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ABSTRACT As scaling becomes a key issue for large-scale quantum computing, hardware control sys-
tems will become increasingly costly in resources. This article presents a compact direct digital synthesis
architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy
and the number of synchronized channels. The architecture can produce programmable combinations of
ramps, frequency combs, and arbitrary waveform generation (AWG) at 5 GS/s, with a worst-case digital
feedback latency of 76.8 ns. The field-programmable gate array (FPGA)-based system is highly configurable
and takes advantage of bitstream switching to achieve the high flexibility required for scalable calibration.
The architecture also provides GHz rate, multiplexed, in-phase and quadrature component, single-side band
modulation for scalable reflectometry. This architecture has been validated in hardware on a Xilinx ZCU111
FPGA demonstrating the mixing of complex signals and the quality of the frequency comb generation for
multiplexed control and measurement. The key benefits of this design are the increase of controllability of
ramps at the digital-to-analog converter (DAC) frequency and the reduction in memory requirements by
several orders of magnitude compared with existing AWG-based architectures. The hardware for a single
channel is very compact, 2% of ZCU111 logic resources for one DAC lane in the default configuration,
leaving significant circuit resources for integrated feedback, calibration, and quantum error correction.

INDEX TERMS Direct digital synthesis, field-programmable gate array (FPGA), large-scale quantum
(LSQ) computing, quantum control, spin qubits.

I. INTRODUCTION
A. LARGE-SCALE QUANTUM COMPUTING
Quantum computers need error correction to achieve quan-
tum advantage. They also require calibration of large sets of
parameters for the correct operation of qubits. Large-scale
quantum (LSQ) computing requires fast, scalable, and flexi-
ble feedback to implement quantum error correction (QEC)
and calibration. QEC based on surface codes requires mea-
surements, complex computations, and dynamic control of
the qubits. QEC must operate on thousands of qubits and re-
act within about a microsecond (typical gate operation time)
to prevent decoherence [1], [2], [3], [4]. Typical decoherence
times in spin qubits are around a fewmilliseconds [5], [6] but
error correction needs to be much faster than this to leave
time for computation between corrections. Therefore, the
two main requirements for QEC are scalability and latency.
Calibration is also necessary to improve qubit and gate

fidelity, which is the first step toward scalable quantum

computers. It involves different types of feedback, such as
tracking qubit frequencies and optimizing control pulses
for implementing gates or reflectometry-based measure-
ments. For instance, calibration protocols from Google
Sycamore [7] need 36 h at initialization and 4 h per day for
only 53 qubits. The two main requirements for calibration
are scalability and flexibility.
A typical qubit control experiment (see Fig. 1) involves

a network of field-programmable gate arrays (FPGAs) at
room temperature each handling the feedback loop for a
limited number of qubits. FPGAs measure qubits and update
control signals within a few hundred nanoseconds to pre-
vent decoherence and additionally reduce the time required
for calibration. FPGAs are currently the ideal choice for
qubit control as they can achieve very low feedback latency,
while leaving the necessary flexibility for emerging quantum
control and QEC schemes. In the future, critical parts may
benefit from an application-specific integrated circuit (ASIC)
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FIGURE 1. Architecture and typical waveforms for spin qubit control. γ is
our measurement point for the experimental results (see Section III-C).

implementation, possibly at cryogenic temperatures [8], but
FPGAs are ideal for early designs due to their flexibility.
Spin qubits require specific quantum control, which can

be divided into two main categories. First, quasi-static bias-
ing, specific to spin qubit control, is required to manipulate
qubit state by changing the chemical potentials and tunnel
barriers of quantum dots. They require fine temporal and
amplitude control of ramps [9] while achieving high V/ns
slopes for nonadiabatic quantum state transitions. Second,
similar to superconducting qubits, driving pulses (modulated
sine waves) are used both for qubit control (GHz range) or
measurement (100 MHz range). Simultaneous generation of
multiple driving pulses enables online multiplexing, which
is an important feature for scaling quantum computing, es-
pecially for reflectometry-based measurements [10]. For the
latter, in-phase and quadrature component (I/Q) modulation
and demodulation based on the combination of an in-phase
(I) and quadrature (Q) signal are required to generate precise
single-side band (SSB) modulation and retrieve both signals
at measurement time.
An example of quasi-static control is illustrated in

Fig. 2 [11]. It shows the implementation of a swap gate
with a double quantum dot and control of the detuning be-
tween the two dots gates. This kind of control can be used
to implement two qubit gates for a one-electron qubit but is
also used for a one qubit gate in the case of singlet–triplet
qubits (two electrons qubits) or exchange only qubits (three
electrons qubits) [12], [13], [14], [15]. The detuning repre-
sents the differential voltage of the gates of each dot. By
changing this detuning abruptly (nonadiabatically) or slowly
(adiabatically), we control whether the electrons transition
when encountering crossed quantum states (Landau–Zener
crossing) [16]. A first path is applied starting from a highly
detuned singlet state |S〉where both electrons are in the same
dot. At A, the electrons wait a separation time τs, which
should be long enough to reach state | ↑↓〉. Typically this
requires a few tens of nanoseconds. By driving the system
abruptly with an exchange pulse at detuning Aex, Rabi oscil-
lations will occur making the system oscillate between | ↑↓〉
and | ↓↑〉. Waiting the right amount of exchange time τex
(typically from 0.1 to 3 ns), we can go to | ↓↑〉 state, apply

a reverse path, and attain the triplet state |T0〉. A
√
SWAP

gate, which is a valid 2-qubit gate to constitute a universal set
of quantum gates, can also be implemented by waiting half
the exchange time. In this sequence, we wish to minimize
τs to achieve fast gate implementation. τex and Aex must be
finely tuned to achieve high gate fidelity. Fine control of the
slopes is critical, and is one of the focuses of the proposed
architecture. These are examples of parameters, which must
be determined for each individual qubit, and that require fast
calibration for an LSQ computer.
Digital mixing can be applied to achieve more complex

control schemes and pulse engineering [17] to further in-
crease gate fidelity by optimizing the shapes of the control
signals. Digital signal generation is a way to increase the flex-
ibility in an ever-changing experimental context and reduce
analog noise sources.

