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Superior memory efficiency of quantum devices for the
simulation of continuous-time stochastic processes

Thomas J. Elliott’? and Mile Gu@®'?*3

Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great
utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about
past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However,
quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future
of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show
that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite
quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue
simulation of continuous-time renewal processes with a quantum machine.
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INTRODUCTION

Our experience of the world manifests as a series of observations.
The goal of science is to provide a consistent explanation for
these, and further, make predictions about future observations.
That is, science aims to provide a model of Nature, to describe the
processes that give rise to the observations. It is possible to devise
many different models that make identical predictions, and so it is
desirable to have criteria that discern the ‘best’ model. One such
guiding philosophy is Occam’s razor “plurality should not be
posited without necessity”, which can be interpreted as requiring
that a model should be the ‘simplest’ that accurately describes our
observations.

This now leaves us with the question of how to determine the
simplest model. The field of computational mechanics' seeks to
answer this, defining the optimal predictive model of a process to
be that which requires the least information about the past in
order to predict the future, and uses this minimal memory
requirement as a measure of complexity. There is motivation for
preferring simpler models beyond the inclination for elegance; it
allows one to make more fundamental statements about the
processes themselves, due to their irreducible nature® More
pragmatically, it also facilitates the building of simulators (devices
emulating the behaviour of the system (Fig. 1)) for the process, as
simpler models require fewer resources (here, internal memory).

Discrete-time processes have been well-studied within the
computational mechanics framework.>™'® However, it has recently
been shown that quantum machines can be constructed that in
general exhibit a lower complexity, and hence a lower memory
requirement, than their optimal classical counterparts.'””2* This
substantiates the perhaps surprising notion that a quantum device
can be more efficient than a classical system, even for the
simulation of a purely classical stochastic process. This has recently
been verified experimentally.?’

Continuous-time processes have also recently been the focus of
computational mechanics studies.’®*” While the principles of
optimality for discrete-time processes can be directly exported to
the continuous-time case, systematic study of the underlying
architecture has only been carried out for a restricted set of
processes; renewal processes.”” Renewal theory describes a
generalisation of Poisson processes,?®?° where a system emits at
a time drawn from a probabilistic distribution, before returning to
its initial state (one can also view this as a series of events
separated by probabilistic dwell times). Despite their apparent
simplicity, such processes have many applications, including
models of lifetimes,*® queues,®' and neural spike trains.'*>*%33

Here, we show that the quantum advantage can be extended to
continuous-time processes. Focussing on renewal processes, we
provide a systematic construction for determining quantum
machines that require less information about the past for accurate
future prediction than the optimal classical models. We provide a
protocol that can be used to implement such quantum machines
as analogue simulators of a renewal process. We then illustrate the
quantum advantage with two examples. In particular, we find that
while the classical machines typically need infinite memory, a
quantum machine can in some cases require only finite memory.
We conclude by arguing that the finite memory requirement may
be a typical property of quantum machines, suggest possible
mediums for a physical realisation of the quantum machines, and
discuss prospects for future work. The Methods section provides
additional details on the framework used, and the derivations for
the examples.

RESULTS
Framework

Here we review the computational mechanics framework used to
express our results (@ more complete overview may be found
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Fig. 1 Models and simulators. a A system can be viewed as a black
box which outputs what we observe, and our explanation of the
observations forms a model. b We can build simulators to
implement our models, in order to test them and make predictions
about the future. Computational mechanics defines the optimal
models to be those with the minimal internal memory requirement

elsewhere®?). We consider continuous-time discrete-alphabet
stochastic point processes. Such a process P is characterised by
a sequence of observations (x, t,), drawn from a probability
distribution P(X,, T,).>* Here, the x,, drawn from an alphabet A,,
are the symbols emitted by the process, while the t, record the
times between emissions n — 1 and n. For shorthand, we denote
the dual x,, = (x,, t,), and similarly X,, for the associated stochastic
variable. We denote a contiguous string of observations of
emitted symbols and their temporal separations by the con-
catenation X, = XX/ 1 ... X,,_1, and for a stationary process we
mandate that P(Xo. ) = P(Xss+1)Vs,L € Z. Note that the discrete-
time case consists of either coarse-graining the t,, or considering
processes where such dwell times are either identical or irrelevant.

We define the past of a process X = X_..0(0, to+ ), where 0 is
the current emission step (i.e., the next emitted symbol will be xo,
and () denotes that this symbol is currently undetermined), and to+
is the time since the last emission, with associated random
variable To+. Analogously, defining to- as the time to the next
emission, we can denote the future X = (Xo,to-)X1.00.>” The
causal states of the process are then an equivalence class defined
according to a predictive equivalence relation;' two past

sequences X and % belong to the same causal state (i.e.
X ~e X) iff they satisfy

P(YDT:Y) :P(YDT:‘?’). M

We use the notation §; to represent the causal state labelled by
some index j.

We desire models that are predictive, wherein the internal
memory of a simulator implementing the model contains all (and
no additional) information relevant to the future statistics that can
be obtained from the entire past. The first part of this entails the
simulator memory having the same predictive power as knowl-
edge of the entire past (prescience?), while the second ensures
that knowledge of the memory provides no further predictive
power than observing the entire past output (information about
the future accessible in this manner is referred to as oracular,®
and implies the simulator having decided aspects of its future
output in advance). This notion of predictive models is stricter
than the broader class of generative models, which must only be
able to faithfully reproduce future statistics; internal states of
models in the broader class may contain additional information
that allows for better prediction of future outputs than knowledge
of the past, violating the non-oracular condition. We note that
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while there exist generative models that can operate with lower
memory than the optimal predictive models we will now
introduce, as this is achieved by leveraging oracular information
we do not consider such models here.

