
Research Article
LFQAP: A Lightweight and Flexible Quantum Artificial
Intelligence Application Platform

Xin Zhang ,1 Xiaoyu Li ,2,3 and Yuexian Hou 1

1College of Intelligence and Computing, Tianjin University, No.135, Ya Guan Road, Tianjin 300350, China
2School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, Sichuan, China
3Institute of Electronics and Information Industry Technology of Kash, Kash 844000, Xinjiang, China

Correspondence should be addressed to Yuexian Hou; yxhou@tju.edu.cn

Received 6 January 2025; Accepted 20 March 2025

Academic Editor: Yu-Bo Sheng

Copyright © 2025 Xin Zhang et al. QuantumEngineering published by JohnWiley & Sons Ltd.Tis is an open access article under
the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Quantum artifcial intelligence (AI) is one of the critical research domains in the feld of quantum computing and holds signifcant
potential for practical applications in the near future. A quantum AI software platform serves as a fundamental infrastructure for
advancing research and facilitating applications in this area. Such a platform supports essential tasks including quantumAImodel
training, inference, and the deployment of diverse applications. Te current quantum AI software platforms prioritize com-
prehensive functionality; however, they often lack scalability, making it challenging to integrate new features fexibly. Given the
broad and evolving research landscape of quantum AI algorithms, it is crucial to develop a software framework that is both user-
friendly and capable of autonomous functional extension. In this paper, we present a lightweight, scalable, and open-source
quantum AI platform designed to support the training and inference of variational quantum algorithms. Tis platform employs
a hierarchical and structured architecture, enhancing the overall manageability andmodularity of the software. Notably, it exhibits
improved scalability, incorporating a compiler module for the frst time. Tis module enables support for user-defned quantum
devices, including both real physical quantum computers and quantum circuit simulators, as well as custom-defned optimizers.
Te platform integrates both tensor network simulator and full-amplitude simulator, providing powerful ability for quantum AI
research. Utilizing these simulators, we conducted training experiments on three publicly available datasets and compared the
results with TensorFlow Quantum. Te experimental results validate the reliability and efectiveness of our platform, demon-
strating its potential as a powerful tool for quantum AI applications.

1. Introduction

Quantum artifcial intelligence (AI) represents a signifcant
class of quantum algorithms and is among the most ex-
tensively studied areas in quantum computing. It encom-
passes a diverse range of algorithms, including quantum
neural networks (QNNs) [1–5], quantum approximate op-
timization algorithm (QAOA) [6], quantum principal
component analysis (quantum PCA) [7], and quantum
support vector machines (quantum SVMs) [3, 8, 9], among
others. In this paper, the term “quantum AI” specifcally
refers to quantum AI algorithms based on the quantum

variational method, with QNNs serving as a prominent
representative of this category. In recent years, signifcant
progress has been made in the feld of QNNs, including
interpretability of QNNs [10, 11], demonstrated advantages
[12–15], robustness [16, 17], and quantum generative
adversarial networks (quantum GANs) [18–20]. Moreover,
due to the relatively shallow circuit depth of quantum AI
algorithms, they exhibit strong potential for noise robust-
ness. Tis characteristic makes quantum AI particularly
promising for practical applications in the noisy
intermediate-scale quantum (NISQ) era. For instance, re-
search has explored the application of quantum AI in the
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feld of smart manufacturing [21]. As the saying goes, “To do
a good job, one must frst sharpen one’s tools.” A well-
designed quantum AI platform is crucial for advancing
quantum AI research, as it serves as the essential bridge
between quantum AI algorithms and quantum computers.

Numerous quantum AI software platforms have been
developed, many of which originate from large commercial
companies. Notable examples includeQiskit [22], TensorFlow
Quantum [23], MindSpore Quantum [24], and QPanda [25].
Tese platforms are typically developed by large quantum
computing teams and are often integrated into general-
purpose AI software frameworks. Tese software platforms
have a large user base and play an indispensable role in
quantum AI research. However, many of them are either not
fully open-source or have complex architectures, making
secondary development challenging. Recently, several excel-
lent lightweight frameworks, such as TorchQuantum [26] and
PennyLaneAI [27], have been open-sourced, contributing
signifcantly to the advancement of quantum AI. Neverthe-
less, these frameworks also have certain limitations, such as
dependencies on third-party packages, which can make it
difcult to integrate user-defned quantum simulators or
quantum computing hardware seamlessly.