B. STATE OF THE ART
Most architectures (see Fig. 3) in the state of the art
focus on superconducting qubits and therefore have
arbitrary waveform generations (AWGs) with high memory
consumption and low flexibility to configure and change
stored waveforms. These architectures are limited to
switching between pregenerated waveforms for feedback
[18], [19], [20], thus fast feedback is possible only for
very simple schemes. With the increasing number of qubits
and the increasing complexity of QEC schemes, the cost
of storing pregenerated waveforms is also increasing. The
time to generate these waveforms dominates the overall
time required for calibration. COMPAQT [21] reduces the
memory consumption of AWG with discrete cosine trans-
form (DCT) and run-length encoding (RLE) compression,
providing gains on quasi-static control, but still lacks fast
hardware feedback capabilities (since reconfiguration of
signals requires a software step) and lacks digital mixing.
The calibration phase is also slowed by the compression of
stored waveforms. Single channel, on-the-fly generation of
sinewaves has been achieved up to dual-tone generation [22],
[23]. Presto [24] does achieve multitone generation,
but this is done by combining physical ports inside the
digital-to-analog converters (DACs) on the FPGA board,
resulting in a loss of scalability due to the reserved channels.
On-the-fly generation of ramps [25] is currently only done at
the internal FPGA clock frequency therefore limiting their
temporal controllability. None of these architectures exploit
the configurability of FPGAs to facilitate the calibration
phase. These other qubit control architectures lack flexibility
and the specific features for controlling spin qubits.

C. CONTRIBUTION
We propose a flexible architecture for scalable spin qubit
control (FASQuiC) using on-the-fly generation of ramps and
frequency combs to reduce the memory requirements and to
enable subnanosecond scale dynamic signal synthesis. The
architecture is optimized for the scalability and flexibility of
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FIGURE 2. Example of a quasi-static control of a double quantum dot. |S〉 and |T0〉 states encode either the 1 or the 0 states for a 2-electron qubit or a
2-qubit state for a one electron qubit and are represented on the Bloch sphere. Detuning is the differential gate voltage between quantum dots and is
controlled by room temperature hardware and an attenuation chain to the refrigerator.

FIGURE 3. State of the art of control architectures for qubit
manipulation. The key benefits of this work are the increase in
controllability of ramps, flexible on-the-fly generation, and improved
scalability compared with other architectures.

quasi-static and driven control of semiconductor spin qubits
in a cryogenic environment. FASQuiC, with its flexibility,
can also meet the current experimental needs of other types
of qubits, such as superconducting qubits, regardless of the
final application or architecture.
This approach alleviates the need for high bandwidth for

waveform transfer, which is a major overhead of existing
architectures. Our primary contribution is a novel ramp gen-
erator, which generates ramps at the oversampled DAC fre-
quency to achieve temporal controllability of the ramps down
to 200 ps (5 GS/s) and improve quasi-static control of spin
qubits. The initial signal generation architecture proposed
in [26] has been extended and characterized.
FASQuiC can mix several sources between a ramp gener-

ator, a sine wave generator and an AWG to create complex
signals. The sine wave generator can create up to 16 frequen-
cies using one DAC lane.
FASQuiC supports I/Q modulation and demodulation

in SSB mode enabling scalable multiplexed reflectometry
by generation of frequency combs in the first and second
Nyquist zones. FASQuiC has been validated in hardware
on a ZCU111 FPGA board from Xilinx, for which we have
characterized the phase noise (PN) of the oscillator and

embedded phase-locked loop (PLL). FASQuiC is a highly
parameterized design, which allows it to fully exploit the
reconfigurability of FPGAs. Therefore, it can expand its
scope of action enabling scalable calibration.

II. PROPOSED ARCHITECTURE
A. SIGNAL GENERATION
1) COMPLEX SIGNAL GENERATOR
The complex signal generator (CSG) is responsible for gen-
erating the digital signals driven to the DACs. The microar-
chitecture of one CSG is shown in Fig. 4. Each CSG outputs
Nout points per hardware clock cycle at 312.5 MHz, (1/Nout

of the DAC frequency) to feed the 14-bit DACworking at the
higher DAC clock frequency to achieve oversampling. In our
design, Nout is chosen at compilation time (from 1 to 16 in
steps of powers of two).
A CSG can be configured, at compilation time, to embed

between one and three unique generators that will be mixed
together to create more complex control schemes. Each gen-
erator can either be a ramp generator, a sine comb generator,
or an AWG.
The merger block can mix the outputs of the two first gen-

erators. Dynamically, it can act as a multiplexer, add the two
signals with saturating arithmetic, or normalize and multiply
the signals. If the CSG has only one generator, this block
delays the signal by two cycles to match the latency of other
CSGs in the system.
Themodulator block can dynamically modulate the output

of the merger with a frequency comb or leave it unchanged.
This frequency comb can be a sine comb from the third
generator or a cosine comb from another CSG, this feature
is chosen at compilation time. As with the merger, this block
delays the signal by two cycles if it is not needed.
Generators have a common structure. Block random-

access memories (BRAMs) or registers are used to store
waveform parameters, those parameters are written or read
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FIGURE 4. Architecture of one CSG.

FIGURE 5. Architecture of the ramp generator.

back through an advanced extensible interface (AXI) net-
work (Section II-C2). Each generator is manipulated via con-
trol signals sent by a controller block (Section II-A5). This
controller can also dynamically change the configurations of
the merger and the modulator. Finally, the controller is aware
of the state of each generator and optionally sends interrupts
to the control status registers (CSRs) (Section II-C).

