L+1 my
2 30 ) DL (T TA G W I
z=1 =1 j=1
U{:le:lfl (pg ® ‘0 » .0>1:L+1<0. . O|) Ul:lflTU :|Ul+1 - Ul+1:L+1T>
i N Ll ;
_ _ Z Z Ztr(UlH:LH (10:L ® U£+1) [iHLL
N = 1=1 j=1
1 f f
UL 1o [ K UL UM (0 @ 0.0 E 0ol o= o T o, ).
(A.1.20)
With
A = plHuL+t (19L @ glt) bt (A.1.21)
- f f
B= Ulﬂml[ KLULUY (2@ 0...0)" 41 0. o)) U1, ]Ul+1ml (A.1.22)
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it is

i N

(A.1.23)

These partial traces now have to be expressed in terms of the earlier discussed states arising
from the feed-forward and feed-backward motion. With (A.1.22) it follows that

trO:lfl (B)

_ 4001 1
=tr (UjJrl:mL

{Ké, UL U (0 @10...0) 5410, 0]) U“—”U{ﬂ U}+1:mlT)

- (U;Hm [K;., Ul (u«OH (U“’l (pg ®10...0)"1(0...0] )

U”*”) ©10...0)4(0...0] )U{ﬂ U;H:,,”T).
Using Equation (A.1.12), we get
%1 (B) = trl~! (U;H:m, [Kj., Ul (p;—l ®10...0(0...0| )U{” U§+1:mlT). (A.1.24)

By using Equations (A.1.21) and (A.1.14), we have

L+ ((1l ©10...0Y 0|> A)

— gyl ((ll ©10...0) LA <00|) [riHLLLT (1L © gL H) Ul+1:L+1)

.y
Together, we get

N L+1 my

5C = — % N Ztr(a;trH (U;.H:ml [Kj, Ul (pgl ®10...0)'(0...0] )U{Zj*}

=1 1=1 j=1

1 T
Ujr1:m, ))

N L+1 my

- %Z S Ztr( (1 @) ULy, [K;,U{Ij (pfgl ®10...0Y(0...0| )U{ﬂ

=1 (=1 j=1

1 T
Uj+15mz )
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A.1. Feed-forward DQNN with Pure Output

As it is
tr(A[B,C]|D) = tr(ABCD — ACBD) = tr(CDAB — DACB) = tr([C, DA]B) (A.1.25)

for all A, B,C, D € B(H) for some Hilbert space H, we have

5C = fiim - tr([Ul (H®|0 0)' (0. 0|)U Ul (1H®al)
- N P 1:5 pr e 15 »~j54+1my x
UJl+1 ml]KJZ)
L+1 my
=iy Ztr(M;K§) (A.1.26)
=1 j=1
with
M;:}Vi UL (A @100 0.0 UL UL, (17 @00 ) UL 1, |- (AL2T)

A.1.4 Update Matrices and Proof of Proposition 4.2

Now, to get our update matrices KJL we only have to minimise

L+1 my

— Lol
C =iy > u(MK}).
=1 j=1
To do so, write
l 1 Qmy B
Kji Z Kjal amzflvrg(o—al®"'®a— ZI®J)'
al,Oéz,m»OCm,_lﬁ
Since §C is linear in the K Jl Ot ooy the maximum is reached for +00. But we only want

to make small (finite) steps in the direction that maximises §C', so we impose the constraint

1

Z (Kjla )2:c:const.

a;,=0
By introducing a Lagrange multiplier A € R, we get the optimization problem

L+1 myr

mln fzzz Z tr(Ml il (00/1® ®Jalml/*1®aﬁ'>)

]alz[-} = 1]I 10‘76/

AT S (Kaw)

U'=1j"=1a},8'=0

By setting the derivative w.r.t. K ;.5 €qual to 0, we get

gy, B

—ite(M] (0™ @ ... @0 @07) ) 420K, 5 =0
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which is equivalent to

1 N o
Kjl',aiﬂ = ﬁtr(MJl» (0’ T®... ®o-m-t ®0-5) )
Hence, it is
KJZ = Z %tr(Mjl. (0041 ®... Qg mi-1 ®Uﬁ)) (0.041 Q@ ... @0 ®o’3).

Q1,025 ,0my s

Using the completeness of Pauli matrices, we get

e 2mett ! I 2™ ! !
Kj= Ttrl:j—l(trj+1:mz (Mj)> = Ttrl:j—l(trjﬂ:mz (Mj)>

which concludes the proof of Proposition 4.2. Hence, in each step, we perform the update
1 N 77l
U;j — exp (Pj) U;

with

2mi-1yg

P} = ek = ie———trl,;_, (m«;Hm (M;)) — —omiget (trgﬂzml (MY )

where 7 = £ is the so called learning rate.

A.1.5 The algorithm

In total, we get Algorithm 9.

A.2 Feed-forward DQNN with Mixed Output

The derivation presented in this section is based on work with Nils Renziehausen in the
context of his Bachelor’s thesis [252] and is presented here to make the next sections easier
to understand.

Again, we are faced with a single feed-forward DQNN trained on a set of the form

. ] . N
S = ((pllna U(ljut) PRI (Pﬁ, U?\}lt)) € (D('Hm) X D('Hout)) X

but now, in general there is no ¥%" € HO" with oo = [p2*)(¢h)2"|. We use the cost
function
L
Cs =+ 3 (2 = 027 (A21)
r=1
and know

2 = Nu(p2).

Again, we use out and L + 1 as well as in and 0 interchangeably in terms of notation.
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Algorithm 14 Classical Training Algorithm of ff DQNNs with pure target [245]

Input: ((pI, [¥9")))e=1...8, (M1)i=0,...L41 oF (U})j=1,...m))i=1,...L+1, 1, T
> Training set, network architecture or unitaries, learning rate, number of training steps <
if (mq);=1,... r+1 not given then > Calculate architecture if none is given
for [ = 0, ...,LEN(((U;)jzl ,,,,, m;,)l:l """" L+1) do
- my < LEN((UD)j21,.m1)
L «LeN((mq)1=1,....041)—1
else if ((UJI-)jZLMW)5217,__,L+1 not given then > Initialise unitaries if none are given
for 1=1,...,.L+1 do
for j=1,...,m; do
UJZ- +—RANDOMUNITARYHAAR(m;—1 + 1 qudits) > Random unitary w.r.t. Haar
measure on m;_1 + 1 qudits
L L Ujl A 1l1:j—1 ® Ujl ® 1§'+1:ml
for t=1,...,T do
for x=1,...,N do > Feed-forward
pg = Py
for I=1,....L+1 do
pl < tri=t (Ul (pé‘l ®10...0) <00|) UlT)

for x=1,....N do > Feed-backward
oy Tt ) (Y|
for 1=0,...,L. do
ol et ((1l ®10...0)+10...0)) U+ (1 @ ol+) Ul+1)
for 1=1,...,.L+1 do > Update matrices

for j=1,...,m; do
N
1
M= =S [Uly (P @100 (0. 01 UL U, (17 004 ) UL
r=1

Pl —2mi-iptrl (tr§'+1:mz (Mﬂl‘))
l 0 Ul

| Ueen(P)U

Ct —1- % EzZI tr (pwal)

