MAGNETIC MEDIA AS A SOURCE AND DETECTOR OF AXIONS
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B Abstract

The new laboratory experiment for the generation and detection of axions using the coherent axion-magnon conversion in
ferromagnets is discussed. The efficiency of the conversion process is ensured by the coherent axion-spin wave coupling(*).

1. Introduction

There are no doubts that the eventual discovery of a pseudo-
scalar long-range force would drastically change our picture of
the universe. The (pseudo) Goldstone bosons mediating such
forces are massless (or very light) and can be detected by
methods which can be considered as non-traditional in particle
physics. Indeed, this problem may be formulated as that of
detecting weak classical fields (static or oscillating), and thus the
coherent interaction of such fields with macroscopic bodies can
be used [1, 2]. In the experiment [1] the influence of a §pin-
polarized sample on the palarization of the others due to an inter-
mediate (quasi-static) arion field (= massless axion lield) has
been measured. The result gave the limit Gy < 103 Gy, where
Gy is the weak-interaction Fermi constant and Gy is the fermion-
fermion interaction constant induced by the arion exchange.

There are proposals [3-6] for experiments on arion reseirch,
based on the coherent arion-photon conversion effect in a trans-
verse magnetic field. Recently, the detailed project of the Sun
axions detector has been published [7]. The coherence of
axion—photon transformation in the case of massive axions is
reached in ref. [7] by filling the interaction space with a light gas
(Hp, He) ensuring the photon mass. Particles with mass up to
[ eV could be detected in such a way.

The fundamental Lagrangian of the axion (a) and fermion (f)
interaction has the form

Ly=q¢ (fiysfea, (1

where g is the dimensionless axionic charge of the fermion. This
vertex produces the effective axion—photon coupling

1 - =
Luy = M a(Le B()) (2)

due to the well-known triangle anomaly of the axial current.

(*) A short version of this work was published in Sov. Phys. JETP Lett. 50
(1989) 58.
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Diagram 1

Here ;‘f{, is the external magnetic field (denoted in €. (2) by the
double line), £ is the photon electric field and M is the coupling
constant of 4 mass dimension. Since both the photon and arion
dispersion laws coincide, this lincar coupling (eq. (2)) leads 1o
the coherent arion-photon conversion (or, as is the case ol
ref. [7], axion—massive photon coherent conversion) in the pre-
sence of transverse EO.

However, in some theories the amplitude in diagram 1
vanishes. On the other hand, this graph is higher in order than the
diagram corresponding to the following Complon process:
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Diagram 2
It can be verified directly that this amplitude of arion—photon for-
ward scattering vanishes when the electron is free. When the

electron is in an external field, the first non-vanishing Compton
diagram contains one quantum of that field.

Y #a

Diagram 3
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Here the double line denotes the external field seen as perturba-
tion. This graph has the same number of electromagnetic vertices
as the triangle of diagram 1. However, the three Compton ampli-
tudes differ drastically from the ones associated to an anomaly
graph such as diagram 1. When the electron is bound by an exter-
nal field then the amplitude

Y .a 5
v,
> E'—|E 3)
e n it

differs from zero owing to the presence of the field. Here, the
solid line denotes the propagator of the bound electron, and the
summation runs over the intermediate states with energies £, and
V. which are the corresponding matrix elements. The electron
binding energy has an electromagnetic origin, and thus the energy
denominator in the latter amplitude compensates the factor ¢ in
the matrix elements V,, when the energy of the initial particle is
less than this binding energy.

In this range of energies the axions interact effectively only
with the electronic magnetic moment density A_}I(?). The
Lagrangian eq. (1) is reduced to

L..=xVa MF) , (4)

ma

where x = u./ltg = q./2e, U, = g./2m. being the arionic
magneton and g the Bohr magneton.

Here we consider the case where the arions only excite the
spin degrees of freedom. For our purpose it is convenient to use
the classical description of the arion field and spin waves. The
notes cited above may be regarded as the interpretation of the
final results, in terms of the fundamental processes.

