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Abstract

We study the spectrum of operators carrying large values of the conserved charges in conformal

field theories (CFTs) with global symmetries. In particular, we explore the computation of the

related CFT data within the recently-developed large charge expansion framework.

In the first three chapters, we review the basics of CFT at large charge, focusing on the general

phenomenon of classicalization of quantum physics in the presence of large quantum numbers and

on the physical implications of the spontaneous breaking of conformal invariance induced by the

charge-fixing.

In chapter four, we show how to set up the large charge expansion in weakly-coupled non-

abelian theories. To this end, we focus on the O(N) critical model in d = 4− ε dimensions, which

is relevant for the description of the critical behaviour of a variety of real-world systems. Using

semiclassical methods, we compute the scaling dimensions of traceless symmetric composite op-

erators to the next-to-leading order in the large charge expansion and all-orders in the ε-expansion.

Furthermore, we derive new results for the spectrum of anomalous dimensions in the O(N) model

with cubic anisotropy.

In 4 < d < 6, the O(N) theory flows to an asymptotically safe UV fixed point that is believed to

play a relevant role in (higher-spin) AdS/CFT. Recently, it has been conjectured a dual description

of this critical theory in terms of the IR fixed point of an O(N)-invariant theory with N + 1 fields

and cubic interactions. In chapter five, we probe this conjecture by means of the large charge

expansion, arguing in favor of the equality of the large charge sectors of the two models in d = 6−ε

dimensions.

Chapter six concerns large charge operators in the U(N)×U(M) model in d = 4− ε dimen-

sions. The role of the charge configuration is investigated in detail via both group-theoretical

and semiclassical analyses. In particular, we show how, varying the charge assignment, we can

access the anomalous dimension of different operators transforming according to a variety of ir-

reducible representations. To this end, we introduce a novel general strategy apt at determining

the correspondence between the charge configuration and the related large charge operators in

generic non-abelian CFTs. As a byproduct of our investigation, we obtain many new results for the

U(N)×U(M) model.
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Hrvatski produljeni sažetak

Konformne teorije polja (CFT, od engl. conformal field theory) bez sumnje vrlo su važne za opis

prirode. One imaju bitnu ulogu u teoriji kontinuiranih faznih prijelaza, te su ključne za naše razu-

mijevanje kvantne teorije polja. Štoviše, CFT-ovi imaju veliku važnost u teoriji struna i predstavl-

jaju jednu stranu proslavljene AdS/CFT korespodencije. Nadalje, CFT alati često se koriste za

istraživanje dinamike kvantnih teorija polja u režimima u kojima se uobičajene metode pokažu

neučinkovitima.

Za danu grupu simetrija, za rješavanje CFT-a potrebno je izračunati njezine CFT podatke, tj.

dimenziju skaliranja svih primarnih operatora i potpun skup OPE koeficijenata teorije. CFT-ovi se

obično proučavaju putem perturbativnog računa [1], razvoja po epsilonu [2, 3], te neperturbativno

putem konformne bootstrap metode [4–6] te AdS/CFT korespodencije [7,8]. Nadalje, u posebnom

slučaju dvodimenzionalnog prostor-vremena, postoji mnogo primjera CFT-ova koji su egzaktno

rješivi [9].

Nedavno je pokazano da se CFT podaci s obzirom na operatore koji nose veliku vrijednost

odred̄enog očuvanog naboja mogu izračunati i putem razvoja po naboju u inverznim potencijama

Noetheričinog naboja, pri čemu su se prvi radovi fokusirali na limes velikog naboja [10–12]. U tom

limesu, CFT stanje i njegova pobud̄enja ulaze u “fazu kondenzirane materije sličnu supratekućini”

konačne gustoće. Takve su faze karakterizirane spontanim lomljenjem prostorno-vremenskih i

unutarnjih simetrija te ih se može opisati efektivnom teorijom polja (EFT, od engl. effective field

theory) za Goldstoneove bozone simetrije.

Spomenuti EFT pristup pogodan je za bavljenje jako vezanim teorijama, parametariziranjem

nepoznate fizike konačnim brojem neperturbativnih koeficijenata u svakom redu razvoja po naboju.

Nadalje, razvoj po naboju sadrži univerzalne koeficijente koje je moguće izračunati i koji ne ovise

o mikroskopskom opisu CFT-a, već isključivo o simetriji i broju prostorno-vremenskih dimenz-

ija. Zapravo, ti pojmovi proizlaze iz univerzalnih značajki fononskog spektra u generaliziranoj

supratekućoj fazi. Pomoću EFT-a s velikim nabojem istraženo je nekoliko teorija, poput O(N)

vektorskog modela u tri dimenzije [11], trodimenzionalnog SU(N) matričnog modela [13, 14], i

Chern-Simonsove teorije [15, 16]. Supersimetrične teorije u limesu velikog R-naboja ispitane su

u [17–19].
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U slučaju kad je CFT perturbativno dostupan zahvaljujući prisutnosti malog parametra ε , može

se zaobići EFT konstrukciju i raditi izravno u potpunoj teoriji. Tada razvoj po velikom naboju

ima oblik ’t Hooft-ovog razvoja [20], gdje se definira’ t Hooft-ova konstanta vezanja A = εQ, s

nabojem Q, i uzima limes ε→ 0 i Q→ ∞ uz držanje A fiksnim. To omogućuje dobivanje rezultata

svakog reda u terminima A konstanti vezanja, resumirajući odjednom beskonačni niz Feynmanovih

dijagrama u svakom redu razvoja po velikom naboju. Nadalje, sada možemo postaviti čvrst temelj

za EFT konstrukciju, povezujući perturbativnu i neperturbativnu fiziku.

Ovdje važnu ulogu igra općeniti fenomen „klasikalizacije“ kvantnih sustava u prisutnosti ve-

likih vrijednosti nekog kvantnog broja. Ustvari, Feynmanovim integralima koji opisuju korelatore

operatora velikih naboja dominiraju netrivijalne klasične putanje karakterizirane specifičnim obras-

com lomljenja simetrije. Kao posljedica, razvoj po naboju svodi se na poluklasični razvoj oko tih

klasičnih rješenja.

Prva istraživanja razvoja po naboju u slabo vezanim teorijama pojavila su se u [21–24], gdje su

se autori usredotočili na abelovu ϕ4 U(1) teoriju.

Ova doktorska disertacija fokusira se na razvoj, poopćenje i primjenu razvoja po naboju u CFT-

u, kao moćnog pristupa u otkrivanju strukture kvantne teorije polja s posebnim naglaskom na slabo

vezane neabelove CFT-ove.

U drugom poglavlju uvodimo osnove konformne teorije polja usredotočujući se na aspekte

relevantne za proučavanje sektora velikih naboja CFT-ova, kao što su radijalna kvantizacija, kore-

spondencija operator-stanje te Weylove transformacije.

Med̄uigra klasikalizacije CFT-ova s velikim nabojem i spontanog lomljenja relativističke invar-

ijantnosti, što dovodi do netrivijalnog brojanja i svojstava Goldstoneovih bozona, čini proučavanje

CFT-a s velikim nabojem složenom i fascinantnom temom koju ćemo pregledati u trećem poglavlju.

Tamo takod̄er uvodimo poluklasični pristup razvoju po naboju i pokazujemo njegovu povezanost

s konvencionalnim razvojem po Feynmanovim dijagramima. Nadalje, pregledavamo poopćenje

Goldstoneovog teorema relevantno za QFT s velikim nabojem. (Djelomični) dokaz ovog teorema

dan je u dodatku.

U četvrtom poglavlju proučavamo razvoj po naboju u O(N) kritičnoj teoriji u 4-ε dimenzije, što

je relevantno za opis kritičnog ponašanja različitih sustava iz stvarnog svijeta. Nakon opće rasprave
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o neabelovim modelima s velikim nabojem, proučavamo postupak fiksiranja naboja i inducirano

spontano lomljenje simetrije u O(N) vektorskom modelu.

Konkretno, otkrivamo da ako je osnovno stanje prostorno homogeno, onda su sve moguće kon-

figuracije naboja s istim ukupnim nabojem povezane O(N) transformacijama. Zapanjujuća posljed-

ica je da u ovom modelu zbroj naboja djeluje kao jedinstveni naboj, dok konfiguracija naboja

uopće nema ulogu. Za homogeno osnovno stanje s ukupnim nabojem Q zatim identificiramo odgo-

varajuću familiju operatora fiksnih naboja kao Q-indekse simetričnih O(N) tenzora traga nula s

klasičnom dimenzijom Q te računamo njihovu dimenziju skaliranja do prvog reda iznad vodećeg u

razvoju po naboju i u svim redovima u konstanti vezanja. Te anomalne dimenzije definiraju skup

(kritičnih) eksponenata križanja koji mjere nestabilnost sustava (npr. kritičnih magneta) protiv ani-

zotropnih perturbacija [25–27].

Izračun je napravljen koristeći Weylove transformacije za preslikavanje teorije na cilindar i ko-

respondencije stanje-operator kako bi se dimenzije skaliranja povezale s energetskim spektrom na

cilindru. Potonje se izračunava semiklasično rješavanjem odgovarajućeg klasičnog sustava i odred̄i-

vanjem spektra fluktuacija oko vodeće putanje. Akcija dobivena iz klasičnog rješenja daje vodeći

red anomalne dimenzije u razvoju po naboju, dok je slijedeći red odred̄en funkcionalnom deter-

minantom fluktuacija koja se može izraziti u terminima njihovih disperzijskih odnosa. Potvrd̄u-

jemo naš pristup testiranjem rezultata do najvišeg poznatog reda u perturbacijskoj teoriji (2 petlje u

razvoju po epsilon) i iskorištavamo ih za "boost" same teorije perturbacije, dobivajući potpun skup

eksponenata križanja u 4 petlje u razvoju po epsilonu.

Nadalje, predvid̄amo članove proizvoljno visokog reda u razvoju po epsilonu, koji se mogu

koristiti za provjeru budućih dijagramskih izračuna. Poglavlje zaključujemo raspravom o nas-

tanku faze nalik supratekućini u limesu velikog naboja i povezane pojave univerzalnih doprinosa u

razvoju po velikog naboju. Konačno, raspravljamo o ograničenjima metoda velikih naboja, s na-

glaskom na njihovu relevantnost za eksperiment. Konkretno, provodimo heurističku analizu kako

bismo odredili raspon vrijednosti naboja takve da je razvoj po naboju pod nadzorom.

Zatim idemo izmed̄u četiri i šest dimenzija, gdje O(N) kvartični model teče u asimptotski sig-

urne [28,29] UV fiksne točke pri negativnim vrijednostima konstanti vezanja [30], za što se vjeruje

da igra relevantnu ulogu u AdS / CFT-u (višeg spina) [31, 32]. Zanimljivo je da se odnedavno na-

gad̄a dualan opis te kritične teorije u terminima IR fiksne točke u O(N)-invarijantnoj teoriji s N+1
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polja i kubičnim potencijalom [33, 34].

U petom poglavlju istražujemo ova nagad̄anja pomoću razvoja po naboju, argumentirajući u

prilog jednakosti velikih sektora naboja dvaju modela u 6− ε dimenzija.

Konkretno, uspored̄ujemo dimenzije skaliranja operatora velikih naboja do prvog reda nakon

vodećeg u razvoju po naboju i pronalazimo slaganje. Izračun dimenzija skaliranja u kubnom mod-

elu srodan je onom izvedenom u četvrtom poglavlju. Budući da naši rezultati resumiraju beskon-

ačni red Feynmanovih dijagrama, te uključuju beskonačnu familiju kompozitnih operatora, znača-

jno proširujemo prethodne testove ekvivalencije dvaju modela. To pokazuje kako metode velikih

naboja mogu biti korisne u ispitivanju dualnosti u kvantnoj teoriji polja.

Nadalje, analiziramo pojavu kompleksnih dimenzija skaliranja iznad kritične vrijednosti naboja.

Takva kritična vrijednost netrivijalno je odred̄ena parametrom N i brojem prostorno-vremenskih di-

menzija. Raspravlja se o odnosu doprinosa instantona slobodnoj energiji modela.

U šestom poglavlju koristimo razvoj po naboju da bismo proučili dinamiku U(N)×U(M) mod-

ela, relevantnih za fiziku elementarnih čestica i kozmologiju [35–37]. Konkretno, kada imamo

N = M = 2, ovaj model opisuje standardni Higgsov model, a u općenitom slučaju N = M opisuje

kiralan fazni prijelaz na konačnoj temperaturi u kvantnoj kromodinamici (QCD) [36, 38].

Uz fenomenološke primjene, imamo dvije različite motivacije za razmatranje ovog modela.

Prvo, u ovoj je teoriji moguće analizirati utjecaj konfiguracije naboja na razvoj po naboju za CFT

podatke. Štoviše, u velikom dijelu svog prostora parametara, i u 4− ε dimenzije, ova teorija ne

teče ni u jednu fiksnu točku za realne vrijednosti njezinih dviju konstanti vezanja nego sadrži dvije

kompleksno konjugirane fiksne točke. Odgovarajući kompleksni CFT nije unitaran i povezan je s

pojavom blizu konformnog ponašanja tzv. walking tipa u teoriji [39, 40].

Uspješnom primjenom metoda velikih naboja ilustriramo, stoga, kako koristiti ove alate temel-

jene na CFT-u u računanju funkcija renormalizacijske grupe čak i u teorijama bez fiksnih točaka.

Nadalje, raspravljamo o uvjetima pod kojima korespondencija stanje-operator i Weylovo preslika-

vanje vrijede u neunitarnim CFT-ovima. U istom poglavlju pokazujemo kako mijenjajući konfigu-

raciju naboja možemo bez pomoći dijagramskih proračuna pristupiti anomalnoj dimenziji različitih

operatora koji se transformiraju u skladu s različitim ireducibilnim reprezentacijama globalne grupe

simetrije. To ilustrira posebnu učinkovitost metoda velikih naboja s obzirom na konvencionalni

razvoj po Feynmanovim dijagramima kada se radi o teorijama s uključenim neabelovim grupama

vii



simetrije, kao što je U(N)×U(M).

U tu svrhu upotpunjujemo semiklasični pristup razvijanjem opće strategije koja je sposobna

identificirati, za danu konfiguraciju naboja, operator fiksnog naboja s minimalnom dimenzijom

skaliranja, koja, putem korespondencije stanje-operator, odgovara osnovnom stanju teorije na cilin-

dru. Zapravo, kao što ćemo vidjeti u tom poglavlju, energija osnovnog stanja (a time i pripadajuća

dimenzija skaliranja) može se tada lako izračunati semiklasično kao funkcija konfiguracije naboja.

Naša je strategija ukorijenjena u teoriji reprezentacije Liejevih grupa, a poduprta je eksplicitnom

konstrukcijom relevantnih operatora.

Kao nusprodukt naših analiza dobivamo mnogo novih rezultata o spektru anomalnih dimenzija

u modelu U(N)×U(M). Rezultate testiramo uspored̄ujući ih s literaturom, izvodeći dijagramske

izračune te uzimajući odred̄ene limese u prostoru parametara gdje model se pojednostavljuje.

Ključne riječi: konformna teorija polja, razvoj po naboju, semiklasične metode
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1 INTRODUCTION

If you ask a high-energy physicist “How things happen in nature?”, (s)he may answer “In all the

possible ways.., together”. Indeed, the path integral formulation of quantum field theory (QFT)

tells us that, to determine the probability of a certain event, we have to sum over all the paths,

processes, stories which may lead to that event. Unfortunately, when it comes to QFT, apart from

a few "lucky" cases, we actually do not know how to sum over all the paths.

