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Landau–Zener without a qubit:
multiphoton sidebands interaction and
signatures of dissipative quantum chaos
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Landau–Zener–Stückelberg–Majorana (LZSM) interference occurs when qubit parameters are
periodically modulated across avoided level crossings. We explore this phenomenon in nonlinear
multilevel bosonic systems, where interference is influenced by multiple energy levels. We fabricate
two superconducting resonators with flux-tunable Josephson junction arrays. The first device,
exhibiting weak nonlinearity, behaves like a linear resonator under weak driving but shows LZSM
interference akin to two-level systems. With stronger driving, nonlinear effects alter the interference
pattern. We theoretically demonstrate that merging LZSM peaks can lead to dissipative quantum
chaos. In the second device, where nonlinearity exceeds photon-loss rates, we observe additional
LZSM peaks from Kerr multiphoton resonances. Under Floquet theory, these resonances represent
synthetic modes of coupled nonlinear cavities, revealing effective coupling asmodulation parameters
vary.Our findings advance theunderstandingof LZSMphysics and emphasize the control of nonlinear
Floquet states and the emergence of chaos in engineered systems, with significant implications for
novel applications in quantum dynamics and quantum control.

Qubits—two-level systems—are the building blocks of digital quantum
computers and simulators, as well as an essential paradigm for describing
many quantum systems1,2. Understanding and controlling their dynamics is
thus pivotal to the progress of quantum technologies. When the qubit’s
energy-level splitting is varied in such a way that the two levels become
almost degenerate, the Landau–Zener–Stückelberg–Majorana (LZSM)3–6

transition probability dictates the likelihood of non-adiabatic transitions
between the ground and excited states.When the variation of the splitting is
periodic in time, a rich LZSM interference pattern arises, as schematically
shown in Fig. 1a (see ref. 7 for a recent overview of the field). At each
oscillation period, the transition paths can interfere constructively or
destructively to determine the final probability of the qubit to reach the
excited state, as observed in, e.g., superconducting qubit architectures8,9,
semiconductor quantum dots10,11, and nitrogen-vacancy center in
diamond12.

Historically, the understanding of LZSM transitions was a founda-
tional step in the development of non-relativistic quantum mechanics3–6.

Recently, LZSM interference gained also considerable attention, as a ver-
satile tool for the study of quantum systems. Examples include the char-
acterization of the frequency noise of superconducting resonators13 and the
decoherence properties of charge states from steady-state
measurements11,14,15. LZSM interferometry was also employed for the fast
coherent control of charge16,17 and spin18–20 qubits, and to mediate and
control the coupling of two flux qubits21 or of a single qubit to multiple
mechanical modes22. Finally, LZSM interferometry has also been proposed
as a tool for efficient quantum parameter estimation23 and for the pre-
paration of exotic quantum states, such as two-level systems with tunable
absorption properties24, correlated photons25 and Schrödinger-cat states26,27.
The physics of LZSM interference beyond the two-level approximation has
been marginally investigated, and often focuses on isolated avoided level
crossingwithin a largermultilevel structure7. Furthermore, coupled classical
oscillators have been proposed28 and studied29,30 as classical systems dis-
playing LZSM interference. Indeed, in the presence of tailored modulation,
thesemultimode classical systems display the same equation of motion of a
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qubit31, and thus exhibit LZSM interference due to the presence of an
effective two-level system.

In bosonic systems, the qubit limit can be reached by the introduction
of aKerr nonlinearity (anharmonicity) χ, permitting, in principle, to address
only the ground and first excited states1. This description applies to several
platforms, including superconducting circuits32, polaritonic microcavities33,
mechanical resonators34, and the vibration of trapped ions35. A realistic
description of these systemsmust include the effects of dissipative processes,
which blur the distinction between energy levels and thus hinder the pos-
sibility of addressing them singularly. Depending on the magnitude of the
total loss rate κ, one can thus determine two distinct regimes thatwe dub the
Kerr (∣χ∣ > κ) and Duffing (∣χ∣ < κ) regimes36,37. In the Kerr regime, depicted

in Fig. 1b, the energy quantization of the bosonic mode is still accessible
despite the presence of dissipation38. The system can absorb n photons from
a drive and transition to the nth excited level, in a process known as Kerr
multiphoton resonance (or multiphoton transition). Note that here multi-
photon resonance refers to the fact that absorbingn photons leads to thenth
excited state of the resonator. This is not the multiphoton Rabi resonance,
where n driving photons are absorbed to populate the excited level of the
qubit. In the Duffing regime (Fig. 1c), instead, dissipation blurs these
multiphoton resonances, giving rise to a single spectral feature, where the
energy quantization of the underlying bosonic mode can’t be resolved. The
effect of the nonlinearity, in this case, is to shift this resonance, leading to
phenomena such as bistability and hysteresis39–41. Multimodal Duffing
oscillators, where multiple bistabilities are present, display emergent phe-
nomena, such as the formation of domain walls and dissipative phase
transitions42–44, as well as dissipative quantum chaos45. The latter is triggered
by the combined presence of classical and quantum fluctuations and the
competition of unitary dynamics and dissipative processes46,47.

In general, the study of periodically modulated systems through all
regimes of nonlinearity is a topic attracting growing attention in the com-
munity of superconducting circuits48. These studies sit within the broader
context of Floquet physics, which has proven crucial in describing
periodically-modulated quantum systems,finding diverse applications such
as quantum control48,49 and band topology engineering50–53. This approach
enables the construction of synthetic lattices54–56, allowing, for example, the
implementation of controllable LZSM transitions between Floquet
states57,58. Recent research focused on expanding Floquet theory to
encompass open quantum systems59,60, and investigating its effects in
nonlinear systems61–64.

In this article, we extend the paradigm of LZSM physics, through the
study of two nonlinear superconducting resonators, one in theKerr and one
in the Duffing regime, investigating strongly driven and dissipative non-
linear Floquet systems. Given the high degree of tunability of the drive, the
modulation, and the other system parameters, we determine the whole
LZSM interference diagram for nonlinear bosonic systems. We present a
simple unifiedmodel that captures the relevant features of the system under
consideration.

The main results of this work can be summarized as follows.
First, we experimentally demonstrate and theoretically clarify that, at

low driving amplitude, the LZSM interference pattern is independent of the
nonlinearity of the system [c.f. the rightmost panels of Fig. 1a, d]. Namely,
there is no distinction in the LZSM interference pattern between a com-
pletely linear resonator and a qubit.

Second, we show novel effects due to the competition between the
modulation and the nonlinearity at larger pumping power, demonstrating
the role of dissipation (Fig. 1b, c). In particular (i) In the Kerr regime, we
observe how Kerr multiphoton resonances add structure to the LZSM
interference. These resonances and the associated quasi-energy (Floquet)
states can be interpreted as themodes of amultimode synthetic cavity array,
with effective interference between these multiple transitions resulting in
avoided level crossings. (ii) In the Duffing regime, we show how bistability
and hysteresis come into play in determining the state of the system, sug-
gesting the emergence of dissipative quantumchaos in a Floquet regime, i.e.,
Floquet-dissipative quantum chaos.

Our work establishes a comprehensive framework for understanding
LZSM and Floquet physics, clarifying the role of nonlinearity and dissipa-
tion in determining the interference patterns. It paves the way to their
control, with perspectives for synthetic dimension engineering in Floquet
configurations. This platform can be used as a quantum simulator to
investigate quantum chaos and critical phenomena in highly controllable
superconducting systems.