To address the aforementioned challenges, this paper
introduces LFQAP, an open-source, lightweight, interface-
fexible, and easily extensible quantum AI application
platform. Te key advantages of LFQAP are as follows. (1)
Tis platform introduces a quantum instruction compiler
module for the frst time, enabling the transformation of the
platform’s instruction set into the instruction sets of any
simulator or real quantum computer. Tis feature signif-
cantly enhances scalability, allowing for seamless integration
of user-defned quantum circuit executors. (2) Te platform
adopts a hierarchical and modular architecture, facilitating
efcient management and extensibility. Tis design enables
the straightforward addition of computational modules,
such as entropy and mutual information. Furthermore, the
platform integrates a density matrix tensor network simu-
lator and a full-amplitude simulator, supports user-defned
noise simulation, and is adaptable to a wide range of ap-
plication scenarios.

In order to verify the reliability of this platform, we
carried out the verifcation experimental on three public
datasets: Iris dataset, Moon dataset, and Original Wisconsin
Breast Cancer dataset. We called the tensor network sim-
ulator and the full-amplitude simulator separately and
compared the results with TensorFlow Quantum, the results
are basically the same, and this confrms the reliability of our
platform.Te source code of the platform is open sourced on
GitHub [28].

2. Our Architecture

Our architecture adopts a hierarchical design, which can
enhance the extensibility and scalability of the platform. Te
overall architecture is illustrated in Figure 1. Te top layer
consists of quantum algorithms and applications. Quantum
algorithms must be written using the instruction specifcation
defned in this work, as detailed in Sections 3.1 and 3.2. Te

middle layer represents the quantum AI training platform,
which is responsible for training the Ansatz parameters of
quantum AI models. Tis layer is composed of three main
components: quantum computing part, classical computing
part, and compiler part. Quantum computing part is used to
calculate gradient, classical part is used to update the pa-
rameters by SGD, Adam, and so on, and compiler part is used
to transform our platform’s instruction specifcation to the
executor’s specifcation. Te bottom layer comprises the
quantum circuit execution platform, which executes quantum
circuits and provides feedback on results. Quantum circuits
can be executed on either a simulator or a real quantum
computer. Tis platform integrates both a tensor network
simulator and a full-amplitude simulator while also sup-
porting the extension to user-defned simulators or physical
quantum hardware, ensuring fexibility and adaptability for
various research and application scenarios.

2.1.Compiler. We defned the instruction set of our platform
in Section 3.1; however, quantum circuit executes on either
a simulation platform or a real quantum computer (col-
lectively referred to as executors), each of which has its own
distinct instruction set. To address this discrepancy, we
design a compiler module that translates our platform’s
instructions into executor-specifc instructions. Te com-
piler plays a crucial role in ensuring the scalability of the
platform. When integrating a new simulation platform or
quantum computer, it is only necessary to modify the
compiler to generate the corresponding target instructions.

Te design of this compiler follows principles similar to
those of traditional compilers [29], consisting of four key
stages: lexical analysis, parsing, semantic analysis, and code
generation.Te specifc processing modules and intermediate
representations are illustrated in Figure 2. In essence, the
compiler translates one programming language into another.
However, unlike traditional compilers, our compiler does not
construct a syntax tree due to the simplicity of the instruction
set, which consists of only 11 instructions. Symbol table serves
as the key module, providing translation rules. Semantic
analysis is performing pattern matching to fnd the target
instruction format based on the keyword. Code generation is
to translate the platform instructions to target format line by
line and get instructions that can be executed on the running
platform. For example, the compiler translates an instruction
from our platform, such as RX2 3.14, into the format required
by a specifc executor, such as Rx3.14 2.

