The Fifteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by 2a02:8108:50bf:e6b8:e07h:caba:68bd:296 on 01/12/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

552

Black holes and wormbholes in light of Weyl transformations™

Faycal Hammad

Department of Physics and Astronomy € STAR Research Cluster, Bishop’s University
2600 College Street, Sherbrooke, QC, JIM 1Z7 Canada
Physics Department, Champlain College-Lennoxville
2580 College Street, Sherbrooke, QC, J1M 0C8 Canada
* E-mail: fhammad@ubishops.ca

A lot can be learned about black holes and wormholes by re-scaling spacetime itself
without changing the coordinates used to describe it. Such a conformal transformation
is called a Weyl transformation. It takes spacetime from a given frame — called Einstein
frame — to a conformal frame — called Jordan frame. Such a transformation reveals
that horizons and wormholes might appear/disappear in the conformal frame even if they
were absent/present in the original frame. It arises both from the simple prescription
for defining black holes and wormbholes, as well as from the more sophisticated defini-
tions. In addition, some definitions might be transformed into one another under Weyl
transformations.
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1. Introduction

A Weyl transformation consists in re-scaling spacetime without changing its coor-
dinates. It is described by a simple transformation that takes an original spacetime
metric g, into a new metric g, such that,

g;w = 6299,&”/7 (1)

where () is spacetime-dependent function, everywhere regular and non-vanishing.

On the other hand, various definitions of black holes and wormholes have been
given in the literature. They range from what could be considered as a simple
“prescription” to what could be called “sophisticated” definitions.

2. The simple “prescription”

This prescription works only for spherically symmetric metrics that depend only
on the time coordinate ¢ and a radial coordinate. The latter could be chosen to
be the physical areal radius R that multiplies d©2 = dv? + sin? ¥de?. The radial
coordinate could also be chosen to be any other real parameter r on which all the
components of the metric would depend.

Using R as the radial coordinate, a spherically symmetric metric is written as,

ds® = —A(t, R)dt* + B(t, R)dR* + R*d©?, (2)

where, A(t, R) and B(t, R) are functions of the time coordinate ¢ and the areal radius
R. The simple prescription for defining black holes and wormholes consists then

*This talk is based on the published paper 1
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(see Ref. 2 and the references therein) in checking whether the following algebraic
equation,

9"V ,RV,R =0, (3)

has a single- or a double-root. The single-root solution is identified with the location
of the closed 2-surface of a black hole horizon, whereas the double-root is identified
with the location of the 2-surface of a wormhole throat. Although this procedure
is incomplete and imprecise, it is useful in practice since it gives a quick way of
localizing the radial coordinate of an apparent horizon and/or a wormhole throat.

2.1. Weyl transformation and the simple prescription

The Weyl conformal transformation (1) changes the prescription (3) and the metric
(2) into the following ones, respectively, to be used in the conformal frame,?

ds® = —e®PA(t, R)dt? + *?B(t, R)AR? + R(t)?de?, (4)

"'V ,RV,R = 0. (5)

Here, R(t) = €*?R(t) is the areal radius in te conformal frame. Using the metric
(4), after having rewritten it entirely in terms of the pair (£, R) — which is in itself
a very tedious task 2 — and then applying the conformal prescription (5), one finds,

1 1
il 1)2 = =
B(Q’RR+ ) 2

While this condition does give the locations of the various possible black hole
horizons and wormhole throats in the static case, it does not describe in detail
their real origin in the dynamical case. As shown in Ref. 1, if one uses instead an
arbitrary parameter r as the radial coordinate and writes the metric (2) as,

Q%R =0. (6)

ds? = —A(t,r)dt* + B(t,r)dr® + R(t,r)*dO?, (7)
Weyl’s conformal transformation (1) turns the latter into the following form,
ds? = —e2PA(t, r)dt* + 2 B(t,r)dr? + R(t,r)?dO2. (8)

Applying the conformal prescription (5) on this last form of the metric gives after
a pretty short and a simple calculation the following condition for detecting black
holes and/or wormholes, *

1 1
E(Q,TR +R,)?— Z(Q,tR +R;)*=0. (9)

We clearly see form this condition how and when a black hole and/or a wormhole
might arise in the conformal frame. In fact, contrary to Eq. (6), the condition (9)
contains all the necessary information on the time and space dependences of both
the areal radius R and the conformal exponent §2.
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3. “Sophisticated” definitions for general spacetimes

Besides the simple prescription (3) for detecting black hole horizons and wormholes,
various other definitions are also given in the literature. Since these other definitions
are rather valid for any spacetime and involve the concept of null vectors, trapped
surfaces, and geodesic expansions, we call them the sophisticated definitions. An
important fundamental feature of the sophisticated definitions is that, in contrast
to the simple prescription (3), these more rigorous definitions do not allow a black
hole horizon to coincide with a wormhole throat. These definitions make a clear
distinction between the two concepts.