The article begins with a presentation of the experimental system and
themodel used todescribe it. It then explores LZSMinterference in thequbit
and linear regimes, followed by an analysis of photon-resolved effects in the
Kerr regime, where multiphoton resonances influence the emergent LZSM
interference. The discussion continues with an examination of the Duffing

Fig. 1 | LZSM interference mechanisms in bosonic systems. For cases studied in
this article, we show the level structure of the undriven system (left); the photon
number n of the driven, but not-modulated, system as a function of the pump-to-
cavity detuning Δ (center); and the LZSM pattern emerging when the cavity
eigenfrequency is periodically modulated with strength ζ and frequency Ω (right).
a In the qubit regime of infinite nonlinearity, the system consists only of the ground
and excited states. This level structure gives rise to a single excitation peak
(∣0i ! ∣1i) at detuning Δ = 0. Thus, the standard LZSM interference pattern
emerges. b In the Kerr regime, where the anharmonicity is larger than the loss
(∣χ∣ > κ), the system consists ofmany uneven-spaced states with different numbers of
excitations. When Δ = nχ, multiphoton transitions ∣0i ! ∣ni occur for a large
enough drive. This multi-photonic transition structure is periodically repeated
around each standard LZSMpeak. c In theDuffing regime, where the anharmonicity
is smaller than the loss (∣χ∣ < κ), the uneven-spaced states are broadened by dis-
sipation and cannot be distinguished. The drive excites multiple levels, resulting in a
deviation from a Lorentzian shape, and the Kerr nonlinearity competes with
detuning, giving rise to bistability. Such a deviation and the presence of bistability are
imprinted in each LZSMpeak. d In the linear regime (χ = 0), all levels are equispaced.
When driven, only a Lorentzian peak appears at Δ = 0, similar to the qubit regime.
Upon modulation of the resonator frequency, the LZSM interference is also indis-
tinguishable from that in the qubit regime.
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regime, characterized by weak nonlinearity, highlighting the emergence of
Floquet dissipative quantumchaos. Themethods sectionprovides details on
device fabrication, measurement setup, and parameter extraction. Supple-
mentary Material includes theoretical insights and additional experimental
data that enhance the understanding of our findings.

Results
Experimental system and model
We aim to investigate all regimes of nonlinearity and dissipation, namely,
qubit, Kerr, Duffing, and linear, as shown in Fig. 1a–d, respectively. To this
extent, we design and fabricate two frequency-tunable nonlinear resonators
that can operate in these different regimes according to the driving ampli-
tude. These are superconducting SQUID arrays65–67, galvanically connected
to the ground on one side, and capacitively shunted to the ground on the
other side, as shown in Fig. 2a, b, and f. A detailed summary of their
parameters is reported in Table 1.

The frequency of the resonators can be tuned by a dedicated flux line
that uniformly threads the magnetic fields in each SQUID loop (in purple)
and an external superconducting coil. The two resonators differ in the
number of SQUIDs in each array, as highlightedby red andblue false colors,
determining the two orders of magnitude difference in their Kerr non-
linearity χ. Increasing the number of SQUIDs in an array leads to a decrease
in nonlinearity due to the reduced Josephson inductance required to
maintain a fixed frequency and the diminished phase fluctuations across
each junction68. Hereafter, the red and blue color schemes will always
indicate measurements of the devices in the Kerr/qubit and Duffing/linear
regimes, respectively. Each resonator is also capacitively coupled to a
feedline (in green) in anotch configuration, resulting in anexternal coupling
κext close to the internal dissipation rate κint (critically coupled regime). We
define the total dissipation rate as κ = κext+ κint.

Each device is thermally and mechanically anchored at the mixing
chamber plate of a dilution refrigerator, reaching an average base

temperature of 15mK. The devices are probed by a coherent drive with
amplitude F at the sample, and injected in the feedline through highly
attenuated coaxial lines. The drive amplitude is related to the input power
Pin by F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pinκext=_ωd

p
, where ωd is the drive frequency. Although the

frequency of the untuned cavity is ωc, through the paper, the frequency
workingpoint of the resonators,ωwp, is set by a staticfluxgeneratedbydirect
current through an external superconducting coil. The flux operating point
is Φwp = 0.45Φ0 for the N = 10 device, while Φwp = 0.32Φ0 for the N = 32
one, where Φ0 = h/2e is the magnetic flux quantum. Finally, driving the
fluxline at a frequency Ω periodically modulates the frequency of the
resonator, approximately between ωwp ± ζ, with ζ representing the strength
of the modulation. The single-tone spectroscopy of the resonators at low-

Fig. 2 | SQUID array characterization. a Equivalent lumped electrical circuit of the
device composed of N SQUIDs in series. The static flux is controlled via an external
coil and amicrowave signal can be applied to the flux line (purple) for fast frequency
modulation. The resonator is coupled to a feedline in a notch configuration.
b, fOptical micrograph of the two SQUID array resonators studied in this work with
N = 10 (red) and N = 32 (blue) SQUIDs, with details on the Josephson junction
shown in the inset where the white scale bar represents 5 μm. c, d For the Kerr case
(N = 10), the magnitude and phase of the transmission coefficient through the
feedline as a function of drive power at the sample. The black dashed curve indicates

where the phase of S21 is zero according to numerical simulations, highlighting the
position of the multiphoton resonances. e Selected traces of the data reported in (d).
Experimental data are shown with circle markers whose colors correspond to the
ticks in (d). Numerical fits to a full quantum model are shown in black solid lines.
The gray dotted vertical lines indicate the position of the multiphoton resonances
obtained from numerical simulations. g–i Samemeasurement as in (c–e), but for the
Duffing case. The dashed curves in (g,h) indicate theminima of ∣S21∣ obtained froma
full quantum simulation.

Table 1 | Summary of the relevant SQUID array parameters at
flux operating point Φwp

Parameters N = 10 device N = 32 device Description
(Kerr/qubit
regime)

(Duffing/linear
regime)

∣χ∣/κ 5 0.05 Photon-number
distinguishability

ωc/2π ≈13 GHz ≈6.4 GHz Zero-flux frequency

ωwp/2π 4.502 GHz 4.306 GHz Frequency at Φwp

Φwp/Φ0 0.45 0.32 Flux operating point

χ/2π −23.5 MHz −0.35MHz Kerr nonlinearity

κin/2π 1.1 MHz 4.92MHz Internal loss rate

κext/2π 3.75MHz 1.49MHz External loss rate

κ/2π 4.85MHz 6.41MHz Total loss rate

κϕ/2π 0.75MHz 0.4 MHz Dephasing rate

The characterization of the two devices is detailed in the methods section.
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driving power as a function of the external magnetic flux is reported in the
Supplementary Information.

As explained in the Supplementary Information, both devices can be
modeled as a bosonic mode with the following time-dependent Hamilto-
nian:

Ĥ=_ ¼ �Δâyâþ χâyâyââþ F ðâþ âyÞ þ ζ cosðΩ tÞâyâ ; ð1Þ

where Δ =ωd−ωwp is the detuning between the working point of the
devices (ωwp) and the drive frequency (ωd). Beyond the total dissipation rate
κ, the system is subject to dephasing with rate κϕ. We include them in the
time evolution of the density matrix ρ̂ using the Lindblad master equation

_ ∂t ρ̂ ¼ �i Ĥ; ρ̂
� �þ κD½â�ρ̂þ κϕD½âyâ�ρ̂ : ð2Þ

Here,D½L̂�ρ̂ � L̂ρ̂L̂
y � fL̂yL̂; ρ̂g=2 is the Lindblad dissipator69.

In Fig. 2 we characterize the coherent response of the resonators in the
absence of modulation (i.e., ζ = 0) and use it to determine the parameters of
the two devices. In Fig. 2c, d we report the magnitude and phase of the
transmission coefficient S21 (see “Methods”) as a function of the driving
power Pin∝ F2 in the Kerr regime. At low power, only a single dip around
Δ = 0 is visible, representing the transition to the first excited state (noted as
∣0i ! ∣1i, where ∣ni is the photon number state of the resonator). At larger
values of the drive, several dips appear, representing the so-called Kerr
multiphoton transitions between the ground state and the higher-excited
levels (∣0i ! ∣ni), highlighted in the single traces shown in Fig. 2e.
According to Eq. (1), all the dips should appear at Δ≃ (n− 1)χ. Small
deviations from this prediction are due to higher-order nonlinearities (see
“Methods”). For even larger powers, the nonlinearity suppresses the intra-
cavity photon number with respect to the input power, resulting in an
almost unitary transmission S21.

We report the same measurements for the resonator in the Duffing
regime in Fig. 2g–i. In this case, dissipation smears the multiphoton reso-
nances, resulting in an indistinguishable level structure. Increasing thedrive,
the single dip of S21 originally at Δ = 0 moves to negative detunings, indi-
cating that the drive is exciting higher levels. Scanning the detuning from
negative to positive values, as done in Fig. 2i, reveals the presence of a sharp
jump,where the resonator passes fromahighly- to a lowly-populated phase.
This behavior is associated with optical bistability, i.e., the presence of two
metastable states that require a long time todecay to the steady state42,43. This
phenomenon gives rise to hysteresis40,41 and makes it difficult to properly
resolve the exact detuning where the transition occurs.