Strikingly, in many cases, we can sum solely over some paths and still obtain precise results.

This is the case of classical physics, where a single classical trajectory (the least-action one) is so

predominant that we can completely forget about all the other possible (quantum) paths.

Another example is provided by low energy quantum electrodynamics (QED), where the small-

ness of the interaction strength allows us to efficiently organize the paths according to their rel-

evance, setting up a perturbative expansion so efficient that it led to some of the most precise

predictions of history of physics [41].

However, often nature is not so nice to us, and perturbative methods are not feasible. This hap-

pens in strongly-coupled QFTs, such as low-energy quantum chromodynamics (QCD). A common

strategy roughly consists in discretizing the spacetime in order to consider only a finite (although

huge) number of paths, computing the discretized path integral on a supercomputer, and finally

extrapolating the continuum limit. This non-perturbative first-principle approach takes the name of

lattice field theory. Another possibility is to adhere to the effective field theory (EFT) philosophy:

if you can’t beat ’em parametrize ’em, which, albeit often leaving a sense of bitterness, can be very

efficient in capturing the phenomenological aspects.

Leaving aside for a moment strongly-coupled systems, it is well-known that, in perturbative

theories, the conventional diagrammatic method becomes soon unpractical as we go beyond the

first few perturbative orders due to the fast growth of the number of Feynman diagrams with the

loop order.

Another case when perturbation theory can break down and become ineffective even in weakly-

coupled theories is when describing multi-particle production processes with a large number of final

states [42, 43] and, more broadly, processes involving multi-legged amplitudes. This phenomenon

has important applications for future collider physics since perturbative unitarity may be violated
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in multi-Higgs (or W , Z) boson production processes at energy scales as high as O(100) TeV1

[44, 45], which are expected to be accessible at the next generation of colliders such as the Future

Circular Collider (FCC) at CERN [46,47]. The renormalization of composite operators with a large

number of legs is, in itself, a notoriously tough task when tackled with conventional techniques.

The underlying reason is the rapid growth of the number of diagrams, not only with the number of

loops but also with the number of legs.

In the light of the above, every method able to give an insight into the structure of QFT should

be retained of great value2.

In this thesis, we focus on that subset of quantum field theories which are invariant under

conformal transformations. Conformal field theories are of general interest since they generally

occur at the extrema of the renormalization group (RG) flow. For this reason, every continuum QFT

can be seen as a (relevant) deformation of a CFT. The Standard Model itself, in many respects, can

be seen as a slight deformation of a CFT [49,50]. Furthermore, whenever in an arbitrary theory we

have a large hierarchy between two energy/length scales, the physics at intermediate scales is, in

first approximation, conformal.

In nature, CFTs appear in the description of continuous phase transitions [51, 52], such as the

ferromagnetic, superconducting, and superfluid transitions. In this case, the scaling dimensions

of the operators define the critical exponents describing the behavior of a physical system as it

approaches the critical point.

CFT plays a fundamental role in string theory too, where physical properties are encoded in

two-dimensional conformal theories living on the strings’ worldsheets [53]. Moreover, they may

provide a non-perturbative UV completion of quantum gravity via the AdS/CFT correspondence

[7, 8].

For a given symmetry group, to solve a CFT amounts to compute its CFT data, i.e. the scaling

dimensions of all the primary operators and the full set of three-point function coefficients (OPE

coefficients) of the theory. CFTs are usually investigated via perturbation theory [1], the epsilon

1 An obvious question is: how many Higgs does it take? A recent analysis concluded that, at energies ∼ O(100) TeV,
the number of Higgs bosons needed to have unitarity violation at the perturbative level is 130 [44].

2 "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble. It there fore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed." P. Dirac (1929) [48].
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expansion [2,3], and non-perturbatively by means of the conformal bootstrap method [4–6], Monte

Carlo simulations [54–56], and AdS/CFT [57, 58].

In this work, we study the spectrum of operators carrying a large value of one or more conserved

charges in CFTs with internal global symmetries. According to the state-operator correspondence,

this can be also viewed as the study of CFT in states with a large charge density. In general, a

conformal theory at large charge can be associated with a finite density “superfluid-like condensed

matter phase” characterized by a specific pattern of spontaneous symmetry breaking, which mixes

spacetime and internal symmetries and leads to a new form of Goldstone’s theorem. Moreover,

observables with large quantum numbers are generally controlled by classical physics. In other

words, the sum over paths is dominated by a leading classical trajectory around which we can set

up a semiclassical expansion. This is a general fact observed in a variety of systems, ranging from

the Hydrogen atom at large values of the magnetic quantum number to meson resonances with

large spin [59, 60].

Recently, this phenomenon has been further elucidated in [10], where, studying the three-

dimensional U(1) scalar CFT, the authors show that the scaling dimensions of operators carrying

large values of the U(1) charge Q can be computed via a semiclassical large charge expansion in

inverse powers of Q. To this end, they developed a powerful EFT approach suited to deal with

strongly-coupled theories, encapsulating the unknown non-perturbative physics in a finite number

of coefficients at every order of the 1/Q expansion.

After this first pioneering work, several theories have been investigated by means of the large

charge EFT, such as non-abelian scalar models [11, 13, 61–63], Chern-Simons theories [15, 16],

and non-relativistic systems with Schrödinger symmetry [64,65]. Supersymmetric theories at large

R-charge have been examined in [17–19]. The first review on the topic appeared in [66].

The above works show that a general (and intriguing) feature of the large charge expansion

for CFT data is the presence of calculable universal terms that do not depend on the microscopic

description of the CFT but solely on the symmetry of the theory and the number of spacetime

dimensions. In fact, these terms stem from the universal features of the phonon-like spectrum in

the generalized superfluid phase.

When the CFT is perturbatively accessible thanks to the presence of a small parameter ε , one

can bypass the EFT construction and work directly in the full theory. In this case, the large charge
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expansion becomes a ’t Hooft-like expansion [20], where one defines a ’t Hooft coupling A= εQ,

and takes the limit ε→ 0 and Q→∞ while maintainingA fixed. As a result, the scaling dimension3

∆Q of (large) charge Q operators takes the form

∆Q = ∑
k=−1

1
Qk ∆k(A) , (1.1)

where ∆k is the k+ 1-loop correction in the large-Q semiclassical expansion. In the above form,

the large charge expansion shares many similarities with the large number of flavors [67–70] and

the large number of colors [20, 71, 72] expansions in gauge theories.

The exploration of the large charge expansion in weakly-coupled theories begun in [21–24],

where the authors focused on the U(1)-invariant ϕ4 scalar CFTs in d = 4− ε dimensions. Notice-

ably, every ∆k in (1.1) resums at once an infinite series of Feynman diagrams of the conventional

perturbative expansion. This opens the intriguing possibility of accessing the large-order behavior

of perturbation theory, which is known to encode non-perturbative information [73–75], as well as

performing all-order tests of conjectured dualities in QFT.

Moreover, by studying weakly-coupled theories at large charge, we can put on firm ground and

"UV complete" the large charge EFT discussed above, bridging perturbative and non-perturbative

physics. This has been done in [76] for the three-dimensional U(1)-symmetric scalar CFT.

As we will argue in this thesis, large charge methods allow to efficiently compute the scaling di-

mension of composite operators with a large number of legs, being effective in realms (many loops,

many legs) where diagrammatic methods are not, providing then a complementary approach to the

latter. Indeed, large charge operators are naturally connected with the multi-legged amplitudes that,

as discussed above, are problematic within perturbation theory.

Ultimately, a shared hope is to be able, one day, to transfer the techniques and knowledge

matured by exploring CFT at large charge to the study of Standard Model processes involving a

large number of Higgs, W , and Z bosons.

3 In this thesis, we will mainly focus on the computation of the anomalous dimension spectrum of large charge operators.
However, the approach discussed here can also be extended to the computation of general correlators (and in particular
to the three-point functions) of large charge operators, as discussed in [77, 78] and [23] for strongly- and weakly-
coupled theories, respectively.
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This thesis concerns the development and applications of the large charge expansion in CFT4

with a particular emphasis on weakly-coupled non-abelian scalar CFTs. The work is organized as

follows:

• In Chap.2, we introduce the well-known basics of conformal field theory, focusing on the as-

pects relevant to the study of the large charge sectors of CFTs, such as radial quantization, operator-

state correspondence, and Weyl transformations.

• In Chap.3, we review the main ideas underlying the study of CFT at large charge. There, we

also introduce the semiclassical approach to the large charge expansion and show its connection to

the conventional diagrammatic expansion.

• In Chap.4, we study the large charge expansion in the O(N) critical theory in 4-ε dimensions.

In particular, we show how to apply (non-EFT) large charge methods to non-abelian theories and

use them to compute the anomalous dimensions of the spin-0 operators transforming as traceless

symmetric O(N) tensors to the next-to-leading order (NLO) in the large charge expansion. These

anomalous dimensions define a set of crossover (critical) exponents which measure the instability

of the system against anisotropic perturbations [25–27]. We validate the approach by testing our re-

sults to the maximum known order in perturbation theory (2-loops in the ε-expansion) and use them

to “boost” perturbation theory itself, obtaining the 4-loop crossover exponents in the ε-expansion.

Furthermore, we predict an infinite number of higher-order terms that can be used to check future

diagrammatic calculations.

The emergence of a superfluid phase and the related EFT description is discussed. Finally, we

focus on the O(N) model with cubic anisotropy and perform a 1-loop study of the spectrum of

anomalous dimensions.

• In Chap.5, we study the O(N) theory in 4 < d < 6 dimensions. In this range of dimensions,

this model exhibits, at least for large N, a UV fixed point (FP) [30], which provides an example

of an interacting, strongly-coupled, non-supersymmetric CFT in d = 5, as well as a realization of

the asymptotic safety (or non-perturbative renormalizability) scenario [28], which may be realized

4 Notice that the large charge expansion considered here, where the charge is some internal quantum number, is a
particular case of a more general large quantum number expansion that includes, for example, also the large-spin
expansion in CFT [79] and QCD [80].
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in nature by quantum gravity [29, 81, 82] and UV completions of the Standard Model [35, 83].

Moreover, it is believed that, in d = 5, this model has an AdS6 holographic dual in terms of higher-

spin theories [31, 32].

Interestingly, it has been conjectured a dual description of this UV fixed point (FP) in terms of

the IR Wilson-Fisher (WF) FP of an O(N)-invariant theory with N + 1 fields and cubic potential

[33, 34]. We will test this conjecture using large charge methods and argue in favor of the equality

of the large charge sectors of the two models in 6− ε dimensions. Specifically, we will compare

the scaling dimensions of large charge operators to the NLO in the large charge expansion finding

agreement. Since our results resum an infinite series of Feynman diagrams and involve an infinite

family of composite operators, we substantially extend previous tests of the equivalence between

the two theories.

• In Chap.6, we use the charge expansion to study the dynamics of the U(N)×U(M) Higgs

model in d = 4− ε dimensions. As we shall see, this model is suited to the investigation of the

role of the charge configuration in theories with multiple conserved charges. Specifically, we show

how large charge semiclassical methods can be efficiently employed to compute the scaling di-

mension of a variety of different operators identified by the charge configuration they carry. This

will illustrate the effectiveness of the approach when dealing with theories invariant under involved

non-abelian symmetry groups such as U(N)×U(M).

In a large region of its parameter space, the U(N)×U(M) theory does not flow to any FP.

Instead, the zeros of the beta functions occur at complex values of the two couplings of the the-

ory. The corresponding complex CFT is non-unitary and related to an emerging near-conformal

behaviour of the walking type [39, 40]. We illustrate how to study the non-conformal theory by

considering the associated complex CFTs and applying large charge methods.

• In Chap.7, we offer our conclusions and discuss the future challenges in the field.

Finally, the thesis includes three appendices containing additional details on some of the com-

putations presented.

The original material starts from chapter 4 on, while previous chapters review the known liter-

ature. In particular, Chap.4 is based on our work [84], except for Sec.4.10, which presents material
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from our publication [85], and Sec.4.9 that contains a (so far) unpublished novel analysis. Chap.6

is based on our publication [86] and our preprint [87]. Results from Chap.5 will appear in a paper

that is currently in preparation. Chaps.4 and 6, and related appendices, contain many unpublished

details absent in the original papers.

Keywords: conformal field theory, large charge expansion, semiclassical methods

7



2 BASICS OF CONFORMAL FIELD THEORY

In this section, we will introduce the basics of conformal field theory. Since this subject is well-

documented, we will just present the main results relevant to the study of the large charge sectors

of CFTs. The reader interested in a pedagogical introduction to CFT can refer to [88–90] (see also

chapter 2 of [53] for a more string-oriented introduction to 2D CFT) and references therein.

In general, a physical system looks different when examined at different energy/length scales.

In QFT and statistical physics the change of a system when probed at different scales is encoded

in the renormalization group (RG) flow in the space of the theories i.e. the space of the La-

grangians/Hamiltonians. Fixed points (FPs) of the RG flow are given by theories invariant under

RG transformation i.e. by scale invariant theories. At the quantum level, fixed points are defined

by the zeros of the beta functions for the couplings of the theory.

Amazingly, most scale invariant QFTs show an enhanced conformal symmetry, defined as in-

variance under general angle-preserving changes of coordinates. This is an intriguing fact of nature

that still asks for a full theoretical explanation5. Then CFTs represent useful oases in the space

of quantum field theories. Furthermore, conformal symmetry highly constrains the dynamics of

QFTs. In fact, it allows us to non-perturbatively define CFTs as well as obtain many important

results on their structure without making reference to any Lagrangian/Hamiltonian description. We

will illustrate this last point in the rest of this introductory section.

2.1 The conformal algebra

Conformal Transformations on a d-dimensional flat space with signature (p,q), p + q = d are

diffeomorphisms that locally preserve the angle between lines. This is realized if under the change

of coordinates xµ −→ x′µ(x), the metric changes only by an overall factor, that is

ηµν −→ Λ(x)ηµν . (2.1)

5 See [91] for a comprehensive review on the relation between scale and conformal invariance and [92] for a discussion
in the four-dimensional case.
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A local rescaling of the metric tensor as the one above is called Weyl transformation. An infinitesi-

mal transformation

x′µ = xµ + ε
µ(x)+O

(
ε

2) , Λ(x) = ew(x) ∼ 1+w(x) , (2.2)

is conformal if

∂µεν +∂νεµ = w(x)ηµν . (2.3)

The above condition can be rewritten as

w(x) =
2
d

∂ · ε ,(
ηµν∂

2 +(d−2)∂µ∂ν

)
w(x) = 0 ,

(d−1)∂ 2w(x) = 0 . (2.4)

For d = 2 the second and third equations coincide, leading to deep differences between the cases

d = 2 and d ≥ 3. We start from the case d ≥ 3, where (2.4) has only four types of solution which

we give below together with the corresponding transformations and their generators

Solution Transformation Generator

ε
µ = aµ = const. Translations: x′µ = xµ +aµ Pµ =−i∂µ

ε
µ = xν

ωνµ Rotations: x′µ = xµ +ω
µ

ν xν Mµν = i
(
xµ∂ν − xν∂µ

)
ε

µ = λxµ Dilatations: x′µ = (1+λ )xµ D =−ixµ
∂µ

ε
µ = 2(b · x)xµ − x2bµ SCT: x′µ = xµ +2(b · x)xµ − x2bµ Kµ =−i

(
2xµxν

∂ν − x2
∂µ

)
,

(2.5)

where ωνµ =−ωµν and SCT stands for special conformal transformations. The global form of the

SCT reads

x
′µ =

xµ −bµx2

1−2(b · x)+b2x2 , (2.6)

and diverges when the denominator vanishes. Thus, in order to globally define the SCT, we need

to perform a so-called conformal compactification, which adds the point at ∞.