A.2.1 Derivative of Cost Function

In each training step, we again update our unitaries U]l- according to
l l ieKhrrl
Uj = U’ =e“%U; (A.2.2)

for some small number € and a hermitian matrix K Jl First, we again have to find the
derivative of the cost function. To do so, first rewrite the cost using the cylic rule of trace
as

N
1
€= 5 D+ 03 2.
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As 02" is not changed by updating, it is
out ou out ou
Nzt / ( xt)2_2p/;t Oy t)
Nztr L+1+€5p£+1+0(62))2—|—(02ut)2 ( L+1+66pL+1+O( )) out)

Ztr L2 L 2e(§pEt 1) pLtt 4 (6992 — 2(pEHL 4 e(5pEH1))oo) 4 O(€2)

=0+ 26“((5/}5“)@5*1 o) + O(e?),
SO
5C = 2tr((OpETh) (pE Tt — gout)). (A 2.3)
This is nearly the same as for pure outputs (Equation (A.1.19)). We only have go%* — pZ+1
instead of o9"* and a factor of 2 that we can incorporate in the learning rate.

A.2.2 The algorithm

Hence, we only have to change oL+l = g% to gL+l = gout — pL+1 in Algorithm 14 and
get Algorlthm 15. Note that this means that o, is not a state anymore but is closer to the
error used in classical NNs.

A.3 DQRNN with Local Cost for Separable Input and Output

If you are not familiar with the derivation of the classical training algorithms for DQNNs,
we would advise you to read Section A.1 first. The derivation of this algorithm was first
presented in [246]. Now, let us look at a DQRNN trained with the local cost, separable
inputs, and, for now, pure, separable outputs. Given N,, M € N for « = 1,..., M, let our
training set be of the form

mem in out

with
oo [U2) (U], U € MO, g™ € DIHPOM), i, € D(H),
If pg°™ is not given, we will set p<™ = [0...0)™" (0...0|.

The local cost function for a DQRNN with pure outputs is given by the local infidelity on
the outputs

M N M 1 N
=1 D o FUen =1 g DS (A8

06:1 a:l
with
Po = PEST O P @ ® piﬁ o (A.3.2)
pQUT = (1 o1 @ Nu) 00 (M @15 y,)) (0™) = Mu (pkY) (A.3.3)
Py =ty (trSF;fl,m;Na (k) - (A.3.4)
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Algorithm 15 Classical Training Algorithm of ff DQNNs with mixed target [252]

Input: ((p*,02%))sz1. N, (Mu)i=0.....L41 OF ((Ujl‘)jzl,.“,ml)l:l,...,L-{-l7 n, T

> Training set, network architecture or unitaries, learning rate, number of training steps <
if (mq);=1,... r+1 not given then > Calculate architecture if none is given
for [ = 0, ...,LEN(((U;)jzl ,,,,, m;,)l:l """" L+1) do
- my < LEN((UD)j21,.m1)
L «LeN((mq)1=1,....041)—1
else if ((UJI-)jZLMW)5217,__,L+1 not given then > Initialise unitaries if none are given
for 1=1,...,.L+1 do
for j=1,...,m; do
UJZ- +—RANDOMUNITARYHAAR(m;—1 + 1 qudits) > Random unitary w.r.t. Haar
measure on m;_1 + 1 qudits
L L Ujl A 1l1:j—1 ® Ujl ® 1§'+1:ml
for t=1,...,T do
for x=1,...,N do > Feed-forward
pg = Py
for I=1,....L+1 do
pl < tri=t (Ul (pé‘l ®10...0) <00|) UlT)

for x=1,....N do > Backpropagation
o7t (o = prtY)
for 1=0,...,L. do
ol et ((1l ®10...0)+10...0)) U+ (1 @ ol+) Ul+1)
for 1=1,...,.L+1 do > Update matrices

for j=1,...,m; do
M &2 (Ul (p el 0) 0.0 UL UL, (1 @od ) UL
Pl _2m“1+177t1"11:j—1(tf§'+1:ml (Mgl))

B Ujl(—exp (le) Ujl-

Cy % Zi’vzl tr ((Pé—|r1 - Ugut)Q) > Calculate Cost

The Hilbert spaces are related as HO = H™e™ @ H», HITL = out g fmem HIN —
Hmem Hin N and HOUT = gyout®No ® H™e™. To keep things simple, we set M = 1 in
the appendix. To get the case M > 1, we just have to average over the as.

A.3.1 Network-to-Network Channels

We will use the same layer-to-layer channels as for the ff DQNN, but also introduce network
channels: As introduced before, we have the network-to-network channel

Nz,{ : 7‘[0 — HL+1
X0 s (0L (u (XO ©10...0) L+ <o...0\) uT)

and we know
Ny =EMlo. o0&l
It’s adjoint is then given by
N —gtf g g grt1t
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N e 30
XE s e (0@ 0. 0) 0. o) ut (10 @ XETY U) .

A.3.2 Feed-forward

We are looking at the local cost here and are only interested in the po', where we trace out
everything except for the z*® output. As we will see later, we can either always carry the
full state or trace out the memory and output after each network to get a local output pout

xr
and memory p4'°™ state, respectively. Then, the local memory state is tensored to the next

input pi®. This is then used as input for the next DQNN.

Let
Py =Pyt @ Pl
pb=&"(pY), 1=1,.,L+1

(

(
pmem — grout (pi‘“) (A.3.7

(

ﬁ;ut _ trmem (piﬂrl) )

As the layer-to-layer propagation is defined in the same way as for the ff DQNN, we have
(see Equation (A.1.12))

ol =t (U (L @00} (0.0 JUttT)
— 01 (U” (pglfrf @pn®0...00(0...0| )U“T). (A.3.9)
Together with Equation (A.3.7), this means, it is

p;nem _ trfut (Ul:L+1 (plwn ® p;nfrln ® ‘0 o 0>I:L+1 <0 o 0‘) Ul:L-&-lT)

xT

— grl:Lwout (ux (p;“ ® pmem @ [0...0)EH (0. . 0\) u;)
=t (0, (i @ e (U (ol @ pey @ 0.0 0.0 uly)
@10...00" 0.0 )uf)
where we used the abbreviation U, = 135! @ 195" o U © 1;“4111“ ® 12f2+11\, By us-
ing A.1.10, we get
g = 010 (U (@ (U (o @ preg @ 0.0 0.0l ) )
®10...0)L L+ <0...0|)u;).

1:L+1
T

Since U, 1 commutes with p* and |0...0) (0...0|, we are left with

rz—1:x rz—1,x

pimem _ y0:Lout (u$uw_1 (pg‘fg‘ ® o, @pn 0.0 0. o )u;_lu;).