Linear and qubit LZSM interference
We can investigate the linear and qubit regimes using the N = 10 and
N = 32 resonators described above. Indeed, for the N = 10 resonator,
the second-excited level is not significantly populated if F2≪ ∣χ∣κ (see
Eq. (21) “Methods”). For the N = 10 device parameters and the drive
F/2π≃ 1.6MHz considered here, the third level is predicted to be popu-
lated less than 0.03%. For the values used in this first part of the experi-
ment, the system effectively behaves like an ideal qubit subject to
dissipation and dephasing. We report the experimental data in Fig. 3b, c.
In Fig. 3b we show the norm of the scattering coefficient S21 sweeping the
detuning Δ, for a fixed modulation frequency Ω, and varying the mod-
ulation strength ζ. One observes the LZSM pattern emerging, with
populated regions at Δ =mΩ, for integer m. Fixing ζ and scanning Ω, in
Fig. 3c we observe again the interference pattern at Δ =mΩ. We thus
confirm the presence of LZSM interference and the control over the
modulation of the resonator in the Kerr regime.

We now consider the N = 32 device. In this case, the oscillator
approximately behaves as a purely linear resonator if F<

ffiffiffiffiffiffiffiffiffiffiffiffi
κ3=jχj

p
(see

Eq. (24) in Methods). For the N = 32 device parameters and the drive F/
2π≃ 3MHz considered here, we estimate a relative photon-number
deviation from a completely linear resonator of less than 3%. Within this
regime, we repeat the previous measurements and report them in Fig. 3e, f.

Surprisingly, we observe the same interference pattern emerging, with no
distinguishable differences between the qubit and the completely linear case.
This feature indicates that only the energy difference between ∣0i and ∣1i
determines the interference pattern in both the qubit and the linear regimes
(c.f. Fig. 3g–j). This similarity may be expected from linear response theory;
indeed, weakly driven nonlinear oscillators should behave similarly even if
they have widely different anharmonicities. The presence of LZSM inter-
ference seems evenmore general, as it should be observable even in a purely
linear cavity and for an arbitrarily large number of photons.We remark that
the frequency modulation of almost linear oscillators has been used to
perform mode-conversion70, parametric amplification71, and squeezing72.
However, to the best of our knowledge, LZSMinterferenceswerenot studied
in linear oscillators, and this discussion ismissing fromrecent reviewson the
topic7,73.

To provide more quantitative reasoning, we choose �m minimizing
Δ� �mΩ and, following the procedure derived in the Supplementary
Information, and passing in the frame rotating at the frequency �mΩ, we
have

Ĥ �m=_ ’ �Δ�mâ
yâþ χâyâyââþ F �m âþ ây

� �
; ð3Þ

where the renormalized detuning Δ�m and renormalized drive F �m are

Δ�m ¼ ðΔ� �mΩÞ; F �m ¼ F J �m
ζ

Ω

� �
; ð4Þ

with J �m ζ=Ω
� �

indicating the Bessel function of the first kind. All dis-
sipative terms maintain their form as in (2). In other words, when we can
single out a single relevant frequencyΔ�m for each of theLZSM interference
dips, the devices behave as a collection of independent nonlinear reso-
nators, whose driving amplitudes F �m are modulated via Bessel functions.
For the parameters we consider here, and if we also assume a weak
enough drive to be in the linear and qubit regime (see Eq. (21), Eq. (24)
“Methods”), we obtain

hâyâi ’ 4F2
�m

κ

κþ βκϕ

4Δ2
�m þ ðκþ βκϕÞ2

; ð5Þ

with β = 1 for a linear resonator regime and β = 4 in the weakly driven qubit
limit. Namely, the two regimes have identical interference patterns, only
slightly modulated by the dephasing rate κϕ. To further demonstrate the
validity of these results, additional LZSM interference patterns are reported
in the Supplementary Information, highlighting the precise control of the
number and frequency spacing of modes over a broad range of modulation
strengths and frequencies.

The approximation of the effective model correctly captures the value
of the photon number, but not that of the field â (and thus cannot be used to
quantitatively study S21). As is discussed in the Supplementary Information,
to correctly capture this feature, one has to resort to a full quantum simu-
lation of the Floquetmodel. This is shown in Fig. 3a, d, wherewe plot ∣S21∣ of
the first three LZSM lobes, comparing the experimental data with the the-
oretical predictions both for the qubit and linear regimes. In both cases, we
find an excellent agreement between theory and experiments. We note that
the maxima and the minima of ∣S21∣ of the �mth LZSMmode coincide with
the extremes of the associated Bessel function J �m, showing the qualitative
validity of Eq. (3) in describing also S21.

We remark here that the Hamiltonian in Eq. (3) could be obtained by
approximating the response of an array of nonlinear resonators, each at a
frequency Δ�m. Therefore, we can interpret each of the LZSM dips as the
response of a different Floquet synthetic mode. As we show below, by
increasing the drive, these initially non-interacting modes will begin to
interact.
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LZSM beyond the qubit approximation: Kerr regime
We now focus on those phenomena emerging due to the simultaneous
presence of the multilevel structure of nonlinear resonators and the mod-
ulation of their eigenenergies, studying the devices beyond their qubit and
linear regimes.

In the Kerr regime and for strong enough drives to probe the multi-
photon transitions (see Eq. (21)), we investigate how the frequency and
amplitude of the modulation modifies the multiphoton resonances.

The system’s behavior around the multiphoton resonance ∣0i ! ∣ni
occurring for Δ≃ χ(n− 1) can be described by a 2 × 2matrix. For instance,
the ∣0i ! ∣2i multiphoton transition can be described as

Ĥ
ð2Þ
=_ ¼ 2½�Δþ χ þ ζ cosðΩ tÞ�∣2i 2h ∣

þGð2Þð∣0i 2h ∣þ h:c:Þ;
ð6Þ

Fig. 3 | LZSM interference patterns. a–c (red) Analysis of the N = 10 device, with
input power Pin =−138.8 dBm, ensuring that we are in the qubit regime. b The
transmission coefficient ∣S21∣ as a function of the detuning Δ and the modulation
strength ζ, for fixed modulation frequency Ω/2π = 30MHz [see Eq. (1)].
aComparison of the experimental and theoretical data for ∣S21∣. Solid lines represent
the results of the numerical simulations of the full quantummodel obtained atΔ = 0,
Δ =−Ω, and Δ =−2Ω (see Supplementary Information). The circles are the
experimental data obtained frompanel (b), inwhichΔ is slightly re-scaled to account
for the nonlinear flux-dependency of the resonator frequency (see Supplementary
Information). c ∣S21∣ as a function of Δ and Ω. d–f (blue) As in (a–c), but for the
N = 32 device, with Pin =−133.3 dBm to ensure that the system is in the linear
regime. From these plots, the two regimes appear almost indistinguishable. g The

photon number vsΔ and ζ is obtained from a simulation using the effective model of
Eq. (3) that reproduces the interference pattern in (b, e). h–j Depiction of the time
evolution of the energy level ∣1i, in the frame rotating at the drive frequency ωd, if
F = 0.Afinite drive F opens gaps at each crossing between ∣0i and ∣1i, allowing a non-
adiabatic passage between the two. The parameters Δ and ζ are indicated by green
markers in (g). h At Δ = 0, the level ∣1i becomes resonant with ∣0i (they form a level
crossing, see the inset). The values of ζ, F, and κ then determine the probability of
transitioning out of the vacuum. i For non-zero detuning (e.g., ∣Δ∣ =Ω) and small
modulation (ζ≪Ω), the level ∣1i is never resonant with ∣0i and it cannot be
populated. j For strong enough modulation ζ > ∣Δ∣, the level ∣1i can form again an
avoided level crossing, and constructive interference is possible again.
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where G(2) represents the effective drive between the vacuum and the
state ∣2i. For ζ = 0, one has G(2) = F2/χ for Δ = χ. This formula can be
generalized to obtain G(n) for arbitrary ∣0i ! ∣ni transitions74. The
dissipation maintains its form, instead. As we show below, the funda-
mental parameter to describe these phenomena is the ratio between the
modulation frequency Ω, determining the position of the LZSM side-
bands, and the nonlinearity χ, determining the position of the multi-
photon resonance.