2.2. Gradient Calculation. Classical neural networks typi-
cally utilize backpropagation for gradient computation;
however, QNNs cannot directly employ backpropagation.
Instead, the parameter shift method is commonly used
[30]. Te parameter shift method is essentially a fnite-
diference approach that estimates gradients by evaluating
the circuit output (i.e., the loss function) at shifted pa-
rameter values. By iteratively adjusting the parameters in
this manner, the loss function is minimized, leading to
model convergence. In the following sections, we introduce
the formal defnition of the QNN loss function and provide
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a detailed explanation of the parameter shift method for
gradient computation.

Suppose xi is the i-th sample feature in training dataset
and y is the corresponding label (represented by a vector of
0, 1). First, we encode xi into a quantum state by qubit
encoding or amplitude encoding [31]; for the qubit encoding
method, each feature corresponds to a rotation gate; for the
amplitude encoding method, each feature is mapped to
probability amplitudes of quantum states. Ten, we evolve

the quantum state into� U(θ)|ϕi after Ansatz U(θ), and θ
represents the trainable parameters of Ansatz. In the end, we
get the result after measurement, and the result is hk(xi, θ) �

<Ψ i|Ok|Ψ i > (Ok is the projective measurement, which acts
on kth qubit). In this platform, we used the cross-entropy
loss function, which can be defned as

LCE h xi, θ( 􏼁, y( 􏼁 � 􏽘
k

yk log hk xi, θ( 􏼁( 􏼁. (1)
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Figure 1: Overall architecture of LFQAP.
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For the parameter shift method, the gradient is calcu-
lated by calculating the diference of the circuit output
between the training parameters by adding π/2 and sub-
tracting π/2. Te detailed calculation process is as follows.

Te gradient can be represented as

zLCE h xi, θ( 􏼁, y( 􏼁

zθj

� 􏽘
k

yk

hk xi, θ( 􏼁

zhk xi, θ( 􏼁

zθj

,

zhk xi, θ( 􏼁

zθj

�
hk xi, θ( 􏼁

j+
− hk xi, θ( 􏼁

j−

2
,

(2)

hk(xi, θ)j± denotes the measurement results with the pa-
rameter θj being θj ± π; then we calculate the gradient of θj

of all samples and get their statistical average, and thus we
get the real gradient of θj. User can defne other loss
functions and calculate their gradient, such as mean
square error.

2.3.Optimizer. After obtaining the gradient, the optimizer is
used to update the parameters until the model converges.
For gradient descent, the formula for the parameter update is
given below:

θt+1 � θt − ϵ ·
zL

zθ
, (3)

where θt represents the parameters at the t-th step and ϵ is
the learning rate. In practical applications, we usually choose
stochastic gradient descent or Adam for higher training
performance [32], and these are variants based on gradient
descent. Tese optimizers are integrated into the platform,
and it is also easy to add other types of optimizers.

2.4. Full-Amplitude Simulator. Te full-amplitude simulator
stores all probability amplitudes of quantum states, and these
amplitudes evolve under the action of quantum gates. Tis
approach is particularly advantageous for simulating quantum
circuits with a small number of qubits and deep circuit layers.

Tere are numerous open-source projects for full-
amplitude simulators available on GitHub. In our platform,
we integrate the Quantum-Computing-Library [33], though
we have refactored portions of the original code and removed
certain unused functionalities to optimize performance and
maintainability. Additionally, previous studies have demon-
strated that distributing probability amplitudes across mul-
tiple nodes [34] can signifcantly enhance both the scalability
and performance of quantum simulations.

2.5. Tensor Network Simulator Based on Density Matrix.
Te tensor network simulator is a single-amplitude simulator,
which difers from the full-amplitude simulator in that it does
not require storing all quantum states. Instead, quantum ini-
tialization, gate operations, and measurements are represented
as tensors, and the contraction result of the tensor network
yields the measurement outcome. Since storing the entire
quantum state is unnecessary, the single-amplitude simulator is
capable of simulating larger quantum systems more efciently.