With the explicit expression for the generators given above, we can compute the commutation
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relations defining the conformal algebra

[Mµν ,Mρσ ] = i(δµρMνσ ±permutations) ,

[Mµν ,Pρ ] = i(δνρPµ −δµρPν) ,

[Mµν ,Kρ ] = i(δνρKµ −δµρKν) ,

[D,Pµ ] = iPµ ,

[D,Kµ ] =−iKµ ,

[Pµ ,Kν ] =−2i(δµνD−Mµν) ,

(2.7)

where the first two relations define the Poincare algebra. The overall number of generators is
1
2(d+1)(d+2). In fact, the conformal group acting onRp,q∪∞ is isomorphic to SO(p+1,q+1).

This can be easily proven by using the so-called "projective light cone" formalism [93, 94] where

one embeds Rp,q into Rp+1,q+1 by considering a section of the light cone in the latter spacetime

to eliminate the additional coordinates. Since the conformal group acts linearly on Rp+1,q+1, this

formalism is very useful for studying the implications of conformal invariance.

To study the conformal algebra in d = 2 dimensions, we consider the Euclidean signature and

introduce complex coordinates z = x0 + ix1, z̄ = x1− ix2. Hence, Eqs.(2.4) reduce to

∂zε̄ = ∂z̄ε = 0 , (2.8)

where

ε = ε
0 + iε1 , ε̄ = ε

0− iε1 , ∂z =
1
2
(
∂

0− i∂ 1) , ∂̄z̄ =
1
2
(
∂

0 + i∂ 1) . (2.9)

Thus the group of infinitesimal conformal transformations in two dimensions is generated by all

the meromorphic functions ε = ε(z) and ε̄ = ε̄(z̄), which can be Laurent-expanded as

ε(z) = ∑
n∈Z

εnzn+1 , ε̄(z̄) = ∑
∈Z

ε̄nz̄n+1 . (2.10)
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Then a basis of generators is given by

ln =−zn+1
∂z , l̄n =−z̄n+1

∂z̄ , n ∈ Z , (2.11)

and generates the Witt algebra

[lm, ln] = (m−n)lm+n ,[
l̄m, l̄n

]
= (m−n)l̄m+n ,[

l̄m, ln
]
= 0 . (2.12)

The Witt algebra is infinite-dimensional, and this highly constrains the CFT dynamics, sometimes

allowing a complete solution of the theory [9]. On the other hand, the group of globally defined

conformal transformations depends on the topology of the considered space. For instance, it is easy

to prove that the group of conformal transformations on the two-sphere S2 ∼= C∪∞, is the Möbius

group PSL(2,C) = SL(2,C)/Z2, which is generated by l−1, l0, l1 and l̄−1, l̄0, l̄1. In particular, l−1

generates translations, l0 generates complex dilatations (which can be seen as real dilatations plus

rotations), while l1 generates the SCT.

2.2 Radial quantization and state-operator correspondence

We move to analyze the Hilbert space of a CFT and the action of the conformal group on opera-

tors. From now on, we will focus uniquely on case d ≥ 3, to which is devoted the content of this

dissertation.

In general, we construct the space of states of a quantum theory by foliating the spacetime into

d− 1 dimensional surfaces. States defined on the same surface belong to the same Hilbert space.

Moreover, if the surfaces are related by a symmetry transformation, then the Hilbert space is the

same on each surface. It is, therefore, convenient to choose a foliation according to the symmetries

of the theory.

A prototypical example is a foliation into equal-time surfaces in theories with Poincare symme-

try. In that case, we create states on a given surface t = t ′ by inserting operators in its past t < t ′ and

computing the path integral over the field configuration in the past. States on different equal-time
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surfaces t = t ′ and t = t ′′ are hence related by the time evolution unitary operator U = eiH(t ′′−t ′),

where the Hamiltonian H corresponds to the operator generating time translations.

In theories with conformal symmetry, it is convenient to foliate the space into spherical surfaces

centered in the origin x = 0. Then we can move from one surface to another by acting with the

dilatation operator D, which takes the role of the Hamiltonian. For obvious reasons, this approach

takes the name of radial quantization.

Since the angular momentum operator Mµν commutes with D, we can label the states with the

eigenvalues of D and their spin l. We naturally choose the vacuum |0〉 to be conformal invariant

and thus annihilated by all the conformal generators. The action of the conformal generators on the

operators is [95]

[Pµ ,O(x)] =−i∂µO(x) ,

[D,O(x)] = i(∆+ xµ
∂µ)O(x) ,

[Mµν ,O(x)] =−i(Σµν + xµ∂ν − xν∂µ)O(x) ,

[Kµ ,O(x)] =−i(2xµ∆+2xλ
Σλ µ +2xµ(xρ

∂ρ)− x2
∂µ)O(x) ,

(2.13)

where ∆ is the scaling dimension ofO(x) and Σµν acts on the spin indices according to the SO(p,q)

irreducible representation (or irrep) of O(x).

Eigenstates of D are created by inserting operators with scaling dimension ∆ in the origin

D|∆〉= DO∆(0)|0〉= [D,O∆(0)]|0〉+O∆(0)D|0〉= i∆O∆(0)|0〉 = i∆|∆〉 . (2.14)

Since dilatation moves the insertion point, when x 6= 0 the insertion of operators inside a sphere

does not generate eigenstates of D, but a superposition of them.

From the commutators (2.7), we have that the action of Pµ increases the scaling dimensions by

1, whereas Kµ decreases them by 1

Pµ |∆〉 ∝ |∆+1〉 , Kµ |∆〉 ∝ |∆−1〉 . (2.15)

Therefore, Pµ and Kµ act, respectively, as raising and lowering operators of the conformal algebra.

A classic result [96] is that, in unitary theories, the scaling dimensions of primary operators are
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bounded from below as6

∆min(l) = l +D−2 , l > 0 (Spin-l traceless symmetric representations of SO(p,q))

∆min(0) =
D
2
−1 , l = 0 (Scalar representations) .

(2.16)

Then, by repeatedly acting with Kµ on an arbitrary state at some point we will encounter a state |∆〉

such that Kµ |∆〉 = 0. The operators creating such states are called primary operators and satisfy

the following defining property

[Kµ ,O(0)] = 0 . (2.17)

Starting from a primary operator O and acting with the raising operator Pµ , we can build a confor-

mal multiplet of O, {O,PµO,PµPνO, . . .}. The members of the multiplet are obtained by differ-

entiating O (remember that [Pµ ,O(x)] =−i∂µO(x)) and are called descendants operators. In this

way, we can obtain all the operators with a definite scaling dimension and use them to construct the

entire Hilbert space.

To sum up, the insertion of local primary operators at the origin produce the highest weight

states, which have a definite scaling dimension and are annihilated by Kµ . Vice versa, from an

eigenstate of D satisfying Kµ |∆〉= 0, we can build a local primary operator with scaling dimension

∆. This one-to-one correspondence between states and local operators is called state-operator

correspondence [98, 99] and plays a fundamental role in CFT7.

2.3 Correlation functions

In CFT, the interesting physical quantities are the scaling dimensions and the correlation functions

of the scaling operators of the theory. Given two scalar primaries Oi and O j
8, the requirement of

conformal invariance fixes entirely the two-point function as

〈Oi(x)O j(y)〉= c
δi j

|x− y|2∆
, (2.18)

6 See [88, 89, 97] for a detailed derivation of the so-called unitarity bounds (2.16).
7 In non-conformal field theories, states and local operators are not equivalent since the former carry non-local informa-

tion about the entire field configuration. On the other hand, in a CFT, we can map the entire space to the origin and we
can think at the Hilbert space of the theory as living in a single point.

8 The indices of the operators represent the complete set of their quantum numbers and uniquely identify them.
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where ∆ is the scaling dimension of Oi(x) and c is a normalization factor which is fixed by the

normalization of the operators9. This can be easily proven by acting with the conformal generators

on the two-point function and using Eq.(2.13). Analogously, the three-point functions are fixed by

conformal symmetry up to a constant Ci jk [100]

〈Oi(x)O j(y)Ok(z)〉=
Ci jk

|x− y|∆i+∆ j−∆k |y− z|∆ j+∆k−∆i|z− x|∆k+∆i−∆ j
. (2.19)

The constants Ci jk are called 3pt function coefficients, OPE coefficients, or structure constants and

play a fundamental role in CFT. Higher-point functions are less constrained than the two and three-

point function but are, of course, more constrained than in absence of conformal symmetry. For

instance, in CFT, the four-point function of 4 identical scalars takes the form

〈O(x1)O(x2)O(x3)O(x4)〉=
1

x2∆
12 x2∆

34
f (u,v) , u =

x2
12x2

34

x2
13x2

24
, v = u|2↔4 , xi j = xi−x j . (2.20)

Analogous considerations apply to correlators involving composite operators with non-zero spin.

2.4 The operator product expansion

The operator product expansion (OPE) in QFT is a formal expansion of the product of two local

operators as a series of other local operators

Oi(x)O j(y) = ∑
k

λi jk(|xi− x j|)Ok(z) , (2.21)

where the sum goes over all the local operators in accord with any requirements of conserved

quantum numbers. In general QFT the OPE is an asymptotic series formally valid in the limit

x→ y. On the other hand, the conformal OPE is, when viewed as an operator equation, an exact

expression with a radius of convergence equal to the distance to the next field insertion, as proved

long ago by G. Mack in [101]. In fact, via the state-operator correspondence, the CFT OPE can

be simply viewed as an expansion of the state created by the insertions of Oi(x) and O j(y) in

eigenstates of the dilatation operator.

Furthermore, the contribution of descendants fields can be adsorbed in a differential operator

9 In particular, we can always set c = 1.
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Ai jk(|xi− x j|,∂z) which is fixed by conformal invariance up to a constant Ci jk. We then have

Oi(x)O j(y) = ∑
k
Ai jk(|xi− x j|,∂z)Ok(z) , (2.22)

where the sum now involves only the primaries of the theory. The constants Ci jk are the same

appearing in the expression for the three-point functions (2.19). In fact, by using the OPE, we

can reduce any n-point function to a n− 1-point function10. As a consequence, a CFT is fully

characterized by the spectrum of local primary operators Oi, their scaling dimensions ∆Oi , and the

set of OPE coefficients Ci jk. This information is collectively denoted as CFT data. The goal of

CFT is to compute CFT data and use them to make predictions for experiments and understand

the structure of the quantum world. CFT data can be computed perturbatively or by means of

non-perturbative techniques such as functional RG methods, conformal bootstrap, and lattice.

2.5 Weyl maps

Weyl invariance is the invariance of the theory under Weyl transformations of the metric, which, in

curved spacetimes, read

gµν −→ Λ(x)gµν ∼ gµν +w(x)gµν . (2.23)

General Weyl transformations can change the spacetime geometry while those considered in the

definition of the conformal transformations map the flat spacetime into itself. This subclass of

Weyl maps can be realized by diffeomorphisms i.e. they are induced by conformal changes of

coordinates.

Clearly, Weyl invariance implies conformal symmetry, but the opposite is not generally true.

By definition, the theory is Weyl invariant if the change of the action δS under a Weyl rescaling

vanishes

δS =
∫

ddx
√

gT µν
δgµν =

∫
ddx
√

gT µ

µ w(x) = 0 , (2.24)

where we have used the infinitesimal form of the Weyl transformation (2.23) and T µν is by defini-

tion the energy-momentum tensor of theory. Since w(x) is arbitrary, the condition for infinitesimal

10 Asking consistency between the different ways we can reduce a four-point function to three-point functions by means
of the OPE, it is possible to derive the crossing symmetry constraints at the heart of the conformal bootstrap method
[5, 102, 103].
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Weyl invariance is

T µ

µ = 0 , (2.25)

i.e. the energy-momentum tensor has to be traceless11. It can be proven that this happens in

all local unitary CFTs [88, 105]. This allows us to exploit Weyl invariance in order to simplify

computations. In particular, to apply large charge methods we will often map our CFTs from Rd to

a cylinder R×Sd−1 12.

Considering polar coordinates (r,Ωd−1) for Rd , the map reads

Rd →R×Sd−1 , (r,Ωd−1)→ (τ,Ωd−1) , r = Reτ/R , (2.26)

and corresponds to a Weyl rescaling of the metric

ds2
cyl = dτ

2 +R2dΩ
2
d−1 =

R2

r2 ds2
flat , (2.27)

with R the radius of the sphere and τ the time coordinate on the cylinder. Under this map, dilatations

D become time translations on the cylinder, and thus the radial quantization in flat space reduces

to the usual equal-time quantization on the cylinder; states are classified according to their energy

and live on spheres connected by time evolution. The latter is generated by the dilatation operator

D, which plays the role of the Hamiltonian.

Under a Weyl transformation (2.23), correlation functions change according to

1
〈1〉g
〈O1(x1) . . .On(xn)〉g =

(
∏

i
Λ(xi)

∆Oi
2

)
1

〈1〉
Λ(x)g

〈O1(x1) . . .On(xn)〉Λ(x)g . (2.28)

Under the map to the cylinder (2.26), the two-point function of a scalar primary operatorO and

11 Since T µ

µ gets a non-vanishing vacuum expectation value (vev) on curved even-dimensional spacetimes, to prove
invariance under finite Weyl transformations is more complicated. This is known as the Weyl anomaly. In what
follows, we will not consider theories living in an even number of dimensions, and thus we will not face this issue. We
refer the reader to Refs. [104–106] for detailed discussions and recent progress on the relation between conformal and
Weyl invariance, including the implication for correlation functions.

12 Notice that the Weyl map on the cylinder is not conformal for d > 2.
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its conjugate O† transforms as [89, 90]

〈O†(x f )O(xi)〉cyl = |x f |∆O |xi|∆O〈O†(x f )O(xi)〉flat ≡
|x f |∆O |xi|∆O

|x f − xi|2∆O
, (2.29)

where x f ,i are the Cartesian coordinates on the plane, and the operators are canonically normalized.

Notice that the limit xi→ 0 corresponds to τi→−∞ on the cylinder. In view of the state-operator

correspondence discussed in Sec.2.2, the action of an operator O at τ = −∞ creates a state on the

cylinder with the same quantum numbers and with energy given by

EO =
∆O
R

. (2.30)

Due to the above relation, our goal of computing scaling dimensions of fixed charge operators will

often turn to the computation of the energy spectrum on the cylinder.

Finally, consider a conformal theory of massless scalar fields living on Rd . When we map the

theory to the cylinder, the scalar fields will couple to the Ricci scalarR of Sd−1, generating a mass

term with m2 = ξR in the Lagrangian. Naively, we might think to preserve conformality by taking

the renormalized ξ to vanish, but it can be shown that if we fix ξ = 0 at some energy scale it will

be generated anyway during the RG flow. Instead, it can be proven that the conformal coupling is

dictated by conformal invariance to be 1
4

d−2
d−1 [107]. On a d−1-dimensional sphere of radius R, we

haveR= (d−1)(d−2)
R2 , and thus the mass of a conformal scalar on the cylinder is

m =
d−2
2R

. (2.31)

2.6 Complex CFT

It can happen that fixed points of the RG flow occur at complex values of the couplings. Even if

the theory will not actually flow to the FP, considering the associated complex CFT, which is, in

general, non-unitary, can be a useful tool to explore the associated non-conformal theory. This can

be achieved, for instance, using the so-called conformal perturbation theory [40, 108–110], where

one perturbs the CFT by adding an operator O with some (in general complex) coupling g, or with

the aid of large charge methods, as we will show in Chap.6.
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Furthermore, complex CFTs are strictly related to a RG behaviour of the walking type which,

being a general natural mechanism for generating hierarchies in QFT, has been invoked in the liter-

ature for models of dynamical electroweak symmetry breaking [111–114] and for describing weak

first order phase transitions (i.e. first order phase transitions near the critical point) in condensed

matter systems [40, 110, 115, 116].