Strong modulation case. We first choose Ω≫ ∣χ∣ (strongly modulated
case). In Fig. 4a–c we report the scattering coefficient ∣S21∣ as a function of
the detuning Δ and the strength ζ of the modulation. As the drive
amplitude F is increased, several additional dips appear, signaling the
transitions between the photon number states ∣0i and ∣ni of the reso-
nator. These dips occur at a frequency lower than each main LZSM dip
associated with the transition ∣0i ! ∣1i. Each new additional dip is
detuned by the same frequency as the unmodulated multiphoton reso-
nances shown in Fig. 2c–e.Within a first approximation, this effect is due
to the interplay between themodulation in Eq. (3) and the nonlinearity of
the system, as shown in Fig. 4d reporting the result of a numerical
simulation.

To explain this behavior,we can assume that, around eachof the LZSM
dips,we again have a drive of the same formasEq. (3).Whenwe thenmatch
the condition for amultiphoton resonance, it is this effective drive that leads
to the excitation of the state ∣2i. One then obtains

Ĥ
ð2Þ
�m =_ ¼ 2½�Δð2Þ

�m þ χ�∣2i 2h ∣þ Gð2Þ
�m ð∣0i 2h ∣þ h:c:Þ; ð7Þ

where74

Δð2Þ
�m ¼ Δ� �mΩ; Gð2Þ

�m ’ F2
�m

χ
¼ F2

χ
J �m

ζ

Ω

� �	 
2
: ð8Þ

This formula can be generalized to arbitrary n-photon resonances with
ΔðnÞ

�m ¼ Δ� �mΩ and GðnÞ
�m / ðJ �m ζ=Ω

� �Þn. We conclude that when the
rescaleddetuningmatches the condition for thenthmultiphoton resonance,
and if the rescaled drive F �m is strong enough, an additional dip appears.
Therefore, we can treat each of the multiphoton resonances for each LZSM
dip as a yet separate phenomenon.

As sketched in Fig. 4e–g, at the multiphoton resonance, i.e., at
Δ =mΩ+ (n− 1)χ, the states ∣0i and ∣2i can satisfy the conditions for the
development of constructive interference. In other words, around each of

Fig. 4 | LZSM interferometry for the N = 10 device, in the Kerr regime and
strongly-modulated caseΩ≫∣χ∣. a–c The magnitude of S21 is measured vs Δ and ζ
for fixed modulation frequency Ω/2π = 150MHz. As the drive power Pin is
increased, Kerr multiphoton resonances from ∣0i to ∣ni appear detuned by (n− 1)χ
on the left of bare LZSM resonances. For large ζ, notice the shift of the pattern to
negative detuning, due to the nonlinear dependence of the SQUID array frequency
on the flux, as explained in the Supplementary Information. d Photon-number
simulation using the effective model of Eq. (3) for the same parameters as in (b),
recovering the same interference pattern. e–g In the drive frame, energy vs time for
different values of ζ and Δ including the first three levels of an undriven Kerr

resonator (F = 0). Green markers indicate the corresponding value of Δ and ζ in (d).
e For Δ = 0, although multiple levels cross with ∣0i, only the level ∣1i forms a con-
structive interference. f ForΔ = χ, the second level ∣2i crosses ∣0i, and an appropriate
choice of parameters leads to constructive interference. g For Δ = χ+Ω, similar
LZSM interference can be constructive again and the level ∣2i can be populated. We
verified that both the data and full numerical simulations recover that the inter-
ference patterns are fully constructive at Δ =Ω and ζ ≈ 1.84Ω, where the Bessel
function J1(ζ/Ω) is at amaximum, confirming the prediction of the effectivemodel in
Eq. (3).

https://doi.org/10.1038/s41534-025-00984-4 Article

npj Quantum Information |           (2025) 11:62 6

www.nature.com/npjqi


the main LZSM dips, and for large enough drive amplitude, several multi-
photon resonances emerge with the same characteristics as those shown in
Fig. 2c–e.

Weak modulation case. When Ω≪ ∣χ∣ (weakly modulated case),
instead, one can capture the system’s behavior around the second mul-
tiphoton resonance via the Hamiltonian in Eq. (6), with G(2) = F2/χ
representing the effective drive between the vacuum and the state ∣2i if
ζ = 0. Removing the modulation using the same approximation as in Eq.
(3) leads to an equation identical to Eq. (7), where now

Δð2Þ
�m ¼ ðΔ� �mΩ=2Þ ; Gð2Þ

�m ¼ F2

χ
J �m

2ζ
Ω

� �
: ð9Þ

This formula can be generalized to arbitrary n-photon resonances, with
ΔðnÞ

�m ¼ Δ� �mΩ=n andGðnÞ
�m / J �m nζ=Ω

� �
. Thus, for detunings close to the

nth multiphoton transition, a new LZSM interference pattern should
emerge, characterized by an effective modulation frequency Ω/n. It is this
scaling that differentiates the weakly and stronglymodulated cases, c.f. Figs.
5a, e and 4d. While previously, for Ω≫ ∣χ∣, the standard LZSM sidebands
weredressedbyKerrmultiphoton resonances,wenowfind that, forΩ≪ ∣χ∣,
each Kerr n-th multiphoton resonance is dressed by LZSM sidebands with
effective modulation frequency Ω/n.

For the device under consideration, accessing the weakly modulated
casewould require κ≪Ω/n to distinguish between the different LZSMdips.
To better resolve this feature, we propose the following driving scheme.We
fix the ratio ζ/Ω to have a constant effective drive, according to both effective
theories in Eqs. (3) and (7). We then increase Ω and ζ, to cross from the
weakly modulated ∣χ∣ >Ω to the strongly modulated case ∣χ∣ <Ω. This is
shown in Fig. 5b–d where, for smallΩ, we distinctly see the expected LZSM
dips associated with the secondmultiphoton resonance ∣0i ! ∣2i andwith
a slopeΩ/2.We note that such two-photon LZSM transitions were recently
reported in a linearly-modulated three-level system75, with a similar factor
two in the LZSM velocity compared to regular single-photon LZSM
transitions.

Non-perturbative regime. The weak- and strong-modulation regimes
have very different scales from each other [c.f. the effectivemodels in Eqs.
(8) and (9)].We thus expect that there is a non-perturbative passage from
weak- to strong modulation through some effective interaction, and the
transition between these two regimes cannot be explained using any of
the two effective theories alone.

Particularly interesting are the values of Ω≃ n∣χ∣, where the system
passes from the weak- to the strong-modulated case for a specific state ∣ni.
At these values, it is possible for a n-photon resonance to exactly match the
LZSMdips of a differentm-photon resonance.We observe the signatures of

