W) Check for updates

Wiley

Quantum Engineering

Volume 2025, Article ID 7359832, 8 pages
https://doi.org/10.1155/que2/7359832

WILEY

Research Article

LFQAP: A Lightweight and Flexible Quantum Artificial
Intelligence Application Platform

Xin Zhang) Xiaoyu Li ,2% and Yuexian Hou '

College of Intelligence and Computing, Tianjin University, No.135, Ya Guan Road, Tianjin 300350, China
2School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, Sichuan, China

’Institute of Electronics and Information Industry Technology of Kash, Kash 844000, Xinjiang, China

Correspondence should be addressed to Yuexian Hou; yxhou@tju.edu.cn
Received 6 January 2025; Accepted 20 March 2025
Academic Editor: Yu-Bo Sheng

Copyright © 2025 Xin Zhang et al. Quantum Engineering published by John Wiley & Sons Ltd. This is an open access article under
the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Quantum artificial intelligence (AI) is one of the critical research domains in the field of quantum computing and holds significant
potential for practical applications in the near future. A quantum Al software platform serves as a fundamental infrastructure for
advancing research and facilitating applications in this area. Such a platform supports essential tasks including quantum AI model
training, inference, and the deployment of diverse applications. The current quantum AI software platforms prioritize com-
prehensive functionality; however, they often lack scalability, making it challenging to integrate new features flexibly. Given the
broad and evolving research landscape of quantum AT algorithms, it is crucial to develop a software framework that is both user-
friendly and capable of autonomous functional extension. In this paper, we present a lightweight, scalable, and open-source
quantum Al platform designed to support the training and inference of variational quantum algorithms. This platform employs
a hierarchical and structured architecture, enhancing the overall manageability and modularity of the software. Notably, it exhibits
improved scalability, incorporating a compiler module for the first time. This module enables support for user-defined quantum
devices, including both real physical quantum computers and quantum circuit simulators, as well as custom-defined optimizers.
The platform integrates both tensor network simulator and full-amplitude simulator, providing powerful ability for quantum Al
research. Utilizing these simulators, we conducted training experiments on three publicly available datasets and compared the
results with TensorFlow Quantum. The experimental results validate the reliability and effectiveness of our platform, demon-
strating its potential as a powerful tool for quantum AI applications.

1. Introduction varjational method, with QNNs serving as a prominent

representative of this category. In recent years, significant

Quantum artificial intelligence (AI) represents a significant
class of quantum algorithms and is among the most ex-
tensively studied areas in quantum computing. It encom-
passes a diverse range of algorithms, including quantum
neural networks (QNNs) [1-5], quantum approximate op-
timization algorithm (QAOA) [6], quantum principal
component analysis (quantum PCA) [7], and quantum
support vector machines (quantum SVMs) [3, 8, 9], among
others. In this paper, the term “quantum AI” specifically
refers to quantum AI algorithms based on the quantum

progress has been made in the field of QNNs, including
interpretability of QNNs [10, 11], demonstrated advantages
[12-15], robustness [16, 17], and quantum generative
adversarial networks (quantum GANs) [18-20]. Moreover,
due to the relatively shallow circuit depth of quantum Al
algorithms, they exhibit strong potential for noise robust-
ness. This characteristic makes quantum Al particularly
promising for practical applications in the noisy
intermediate-scale quantum (NISQ) era. For instance, re-
search has explored the application of quantum AI in the

https://orcid.org/0000-0002-7947-916X
https://orcid.org/0000-0001-6586-4705
https://orcid.org/0000-0002-3238-493X
mailto:yxhou@tju.edu.cn
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1155%2Fque2%2F7359832&domain=pdf&date_stamp=2025-04-19

field of smart manufacturing [21]. As the saying goes, “To do
a good job, one must first sharpen one’s tools.” A well-
designed quantum Al platform is crucial for advancing
quantum Al research, as it serves as the essential bridge
between quantum Al algorithms and quantum computers.

Numerous quantum Al software platforms have been
developed, many of which originate from large commercial
companies. Notable examples include Qiskit [22], TensorFlow
Quantum [23], MindSpore Quantum [24], and QPanda [25].
These platforms are typically developed by large quantum
computing teams and are often integrated into general-
purpose Al software frameworks. These software platforms
have a large user base and play an indispensable role in
quantum Al research. However, many of them are either not
fully open-source or have complex architectures, making
secondary development challenging. Recently, several excel-
lent lightweight frameworks, such as TorchQuantum [26] and
PennyLaneAl [27], have been open-sourced, contributing
significantly to the advancement of quantum AI. Neverthe-
less, these frameworks also have certain limitations, such as
dependencies on third-party packages, which can make it
difficult to integrate user-defined quantum simulators or
quantum computing hardware seamlessly.