The probably optimal predictive classical models, termed ‘e-
machines’, operate on the causal states."? In general the
systematic structure of these models is well-understood only for
discrete-time processes, though as we later discuss recent efforts
have been made towards constructing corresponding continuous-
time machines. A discrete-time e-machine may be represented by
an edge-emitting hidden Markov model, in which the hidden
states are the causal states, the transitions (edges) between these
states involve the emission of a symbol from the process alphabet,
and the string of emitted symbols forms the process. The edges
are defined by a dynamic Tk describing the probability of
transntlonlng from causal state S to Sk while emitting symbol x.
The Tkj are thus defined by the statistics of the process, and
because they depend only on the current hidden state the model
is Markovian. Further, as the predictive equivalence relation
ensures that the system is always in a definite causal state defined
wholly and uniquely by its past output, &-machines are unifilar.?
This means that for a given initial causal state and subsequent
emission(s), the current causal state is known with certainty.

The quantity of interest for our study is the statistical complexity
C,» which answers the question “What is the minimal information
required about the past in order to accurately predict the future?”.
It is defined as the Shannon entropy®® of the steady state
distribution 7 of the causal states S;

Cu=—_ n(s)logy (m(S))- o)
j

The use of Shannon entropy is motivated by considering the
memory to be the average information stored about the past
(alternatively, it can be viewed as the average information
communicated in the process from the past to the future). Due
to the ergodic nature of the processes considered, the time
average and the ensemble average are equivalent. However, one
could also consider the Hartley entropy, that is, the size of the
substrate into which the memory is encoded (i.e., the logarithm of
the number of states)." It can be shown that the e-machine also
optimises this measure,? though we shall here focus on the former
measure, and implicitly consider an ensemble scenario. That is,
when operating N independent simulators, the total memory
required tends to NC, as N — . The statistical complexity is
lower-bounded by the mutual information between the past and
future of the process, referred to as the excess entropy
E—1 Ig‘)?; X

Although’ the predictive equivalence relation defines the
optimal model for both discrete-time processes and continuous-
time processes, as noted earlier, most works so far have been
devoted to studying the e-machines of discrete-time processes. It
is only recently that a similar systematic causal architecture has
been uncovered for a restricted set of continuous-time processes,
renewal processes.?” Renewal processes form a special case of the
above, where each emission occurs at an independent and
identically distributed (IID) probabilistic time, and emits the same
symbol. Such processes are defined entirely by this emission
probability density ¢(t), and the sequence is fully described by the
emission times alone. It is useful to define the foIIowing quantities
for a renewal process: the survival probablllty o) = [ d(t)dt;
and the mean firing rate u = ([ t¢(t) )

In Fig. 2 we show a generative model for such a process.
Because of the IID nature of the process, the only relevant part of
the past in predicting the future statistics is the time since the last
emission ty+, and this assists us only in predicting the time to the
next emission to-.>” Thus, the causal equivalence relation
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Fig.2 Generative model for a renewal process. Diagram depecting a
generative model for a renewal process. The labelling indicates that
a symbol 0 is emitted with probability 1, at time t with probability
density ¢(t), and returns to the same state

simplifies to
to+ ~e t6+ = P(T()f ‘To+ = l’0+) = P(T07|T0+ = t(/)-). (3)

We label the causal states S;, according to the minimum to+
belonging to the equivalence class. Depending on the form of ¢(t),
we can determine which to+ belong to the same causal state.
Notably, if ¢(t) is Poissonian, the time since the last emission is
irrelevant (as the decay rate is constant), and hence all typ+ belong
to the same causal state—the process is memoryless and has C,
=0. All other processes involve a continuum of causal states,
which may either extend indefinitely, terminate in a single state at
a certain time, or eventually enter a periodic continuum (see
Methods A). The steady state probability density 71(S;) of the causal
states depends on this causal architecture (Methods B). We
specifically highlight that states in the initial continuum have 7(S,)
= pO(t); as we will later discuss, this is the only necessary part of
the architecture once we turn to quantum causal states.

The statistical complexity of the process can be defined in
correspondence with Eq. (2), by taking the continuous limit of a
discretised analogue of the process;

Gy = lim — ; 7(Snst)8t10G, (71(Snsr)8t). @

This quantity will however either be zero (for a Poissonian
emission probability density), or infinite (for all other distributions),
due to the infinitesimal coarse-graining. Classically therefore, it is
not the most enlightening measure of complexity, and has
motivated earlier work on this topic®” to instead consider use of
the differential entropy for the statistical complexity;
e = — [5 dtr(S))log, m(S;). While this quantity allows for a
comparison of the complexity of two processes, we find it lacking
as an absolute measure of complexity, as it requires one to take
logarithms of dimensionful quantities, and loses the original
physical motivation of being the information contained within the
process about its past. Instead, we will employ the true continuum
limit of the Shannon entropy Eq. (4) as the measure of a process’
statistical complexity, accepting the infinities as faithfully repre-
senting that classical implementations of such models do indeed
require infinite memory.