2) RAMP GENERATOR
The ramp generator (see Fig. 5) generates all waveforms,
which can be decomposed as successions of linear parts. It
allows temporal controllability at 1/Nout of a hardware clock
cycle, required for fine control of nonadiabatic pulses. An
example of such control is shown in Fig. 12(a).

Ramp waveform parameters are stored in the raw BRAM.
For each ramp waveform, its ramps are described by their

starting value, ending value, and duration in DAC clock cy-
cles. The ramp waveforms are referenced in a map table, via
a header word describing the location of the ramp waveform
parameters in the BRAMs of the ramp generator and the ramp
waveform’s length. With this indirection, the controller can
access several ramp waveforms with different sizes stored
in the ramp generator BRAMs and enable scalable complex
hardware feedback. A ramp waveform can run in a continu-
ous mode by setting a bit in its header word, thus reducing
storage for repetitive patterns; for example, waveform 3© in
Fig. 14 requires only three words to store its parameters and
header.
Existing algorithms [27] only interpolate one ramp per

hardware clock cycle. Using brute-force parallelism would
require 16 radix-16 blocks to satisfy a 5 GS/s generation,
which is overly costly in logic resources. The design must
be able to dynamically generate from one to 16 ramps in one
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FIGURE 6. Example of control path and IR computation, the dashed lines represent the hardware clock cycles. On the left-hand side, the raw
parameters describe all ramps by their starting value, ending value, and duration in DAC clock cycles. After decode, those ramps are transformed into an
IR describing their starting value, their slope, and their relative DAC clock cycle after their last hardware clock cycle. They are also merged into groups of
ramps in the control BRAM containing the size of their group and the number of hardware clock cycle they last.

hardware clock cycle without interrupting the pipeline, there-
fore at each cycle, the generator must be aware of the number
of ramps it has to compute for the next cycle. To achieve this
level of controllability, ramps are first transformed from raw
parameters into an intermediate representation (IR), this pro-
cess is presented in Fig. 6. For each ramp, the IR describes the
starting value and the coefficient of the ramps encoded with
a floating point representation. This coefficient is necessary
to enable interpolation for a dynamic fraction of a hardware
clock cycle.
The duration parameters are then used to regroup ramps

that finish in the same hardware clock cycle. Merging ramps
in groups that last at least one cycle ensures that the execute
stage always knows the next ramps to play. Otherwise, the
execute stage would need to fetch and analyze the maximum
number of ramps at each cycle, which would be more costly
in resources than our approach.
Each group of ramps is described by its duration in hard-

ware clock cycles (cycles column) and the number of ramps
it contains (group size column).

We also extract the DAC clock cycle at which the ramp
finishes inside its last hardware clock cycle (tail column).
This tail parameter is stored in the IR and is used by the data
interpreter to organize the ramps inside one hardware clock
cycle when several ramps are played at the end of a group of
ramps.
After the decoding, ramp duration parameters have been

decomposed into: 1) the information required on a hardware
clock cycle basis (group size and cycles), directly usable by
the execute stage and 2) DAC clock cycle information (tail)
for completing the last hardware clock cycle of the group and
switching to the next group of ramps.

After the first IR word is written into: the IR BRAM, the
waveform is ready to run in the execute stage, even if the
decoding has not finished yet. The execute stage fetches the
control parameters to analyze the group of ramps. The data
interpreter then starts to play the first ramp of the group.
At each hardware clock cycle, the starting point of the first
ramp is incremented by the coefficient shifted logNout times,
a simple interpolation at the output of the data interpreter
computes the oversampled points. When a group of ramps
finishes, even after less than one cycle, the data interpreter
completes the hardware clock cycle with the rest of the ramps
in the group and the execute stage fetches the next group.
The interpolator then uses the starting points and coefficients
of each ramp played during the hardware clock cycle to
generate the Nout points given to the DAC. The worst-case
error from summing slope coefficients to compute ramps is
±1 bit out of 14 compared with a perfect ramp (±31 μV for
a 500-mV full scale).
Once the IR is computed, it is stored and can be reused,

enabling fast switching between two already updated ramp
waveforms. The process is pipelined to ensureNout points are
generated every hardware clock cycle. The hardware main-
tains the last known value when a ramp waveform finishes
playing. This approach prevents glitches, protecting cryo-
genic samples from undefined behaviors.

3) SINE WAVE GENERATOR
The sinewave generator (see Fig. 7) produces sine combs and
cosine combs for multiplexed modulation (Section II-B).
The existing single sine generator IP (Xilinx PG141 [28])

is based on lookup tables and a Taylor expansion for re-
finement. In our architecture, Nout of these are instantiated
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FIGURE 7. Architecture of the sine wave generator.

FIGURE 8. Example of a multiplexed reflectometry setup. A time-domain signal (a) is first multiplied by an I and Q frequency comb (b). The two pulses
are then upconverted (c) to achieve I/Q modulation for driving control pulses or reflectometry measurements. In our design, this upconversion can
either be digital or analog. After going through the qubits, for measurement, the signal is downconverted (d), demultiplexed (e) and averaged (f) to
retrieve all reflected information.

in parallel, configured at 1/Noutth of the desired frequency
and shifted accordingly in phase, to create oversampling.
Multiple, oversampled sine waves are combined to create a
frequency comb.
The generator can also produce an optional cosine comb

alongside the sine comb to allow digital SSB generation for
I/Q modulation. This feature is selected at compilation time.
The maximum number of sine waveforms generated by

the generator is chosen at compilation time. As merging sine
waves is done by averaging them, this maximal number of
sine waves defines the maximal amplitude of each single sine
and must be chosen carefully. Waveform parameters for sine
waveforms are stored in registers instead of BRAMs since
the maximal number of words to store is small (16).