To address the aforementioned challenges, this paper
introduces LFQAP, an open-source, lightweight, interface-
flexible, and easily extensible quantum AI application
platform. The key advantages of LFQAP are as follows. (1)
This platform introduces a quantum instruction compiler
module for the first time, enabling the transformation of the
platform’s instruction set into the instruction sets of any
simulator or real quantum computer. This feature signifi-
cantly enhances scalability, allowing for seamless integration
of user-defined quantum circuit executors. (2) The platform
adopts a hierarchical and modular architecture, facilitating
efficient management and extensibility. This design enables
the straightforward addition of computational modules,
such as entropy and mutual information. Furthermore, the
platform integrates a density matrix tensor network simu-
lator and a full-amplitude simulator, supports user-defined
noise simulation, and is adaptable to a wide range of ap-
plication scenarios.

In order to verify the reliability of this platform, we
carried out the verification experimental on three public
datasets: Iris dataset, Moon dataset, and Original Wisconsin
Breast Cancer dataset. We called the tensor network sim-
ulator and the full-amplitude simulator separately and
compared the results with TensorFlow Quantum, the results
are basically the same, and this confirms the reliability of our
platform. The source code of the platform is open sourced on
GitHub [28].

2. Our Architecture

Our architecture adopts a hierarchical design, which can
enhance the extensibility and scalability of the platform. The
overall architecture is illustrated in Figure 1. The top layer
consists of quantum algorithms and applications. Quantum
algorithms must be written using the instruction specification
defined in this work, as detailed in Sections 3.1 and 3.2. The

Quantum Engineering

middle layer represents the quantum Al training platform,
which is responsible for training the Ansatz parameters of
quantum AI models. This layer is composed of three main
components: quantum computing part, classical computing
part, and compiler part. Quantum computing part is used to
calculate gradient, classical part is used to update the pa-
rameters by SGD, Adam, and so on, and compiler part is used
to transform our platform’s instruction specification to the
executor’s specification. The bottom layer comprises the
quantum circuit execution platform, which executes quantum
circuits and provides feedback on results. Quantum circuits
can be executed on either a simulator or a real quantum
computer. This platform integrates both a tensor network
simulator and a full-amplitude simulator while also sup-
porting the extension to user-defined simulators or physical
quantum hardware, ensuring flexibility and adaptability for
various research and application scenarios.

2.1. Compiler. We defined the instruction set of our platform
in Section 3.1; however, quantum circuit executes on either
a simulation platform or a real quantum computer (col-
lectively referred to as executors), each of which has its own
distinct instruction set. To address this discrepancy, we
design a compiler module that translates our platform’s
instructions into executor-specific instructions. The com-
piler plays a crucial role in ensuring the scalability of the
platform. When integrating a new simulation platform or
quantum computer, it is only necessary to modify the
compiler to generate the corresponding target instructions.

The design of this compiler follows principles similar to
those of traditional compilers [29], consisting of four key
stages: lexical analysis, parsing, semantic analysis, and code
generation. The specific processing modules and intermediate
representations are illustrated in Figure 2. In essence, the
compiler translates one programming language into another.
However, unlike traditional compilers, our compiler does not
construct a syntax tree due to the simplicity of the instruction
set, which consists of only 11 instructions. Symbol table serves
as the key module, providing translation rules. Semantic
analysis is performing pattern matching to find the target
instruction format based on the keyword. Code generation is
to translate the platform instructions to target format line by
line and get instructions that can be executed on the running
platform. For example, the compiler translates an instruction
from our platform, such as RX2 3.14, into the format required
by a specific executor, such as Rx3.14 2.

2.2. Gradient Calculation. Classical neural networks typi-
cally utilize backpropagation for gradient computation;
however, QNNs cannot directly employ backpropagation.
Instead, the parameter shift method is commonly used
[30]. The parameter shift method is essentially a finite-
difference approach that estimates gradients by evaluating
the circuit output (i.e., the loss function) at shifted pa-
rameter values. By iteratively adjusting the parameters in
this manner, the loss function is minimized, leading to
model convergence. In the following sections, we introduce
the formal definition of the QNN loss function and provide

8SUSD 17 SLOWIWOD SAIERID 3dedtidde au3 Ag pausonob a1e sapiie YO ‘38N Jo sajnu oy Aeiqi auljuo 8|1 Lo (Suoipuod-pue-stuelLod Ao |1 Afeid 1 pu1|uo//:Sany) SUOIIPUOD pue SWS L dU1 885 *[G202/70/6¢] Uo AfiqiTauliuo A1 Yeylo!|diqenusz - AS3d Aq zeg865e./zanb/SSTT 0T/10p/u0d Ao | Aelq 1 put|uo//sdny wo.y papeo|umod ‘T ‘Ge0g ‘anb