Quantum causal states

It has been shown that a quantum device simulating a discrete-
time process can in general require less memory than the optimal
classical model.'” In order to assemble such a device, for each
causal state S; one must construct a corresponding quantum

causal state |S;) = >, T,E;()\x)|k>, where, as defined above, the

transition dynamic T,E;‘) is the probability that a system in S; will
transition to S;, while emitting symbol x. The machine then
operates by mapping the state |k) with a blank ancilla to |S),
following which measurement of the |x) subspace will produce
symbol x with the correct probability, while leaving the remaining
part of the system in |Sx). The internal steady state of the machine
is given by p = Y=, 71(S;)|S;) (S| We refer to such constructions as
g-machines, and their internal memory C; can be described by the
von Neumann entropy>® of the steady state;

Cq = —Tr(plog,p). (5)
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Unlike classical causal states, the overlaps (S;|S¢) of different
quantum causal states are in general non-zero, and hence C;< C,
(typically the inequality is strict); thence, the g-machine has a
lower internal memory requirement than the corresponding -
machine.'” Physically, this memory saving can be understood as
the lack of a need to store information that allows complete
discrimination between two pasts when they have some overlap
in their conditional futures. This entropy reduction acquires
operational significance when one considers an ensemble of
independent simulators of a process sharing a common total
memory.'” As with the classical case, Cg4 is also lower bounded by
the excess entropy of the process. Note that while this quantum
construction is superior to the optimal classical model, it does not
necessarily provide the optimal quantum model. Indeed, for
particular classes of process, constructions involving several
symbol outputs are known that have even lower internal
memory,'®?® and there may exist as yet unknown further
optimisations beyond this. Such known improvements however
are not relevant for the processes we consider.

We now seek to extend this quantum memory reduction
advantage to the realm of continuous-time processes. To do so,

we first define a wavefunction @(t) = /d(t). We can rephrase the
survival probability and mean firing rate in terms of this

wavefunction: @(t) = [*|(t)Pdt; and = ( f8°t|(/)(t)|2dt>71.

Inspired by the quantum construction for discrete-time processes,
we wish to construct quantum causal states |S;) such that when a
measurement is made of the state (in a predefined basis), it
reports a value t’ with probability (density) P(To- = t'|To+ = t). We
may view the quantum causal state as a continuous alphabet
(representing the value of t5-) analogue of the discrete case, with
only a single causal state (So) the system may transition to after
emitting this symbol.

The probability density P(To- =t/|To+ =t) is given by
Pt +t)/ [ d(t)dt = d(t+t')/O(t). By analogy with the dis-
crete case we construct our quantum causal states as

ISe) = [ dt'\/P(To- = t'[To- = t)|t), and thus:
1 o ! ! /
'S”:W/o de(t +t)|Y). ©)

We emphasise that while the wavefunction is encoding
information about time in the modelled process, the g-machine
used for simulation may encode it in any practicable continuous
variable, such as the position of a particle. The measurement basis
used to obtain the correct statistics is of course that defined by
{|t)} (that is, measurement outcome t' occurs with probability
density |(t'|S))|*= |w(t + t)|*/O(t) when the system is in state

).

When the first segment [0,t) of the continuous variable in a
quantum causal state is swept across, if the system is not found to
be in this region the state is modified by application of the
projector M; = [ dt|t)(t| and appropriate renormalisation. When
this projector is applied to the state |S;), the resulting state is
simply ‘St+;> displaced by t; by correcting for this displacement
the effect of the measurement sweep is exactly identical to the
change in the internal memory of the machine if no emission is
observed in a time period t, and thus the quantum causal states
automatically update when measurement sweeps are used to
simulate the progression of time.

The overlap of two quantum causal states can straightforwardly
be calculated:

(SalSp) =

W/:@ dty(t +a)y(t +b). -

By their very construction, these quantum states will auto-
matically merge states with identical future statistics, even if we
neglect the underlying causal architecture. Recall the causal
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equivalence relation Eq. (3). Since these probabilities wholly define
the quantum states, if two quantum states have the same future
statistics they are identical by definition. Due to the linearity of
quantum mechanics, the steady state probabilities of the identical
quantum states are added together to find the total probability for
the state, much the same way as the underlying state probabilities
are added together when merging states to form the classical
causal states. Thus, when constructing the quantum ‘causal’ states,
we are at liberty to ignore the classical causal architecture as
described in Methods A, without any penalty to the information
that is stored by the g-machine, and instead construct quantum
states for all t > 0 according to the prescription of Eq. (6). Note that
the causal architecture can still be used as a calculational aid.

Memory of continuous-time g-machines
From Eq. (7) we see that in general the overlaps of the quantum
causal states are non-zero, unlike the corresponding classical
states, which are orthogonal. Because of this reduced distinguish-
ability of the quantum causal states, the entropy of their steady
state distribution is less than that of the classical causal states, and
hence the amount of information that must be stored by the g-
machine to accurately predict future statistics is less than that of
the optimal classical machine, evincing a quantum advantage for
the simulation of continuous-time stochastic processes. We will
later show with our examples that this advantage can be
unbounded, wherein g-machines have only a finite memory
requirement for the simulation of processes for which the e&-
machine requires an infinite amount of information about the
past. Note that even when we consider coarse-graining the time
since the last emission to a resolution of finite intervals 6t we shall
still see a quantum advantage due to the non-orthogonality of the
quantum states. Note also that decoherence of the memory into
the measurement basis destroys the quantum advantage, and will
result in the classical internal memory cost C, (see Methods Q).
The density matrix describing the internal state of the g-
machine is given by p = [;7dtm(Sy)|S¢)(St|. As discussed above,
we can construct the quantum states |S;) for all t, in which case
their steady state probability density 7(S,) is given by p®(t). We
thus find that the elements of the density matrix are given by
p(a,b) = uf; dty(t+a)y(t + b). From this, we can construct a
characteristic equation to find the eigenvalues A, that diagonalise
the density matrix:

u / db / (e ap(e+ By (b) = Anfa(a) ®)

The information stored by the g-machine can then be
expressed in terms of these eigenvalues; Cq = — )", Aylog,An.
We find that this quantity is invariant under rescaling of the time
variable in the emission probability density (see Methods D for
details).