To illustrate the general connection between complex CFT, walking and hierarchies, consider a

theory with only one coupling g. Then walking dynamics is realized when the beta function of g is

very small but there is no FP. Then, there is a, eventually long, range of energies where the coupling

is close to a constant value and the system shows near-conformal dynamics i.e. the coupling does

not run but walks. To see this, consider a toy beta function given by13

β (g) = µ
∂g
∂ µ

= (α−α∗)− (g−g∗)2 , (2.32)

with µ the RG scale and α an external parameter14. For α > α∗, there are real FPs

g± = g∗±
√

α−α∗ , (2.33)

where the plus and minus signs correspond, respectively, to ultraviolet (UV) and infrared (IR) FPs.

Consider now decreasing the value of α . Then the two FPs will approach each other till they merge

and disappear to the complex plane giving rise to two complex CFTs. For α < α∗, there are no FPs

at real value of the coupling.

This behaviour of the beta function is shown in Fig.1 together with the corresponding "walking"

of the coupling as a function of the RG time t = log(µ) for α slightly smaller than α∗. In fact, this

case clearly illustrates how a hierarchy of scale arises: if one takes the coupling at a UV scale ΛUV

to have the value gUV < g∗, flowing towards the IR, g grows, lingers near g = g∗, and finally blows

up quickly. This defines an intrinsic IR scale ΛIR, which is insensitive to the UV part of the flow

and to the precise initial value gUV . In particular, assuming |gUV,IR− g∗| �|α −α∗| to integrate

13 This simple example has been first presented in the classical paper [39].
14 In concrete cases, the role of α could be played by (a function of) the number of spacetime dimensions, colors, flavors,

etc.
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Figure 1: Left: The toy beta function β (g), Eq.(2.32), for various values of the parameter α . For α > α∗,
there are two FPs which merge when α = α∗. For α < α∗ there are no real FPs and the beta function has a
"bump" centered in g∗. Right: The running of the g coupling for α < α∗ and |α−α∗| � 1 (blue solid line).
The dashed red line indicates the value of g∗.

Eq.(2.32), we obtain ΛIR as
ΛIR

ΛUV
= e

∫ gIR
gUV

dg
β (g) ∼ e

−π√
α∗−α . (2.34)

We have just generated a hierarchy: the theory contains two energy scales and the physics in the

intermediate range between them is approximately scale invariant.

This concludes our general introduction to CFT. In the next section, we will explore what

happens in CFTs with continuous internal global symmetries when we fix the value of the conserved

charges.
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3 QFT AT LARGE CHARGE

In the previous section, we introduced the CFT fundamentals. In particular, we saw that solving a

CFT amounts to the computation of its CFT data. This thesis concerns CFT data relative to opera-

tors carrying a large value of some (internal) quantum number in theories with global symmetries.

Via the state-operator correspondence, this can be also seen as the study of CFT in states of fixed

charge density. In this section, we will introduce the main ideas behind CFT at large charge.

Given a Noether current jµ (∂µ jµ = 0), the associated conserved charge is

Q =
∫

dd−1x j0 , ∂0Q = 0 . (3.1)

Then, we say that an operator O carries a value Q̄ of the charge Q if

[Q,O] = Q̄O , (3.2)

with Q̄ 6= 0.

In what follows, we will argue that the spectrum of operators carrying a large charge clas-

sicalizes and can thus be studied via a semiclassical expansion corresponding to a large charge

expansion in inverse powers of the charge. To provide the reader with physical intuition on how

classical physics emerges from a large value of some conserved quantum number, we start by ex-

amining two simple quantum mechanical examples, namely the hydrogen atom and the free particle

on S2.

3.1 Invitation I: the semiclassical Hydrogen atom

Our first example of quantum systems at large charge is the quantum mechanical Hydrogen atom

in the limit of infinite mass of the proton and at large values of the magnetic quantum number. The

electron Hamiltonian is given by

H =
~p2

2M
− α

r
, (3.3)

where ~p and M are, respectively, the momentum and mass of the electron. The second term in

the RHS is the usual Coulomb potential with α the fine structure constant. The eigenvalues of the
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Hamiltonian are found by solving the Schrödinger equation and read

En =−
Mα2

2n2 , (3.4)

where n is an integer quantum number which labels the energy levels. The corresponding eigen-

states of the Hamiltonian are labelled by n and other two quantum numbers: l ,that labels the

eigenvalues of the angular momentum L2 = l(l + 1), and m, labelling its projection on the z-axis

Lz = m. n, l, and m are known, respectively, as the principal, azimuthal and magnetic quantum

numbers and are bounded as n ≥ 1, 1 ≤ l ≤ n− 1, and −l ≤ m ≤ l. At fixed m, the ground state

saturates these bounds as m = l = n−1 and has energy given by

E0(m) =− Mα2

2(m+1)2 . (3.5)

Consider now the corresponding classical system at fixed angular momentum l = m. The ef-

fective potential Ve f f =
m2

2Mr2 − α

r contains a centrifugal and a Coulomb term. By minimizing Ve f f

we have the minimal energy solution as a circular motion with radius r∗ = m2

Mα
. Evaluating the

Hamiltonian on this solution gives the ground state energy

Eclass
0 (m) =−Mα2

2m2 . (3.6)

By comparing the classical result for E0 above with the quantum one (3.5), we see that the differ-

ence goes to zero for m→ ∞. In fact, for m� 1, m+1∼ m, and we have

E0−Eclass
0

E0
' 2

m
. (3.7)

Consistently, the semiclassical WKB approximation [117] can be used when the de Broglie wave-

length λDB = 2π

|~p| ∼
m
r is slowly varying, i.e. dλDB

dr � 1, which in turn implies m >> 1. The qualita-

tive behaviour of the classical effective potential is shown in Fig.2; the centrifugal barrier keeps the

electron localized on the classical trajectory r = r∗ and at large m we can study the corresponding

quantum mechanical path-integral via a saddle point expansion around it.
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Figure 2: The qualitative behaviour of the effective potential Ve f f as a function of r.

3.2 Invitation II: the spinning rigid rotor

As our second example of a quantum system at large charge, we consider a free quantum mechani-

cal particle living on a 2-sphere. This example has been already presented in [77]. The Lagrangian

of the model reads

L=
I
2
(
θ̇

2 + sin2
θϕ̇

2) , (3.8)

with I the moment of inertia while the dot denotes the time derivative. By solving the Schrödinger

equation, one finds that the states are organized in SO(3) multiplets |L2 = l,Lz = m〉, and have

energy El = l(l + 1)/2I. 15 As in the previous example, the ground state with fixed m satisfies

l = m and has energy

E0(m) =
m(m+1)

2I
. (3.9)

Our goal is to reproduce this result semiclassically as an expansion in 1/m. To this end, consider

the transition amplitude between states with fixed Lz = m which, since Lz and ϕ are canonically

conjugate, we can write as

〈θ f ,m|e−H(τ f−τi)|θi,m〉=
1

2π

θ ,ϕ(τ f )=θ f ,ϕ f∫
θ ,ϕ(τi)=θi,ϕi

DθDϕ e−
∫

dτ Le−im(ϕ f−ϕi)dϕidϕ f . (3.10)

15 The energy eigenfunctions are given, as usual, by the spherical harmonics Ylm(θ ,ϕ).
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where H is the Hamiltonian and τ the time coordinate. In fact, if we fix Lz to be an integer m, then

its wave function is eimϕ , while the operator Lz acts as −i ∂

∂ϕ
.

We can bring the second exponential term in the RHS into the Lagrangian by noting that ϕ f −

ϕi =
∫ τ f

τi dτϕ̇ . Then the above amplitude can be computed by means of the modified fixed-charge

Lagrangian

Lm = L+ imϕ̇ . (3.11)

Taking the limit T ≡ τ f − τi→ ∞ amounts to project this matrix element onto the ground state

with fixed Lz = m, |m〉.

lim
T→∞
〈θ f ,m|e−HT |θi,m〉= 〈θ f ,m|m〉〈m|θi,m〉e−E0(m)T

[
1+O(e−∆E(m)T )

]
, (3.12)

where ∆E(m) is the energy gap of the first excited state with fixed m.

Inspired by the previous example, let us compute the above via a saddle-point expansion around

the solution of the corresponding classical system. The equations of motion (EOM) are

θ̈ = sinθ cosθ ϕ̇
2 , I sin2

θ ϕ̇ =−im . (3.13)

We are free to choose the in and out states as long as they have Lz = m and overlap with the ground

state. A convenient choice is given by θi = θ f = π/2, and leads to the following classical solution

θs =
π

2
, ϕs =−i

m
I

τ +ϕ0 , (3.14)

where ϕ0 is an integration constant. Plugging this solution into the modified Lagrangian Lm (3.11),

we obtain

E(0)
0 (m) =

1
T

∫
Lmdτ =

m2

2I
. (3.15)

This is the leading order (LO) of the semiclassical expansion. As for the Hydrogen atom, by

comparing the above with (3.9), we see that the difference between classical and quantum results

vanishes in the limit m→ ∞.

Notice that the integration over ϕ0 in the path integral does not affect the computation of the

energy levels. On the other hand, it enforces Lz invariance when computing correlators involving
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ϕ [77].

The classical variable conjugate to m is iϕ̇s =
m
I = µ , which can be identified as a chemical

potential measuring the response of the system with respect to a change of m. In fact,

∂E(0)
0 (m)

∂m
=

m
I
= µ . (3.16)

To compute the leading quantum correction to the classical result, we parametrize the quantum

fluctuations as θ = θs +ξ , ϕ = ϕs +χ . Rescaling the time as τ → τ/m we have

〈π/2,m|e−HT |π/2,m〉= e−
m2
2I T
∫
DξDχ e−m

∫
dτ(L(2)+L(int)) , (3.17)

where

L(2) =
I
2

(
ξ̇

2 + χ̇
2 +

1
I2 ξ

2
)

, (3.18)

L(int) =
1
2I

(
sin2

ξ −ξ
2)−( I

2
χ̇

2− imχ̇

)
sin2

ξ . (3.19)

From Eq.(3.17) we see that 1/m plays the role of the loop counting parameter. Hence our semiclas-

sical expansion is actually a large quantum number expansion in 1/m, as anticipated. Therefore,

we have

E0 =
n=∞

∑
n=0

E(n)
0 =

m2

2I

(
1+

n=∞

∑
n=1

amm−n

)
. (3.20)

We proceed by computing a1. This 1-loop contribution arises from the quadratic Lagrangian L(2)

and is given by the corresponding fluctuation functional determinant as

∆
(1)E0 =

1
2

∫ dω

2π

(
ln(ω2 +m2/I2)+ lnω

2)= ΛUV +
m
2I

. (3.21)

We have a regularization scheme-dependent divergent term plus a finite part corresponding to the

zero-point energy of the harmonic oscillator ξ . After adding this contribution to the classical result

(3.15) we obtain the exact result (3.9). In fact, it can be proved that higher-loops contribution

vanishes [77].
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3.3 Fixing the charge

The idea suggested in the previous examples is that physical systems with large quantum numbers

are amenable to semiclassical treatment. As we will see, this conclusion applies also to relativistic

scalar QFTs with global symmetries at large (internal) charge. In general, as most non-trivial

classical solutions, the leading trajectory around which we will set up the semiclassical expansion

will break both spacetime and internal symmetries.

Consider a conserved Noether current jµ . The charge fixing constraint is

Q =
∫

dd−1x j0 = Q̄ , (3.22)

with Q̄ a certain constant. Fixing the time component of the conserved current, which transforms

as a d-vector, induces an asymmetry between time and space breaking relativistic invariance.

Consider a relativistic theory with Hamiltonian H and fix the charge Q. The ground state |0〉 can

be found via the standard method of Lagrange multipliers to implement the charge fixing constraint

(3.22). We, therefore, consider the modified Hamiltonian

Ĥ = H−µQ , (3.23)

where the Lagrangian multiplier µ is a non-zero chemical potential. The ground state minimize Ĥ,

i.e.

Ĥ |0〉= 0 . (3.24)

If the symmetry generated by Q̄ is also spontaneously broken (for instance, by a non-zero

vev generated by the charge fixing), then |0〉 cannot be an eigenstate of Q̄. Hence (3.23) says

that |0〉 cannot be an eigenstate of H too, implying that we cannot classify the states with the

eigenvalues of H but we have to diagonalize Ĥ. However, to describe the system by using the

non-relativistic Hamiltonian Ĥ is just a, usually convenient, mathematical choice. The underlying

system is relativistic and it is H that generates the microscopic time evolution of the operators. On

the other hand, the ground state of its fixed charge sectors spontaneously breaks Lorentz invariance

via the coupling of the charge to µ , which can be seen as the zeroth-component of an external gauge

field.
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This point of view can be applied to more general cases. In fact, since the fundamental laws

of physics are relativistic, real-world non-relativistic systems can always be seen as states of a

relativistic theory that spontaneously break Lorentz invariance. Actually, this can be taken as a

definition of condensed matter itself, and we can classify condensed matter systems according to

the spacetime symmetries they break [118].

Which is the condensed matter phase of a relativistic QFT at large charge?

Consider for simplicity a system with an internal U(1) symmetry generated by Q, i.e. [Q,H] =

0. The symmetry breaking pattern which field-theoretically defines the superfluid phase is realized

when Q is broken and the Poincare group generated by {P0,Pi,Ji,Ki} breaks to {P̂0,Pi,Ji} [77,118,

119] with

P̂0 = P0−µQ . (3.25)

Here P0 = H generates time translations, Pi generates space translations, Ji generates rotations, and

Ki generates boost. By comparing with Eq.(3.23), we see that a superfluid-like phase arises as a

natural situation in QFTs at large charge.

Consider a classical U(1)-invariant scalar theory with Lagrangian

L= ∂µϕ
∗
∂

µ
ϕ−V (ϕ∗ϕ) , (3.26)

The U(1) charge is given by Eq.(3.1) with

jµ = i(ϕ∗∂ µ
ϕ−ϕ∂

µ
ϕ
∗) , ∂µ jµ = 0 . (3.27)

The canonical Hamiltonian density is

H= Π
∗
Π+∇ϕ

∗ ·∇ϕ +V (ϕ∗ϕ) , (3.28)

with Π = ∂0ϕ the momentum canonically conjugate to ϕ . We can rewrite the charge density in

terms of Π as

Q= i(Π∗ϕ∗−Πϕ) . (3.29)

As discussed above, the ground state minimizes the fixed-charge Hamiltonian Ĥ of Eq.(3.23),
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Figure 3: The effective potential Ve f f (ρ) for the radial mode of the complex field in the broken phase.

which we can rewrite as

Ĥ=|Π− iµϕ
∗|2 +∇ϕ

∗ ·∇ϕ +Ve f f (ϕ
∗
ϕ) . (3.30)

We can minimize separately the first two terms and the effective potential Ve f f = V − µ2ϕ∗ϕ .

As a consequence, the ground state is a spatially homogeneous field configuration minimizing

Ve f f (ϕ
∗ϕ). Also, the time dependence is fixed by the first term in the effective Hamiltonian. This

is minimized by Π = iµϕ∗, yielding

ϕ(t) = ϕ(0)e−iµt . (3.31)

For any V bounded from below and that asymptotically grows faster than ϕ∗ϕ , the minimum

of Ve f f is not at ϕ = 0 for enough large µ , i.e. we have a broken phase. In the broken phase, the

radial mode of the ϕ field, ϕ∗ϕ = ρ2, acquires a non-zero vev which spontaneously breaks the

U(1) symmetry. For example, for a quartic potential V = m2ρ2 + λρ4 the qualitative behaviour

of the effective potential for ρ is shown in Fig.3. The broken phase realizes the superfluid pattern

(3.25).