Quantum Engineering

Supervised Entropy and Quantum Hybrid
legrnin information noise quantum-classical
8 calculation processing computing
Quantum algorithms and applications
T T T i . H
| 1 1 \
' Gradient ' i !
! calculation | | o !
| i | Optimizer 1
I I
| | | | i
I I
| ' :<::>: RIAEN |
| Parameter shift ! I 7 } S X
I - ~
: I I 7 | N :
1 I I - | ~ 1
1 ! | S | S 1
! Quantum computing part i i < ‘ !
e ' Stochastic Self-defined !
ﬁ \ gradient Adam other !
e q i descent optimizer !
! Our Executor | i !
! .) = . ! i | !
: instruction instruction | H :
! 1
I | I
| ! i Classical computing part |
| Compiler part ! | ! puting p |
b emmmm e L o B
NN
/NN =< SRR . P
/N . “Quantum artificial intelligence training platform
// \\ s N) I
g \ ~ T~<
/ \ ~ N =S~ -
/ \ ~ S~
/ N RN T~a
/ \ ~ =~
/ \ N T~<
/ \ ~ S~
/ N s ~ T~ ~<
/ \ ~ N .
il 7T TmT oo B e i i i S
I ! I I
I i | |
| . Tensor Self-defined i i Self-defined |
i Full-amplitude ! | I
1 simulator network other ! i quantum 1
\ simulator simulator | ! computers i
| ! | I
I
i v i
I i I . l
! | ! Real physical !
! Quantum circuit simulation platform ! ! quantum computers !
| \ I I
e e e e e e e e e, e e, e, — e ——————— L T 4
Quantum circuit execution platform

FiGure 1: Overall architecture of LFQAP.

a detailed explanation of the parameter shift method for
gradient computation.

Suppose x; is the i-th sample feature in training dataset
and y is the corresponding label (represented by a vector of
0, 1). First, we encode x; into a quantum state by qubit
encoding or amplitude encoding [31]; for the qubit encoding
method, each feature corresponds to a rotation gate; for the
amplitude encoding method, each feature is mapped to
probability amplitudes of quantum states. Then, we evolve

the quantum state into =U (0)|¢; after Ansatz U (6), and 6
represents the trainable parameters of Ansatz. In the end, we
get the result after measurement, and the result is /. (x;, 0) =
< YO IY; > (O is the projective measurement, which acts
on kth qubit). In this platform, we used the cross-entropy
loss function, which can be defined as

Leg (h(x,6), y) = %yk log (. (x;, 6))- (1)

BSUB17 SUOLULLOD 3AIB.1D B|dfedt|dde au3 Aq peueA0f e IR VO ‘88N JO S3|NJ 0} AReiqT 8UIUO /8|1 UO (SUORIPLOD-pUR-SWLRHLLOD™AB | 1M Afe.q 1 BU1|UO//SANY) SUO RIPUOD Pue swid | 8u) 88s *[S20e/v0/62] Uo Ariqiauliuo A8|IMm Yeuoliqiqrauez - AS3A Ad Ze865€./2enb/SSTT 0T/I0p/wo0 A8 | M ARIq1 U1 |UO//SARY WO} papeo|umoq ‘T ‘SZ0e ‘enb

Symbol table

Quantum Engineering

Source code

Lexical analysis

Lexeme unit

Parsing

Syntax tree

Semantic analysis

Intermediate code

Code generation

Object code

FiGgure 2: Flowchart of compiler principles.

For the parameter shift method, the gradient is calcu-
lated by calculating the difference of the circuit output
between the training parameters by adding n/2 and sub-
tracting 71/2. The detailed calculation process is as follows.

The gradient can be represented as

OLcg (h(x;,6),) _ D Vi Ohy(x;,0)

2, = e (x,0) 00,
, , (2)

ol (x,6) _ hy (i 0)"" - hyi (x:,6)"

00; 2 ’

hy (x;,0)* denotes the measurement results with the pa-
rameter ¢; being 6; + 7; then we calculate the gradient of 6,
of all samples and get their statistical average, and thus we
get the real gradient of 6;. User can define other loss
functions and calculate their gradient, such as mean
square error.

2.3. Optimizer. After obtaining the gradient, the optimizer is
used to update the parameters until the model converges.
For gradient descent, the formula for the parameter update is
given below:

001 =6, —¢- (3)

o0’
where 6, represents the parameters at the t-th step and € is
the learning rate. In practical applications, we usually choose
stochastic gradient descent or Adam for higher training
performance [32], and these are variants based on gradient
descent. These optimizers are integrated into the platform,
and it is also easy to add other types of optimizers.