Repeating this process, we get

pimem _ ¢ 0:Lout (um (pglem 2R @0...01 (0.0 )MLC), (A.3.10)
y=1
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where again Uy, .z, = Uy, .. . Uy, for z1 < o, and Uy, ., = 1 for x1 > x9, and hence

pout = gy 0:Lomem (t 0:L,out (um( mem g ®p ®10...007 5 (0...0| )u}r))

We will now show that actually p** = pS"t. To do so, look at
pout — OUt (pOUT)
x ‘/L’

_ fr;“t (ul:N (pIN ®0...0 0 0|) ulzNT) :

As U, 11.n act as the identity on the not-traced-out-layer, we can rotate them around and
get

pout — grout (um <pIN ®10...0) 5 0. . 0|) umT)
= o (uu < mem ®®p ®10...0)1 & <o...0|> umf>
_ trgfj}\[ (trixn—;_ll:L-‘rl (trg:L,mem (tr? £ Oilt (ulzw <p6nem ® ® plyn
y=1
N
@o...o>}j§+1<o...o>um*® (09 ®|o...o>;f§;<o...o|>>>>

y=z+1

= trg:L,mem (t (1)£0{1t (ulzm ( mem o, ®P ® ‘O 1 L+1 <0 o 0|> ul:xT>>
in,1:L+1 1:L+1
nth (v (@ Ao >x+1fN<0...o>>

y=z+1

_ trg:L,mem <tr(1) 5 Oilt (ulzx ( mem o, ®p ® ‘O 1 L+1 <O o 0|> ul:a:T>>
:L
( & syl >i+i}v<o...0|>

y=x+1
_ pout 1 _ pout
xr
hence our feed-forward method gives us the correct state, and we can write

PO = tymem (p£+1) . (A.3.11)

A.3.3 Feed-backward
We define the feed-backward process by

ot = o™ @ 1 (A.3.12)
oLt =0l @1, z=r—-1,..,1 (A.3.13)

=g (G s= 1, I=1L,..,0 (A.3.14)
gmem — grin | ((p‘zil ® 1216“‘)02“1,) R (A.3.15)
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Like before for the ff DQNN (see Equation (A.1.14)), we know

ol — trf;l:L“( (12 ©10...0) 1L <00|) Ui+1:L+1T (1L @ oLt U£+1:L+1)

zZT z

for z =z, ..., 1, which leads to

oy =t (1 @ (0. 0T (0.0 ) UL (1l @ gt @ e L)
(A.3.16)

Uiz _ t1&;1:L+1( <1JZ 210... 0>lz+1:L+1 ©... O\) Ui+1:L+1T (12L ® ohem 1(;ut) Ui+1:L+1)
(A.3.17)

for z=2—1,...,1. Hence, for z =x — 2, ..., 1, we get with Equation (A.3.15)

ot = i, (st 0 22,1,
. ((pi;;l ® 1;nem)tr;fl+1 ((12+1 20... 0055 0. 0| )U;;Lﬁ”
(125 oy, @128 )URE))
- tr;fjl’i“((pg;l ® 1mem 1;11“) (12+1 20...00° 5 0. 0| )uzﬂT
(198 @ o2 0128, Judor )
::uéff**“((pf;l@glgw“‘®|0..iDiff*(0..Jﬂ)LQ+IT
(125 @ oo, 1245 JUera ).
By inserting this in itself, we get for z =z —3,...,1

ot =l (@2 @10 )BT o] July (a2 @ e (o
1™ @ 0...0) L (0. 0| )u;+2 (121;““ ® aglfg;)uz+2))uz+1)
= B (o @17 @ 0. 05 0 0f @ 1 ul (12
@ (Pl @ 22T @ 1000257 (0 0 Ul (1257 © o258, Judero) Jthors )
= w5 (@27 @ 10, 0I5 (0.0 @ 1B ul, (125 @ ol
®[0...0 iJrL2Jrl (0...0| )u;tz <1gf20zui3 ® U?fg]x>uz+2uz+1)
=l (P e 1m0 (0. 015 (0.0l @ 1) (105 @

1:L+1 0:L,ou mem
& |0 .0 z+2+ <0 c 0‘ )L{ZHULQ (1z+2:zi3 ® 0'2+2I>uz+1:z+2)
z+2

L:L+1,i ~ 1041
= trz—l—l:z-&ig <<12nem ® ® p;/n ® ‘O s 0>z+1:z+2 <0 e 0‘ )u;f+1:z+2
y=z+1

0:L,out mem
(1z+2:z+3 ® Uz+2 z)uz+1:z+2> .
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Doing this recursively, we are left with

z—1
1:L+1,i i 1:L+1
gmem — tr2+1:mifi((lrznem ® ® p;}n® ‘O"'O>z+1:z—1 <0...0|)Z/{;r+1:z,1

y=z+1
10:L70ut mem u (A 3.18
z+2:x—1 ® Oz 1z z+l:ix—1 J- L. )
For o™ we do the same first steps as for o™ only that we have oLl = gout @ 1mem

instead of ol ! = o @ 1°"*, which leads to

o, =t ((pir @ e )kt (10 @ 0.0 (0. o] Uit
(1O:L ® Uout ® 1mem) U1!L+1))

- tri‘LJrl’in((p;n ®17°m 2 10...0) 1 (0. 0| )u; (121L7mem ® ag“t)ux).

T

Together with (A.3.18), we have

x—1
mem __ 1:L+1,in mem in 1:L+1 T 0:L,out
Oz - trz+1113*1 ((12 ® ® py ® ‘0 ce 0>z+1:x—1 <0 s 0| )Uerl:wfl (1z+21171
y=z+1

® tr;:L—l—l,in((piﬂn ® lg}f? ® ‘0 o 0>1:L+1 <0 o OI )u;f (lg:L,mem ® Ugut)

Up ) oo ).

Just like before, this is

x
1:L+41, ir 1:L+1
J;em — trz+1'5:'w m((lg‘em ® ® p;; ® ‘0 . 0>z+1+m (0 . OI )ul—i-l:w
y=z+1

(12:-&27(:).7‘:131 ® 13hmen @ UE“)I/IZH:x) (A.3.19)
for z =z —1,...,1. Inserting this into (A.3.17), we get

ol — trljl:LH( (12 ®10...0) o 0|) ylruL+if (1§L ® trifff;’in«lg‘em

z

® @ o0 000 July,, (105 © 0 e,

y=z+1

® 10ut) Ul+1:L+1> )

Like before, it is

ol =l (R (e .05 0. 0w @) sl

z
y=z+1
: . T : .
20...0) 5 (0.0 )U;“-L+1 ul . (12+L2’?;131 ® 10-Lmem @ af;ut)

UZH;mUi“:L“)). (A.3.20)
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A.3.4 Change of the Cost function and Proof of Proposition 4.1 for Pure
Target Outputs and One Run

In each training step, we again update our unitaries U4 according to
Ul Ul = MUt (A.3.21)

for some small number € and a hermitian matrix K. L. First, let us calculate 6p2" like before
in Section A.1.3. It is

u/ : mem ,ou mein
o <o G o, (0 @t 010 01 0 )i )

x L+4+1 my

__ _out . 0:L,mem 0:L,out I+1:L+177l 1:1—-1
= Pz + e E E : E tr:E (t Tp—1 (UZ+1 IU U]+1 my z ]Z’Ulszz
z=1 |=1 j—l

U (P @ ®p @0..on .o uf, ottt T

’
Ul it = U0 L)) + O(e)
= P+ edpg" + O(e?)