Building g-machine simulators of renewal processes

While we have explained in the abstract sense how one constructs
the quantum causal states, it is interesting to also consider the
structure of a device that would actually perform such simulations.
In fact, a digital simulation of the process, that simply emits a
sequence to-, on demand drawn from the correct probability
distribution P(To-., = to-.|To+ = to+) would be very straightfor-
ward to assemble in principle: one must prepare the state ‘Sto‘ >,
and L — 1 copies of |Sq) (the states are all independent due to the
renewal process emissions being IID). Measurement of the first
state provides the to-, while measurement of the others provides
the t;,. Because of the self-updating nature of the quantum causal
states under partial measurement sweeps [0,f), measurement
over such a range can be used to simulate the effect of waiting for
a time t for an emission.
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However, this scheme is unsatisfactory as one must manually
switch to a new state after each emission. Rather, a device that
automatically begins operating on the state for the next emission
after the previous state is finished would be preferable. We now
describe such a construction, and even go a step further, by
devising a setup that enables an analogue simulation of the
process, and is thus able to provide emission times in (scaled) real
time. For illustrative purposes, we first describe the protocol for
discrete timesteps (that may be coarse-grained arbitrarily finely),
and then discuss how it can be performed in continuous-time.

The procedure for the discrete-time case is as follows.
Consider an infinite chain of qubits (two state quantum systems)
labelled from 0 to <. Using |1,) to denote the state where all
qubits are in state |0) apart from the nth, which is in state |1),
we can express the discretised analogues |o;) of the quantum
causal states |S)) as |oy) =3, /P(To = nét[To: = 1)6t|1,),
where P(To- = nét|To+ =1t) — ¢(t + nét)/D(t) as 6t— 0. The
location n of the qubit in state |1) then represents the time nét
at which the emission occurs. We initialise the system in state
}oro+ > according to the desired initial to+. The chain is then
processed sequentially, one qubit at a time, by performing a
control gate on the qubit, which has the effect of mapping the
next block of the chain to the state |0) if the qubit is in state |1),
and doing nothing otherwise (explicitly, the mapping required is
|0Y[1,) — |0Y[1,) ¥neZ" and |1)]0)**— [1)|oy), where by
construction these are the only possible input states). The qubit
is then ejected from the machine (where measurement can be
used to determine whether an emission event occurs at this time),
and the machine then acts on the next qubit in the chain (Fig. 3a).
This operation has the effect of preparing the chain in a state that
provides the correct conditional probabilities if no emission is
observed, and prepares the state with the correct distribution for
the next emission step if an emission is observed.

To operate this protocol in continuous-time, instead of
encoding the state onto a discrete chain, we instead use a
continuous degree of freedom, such as spatial position (hence-
forth referred to as the ‘tape’). As with the discrete case, we
process sequentially along the tape, performing a unitary gate on
the future of the tape, controlled on the current segment. Each
emission step has its emission time encoded by the position of a
particle on the tape (Fig. 3b); the first particle on the tape is
initialised in [S¢) = (1/1/O(t)) [ dxy(t + x)[x), where x labels the
position on the tape. Since the controlled unitary operation must
be performed in discrete time, on a discrete length of tape, it is

_...,'Lg ,\_2,‘,\

Fig. 3 g-machine simulators of renewal processes. a Analogue
simulator for a discrete-time renewal process, where a continuous
chain of qubits is used to encode the quantum causal state. The
simulator sweeps along the chain and alters the future of the chain
conditional on the current qubit, with the mappings [0)|1,) —
|0)]1,) and [1)]0)*®— |1)|o). Measurement of the qubit state
signifies whether an emission occurs in a given timestep. b
Analogue simulator for continuous-time renewal processes, where
the quantum causal state is encoded into the position of a particle.
The simulator sweeps along this position and generates additional
particles encoding future emissions conditional on the presence of
the particle. Detection of the particle signals an emission event
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Fig. 4 Uniform emission probability. a The corresponding emission
probability density for a process with uniform emission probability
in an interval [0,7). b The classical memory C, required to simulate
the process diverges logarithmically as the discretisation becomes
finer (N states), while the quantum memory C, converges on a finite
value

designed such that it acts, controlled on the presence of a particle
in the block, by placing a particle in state |Sy), displaced to have its
zero at the location of the control particle, and does nothing
otherwise, akin to the discrete case above (that is, if the present
particle is at position x, the combined state of the old and new
particle is mapped to |x}|S_x), where we clarify that ¢(t) =0 if t is
negative). More formally, this can be written as the transformation
[ dtf, dxp(x +t)al, alax, where L is the block of tape upon
which the gate acts, and a], creates a particle at x. Strictly, the gate
should act in a nested fashion, by further generating an additional
particle in an appropriately displaced state, when the new particle
is placed within the current block. The machine then progresses to
perform the same operation contiguously on the next block, while
feeding out the previous block (equivalently, the tape can be fed
through a static machine). Measurement of the positions of
particles on the tape fed out then provides the simulated emission
times.

