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A lot can be learned about black holes and wormholes by re-scaling spacetime itself
without changing the coordinates used to describe it. Such a conformal transformation
is called a Weyl transformation. It takes spacetime from a given frame — called Einstein
frame — to a conformal frame — called Jordan frame. Such a transformation reveals
that horizons and wormholes might appear/disappear in the conformal frame even if they
were absent/present in the original frame. It arises both from the simple prescription
for defining black holes and wormholes, as well as from the more sophisticated defini-
tions. In addition, some definitions might be transformed into one another under Weyl
transformations.
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1. Introduction

A Weyl transformation consists in re-scaling spacetime without changing its coor-

dinates. It is described by a simple transformation that takes an original spacetime

metric gμν into a new metric g̃μν such that,

g̃μν = e2Ωgμν , (1)

where Ω(x) is spacetime-dependent function, everywhere regular and non-vanishing.

On the other hand, various definitions of black holes and wormholes have been

given in the literature. They range from what could be considered as a simple

“prescription” to what could be called “sophisticated” definitions.

2. The simple “prescription”

This prescription works only for spherically symmetric metrics that depend only

on the time coordinate t and a radial coordinate. The latter could be chosen to

be the physical areal radius R that multiplies dΘ2 = dϑ2 + sin2 ϑdϕ2. The radial

coordinate could also be chosen to be any other real parameter r on which all the

components of the metric would depend.

Using R as the radial coordinate, a spherically symmetric metric is written as,

ds2 = −A(t, R)dt2 +B(t, R)dR2 +R2dΘ2, (2)

where, A(t, R) and B(t, R) are functions of the time coordinate t and the areal radius

R. The simple prescription for defining black holes and wormholes consists then

∗This talk is based on the published paper 1
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(see Ref. 2 and the references therein) in checking whether the following algebraic

equation,

gμν∇μR∇μR = 0, (3)

has a single- or a double-root. The single-root solution is identified with the location

of the closed 2-surface of a black hole horizon, whereas the double-root is identified

with the location of the 2-surface of a wormhole throat. Although this procedure

is incomplete and imprecise, it is useful in practice since it gives a quick way of

localizing the radial coordinate of an apparent horizon and/or a wormhole throat.

2.1. Weyl transformation and the simple prescription

The Weyl conformal transformation (1) changes the prescription (3) and the metric

(2) into the following ones, respectively, to be used in the conformal frame,2

ds̃2 = −e2ΩA(t, R)dt2 + e2ΩB(t, R)dR2 + R̃(t)2dΘ2, (4)

g̃μν∇̃μR̃∇̃μR̃ = 0. (5)

Here, R̃(t) = e2ΩR(t) is the areal radius in te conformal frame. Using the metric

(4), after having rewritten it entirely in terms of the pair (t̃, R̃) — which is in itself

a very tedious task 2 — and then applying the conformal prescription (5), one finds,

1

B
(Ω,RR+ 1)2 − 1

A
Ω2
,tR

2 = 0. (6)

While this condition does give the locations of the various possible black hole

horizons and wormhole throats in the static case, it does not describe in detail

their real origin in the dynamical case. As shown in Ref. 1, if one uses instead an

arbitrary parameter r as the radial coordinate and writes the metric (2) as,

ds2 = −A(t, r)dt2 +B(t, r)dr2 +R(t, r)2dΘ2, (7)

Weyl’s conformal transformation (1) turns the latter into the following form,

ds̃2 = −e2ΩA(t, r)dt2 + e2ΩB(t, r)dr2 + R̃(t, r)2dΘ2. (8)

Applying the conformal prescription (5) on this last form of the metric gives after

a pretty short and a simple calculation the following condition for detecting black

holes and/or wormholes,1

1

B
(Ω,rR+R,r)

2 − 1

A
(Ω,tR+R,t)

2 = 0. (9)