with
x L+1 my

out _ 0:L,mem 0:L,out I+1:L+177l l l 1:1—1
=iy 3 S ul (t p0iLor (uz+ LU Uﬁlle{ijUl:szz
z=1 [=1 j=1

ul:zfl( oo ® ®p ® |0 }£+1 <O ce O| )uI:z—lel:l_lTU{:j ZT:|

l I+1: L+1T i
U+1 my z Uz Z’lz-‘,-l m))

Like before in Section A.1.3 (see e.g. Equation (A.1.23)), we can pull part of the traces in
and get

x L+1 my
out _ 0:L,mem 0:L,out I+1:L+177l 1:1—1
=1 E E E try, ( | (uerl 2U, Ujtiim = jZ’UljZUZ

z=1 =1 j=1

(e @trggo;t(uml(mew@p 210015 0.0 )y
y=z

®0...0) 1" <o...0|)U;:l-”U1:]z |00 O L),

z:r

Using A.3.10 leads to

x L+1 my

out 0:L,mem 0:L,out I+1:L+1771 l
=i S St (e (v UL (K

z=11=1 j=1

U{:szZl:lfl( mem®®p ®|0 iiﬂrl <00|)Uzll71TUszin|
U i+ L+1TUT
Jj+1lm; 2 z z+1:x
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Pulling in traces and using Equation (A.3.9), we are left with

x L4+1 my
out _ 0:L,mem 0:L,out l—1:L,out I+1:L+177l l
=iy Y >t (trz+1w 1(t (u U Ujta: mLZ{KJZ’

z=1[=1 j=1

Ul @ ol o u=2(UH (2 @ @ 0.0 (0....0] JU2i-1)
y=z+1

I:L :L T T L1t
210,00 0@ 0.0l .o ol UL, o

)

x L+1 my
_ ZZ Z Z trg:L,mem (tr(z)flo;t . (t I—1:L,out (u Ul+1 L+ll']l+1 o = |: L Ul s
2=1 1=1 j=1
LL+1 1:L+1 i
(Qgp @p @10, 05 0. 0j@ 0. .0ykE (0.0 U,
y=z+1

l 1+1: L4171
U+1 my z Uz+1 1 ui—‘rl x)))

It is
/_
6C = lim ¢-c
e—0 €
1 N out’/ _ou 1 N out ~ou
o DTN X (02" 02™) — (- v 3y tr(p2"o2™))
e—0 €
1 N ) ((5pout) out)+o(€2)
= - = lim
N e—0 €
r=
i N
- )
=1
N x L+1 my
= Z (DS e (0ot (e (0 UL
=1 z=1 l=1 j=1
l:L4+1 1:L41 T
{ JZ,UUZ( ® PR @0, 0 (0. 0] @[0... 0) 5] <o...0|)U{:jZ}
y=z+1
t u
Ul+1 my z Ué+1 Lt uiJrl w)))og t)

x L+1 my

Z Z Z Z tr( z+1: xUl+1 L+1UJZ+1 imy z [KJI 2z

wlzlll]l

I:L :L T
Ul ( R e w00 o 0...01@[0...0) X5 (000 Ut

y= z+1
l 1+1: L-‘,—l]L T 0:L,mem 0:L,out l—1:L,out out
U; Jj+lm; z Uz uerl i 1ZE ® 1z+1:x71 ® 12 ® Oy .
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By using the cyclic rule of trace, we get

. N x L+1 my

_ ? l+1:L+1T T 0:L,mem 0:L,out l—1:L,out ut
0= -3 3> Ztr(Uz ul, .., (11, em @ 10:5out | g ql-TiLout g 5o )

r=12z=1 (=1 j=1

Uit aULFRI0L [ KL UL (@) A @ @10.0.0)5 (0. 0]
y=z+1
1:L+1 T T
02y |O e O>z+1-":_a: <0 e O| )U{:jz :|U]l‘+1:ml z )

. N x L+1 my

_ _ % Z Z Ztr (Ué+l:L+lTui+1;m (12:L,mem ® 12f1’0;,l£1 ® 1lz—1:L,0ut ® O_gut)

r=12z=1 (=1 j=1

uZ+1:in+1:L+1 (U]l'—i-l:ml z |:Kjl z9 U{:j z (plzil & |0 e 0>i <0 e 0| )U{j zTi| Ugl'+1:ml zJr
@ U @ 1) () pir e 1l @0, 0 0.0
y=z+1
1:L+1
This is
i N x L+1 my T
5C = 7NZ Ztr(( p;!n®1l;1:z®|O'”0>lz+1:L+1 0...0]
r=12=1 (=1 j=1 y=z+1
® |O o O>ifl+; <0 L 0‘ )Ui+1:L+1Tu;r+1;z (12:L,mem ® 12_51,0;11 ® 1lzflzL,out ® agut)
1

uZ+1¢$Ui+1:L+1 (UJI‘+1:mL z |:Kjl 29 U{] z (plz_l ® |0 te 0>lz <0 te 0| )U{j zTi| UJl’Jrl:mL z

I+1:L+1 1:L+1,in
® 1z ® 1z+1::1: ))

. N x L+1 my T
2 1— 1+1:L 1:L+1,in in l
= -y XYY Y u(( et (s (( @ et
z=12=1 [=1 j=1 y=z+1
®(0.. 0 (0 0j @ [0...0) 5 <0...0|)U§+1=L+”uj+m

: 0:L,out —1:L, :
(12 L.mem g, 1z+1(:):;’171 ® 112 LLout o Jgut>uz+1:zUi+1 L+1)>>

_ l T T
U]l'+1:7rzlz |:K]l'z7U{:jz(pi ! ® |0 . 0>z <0 . 0|)Usz }U]l'+1:mlz )

With (A.3.20), we get

. N =z
5C= = 5 2D D (1 @ ok Ul [K UL
1
(Pt @10-..0)L 4000 Ut |0, )
z R 15z j+lmyz )

We can drop the subscript z for the unitaries, identities, and ground states, as we are only
acting on network z. Then, using tr(A[B, C|D) = tr([C, DA]|B) for A,B,C,D € B(H) (see
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Equation (A.1.25)) for some Hilbert space H, we have

x L+1 my

EEE 09 » ) WU (CEEBENSEES

z=1z2=1 [=1 j=1

(Pt @l0...0)" 0.0 UL, | Ui,

L+1 my

= —i> > (MKl
=1 j=1
with
N =z
= 3 [ (0100 00 ! (37 )

=1 2=1

(A.3.22)

where we again used Equation (A.1.25). This concludes the proof of Proposition 4.1 for
M =1 and pure target output states.

Using Proposition 4.2, we get

2Mi-1g

1 _ l
Kj= ZTtru 1(tr]+1mz (M) )
Hence, in each step, we perform the update
l N 77l
U; — exp (Pj) U;
with
l_ . gl
P; =ieK;
= - 2m4171"71—’111:]'—1 (tré—&-l:ml (M_;) )7
€

where 7 = £ is the learning rate.

A.3.5 The algorithm

To reintroduce «, we just have to average, i.e.,

Mj = MZ QZIX;[UM(PM@O 0)' (001 )UL, ULy, (1 @ 0L 0) U]
o (A.3.23)

This leaves us with algorithm 16 and concludes the proof of Proposition 4.1 for pure target
output states.