Examples

We illustrate our proposal with two examples. We show for both
these examples that not only is there a reduction in the memory
requirement of the g-machine compared to the e-machine, but
also that the g-machine needs only a finite amount of memory,
while the classical has infinite memory usage. Here we summarise
the results, and the technical details may be found in Methods E
and F.

The first example is a uniform emission probability over the
interval [0, 7). The corresponding emission probability density is ¢
(t) =1/t for 0 <t <7, and zero elsewhere (Fig. 4a). The correspond-
ing mean firing rate and survival probability are given by u=2/t
and O(t) =1 — t/t (t < 7) respectively. The corresponding quantum
causal states are given by |S;) = [¢~'dt'(1/v/7 — t)|t'), and we can
solve Eq. (8) to find that A, = 8/(m(2n — 1))? for n € Z*. We can use
an integral test (see Methods E) to show that (; =
=021 AlogyA, is bounded, and moreover, that Cy=1.2809. In
Fig. 4b we show how the memory required by the g-machine
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Fig. 5 Delayed Poisson process. a The corresponding emission
probability density for a delayed Poisson process with rest period 1z
and lifetime 71,. b Varying the ratio Tg/1, sweeps between a
(memoryless) Poisson process and a periodic emission process, with
a corresponding increase in the quantum memory C, required and
excess entropy E as the distribution becomes sharper. Here, C; is
calculated approximately from a very fine (2'%+1 states)
discretisation

tends towards this value as we use an increasingly fine coarse-
graining of the discretised analogue of the process to approach
the continuous limit, while the memory needed by the optimal
classical machine diverges logarithmically. The memory require-
ment exceeds the lower bound set by the excess entropy
E =log,e — 1~ 0.4427.

For our second example, we consider a delayed Poisson process
(p(t) = (1/1) exp(—(t — 1R)/1,) for t>12 and O elsewhere), repre-
senting a process that exhibits an exponential decay with lifetime
7, and a rest period 1z between emissions (Fig. 5a), forming, for
example, a very crude model of a neuron firing. For this emission
distribution we find that u = (t, + 1z) ', and ®(t) = 1 for t < 7z and
exp(—(t — tr)/1,) for t > 1z. We can then show somewhat indirectly
(see Methods F) that the corresponding quantum memory
requirement is bounded for finite 17z/7; (and vanishes as this ratio
tends to zero), while in contrast C,, is infinite whenever this is non-
zero. Further, due to the timescale invariance of the quantum
memory, C, depends only on this ratio, and not the individual
values of 1z and 1;. Varying this ratio allows us to sweep between a
simple Poisson process with lifetime 7, and a periodic process
where the system is guaranteed to emit within an arbitrarily small
interval at time Tz after the last emission. The quantum memory Cg
correspondingly increases with this ratio as we interpolate
between the two limits (Fig. 5b), with the pure Poisson process
being memoryless, and a periodic process requiring increasing
memory with the sharpness of the peak. We also plot the excess
entropy, given by E = log,(tz/1. + 1) —log,e/(t/Tr + 1), which
exhibits similar qualitative behaviour.

DISCUSSION

We have shown that quantum devices can simulate models of
continuous-time renewal processes with lower internal memory
requirement than their corresponding optimal classical counter-
parts. Our examples evidence that this advantage can be
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arbitrarily large, compressing the need for an infinite classical
memory into a finite quantum memory. Further, while we
currently lack a proof, we suspect that this unbounded compres-
sion is a typical property of quantum machines. Our argument for
this is as follows: consider a discretised analogue of the process,
with timesteps 6t. When refining the discretisation to timesteps
6t/2, we introduce an additional causal state for each one already
existing. Classically, all these states are orthogonal, and the
classical memory requirement increases, leading to the logarith-
mic divergence of C, as the timestep vanishes in the continuous
limit. Contrarily, the overlap of adjacent quantum causal states
|S(t)) and |S(t + 6t)) is typically very large for small 6t, and hence
the additional interpolated states are very similar to the existing
states. This overlap tends to one as the timestep vanishes, and
thus as we tend to the continuum limit, the additional quantum
causal states are essentially identical to those already considered,
and hence the entropy increase with refinement should vanish.
Thus we expect that, with the exception of pathological cases
(such as when the distribution ¢(t) involves arbitrarily sharp
peaks), the quantum memory requirement will be finite.

It is prudent of course, to remark on the experimental feasibility
of our proposal. Recent works have succeeded in realising
quantum machines for discrete-time processes, and demonstrat-
ing their advantage over classical devices.”> Much effort has been
spent on developing state-engineering protocols.>”™*' Ultracold
atoms in optical lattices*> may provide a route to realise discrete-
time simulation, and of particular promise with regards to our
proposal for simulating continuous-time processes, photon pulses
have been shaped over distances of several hundred metres.*®
This would allow for the digital simulation we propose, with the
requirement of an additional control element needed to achieve
the ‘real-time’ analogue simulation. The on-going development of
quantum technologies in a panoply of different systems holds
much promise for the future implementation of our work.

Future theoretical work in this area can progress in many
different directions, including the characterisation of other
information-theoretic quantities***® for the continuous-time
quantum machines, the application to study real-world stochastic
systems, and the extension of the protocol to design quantum
simulators for models of more general continuous-time processes.
Further, while a quantum advantage over classical simulators has
been demonstrated, the general optimal construction of quantum
machines is unknown, and a subject for future investigation.

METHODS
A: Causal architecture for renewal processes

For the purpose of determining their causal architecture, renewal
processes can be classified as one of four types.?” Here we review this
classification, and describe the corresponding structure of their causal
states.