Fig. 5 | Controllable Floquet states with the N= 10 device in the Kerr regime.
Through the figure, we set the drive input power to Pin =−128 dBm. a–d Both
modulation strength ζ and frequency Ω are swept together to maintain a constant
ratio ζ/Ω. This choice ensures that the effective drives in Eqs. (3) and (7) are kept
constant. This allows enhancing the visibility of the transition between the strongly-
and weakly-modulated cases. a Sketch of the results of Eq. (7) for the transition
∣0i ! ∣1i (purple, labeled ∣1i) and ∣0i ! ∣2i (green, labeled ∣2i). For ∣1i, the pattern
radiates fromΔ = 0with frequencymodulationΩ. For themultiphoton transition to
∣2i, the LZSM interference pattern is centered at Δ = χ and scales with Ω/2.
b Simulation of ∣S21∣ as a function of Δ andΩwith the full quantummodel in Eq. (2)
(see Supplementary Information for details on the simulationmethod), having fixed
ζ/Ω = 0.86. The corresponding measurement is shown in (c) and perfectly overlaps
with the results of the numerical simulation. The black arrows in (a–d) mark the

position of two avoided crossings, where the “bare levels” in (a) interact and
hybridize in (b–d). The crossings are further highlighted by the solid (associated
with ∣1i) and dashed (∣2i) lines in (b). The amplitude of the different avoided
crossings can be controlled by modulating the Bessel functions J �mðnζ=ΩÞ as shown
in (d), where a larger ratio ζ/Ω is chosen. eAs in panel (a), the sketch of the results of
Eq. (7) for Ω = ∣χ∣ and as a function of Δ and ζ. In this “bare picture”, the two
independent LZSM interference patterns scale with Ω and Ω/2 for ∣1i and ∣2i,
respectively. f Full quantum simulation and g corresponding measurement of ∣S21∣
for Ω = ∣χ∣. The position of some LZSM resonances in the bare picture is super-
imposed in (f) as a guideline for the eye. hRepeating themeasurement forΩ = 1.5∣χ∣,
we observe line splittings, indicating a modulation of the coupling between different
Floquet states.
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avoided level crossings between resonances in Fig. 5b, c, indicating that the
∣0i ! ∣1i and ∣0i ! ∣2i resonances interact through the action of an
effective emergent coupling. In this sense, these different resonances con-
stitute a controllable synthetic Floquet space, where changingΩ and ζ allows
selecting an effective interaction between these multiphoton resonances.
This is also evident in Fig. 5d, where the ratioΩ/ζ is changed, leading both to
different interference patterns and different splittings between the Floquet
states.

To further highlight an example of these non-perturbative effects, in
Fig. 5f, g we fixΩ = ∣χ∣. First, we numerically simulate the interplay of these
effects in Fig. 5f. We predict a partial overlap between the second multi-
photon transition ∣0i ! ∣2i with the first LZSM dip associated with the
∣0i ! ∣1i transition at Δ =−Ω. For increasing modulation strength ζ, the
LZSM structure predicted by Eq. (7) is observed, although strongly
deformed compared to the prediction of the effective model due to the
presence of the LZSM lobe associated with the ∣0i ! ∣1i resonance. These
theoretical predictions are completely recovered in the data in Fig. 5g.
Finally, in Fig. 5h we fixΩ = 1.5∣χ∣, and we observe a line splitting of several
resonances, indicating again the merging and interaction between ∣0i !
∣2i and ∣0i ! ∣1i transitions. For larger drive amplitudes (not shown), the
system shows an extremely rich structure that cannot be simply assigned to
any of these original phenomena. Note also the asymmetric nature of the
interference pattern, determined by the negative sign of the Kerr
nonlinearity.

LZSM beyond the qubit approximation: Duffing regime
Finally, we investigate the Duffing regime κ > ∣χ∣ for a drive amplitude
sufficiently large to deviate from the linear regime (see Eq. (24)). For the
intermediate drive amplitudes shown in Fig. 6a, b, the various dips are well
separated despite showing an asymmetric bending of ∣S21∣.When compared
with Fig. 2g, h, we observe a similar deformation of the transmission dips.
Therefore, we assign this feature to the emergence of bistability triggered by
the competition between detuning and Kerr nonlinearity. For these para-
meters, we find that the formula in Eq. (3) captures the deformation of the
dips, as discussed more in detail in the Supplementary Information. Thus,
the systembehavesas a collectionof independentDuffingoscillators and the
overall effect of the modulation is to rescale the drive amplitude F of each
sideband.

When the driving power is further increased in Fig. 6c, several of the
neighboring LZSM dips eventually overlap. This case cannot be simply
captured as separated LZSM interferences, and it is qualitatively different
from all the previously studied cases. The simplified picture of Eq. (3) thus
breaks down, and the system becomes multimodal and behaves as a set of
interacting nonlinear cavities. Nonetheless, the full simulation of the
quantum Floquet model matches the data in all regimes, as shown in
Fig. 6d–f.

As detailed in the methods section, the merging of several modes
and the qualitative change in the system’s behavior can be associated
with the emergence of dissipative quantum chaos. At weak pump power,

Fig. 6 | LZSM interferometry with the N = 32 device in the Duffing regime.
a–cMeasuredmagnitude of S21 vsΔ and ζ for increasing drive powerPin. The dashed
color lines refer to the values of ζ chosen for panels (d–f). The star in (c) indicates the
value where the analysis of chaos is performed in Fig. 7d. d–f Measured S21 as a
function of detuning and for three specific values of ζ/2π: 41.3 MHz (green curve),
101.1 MHz (orange curve), and 161.2 MHz (purple curve). The black superimposed

curves are the results of the numerical simulation of the full quantum model for the
parameters inTable 1 (detailed in “Methods”). Themodulation frequency is set toΩ/
2π = 30MHz. The systematic discrepancy in the position of the dips between theory
and experiments is due to the nonlinear dependence of the modulation of the flux
amplitude discussed in the Supplementary Information.
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the LZSM dips correspond to distinct Fourier modes, each characterized
by its own frequency. As the pumppower increases, thesemodes begin to
interact and merge, analogous to phenomena observed in strongly dri-
ven resonators45,46, thereby suggesting the onset of chaos in the Floquet
system. Classical chaos is characterized by a system’s sensitive depen-
dence on initial conditions, often quantified by a positive Lyapunov
exponent76. On the other hand, the characterization of quantum chaos
often relies on the spectral properties predicted by random matrix
theory77–80. In open quantum systems, quantum chaos can be extended
through the analysis of the Liouvillian superoperator, which governs the
dynamics of the density matrix and provides insights into integrability
and chaos. The complex spacing ratio is an efficient criterion for dis-
tinguishing between integrable and chaotic regimes, as it assesses the
distribution of spacings between eigenvalues81. However, as shown in the
Methods section, applying the usual complex spacing ratio criterion to
Floquet systems fails to capture the nuances of dissipative quantum
chaos. Instead, we generalize the spectral statistics of quantum trajec-
tories (SSQT) criteria introduced in ref. 45 to Floquet systems,
demonstrating its relevance and correctness in identifying chaotic
behavior (see Fig. 9). This refined approach allows for a precise analysis
of the system’s dynamics, accurately pinpointing the transition to
chaotic phases.

Merging of sidebands: signature of dissipative quantum chaos.
Utilizing the novel criterion developed in the methods for Floquet dis-
sipative quantum systems, we demonstrate that the parameters predict-
ing chaos in the model correspond precisely with those where the
sidebands merge.

We investigate LZSM interference for three values of modulation
strength ζ as a function of the driving powerPin, as shown in Fig. 7a–c. As in
all the other experiments presented in this work, measurements are done in
a steady state and are thus independent of the initial conditions of the
system. At low driving power, we find a linear regime wherem dips appear
separated by the frequency Ω/2π = 30MHz and with visibility given by
Bessel functions J �mðζ=ΩÞ. This regime is remarkably similar to that of
several nonlinear modes separated by the same frequencyΩ. As the driving
power increases, each of these dips initially follows the typical Duffing
behavior of a single resonator, as alreadymentioned. For high enough input

power, however, these individual dips disappear andmerge, leading to a very
broad response of the system. At this point, one completely loses the notion
of individual synthetic modes and their bistability.

The merging and broadening of the dips of the scattering coefficient
∣S21∣ in Fig. 7a occur for an input power Pin ≈−108 dBm, which coincides
with the point where dissipative quantum chaos emerges according to our
theory, as reported in Fig. 9 of the Methods section. In Fig. 7d, we plot the
probability density of the level spacings obtained by diagonalizing the Flo-
quet Liouvillian for theparameters indicated by a star inFig. 7awhereLZSM
dips have merged. It has been shown that integrable systems exhibit
Poisson-distributed level spacings, indicating no level repulsion, while
chaotic systems follow Ginibre statistics, characterized by level repulsion
and non-Hermitian random matrix behavior45,80. We find that, upon the
merging of the Floquet modes, the Floquet Liouvillian level statistics con-
formto theGinibredistribution [seeEq. (16)], indicating a clear transition to
the dissipative quantum chaos regime.

The onset of the chaotic phase can also be controlled by tuning the
spacing betweenLZSMresonances through themodulation frequencyΩ, as
shown in the Supplementary Information. For instance, the separated bis-
table regions of Fig. 6b would start overlapping by decreasingΩ, potentially
resulting in a chaotic state.