A.3.6 Mixed Target Outputs

For mixed target outputs, i.e., o940 € D(H "), we have

M
out out\2
Clocal mixed,S = M Z Z tI‘ pma xa) ) (A324)

a= 1
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Algorithm 16 Classical Training Algorithm of DQRNNs with pure target and local cost

Input: ((p§s™, (P5'as [¥9%)))e=1,...N Ja=1,...M (M0)1=0,...,L+1, Mimem OF
((U]l)j_L...,ml)1=1,...,L+1, n, T
> Training set, network architecture or unitaries, learning rate, number of training steps <

—1,...,L+1 hot given then > Calculate architecture if none is given
for I = 0,....LEN(((U}) j=1.....m) )i=1,....L+1) do
o omy <—LEN((Ul)g L)
L «+LEN((mg)= 1,.4.,L+1)_1
else if ((UJl‘)j:L...,mz)l:L...,L+1 not given then > Initialise unitaries if none are given
for 1=1,....L+1 do
for j=1,...,m; do

Ul <+ RANDOMUNITARYHAAR(my_1 + 1 qudits) > Random unitary w.r.t. Haar

measure on m;—1 + 1 qudits
i Ul<—111]1®Ul®1JHm,
for t .,T do
for a=1,..,M do > Feed-forward
for x=1,...,N do

mem

pza <_ Pz—1a ® pfvnoc

for I=1,....L+1 do

P e (U (p e 000 0. o)) UT)
pmem — trout (pL+1)

Pl = e (pgtt)

fora=1,..,M do > Feed-backward
for x=1,...,N do
%;ré | out> < out‘ ® qmem
for z=x,...,1 do
for 1—0 ,L do
z:coc — trl+1 ((1l ® |0 te 0>l+1<0 . |) Ul+1T (1l ® U,lzjv_loc) Ul+1)

oo, o bt (i, @ 1mer 210, 0)1(0...0] Ul (12 @ o, , ) U2)

O.L+1 + qout ® gmem

[ z—lz o z—lx
for 1:1,...,L+1 do > Update matrices
for j =1,. ml do
1 QA
ZN SN k(@0 . 0ol
& r=1z2=1

l -1 1
U J+1lmy (l b2 zw a)U +1: m1j|
Pl — =2 177tr1] 1<trJJrl oy (Ml))
B Ul < exp (Pl) Ul
Ct —1- NM Za=1 szl tr (P2 a0za o) > Calculate Cost
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As for the DQNNS, if we look at mixed outputs, we have
M N,
Z Z P — o), (A3.25)

i.e., we just have to replace oL+l = 90U with oL+l = (09Ut — pout) in the feed-forward
process and get Algorithm 10 and Proposition 4.1 for mixed target output states..

A.4 DQRNN with Global Cost and Pure Target Output

We now drop the assumption that the global inputs and outputs of the DQRNN are product
states. Hence, the training set is generally of the form

M
S = {Sakoly = {(AY, 02 fuy =& X (DORY) x DHRY™)),

where we assume our outputs to be pure and write both inputs and outputs as MPOs, i.e.,

E oY B PN
..... \ \ \
— | (A4.1)

mem
Po

| (A.4.2)

In order to keep the derivations shorter when deriving the training algorithm, we again set
M = 1 until mentioned otherwise. We use different colors for the input, memory, output,
and hidden layers here and in the following. If the last memory output is not given, choose
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on®™ = 1. The output of the network is then given by
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|0>1ZL+1 ﬁﬁ |0>1:L+1
Py’
<O|1:L+1 LJ <0|1:L—|—1

in

<0|1:L+1

ut

@

((

(A.4.3)




A.4. DQRNN with Global Cost and Pure Target Output

The cost is given by Celobal, pure,s = 1 — tr (USUTpSUT). In TNN, we can write

| u |

out mem
2

|0>1:L+1 |0>1:L+1 |O>1:L+1

<0|1:L+1 <0|1:L+1 <O|1:L+1

(A.4.4)
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A. DERIVATION OF TRAINING ALGORITHMS FOR DIFFERENT DQNN ARCHITECTURES

A.4.1 Feed-forward

We again define the feed-forward procedure similar to before, but now in TNN.
First, we set up the first memory state by setting

mem mem

Yo = mem if Po
‘ Po

is given and otherwise.

(A.4.5)
In order to get the total input of each DQNN iteration, we set
— ]/YW,H(‘YIH
(A.4.6)

forx=1,...,N.

This total input then has to be propagated through the DQNN using &' as in Equa-

tion (A.1.7). Hence, we set
(-

vt

l =
v,

10)’
(o'
(A.A.7)

To get the cost or derivatives of the cost, we already contract the output legs of vZ+! with
oo and trace out the physical output legs. The remaining memory expression then is

forl=1,...,L+1.

‘ g
mem
|V,
x

TR

_ (A.4.8)

which leaves us with open memory and virtual input and output legs.
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A.4. DQRNN with Global Cost and Pure Target Output

In the following, we again use Uy.y = Uy ... Uy, yhi = yl2 | Ul UJl»lzj2 = U;2 ...UJI-1 for
x > y,ls > 1y, 72 > 71 in short-hand.

Iteratively inserting the above equations into each other, starting from v in Equation (A.4.7)

and ending with the definition of v§**™ in Equation (A.4.5), leaves us with

(A.4.9)

forx=1,...,Nandl=1,..L+1.
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By going up to x = N and [ = L + 1, and then applying Equation (A.4.8), this leads to

|0>1:L+1 |0>12L+1

in

mem
— VN

I

EN

=]
=

‘ <O|1:L+1 <0|1:L+1

(A.4.10)

which again leads to

)

mem
ON

C=1- f\\J

Ay |
(A.4.11)
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A.4. DQRNN with Global Cost and Pure Target Output

A.4.2 Feed-backward

First, we, similarly to before, set up the last memory state by setting

‘ mem
-(7 1
. N . mem : . .
T~ = if o N is given and otherwise.

| | (A4.12)

In order to get the total input of each DQNN iteration, we set

T/lllﬁ‘r ' -

| | (A.4.13)

for x = N 1.

g eeey

This total output then has to be propagated back through the DQNN using & as in
Equation (A.1.9). Hence, we set

‘0>l+1

<U‘/+l

(A.4.14)
forl=L+1,...,0.

To get the cost or derivatives of the cost, we already contract the input legs of ¥ with pi®
and trace out the physical input legs. The remaining memory expression then is

—~mem ‘
Ta

in

pat+]

(A.4.15)
which leaves us with open memory and virtual input and output legs.
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We again iteratively insert the above equations into each other, starting from I/i in Equa-
tion (A.4.14) and ending with the definition of v{**™ in Equation (A.4.12). This leads to

I+1:L ou mem
0 110" |[10) m
I+1:L out mem
o+ | [ o1 |10 h
I ‘ ‘ 1L ‘0 (m‘r 0>m((\
pittrtt

<0‘1:L <0‘(mt <0‘1mm

[ [
| U |

\ \
J— t t mem
N
[ \
u |
in \ \—//

Ul+1:L+1

\

(A.4.16)
forx=1,...,Nandl=1,..., L+ 1.