The first class of processes are termed eventually A-Poisson. These are
processes which exhibit a periodic structure under a Poissonian envelope
at long times. Specifically, an eventually A-Poisson process is described by
an emission probability of the form ¢(t) = d(t + (t — ymodA) exp(—(t — 1)/
;) for times t>T, for some 1, 7, A= 0.

The second class of process we consider, eventually Poisson, are a special
case of the above, for which A = 0. In these processes, there is no structure
at long times t > T beyond the Poissonian decay. That is, specifically, for t >
T we have ¢(t) = $(1) exp(—(t — 1)/1).

A yet further constrained form defines our third class, the familiar
Poisson process, with A =0 and 7= 0. For these processes, ¢(t) = exp(t/t,)/
7. We find that the conditional emission probability density of this class is
time-independent.

Finally, the fourth class, not eventually A-Poisson, encompasses all other
processes not of the above forms.

We now present the causal architecture for each of the above process
classes.?” We present this architecture in a different order to that in which
we presented the processes, in order to introduce their different features in
order of increasing intricacy.
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Fig. 6 Causal architecture of renewal processes. The causal
architecture depends on the class of the renewal process, with a a
single causal state for Poisson processes, b an infinite continuum of
causal states for not eventually A-Poisson processes, and a hybrid of
the two for ¢ eventually Poisson and d eventually A-Poisson
processes

Recall that two times since last emission to+ and t;, belong to the same
causal state iff they have identical conditional probability distributions
P(To-|To+) for the time to the next emission to-. As a result of this, and
because for a Poisson process the conditional emission probability density
is time independent, all ty+ belong to a single causal state (Fig. 6a) for such
processes.

In stark contrast to this simplicity found for Poisson processes, it has
been shown that for not eventually A-Poisson processes no two different
to- belong to the same causal state?” Instead we have an infinite
continuum of causal states, which the system traverses along between
emissions, with all such continuum states returning to the same initial state
immediately after an emission event (see Fig. 6b).

The remaining two classes of process are hybrids of the above
structures. The eventually Poisson process begins with a continuum of
distinct states for times to+ <7, after which it terminates in a single state
upon reaching the Poissonian stage (Fig. 6¢), as the conditional emission
probability density becomes time-independent for to+ > 1.

Finally, the eventually A-Poisson process also begins with a continuum
of distinct states for to+ <7, after which the system enters a periodic loop of
continuum states of length A, mirroring the periodicity of the conditional
emission probability density for such processes at times to+ > T (see Fig.
6d). At these long times, we do not need to track exactly how long it has
been since the last emission, but merely how far into the current period we
are.

B: Statistical complexity of renewal processes

We now derive expressions for the statistical complexity of the different
classes of renewal process. We do so by considering a discretised
analogue'® of the continuum causal states, and take the limit of
infinitesimal time intervals.

Starting with the case of a Poisson process, due to the single causal state
we need not track any information about the time since the last emission;
we thus have C, =0 and hence the process is memoryless.

We next jump to the case of a not eventually A-Poisson process, where
we have the perpetual continuum of states. Considering the discrete
analogues o, of the causal states S, we have states at each t=nét for
n € N, where 6t is our discretised time interval. Consider now when the
system is in causal state Ops. In the next time interval 6t the system will
either make an emission, or progress along the continuum to o, s This
latter event occurs with probability ®((n+ 1)6t)/®(ndt) (that is, the
conditional probability that the system does not emit before (n+ 1)t
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Fig. 7 Discretised analogue of a renewal process. We can construct a discretised analogue of a renewal process, where at each time step 6t
the system can either emit a symbol 0 and return to the initial causal state, or emit nothing (signified by a null symbol &) and proceed to the
next state in the chain. The continuous-time scenario follows as the &t — 0 limit

given that it did not emit before nét), and we can consider the system to
fictitiously emit a () (null) symbol, representing the lack of a real emission.
The alternative outcome is that the system actually emits a real symbol and
returns to oo, which occurs with probability 1 — ®((n + 1)6t)/D(nbt). This is
illustrated in Fig. 7. Note that for a Poisson process, 0y is the lone causal
state, and the discretised analogue consists of this single state with both
transitions leading back to the same state, with the probabilities as given
in the general case.

We can construct a transition matrix T that describes the evolution of the
system for each timestep. This matrix evolves a state w according to w(t +
6t) = Tw(t). The transition matrix for a not eventually A-Poisson renewal
process is given by

AR BE -
o 0 0
T= 0 s 0 )
0 o 3

The steady state 7 is defined according to m= Tm, and thus for n> 1 we
have (0,5 = (O(nSt)/D((n — 1)6t))m1(0(n—1)se), and hence iteratively we find
m(0ns) = O(ndt)mm(0p). By integrating over O(t) to find the appropriate
normalisation, we have that as 6t — 0, m(c,) — udt, and hence m1(o,) = ud(t)
6t. Inserting this into the Shannon entropy Eg. (4), we have that the
statistical complexity is given by

00
Gy = lim =~ u®(ndt)8tlog, (ud(ndt)8t), (10)
5t—0 =

which clearly diverges logarithmically as the argument of the logarithm
vanishes (the number of terms in the sum grows linearly, while the
prefactor to the logarithm decays linearly, thus effectively negating each
other), and hence whenever such a continuum of causal states occurs (i.e.,
any renewal process that is not Poisson), the classical memory requirement
is infinite. As noted in the main text, the self-assembly of the quantum
causal states means that we can effectively treat any renewal process as
not eventually A-Poisson in the quantum regime, and hence this steady
state distribution is sufficient for our purposes. However, we will provide
expressions for the steady state distributions and complexity of the
eventually Poisson and eventually A-Poisson processes for completeness.