2. The ferromagnetic detector of (pseudo) Goldstone bosons

Let us consider the detector schematically pictured in fig. 1.
Contrary to the laser one discussed in refs [3] and [4], here the
space between the magnetic poles is filled with a non-conducting
ferromagnet. In the detector the microwave rather than optical
diapason is used. The frequencies of the pumping generate a
coherent arion field. The narrow arion beam passes freely through
the walls of the waveguide as well as the screens that absorb pho-
tons and comes into the second waveguide equally filled with
magnetized ferrite. The arion wave excites resonantly the

FIGURE 1

Scheme of the axion detector: (1) and (2) waveguides filled with ferrite; (3) powerful high-frequency generator; (4) synchrogenerator; (5) synchrodetecto; (6) sensitive 1ecei-

ver; (7) ADC; (8) computer; and (9) screen.



coherent spin precession and the weak electromagnetic wave cou-
pled to the spins. The latter wave is registered by a high-sensitivi-
ty receiver (e.g. maser or Rydberg atom receiver).

The second (detecting) resonator may be either open (i.e. a
long waveguide loaded on the receiver) or closed. In the former
case the spin-wave amplitude on the exit of the waveguide is
enhanced by the factor kL, where £ is the wave vector and L is
the waveguide length. The response amplitude of the closed reso-
nator is proportional to the quality factor w/y, where @ and y are
the frequency and the relaxation constant of the corresponding
mode. The excitation of the eigenmode in the closed resonator
may be considered as the result of iterated reflections on the
relaxation time interval. In other words, the closed resonator is
equivalent to an open one having an effective length L. = w/ky.
In our frequency range the inequality @w/y>> kL holds for lengths
of the order of one metre and it is thus more convenient to use the
closed resonator (this is not the case when the sharp radiation pat-
tern is needed for the receiver).

Let us consider the operating principle and the possibilities of
such a detector in more detail.

First, we consider the interaction of a pseudoscalar arion field
with the electromagnetic one in the presence of a paramagnetic or
ferromagnetic medium magnetized up to saturation.

The dynamical vartable of the medium is the field #i () of the
magnetization density variations. The Lagrangian of the magnet
interaction with the time-dependent magnetic field (7) is equal
1o

Loem =bFym(r) . (5

It follows from eq. (4) that the coupling of the magnet to the
arion field can be described by the Lagrangian

Ly.=xVasm, x=u,/ig. (6)

The proper dynamics of the field 7 (7') are governed by the Bloch
equation

) =2/ 0 [SHISM (), M(F)] | (7
V\Lhere H is the magnet’s Hamiltonian, M * = [ﬁo + m(7),
M ¢ being the equilibrium magnetization directed along the z-axis.

It is more convenient to analyse the magnet dynamical equa-
tions in terms of the canonical variables C, & [8]

iC=8H/6C" (®)
connected with the magnetization density by the classical version

of the Holstein—Primakoff transformation

/ c*c x
m+=mx+imy=C\‘Ia)m[l—WJ, mzz—gC C . (9)
0
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Here, w,, = 2gMy, ¢ = 2up/h = 2w « 2.8 MHz/G,. Neglecting
the non-linearity for the case m,, m, << My we have

m,=C\w, , mZ=—gC*C . (10)

The exchange interaction is unessential at the frequencies invol-
ved (it can, however, be taken into account easily) and the eigen-
modes of the resonator filled with magnet can be determined by
solving the Maxwell-Bloch equations derived from the
Lagrangian

L=— R i mb+icct - oc'c (an

16m W 0 '

Here, £, = gBg, EO is the constant homogeneous part of the true
magnetic field in the medium, and b is the dynamical variable of
the electromagnetic field: Fjj = g;hy. It is worth noting that the
magnetic dipole—dipole interaction is automatically taken into
account by the Lagrangian of eq. (11). Restricting ourselves to
the case of the infinite in the (y—z) medium plane we consider the
fields depending on x alone. The Lagrangian of the pumping
field-spin wave coupling in terms of variables C, C* has the form

_=~ b *
Lien=b =" Jo,(C-C") . (12)
2
The linear polgrization of the pumping wave along the axis is
assumed [i.e. b = (0, b, 0)]. The eigenvectors of the coupled
oscillations of the magnetic moment and the electromagnetic field

can be found from the linearized Maxwell-Bloch equations. For
the waves propagating only along the x-axis, we have