2.4. Full-Amplitude Simulator. The full-amplitude simulator
stores all probability amplitudes of quantum states, and these
amplitudes evolve under the action of quantum gates. This
approach is particularly advantageous for simulating quantum
circuits with a small number of qubits and deep circuit layers.

There are numerous open-source projects for full-
amplitude simulators available on GitHub. In our platform,
we integrate the Quantum-Computing-Library [33], though
we have refactored portions of the original code and removed
certain unused functionalities to optimize performance and
maintainability. Additionally, previous studies have demon-
strated that distributing probability amplitudes across mul-
tiple nodes [34] can significantly enhance both the scalability
and performance of quantum simulations.

2.5. Tensor Network Simulator Based on Density Matrix.
The tensor network simulator is a single-amplitude simulator,
which differs from the full-amplitude simulator in that it does
not require storing all quantum states. Instead, quantum ini-
tialization, gate operations, and measurements are represented
as tensors, and the contraction result of the tensor network
yields the measurement outcome. Since storing the entire
quantum state is unnecessary, the single-amplitude simulator is
capable of simulating larger quantum systems more efficiently.

There are various implementation approaches for tensor
network simulators. Our platform integrates a density
matrix-based tensor network simulator, originally proposed
by Markov and Shi [35]. The key advantage of this approach is
its ability to simulate quantum noise using Kraus operators,
allowing users to define both noise types and intensity. Fried
et al. have open-sourced a quantum computing simulator
based on this methodology [36], which we have incorporated
into our platform with some modifications and optimizations.

8SUSD 17 SLOWIWOD SAIERID 3dedtidde au3 Ag pausonob a1e sapiie YO ‘38N Jo sajnu oy Aeiqi auljuo 8|1 Lo (Suoipuod-pue-stuelLod Ao |1 Afeid 1 pu1|uo//:Sany) SUOIIPUOD pue SWS L dU1 885 *[G202/70/6¢] Uo AfiqiTauliuo A1 Yeylo!|diqenusz - AS3d Aq zeg865e./zanb/SSTT 0T/10p/u0d Ao | Aelq 1 put|uo//sdny wo.y papeo|umod ‘T ‘Ge0g ‘anb

Quantum Engineering 5

TaBLE 1: The instruction set for this platform, including the quantum gate type, the corresponding instruction format, and a description of
the parameters in the instruction.

Gate type Instruction format Parameter description
X Xn n is the qubit that X gate acts on.
Y Yn n is the qubit that Y gate acts on.
z Zn n is the qubit that Z gate acts on.
H Hn n is the qubit that H gate acts on.
RX RX 7 index/anele/value n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
& sample file, random initialization or real rotation angle.
. n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
RY RY n index/angle/value sample file, random initialization or real rotation angle.
. n is the qubit that RX gate acts on, index/angle/value is the rotation angle from
RZ RZ n index/angle/value sample file, random initialization or real rotation angle.
CNOT CNOT control target Control is the control qubit, target is the control qubit.
CZ CZ control target Control is the control qubit, target is the control qubit.
SWAP SWAP nl n2 Swap state of qubits nl and n2.
M7 MZ nl n2 i nl, n2, ..., nx represent the qubits that MZ gate acts on. MZ gate is the 7,

measurement.

In [37], a distributed tensor network simulation scheme
was proposed, where large tensor networks are decomposed
into multiple smaller tensor networks through tensor net-
work edge cutting. These smaller tensor networks can then
be processed in parallel across different computing cores. By
leveraging this technique, the authors successfully simulated
a 120-qubit QAOA algorithm using a 4096-core super-
computer. This method provides a promising avenue for
large-scale quantum AI training using high-performance
computing infrastructure.

3. Application Specification

This section describes the instruction specification of this
platform and gives an example of how to train a QNN.

3.1. Instruction Set. 'The instruction set (quantum assembly
language) serves as the foundation for writing quantum
algorithms, where each quantum gate typically corresponds
to a single instruction, and the complete set of instructions
constitutes the instruction set. The general format of
a quantum instruction follows the structure: Instruction
Name + Target Qubit(s) + Parameters; in many cases, some
instruction parameters have default values. Table 1 provides
an overview of the instruction set used in this platform,
which includes single-bit instructions (acting on one bit),
double-bit instructions (acting on two bits), and measure-
ment instructions. This project is open-source, allowing
users to add, modify, or remove instructions as needed.

3.2. Instruction Identifiers. In order to distinguish the types
of parameters, instruction identifiers are added before each
instruction, in three categories.

The first type of identifiers: *. This identifier involves
RX, RY, and RZ. This type of identifier indicates that
the angle of the rotation gate is read from a file, and the
index shown in the Table 1 represents the position of
the feature or parameters in the file, which typically
corresponds to the feature data of a sample.