For eventually Poisson processes, the continuum has a finite length,
after which the system resides in the final causal state until emission. The
probability density for the continuum states is as for the above case, and
the probability of occupation of the final state can be determined by
considering the average time spent in this state, given by the lifetime of
the state 7. Thus, the steady state occupation of this final state is m(o(1)) =
uO@1, and the corresponding statistical complexity of the process is

N-1
G= (Slim > ud(nét)étlog, (ud(ndt)st)

t—0

(am
—HO(T)T, log, (O(T)TL),
where N = 1/8t.

Finally, for eventually A-Poisson processes, we have two segments of
continuum per emission; the initial line where each state is occupied at
most once, and the periodic continuum where each state can be traversed
multiple times per emission. There is a probability O(1) that the system
reaches this periodic part on a given emission, and a probability ®(1) exp
(—mA/t;) that it makes it through m circuits of this periodic component.
Thus, the occupation probability in the steady state of the periodic
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continuum state o, (T<t<T+A) is m(0¢) = O(t) Dy EXP(—MA/T) =D
()/(1 — exp(—A/1y). This gives a statistical complexity of

Ny 1
Cy= lim — Y u®(ndt)dtlog, (D (nét)dt)
n=0

5t—0
ot (12)
& HO(T+ndt) St I UO(T+ndt)St
- 2:0 1_e B/ 09, 1_e b/
n—

where N; =1/6t and N, = A/ét.

C: Memory of decohered model
In the main text we claim that decoherence of the quantum causal states
destroys the quantum advantage, and results in a memory cost C,. We now
prove this here by showing the probability distribution of the decohered
states is identical to that of the steady states of the classical model, and
hence has the same entropy. Consider the probability of the decohered
state Sp being t:
P(Sp=t)= [ dt'P(Sp = t[Tor =t)P(To =1t')

_ ]‘SC dr ¢g(+¢/t))“®(t’)

=pufydtd(t+1t)

= puf;dv(t)

= IJ(D(f) = P(To+ = t).
Note that the resultant model using these decohered states, while not

providing any memory savings, does contain oracular information and so
would not be a predictive model.

D: Timescale invariance of quantum memory

Here we show that the memory requirement of g-machines is invariant
under rescaling of the time variable in the emission probability density.
Consider such a rescaling t— at=z The wavefunction scales y(t) —
vay(z) (the factor in front due to normalisation), and the mean firing rate
changes u — au. Putting this into the characteristic equation (8), and using
the substitution dt =dz/a, we have

ufo db[q dty(t+a)p(t + b)fa(b) = Afa(a)
— aufy db [ dtap(z + z,)Y(z + zb)fa (b) = Anfa(a)

= [y dzp [ dzy(z + za)p(z + zb)f[n"] (zp) = Aofld (za),

where we have defined the function f,E”](t) = fy(t/a). Thus, after the
rescaling, the characteristic equation is of the same form, solved by the
same eigenvalues A, and the rescaled (and renormalised) eigenfunctions
£, As the memory stored depends only on the A, it is hence unchanged:
C, is timescale invariant.

(13)

E: Technical details for uniform emission probability example

Here we provide details of the derivation of the boundedness of the
quantum memory for the uniform emission probability case, along with
the other associated quantities. Starting with the definition of the process

1 o<t<r
t)y=<" = 14
oo ={g o= (4
we can straightforwardly obtain that =" = [{(t/7)dt =1/2, and
oo 1-1 0<t<r
o(t) = t)dt' = oo 15
0= [ o ={ 7 02 5
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As the time between emissions is guaranteed to be less than 1, we can
consider quantum causal states only within the interval [0, 7).

The form of the quantum causal states |S;) = gftdt’(1/\/rft)\t’>
follows directly from the definition Eq. (6), and we can construct the
appropriate characteristic equation for the process:

2 T
,/ db<1 ,w>fn(b) = Mofa(a). (16)
T/ T
Taking the second derivative of both sides of this equation, we find that
d*f, 2
n__ < (17)
Ao de? I fo,

and hence the eigenfunctions are of the form f,(t) = A explik,t) + B exp
(—ikat), with k2 = 2/(A,7%). We must now determine the values of k, that
are valid, by substituting this solution into the original integral equation.
Doing so, we find that for consistency, the following conditions must be
satisfied: A = B; and cos (k,7) = 0. These are satisfied by k,r= (n — 1/2)m for
n € Z" (zero and negative integer values of n produce solutions with the
same eigenfunctions, by symmetry). Thus, we have that
2
M= s nez". (18)
(n—3)°m

We now wish to find the Shannon entropy of the A,. We first show that
this entropy is bounded by using an integral test*® for convergence, and
then use this to provide a bounded range for C,. Define the function
{(n) = —A(n)log,A(n), where A(n)=2/(n — 1/2)*, the interpolated con-
tinuous analogue of the eigenvalues A,. The sum of {(n) over positive
integers n gives the quantum memory cost, and we note that all such
values of {(n) are finite. Further, we note that with the exception of n=1,
they satisfy {(n) > {(n + 1) at these integer values, and hence the function is
monotonically decreasing for n > 2 (specifically, the continuous function is
decreasing for n>1/2+exp(in 2/2+ 2/m)/m). Since the integral test
requires the terms to be monotonically decreasing, we can sum up the
terms to some finite N> 1, and then show the remainder of the terms

converge.
Define the integral I(N) = [ {(x)dx. We find that
21 N-1)°m2) —1
N) = (092(( ) ) ) 4 19)

m(v-)

which is finite for all integer N> 1, and hence the sum converges, implying
a finite value for C;. We can also use this to bound the value of the sum
from N to o as being between I(N) and I(N) + {(N). For N = 2, this allows us
to bound 1.1046 < C; < 1.4174. By calculating additional terms in the sum
prior to taking the bound, we can tighten this further; for N = 10° we find
that C, = 1.2809, with the additional neglected terms contributing O(107%)
as a correction.