Discussion
This article investigates the physics of LZSM interference beyond the con-
ventional two-level approximation. By employing two nonlinear super-
conducting resonators—one in the Kerr (nonlinearity larger than
dissipation rate) and the other in the Duffing (nonlinearity smaller than
dissipation rate) regime—we have established a general paradigm for
studying LZSM interference in bosonic systems. We have developed a
unified model that accurately describes the observed phenomena across all
parameter regimes before the onset of many-body-like effects.

At low driving powers, we have shown that interference patterns
remain independent of the system's nonlinearity, preventing the distinction
between linear and nonlinear resonators. However, at higher driving
powers, we have uncovered novel effects arising from the interplay between
modulation and nonlinearity, with the dissipation rate playing a crucial role
in shaping the emergent features. For large enoughmodulation frequencyΩ
with respect to the nonlinearity ∣χ∣, the sidebands remainwell separated and

Fig. 7 |Multimodal-like behavior in theDuffing regime. a–cMeasurement of ∣S21∣
for increasing drive power, fixed frequency modulation Ω/2π = 30MHz and
increasing ratios ζ/Ω ≈ 1.4 (a), ζ/Ω ≈ 2.6 (b), and ζ/Ω ≈ 3.8 (c). For low input powers
the system behaves as a collection of noninteracting nonlinear modes, each one well
separated from the others. For larger values of Pin, the system enters a phase char-
acterized by a single broad response where the notion of isolatedmode is lost. Such a
response can be observed in multimode nonlinear systems and has been associated
with a transition from integrability to dissipative quantum chaos45. To show that this

is indeed a dissipative quantum chaotic phase we plot in (d) the histogram of the
probability density p(s) of the level spacings s obtained by diagonalizing the Floquet
Liouvillian in the broad-response region indicated by the star in (a). Parameters are
set to ζ/2π = 41.3 MHz, Ω/2π = 30MHz, Δ =−1.1Ω and F/2π = 49.5 MHz
(Pin ≈−105 dBm). The cutoff in the Hilbert space is set to 90. The solid black
(orange) curve represents the ideal Poisson (Ginibre) distribution given by Eqs.(15)
and (16) associated with integrability (chaos).
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the standard LZSMpicture can be extended to account for nonlinear effects.
The nonlinearity of the resonator dresses each LZSM interference lobe by
the nonlinear features observed in Fig. 2. For ∣χ∣ < κ, we observe continuous
bending of the LZSM interference pattern. On the other hand, for ∣χ∣ > κ, we
observe howmultiphoton resonances are reproduced all through the LZSM
interference pattern. For Ω≪ ∣χ∣, we observed a different regime of multi-
photon LZSM interferences. For instance, when ∣χ∣ > κ, each Kerr multi-
photon resonance is dressed by LZSM sidebands. The resulting pattern is
determined by an effective n-photon absorption equivalent to an n-photon
drive that is dressed by the modulation. This results in a characteristicΩ/n
modulation of the n-photon LZSM interference pattern, similar to those
recently observed in ref. 75 for a single passage through the avoided crossing.

All of these diverse phenomena occurring across awide range of device
parameters are effectively captured by our extension of the standard LZSM
transition paradigm, see Eq. (3). This demonstrates the efficiency of the
LZSM formalism in predicting nonlinear resonator dynamics in Floquet
regimes.

Beyond this paradigm, we investigated regimes where different side-
bands begin to overlap and interact. All observed features in this regime are
quantitatively reproduced through full quantum simulations of the Floquet
model, which is detailed in section I. of the Supplementary Information. In
the Kerr regime, we demonstrated that when the modulation frequency is
commensurate with the nonlinearity, level crossings form between LZSM
sidebands. Moreover, the interaction between these Floquet states can be
tuned via drive and modulation parameters. Conversely, in the Duffing
regime, we theoretically predicted and experimentally observed the overlap
and merging of different sidebands, and how it coincides with quantum
chaotic behavior. The significance of this finding is twofold. Theoretically, it
contributes to recent efforts to provide an operational definition of chaos
tied tomeasurablequantities.Our extensionof dissipativequantumchaos to
Floquet systems is general and can be applied to other periodically modu-
lated quantum systems. Experimentally, our work is relevant to super-
conducting quantum circuits, a leading platform for quantum computing
and error correction. Recent studies predict that quantum chaos can impair
quantum information storage andmanipulation45,47,82,83. Our work provides
one of the first indirect observations of DQC in a fundamental component
of superconducting quantum hardware.

From a fundamental point of view, the time features of the system
remain to be investigated. Indeed, in the absence of frequency modulation,
switching dynamics of conventional Duffing oscillators in the bistable
regime have been thoroughly studied, including phenomena such as the
quantum-to-classical transition36,40 and the two-photon driven case41,84,85.
Applying frequency modulation is expected to modify the critical phase
diagram, potentially offering new ways to control and shape dissipative
phase transitions with possible applications in quantum sensing43,86,87.
Additionally, in a regime where sidebands merge and lead to chaos, the
systemdynamicsmay become significantly richer anddepart from standard
bistable behaviors. Furthermore, while our current analysis primarily uti-
lizes spectral statistics to investigate chaos, other tools such as out-of-time-
order correlations (OTOCs) could be developed within an open and dis-
sipative formalism to investigate even more general features, such as
quantifying quantum information scrambling and sensitivity to initial
conditions88–90.While the open system formulation ofOTOCs to dissipative
Kerr resonators has been used45,46, extending these techniques to Floquet
systems requires a robust definition of time reversion in the presence of
periodic modulations.

Overall, our work significantly advances the current understanding of
LZSMandFloquet physics, shedding light on the intricate interplay between
interference and nonlinear effects. While many studies have demonstrated
the applications of LZSM phenomena in two-level systems7, we anticipate
ourwork enabling similar benefits formultilevel nonlinear bosonic systems.
Our findings offer exciting perspectives for controlling and engineering
Floquet states and synthetic dimensions70,91, with potential extensions to
systems involving multiple cavities92–95 and higher-dimensional synthetic
spaces54,96. Moreoever, our platform is well-suited to investigate the rich

interplay between Floquet physics and topology50,51, with potential exten-
sions to nonlinear topology62,97,98. The merging of multiple interference
peaks, both in the Kerr and Duffing regimes, offers several potential
applications. In the Kerr regime, we show the presence of an “effective
interaction” between Floquet states99, that can be either enabled or sup-
pressed by tuning the modulation parameters. These could be used to, e.g.,
engineer transition and interaction between stateswith different decay rates,
and provide opportunities to simulate non-Markovian baths100. Conversely,
in the Duffing regime, this Floquet approach to dissipative chaos has
reduced susceptibility to disorder and fabrication mismatches when com-
pared to alternative implementations in extended systems101–103. This opens
possibilities to use this LZSM interference to simulate emergent chaotic
features in engineered dissipative and time-dependent configurations, such
as ultrastrongly coupled light-matter systems104,105, devices in the noisy
intermediate-scale quantum (NISQ) era46,47, and two-photon driven
systems41,75,106. Finally, LZSM protocols have been used as quantum simu-
lators of Kibble–Zurek mechanisms107,108. The extension of a similar pro-
tocol to multilevel phenomena is still lacking.