Rearranging this to have the legs facing inward, as we need it in this form for the derivative

150



A.4. DQRNN with Global Cost and Pure Target Output

of the cost, we get

m
mem

u |

| Ul+1:L+1 |

I |
‘ |O>l+1:L ‘0>uut ‘ |()>mcm

= in

‘0>1:L ‘O>Um ‘ ‘()>mom

<0|l+1:L <0‘out ‘ <0‘mcm

Uz+1;L+1T

<O|1:L <0‘out ‘ <0‘111(:m

(A.4.17)
A.4.3 Change of Cost function and Proof of Proposition 4.3
Again, we update our unitaries according to
l lr _ ieKlyrl
Uj— U’ =e“NU; (A.4.18)
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for some small number . We have
pOUT — 0L (uN...ul (pIN ®[0...0) 1L+ <0...0|) u{..u}v)

and like before

’iE N L+1 my
ouT’/ _ OUT Z Z Z 0:L I+1:L+177l 1
P =p + N tI'1:N (u2+11NUz Uj—i—l:ml z Kj 2

z=11=1 j=1

. : g1t T
ULy UM e (0™ @ 0. 0)p K (0ol o
U]l’+1:ml zTUi+1:L+1TZ/[§+1:n) + O<€2)
= pOUT + ie5pOUT + (9(62)

which leads to

§C = lim C'—C — lim 1— tr(pOUT/JOUT) _ (1 _ tr(pOUTUOUT))
=0 € e—0 c
; OUT) OUT 9
- _ gg% tetr ((5,0 ) ‘Z ) +0 (6 ) — _itr ((JPOUT) UOUT)
i N L+1 my
- N Z Z Ztr(uz+13NUi+1:L+1UJl'+l:ml z [K]l-z, U;f:jZUzlzl—lz,llzz_1
z=1 [=1 j=1

(PN @ 0. 0 O ol v ol ot ot el

in,1: 1,
(oOUT @ 1 0 17 )
N L+1 my

= — % 2—:1 > N scLt —ocLt

=1 j=1

where

CLr =tr (uZH:NUi“’L“U;H:mZ KLUL UM Y (N @ 0.0k (0. 0])

-1t T Trr+1:0417 ouT in,1:L
u{f:z_le Ul:jz Uj-‘rl:mzz Uz+ * u;(—&-l:n (U ®l$?Vm®1llr:1N ))7
ClL = tr(Unay UL EERIOL UL U 0 (N @100 5 (0..0))

Li—1fr Tt 1p Trrit1:L41t OUT in,1:L
Z’q:zfle Ul:jz szUj+1:mlz Uz+ * u;rJrl:n <U & Bn?\/'m®1llnN ))

In TNN, 5C’éj+ and 5091”-_ are depicted in Figure A.1 and Figure A.2, respectively.

Plugging in the tensors we get from the feed-forward procedure (Equation (A.4.9)) and
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A.4. DQRNN with Global Cost and Pure Target Output

[ [] |0>1:L+1 L ‘ ‘0>1:1—1 ‘ ‘ ‘O>l ‘ ‘ ‘0>1+1:L+1 ‘ ] ‘ ‘0>1:L+1 ‘
Py F L 4‘ Po | — PN [
I] ! <0|1:L+1 | ‘ <0‘1:1—1 ‘ ‘<O‘l ‘ ‘<0‘1+1:L+1 ‘ N ‘ <0|1:L+1 >

Figure A.1: 6Cij+ forj=1,...,my,l=1,...,L+1, and z = 1,..., N, with training data as
defined in Equations (A.4.1) and (A.4.2)
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‘0>1:l—1 ‘ ‘ ‘0>l ‘ ‘ ‘0>l+1:L+1 ‘ ‘ |0>11L+1 ‘
|

in

v | . ) PN 4
<0‘1.l 1‘ ‘(0” ‘<0|l+1.L+1‘ ‘ <0|1.L+1 ‘

Ul 4T

1:5

l

T

I

Ul+1:L+1T

Figure A.2: 5Cij_ forj=1,...m;,l=1,...L+1,and x =1, ..., N, with training data as
defined in Equations (A.4.1) and (A.4.2)
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A.4. DQRNN with Global Cost and Pure Target Output

backpropagation (Equation (A.4.17)), we get

£
U]l'-‘rl:mz Ul
I I
K
J
\ \ 0)!
l
Ui 1] RS
} .’I?# xr
1
50916], = |0>l _ (0]
\
\
-1 I+1
1:5
Olk | |
l
w G
[ [
al 1
v U]l+1imz
(A.4.19)
Rearranging and summing leads to
U]l.J
0)'
]
)
i N L+1
0C = =5 201 l:+1 E;‘n:ﬁ i ‘ -
Ul
e
| . ‘
1
[‘Jj-i-l:m‘l U{JT
[ [
1
K; KJZ.

(A.4.20)
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Setting
U{:j UJZ'-H mLT
| |
‘0>1 7_;:&»1
Vlzﬂ [ Ul
l N (of
Mj == Za::l - ‘0>l
Lo 2
Sl Olk
| |
Ujl'+1:ml U{:jT
] ] (a421)
leads to
M;
6C = =i Xt | T | =~ S e (M)
Kl
J
(A.4.22)

which concludes the proof of Proposition 4.3 and is again minimized (if we assume K ; to be
bounded) by

2mi-1

l l l l
_I:{‘7 = Ttr1:j71 (tr]—+1:ml (Mj) )
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-B

Additional Information on RL for Fiber
Coupling

B.1

Hyperparameters of RL Algorithms

We use the standard hyperparameters in StableBaselines3 and sb3-contrib, version 2.3.0 [340].
Nevertheless, we show them here. parameters printed in bold are the parameters that are
not the default parameters but appear like that in their tutorials.

TQC

SAC

TD3

DDPG

PPO

learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps, batch
size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model every step,
do 1 gradient step after each rollout, no added action noise, update target network
every 1 step, number of quantiles to drop per net: 2, number of critics networks: 2,
number of quantiles for critic: 25

learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps, batch
size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model every step,
do 1 gradient step after each rollout, no added action noise, update target network
every 1 step,

learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, action noise: NormalAction-
Noise(mean=np.zeros(number actions), sigma=0.1 x np.ones(number ac-
tions), policy and target network updated every 2 steps, standard deviation of smooth-
ing noise on target policy: 0.2, clip absolute value of target policy smoothing noise at:
0.5

learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, action noise: NormalAction-
Noise(mean=np.zeros(number actions), sigma=0.1 X np.ones(number ac-
tions)

learning rate: 0.0003, number of steps between updates: 2048, batch size: 64, number
of epochs when optimizing surrogate loss: 10, discount factor: 0.99, factor for trade-off
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Figure B.1: Step reward tuning results: We plotted the probability of reaching the
goal P[goal] against the training step for different fail reward parameters ag, 55 using the
parameters in Table 5.1, Pyoa = 0.8,0.85 and TQC.

between bias vs. variance for GAE: 0.95, clip range: 0.2, normalize advantage, entropy
coefficient: 0.0, value function coefficient for loss calculation: 0.5, maximum norm for
gradient clipping: 0.5

A2C learning rate: 0.0007, number of steps between updates: 5, discount factor: 0.99, factor
for trade-off between bias vs. variance for GAE: 1.0, entropy coefficient: 0.0, value
function coefficient for loss calculation: 0.5, maximum norm for gradient clipping: 0.5,
RMSProp epsilon: 1e-05, use RMSprop

B.2 Reward Hyperparameters

B.2.1 Step Reward

We tested different a, Bs using Pyoat = 0.8,0.85. The results are shown in Figure B.1.
For Pyoa = 0.8, there is not much of a difference between the different values, but o, = 0.9
performs slightly better than the other two. For Pyoa1 = 0.85, the differences are a little more
pronounced, but the standard deviation is generally higher. We went with s =0.9,8, =5
in the other experiments.