TaBLE 2: Example code for three classes of instruction identifiers.

1.* RX00
2.xRX11

3.

4. # RY 0 parameter0
5. # RY 1 parameterl
6. & CNOT 01

7.

8. & RX 0 3.14

9. & RX 13.14

10. & CNOT 01

11

12. # RY 0 parameter2
13. # RY 1 parameter3
14. & CNOT 01

15.

16. & MZ 1

The second type of identifiers: #. This identifier involves
RX, RY, and RZ, this type of identifier means that the
angle of the rotation gate is random initialization, and it
is commonly used for random initialization of training
parameters of QNNGs.

The third type of identifiers: &. This identifier involves
all type of instructions, for RX, RY, and RZ, and this
means it is rotated by the specified value. It has no
practical effect on the other instructions, just for
syntactic consistency.

Table 2 presents examples of three types of identifiers used
in our platform. Lines 1 and 2 (* identifiers): These indicate that
the Oth and 1st qubits read the corresponding feature data (Oth
and 1st) from a file, enabling sample data loading. Lines 4, 5, 12,
and 13 (# identifiers): These are used for initializing the training
parameters of the QNN. Lines 8 and 9 (& identifiers): These
represent fixed (frozen) trainable parameters, meaning these
parameters are set to specific values and are not updated during
training. Lines 6, 10, 14, and 16: These are included for syntactic
consistency and do not carry special functional significance.
Line 16: This specifies a Pauli-Z measurement on the 1st qubit.

8SUSD 17 SLOWIWOD SAIERID 3dedtidde au3 Ag pausonob a1e sapiie YO ‘38N Jo sajnu oy Aeiqi auljuo 8|1 Lo (Suoipuod-pue-stuelLod Ao |1 Afeid 1 pu1|uo//:Sany) SUOIIPUOD pue SWS L dU1 885 *[G202/70/6¢] Uo AfiqiTauliuo A1 Yeylo!|diqenusz - AS3d Aq zeg865e./zanb/SSTT 0T/10p/u0d Ao | Aelq 1 put|uo//sdny wo.y papeo|umod ‘T ‘Ge0g ‘anb

0.9

0.85

0.8

0.75

Accuracy

e
N

0.65

0.6
Training set Test set

Moon

B FAS
= SAS
m TFQ

(a)

Accuracy

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Quantum Engineering

Training set Test set
Iris
B FAS

m SAS
m TFQ

(b)

Accuracy
j=}
~
w

0.7

0.65

0.6

Training set

Test set

Original Wisconsin Breast Cancer

M FAS
W SAS
m TFQ

(©

FIGURE 3: Results comparing our platform with TensorFlow Quantum (TFQ), including both the full-amplitude simulator (FAS) and the
single-amplitude simulator (SAS). The comparison focuses on the accuracy of the training and test sets of the three datasets. All results are
reported as the statistical average over 10 independent runs, with error bars representing one standard deviation.

3.3. Platform Operation. 'This section will illustrate how to
train a QNN using our platform, mainly including three
steps.

Step 1: initialization. This involves configuring the
number of iterations, selecting either a simulator or
areal quantum computer, specifying the optimizer, and
partitioning the dataset into training and testing sets.
Detailed procedures are provided in the platform ap-
plication description [28]. After initialization, the code
is compiled into an executable file.

Step 2: training the QNNgs. This is performed using the
command ./plt network.dat sample.data, where plt is
the executable file generated after compilation, net-
work.dat specifies the structure of the QNNs, and

sample.data contains the training samples, with each
sample occupying a single row. Table 2 provides
a concrete example of this process.

Step 3: result analysis. This step involves analyzing the
loss, accuracy, and other relevant metrics recorded
during training. Furthermore, advanced statistical or
information-theoretic measures, including entropy,
can be computed for deeper insights.

4. Test and Analysis

In order to verify the reliability of this platform, we test it on
three public datasets: Moon (0.2 noise), Iris [38], and
Original Wisconsin Breast Cancer [39]. We adapt break-wall

25190117 SUOLLLIOD 9A11E810 3ot idde 8Ly Aq peuanob a2 il WO ‘38N J0 SN 10} AIRIGITUIIUO 3| LO (SUOIPLOD-PUE-SUWLS W00 A3 | W A2 1[Bu 1 |Uo//Sdu) SUOBIPUOD PLe S 18U 95 *[G202/70/62] U0 AIqIT2UIIUO A1 BUI01IdIqRIUSZ - ASAA Ad ZE86SEL/ZoNb/GGTT OT/10pALI0D B | 1M AIRIGIPUIUO//'ScY WO1 Papeo|umoq T ‘G20z ‘anb

Quantum Engineering

structured QNN Ansatz with depth 4 [11]. We employ the
Adam optimizer and set the number of training iterations to
100. We also compare the results with TensorFlow Quan-
tum. The results are shown in Figure 2.