From the above discussion, it is clear that SSB plays a fundamental role in studying QFTs at

large charge. In the next section, we will revisit the Goldstone theorem identifying the generaliza-

tion relevant for large charge systems.
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3.4 Goldstone bosons at large charge

In relativistic theories, SSB is described by the Goldstone theorem [120], stating that the spectrum

of a theory with spontaneously broken internal symmetries contains as many massless relativistic

modes (Goldstone bosons) as the number of broken generators. Furthermore, given that the group

G breaks down toH, the Goldstone excitations live in the coset space G/H.

The Goldstone theorem does no longer apply in non-relativistic theories and this leads to a

much more variegated connection between SSB and the low-energy spectrum of the theory. QFTs

at large charge lies between the relativistic and non-relativistic cases. In fact, according to the

discussion in the previous section, we are still dealing with a relativistic QFT, but its fixed charge

sector breaks both spacetime and internal symmetries. We will call the relevant generalization of

the Goldstone theorem, the Charged Goldstone theorem.

Charged Goldstone theorem

Consider a relativistic theory with a global (internal and continuous) symmetry group G gen-

erated by Qa, a = 1, . . . , rank(G). Fix a charge Q1 = Q and introduce the effective Hamiltonian

Ĥ = H +µQ. We denote as Ĝ the subgroup of G commuting with Ĥ.

Assume that

1. n generators of G are spontaneously broken, i.e. there exist n fields (order parameters) φi

such that

det〈0[φi(0),Qa(t)]0〉 6= 0 , (3.32)

where |0〉 is the Ĥ-vacuum. Denote the number of spontaneously broken generators of Ĝ as

m.

2. Translational invariance is not completely broken.

3. The currents jµ
a evolve in time according to H, i.e.

jµ
a (t,~x) = ei(Ht−~P·~x) jµ

a (0)e
−i(Ht−~P·~x) , (3.33)

where ~P generates the spatial translations.
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4. G is a direct product of simple compact Lie groups.

Then

In the spectrum of the theory, there are three types of "generalized" Goldstone bosons:

1. Type I ("relativistic") Goldstone bosons with low-energy dispersion relation Ek ∼ k2s+1 with

s an integer.

2. Type II ("non-relativistic") Goldstone bosons with low-energy dispersion relation Ek ∼ k2s

with s an integer.

3. Type III ("gapped") Goldstone bosons with gapped dispersion relation and gap fixed non-

perturbatively as Ek→0 = qaµ with qa a group-theoretical calculable factor.

The number of Type-I and type-II Goldstone bosons equals the number of broken generators of

Ĝ, i.e.

nI +2nII = m . (3.34)

The number of type II modes is

nII =
1
2

p , p = rank(ρ̂) , (ρ̂)ab = 〈0[Q̂a, Q̂b]0〉 , (3.35)

where {Q̂a} is the subset of {Qa} which generates Ĝ.

The number of type III modes is

nIII =
1
2
(rank(ρ)− p) , (ρ)ab = 〈0[Qa,Qb]0〉 . (3.36)

Part of this result, i.e. nI +2nII ≥ m, has been proved by H. B. Nielsen and S. Chadha in their

classical paper [121]. This result has been later improved in [122–124] till the equality sign has

been finally proven years later by H. Watanabe and H. Murayama in [125] following Leutwyler’s

works [126, 127]. These works implicitly assumed that the Hamiltonian governing the time evolu-

tion was Ĥ and not H. Then the existence of gapped modes with symmetry-controlled dynamics
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in theories with SSB, i.e. Type III Goldstone bosons, has been not pointed out till the work of

A. Nicolis and F. Piazza [128], which explained the necessary condition for their presence in the

spectrum. The final result about the counting of Type III modes has been given in [129].

Type I modes are the usual Goldstone bosons appearing in the relativistic Goldstone theorem

at zero charge. According to the charged Goldstone theorem, Type II bosons appear when two

broken generators Qa, Qb satisfy 〈0[Qa,Qb]0〉 6= 0. In such a case, the corresponding Goldstone

bosons become canonically conjugate variables effectively reducing the number of degrees of free-

dom. This is the reason why they count double with respect to the number of broken generators

of Ĝ. [123]. Finally, Type III modes appear when the broken generators do not commute with the

modified Hamiltonian Ĥ. From the point of view of the latter, the chemical potential acts as an

explicitly symmetry breaking term that leads to a mass proportional to µ . A partial proof of the

theorem is given in App.A.

3.5 The RG flow at large charge

In this section, we illustrate how fixing the charge affects the RG flow by a toy-model analysis. To

this end, we consider a U(1) massless scalar theory in d < 4 dimensions. In particular, following

[10], we will show how fixing the charge introduces a scale in the CFT and how the infrared physics

of the fixed charge sectors of the theory is described by an approximately scale-invariant action.

We take the UV Lagrangian of the theory to be

LUV = ∂ ϕ̄∂ϕ− λ

4
(ϕ̄ϕ)2 . (3.37)

For d < 4, this model flows to an infrared Wilson Fisher (WF) fixed point which, in d = 3, is

strongly-coupled and defines the XY universality class. By virtue of the Noether theorem, the U(1)

symmetry implies the existence of a conserved charge Q given by (3.1) with the Noether current

given by Eq.(3.27). We consider this theory as living on R×Σ, where Σ is an arbitrary compact

homogeneous two-dimensional manifold with volume V . One can derive the commutation relation

[Q,ϕ] = ϕ , (3.38)
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from canonical commutation relations for the field operator ϕ . This equation says that the U(1)

charge of ϕ is +1. Then the operator ϕ Q̄ (Q̄ is a positive integer) has U(1) charge Q̄. Besides

the normalization of the U(1) charge, which can be changed by multiplication by a nonzero real

number the charge of the operators of the theory will be an integer multiple of the charge of ϕ , as

long as we can write them as a linear combination of products of ϕ and its derivatives (non-integer

powers of fields and their derivatives are ill-defined). This illustrates the important feature that the

charge is discretized for well-defined local operators of the theory, regardless of the normalization

convention.

We consider polar coordinates for the field:

ϕ =
ρ√
2

eiχ , ϕ̄ =
ρ√
2

e−iχ . (3.39)

and the Lagrangian becomes

LUV =
1
2
(∂ρ)2 +

1
2

ρ
2(∂ χ)2− λ

16
ρ

4 . (3.40)

Following [10], we consider a toy-model RG evolution where we truncate the exact Wilsonian

RG flow to the flow for the quartic coupling λ , neglecting all other operators. By integrating

out modes and lowering the cutoff Λ we generate the RG evolution of the quartic coupling λ (Λ).

Furthermore, we assume that the theory flows to an attractive FP in the infrared. We can define

a dimensionless coupling λ̂ as λ = Λ4−dλ̂ (Λ). Essentially, the coupling defines the characteristic

scale of the system. Then when we start flowing towards the infrared, the first scale we meet is

fixed by λ as

ΛUV = λ
1

4−d , (3.41)

and the quantum corrections to the free theory for processes at energy Λ are suppressed as Λ

ΛUV
.

Then at Λ = ΛUV , the quantum corrections to the coupling are of the same order of the coupling

itself, and λ is quickly attracted by the FP. Then, below ΛUV , λ takes its fixed point value λ̂ = λ ∗

and we have

λ (Λ)

Λ4−d = λ
∗ , Λ� ΛUV . (3.42)
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We now fix the charge as Q = Q̄ where Q̄ is a certain fixed number. Alike the Hydrogen atom

studied in Sec.3.1, this operation produces a centrifugal barrier in the effective potential for the

radial mode. This is the effective potential depicted in Fig.3 and results in a non-zero vev for ρ .

Furthermore, by considering the classical EOM and the charge-fixing constraint, it can be easily

shown that the field ∂ χ gets a vev too. The latter can be identified with the chemical potential µ

canonically conjugate to Q, in full analogy with the rigid spinning rotor of Sec.3.2. Then, we have

ρ(x) = v+ r(x) , 〈ρ(x)〉= v , 〈∂ χ(x)〉= µ . (3.43)

Let us have a look at the symmetry breaking pattern induced by the charge fixing. The starting

theory possesses conformal symmetry plus a global U(1) symmetry. However, the ground state

spontaneously breaks boosts, time-translations, and the global symmetry, resulting in

SO(d,2)×U(1)→ SO(d)×D×U(1); SO(d)×D′ , (3.44)

where D′ = D+µQ. As expected, the large charge sector of the theory is in a superfluid phase. The

charged Goldstone theorem predicts the existence of a single type I Goldstone mode which can be

identified with the angular mode. In condensed matter language this mode is called the superfluid

phonon. In other words, the Goldstone theorem implies that the field ∂ χ remains free and massless

in the infrared.

On the other hand, since there is a potential term for ρ , we expect its fluctuations r(x) to be

gapped, and thus we can decouple them from the RG flow below their gap. In fact, by expanding

the potential term λ

16(v+ r)4, we can immediately read off the squared mass of the r field as

m2
r =

3
8

λv2 . (3.45)

This is the next scale we encounter as we flow to the IR. Below mr, r decouples from the RG

flow and its contributions to the running of the quartic coupling are suppressed by positive powers
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of Λ/mr. As a consequence, the coupling λ (Λ) freezes and takes the value

λ (mr) = λ
∗m4−d

r =

((
3
8

v2
)4−d

λ
∗2

)1/(d−2)

. (3.46)

implying

mr =

(
3
8

λ
∗v2
)1/(d−2)

. (3.47)

Plugging the above results into the effective Lagrangian LΛ, we obtain

LΛ =
v2

2
∂ µ χ ∂

µ
χ−

(
3
8

4−d
λ
∗2
)1/(d−2)

v
2d

d−2 +O
(

Λ

v
2

d−2

)
. (3.48)

Then, the infrared effective action is approximately (classically) scale-invariant up to (quantum)

corrections suppressed by Λ/v2/(d−1). Of course, the full theory is still conformally invariant, but

in its charged sectors conformal invariance is spontaneously broken by the vev of the radial mode

〈ρ〉= v.

Since the χ field is shifted by a constant under U(1) transformation only its derivative is phys-

ical. Then, to analyze the IR dynamics of the χ field, it is useful to introduce a new scalar d.o.f. as

B =
(
∂ µ χ ∂ µ χ

)1/2 which satisfies 〈B〉= µ . In the IR µ is related to v by

µ
2 =

2d
d−2

(
3
8

4−d
λ
∗2
) 1

d−2

v
4

d−2 , (3.49)

while they are both related to the charge density Q
V by16

v = 6
d−4

4(d−1)

(
d−2

d

) d−2
4(d−1)

(2λ
∗)
− 1

2(d−1)

(
Q
V

) d−2
2(d−1)

, (3.50)

µ = 6
4−d

2(d−1)

(
d

d−2

) d−2
2(d−1)

(
2λ
∗Q
V

) 1
d−1

. (3.51)

In the spirit of effective field theory, we can integrate out the radial mode ρ which does not par-

ticipate in the IR dynamics. In practice, this is too cumbersome to be done without resorting to

16 Since the underlying theory is conformal, Eq.(3.50) follows directly from dimensional analysis alone by noting that ρ ,
µ , and v have mass dimension [ρ] = d−1, [µ] = 1, and [v] = (d−2)/2, respectively.

33



approximations. However, to leading order in the saddle-point approximation, we can simply elim-

inate it via its EOM, obtaining

LEFT(χ) = c1Bd + · · ·= c1(∂ µ χ ∂
µ

χ)
d
2 + . . . , (3.52)

with c1 a dimensionless constant. This Lagrangian is both scale and Weyl invariant. Analogously,

higher-order terms can be obtained in the usual EFT spirit via dimensional analysis and symmetry

constraints. However, the novelty is that we can now organize the terms appearing in the EFT

action for the B field by analyzing their Q̄-scaling which acts as a useful organizing principle. In

fact, in the large charge regime, we can consistently truncate the effective action retaining only

terms with a positive Q̄-scaling.

Independently from the details of the construction of the EFT, it will have the same structure of

Eq.(3.48) i.e. it will contain a scale-invariant part, plus quantum corrections which are controlled

by Λ/mr ≈ Λ/〈B〉= Λ/µ

LΛ(B) = Lcl(B)+ ∑
∆<d

Λ
d−∆L(∆)q (B) , Λ� µ , (3.53)

where ∆ is the dimension of the corresponding operators. Notice that the upper limit ∆ < d in the

above sum does not imply a finite number of terms in the effective action since in general B can

appear at the denominator.

Fixing the charge we introduced a new scale in the theory, which controls the low-energy

physics when the following hierarchy is realized

Λ � mr ∼ v
2

d−2 ∼ µ ∼ ρ
1

d−1 � ΛUV = λ 1/(4−d)

Scale-invariant EFT

for B
ρ-fluctuations are frozen λ is frozen

Furthermore, if we work on a compact curved manifold with a characteristic length scale R as we

will do later, the EFT is well-defined only on length scales that are � R, with R acting as an IR
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cutoff. Then the above hierarchy becomes

1
R
� Λ� Q̄

1
d−1

R
� ΛUV , (3.54)

and can be satisfied only if the charge is large i.e. Q̄� 1. The condition of being at the fixed point

fixes entirely the terms appearing in the quantum part of the effective Lagrangian L(∆)q (B) in terms

of the ones in Lcl(B) as

Λ
δLΛ

δΛ
= ∑

∆<d
(∆−d−2)Λd−∆L(∆)q , (3.55)

where the LHS has to be interpreted as the result of integrating out an infinitesimal shell of mo-

menta. Besides being calculable, the cutoff-dependent terms are, in general, scheme-dependent and

their physical role in the present context is solely to enforce conformal invariance at the quantum

level.

In the EFT (and CFT) spirit, we now forget about the microscopic Lagrangian description

(3.37) and consider a generic d-dimensional U(1)-invariant scalar CFT in its superfluid large charge

phase. It is convenient to work on a cylinder of unit radius R× Sd−1 and switch to Euclidean

signature. The key observation is that the modified metric ĝµν = gµνB2, where gµν is the cylinder

metric and B is now defined as B =
(
−∂ ν χgµν ∂ µ χ

)1/2, is invariant under Weyl transformations.

The invariant operators entering the EFT action can, therefore, be built out of B, ĝµν and the

covariant derivative D̂µ consistent with ĝµν . The first terms of the effective action read

SEFT (χ) = c1

∫
ddx
√

gBd + c2

∫
ddx
√

gBd

{
R
B2 +(d−1)(d−2)

̂(DµB)2

B4

}

+c3

∫
ddx
√

gBd
{
Rµν

∂ µ χ∂ ν χ

B4 + . . .

}
+O

(
Q̄

d−4
d−1

)
. (3.56)

whereR andRµν are, respectively, the Ricci scalar and Ricci tensor of Sd−1.

The leading term of the effective action is given by Eq.(3.52) and scales as Q̄
d

d−1 , while the

remaining term scales as Q̄
d−2
d−1 . By organizing the EFT operators according to their Q̄-scaling as

done above, we can use the action (3.56) to compute CFT data in a well-defined 1
Q̄ expansion. At

every order in the large charge expansion, we have only a finite number of terms in the effective
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action, and the predictions are, therefore, given in terms of a finite number of unknown coefficients

ci. The latter can be fixed by experiments or computed with Monte Carlo methods.