(e92 = 92)b=-2mi 2w, (C-C"),

iC—QyC=—i/2 o, b (13)

(here ¢ is the dielectric constant of the medium). From this sys-
tem of equations we obtain the structure of eigenmodes:

Ce= (A ey p eim) sinkx ,
By =(B e_iQt+B*eiQt) sinkx ,

. ! .
A:_i_\’w_mg , D*z_i\/&g (14)
202-9, 20+,

and the dispersion law

2= é [(k%e.(zg) +(k2- e @2) +4ek2 2 2 ] (15)

This is illustrated by the two curves in fig. 2. The oscillations pro-
per to the magnetic moment #7(7) are described by the modes
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corresponding both to the horizontal asymptotics of the lower
branch of the dispersion law and to the £2 ~ £2; domain of the
upper branch. Since the inequality € > 1 holds, the linear arion
dispersion law €, = k always has an intersection point with the
upper curve. Thus, the arion field can be excited in a space-
coherent way.

QJL
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FIGURE 2

Dispersion laws of the magnon-photon coupled oscillations; the asymptotics of the
lower branch is V€2,(€2) — Qpp), for the upper branch it is £y = k /Ne. The arion dis-

persion line £, = & intersects the upper curve at the point Q2= €.

Since the arion field interacts only with the spin waves, the
corresponding amplitude in the excited mode ought to be quite
large. This means that the intersection point of the line £ = &
and the upper dispersion curve should have a frequency £ com-
parable with the £2. On the other hand, this frequency £ should
not be too close to 2 because the group velocity of the wave
tends to become zero in the limit £ — £y and the signal could
be lost. The proper tuning can be reached by a suitable choice of
the external magnetic field and it is easily realized at frequencies
Q= 27+ 1010 Hz.

The amplitude of the mode (eq. (14)) in the generating reso-
nator is defined by the energy balance (see also below): if € is the
energy per unit of time coming into this resonator, then, neglec-
ting the pure electromagnetic energy loss, we have

% : (\A|2+|D|2) = € /(y£2; + volume) (16)

(here yis the magnon relaxation frequency). The arion field gen-
eration is governed by eq. (6) having in the variables C, C * the
form

X — *
Da=-7 o, dh(c+c™). an

If the excited mode (eq. (14)) has the frequency £2, then the arion
field amplitude at the output of the first resonator is equal to

a:igiL\/com [Aexp(iQ2t)+ Dexp(-if21)] . (18)

Here L is the length of the resonator.

The same mode (eq. (14)) is excited resonantly by the arion
wave (eq. (18)) in the second resonator separated from the first
one by the screen. The resulting amplitude Dy is expressed in
terms of the amplitude D (eq. (14)) as follows:

@y x> (kL)
4y
in accordance with the equation of motion

Df:D

»

iC—QOC+é\/a)m b:%\/’aﬂ . a . (19)

The square of the amplitude of the electromagnetic oscillations
coupled with the magnetic moment is equal to

(2-2)

|Be” = x? @y, (kL) (B ;
16y

(20)
Taking into account the equality (16), we come to the expression
for the relation between the energy flow at the end of the second
resonator & and the pumping energy flow €

— —\2
Qo,,(2,-Q)
& E=kLyxt ——L 21
¢/ E=(kL) 3570 @n
(the amplitude A is neglected in comparison with D).

The value of expression (21) can be estimated taking all the
frequencies to be of the same order

£/ E=xkL)(Q/y) . (22)

For normally used ferromagnets, the factor Q/y has an order of
magnitude of ~ 103 and for kI. = 102 we have

E/E=10"x* . (23)
The direct double photon—arion transformation has the conver-
sion coefficient

E 1 E=atitkL)* (24)

which is about 11 orders of magnitude less than expression (23)
with the same parameter values.