We completed the test on three publicly available datasets,
and we statistically find the accuracy of both the training and
test sets. Figure 3(a) shows the result of Moon dataset, the
maximum difference between our platform and TFQ of
training set is 2.5%, and the maximum difference between our
platform and TFQ of test set is 2.2%. Figure 3(b) shows the
result of Iris dataset, the maximum difference between our
platform and TFQ of training set is 2.2%, and the maximum
difference between our platform and TFQ of test set is 1.2%.
Figure 3(c) shows the result of Original Wisconsin Breast
Cancer dataset, the maximum difference between our plat-
form and TFQ of training set is 1.7%, and the maximum
difference between our platform and TFQ of test set is 2.6%.
We also counted the standard deviation, which did not exceed
0.04 for all datasets, confirming that the platform is stable. The
experiment proves the reliability of our platform.

5. Discussion

To accommodate the diverse and evolving needs of quantum
AT algorithm research, we have open-sourced a flexible and
extensible quantum Al application platform. The platform
adopts a hierarchical design and incorporates a compiler
module, enabling seamless integration of custom simulators
and real quantum computers, as well as additional
functionalities.

To evaluate the reliability of our platform, we conducted
experiments on three public datasets, utilizing both the full-
amplitude simulator and the single-amplitude simulator. We
then compared the results with TensorFlow Quantum, and
the outcomes were generally consistent within an acceptable
range. However, due to the lack of access to a real quantum
computer, we have not yet included test results from actual
quantum hardware. In the future, we plan to further explore
the application of our platform in various scenarios, in-
cluding incremental learning [40].

Data Availability Statement

The simulation data used to support the findings of this
study are included within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding

This work was supported in part by the National Natural
Science Foundation of China under grant no. 62472072.

Acknowledgments

The authors thank J. Jiang for the comparison experiment
with TensorFlow Quantum.

References

[1] E. Farhi and H. Neven, “Classification With Quantum Neural
Networks on Near Term Processors,” (2018), https://arxiv.
org/abs/1802.06002.

[2] M. Schuld, A. Bocharov, K. M. Svore, N. Wiebe, and

N. Wiebe, “Circuit-Centric Quantum Classifiers,” Physical

Review A 101, no. 3 (2020): 032308, https://doi.org/10.1103/

physreva.101.032308.

M. Schuld, “Supervised Quantum Machine Learning Models

Are Kernel Methods,” (2021), https://arxiv.org/abs/2101.

11020.

M. Schuld, R. Sweke, J. J. Meyer, and J. J. Meyer, “Effect of Data

Encoding on the Expressive Power of Variational Quantum-

Machine-Learning Models,” Physical Review A 103, no. 3

(2021): 032430, https://doi.org/lO.l103/physreva.103.032430.

S.Jerbi, L. J. Fiderer, H. P. Nautrup, J. M. Kiibler, H. J. Briegel,

and V. Dunjko, “Quantum Machine Learning beyond Kernel

Methods,” Nature Communications 14, no. 1 (2023): 517,

https://doi.org/10.1038/s41467-023-36159-y.

E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Ap-

proximate Optimization Algorithm,” (2014), https://arxiv.

org/abs/1411.4028.

S. Lloyd, M. Mohseni, P. Rebentrost, and P. Rebentrost,

“Quantum Principal Component Analysis,” Nature Physics

10, no. 9 (2014): 631-633, https://doi.org/10.1038/nphys3029.

P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support

Vector Machine for Big Data Classification,” Physical Review

Letters 113, no. 13 (2014): 130503, https://doi.org/10.1103/

physrevlett.113.130503.

[9] K. Bartkiewicz, C. Gneiting, A. Cernoch, K. Jirdkova, K. Lemr,
and F. Nori, “Experimental Kernel-Based Quantum Machine
Learning in Finite Feature Space,” Scientific Reports 10 (2020):
12356.

[10] S. Lloyd, M. Schuld, A. Jjaz, J. Izaac, and N. Killoran,
“Quantum Embeddings for Machine Learning,” (2020),
https://arxiv.org/abs/2001.03622.

[11] H. Shen, P. Zhang, Y. Z. You, H. Zhai, and H. Zhai, “In-
formation Scrambling in Quantum Neural Networks,”
Physical Review Letters 124, no. 20 (2020): 200504, https://
doi.org/10.1103/physrevlett.124.200504.

[12] Y. Liu, S. Arunachalam, and K. Temme, “A Rigorous and
Robust Quantum Speed-Up in Supervised Machine Learn-
ing,” Nature Physics 17 (2021): 1013-1017.