4) AWG
The AWG can generate arbitrary waveforms stored point by
point in its data BRAM. For every hardware clock cycle, it

fetches Nout points in the data BRAM to achieve oversam-
pling.
This standard AWG block is augmented with the ability to

repeat a point up to 214 hardware clock cycles to reduce the
memory footprint. A flag in the data BRAM word triggers
this repeat mode. Note, the repeat command does not need
to be aligned with the hardware clock.
Similarly to the ramp generator, a map table allows the

controller to indirectly access the different waveforms stored
in the data BRAM. A waveform can play continuously by
turning on a bit in its header word.

5) CSG CONTROLLER
The architecture is fully distributed: each CSG is connected
to an external controller, as shown in Fig. 9, using custom
instructions composed of control instructions and flow man-
agement instructions. Some of these instructions are shown
in Fig. 12. The advantage of a fully distributed system for

5500116 VOLUME 5, 2024



Toubeix et al.: FASQUIC: FLEXIBLE ARCHITECTURE FOR SCALABLE SPIN QUBIT CONTROL Engineeringuantum
Transactions onIEEE

FIGURE 9. Three CSG configurations cover all needs from quasi-static control to multiplexed I/Q modulation.

control is the ability to implement quantum feedback on each
CSG. As those controllers are fully deterministic, they can be
synchronized to interpret centralized global feedback results
and take local decisions.
Control instructions include all instructions to commu-

nicate with the generators. For the ramp generator, ramp
waveforms, addressed by their index in the map table,
can be updated, started, or stopped. Waveforms from the
AWG, addressed by their index in the map table, can be
started or stopped. Finally, sine wave generation can be
started or stopped; the instruction specifies the number of
sines to start and the duration in hardware clock cycles it
has to be played. A zero duration will run the sine comb
continuously.

Flow management instructions include wait statements
to freeze the controller either for a fixed duration, until an
event from a synchronization protocol (not presented here)
or for a change in the state of a generator. For example, if
a CSG embeds a ramp generator, the controller can wait for
the first word of a ramp waveform update to be written in
the BRAM, then it can chain with starting this ramp wave-
form without dead cycles. Flow management instructions
also include loop capabilities, up to 16 nested loops can
be run.
The instructions are stored in a dedicated BRAM for

each controller, accessible through an AXI network. Con-
trollers can be started or stopped at any time. They also
share generator states and their own state to the CSR
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block and generate interrupts when an unexpected behavior
occurs.

B. I/Q MODULATION AND DEMODULATION
1) BACKGROUND ON I/Q MODULATION
I/Q modulation is a quadrature amplitude modulation that
can be used both for driving and measurement. For driving,
it allows fine tuning of input signal phase and enables pulse
engineering where the shapes of the I and Q spectra are
optimized to increase the fidelity of gates. For measurement,
it is necessary for reflectometry-based methods [29], [30],
[31], [32]. Reflectometry measurement senses a change of
capacitance, called quantum capacitance, for example of a
double quantum dot due to its quantum state. Reflectome-
try is a good candidate for LSQ computers since it can be
multiplexed, tends to be faster than measurements based on
transport with single electron transistor. Some techniques,
such as gate reflectometry, also reduce device footprint for
implementing the measurements.
An example of a multiplexed reflectometry measurement

achievable with the ZCU111 is shown in Fig. 8. In terms of
signal generation, to achieve SSB modulation and increase
measurement sensitivity, a window is modulated by an I
and a Q low-frequency comb in Fig. 8(a) and (b), respec-
tively. This step enables SSB modulation, without it the up-
per band [dashed line in Fig. 8(c)] would appear in the next
step. The two resulting combs can then be upconverted and
modulated by an I and Q carrier frequency resulting in one,
high-frequency comb. This carrier frequency can be analog
and external to the FPGA board for very high frequencies
or internal and digital for lower frequencies. Second Nyquist
zone techniques [33] help achieve higher frequencies with
digital modulation.
Only the lower frequency comb needs to be updated to

achieve fast feedback. An image rejection filter can be added
at the output of the DACs to avoid coupling to DAC replicas
in second Nyquist zone when demodulating.
In terms of measurement, the reflected signal is first fil-

tered to reduce thermal noise at the input of the analog-to-
digital converter (ADC) with a passive bandpass filter. Then,
the signal is downconverted by the same upconversion carrier
frequency in Fig. 8(d). Finally, each frequency of the lower
frequency comb is demodulated in Fig. 8(e) and a low-pass
filter in Fig. 8(f) retrieves the full quadrature information of
the symbol. A discriminator then splits the measurements
of zeros and ones in the I/Q plane to finally measure the
quantum state.

2) I/Q MODULATION
In order to use the CSG for I/Q modulation three different
configurations are possible, as shown in Fig. 9. The first
configuration is the default and is used for quasi-static control
of qubits. One controller is directly connected to a CSG with

any combination of generators. For multiplexed I/Q modula-
tion, this configuration represents the I part of the signal for
an external carrier frequency.
In the second configuration, a cosine comb can be con-

nected from another CSG in the first configuration to gen-
erate the Q part of the signal. The two signals can then be
upconverted outside the FPGA board.
The third configuration represents full digital multiplexed

I/Q modulation. Two CSGs are connected to the same DAC
of the Xilinx ZCU111. Each one works at half the over-
sampling rate of the design, their points are then interleaved
to feed the DAC IP that will apply the I/Q modulation.
This configuration is also useful for future pulse engineer-
ing experiments since both spectra of the quadrature can be
manipulated in parallel.