A quantity which is particularly easy to obtain in this framework is the ground state energy on

the unit-cylinder EQ̄ which, according to Eq.(2.30), delivers the scaling dimension ∆Q̄ of the charge

Q̄-operator with the minimal scaling dimension (MSD). This is the part of the CFT data in which

we will be mainly interested in the rest of this thesis, and that is usually computed in the large

charge literature.

EQ̄ can be calculated by considering the expectation value of the evolution operator eHT (with

H the Hamiltonian and T = τ f − τi) in an arbitrary state |Q̄〉 with fixed charge Q̄ and then taking

the limit T → ∞ to project out the ground state from it. That is

〈Q̄|e−HT |Q̄〉 =
T→∞

Ñ e−EQ̄T=Ñ e−∆Q̄T . (3.57)

Notice that we only require |Q̄〉 to have a non-zero overlap with the lowest-lying state in the

fixed charge sector. Then once we insert a complete set of energy eigenstates in the left-hand

side (LHS) of the above equation, only the contribution of the lowest energy state survives, with

a prefactor Ñ that is independent of T but depends on the overlap between the states. Therefore,

we may always extract the ground state energy from the T -dependent part of the expectation value.

Eq.(3.57) is the CFT analogous of Eq.(3.12) for the rigid rotor and can be computed semiclassically

by using the effective action Eq.(3.56). The result reads [10, 66]

∆Q̄ = Q̄
d

d−1

[
α1 +α2Q̄

−2
d−1 +α3Q̄

−4
d−1 + . . .

]
+ Q̄0

[
β0 +β1Q̄

−2
d−1 + . . .

]
+ . . . . (3.58)

The terms in the first square bracket come from the leading (classical) order in the semiclassical

expansion. The α coefficients are combinations of the ci in (3.56). For instance

α1 =−
c1(d−1)Ωd−1

(−c1d Ωd−1)
d

d−1
, α2 =

c2(d−1)(d−2)Ωd−1

(−c1d Ωd−1)
d−2
d−1

, (3.59)

with Ωd−1 the solid angle in d dimensions.

The terms in the second square bracket in (3.58) represent instead the 1-loop quantum correction
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to the classical result. It can be shown that it is given by the sum of zero-point phonon energies as

1
2 ∑

`

n`ω` = β0 +β1Q̄−
2

d−1 + . . . . (3.60)

where

n` =
(2`+d−2)Γ(`+d−2)

Γ(`+1)Γ(d−1)
, (3.61)

is the multiplicity of the eigenvalues of the Laplacian on Sd−1, J`, and

ω` = csJ`+O

(
1

Q̄
2

d−1

)
, (3.62)

is the dispersion relation of the phonon mode. The speed of sound is cs =
1√
d−1

and is dictated by

tracelesness of the energy-momentum tensor [119]. As a consequence, when d is odd, the order

O
(
Q̄0) term in the large charge expansion is calculable and universal, in the sense that it does

not depend on the microscopic description of the CFT but only on symmetry and d. Two-loop

corrections to ∆Q̄ start at order O
(

Q̄−
d

d−1

)
.

For instance, in d = 3 we have

∆Q̄|d=3= α1Q̄
3
2 +α2Q̄

1
2 −0.0937255+O

(
Q̄−

1
2

)
. (3.63)

The value of the universal coefficient β0d=3 =−0.0937255 has been later confirmed via lattice

studies [12, 130] and first-principle computations [76]. In an even number of dimensions the large

charge EFT predicts instead the existence of a universal Q0 lnQ term with calculable coefficient δ0,

e.g. δ0d=4 = − 1
48
√

3
[131]. This term arises in the renormalization of β0, which features a pole in

even dimensions.

More details on the EFT construction in U(1)-invariant CFTs can be found in [10, 66, 77].

3.6 Feynman diagrams at large charge

The EFT approach discussed in the previous section is suited to deal with strongly-coupled systems

where there are no small parameters other than 1
Q̄ . On the other hand, when the theory has a

perturbative parameter λ , one can bypass the EFT construction and work in the full theory. The
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large charge expansion takes the form of a ’t Hooft-like expansion, where one introduces a ’t Hooft

coupling A = λ Q̄, and consider the limit λ → 0 and Q̄→ ∞ with A fixed. In this and the next

section, we focus on the large charge expansion in perturbative theories.

The scaling dimensions can be computed in perturbation theory via the usual diagrammatic

loop-expansion. Here, we will show how this expansion can be reorganized when dealing with large

charge operators. We will mainly follow the analyses originally presented in [21, 22]. Let’s keep

considering the scalar λ

4 ϕ4 theory studied in the previous section. We take the number of spacetime

dimensions to be d = 4− ε , with ε > 0 and consider Euclidean signature. The Lagrangian reads

L= ∂ ϕ̄0∂ϕ0 +
λ0

4
(ϕ̄0ϕ0)

2 . (3.64)

In d = 4 this theory has trivial (free) infrared physics, whereas, as shown in the previous section,

in 2 < d < 4 this model exhibits an infrared Wilson-Fisher (WF) FP that, when ε � 1, is weakly

interacting and can be investigated by means of the so-called ε-expansion in powers of ε .

As we saw before, the composite operators ϕ Q̄ and ϕ̄ Q̄ have, respectively, charge +Q̄ and −Q̄.

We work in the minimal subtraction (MS) scheme and renormalize the coupling and the fields

according to

λ0 = Mε
λZλ , ϕ

Q̄
0 = ZQ̄ϕ

Q̄ , (3.65)

where M is the RG scale. The two-loop beta function of the model reads

∂λ

∂ lnM
≡ β (λ ) =−ελ +5

λ 2

(4π)2 −15
λ 3

(4π)4 +O
(

λ 4

(4π)6

)
. (3.66)

The condition β (λ ) = 0 determines the value of the FP coupling as

λ ∗

(4π)2 =
1
5

ε +
3

25
ε

2 +O
(
ε

3) . (3.67)

In general, the scaling dimensions are scheme-dependent and, therefore, unphysical quantities.

However, they become physical at the FP. We write the scaling dimension of ϕ Q̄ at the FP as

∆Q̄ = Q̄
(

d
2
−1
)
+ γQ̄(λ

∗) , (3.68)
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p

p

Figure 4: The only Feynman diagram contributing at 1-loop. The crossed vertex represents the operator
insertion.

with γQ̄ the anomalous dimension of ϕ Q̄. γQ̄ is related to the renormalization factor ZQ̄ by

γQ̄(λ ) =
∂ lnZQ̄

∂λ
β (λ ) . (3.69)

We proceed by diagrammatically computing the 1-loop anomalous dimensions. Working in

momentum space, we consider the insertion of the ϕ Q̄ operator with Q̄ incoming momenta p. The

relevant correlator is

〈ϕ Q̄
0 ϕ̄0(p)ϕ̄0(p) . . . ϕ̄0(p)〉= ZQ̄ZQ̄

ϕ 〈ϕ Q̄
ϕ̄(p) ϕ̄(p) . . . ϕ̄(p)〉 . (3.70)

As usual, we fix ZQ̄ and Zϕ such that the renormalized correlator 〈ϕQ ϕ̄(p) ϕ̄(p) . . . ϕ̄(p)〉 is finite.

The Feynman rule for the propagator and the quartic vertex are, respectively, 1
p2 and −λ . At one-

loop we simply have Zϕ = 1 , while the coupling counterterm is δλ = 5λ 2

16π2ε
[132]. Furthermore,

there is only one diagram to calculate, which is shown in Fig.4, where the crossed vertex represents

the insertion of the ϕQ operator. This diagram evaluates to

− Q̄(Q̄−1)
2

1
2

λ

∫ ddk
(2π)d

1
k2

1
(k+2p)2 =− λ

16π2
Q̄(Q̄−1)

4

(
2
ε
+2− γ + ln

(
πM2

p2

))
+O(ε) .

(3.71)

The Q̄(Q̄−1)
2 factor arises from the combinatorics, being the number of ways we can connect the

external momenta to form the diagram by choosing legs among Q̄. Then, from Eq.(3.69), we have

39



the 1-loop anomalous dimension of ϕ Q̄

γQ̄ =
λ

16π2
Q̄(Q̄−1)

2
+O

(
λ

2) . (3.72)

We would like to reorganize our perturbative expansion in powers of Q̄. To this end, we classify

the diagrams according to their leading Q̄-scaling and loop order. As for the 1-loop diagram of

Fig.4, which scales as ∼ Q̄2, the Q̄-scaling of a given diagram arises from the combinatorics. In

particular, the combinatorial factor is proportional to Q̄!
(Q̄−k)! with k the number of legs of the inserted

ϕ Q̄ operator which do undergo interaction, i.e. the number of external legs. At large Q̄, we can use

the de Moivre-Stirling formula to obtain

Q̄!
(Q̄− k)!

≈ Q̄k . (3.73)

Then the leading Q̄-scaling of a diagram is given by k while its loop order is determined by the

number of vertices.

At loop order `� Q̄, the diagrams contributing to ZQ̄ goes from λ `Q̄2` to λ `Q̄. However, it can

be shown that, at any loop order, the terms with the highest powers of Q̄ exponentiate terms from

lower loops [21, 22]. As a consequence, the leading contribution at order k scales like as, λ `Q̄`+1.

Hence the perturbative expansion takes the following form

∆Q̄ = Q̄
(

d
2
−1
)
+ γQ̄(λ

∗) = Q̄

(
d
2
−1+ ∑

`=1
λ
∗`P̀ (Q̄)

)
, (3.74)

where we have considered the expression at the fixed point and P̀ is a polynomial of degree `. We

can reorganize the above as a large charge expansion in terms of powers of Q̄

∆Q̄ = ∑
k=−1

1
Q̄k ∆k(A∗) , A∗ ≡ λ

∗Q̄ , (3.75)

where we introduced the (renormalized) ’t Hooft coupling A in order to take consistently the limit

λ → 0, Q̄→∞ by keepingA fixed. In fact, like the original perturbative expansion, the large charge

expansion is an asymptotic series formally valid in the limit Q̄→∞. Notice that all the functions ∆k

receive contributions from arbitrarily high loop orders of the conventional diagrammatic expansion.
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Figure 5: The only diagram which contribute to the two-point function (3.76) at order O(λ ).

~ ത𝑄! ത𝑄 ~ ത𝑄! ത𝑄( ത𝑄 − 1) ~ ത𝑄! ത𝑄( ത𝑄 − 1) ( ത𝑄 − 2) ~ ത𝑄! ത𝑄( ത𝑄 − 1) ( ത𝑄 − 2)( ത𝑄 − 3)

Figure 6: The four topologies contributing at order O(λ 2) and their Q̄ scaling.

At criticality, ∆Q̄ can also be computed by considering the following two-point function

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄!

(4π)Q̄|x|2∆Q̄
. (3.76)

Following the analysis originally presented in [22], we now re-obtain the 1-loop result (3.72) by

studying the loop expansion for 〈ϕ̄ Q̄(x)ϕ Q̄(0)〉 in order to make contact with the semiclassical anal-

ysis of the next section. Furthermore, we will explicitly show the exponentiation of the diagrams

discussed above.

At order O(λ ), there is only one diagram to compute, which is displayed in Fig.5.

The authors of [22] dubbed this diagram the 1-loop Kermit the frog diagram. We are going to

prove that the leading diagrams at every loop order are obvious generalizations of this diagram.

As before, the Q̄ dependence is of combinatorial origin and it is given by Q̄! Q̄!
(Q̄!−k)!

17, with k the

number of legs of the ϕQ̄ operator which enter in a vertex. For instance, consider the 4 topologies

contributing at two-loop, which are shown in Fig.6 together with their Q̄ scaling. At large Q̄, the

fourth diagram scales as Q̄! Q̄4 and is the dominant 2-loop diagram in this limit.

At the `-loop order, the diagram with the lowest number of legs that do not enter in a vertex is

realized when two legs of each vertex come from the insertion of the composite operator ϕ Q̄ and

the other two legs come from the insertion of ϕ̄ Q̄, i.e. we have an iteration of the Kermit diagram.

17 These diagrams have an additional Q̄! factor with respect to those contributing to ZQ̄. It comes from the insertion of
ϕ̄ Q̄.
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At any loop order, these diagrams are leading in Q̄. In fact, they have combinatorial factor

Q̄!2 /(Q̄−2`)!, and then scale as Q̄!λ `Q̄2`. The correlation function reads

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄! ∑
`=0

(−iλ )`K`
1
4`

Q̄!
(Q̄−2`)!

1
`!

, (3.77)

where K` denotes the `-loop Kermit diagram. Let us have a closer look at the various factors

appearing in (3.77): we have Q̄ legs for every operator insertion and the permutations of the legs

give a factor (Q̄!)2. Next, we have to divide over the number of permutations that produces an

equivalent diagram. Clearly, we do not change the diagram if we exchange the (Q̄− 2`)! legs

which do no participate the interaction and this gives the factor 1
(Q̄−2`)! . We can also permute pairs

of legs inside every loop and this produces the 1/2`. Finally we have the usual 1/`! from the Taylor

series of the exponential of the interaction term.

In the large Q̄ limit the two-point function becomes

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄! ∑
`=0

K`

(−i Q̄A
4

)` 1
`!

, (3.78)

whereA is the ’t Hooft coupling introduced in Eq.(3.75). To evaluate the Kermit diagram we write

it in position space

K` = G(0, x)n−2`
`

∏
i=1

∫
d4zi G(0, zi)

2 G(zi, x)2 = G(0, x)Q̄K` , (3.79)

where

K =
1

G(0, x)2

∫
d4zG(0, z)2 G(z, x)2 . (3.80)

with G(x, y) the propagator of ϕ

G(x, y) =
1

4π2
1

(x− y)2 . (3.81)

Then

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄! G(0, x)Q̄
∑
`=0

(−i Q̄AK
4

)` 1
`!

= Q̄! G(0, x)Q̄e−i Q̄AK
4 , (3.82)
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i.e. the Kermit diagrams exponentiate. Furthermore, we have

Q̄! G(0, x)Q̄ = 〈ϕ̄ Q̄(x)ϕ Q̄(0)〉0 , (3.83)

where 〈ϕ̄ Q̄(x)ϕ Q̄(0)〉0 is the correlation function in the free theory (3.76). Thus

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄!

(4π)Q̄|x|2∆Q̄
e−i Q̄AK

4 . (3.84)

To compute K we use the propagator (3.81) and obtain

G(0, x)2K =− i
(4π2)4

∫
d4z

1
z4 (x− z)4 . (3.85)

To regularize this integral we introduce a cutoff Λ and we use that in d = 4 the following identity

holds [133]
1
z4 =−1

4
∂

2
(

lnz2 Λ2

z2

)
. (3.86)

Using (3.86) into Eq.(3.85), we arrive at

K =− i
8π2 ln(Λ2x2) . (3.87)

Then

〈ϕ̄ Q̄(x)ϕ Q̄(0)〉= Q̄!

(4π)Q̄|x|2∆Q̄

1

|x|
Q̄A

16π2

=
Q̄!

(4π2)Q̄ |x|2(Q̄+ Q̄A
32π2 )

. (3.88)

Comparing with Eq.(3.76), we have the scaling dimension of ϕQ̄, i.e. we re-obtain Eq.(3.72)

∆Q̄ = Q̄+λ

(
Q̄2

32π2 +O
(
Q̄
))

+O
(
λ

2) . (3.89)

Our large charge expansion formula (3.75) shares various similarities with other types of ’t

Hooft expansion, such as the large number of flavor N f [67–70] and the large number of color

NC [20, 71, 72] expansions in gauge theories. The main similarity is that we rewrite perturbation
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Figure 7: The dominant topology of Feynman diagrams in the large number of flavors limit. Note: reprinted
from [70].

theory to expand the observables (or other important quantities such as the beta function) as

observable∼ ∑
`=loops

λ
`P̀ (N) = N j

∑
k

1
Nk Fk(A) , (3.90)

where, for simplicity, we have considered a theory with just one coupling λ and j is some number

that depends on the particular case under consideration. N = {Nc,N f , Q̄ , ..} is a large parameter.