[13] H.-Y. Huang, M. Broughton, M. Mobhseni, et al., “Power of
Data in Quantum Machine Learning,” Nature Communica-
tions 12, no. 1 (2021): 2631, https://doi.org/10.1038/s41467-
021-22539-9.

[14] J. Jiang, Y. Zhao, R. Li, et al, “Strong Generalization in
Quantum Neural Networks,” Quantum Information Pro-
cessing 22 (2023): 428.

[15] Y. Du, M. H. Hsieh, T. Liu, S. You, D. Tao, and D. Tao,
“Learnability of Quantum Neural Networks,” PRX Quan-
tum 2, no. 4 (2021): 040337, https://doi.org/10.1103/
prxquantum.2.040337.

[16] Y. Du, M. H. Hsieh, T. Liu, D. Tao, N. Liu, and N. Liu,
“Quantum Noise Protects Quantum Classifiers Against Ad-
versaries,” Physical Review Research 3, no. 2 (2021): 023153,
https://doi.org/10.1103/physrevresearch.3.023153.

[17] W. Ren, W. Li, S. Xu, et al, “Experimental Quantum
Adversarial Learning With Programmable Superconducting
Qubits,” Nature Computational Science 2 (2022): 711-717.

[18] S. Lloyd and C. Weedbrook, “Quantum Generative Adver-
sarial Learning,” Physical Review Letters 121 (2018): 040502.

[3

[4

[5

[6

[7

[8

8SUSD 17 SLOWIWOD SAIERID 3dedtidde au3 Ag pausonob a1e sapiie YO ‘38N Jo sajnu oy Aeiqi auljuo 8|1 Lo (Suoipuod-pue-stuelLod Ao |1 Afeid 1 pu1|uo//:Sany) SUOIIPUOD pue SWS L dU1 885 *[G202/70/6¢] Uo AfiqiTauliuo A1 Yeylo!|diqenusz - AS3d Aq zeg865e./zanb/SSTT 0T/10p/u0d Ao | Aelq 1 put|uo//sdny wo.y papeo|umod ‘T ‘Ge0g ‘anb

https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/1802.06002
http://doi.org/10.1103/physreva.101.032308
http://doi.org/10.1103/physreva.101.032308
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/2101.11020
http://doi.org/10.1103/physreva.103.032430
http://doi.org/10.1038/s41467-023-36159-y
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
http://doi.org/10.1038/nphys3029
http://doi.org/10.1103/physrevlett.113.130503
http://doi.org/10.1103/physrevlett.113.130503
https://arxiv.org/abs/2001.03622
http://doi.org/10.1103/physrevlett.124.200504
http://doi.org/10.1103/physrevlett.124.200504
http://doi.org/10.1038/s41467-021-22539-9
http://doi.org/10.1038/s41467-021-22539-9
http://doi.org/10.1103/prxquantum.2.040337
http://doi.org/10.1103/prxquantum.2.040337
http://doi.org/10.1103/physrevresearch.3.023153

[19] L. Hu, S.-H. Wu, W. Cai, et al., “Quantum Generative
Adversarial Learning in a Superconducting Quantum Cir-
cuit,” Science Advances 5, no. 1 (2019): eaav2761, https://
doi.org/10.1126/sciadv.aav2761.

[20] K. Huang, Z.-An Wang, C. Song, et al., “Quantum Generative
Adversarial Networks With Multiple Superconducting
Qubits,” Quantum Information 7 (2021): 165.

[21] V. S. Narwane, A. Gunasekaran, B. B. Gardas, and
P. Sirisomboonsuk, “Quantum Machine Learning a New
Frontier in Smart Manufacturing: A Systematic Literature
Review From Period 1995 to 2021,” International Journal of
Computer Integrated Manufacturing 38, no. 1 (2025): 116-135,
https://doi.org/10.1080/0951192x.2023.2294441.

[22] A. Javadi-Abhari, M. Treinish, K. Krsulich, et al., Quantum
Computing With Qiskit (2024), https://arxiv.org/abs/2405.
08810.

[23] M. Broughton, G. Verdon, T. McCourt, et al., “TensorFlow
Quantum: A Software Framework for Quantum Machine
Learning,” (2020), https://arxiv.org/abs/2003.02989.

[24] X. Xu, J. Cui, Z. Cui, et al., “MindSpore Quantum: A User-
Friendly, High-Performance, and AI-Compatible Quantum
Computing Framework,” (2024), https://arxiv.org/abs/2406.
17248.

[25] M. Dou, T. Zou, Y. Fang, et al., “QPanda: High-Performance
Quantum Computing Framework for Multiple Application
Scenarios,” (2022), https://arxiv.org/abs/2212.14201.