3) I/Q DEMODULATION
Hardware for multiplexed I/Q demodulation is shown in
Fig. 8(e) and (f). Demodulation is achieved by using the
single sines generated by the CSG. After demodulation each
frequency spectrum is filtered through a low-pass filter to
retrieve the I/Q amplitudes of the reflected signal. This low-
pass filter is implemented as follows: first, the signal is down-
sampled from the ADCs’ clock to the hardware clock at
312.5 MHz. Then, moving averages are applied, the size of
these moving averages can be dynamically configured before
starting the measurement. The advantage of a moving aver-
age is its low cost in resources (one BRAM and two adders)
compared with an FIR or IIR filter while it is sufficient to
retrieve the low-frequency spectrum of each quadrature. The
results can be directly distributed to future hardware feed-
back blocks either before or after demodulation and filter-
ing. Otherwise, they are stored in RAM buffers accessible
from the processor through an AXI network for software
post-processing.

C. SYSTEM ARCHITECTURE
The top-level design implemented on the ZCU111 is shown
in Fig. 10. The embedded advanced RISC machine (ARM)
processor runs an application that communicate with the dif-
ferent hardware blocks through two AXI networks.

1) CSRS
The CSR block has two responsibilities. First, it relays the
commands sent by the ARM processor to the hardware in a
synchronized manner. All DAC lanes are started or stopped
at the same time. Then, the CSRs also gather all the sta-
tus signals from the generators and controllers, and detect
anomalies, such as an AXI error or an unsupported command
in a controller. If an anomaly is detected, an interrupt is sent
to the software part, and mechanical relays at the output of
the DACs are opened to protect the samples. Finally, the
hardware design configuration is stored in read-only CSRs
facilitating the software when switching bitstreams.
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FIGURE 10. Top-level architecture implemented on the ZCU111.

2) AXI NETWORK, CLOCKING AND MEMORY MAPPING
Two AXI networks connect the ARM processor to the signal
generation hardware to reduce congestion. The first one gives
the ARM core access to the CSGs’ BRAMs to initialize all
waveform parameters. Each CSG has its own page, which
is divided into subpages at compilation time depending on
the CSG configuration. The other network is used to access
the controllers’ instruction BRAMs, the CSR registers, the
stored measurements, and Xilinx DAC IP configuration reg-
isters.
On our card, the internal oscillator has been changed to

a 20-ppm 125-MHz oscillator (Crystek Cvhd-950-125.000),
which generates a 125-MHz clock PL _ CLK that is upcon-
verted to the hardware clock at 312.5 MHz. The same PLL
also generates a 2.5-MHz PL _ SYSREF clock from an exter-
nal primary 10 MHz clock to synchronize the DACs’ outputs
across the different tiles of the DACs. This 10 MHz clock is
distributed across multiple FPGAs to achieve a multiboard
synchronized system.

3) SOFTWARE
The software runs on the embedded environment of the
ZCU111 [34], [35], composed of an ARM processor, a Petal-
inux distribution, and a C library for hardware control pro-
vided by Xilinx. The program performs read and write oper-
ations to the BRAMs and registers of the system.
The program can also activate most features of the Xilinx

DAC IP (digital upconversion for I/Q modulation, Multitile
synchronization of DACs and ADCs, filtering, modulation
correction, and sampling rate tuning).
In addition to the embedded software, another application

runs on a distant host machine, which is in charge of com-
piling the parameters of the waveforms. These waveforms
are described by the user in dedicated files. The output is
subsequently fed to the software running on the ZCU111.

FIGURE 11. (a) FPGA resource usage (with percentage of total ZCU111
resources) for Nout = 8, and AXI and glue logic cost is for eight DACs
activated. BRAM cost is completely dependent on user choices since all
BRAM sizes are configurable. (b) Timing for worst-case configuration
with one sine wave and 8 kB BRAMs.

In addition, interrupt detection and security features are
also implemented to halt the execution whenever an unfore-
seen behaviour is detected.

4) DESIGN CONFIGURATION
The SystemVerilog register transfer level (RTL) code is fully
parameterized from a single parameter file, which configures
the design. From a functionality point of view, the over-
sampling factor Nout, number of activated DACs, number of
sines generated for a sine generator, and the type of internal
generators for each CSG can be tailored to the experimental
needs of each channel.
From a resource cost point of view, all the BRAMsizes can

be changed up to 32 KB before timing requirements imply
additional buffers in the design. Because indirection is used
in the generators, the data did not have to be aligned based
on the oversampling factor, which means that the storage can
be fully utilized.
The bitstream can be dynamically updated by the ARM

processor, which eases switching the hardware configuration
for calibration. Applying the first bitstream takes 228 ms on
average but this is reduced to 110 ms by using partial config-
uration for the subsequent bitstreams. For example, tracking
qubit frequencies [36] slowly drifting over minutes would
need a hardware configuration with heavy computational
power for Bayesian estimation. Once the qubit frequency is
found, the design could switch back to another configuration
for standard control of the device [37]. In this way, the system
can quickly adapt to the computational needs of each step
during calibration while using a limited number of resources
at each step.

5) RESOURCES AND TIMING
FPGA resource usage and timing results are presented in
Fig. 11. For the sine generator, the presented cost is for a
single sine wave. This must be multiplied by the number of
sine waves (up to 16 frequencies) to get the full resource
estimation. Above 16 frequencies, the hardware costs grow
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FIGURE 12. Hardware simulation of three CSG lanes with Nout = 16, one ramp generator and one sine wave generator. (a) Oversampled controllability
of ramps. (b) Synchronization of a sine wave and ramp generators.

nonlinearly as additional buffers are needed to meet timing.
A single DAC channel in the standard configuration uses
less than 2% of the logic resources of the board, leaving
space to implement hardware feedback. The BRAM cost is
completely dependent on user choices since all BRAM sizes
are configurable to fit experimental needs.
The design can generate DAC data at up to 5.48 GS/s.

The ZCU111 internal carrier frequency generation, with the
second Nyquist zone [33], can reach 5 GHz modulation. The
critical timing path resides in the ramp execute stage (unless
one of the BRAMs in the ramp generator exceeds 16 kB).