Methods
Device fabrication
The devices are fabricated on a 525 μm thick high-resistivity intrinsic
4-inch silicon wafer. The substrate is cleaned using piranha solution,
followed by the removal of native oxide via a 1% hydrofluoric acid
treatment. Immediately after, a 150 nm thick layer of aluminum is
deposited by e-beam evaporation at a rate of 0.2 nm s−1. Alignment
markers are defined through photolithography, e-beam evaporation of a
5 nm thick Ti layer and a 55 nm thick Pt layer, and subsequent lift-off. The
waveguide and control lines are patterned via photolithography and wet
etching for 2 min30 s inTechniEtchAlu80 etchant. E-beam lithography is
employed to define the Josephson junctions of the SQUID array. The
wafer is coated with a bilayer resist stack consisting of 500 nm of MMA
EL9 and 450 nm of PMMA 495K A8. The mask is then patterned using
e-beam lithography (Raith EBPG5000+ at 100 keV) and developed in a
1:3 MIBK:IPA solution for 2 min. The Josephson junctions have a square
shapewith a width of approximately 350 nm. The Josephson junctions are
formed by double-angle evaporation in an ultra-high vacuum Plassys
MEB550SL3 system using the Manhattan technique109. This involves the
deposition of 50 nmof aluminum at 0.5 nm s−1 at+45° tilt angle, followed
by an oxidation step of 10min in 0.15 Torr of pure dioxygen, a second
aluminum deposition of 120 nm at 0.5 nm s−1 and 45° tilt angle, and a
capping oxidation layer formed during 10 min in 4 Torr of pure O2. Lift-
off is performed in 80 °C 1165 remover for 4–h. A final patching step is
carried out to close the loops of the isolated Josephson junctions formed
with theManhattan technique and to connect one side of the SQUIDarray
to the ground plane. The same bilayer resist stack is used, and e-beam
lithography is employed to expose the patch areas. The native oxide of the
bottom aluminum layer is removed in the Plassys system by argon ion
plasma milling, and a 200 nm thick aluminum layer is deposited directly
after at a rate of 0.5 nm s−1. Finally, the wafer is diced into 4 × 7mm2 chips
using a nickel-bonded diamond blade.

Measurement setup
Aschematic of themeasurement setup is shown inFig. 8. The 4 × 7mm2 die
is wire bonded with aluminum wire on custom-printed circuit board. The
die is then glued directly on a high-purity copper sample holder that is
thermally anchored at the mixing chamber stage of a LD Bluefors cryostat
with a typical base temperature of 15mK. The sample holder is protected
against external magnetic fields using two mu-metal shields. The SQUID
array is coupled to a 50 Ohm coplanar waveguide in a notch configuration.
The input signal is generated by a vector network analyzer (VNA) R&S
ZNB20 and transmitted via a heavily attenuated coaxial line to the device
feedline. The output signal passes through two double-circulators before
being amplified at 4K by a LNF-LNC4_8C HEMT amplifier and at room
temperature by an Agile AMT-A0284 low-noise amplifier. The signal is
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collected and demodulated in the VNA. Six-port Radiall R591723605
coaxial switches are placed on themixing chamber plate on both sides of the
feedline to allow switching between different devices. Both N = 10 and
N = 32 devices presented in this work were connected between the same
switches and thus shared the same input and output lines. The static flux of
the SQUID array is controlled by applying a direct current to an NbTi
external coil mounted underneath the sample holder. The direct current is
applied via twisted NbTi pairs using a Yokogawa GS200 source. The fre-
quency modulation of the SQUID array is performed by applying a signal
generated by an R&S SGS 100A signal generator to the local flux line of the
device. The DC noise is attenuated using a high-pass filter with a cutoff
frequency of 100 kHz at room temperature. The line is further attenuated
and filtered at the mixing chamber stage with a Minicircuits VLFX-300+
low-pass filter (LPF). We found that without this LPF, the internal loss rate
of the SQUIDarrayswas increased by up to a factor of ten.We also included
an additional 20 dB of attenuation between the LPF and the flux line to
eliminate spurious standing wave modes between the LPF and the on-chip
ground termination of the flux line.DevicesN = 10 andN = 32were housed
in different sample holders in separate shields and thus did not share the
same external coil and flux lines.

Estimation of device parameters
We then carefully characterize the two devices at their chosen flux
operating points. The parameters of the devices, reported in Table 1, are
obtained by fitting S21 without modulating the frequency. The SQUID
array is modeled as a Kerr resonator according to theHamiltonian of (1)
with ζ = 0. First we fit the transmission at low enough power to ensure an
average occupation of less than one photon. This allows us to neglect the
Kerr nonlinearity and the dephasing. The expression of the linear
transmission coefficient S21 is obtained from standard notch

configuration input-output theory41,110 as

S21 ¼ 1� κext
κext þ κint þ 2iΔ

×
eiϕ

cos ϕ
: ð10Þ

Following the diameter correction method111, we add the last term to
compensate for impedancemismatch. To fit the measured transmissions to
this expression, we first normalize the data by a background transmission
measured with the SQUID threaded by a different flux, such that its fre-
quency lies outside of the measurement range. All experimental data
reported in this work are normalized this way. We then extract the precise
operating frequency, as well as the internal and external loss rates of each
device.

To determine the Kerr nonlinearity χ and the dephasing rate κϕ, we
need to fit the power dependence of the transmission which is reported in
Fig. 2. A simple analytical model could be used for weakly anharmonic
devices satisfying ∣χ∣ ≪ κ41,112. Instead we directly solve the Lindblad master
equation (2) to find the intra-cavity field α, again setting ζ = 0 in the
Hamiltonian. This model is valid for both devices studied in this work and
accounts for dephasing. Using input-output theory, we convert α to the
transmission scattering parameter using the following relation

S21 ¼ 1� i
κext α

2F
: ð11Þ

The drive amplitude F is related to the input power Pin as

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pinκext
_ωd

s
: ð12Þ

We start by fitting the device N = 10 in the Kerr regime. We perform a
global simultaneous fit of approximately ten frequency sweeps at dif-
ferent driving powers. We use the parameters obtained from the low-
power fit and keep three independent fitting parameters: κϕ, χ, and the
attenuation of the input drive line. Because single multiphoton
transitions are well-resolved with the Kerr device, we can obtain all
three parameters without prior calibration of the input attenuation. The
Kerrmultiphoton resonances reported in Fig. 2c–e are not equispaced by
χ, instead the spacing increases for larger ∣ni. We attribute this effect to
non-negligible higher-order nonlinearities from the expansion of the
Josephson cosine potential. To accurately reproduce the experimental
data of theN= 10 device, we also include a term of the form χð5ÞðâyÞ3â3 in
the model, and find a value of χ(5) ≈ 5%χ≈−2π × 1.1 MHz.

Finding the Kerr nonlinearity of the Duffing device, however, requires
knowing the input attenuation. But the feedline of the Kerr and Duffing
devices are connected on the same microwave switch, as depicted in Fig. 8.
Therefore we assume that the input attenuation obtained from the fit of the
Kerr device is also valid for the Duffing device. We perform a similar global
fit of the power dependence of the transmission of the Duffing device, this
time with only two free fitting parameters: χ and κϕ. Simulations of the Kerr
shift of both devices are shown in Fig. 2.

Analysis of dissipative quantum chaos
Classical chaos is defined by the sensitivity of a system’s dynamics to initial
conditions, often characterized by a positive Lyapunov exponent76. Quan-
tum chaos, in both isolated and open systems, is typically described through
the quantum chaos conjecture77–80, i.e., assuming the system has a mean-
ingful classical limit that exhibits chaos, one can conjecture that the spectral
properties of the time evolution generator align with the universal predic-
tions of randommatrix theory. Formodelswithout a classical limit, random
matrix theory predictions are still employed to define quantum chaos81,113,114

due to their success in forecasting the properties of quantum systems
without a classical counterpart115–117.

Fig. 8 | Schematics of the full wiring of the cryostat and room-temperature
electronics.
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A criterion for dissipative quantum chaos in Floquet systems. For
time-independent Liouvillian systems, integrability and dissipative
quantum chaos in the open quantum system are often characterized via
the spectral properties of the Liouvillian. For a time-independent sys-
tem, the equation of motion reads ∂ρ̂=∂t ¼ Lρ̂ where L is the non-
Hermitian Liouvillian superoperator. As ^ρðtÞ ¼ expðLtÞρ̂ð0Þ, the
eigendecomposition ofL fully characterizes the dynamics of the density
matrix. The right eigenoperators η̂j and left eigenoperators σ̂ j of L118 are
defined by

Lη̂j ¼ λjη̂j; Lyσ̂ j ¼ λ�j σ̂ j; ð13Þ

where λj are complex, ReðλjÞ≤ 0, and Tr ðσ̂yj η̂kÞ ¼ δjk.
Chaos is then characterized through the statistical distribution of the

spacings of the complex Liouvillian eigenvalues {λj}
80. In particular, one

studies the distribution of nearest-neighbor eigenvalue spacings

pðsÞ ¼
X
j

δðsj � sÞ; ð14Þ

where sj ¼ jλj � λNNj j, with λNNj the eigenvalue closest to λj in the complex
plane. In integrable dissipative systems, s follows a 2D Poisson distribution

p2DðsÞ ¼
π

2
se�

π
4s
2
; ð15Þ

while for chaotic dissipative systems, the level spacing distribution follows
the Ginibre distribution of Gaussian non-Hermitian random matrices
ensembles

pGinUEðsÞ ¼
Yþ1

k¼1

Γð1þ k; s2Þ
k!