[26] H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, and F. T. Chong,
“QuantumNAS: Noise-Adaptive Search for Robust Quantum
Circuits,” in Proceedings of the 2022 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA) (Seoul, Republic of Korea, 2022).

[27] V. Bergholm, J. Izaac, M. Schuld, et al., “PennyLane: Auto-
matic Differentiation of Hybrid Quantum-Classical Com-
putations,” (2018), https://arxiv.org/abs/1811.04968.

[28] https://github.com/xzphys/LFQAP.

[29] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, 2nd ed. (Addison-Wesley
Longman Publishing Co., Inc, 2026).

[30] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran, and
N. Killoran, “Evaluating Analytic Gradients on Quantum
Hardware,” Physical Review A 99, no. 3 (2019): 032331,
https://doi.org/10.1103/physreva.99.032331.

[31] R. LaRose and B. Coyle, “Robust Data Encodings for
Quantum Classifiers,” Physical Review A 102 (2020): 032420.

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” (2017), https://arxiv.org/abs/1412.6980.

[33] https://github.com/AbeerVaishnavl3/Quantum-Computing-
Library/tree/master.

[34] H. De Raedt, F. Jin, D. Willsch, et al., “Massively Parallel
Quantum Computer Simulator, Eleven Years Later,” Com-
puter Physics Communications 237 (2019): 47-61.

[35] L. L. Markov and Y. Shi, “Simulating Quantum Computation
by Contracting Tensor Networks,” SIAM Journal on Com-
puting 38, no. 3 (2008): 963-981, https://doi.org/10.1137/
050644756.

[36] E.S.Fried, N.P. D. Sawaya, Y. Cao, et al., “qTorch: The Quantum
Tensor Contraction Handler,” PLoS One 13, no. 12 (2018):
€0208510, https://doi.org/10.1371/journal.pone.0208510.

[37] Ya-Q. Zhao, R.-G. Li, J.-Z. Jiang, et al, “Simulation of
Quantum Computing on Classical Supercomputers With
Tensor-Network Edge Cutting,” Physical Review A 104 (2021):
032603.

[38] R. A. Fisher, “The Use of Multiple Measurements in Taxo-
nomic Problems,” Annals of Eugenics 7 (1936): 179-188.

Quantum Engineering

[39] W. William, “Breast Cancer Wisconsin (Original) [Dataset],”
UCI Machine Learning Repository (1990): https://doi.org/
10.24432/C5HP4Z.

[40] L.Li, J. Li, Y. Song, S. Qin, Q. Wen, and F. Gao, “An Efficient
Quantum Proactive Incremental Learning Algorithm,” Sci-
ence China Physics, Mechanics & Astronomy 68 (2025).

8SUSD 17 SLOWIWOD SAIERID 3dedtidde au3 Ag pausonob a1e sapiie YO ‘38N Jo sajnu oy Aeiqi auljuo 8|1 Lo (Suoipuod-pue-stuelLod Ao |1 Afeid 1 pu1|uo//:Sany) SUOIIPUOD pue SWS L dU1 885 *[G202/70/6¢] Uo AfiqiTauliuo A1 Yeylo!|diqenusz - AS3d Aq zeg865e./zanb/SSTT 0T/10p/u0d Ao | Aelq 1 put|uo//sdny wo.y papeo|umod ‘T ‘Ge0g ‘anb

http://doi.org/10.1126/sciadv.aav2761
http://doi.org/10.1126/sciadv.aav2761
http://doi.org/10.1080/0951192x.2023.2294441
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/2406.17248
https://arxiv.org/abs/2406.17248
https://arxiv.org/abs/2212.14201
https://arxiv.org/abs/1811.04968
https://github.com/xzphys/LFQAP
http://doi.org/10.1103/physreva.99.032331
https://arxiv.org/abs/1412.6980
https://github.com/AbeerVaishnav13/Quantum-Computing-Library/tree/master
https://github.com/AbeerVaishnav13/Quantum-Computing-Library/tree/master
http://doi.org/10.1137/050644756
http://doi.org/10.1137/050644756
http://doi.org/10.1371/journal.pone.0208510
http://doi.org/10.24432/C5HP4Z
http://doi.org/10.24432/C5HP4Z

	LFQAP: A Lightweight and Flexible Quantum Artificial Intelligence Application Platform
	1. Introduction
	2. Our Architecture
	2.1. Compiler
	2.2. Gradient Calculation
	2.3. Optimizer
	2.4. Full-Amplitude Simulator
	2.5. Tensor Network Simulator Based on Density Matrix

	3. Application Specification
	3.1. Instruction Set
	3.2. Instruction Identifiers
	3.3. Platform Operation

	4. Test and Analysis
	5. Discussion
	Data Availability Statement
	Conflicts of Interest
	Funding
	Acknowledgments
	References