III. RESULTS
In this section, we first present the results of digital simu-
lations of one CSG and its controller in isolation. We then
show results for I/Q modulation (perform by the CSG) and
demodulation (Section II-B3). Our digital testbench, running
onQuesta 2021.4_2 (Siemens EDA), can simulate any design
configuration and drives the design from the AXI outputs
of the processor and the ADC outputs while monitoring the
inputs to the DACs. We then discuss the scalability of our
design compared with other systems presented in state of
the art. Finally, we present lab measurements, which demon-
strate that FASQuiC successfully generates all mixing com-
binations of generators and produces high-quality frequency
combs for I/Q modulation.

A. HARDWARE SIMULATION
1) CSG SIMULATION
The digital simulation in Fig. 12 shows an example of a
feedback sequence, which uses one CSG (one ramp, one sine
generator), an oversampling factor of 16, and a hardware
frequency of 312.5 MHz. The sequence updates the plateau
of the ramp (R, R’). This is a typical parameter that needs to
be calibrated.
All delays in FASQuiC are fixed and synchronization be-

tween generators is possible. For instance, Fig. 12(b) shows
the synchronization of both generators by adding their sig-
nals during the exchange part of the control signal.

Fig. 12(a) shows the capacity of the ramp generator to
oversample the control of ramp generation. While classi-
cal digital ramp generators are limited to interpolation, this
design can control up to Nout ramps per cycle, generating
multiple on-the-fly ramps in the middle of a hardware clock
cycle.
The dashed lines show the different control signals sent by

the controller to achieve this sequence. Between the two rep-
etitions of the signal, the parameter of the ramp R is changed
to a lower value in the RAW BRAM of the ramp generator.
The ramp signal needs to be updated before restarting it.
It takes 35.2 ns (11 cycles) to compute and store the first
word of the IR, then 41.6 ns (13 cycles) are needed to restart
the ramp generator. Therefore, a feedback sequence for a
ramp generator takes 76.8 ns (24 cycles), although switching
between two already updated ramp waveforms costs only 13
cycles.
The sine generator takes at most 48 ns (15 cycles) for

full feedback and 44.8 ns (14 cycles) for fast switching. The
AWG takes 19.2 ns (6 cycles) for fast switching. Thus, our
system is ready for fast synchronized feedback.

2) I/Q MODULATION AND DEMODULATION SIMULATION
In this section, a hardware simulation of an I/Q modula-
tion/demodulation is detailed (see Fig. 13). CSGs in the
third configuration are initialized at Nout = 16, ramp gen-
erators, and a sine generator with four sines. The demodu-
lator is configured with an averaging window of size 1024
(410 ns integration time compatible with fast spin qubits
readout). In practice, this parameter depends on the noise
level.
When the controllers are started, the ramp generators start

playing a symbol [see Fig. 13(a)], which is a trapezoidal
pulse. The ramp generator could be replaced by an AWG to
create a Gaussian pulse also used in superconducting qubits
or optimized pulse control. A combination of a ramp gener-
ator and an AWG can also be used for more complex pulse
shaping. Another advantage of using ramp generators is the
fast reconfigurability of the symbol in a shape optimization
process, thus, any Gaussian pulse could be approximated by
a succession of configurable ramps.
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FIGURE 13. Hardware simulation of I/Q modulation and demodulation (Four frequencies 50 MHz spaced comb). (a) Modulation window: a trapezoidal
pulse. (b) First (black) and second (gray) comb multiplexed. (c) Temporal digital output entering the DACs. The frequencies of the comb are shifted
10 MHz left after the first pulse is played. (d) Demodulated signal for the four frequencies.

FIGURE 14. Measurements of three DAC channels with all mixing
combinations (Nout = 16, 5 GS/s).

At the same time, the sine generator produces a frequency
comb shown in Fig. 13(b). This comb consists of four fre-
quencies starting at 50 MHz and spaced at 50 MHz inter-
vals. Quickly changing sine parameters, in particular their
frequencies, is useful in several cases, such as calibrating
reflectometry to find resonances or driving qubits whose fre-
quency can drift [36]. As an example, the comb is shifted left
by 10 MHz between the first and second pulses.
The outputs of sine and ramp generators are then mod-

ulated to form the temporal signal, as shown in Fig. 13(c).
I/Q upconversion, digital or analog, is not shown here. An
additional delay is added to the temporal signal before de-
modulation to simulate cable propagation and DAC/ADC
conversion time.
After demodulation, we recover our four symbols [see

Fig. 13(d)]. Only 1/8 of the amplitude is recovered, which is
expected sincewe have four sines, and the final demodulation
step divides our signal by two. We successfully demodulated
the original signal preserving its integrity.

B. DISCUSSION ON FASQUIC STRENGTHS
1) DISCUSSION ON CALIBRATION TIME
The strength of the system is its fast waveform reconfig-
urability capabilities. Fig. 12 is a typical example of a cal-
ibration process where the amplitude of the exchange part is

optimized for gate fidelity. As shown in Section I, exchange
time and amplitude are keys parameters to optimize for the
high-fidelity implementation of swap gates. One way of cal-
ibrating the gates is to map the space of parameters. One
way of doing this is to send a control sequence and measure
the state of the qubit to observe whether or not the swap
occurred. Since the swap is reversible there is no need for
resetting the qubit between the steps and the procedure can
continue with another set of parameters. By accumulating
statistics or using methods, such as gradient descent, an op-
timal point in the design space can be found. One calibration
step of the exchange amplitude or time only takes 76.8 ns of
waveform reconfiguration with FASQuiC, which is far below
current measurement time in spin qubits. An AWG-based
architecture would need to rewrite half the waveform from a
software layer taking, at a minimum, several microseconds.
Evenwhen using software feedback, FASQuiC does not need
the compression step of COMPAQT nor the high bandwidth
of classical AWG-based architectures. Therefore, FASQuiC
provides a significant improvement in calibration time by
closing the feedback loop faster.
Fig. 13 is also an example of calibration process of a fre-

quency comb for optimizing driving or reflectometry-based
measurement. It takes 352 ns through the AXI network to
reconfigure the whole frequency comb, which can be done
while the first comb is being played. Then, 44.8 ns are re-
quired to restart the CSGs (limited by the sine generator)
and output the updated signal. These examples show how
our design enables fast calibration of reflectometry or driving
pulse control.