 !Xþ1

j¼1

2s2jþ1e�s2

Γð1þ j; s2Þ : ð16Þ

An unfolding procedure, in which the uncorrelated part is removed from
p(s) in Eq. (14), is required to evaluate the level statistics from the spectrum
and for the proper characterization of chaos119. We adopt that described in
ref. 114.

An alternative, efficient way to perform this analysis is the complex
spacing ratio81

zj ¼
λNNj � λj

λNNNj � λj
¼ rje

iθj ; ð17Þ

with λNNj the eigenvalue closest to λj in the complex plane, and λNNNj the
second-nearest neighbor to λj. The average values 〈r〉 of rj and hcos θi of
cos θj, can be used as indicators of dissipative quantum chaos. For a 2D
Poisson distribution, associated with an integrable system, 〈r〉 = 0.66, and
�hcos θi ¼ 0. For the Ginibre distribution, i.e., chaos, 〈r〉 = 0.74,
and �hcos θi ¼ 0:24.

The spectral definition of DQC presented above can be extended to
Floquet systems through the introduction of the Floquet Liouvillian
superoperator LF. Also LF can be diagonalized obtaining its right (left)
eigenvectors η̂j (σ̂ j) and the Liouvillian spectrum {λj}

LFη̂j ¼ λjη̂j; Ly
Fσ̂ j ¼ λ�j σ̂ j; ð18Þ

which satisfy the bi-orthonormality condition Tr fσ̂yj η̂lg ¼ δjl . The very
same spectral criteria can then be applied to the Floquet eigenvalues.

Extending the spectral statistics of quantum trajectories for Floquet
systems. The above spectral signatures alone, however, do not correctly
capture the emergence of dissipative quantum chaos in the system con-
sidered in this work. For instance, in Fig. 9a we plot the indicator hcos θi
as a function of the input power Pin. For these input powers, the pre-
diction of the spectral analysis of the Floquet Liouvillian is that the system
is always in a chaotic phase, despite it being almost a pure state for weak
Pin [c.f. Fig. 9b]. We conclude that this straightforward analysis of chaos
cannot capture the relevant features of the model under consideration.

Given the lack of predictive results, here we generalize the theoretical
framework of the spectral statistics of quantum trajectories (SSQT) intro-
duced in ref. 45. First, one remarks that theLindbladmaster equation admits
also a stochastic unraveling in terms of quantum trajectories ∣ψðtÞ�, com-
bining the Hamiltonian dynamics with a continuous monitoring of the
environment120,121. The wave function ∣ψðtÞ� can be interpreted as a single
stochastic realization of the dissipative dynamics whose average reproduces
the predictions of the Lindblad master equation (2). As discussed in ref. 45,
since the system discussed in this article does not have any weak or strong
Liouvillian symmetry, all the possible unravelings are expected to give the
same information about steady-state integrability and chaos. We can
therefore assume a diagonal unraveling which we can write down

Fig. 9 | Analysis of dissipative quantum chaos using the SSQT criterion detailed
in ref. 45 and generalized to Floquet states here. a Theoretical indicator of chaos
hcos θi introduced in ref. 81 computed on the full Floquet-Liouvillian spectrum (red
line and circles) and on the eigenvalues selected by the SSQT criterion (green line and
squares). While the spectral analysis on the full Liouvillian indicates the presence of
chaos independently of the drive amplitude for the parameters considered in the
plot, the SSQT criterion identifies the broadening of the Duffing peaks in Fig. 7a–c
(gray rectangle) with a dissipative quantum chaotic phase for the Floquet steady state
ρ̂Fss. When the number of selected eigenvalues is smaller than 100 a statistically
significant analysis can not be carried out, andwe set hcos θi ¼ 0. b Purity Tr ð½ρ̂Fss�

2Þ
of the Floquet steady state ρ̂Fss. The onset of steady-state quantum chaos in (a)
coincides with the drop of the purity of the steady state below 0.1. We use the
parameters of Fig. 7a, the cutoff in the Hilbert space is fixed to 90, and cmin is selected
as discussed in the text.
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considering the spectral decomposition of the Floquet steady state

ρ̂Fss ¼
X
k

pk∣ψk

�
ψk

�
∣: ð19Þ

Using the spectral decomposition introduced in Eq. (18), one can then
define

ρ̂k ¼ ∣ψk

�
ψk

�
∣ ¼

X
j

ck;jðtÞ η̂j: ð20Þ

This procedure allows associating to each eigenvalue λj the relative spectral
weight ck,j. We select the Liouvillian eigenvalues λj, for which jck;jðtÞj > cmin.
We set the cutoff cmin ¼ �C=1000 where �C is the average of the spectral
weights inEq. (20), as detailed in ref. 45. For the Floquet Liouvillian,we found
that some of the ∣cj∣were very large (order ofmagnitudes bigger than one). As
the average procedure of the spectral weights would have been affected by
those outliers, we restrict themean to the ones such that ∣cj∣ ≤ 1. Such a choice
is justifiedasa spectral coefficient ∣cj∣ > 1will be for sure chosenwith theSSQT
protocol, andwegetameaningful cmin as in ref. 45.Oneach ρ̂k weperformthe
spectral analysis by computing, e.g., the complex spacing ratio for the selected
eigenvalues hcos θik. We finally obtained hcos θi ¼Pkpkhcos θik.

In Fig. 9a, the green curve represents the results of the SSQT criterion.
Compared to the spectral statistics applied to the full Floquet Liouvillian
spectrum, we see a profoundly different behavior of the systemas a function
of the drive amplitude. Notably, comparing the results of Fig. 9a with the
purity of ρ̂Fss Fig. 9b, this time we observe that it drops below 0.1 only when
we enter the steady-state chaotic region. This result ultimately demonstrates
thenecessity of the SSQTcriterion to correctly interpret the onsetof chaos in
open quantum systems.

Linear and qubit regime approximations
Under sufficiently weak drive, the two devices can be approximated as
respectively qubit and linear resonators. It is in this regime that we observed
standard LZSM interferences as shown in Fig. 3. We now give explicit
conditions for the linear approximation to hold.

For the strongly nonlinear N = 10 resonator, one can show that,
assuming at most two photons in the system, the maximum of the two-
photon population occurs at the multiphoton resonance Δ = χ, where

2∣ρ̂ss∣2
� � ¼ 2F4

9F4 þ 2κ2 2 κ2 þ χ2
� �� 5F2

� � ’ F4

2κ2χ2
: ð21Þ

It follows that F2 ≪ ∣χ∣κ ensures the validity of the qubit approximation
For the weakly nonlinear N = 32 resonator, we consider the semi-

classical (coherent state approximation) ρ̂ss ¼ ∣αi αh ∣. One finds that the
photon number n = ∣α∣2 satisfies

κ2

4 þ ðΔþ nχÞ2� �
n� F2

’ 2Δn2χ þ n Δ2 þ κ2

4

� �� F2 ¼ 0:
ð22Þ

The solution to this equation can be expanded in powers of χ as

n ¼ n0 1� n0
8Δχ

4Δ2 þ κ2

� �
; with n0 ¼

F2

Δ2 þ κ2=4
: ð23Þ

The deviation from the linear regime, defined as δn = 1 − n/n0 is then
maximal for Δ ¼ κ=ð2 ffiffiffi

3
p Þ, which leads to

δn ¼ 3
ffiffiffi
3

p
F2χ

κ3
: ð24Þ

Since we are interested in the regime δn ≪ 1, we recover the condition
F<

ffiffiffiffiffiffiffiffiffiffiffiffi
κ3=jχj

p
for the linear approximation, as given in the main text.

Data availability
The data used to produce the plots are available on Zenodo with the
identifier 10.5281/zenodo.14883314.

Code availability
The codes used to analyze the data and produce the plots are available on
Zenodo with the identifier 10.5281/zenodo.14883314.
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