3.1. Black hole horizon

A generic black hole horizon is defined as being the future outer trapping horizon. 3

Such a statement is translated into the following three conditions to be satisfied on
the 2-surface H of the horizon,3

9+|H:07 9—|H<07 8_9+|H<0. (10)

The quantities #4+ represent the expansion of the outgoing (ingoing) null geodesics,
the tangent vectors of which are denoted [, respectively. The partial derivatives,
O+, stand for derivative with respect to an affine parameter u* along the geodesic I/f..

3.2. Hochberg-Visser wormhole

A simple, covariant, and quasilocal definition of a wormhole throat, as defined in
Ref. 4, and which we shall call a Hochberg-Visser wormhole, is that of a marginally
anti-trapped surface. This definition does not involve any information about the
faraway region outside the throat. It simply consists of the hypersurface foliated by
compact spatial 2-surfaces S on which the following conditions are satisfied,*

9i|S =0 and 6i9i|s > 0. (11)

3.3. Hayward wormhole

Another simple, covariant, and quasilocal definition for wormholes is the one given
in Ref. 5, and which we shall call here a Hayward wormhole. According to this
definition, a wormhole throat is a timelike hypersurface foliated by a non-vanishing
minimal spatial 2-surface S on a null hypersurface, i.e., a timelike trapping horizon.
This statement is formally expressed by the following three conditions,®

O+]s =0,  910+]s >0,  0+0+|s <O. (12)

In other words, Hochberg-Visser wormholes include spacelike hypersurfaces and
therefore are not necessarily Hayward wormholes.
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3.4. Maeda-Harada-Carr wormhole

This wormhole is a 2-surface required to be extremal on a spacelike hypersurface.
Using a null coordinate foliation, a spherically symmetric metric takes the form
ds? = —2e2fdudv + R?dO2, where u and v are the null coordinates and f = f(u,v)
is a function of these. The Maeda-Harada-Carr wormhole then consists of the 2-
sphere S, of radius R = R(u,v), which is extremal and minimal in a spacelike radial
direction ¢*. Formally, this translate into the following two conditions,®

Ria¢*g=0 and  Rjap¢*¢P|g>0. (13)

A vertical bar with the subscript, |4, stands for a covariant derivative with respect
to the two-metric gap of the two-dimensional spacetime spanned by the null vectors
Oy and 0,.

3.5. Tomikawa-Izumsi-Shiromizu wormhole

As in the case of the Maeda-Harada-Carr wormhole, the minimality of the 2-surface
S representing a Tomikawa-Izumi-Shiromizu wormhole is imposed on a spacelike
hypersurface. In contrast to all the above definitions, however, what is required
for this wormhole is the vanishing, not of the expansions themselves, but of the
difference 6, — 6_ between the outgoing and ingoing expansions. This translates
into the following two conditions,”

0, -0 |s=0 and (94 —0_)(0s —0_)|s > 0. (14)

4. Weyl transformation and the sophisticated definitions

In order to find the affect of a Weyl transformation on each of the above more rigor-
ous definitions, one only needs to figure out how the null tangents I/ , the transverse
metric Ay, and the null expansions #4 transform under (1). It is straightforward
to show that BW = ¢*’h,,, l~i = e UY and that 0y = e 2 0+ +20+9).1 With
these simple transformations at hand, it is easy to find the behavior under Weyl’s
conformal transformation of all the above sophisticated black hole and wormhole
definitions.

4.1. Conformal black holes

The definition (10) conformally transforms into the following three conditions,?
04 +20,9|, =0, - +20_Q|, <0,
00, +20_0,9|, <0.