2) DISCUSSION ON SCALABILITY
FASQuiC was tested on a ZCU111 card; however, we have
verified (with place and route) that on the larger ZCU216
card, it could be used to drive its 16 DACs. This is beyond
the current most advanced spin qubit architecture [38]. There
is sufficient logic in a ZCU216 card to drive up to 24 DACs,
if they were available. There are two additional DACs com-
pared with [25], while using a smaller FPGA [39]. Since the
architecture is distributed, unitary resources given in Fig. 11
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FIGURE 15. Measurement of 200 and 700 MHz frequencies generated by a sine generator with Nout = 8. (a) Clear PN hump due to the local oscillator
and in-band PN due to the phase detector of the PLL appear when zooming on the 200 MHz.

FIGURE 16. SFDR and PN measurement for three different offset
frequencies at different generated frequencies from a sine generator at
Nout = 8.

can be safely multiplied by the number of DAC lanes, al-
though larger configurations need slightly more logic for the
AXI network. The feedback latency, given in Section III-A1,
is independent of the number of channels.
In AWG architectures, the memory resources scale lin-

early with the DAC sampling rate, whereas in FASQuiC,
the memory resources depend only on the complexity of the
waveform.

With FASQuiC, when using driven control of spin qubits,
digital multiplexing reduces the number of ac cables by
up to 16×. Furthermore, with FASQuiC, combining analog
and digital multiplexing, we can even drive up to 32 qubits
through one ac cable using a single board, with space for six
additional quasi-static controls.
On-the-fly generation reduces the memory cost for signal

generation compared with an AWG-only based solution. In
our design, AWG is only needed for tasks, such as pulse en-
gineering of the exchange parts, lasting only a few nanosec-
onds. For instance, applying a swap gate to 24 pairs of spin
qubits [38] would require 248 waveform parameters and
instructions (1.2 kB) with FASQuiC, whereas AWG-based
architectures would need 210 kB of data. Using COMPAQT
DCT and RLE compression schemes for constant parts of the
signal, while ensuring the same accuracy, this number drops
to 55.9 kB which still represents 46.5× more data to transfer
and store compared with FASQuiC.

C. EXPERIMENTAL RESULTS
1) EXPERIMENTAL SETUP
We use a Xilinx UltraScale+ RFSoC ZCU111, which pro-
vides versatile features for RF applications. It embeds 14-
bit resolution RF-DACs (6.554 GS/s) and 12-bit resolution
RF-ADC (4.096 GS/s). As mentioned earlier, the local os-
cillator has been changed and we added a 3-dB amplifier
(LMH6554), which has a 2.8-GHz bandwidth at the output
of the DACs. We also added relays at the output of the ampli-
fier where measurements are performed (point γ in Fig. 1).
Time-domain relative measurements were performed with a
23-GHz bandwidth and 100 GS/s scope. Frequency domain
measurements were performed with a 13.6-GHz bandwidth
RF-analyzer. We put an image rejection filter with 880-MHz
cutoff frequency for measurements with Nout = 8.

2) CSG VALIDATION
In this first experiment, we use seven DAC lines with an over-
sampling factor Nout of 16 to test all possible combinations
of signal sources. Fig. 14 shows all mixing combinations
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for three DAC channels with double generators. The mea-
surements are made at the output of the relays. Embedded
synchronization of Xilinx DAC IP allows synchronization of
DAC lanes at the output of the board.
The quality of our signals is mostly impacted by the out-

put amplifier, which limits the bandwidth and could not be
removed.
Power spectral density measurement at low frequency

shows that RF-DACs from the ZCU111 have drifts around
9 μV/

√
Hz at the second scale, which is a limiting factor

for purely dc control of the system for long experiments
running over several minutes. To use FASQUIC for dc con-
trol, alternative dc-DAC could be used and only fast con-
trol (quasi-static and RF-pulses) can be achieved with this
implementation. We note that because of the fast waveform
reconfiguration capabilities of FASQUIC, experiments run
faster than on comparable solutions, relaxing the requirement
for long-term dc stability.

3) FIGURES OF MERIT
Our two main figures of merit for the sine comb generation
are the spurious free dynamic range (SFDR) and the PN.
PN is a random phase modulation around a perfect pure

frequency, which translates to a random variation of the sig-
nal period called jitter. This frequencymismatch degrades the
precision of rotations around the Bloch sphere when using
pulse controls, which results in lower fidelity of quantum
gates [40], [41]. For reflectometry, this mismatch reduces
the signal-to-noise ratio when extracting the state of the
qubits [42].
Deterministic modulation of the center frequency can

also create spurious frequency tones, which reduces the fi-
delity of control by exciting unwanted resonances and re-
ducing the coherency time of the qubits. The difference in
power between the center frequency and the largest fre-
quency spur corresponds to the SFDR, which should be max-
imized for the fidelity of the measurement and control of
qubits.

4) SINE GENERATOR CHARACTERIZATION
In the second experiment, a CSG in the first configuration is
initialized with Nout = 8, a ramp generator and a single sine
generator. We can easily tune the amplitude of the comb by
adjusting the height of the plateau output by the ramp genera-
tor [see Fig. 13(a)]. Specifically, when using I/Q modulation
with on-board upconversion, the ZCU111 DAC IP requires
half the points of the desired sampling rate, limiting us to
Nout = 8.