A crucial difference of the large charge expansion is that, while Nc and N f are parameters of the

theory, the charge Q̄ is a property of the operators, or equivalently of the states, of a given theory.

In both the large N f and NC expansion the Feynman diagrams can be organized according to

their N f (NC)-scaling. In the large N f case, since every fermion loop comes along with a N f factor,

the dominant diagrams at every fixed loop order `, are those which maximise the number of fermion

loops. These are the diagrams contributing to the function F1 in Eq.(3.90) and are known in the

literature as bubble diagrams. An example of how they look is shown in Fig.7. Amazingly, in some

interesting cases, such as the MS beta functions in Standard model-like theories, it is possible to

completely resum the bubble diagrams and obtain the function F1 in closed form.

In the large NC limit, the dominant topology is given by the so-called planar diagrams, i.e.

diagrams which can be drawn on a plane without superposing the lines. What about the large

charge expansion?

Consider the general form of the large charge expansion for ∆Q̄ (3.75). Our previous analysis

says that the leading order ∆−1, among the diagrams contributing to ZQ̄, resums all the diagrams

that at the `-th loop order scale as λ `Q̄`+1. These are the diagrams where the number of external

legs minus one is equal to the number of interaction vertices and are shown in Fig.8

To be more precise, ∆−1 does not resum all these Feynman diagrams but only the leading
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Figure 8: The dominant topology of diagrams in the large charge expansion.

Q̄ contribution coming from each of them, i.e. it resums the highest powers of Q̄ up to arbitrarily

high-loop orders. Computing the full ∆−1 directly from the relevant diagrams is likely to be a tough

task and has never been performed so far. However, the examples analyzed until now strongly invite

us to perform the computation by exploiting the classicalization of the physics at large charge to

set up a semiclassical approach. This strategy is the content of the next section.

3.7 Path integrals at large charge

In this section, we will show how the scaling dimensions of large charge operators can be calculated

via a semiclassical expansion which coincides with the large charge expansion in Eq.(3.75).

To this end, we continue our investigation of the U(1) model in 4− ε dimension defined in

Eq.(3.64). As shown in the previous section, we can extract the scaling dimension of ϕ Q̄ from the

following two-point function

〈ϕ̄0
Q̄(x f )ϕ

Q̄
0 (xi)〉= Z2

Q̄ 〈ϕ̄
Q̄(x f )ϕ

Q̄(xi)〉 ≡
∫
Dϕ0Dϕ̄0 ϕ̄

Q̄
0 (x f )ϕ

Q̄
0 (xi)exp [−

∫
L]∫

Dϕ0Dϕ̄0 exp [−
∫
L]

. (3.91)

The key observation made in [21, 22] is that we can rewrite this path integral as

Z2
Q̄ 〈ϕ̄

Q̄(x f )ϕ
Q̄(xi)〉= Q̄Q̄

∫
Dϕ0Dϕ̄0 e−Q̄

[∫
∂ ϕ̄0∂ϕ0+

A0
4 (ϕ̄0ϕ0)

2−(ln ϕ̄0(x f )+lnϕ0(xi))
]

∫
Dϕ0Dϕ̄0 e−Q̄

[∫
∂ ϕ̄0∂ϕ0+

A0
4 (ϕ̄0ϕ0)

2
] , (3.92)

where we have rescaled the field as ϕ −→ ϕ
√

Q̄, brought the field insertions into the exponent,

and introduced the (bare ) ’t Hooft coupling A0 ≡ Q̄λ0. From Eq.(3.92), we see that the charge Q̄

takes the role of the loop counting parameter. For large values of the charge, the path integral will
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be, therefore, dominated by the extrema of the effective action

Se f f =
∫

∂ ϕ̄0∂ϕ0 +
A0

4
(ϕ̄0ϕ0)

2−
(
ln ϕ̄0(x f )+ lnϕ0(xi)

)
. (3.93)

When Q̄ is large, we can compute this path integral via a saddle point expansion in 1
Q̄ which,

independently from the details of the classical trajectory, can be written as

Z2
Q̄ 〈ϕ̄

Q̄(x f )ϕ
Q̄(xi)〉= Q̄!eQ̄ Γ−1(A0,, x f i)+Γ0(A0, x f i)+

1
Q̄ Γ1(A0,, x f i)+...

, x f i = x f − xi . (3.94)

where in the exponent on the right hand side, Q̄ counts the loop order while the coefficient functions

Γk depends only on the ’t Hooft coupling A0 and x f i. We can renormalize Eq.(3.94) by isolating

the UV divergence in each term in the exponent

1
Q̄k Γk(A0,x f i) =

1
Q̄k Γ

div
k (A)+ 1

Q̄k Γ
ren
k (A, ,x f i,M) , (3.95)

where A=A(M) is the renormalized coupling. Thus we can factorize Eq.(3.94) as

Z2
Q̄ = exp

[
∞

∑
k=−1

λ
k
Γ

div
k (A)

]
, (3.96)

〈ϕ̄ Q̄(x f )ϕ
Q̄(xi)〉= Q̄! exp

[
∞

∑
k=−1

λ
k
Γ

ren
k (A,x f i,M)

]
. (3.97)

Hence the anomalous dimension of the ϕ Q̄ operator takes the form (3.75)

γQ̄ = Q̄ ∑
k=0

1
Q̄k Fk(A) , (3.98)

and we re-obtain Eq.(3.75)

∆Q̄ = ∑
k=−1

1
Q̄k ∆k(A∗) , A∗ ≡ λ

∗Q̄ . (3.99)

Now we can identify the coefficients ∆k of the large charge expansion as the k+1 loop correction

to the saddle point expansion.
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The above analysis is based on general considerations on the form of the semiclassical expan-

sion. To actually compute the coefficients ∆k, one needs to solve the EOM stemming from the

effective action (3.93). This step is, in general, not easy, and different strategies can be considered.

For instance, one may solve the EOM perturbatively for small A. However, beyond the first few

orders, the computations become quickly cumbersome and unpractical 18. Another possibility is to

work directly at the fixed point and use the CFT constraints to simplify our task. This is the strategy

we will follow in the rest of this thesis in order to compute the scaling dimensions of large charge

operators in the O(N) and U(N)×U(M) scalar CFTs.

18 This approach has been considered in [21–23].
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4 CHARGING THE O(N) MODEL

Until now, the discussion has been restricted to quantum mechanical models and abelian CFTs.

Here, we start our exploration of the large charge expansion in non-abelian theories. As we shall

see, the presence of multiple large quantum numbers leads to interesting new challenges related to

the role of the charge configuration in the expansion.

In this chapter, we focus on the time-honoured critical O(N) model in d = 4− ε dimensions,

which is relevant for the description of phase transitions in many real-worlds three-dimensional

condensed matter systems, such as dilute polymer solutions (N = 0), Ising magnets (N = 1), su-

perfluid helium and easy plan magnets (N = 2), isotropic (Heisenberg) magnets (N = 3), strongly-

correlated electronic systems at half-filling (N = 4) [?], and superconductors (N = 5) [134], to

name a few. Moreover, for ε = 0 and N = 4, we recover the Higgs sector of the Standard Model up

to gauge and Yukawa interactions. Finally, the O(4) model appears also in the description of the

finite-temperature chiral phase transitions in two-flavor QCD [135, 136].

The large charge sector of the three-dimensional O(N) model has been first investigated in

[11, 130], by means of the EFT approach discussed in Sec.3.5. Here, we instead conduct a first-

principle analysis, based on the microscopic description of the model in 4− ε dimensions. At the

end of this chapter, we will connect the two approaches by computing the Wilson coefficients of the

3d large charge EFT in the ε-expansion and comparing with Monte Carlo simulations. A similar

approach, directly in d = 3 and at LO in the large N expansion, has been previously considered

in [137].

Before going into a detailed analysis of the large charge sector of the O(N) model, we start our

analysis with some general considerations on the large charge expansion in non-abelian models.

4.1 Charging non-abelian theories

Consider a general scalar d-dimensional CFT with a global symmetry group G of rank M. The

general goal is to efficiently determine correlators involving primary operators carrying large values

of the charges ~Q = (Q̄1, . . . , Q̄M) associated with the Cartan generators Qi. On the other hand, in

this thesis, we will mainly focus on the more modest task of computing the ground state energy of

the CFT on the unit cylinder that, as we saw in Sec.3.5, is equal to the scaling dimension of the
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MSD operator with charge ~Q.

The ground state energy E~Q (at fixed charge ~Q) on the cylinder is given by the non-abelian

counterpart of Eq.(3.57). That is

〈~Q|e−HT |~Q〉 =
T→∞

Ñ e−E~QT
=Ñ e−∆~QT

. (4.1)

where |~Q〉 is an arbitrary state with fixed charge ~Q.

As discussed in the previous section, in the large charge limit the path-integral expression for

the above matrix element will be dominated by semiclassical trajectories. In particular, in weakly-

coupled theories, the semiclassical large charge expansion is a ’t Hooft like expansion which in the

abelian case takes the form Eq.(3.75), i.e

∆Q̄ = ∑
k=−1

1
Q̄k ∆k(A∗) , A∗ ≡ λ

∗Q̄ . (4.2)

How the non-abelian counterpart of the above equation looks?

First, consider fixing only one of the M charges, e.g. ~Q = (Q̄1 = Q̄,0,0, . . . ,0), in theories with

multiple (small) couplings λ1, λ2, ... . In this case, the most natural procedure consists in defining

multiple ’t Hooft coupling A1 = Q̄λ1, A2 = Q̄λ2, ..., and thus the large charge expansion for the

scaling dimension of the MSD operator with charge Q̄ takes the form

∆Q̄ = ∑
k=−1

1
Q̄k ∆k({A∗i}) , A∗i ≡ λ

∗
i Q̄ . (4.3)

When we fix multiple charges, and we take all of them to be large, we can rescale them by

the same large parameter Q̄, i.e. ~Q = Q̄(q1,q2,q3, . . .), where the {qi} are order O(1) parameters

which define the charge configuration, i.e. the specific quantum number assignment of the MSD

operator. Then the large charge expansion takes the following form

∆~Q = ∑
k=−1

1
Q̄k ∆k({A∗i},{qi}) , A∗i ≡ λ

∗
i Q̄ . (4.4)

Similar considerations apply when not all the charges are large, with the order O(1) charges

playing the role of additional quantum numbers. The role of the charge configuration in the large
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Figure 9: The procedure we will follow to compute the scaling dimensions of large charge MSD operators
to NLO in the large charge expansion in non-abelian theories.

charge expansion will be explored in detail in Chap.6.

The practical way to compute the scaling dimension of the MSD operator is through Eq.(4.1). A

flowchart of the computational strategy that we will follow in the next chapters is shown in Fig.(9).

For a given charge configuration, we will map the theory to the cylinder and impose the charge

fixing constraints, after which we are left with an "effective" cylinder action. The latter will be

used to semiclassically compute the ground state energy from Eq.(4.1). The leading order of the

large charge expansion is obtained by solving the classical system, while the NLO is determined

by the dispersion relations of the fluctuation spectrum around the leading trajectory.

An important feature of this approach is that we do not fix the full symmetry properties of the

MSD operator corresponding to the ground state on the cylinder19. In fact, in choosing the state ~Q in

Eq.(4.1), we fix only the eigenvalues corresponding to a set of Cartan charges. Put it simpler, we fix

only the group-theoretical weights (the charge configuration) but not the irreducible representation

the MSD operator belongs to. Multiple irreducible representations can share the same weight,

19 This is very different from conventional perturbative methods, where the explicit form of the composite operator is
needed as input for the computation of its scaling dimension.
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and a given irreducible representation can be realized by different sets of local operators. This

is where the Lie algebraic theory cannot tell us more, and we need some dynamical information.

This information is contained in the MSD condition. The problem is thus to identify, among all

the operators with fixed charge ~Q, the one with the lowest scaling dimension. This is in general

not an easy task and, for this reason, the explicit form of the considered MSD operator is often

left unspecified in the literature. In weakly-coupled theory, where the anomalous dimensions are

small, we can make progress by assuming that the minimal scaling dimension operator has also

the minimal classical scaling dimension (MCSD or minimal-CSD). This will be called the MCSD

assumption and can be taken as our definition of perturbativity. For instance, in the U(1) theory

discussed in the previous chapter, the MCSD operator with U(1)-charge Q̄ is obviously ϕ Q̄. In fact,

any additional (ϕ̄ϕ) factor or derivative would necessarily increase the classical scaling dimension.

Therefore, at small values of the coupling λ we expect the ground state energy on the cylinder to

deliver the scaling dimension of ϕ Q̄.

On the other hand, in the strongly-coupled regime, level crossing between operators with differ-

ent MCSD can occur, and the MSD operator might no longer be ϕ Q̄. In general, the identification

of the MSD operator in strongly-coupled theory is an extremely hard task which implies having

already (at least partially) solved the theory.

In the U(1) case, the identification in the weakly-coupled regime is relatively easy since there

is only one charge with the charge configuration playing no role. In non-abelian weakly-coupled

theories, the situation is more involved. Given a charge configuration, a brute force strategy may

consist of listing all the candidates using the MCSD assumption and then compute their scaling

dimension in perturbation theory. In absence of particular degeneracies in the 1-loop spectrum

of anomalous dimensions, the 1-loop scaling dimensions are enough to identify the MSD opera-

tor. However, after all, we are interested in the large charge expansion because we do not want

to compute Feynman diagrams. This approach can be improved if employing group-theoretical

considerations one can narrow down the list of candidate operators.

As we will show in Chap.6, there are cases when group theory alone uniquely selects the MSD

operator. Furthermore, in the same section, we will propose an alternative identification procedure

that does not require diagrammatic computations. Notice that, even if the precise form of the

MSD operator does not affect the calculation of its scaling dimension, it, however, enters in the
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computation of the normalization of the correlator Ñ , and thus of higher-point functions.

We conclude this section with some general considerations about the symmetry breaking pattern

induced by the charge-fixing. As discussed before, abelian theories at large charge realize the

superfluid pattern (3.25). For non-abelian theories at large charge, a natural situation corresponds to

a generalized superfluid phase whose definition generalizes Eq.(3.25). This phase occurs when both

dilatations D and G are broken, but at least one linear combination of the generators D′ = D+µiQi

remains unbroken. That is

SO(d +1,1)⊗G −→ SO(d)⊗D′⊗G′ , (4.5)

where G′ is the unbroken subgroup of G, and the µi have the role of i chemical potentials. Since D is

the cylinder Hamiltonian H, the generalized superfluid condition can be read also as Ĥ = H+µiQi.