We clearly see form this condition how and when a black hole and/or a wormhole

might arise in the conformal frame. In fact, contrary to Eq. (6), the condition (9)

contains all the necessary information on the time and space dependences of both

the areal radius R and the conformal exponent Ω.
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3. “Sophisticated” definitions for general spacetimes

Besides the simple prescription (3) for detecting black hole horizons and wormholes,

various other definitions are also given in the literature. Since these other definitions

are rather valid for any spacetime and involve the concept of null vectors, trapped

surfaces, and geodesic expansions, we call them the sophisticated definitions. An

important fundamental feature of the sophisticated definitions is that, in contrast

to the simple prescription (3), these more rigorous definitions do not allow a black

hole horizon to coincide with a wormhole throat. These definitions make a clear

distinction between the two concepts.

3.1. Black hole horizon

A generic black hole horizon is defined as being the future outer trapping horizon.3

Such a statement is translated into the following three conditions to be satisfied on

the 2-surface H of the horizon,3

θ+|H = 0, θ−|H < 0, ∂−θ+|H < 0. (10)

The quantities θ± represent the expansion of the outgoing (ingoing) null geodesics,

the tangent vectors of which are denoted lμ±, respectively. The partial derivatives,

∂±, stand for derivative with respect to an affine parameter u± along the geodesic lμ±.

3.2. Hochberg-Visser wormhole

A simple, covariant, and quasilocal definition of a wormhole throat, as defined in

Ref. 4, and which we shall call a Hochberg-Visser wormhole, is that of a marginally

anti-trapped surface. This definition does not involve any information about the

faraway region outside the throat. It simply consists of the hypersurface foliated by

compact spatial 2-surfaces S on which the following conditions are satisfied,4

θ±|S = 0 and ∂±θ±|S > 0. (11)

3.3. Hayward wormhole

Another simple, covariant, and quasilocal definition for wormholes is the one given

in Ref. 5, and which we shall call here a Hayward wormhole. According to this

definition, a wormhole throat is a timelike hypersurface foliated by a non-vanishing

minimal spatial 2-surface S on a null hypersurface, i.e., a timelike trapping horizon.

This statement is formally expressed by the following three conditions,5

θ±|S = 0, ∂±θ±|S > 0, ∂∓θ±|S < 0. (12)

In other words, Hochberg-Visser wormholes include spacelike hypersurfaces and

therefore are not necessarily Hayward wormholes.
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3.4. Maeda-Harada-Carr wormhole

This wormhole is a 2-surface required to be extremal on a spacelike hypersurface.

Using a null coordinate foliation, a spherically symmetric metric takes the form

ds2 = −2e2fdudv+R2dΘ2, where u and v are the null coordinates and f = f(u, v)

is a function of these. The Maeda-Harada-Carr wormhole then consists of the 2-

sphere S, of radius R = R(u, v), which is extremal and minimal in a spacelike radial

direction ζμ. Formally, this translate into the following two conditions,6

R|AζA
∣∣
S

= 0 and R|ABζAζB
∣∣
S
> 0. (13)

A vertical bar with the subscript, |A, stands for a covariant derivative with respect

to the two-metric gAB of the two-dimensional spacetime spanned by the null vectors

∂u and ∂v.

3.5. Tomikawa-Izumi-Shiromizu wormhole

As in the case of the Maeda-Harada-Carr wormhole, the minimality of the 2-surface

S representing a Tomikawa-Izumi-Shiromizu wormhole is imposed on a spacelike

hypersurface. In contrast to all the above definitions, however, what is required

for this wormhole is the vanishing, not of the expansions themselves, but of the

difference θ+ − θ− between the outgoing and ingoing expansions. This translates

into the following two conditions,7

θ+ − θ−|S = 0 and (∂+ − ∂−)(θ+ − θ−)|S > 0. (14)

4. Weyl transformation and the sophisticated definitions

In order to find the affect of a Weyl transformation on each of the above more rigor-

ous definitions, one only needs to figure out how the null tangents lμ±, the transverse

metric hμν , and the null expansions θ± transform under (1). It is straightforward

to show that h̃μν = e2Ωhμν , l̃μ± = e−Ωlμ± and that θ̃± = e−Ω (θ± + 2∂±Ω).1 With

these simple transformations at hand, it is easy to find the behavior under Weyl’s

conformal transformation of all the above sophisticated black hole and wormhole

definitions.