B.2.2 Goal Reward

We tested different oy, B41,8¢2. The results are shown in Figure B.2. We can clearly see
that we should choose 842 = 1 and not a, = 0.9. For the other experiments, we went with
Bg1 = 5, a4 = 0.5 as this curve seems to be still rising in the end.

B.2.3 Fail Reward
We tested different oy, Br1,8r2. The results are shown in Figure B.3. Again, the choice
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Figure B.2: Goal reward tuning results: We plotted the probability of reaching the goal
Is[goal] against the training step for different goal reward parameters ay, 341, 32 using the
parameters in Tables 5.1 and 5.2, Pyoa = 0.85 and TQC. The error bars have a size of 20
in each direction, where o is the standard deviation of the five tests.

between the different parameters is not very clear. There is a small tendency towards bigger
£ and not using o = 0.1. Because we see both reward parts as equally important, we use
Oéf = 0.5,,8f1 = 5,,8f2 = 5.

B.2.4 Reducing the Step Reward over Time

We also tested reducing the pre-factor A of the step reward over the course of training for
Pyoa1 = 0.8,0.9. The results are shown in Figure B.4.

For Pyoa1 = 0.8, the drop suffered with A; = 10 is not as bad as for Pgoa = 0.85, and the
probability of reaching the goal is near one at the end of training, even with A; = 100.
Nevertheless, reducing A, from 100 to 10 over the course of training significantly helps.

This is a different story for Pyoa1 = 0.9. Overall, A; = 10 performs best if one wants to reach
the goal with nearly 100% probability as quickly as possible. If one, however, only needs
to reach the goal in around 60% of episodes, reducing A, from 100 to 10 over the course of
2.10° — 4 -10° training steps can be quite helpful. Choosing a constant A, = 100 is worse
than for the other cases. Although there is a small boost in performance at the start, the
probability of reaching the goal quickly goes down to nearly 0 over the course of training.
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Figure B.3: Fail reward tuning results: We plotted the probability of reaching the goal
P[goal] against the training step for different fail reward parameters a 7,81, By2 using the
parameters in Tables 5.1 and 5.2, Pyoa = 0.85 and TQC. The error bars have a size of 20
in each direction, where o is the standard deviation of the five tests.

As
— 10
—— 10 — 0 in 10° steps
— 100
—— 100 — 0 in 10° steps
—— 100 — 0 in 2- 10° steps

A o4 B 04 100 — 10 in 5 - 10* steps
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training step training step

Figure B.4: Reducing A, over the course of training: We show the probability of
reaching the goal Is[goal] against the training step for different pre-factors of the step reward
that changes over the course of training, i.e., A is decreased linearly from a starting value
of 10,100 to an ending value of 0,10 over the course of the first 5-10%,...,4 - 10° training
steps using the parameters in Tables 5.1 and 5.2, Pyoa1 = 0.8,0.9 and TQC. The error bands
have a size of 20 in each direction, where o is the standard deviation of the five tests.
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Figure B.5: Tuning of simplified reward: We plotted the probability of reaching the
goal ls[goal] against the training step for different ay = 0, 1, and o, = 0, 0.1, 0.5, 0.9, 1
for the simplified reward 7gmpler using the parameters in Tables 5.1 and 5.2, Ay = 10,
Pyoal = 0.85 and TQC. The error bars have a size of 20 in each direction, where o is the
standard deviation of the five tests.

B.3 Simplified Reward Functions

The reward we use in the main part

_Af ((1 — af) exp (—ﬁf,l%) + ayfexp (—Bf,g Pitn)) if Py < Prapl
Tstandard,t = A, ((1 — ayy) exp (-@,1%) + agexp (Bg2 PZal )) if P, > Pyoal
{}S ((1 - O‘s) €xXp (ﬂs(Pt - Pgoal)) + o (Pt - Pmin)) else

is comparatively complex. Starting from there, we can try to simplify it, e.g., by setting one
or more of the a’s to 0 or 1 or by choosing constant rewards for one or more of the reward
parts. We choose to try a constant fail reward, which leads to

—Ay if Py < Prap
T'simpler,t = Ay ((1 —ag)exp (—fBg,1 %) + g exp (ﬂgﬂ%)) if P, > Pyoal
% ((]‘ - aS) €xp (Bs(Pt - Pgoal)) + Qg (Pt - Pmin)) else

For Ay = 10, and Py = 0.85, we test different values for a, = 0, 0.1, 0.5, 0.9, 1 and
oy =0, 1 using TQC. The results are shown in Figure B.5. The agent trained with ag =0
clearly outperforms the one with oy = 1. The results for the different c,” are not so obvious.
However, the one trained with ay = 0 slightly surpasses the other candidates. These values
lead to the simplified reward

_Af if Pt < Pfail
Tsimplified,t = fjg exp (—fBg1%) if P, > Pyoal
TS eXp (ﬁs (Pt - Pgoal)) else

Furthermore, we compare this simplified reward to the standard reward and the rewards
presented in Appendix B.4. Figure B.6 not only shows the probability of reaching the
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Figure B.6: Comparison of standard, simplified, and no goal rewards. Panel (a)
shows the probability of reaching the goal If’[goal] against the training step for different
rewards using the parameters in Table 5.1, Pyoa = 0.85 and TQC. Panel (b) shows the
average of the maximum power in each tested episode E[maxt P,] against the training step
for the same rewards and parameters. The error bars have a size of 20 in each direction,

where o is the standard deviation of the five tests.

goal P[goal] but also the average of the maximum power in each tested episode E[max; P]
against the training step. The simplified reward clearly outperforms the standard reward
and performs approximately as well as the presented rewards for training an agent without
a goal.

B.4 Training the Agent without a Fixed Goal

We now shortly look at the task of learning to optimize the power without setting a goal.
We hence have to make the following modifications to our environment: The episodes do
not end if P > Pya1, and no reward is associated with reaching the goal.

We test the following reward functions: Firstly, we test a reward function similar to our
“simpler” reward function without the goal reward

, A { —Ay if Py < Prail
no goal, exp+lin,t % ((1 _ O(s) exp (,Bs(Pt _ Pgoal)) + Qs (Pt _ Pmin)) else

with Ay = 10, A, =10, 85 = 5, and oy = 0,0.5,1. Secondly, we test a reward function
inspired by the work [325]

—Ay if P < Praa
Tno goal, lo = , t t
goal, log,t %(Aljre—l—log (1_,4}15)) else

where A = 0.92 is the amplitude of the Gaussian we used, ¢ = 1076 is a small number used
in case P, = A, A; = 10, and Ay = 10, 50.