Reflectometry typically works at frequencies of hundreds
of MHz. A 200- and 700-MHz frequency analysis is shown
in Fig. 15. The desired frequencies are shifted by 65 ppm
(13 kHz shift for 200 MHz). This systematic shift is due to
the 20 ppm LO that passes through the PLLs of the ZCU111,
inducing a nonideal clock. A single correction factor can be
applied to obtain more accurate frequency generation. The

average frequency shift after correction is 1.8 kHz, which is
in the range of the 4.7 kHz sine generator precision.
SFDR and PN measurements are shown in Fig. 16. The

SFDR is above 60 dBc up to 350MHz, which is far above the
typical SFDR of upconversion frequencies [33]. The SFDR
starts to drastically fall after 350 MHz and reaches 30 dBc
at 600 MHz, a level that may no longer be acceptable. At
625 MHz, a quarter of the DAC sampling rate, there is a
special point. At this point, the SFDR reaches 69 dBc because
the output points are perfectly alignedwith the contents of the
lookup table for the single sine generator. So, the generator
produces a high-quality sine wave.
The PN profile is shown in the 200-MHz zoom [see

Fig. 15(a)]. A clear PN hump can be seen, this hump is due to
the local oscillator noise and in-band PNof the phase detector
of the PLL. This in-band PN is a major limiting factor for
qubit control [41] and measurement [42], [43]. Our PN is
measured at three offset frequencies: one before the band (at
1 kHz), another in the band, and the last after the band (at
100 kHz), close to the noise floor. PN slightly increases with
the frequency generated but stays under −100 dBc/Hz for
in-band PN up to 450 MHz.
Both measured SFDR and PN fulfill the requirements to

control classical implementations of spin qubits [44].
In the third experiment, a CSG in the first configura-

tion is initialized with Nout = 8, a ramp generator, and
a 16-sine wave generator. The output frequency comb is
shown in Fig. 17(a). The SFDR of the higher frequency sine
(320 MHz) is reduced to 48 dBc compared with 65 dBc in
the single sine generation case but its PN at 100 kHz does not
increase. Indeed, with 16 sines, the power of each frequency
is reduced and thus the parasitics at 500 and 750 MHz due to
resonances of the amplifier are relatively larger.

5) MODULATION CHARACTERIZATION
Modulation from the DACs is now turned on with CSGs
in the third configuration at Nout = 16. An SSB upconver-
sion to 1.25 GHz of the 16 frequency comb is presented in
Fig. 17(b).

The upconversion slightly decreases the total power of the
signal, by 3 dB. Even though more spurs appear in the spec-
trum, the SFDR is only degraded to 44.8 dBc (−3.2 dBc), and
the PN at 100 kHz away from the 320 MHz peak is slightly
increased to −107 dBc/Hz (+5 dBC/Hz).

6) SECOND NYQUIST ZONE CHARACTERIZATION
To test second Nyquist zone generation, CSGs in the third
configuration are initialized at Nout = 8, to fit within the
2.8-GHz bandwidth of the output amplifier.
When we activate the second Nyquist zone, modulation

can exceed half the sampling rate in the 1.25–2.5 GS/s
zone. Fig. 17(c) shows an upconversion to 2 GHz of
the 16 frequency combs. The activation of the second
Nyquist zone increases the output power of the higher
frequency [M1 in Fig. 17(c), 1.98 GHz] from −52.5 to
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FIGURE 17. Spectral analysis of frequency comb generation with 3 kHz read bandwidth. (a) 16 frequency comb generated from a CSG in the first
configuration with 20 MHz spacing and Nout = 8. (b) Modulation at 1.25 GHz of a 16 I/Q frequency comb with 20 MHz spacing and CSGs in third
configuration at Nout = 16. (c) Modulation at 2 GHz of a 16 frequency comb with 20 MHz spacing and CSGs in third configuration at Nout = 8 using the
second Nyquist zone technique.

−43.11 dBm. The second Nyquist zone technique is at-
tractive for achieving higher frequency modulation but re-
duces comb generation quality: the SFDR in the second
Nyquist zone is reduced to 34.4 dBc, and PN at a 100-
kHz offset from the higher frequency peak is increased
to −99.9 dBc/Hz.

IV. CONCLUSION
Our architecture achieves state-of-the-art qubit control, par-
ticularly optimized for the requirements of spin qubits by
providing hardware for on-the-fly signal generation, which
removes the need for huge memories to store precalculated
data for AWGs. We demonstrate that on-the-fly signal gener-
ation can require 175× less memory than an approach based
on AWGs. The low memory requirements and low feedback
latency of our device would translate to a significant reduc-
tion in calibration time, which is a major overhead in LSQ
computers.
Currently, a limiting factor for the scalability of LSQ com-

puters is the number of cables in the refrigerator, which
can be reduced with the SSB multiplexing of driving pulse
control and readout provided by our design. FASQuiC can
generate multiple ramps per cycle, providing subnanosecond
control of quasi-static signals. This is essential for fine con-
trol of spin qubits, a requirement for high-fidelity quantum
gates.
The requirements for quantum computers are continuously

changing and one of the strengths of this design is its flexi-
bility. Due to the parameterization of the RTL code, we can
make use of bitstream switching. This reduces calibration
time and allows FASQuiC to be reconfigured for the needs
of each experiment.
The whole design has been tested and qualified on a Xil-

inx ZCU111 board showing high-quality generation of com-
plex signals. Future versions of the FASQuiC controller will
include arithmetic operations and conditional branching to
enable more complex quantum feedback.
FASQuiC makes contributions to scalability through re-

duced memory usage and multiplexing, as well as providing
state-of-the-art signal generation control all packaged in a
flexible architecture, which constitute an important step to-
ward spin qubit LSQ computers.
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