4.1. Conformal black holes

The definition (10) conformally transforms into the following three conditions,1

θ+ + 2∂+Ω
∣∣
H

= 0, θ− + 2∂−Ω
∣∣
H
< 0,

∂−θ+ + 2∂−∂+Ω
∣∣
H
< 0.

(15)

From the first equality, we learn that in the absence of a black hole in the original

frame, it is possible for a black hole horizon to arise in the new frame provided only

that the conformal exponent Ω does vary with u+. On the other hand, to have a

black hole in the conformal frame if one already exists in the original frame, Ω must

be independent of u+.
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4.2. Conformal Hochberg-Visser wormhole

The definition (11) of such a wormhole conformally transforms into the following

two conditions,1

θ± + 2∂±Ω
∣∣
S

= 0 and ∂±θ± + 2∂±∂±Ω
∣∣
S
> 0. (16)

From the first equality we see that to have a Hochberg-Visser wormhole in the new

frame if one already exists in the old frame, the conformal exponent must again be

independent of the parameter u±.

4.3. Conformal Hayward wormhole

The definition (12) of such a wormhole conformally transforms into the following

three conditions,1

θ± + 2∂±Ω
∣∣
S

= 0, ∂±θ± + 2∂±∂±Ω
∣∣
S
> 0,

∂∓θ± + 2∂∓∂±Ω
∣∣
S
< 0.

(17)

Like for the Hochberg-Visser wormhole, if a Hayward wormhole already exists in

the old frame another one might arise in the new frame if Ω is indepednet of u+.

Recall that a Hayward wormhole is necessarily a Hochberg-Visser wormhole but

the converse is not true. However, if the conformal factor is chosen such tha the

last inequality in (17) is not satisfied but the second inequality is, then a Hayward

wormhole transforms into a pure Hochberg-Visser wormhole.

4.4. Conformal Maeda-Harada-Carr wormhole

The definition (13) of such a wormhole conformally transforms into the following

three conditions,1

ζA
(
R|A +RΩ|A

) ∣∣∣
S

= 0

ζAζB
(
R|AB +RΩ|AB −RΩ|AΩ|B

)
+ ζAζBgAB

(
R|CΩ|C +RΩ|CΩ|C

) ∣∣∣
S
> 0. (18)

Although these conditions are more complicated, it is clear that a Maeda-Harada-

Carr wormhole can arise or disappear in the conformal frame depending on one’s

choice of Ω. For a worked out example, though, see Ref. 1.

4.5. Conformal Tomikawa-Izumi-Shiromizu wormhole

The definition (14) of such a wormhole conformally transforms into the following

two conditions,1

θ+ − θ− + 2 (∂+Ω− ∂−Ω)
∣∣∣
S

= 0,

(∂+ − ∂−) [θ+ − θ− + 2 (∂+Ω− ∂−Ω)]
∣∣∣
S
> 0.

(19)
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Again, we see that a Tomikawa-Izumi-Shiromizu wormhole can arise in the confor-

mal frame, even if in the original frame there was none, provided that the conformal

factor is chosen to satisfy both conditions (19). Worked out examples are found in

Ref. 1.

5. Conclusion

A conformal transformation can make black holes and wormholes appear or disap-

pear just by judiciously choosing the conformal factor Ω. A conformal transforma-

tion thus does have a non-trivial effect on a given physical concept just as it was

already shown in Refs. 8, 9 regarding the fate of the concept of a quasilocal mass.
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