Although the episodes do not end, when the agent reaches the goal, we can nevertheless test
them on their ability to reach a goal power, as this is important for the experimental use of
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Figure B.7: Different rewards for training an agent without setting a goal. The
plots show the probability of reaching the goal Is[goal] against the training step for training
the agent without a goal with different rewards, parameters in Tables 5.1, T = 20, Pyoa =
0.85 and TQC. For 6 goal, exp+lin, We use Ay = 10, A, = 10, B, = 5, and a, = 0,0.5,1,
and for rne goal, log, We use P, = A, Ay =10, and A = 10,50. The error bars have a size of
20 in each direction, where o is the standard deviation of the five tests.

the agent. Figure B.7 shows the probability of reaching the goal Is[goal] against the training
step. The differences in performance for the different reward parameters are only minor.
Still, the agents trained with ag = 0 for rne goal, exp+lin and A¢ = 50 for rn6 goal, log,t slightly
outperform the ones trained with the other parameters. Hence, 7n, goal, explin Simplifies to

) _{—Af if Py < Prait
no goal, exp,t % exp (Bs(Pt — Pgoal)) else

See Figure B.6 for a direct comparison of 716 goal, exps Tno goal, logs Tsimplified; a0d Tstandard -
Panel (a) shows the probability of reaching a goal of Pyoa = 0.85, and Panel (b) shows
the average of the maximum power reached per episode. For both figures of merit, the
standard reward function is outperformed by the others. The performance of the other
three is comparable regarding the probability of reaching the goal, but 76 goal, exp Performs
slightly worse. However, if we consider E[max; P;] instead, the agents trained without a goal
outperform the ones trained with a goal.

In total, it can be beneficial to train the agent without a goal, even if it will be applied
with a goal. The rewards 7y goal, exp ad "o goal, log Perform similar, although 71,6 goal, 10g
slightly outperforms the other. However, to work with 7,4 goal, 10¢ that well, we need a good
estimate for the maximum possible power. In the virtual testbed, this is easy to get by just
taking the amplitude. In the lab, on the other hand, this would not be as easy, which is
why we suggest 7o goal, exp fOr training in the experiment without a goal.
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Acronyms

A2C advantage actor-critic. 22, 28, 29, 108, 120
A3C asynchronous advantage actor-critic. 29

AT artificial intelligence. 1, 17

CC ML machine learning with classical data and classical algorithms. 2, 51, 117
CPI conservative policy iteration. 30

CQ ML machine learning with classical data and quantum algorithms. 2, 51, 52, 57, 59,
117

cv continuous variable. 52, 59

DDPG deep deterministic policy gradient. 30-32, 92, 108, 120
DQN deep Q-network. 22, 23, 26, 27, 29-31, 33

DQNN dissipative quantum neural network. iii, 2—4, 36, 52-57, 59-63, 66—70, 72, 73, 75,
76, 78, 79, 81, 83-89, 117-119, 132-134, 136, 143, 146, 149

DQRNN dissipative quantum recurrent neural network. iii, 2—4, 59-63, 65—68, 70, 72—74,
78, 79, 81, 83-89, 117-119, 121, 132, 143

EEG electroencephalography. 62

EMG electromyography. 62

fc fully connected. 10, 11, 14, 53, 54, 61, 119

ff feed-forward. 10, 11, 13, 53, 54, 56, 59-61, 66, 67, 81, 83-89, 94, 117-119, 133, 134, 136

GHZ Greenberger-Horne-Zeilinger. 49, 50

GRU gated recurrent unit. 13, 15, 62
HER hindsight experience replay. 27

i.i.d. independent and identically distributed. 2, 6, 59, 117
iff if and only if. 6, 18, 20, 21, 36, 37, 40, 4244
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ACRONYMS

KL Kullback-Leibler. 7, 30, 32
LSTM long short-term memory. 13, 15, 62

MAE mean absolute error. 7

MC Monte-Carlo. 24, 25

MDP Markov decision process. 17-28, 114

ML machine learning. iii, 1-5, 8, 12, 16, 45, 51, 52, 57, 91, 94, 117, 121
MPO matrix product operator. 50, 72, 143

MPS matrix product state. 49, 50, 79, 118

MSE mean squared error. 7

NISQ noisy intermediate-scale quantum. vii, 51, 55, 59, 65, 66, 88
NLP natural language processing. 2, 13

NN neural network. 1-4, 6, 8, 10-16, 22, 26-30, 51-55, 60-62, 66, 68, 70, 89, 94, 105,
117-119, 132

NNs neural networks. 11
ONB orthonormal basis. 36, 37, 41

PER prioritized experience replay. 27

PID proportional-integral-derivative. 114

POMDP partially observable Markov decision process. 20, 21, 93, 95, 119
POVM positive operator valued measurements. 39, 42

PPO proximal policy optimization. 22, 23, 30, 91, 92, 108, 120

QC quantum computer. 1, 3, 35, 36

QC quantum computing. 2, 3, 35, 52, 59, 66

QC ML machine learning with quantum data and classical algorithms. 2, 51, 117
QCNN quantum convolutional neural network. 52

QEC quantum error correction. 1, 2, 51, 52

QGAN quantum generative adversarial network. 52

QI quantum information. 2, 4, 35, 37, 51, 117, 119

QML quantum machine learning. 2, 4, 51, 57, 117

QNN quantum neural network. 2, 3, 52, 57, 62
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Acronyms

QOMDP quantum observable Markov decision process. 119

QQ ML machine learning with quantum data and quantum algorithms. 2, 51, 52, 57, 59,
117

QRC quantum reservoir computing. 62, 63

QRNN quantum recurrent neural network. iii, 2, 4, 59, 62, 63, 117

RL reinforcement learning. iii, 1, 3-5, 8, 16, 17, 22, 51, 52, 91, 92, 94, 95, 103, 108, 113-115,
117, 119-121

RNN recurrent neural network. iii, 2, 3, 13-15, 44, 59-62, 89, 117-119

SAC soft actor-critic. iii, 3, 22, 23, 32, 33, 92, 108-110, 113, 114, 120
SL supervised learning. 1, 2, 4-8, 16, 17, 51, 52, 117

SVD singular value decomposition. 48, 49

TD temporal difference. 25, 26

TD3 twin delayed deep deterministic policy gradient. 3, 23, 31, 32, 92, 108, 114, 120
TN tensor network. 4, 48, 78, 89, 117, 118

TNN tensor network notation. 46-48, 72, 145, 146, 152

TQC truncated quantile critics. iii, 3, 32, 34, 92, 99-104, 106-114, 120, 157-163

TRPO trust region policy optimization. 29, 30

w.l.o.g. without loss of generality. 41, 60

w.r.t. with respect to. 6, 12, 22, 23, 25, 30, 31, 36, 37, 41, 46, 56, 59, 63, 67, 71, 79-86,
118, 129, 131, 133, 142
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