Tere are various implementation approaches for tensor
network simulators. Our platform integrates a density
matrix–based tensor network simulator, originally proposed
byMarkov and Shi [35].Te key advantage of this approach is
its ability to simulate quantum noise using Kraus operators,
allowing users to defne both noise types and intensity. Fried
et al. have open-sourced a quantum computing simulator
based on this methodology [36], which we have incorporated
into our platformwith somemodifcations and optimizations.

Symbol table

Lexical analysis

Code generation

Semantic analysis

Parsing

Source code

Lexeme unit

Syntax tree

Intermediate code

Object code

Figure 2: Flowchart of compiler principles.
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In [37], a distributed tensor network simulation scheme
was proposed, where large tensor networks are decomposed
into multiple smaller tensor networks through tensor net-
work edge cutting. Tese smaller tensor networks can then
be processed in parallel across diferent computing cores. By
leveraging this technique, the authors successfully simulated
a 120-qubit QAOA algorithm using a 4096-core super-
computer. Tis method provides a promising avenue for
large-scale quantum AI training using high-performance
computing infrastructure.

3. Application Specification

Tis section describes the instruction specifcation of this
platform and gives an example of how to train a QNN.

3.1. Instruction Set. Te instruction set (quantum assembly
language) serves as the foundation for writing quantum
algorithms, where each quantum gate typically corresponds
to a single instruction, and the complete set of instructions
constitutes the instruction set. Te general format of
a quantum instruction follows the structure: Instruction
Name+Target Qubit(s) + Parameters; in many cases, some
instruction parameters have default values. Table 1 provides
an overview of the instruction set used in this platform,
which includes single-bit instructions (acting on one bit),
double-bit instructions (acting on two bits), and measure-
ment instructions. Tis project is open-source, allowing
users to add, modify, or remove instructions as needed.

3.2. Instruction Identifers. In order to distinguish the types
of parameters, instruction identifers are added before each
instruction, in three categories.

Te frst type of identifers: ∗. Tis identifer involves
RX, RY, and RZ. Tis type of identifer indicates that
the angle of the rotation gate is read from a fle, and the
index shown in the Table 1 represents the position of
the feature or parameters in the fle, which typically
corresponds to the feature data of a sample.

Te second type of identifers: #.Tis identifer involves
RX, RY, and RZ, this type of identifer means that the
angle of the rotation gate is random initialization, and it
is commonly used for random initialization of training
parameters of QNNs.
Te third type of identifers: &. Tis identifer involves
all type of instructions, for RX, RY, and RZ, and this
means it is rotated by the specifed value. It has no
practical efect on the other instructions, just for
syntactic consistency.

Table 2 presents examples of three types of identifers used
in our platform. Lines 1 and 2 (∗ identifers):Tese indicate that
the 0th and 1st qubits read the corresponding feature data (0th
and 1st) from a fle, enabling sample data loading. Lines 4, 5, 12,
and 13 (# identifers):Tese are used for initializing the training
parameters of the QNN. Lines 8 and 9 (& identifers): Tese
represent fxed (frozen) trainable parameters, meaning these
parameters are set to specifc values and are not updated during
training. Lines 6, 10, 14, and 16:Tese are included for syntactic
consistency and do not carry special functional signifcance.
Line 16: Tis specifes a Pauli-Z measurement on the 1st qubit.

Table 1: Te instruction set for this platform, including the quantum gate type, the corresponding instruction format, and a description of
the parameters in the instruction.

Gate type Instruction format Parameter description
X X n n is the qubit that X gate acts on.
Y Y n n is the qubit that Y gate acts on.
Z Z n n is the qubit that Z gate acts on.
H H n n is the qubit that H gate acts on.

RX RX n index/angle/value n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
sample fle, random initialization or real rotation angle.

RY RY n index/angle/value n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
sample fle, random initialization or real rotation angle.

RZ RZ n index/angle/value n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
sample fle, random initialization or real rotation angle.