It is worth noting some important issues. The spin-wave
amplitude in the generating resonator is limited by the thresholds
of instabilities (see below). Increasing the quality of this resona-
tor is of no advantage whilst the increase in length is more profit-
able. Thus, it is reasonable to use, in the first resonator, a sample
magnet of sufficient length. As a rule, the quality factors of ;\such



ferrites do not exceed 100. On the other hand, the amplitude of
the spin wave excited by arions (axions) in the detecting resona-
tor is proportional to (£/9)? and, additionally, the question of the
threshold does not arise here. Consequently, the magnetic sample
in the detecting resonator should have the quality Q/y as high as
possible. Monocrystals from the yttrium-iron garnet (YIG)
having the well-known spin-wave dynamics [9, 10] have qualities
of the order of 104, at the frequencies near the bottom of the spin-
wave specirum, and it is worthwhile using such a magnet as the
detector.

3. Non-linear limits

With the increase of the pumping power, the spin-wave
amplitude in the generating resonator reaches the threshold value;
then the spin wave becomes unstable and any further increase of
the pumping power has no effect. The review quoted in ref, [8] is
devoted to the non-linear theory of spin waves and the estima-
tions given below are taken from that book.

The lowest threshold has the decay instability: the spin wave
transforms into two waves with half frequencies. The threshold
amplitude has the value

’y -
co~ L 25
th gQ \/Eom ( )

and corresponds to the absorbing power € = V « ¥3/21g2. For a
YIG sample with volume V = 100 cm3 we have 10 W. However,
this instability develops when the decay conservation laws are
fulfilled. If 2 = £y, our excitation can transform into two
magnons of the lower branch only. When the frequency £2,/2
belongs to the forbidden zone

QO>21‘QO(QO_QM) , (26)

then this transformation is suppressed (more precisely: in this
case the decay products belong to the exchange part of the spec-
trum, where the relaxation constants % are sufficiently greater
than in the magnetostatic one; it is worth noting that the yin for-
mula (25) is only the secondary waves relaxation frequency).
This inequality solved with respect to £2; has the form

Qy<4BQy . (27)

On the other hand, the stability of the sample, with respect to the
formation of the domain structure, demands 2y > (2. Thus, to
avoid these instabilities we should be restricted by the frequen-
cies diapason

Q< 2¢<4B2y . (28)

The spin-wave scattering processes are always permitted and the
corresponding modulation instability has the threshold
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coon Ly (29)

The absorbed energy power reached in this casc is £/y times
greater than in the former case of decay instability.

4. Conclusions

Our method is based on the coherent arion—magnon
transformation provided by the intersection of the dispersion
curves of that excitation. Thus, the mass of the detected axion
does not exceed the gap in the magnon spectrum, i.e. ~ 10~ eV,

Our axion detector could be used for the search of cosmic
axions. One of its advantages is the possibility of fine-tuning the
frequency by changing the external field.

We are grateful to A.A. Anselm, I.B. Khriplovich and
V.B. Cherepanov for stimulating discussions and helpful advice.

B References
[1] P.V. Vorobyev and Ya.l. Gitarts, Phys. Lett. 208 (1988) 146.
[2] A.A. Anselm, Proc. of the XXth Winter School of
Leningrad, Nucl. Phys. Inst., Leningrad, USSR (1988).
[3] A.A. Anselm, Phys. Rev. D37 (1988) 2001.
[4] K. Van Bibber ct al., Phys. Rev. Lett. 59 (1987) 759.
|5] P. Sikivie, Phys. Rev. D32 (1983) 2988.
[6] A. Melissinos et al., Brookhaven proposal, AGS P840
(1988).
[7] K. Van Bibber et al., Phys. Rev. D39 (1989) 2089.
[8] V.S. L’vov, Non-linear theory of spin waves, Moscow,
USSR (1987) (in Russian).
[9] LI.V. Kolokoloy, V.S. L'vov and V.B. Cherepanov, Sov.
Phys. JETP 86 (1984) 1946.
[10] A.H. Anisimov and A.G. Gurevich, Sov. Phys. JETP 68
(1976) 677.

B Address:

USSR Academy of Science
Siberian Division

Institute of Nuclear Physics
630090 Novosibirsk, USSR

W Received on 10 June 1990.