From the first equality, we learn that in the absence of a black hole in the original

(15)

frame, it is possible for a black hole horizon to arise in the new frame provided only
that the conformal exponent © does vary with u*. On the other hand, to have a
black hole in the conformal frame if one already exists in the original frame, 2 must
be independent of u™.
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4.2. Conformal Hochberg-Visser wormhole

The definition (11) of such a wormhole conformally transforms into the following

two conditions, !

01 +20:0|, =0 and 0104 +20:9:9, > 0. (16)

From the first equality we see that to have a Hochberg-Visser wormhole in the new
frame if one already exists in the old frame, the conformal exponent must again be

independent of the parameter u™.

4.3. Conformal Hayward wormhole

The definition (12) of such a wormhole conformally transforms into the following

three conditions, !

0 +20:9|, =0, 040 +20.0.0| ;> 0,

(17)
O30+ +20:0:0| 4 < 0.

Like for the Hochberg-Visser wormhole, if a Hayward wormhole already exists in
the old frame another one might arise in the new frame if  is indepednet of u™.
Recall that a Hayward wormhole is necessarily a Hochberg-Visser wormhole but
the converse is not true. However, if the conformal factor is chosen such tha the
last inequality in (17) is not satisfied but the second inequality is, then a Hayward
wormhole transforms into a pure Hochberg-Visser wormhole.

4.4. Conformal Maeda-Harada-Carr wormhole

The definition (13) of such a wormhole conformally transforms into the following
three conditions, !

CA (R|A+RQ|A) ‘S =0
¢A¢B (Riap + RQap — RYAQ )
+¢*¢Pgan (R|CQ‘C + RQ|CQ|C> 'S > 0. (18)

Although these conditions are more complicated, it is clear that a Maeda-Harada-
Carr wormhole can arise or disappear in the conformal frame depending on one’s
choice of Q. For a worked out example, though, see Ref. 1.

4.5. Conformal Tomikawa-Izumsi-Shiromizu wormhole

The definition (14) of such a wormhole conformally transforms into the following
1

two conditions,

9+—9_+2(a+9—a_9)( —0,
° (19)
0y — ) [0 — 0_ +2(8,0 — 0_Q)] ]S > 0.
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Again, we see that a Tomikawa-Izumi-Shiromizu wormhole can arise in the confor-
mal frame, even if in the original frame there was none, provided that the conformal
factor is chosen to satisfy both conditions (19). Worked out examples are found in
Ref. 1.

5. Conclusion

A conformal transformation can make black holes and wormholes appear or disap-
pear just by judiciously choosing the conformal factor €. A conformal transforma-
tion thus does have a non-trivial effect on a given physical concept just as it was
already shown in Refs. 8, 9 regarding the fate of the concept of a quasilocal mass.

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery Grant (RGPIN-2017-05388), as well as by the STAR
Research Cluster of Bishop’s University.

References

1. F. Hammad, “Revisiting black holes and wormholes under Weyl transforma-
tions”, Phys. Rev. D 97, 124015 (2018) [arXiv:1806.01388].

2. V. Faraoni, A. Prain and A. F. Zambrano Moreno, “Black holes and worm-
holes subject to conformal mappings”, Phys. Rev. D 93, 024005 (2016)
[arXiv:1509.04129].

3. S. A. Hayward, “General laws of black-hole dynamics”, Phys. Rev. D 49, 6467
(1994) [arXiv:gr-qc,/9303006].

4. D. Hochberg and M. Visser, “Dynamic wormholes, anti-trapped surfaces, and
energy conditions”, Phys. Rev. D 58, 044021 (1998) [arXiv:gr-qc/9802046].

5. S. A. Hayward, “Wormhole dynamics in spherical symmetry”, Phys. Rev. D 79,
124001 (2009) [arXiv:0903.5438].

6. H. Maeda, T. Harada and B. J. Carr, “Cosmological wormholes”, Phys. Rev. D
79, 044034 (2009) [arXiv:0901.1153].

7. Y. Tomikawa, K. Izumi and T. Shiromizu, “New definition of a wormhole throat”,
Phys. Rev. D 91, 104008 (2015) [arXiv:1503.01926].

8. F. Hammad, “Conformal mapping of the Misner-Sharp mass from gravitational
collapse”, Int. J. Mod. Phys. D 25, 1650081 (2016) [arXiv:1610.02951].

9. F. Hammad, “More on the conformal mapping of quasi-local masses:
The Hawking-Hayward case”, Class. Quantum Grav. 33, 235016 (2016)
[arXiv:1611.03484].