CNOT CNOT control target Control is the control qubit, target is the control qubit.
CZ CZ control target Control is the control qubit, target is the control qubit.
SWAP SWAP n1 n2 Swap state of qubits n1 and n2.

MZ MZ n1 n2 . . . nx n1, n2, . . ., nx represent the qubits that MZ gate acts on. MZ gate is the σZ

measurement.

Table 2: Example code for three classes of instruction identifers.

1. ∗ RX 0 0
2. ∗ RX 1 1
3.
4. # RY 0 parameter0
5. # RY 1 parameter1
6. & CNOT 0 1
7.
8. & RX 0 3.14
9. & RX 1 3.14
10. & CNOT 0 1
11.
12. # RY 0 parameter2
13. # RY 1 parameter3
14. & CNOT 0 1
15.
16. & MZ 1

Quantum Engineering 5
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3.3. Platform Operation. Tis section will illustrate how to
train a QNN using our platform, mainly including three
steps.

Step 1: initialization. Tis involves confguring the
number of iterations, selecting either a simulator or
a real quantum computer, specifying the optimizer, and
partitioning the dataset into training and testing sets.
Detailed procedures are provided in the platform ap-
plication description [28]. After initialization, the code
is compiled into an executable fle.
Step 2: training the QNNs. Tis is performed using the
command ./plt network.dat sample.data, where plt is
the executable fle generated after compilation, net-
work.dat specifes the structure of the QNNs, and

sample.data contains the training samples, with each
sample occupying a single row. Table 2 provides
a concrete example of this process.
Step 3: result analysis. Tis step involves analyzing the
loss, accuracy, and other relevant metrics recorded
during training. Furthermore, advanced statistical or
information-theoretic measures, including entropy,
can be computed for deeper insights.

4. Test and Analysis

In order to verify the reliability of this platform, we test it on
three public datasets: Moon (0.2 noise), Iris [38], and
OriginalWisconsin Breast Cancer [39]. We adapt break-wall
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Figure 3: Results comparing our platform with TensorFlow Quantum (TFQ), including both the full-amplitude simulator (FAS) and the
single-amplitude simulator (SAS). Te comparison focuses on the accuracy of the training and test sets of the three datasets. All results are
reported as the statistical average over 10 independent runs, with error bars representing one standard deviation.
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structured QNN Ansatz with depth 4 [11]. We employ the
Adam optimizer and set the number of training iterations to
100. We also compare the results with TensorFlow Quan-
tum. Te results are shown in Figure 2.

We completed the test on three publicly available datasets,
and we statistically fnd the accuracy of both the training and
test sets. Figure 3(a) shows the result of Moon dataset, the
maximum diference between our platform and TFQ of
training set is 2.5%, and the maximum diference between our
platform and TFQ of test set is 2.2%. Figure 3(b) shows the
result of Iris dataset, the maximum diference between our
platform and TFQ of training set is 2.2%, and the maximum
diference between our platform and TFQ of test set is 1.2%.
Figure 3(c) shows the result of Original Wisconsin Breast
Cancer dataset, the maximum diference between our plat-
form and TFQ of training set is 1.7%, and the maximum
diference between our platform and TFQ of test set is 2.6%.
We also counted the standard deviation, which did not exceed
0.04 for all datasets, confrming that the platform is stable.Te
experiment proves the reliability of our platform.

5. Discussion

To accommodate the diverse and evolving needs of quantum
AI algorithm research, we have open-sourced a fexible and
extensible quantum AI application platform. Te platform
adopts a hierarchical design and incorporates a compiler
module, enabling seamless integration of custom simulators
and real quantum computers, as well as additional
functionalities.

To evaluate the reliability of our platform, we conducted
experiments on three public datasets, utilizing both the full-
amplitude simulator and the single-amplitude simulator.We
then compared the results with TensorFlow Quantum, and
the outcomes were generally consistent within an acceptable
range. However, due to the lack of access to a real quantum
computer, we have not yet included test results from actual
quantum hardware. In the future, we plan to further explore
the application of our platform in various scenarios, in-
cluding incremental learning [40].
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