As the excess entropy is a property of the process, rather than the
simulator, we can use the same formula as for classical models.?’ This reads

E—uf “ €p(0)log, (6t — 2 [ m O(t)log, (LO(t))dt. 20)

Putting the appropriate expressions into this equation, we find that for
the uniform emission probability renewal process that the excess entropy
is given by E = log, e — 1 = 0.4427, which as expected is less than C,.

(N —1)In2’

F: Technical details for delayed Poisson process example

Here we provide the corresponding details of the derivations for the
delayed Poisson process example. Recall that the process is defined by the
emission probability density

0 0<t<Tty

O =11 cwm o ; @1
T

from which it is straightforward to calculate u~' =1, + T4 and
1 0 <t<TtR

o) = {e*(r—rﬁ)/n t>Tg : (22)

We can exploit the causal architecture discussed in Methods A, and
identify this as an eventually Poisson process. We thus have a continuum
of causal states for 0 < ty+ <7z, and a single causal state for to+ > 1z. From
the mean firing rate and survival probability, we can see that the
probability density for all continuum causal states in the steady state is
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Fig. 8 Convergence of quantum memory for delayed Poisson
process. a The classical memory requirement C, for the delayed
Poisson process diverges logarithmically with finer discretisation (N
+ 1 states), while the quantum memory C; appears to converge to a
finite value. b Inspection of the eigenvalues of increasingly finer
discretisation of the g-machine for the delayed Poisson process
shows that the eigenvalues appear to fall off with a 1/n°
dependence. Plots shown for 13/, =1, and B is a normalisation
constant chosen such that S0, B/n? = SNt A, for the N=2°
case (eigenvalues ranked largest to smallest)

given by (1, + 17", while the probability that the eventually Poisson
causal state is occupied is 1,/(t; + Tg).

While we can approximately determine C; by considering discretised
time intervals 6t < 1,,T; and see that the quantum memory appears to
converge to a finite value (see Fig. 8), it is not a simple task to find an
analytical expression for the continuous time limit. Instead, we shall prove
boundedness of the quantum memory by considering a less efficient
encoding of the causal states, and proving that this suboptimal encoding
scheme has a bounded C,. Specifically, we encode the eventually Poisson
state |S;,) to be orthogonal to the continuum states. The density matrix is
now block-diagonal, with one block for the continuum states, and a single
element for the eventually Poisson state, and thus the total entropy is the
sum of the entropies of the two blocks. The eventually Poisson state block
contributes a finite amount (as it is a single element), and we shall now
show that the contribution from the continuum block is also finite.

We can use the characteristic equation (8) to find the entropy
contribution from the continuum block. We find that the overlap of two
quantum causal states is given by (S4|Sp) = exp(—|a — b|/21,), and hence

1
T +Tg

®”
/ dbe—hbI/2 (b) = A fo(a). 23)
0

Differentiating twice, we obtain

d*f, 1 4 1

= (= f, 24
dt? 4TL (/\n (TL + TR) TL> n ( )
and so as with the previous case, the eigenfunctions are of the form f,(t) =
A expliknt) + B exp(—ik,t), now with

1 4 1
R=———————. 2
"4y ()\n(TL +TR) TL) @3

Again, we substitute into the original integral equation (23), which results

in the consistency equations (1 — 2ik,7)A=(1+ 2ik,7,)B and Im((1 +

2ik,T))? explik,tr)) = 0. Thus, the valid k,, satisfy
4TLkn

attk2 — 1’

tan(kntg) = (26)

which, with one exception has one solution in each interval [mm, (m + 1)m),
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m € N. The exception is during the interval in which 4t2k2 = 1, in which
case there may be two solutions. For values of k, for which 4t2k2 > 1, this
is approximately satisfied by k,tz=nm, for n € Z", which leads to
corresponding eigenvalues

A 4
n = o : (27)
(1))

Strictly, these approximate eigenvalues are overestimations, as the
solutions to Eq. (26) for large k,, are slightly larger than nm/tz. However, as
these A, < 1, this also overestimates their contribution to the entropy. We
further note that when 4nmt? /13 >> 1 (i.e, for sufficiently large n), the A,
scale approximately as 1/n?. Again, this simplification overestimates the
eigenvalues, and their contribution to the entropy. We can then break up
the entropy into two parts; that from the finite number of terms
preceeding the values of n for which the above approximations are valid
(which, due to the finite number of terms, gives a finite contribution), and
those that come from the terms in which we have such large n. These
latter terms also have a finite contribution to the entropy due to their 1/n?
scaling, and hence the total entropy is finite. This completes our proof that
the quantum memory requirement for the delayed Poisson process is
finite, though unlike the previous example we do not have an analytical
expression for this value.

We can again calculate the excess entropy using Eq. (20), and after some
straightforward (if somewhat tedious) integration we obtain that
E =log,(tp/T. + 1) — log, e/(t./Tr + 1), which lies below and follows
similar behaviour to the memory requirement C,.
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