4.2 The critical O(N) model in d = 4− ε dimensions

In this section, we use the large charge expansion to investigate the critical O(N) vector model in

d = 4− ε dimensions described below

S =
∫

ddx
(
(∂φa)

2

2
+

(4π)2g0

4!
(φaφa)

2
)

. (4.6)

The renormalized coupling g is related to the bare coupling g0 as

g0 = MεgZg , (4.7)

with M the RG scale. In dimensional regularization and MS scheme, Zg can be expanded as a

Laurent series in ε poles

Zg(g,ε) = 1+
∞

∑
k=1

Zg,k(g)
εk , (4.8)

where every Zg,k(g) is a formal power series in g. The beta function of the coupling g is related to

Zg by

β (g,ε)≡ µ
∂g
∂ µ

=−εg+g2 ∂Zg,1(g)
∂g

. (4.9)
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where

Zg,1(g) =
g(8+N)

3
+O

(
g2) . (4.10)

In d = 4−ε this theory features an infrared WF fixed point at g∗ = g∗(ε). The fixed point value has

been computed to 6-loop in [138]. For our analyses, we will make use of the 4-loop result reported

below

g∗(ε) =
3ε

8+N
+

9(3N +14)ε2

(8+N)3 +
ε3

(8+N)5

[
3
8
(4544+1760N +110N2−33N3)

−36 ζ (3)(N +8)(5N +22)
]
+

ε4

(N +8)7

[
120

(
2N2 +55N +186

)
(N +8)2

ζ (5)

+6
(
63N3−82N2−3796N−9064

)
(N +8)ζ (3)+

1
16

(
−5N5−2670N4−5584N3

+52784N2 +309312M+529792
)
− 1

5
π

4(5N +22)(N +8)3
]
+O(ε5) . (4.11)

In what follows, we will be interested in composite operators with no derivatives and transform-

ing according to the traceless symmetric O(N) representations with O(N)-spin Q̄. These represen-

tations can be depicted as Young tableaux with Q̄ boxes in a single row

...︸ ︷︷ ︸
Q̄

, (4.12)

while the operators can be written as

Tp,Q̄ = (φ 2)pt
a1...aQ̄

Q̄ (φa) , (4.13)

where t
a1...aQ̄

Q̄ is a homogeneous polynomial of degree Q̄ in the φa that is traceless and symmetric in

the indices while p counts the φ 2 factors. The CSD of Tp,Q̄ is Q̄+2p. The explicit form of the first

four t
a1...aQ̄

Q̄ polynomials reads

ta
1(φ) = φ

a , (4.14)

tab
2 (φ) = φ

a
φ

b− 1
N

δ
ab

φ
2 , (4.15)
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tabc
3 (φ) = φ

a
φ

b
φ

c− φ 2

N +2

(
φ

a
δ

bc +φ
b
δ

ac +φ
c
δ

ab
)
, (4.16)

tabcd
4 (φ) = φ

a
φ

b
φ

c
φ

d− 1
N +4

φ
2
(

δ
ab

φ
c
φ

d +δ
ac

φ
b
φ

d +δ
ad

φ
b
φ

c +δ
bc

φ
a
φ

d +δ
bd

φ
a
φ

c +δ
cd

φ
a
φ

b
)

+
1

(N +2)(N +4)
(φ 2)2

(
δ

ab
δ

cd +δ
ac

δ
bd +δ

ad
δ

bc
)
. (4.17)

Physically, the Tp,Q̄ operators represent anisotropic perturbations in O(N)-invariant critical sys-

tems. Their scaling dimensions define a family of crossover (critical) exponents controlling the

capacity of the perturbations to influence and change the critical behavior. Crossover exponents

are relevant for a variety of condensed matter systems, such as density-wave systems [139, 140]

and magnets with a cubic crystal structure [85, 141]. These crossover exponents determine also

the behavior near bicritical points at the intersection of two transition lines with different O(N)

symmetries [142, 143]. This multicritical behavior appears in the SO(5) theory of superconductiv-

ity [134, 144].

Below, we report the known results for T0,1 [138,145], T0,2 [146], and T0,4 [144]20 up to 4-loops

∆T0,1 = ∆φ = 1− ε

2
+

(N +2)ε2

4(N +8)2

(
1+

ε

4(N +8)2

[
−N2 +56N +272

]
− ε2

16(N +8)4

× [5N4 +230N3−1124N2−17920N−46144+384ζ (3)(N +8)(5N +22)]
)
+O

(
ε

5
)
,

(4.18)

∆T0,2 = 2− ε +
2

N +8
ε +

(
−N2 +18N +88

)
2(N +8)3 ε

2 +
1

8(N +8)5

×
[
−5N4−134N3−960N2

ζ (3)+56N2−11904Nζ (3)+4192N−33792ζ (3)+10624
]

ε
3

+
1

160(N +8)7

[
80N6

ζ (3)−65N6 +1920N5
ζ (3)−4100N5 +25600N4

ζ (5)+65280N4
ζ (3)

−160π
4N4−79720N4 +1113600N3

ζ (5)+592000N3
ζ (3)−4544π

4N3−403960N3

+15283200N2
ζ (5)+138240N2

ζ (3)−47616π
4N2−533920N2 +83148800Nζ (5)

−11719680Nζ (3)−217088π
4N +1275520N +152371200ζ (5)−24944640ζ (3)

20 There is a misprint in equation (3.14) of [144]: the sign of the first term in c4,4 is wrong.
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−360448π
4 +3571200

]
ε

4 +O
(

ε
5
)
, (4.19)

∆T0,4 = 4−2ε +
(N +20)

N +8
ε +

(
−5N2−14N−152

)
(N +8)3 ε

2− 1
4(N +8)5

× [13N4 +398N3 +1464N2−192(N +8)(N(N +7)+46)ζ (3)+1568N−17024]ε3

+

(
−

120
(
13N2 +130N +712

)
ζ (5)

(N +8)5 +
2π4 (N2 +7N +46

)
5(N +8)4

−29N6 +1516N5 +27272N4 +112856N3 +223328N2 +402304N +2995712
16(N +8)7

+
3
(
N5−8N4 +256N3 +1592N2 +1664N−21568

)
ζ (3)

(N +8)6

)
ε

4 +O
(

ε
5
)
. (4.20)

The scaling dimension of T0,Q̄ with arbitrary Q̄ is known to order O
(
ε2) [147]

∆T0,Q̄
≡ ∆Q̄ = Q̄+

(
−Q̄

2
+

Q̄(Q̄−1)
8+N

)
ε−
[

184+N(14−3N)

4(8+N)3 Q̄

+
(N−22)(N +6)

2(8+N)3 Q̄2 +
2

(8+N)2 Q̄3
]

ε
2 +O

(
ε

3) . (4.21)

There is also an old O(ε3) result [148], but we found out that it disagrees with the known

literature for the cases Q̄ = 2,3,4 considered above. In the next section, we will compute ∆Q̄ to

NLO in the large charge expansion. Moreover, we will use our results to obtain ∆Q̄ to orderO
(
ε4).

4.3 Charging the system

The conserved Noether current associated with the global O(N) symmetry transforms in the adjoint

representation of O(N), and it is given by

( jµ)ab = (φa∂
µ

φb−φb∂
µ

φa) . (4.22)
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The corresponding conserved charge is matrix-valued and can be decomposed in terms of the gen-

erators of the O(N) algebra T A

Qab =
∫

dd−1x
(

j0)
ab = ∑

A
QA

(
T A
)

ab
. (4.23)

The O(N) group with even (odd) N has rank (i.e. the number of mutually commuting Cartan

generatorsHi) N/2
(N−1

2

)
, which corresponds to the number of "charges" QA we can fix. Without

loss of generality, we focus on the even-N case, and we fix k ≤ N/2 charges via k constraints

Qi = Q̄i, where {Q̄i} is a set of fixed constants and i = 1, . . . ,k. According to the discussion at the

beginning of this chapter, we write the charge configuration as

~Q = Q̄(q1, . . .qk) , (4.24)

where Q̄ ≡ ∑
k
i=1 Q̄i is the sum of the charges and ∑

k
i=1 q̄i = 1. To make explicit the relation be-

tween fields and charges, we consider the SU(N/2)×U(1) subalgebra of O(N) and introduce N/2

complex field variables as

ϕ1 =
1√
2
(φ1 + iφ2) =

1√
2

σ1 eiχ1 , (4.25)

ϕ2 =
1√
2
(φ3 + iφ4) =

1√
2

σ2 eiχ2 , (4.26)

ϕ3 = . . . . (4.27)

Then ϕi has charge Qi = +1, while ϕ̄i has Qi charge −1. In fact, we can use an O(N) rotation to

write

k

∑
i=1

QiHi =



0 Q1

−Q1 0

0 Q2

−Q2 0
. . .


. (4.28)
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Then

Q2i,2i−1 =
∫

dx
(
ϕ̄i∂

0
ϕi−ϕi∂

0
ϕ̄i
)
=
∫

dx(σi)
2
∂

0
χi = Qi , i = 1, . . . ,k , (4.29)

and the charges Qi are canonically conjugated to the angular modes χi.

Having fixed the charge, we now focus on the computation of the scaling dimension of the MSD

operators with charge ~Q. As we will see in the next section, these operators can be identified as the

T0,Q̄ anisotropic perturbations.

As anticipated, we work at the Wilson Fisher FP g∗, and we map the theory onto the cylinder,

Rd →R×Sd−1. The cylinder action reads

Scyl =
∫

ddx
√

g
(

gµν∂
µ

ϕ̄i∂
ν
ϕi +m2

ϕ̄iϕi +
(4π)2g0

6
(ϕ̄iϕi)

2
)

. (4.30)

As discussed in Sec.2.5, the cylinder action contains an effective mass term with m =
d−2
2R

, where

R is the radius of Sd−1. We are interested in the computation of the scaling dimension of the

MSD O(N) operator with charge ~Q, i.e. of the ground state energy on the cylinder. According to

Eq.(4.1), the latter can be obtained from the matrix element 〈~Q|e−HT |~Q〉with |~Q〉 an arbitrary state

with charge ~Q.

Stemming from the considerations made in the previous chapter, we expect this matrix element

to be controlled by a modified Hamiltonian Ĥ = H + ~Q ·~µ , where ~µ = (µ1, . . . ,µk) is a set of k

(a priori) independent chemical potentials. On the other hand, in the ground state, simplifications

occur. This can be seen by solving the classical EOM, which read

(
−∂

2 +
[
(∂ χ j)

2 +m2]+ (4π)2

6
g0σiσi

)
σ j = 0 , i∂µ (σiσigµν

∂ν χi) = 0 , (4.31)

and have to be solved together with the k charge-fixing constraints Qi = Q̄i. The solution with

minimal energy is spatially homogeneous, and it is given by

σi = Ai , χi =−iµt i = 1, . . . ,k ,

ϕk+ j = 0, j = 1, . . . ,N/2− k .

(4.32)
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The striking consequence of this homogeneous solution is that all the chemical potentials are equal,

µi = µ , even if the charges Q̄i are different. This solution describes k circular motions in the planes

spanned by the real and imaginary parts of the ϕi. These motions are synchronous with the same

angular velocity µ but different radii of the circles Ai. µ and the Ai are fixed by the EOM and the

charge constraints as

µ
2−m2 =

(4π)2

6
g0v2 ,

Q̄
Ωd−1Rd−1 = µv2 , (4.33)

where Ωd−1 =
2πd/2

Γ(d/2) is the solid angle in d dimensions, and we have defined the sum of the square

vevs as

v2 ≡
k

∑
i=1

A2
i . (4.34)

The presence of a single chemical potential implies that the non-relativistic effective Hamilto-

nian reads

Ĥ = H + ~Q ·~µ = H + Q̄µ , (4.35)

i.e. µ couples to the sum of the charges. In fact, a convenient choice for |Q̄〉 in (4.1) is given by

|~Q〉=
∫
Dα(~n)

{
k

∏
i

exp
[

iQ̄i

Rd−1Ωd−1

∫
dΩd−1 αi(~n)

]}
|~A,~α(~n)〉 , (4.36)

where~n identify points on Sd−1 and |~A,~α(~n)〉 is the state with fixed values of the fields σi(~n) = Ai

and χi = αi(~n). The term in the brace can be thought of as a wave-functional for the state in radial

quantization which fixes its charge to ~Q. Now consider fixing all the charges, i.e. k = N/2. Then

Eq.(4.36) leads to

〈~Q|e−HT |~Q〉= 1
Z

∫
σi=Ai

σi=Ai

Dn
σ Dn

χ e−Ŝ , (4.37)

with

Ŝ =
∫ T/2

−T/2
dt
∫

dΩd−1

(
1
2

∂σi∂σi +
1
2

σ
2
i ∂ χi∂ χi +

m2

2
σ

2
i +

(4π)2

24
g0(σiσi)

2 +
iQ̄

Ωd−1Rd−1 qi χ̇i

)
'
∫ T/2

−T/2
dt
∫

dΩd−1

(
1
2

∂σi∂σi +
1
2

σ
2
i ∂ χi∂ χi +

m2

2
σ

2
i +

(4π)2

24
g0(σiσi)

2 +
µQ̄

Ωd−1Rd−1

)
.

(4.38)
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where the sum over i runs from 1 to N/2 and the ' has to be understood as equivalence up to a

term which is linear in the fluctuations of the χi fields, and does not affect the computation of the

ground state energy. In the last line, we made explicit that the physics is controlled by the modified

Hamiltonian Ĥ given by Eq.(4.35). Notice the analogy with the rigid rotor of Sec.(3.2); specifically,

Eq.(4.37) corresponds to Eq.(3.10), while Eq.(4.38) is the counterpart of Eq.(3.11).

In short, in presence of a homogeneous background, the sum of the charges acts as a single

U(1) charge while the charge configuration plays no role. This fact can be made explicit by using

an O(N) transformation to rotate the ground state as

1√
2
(A1, ...,AN/2)−→ (0, ...,0︸ ︷︷ ︸

N/2−1

,
v√
2
) . (4.39)

This operation assigns "all the vevs" to a single radial field σN/2 and all the charge to one Cartan

generatorHN/2, i.e.

~Q = Q̄(0, ...,0︸ ︷︷ ︸
N/2−1

, 1) . (4.40)

At large values of Q̄, Eq.(4.37) can be computed via a semiclassical expansion resulting in

∆Q̄ = EQ̄R =
∞

∑
j=−1

g∗ j
∆̃ j(A∗) =

∞

∑
j=−1

1
Q̄ j ∆ j(A∗) , (4.41)

where the ∗ denotes the quantities evaluated at the FP.

This can be easily seen by rescaling the radial fields as σi→
√

Q̄σi as done in Sec.(3.7), in order

to exhibit Q̄ as the loop counting parameter. This analysis shows that we can organize our large

charge expansion as a semiclassical expansion in 1/Q̄ with fixed ’t Hooft couplingA0 = g0Q̄, in full

analogy with the abelian case (3.75). To access more general charge configurations, it is necessary

to consider non-homogeneous ground states, as done for the O(4) case in [130, 149, 150].

Let us analyze the symmetry breaking pattern produced by the classical solution. In general,

the breaking is a direct consequence of the fact that the ground state is an eigenstate of the non-

relativistic Hamiltonian Ĥ and not of H. This breaking can also be viewed as an explicit breaking

induced by the charge-fixing followed by an SSB due to the ground state (4.39). In fact, according

59



to the charged Goldstone theorem discussed in Sec.3.4, we will have both massive (type III) and

massless (type I and type II) Goldstone bosons. Specifically, the ones commuting with Ĥ are

massless, while the others have a mass gap proportional to µ . Then we can think of the chemical

potential as an explicit symmetry-breaking term setting the mass scale for the type III Goldstones21.

Consider the "explicit" breaking due to the charge fixing, i.e. by the ∑
N/2
i µQi term in Ĥ. Since

all the charges couple to the same chemical potential, an U(N/2) subgroup of the original O(N)

symmetry remains unbroken. In fact, the term

∑
i

µQi = µ ∑
i

∫
dx
(
ϕ̄i∂

0
ϕi−ϕi∂

0
ϕ̄i
)
= µ

∫
dx
(
~̄ϕ∂

0~ϕ−~ϕ∂
0~̄ϕ
)
, (4.42)

is clearly invariant under U(N/2) rotations of the vector ~ϕ = (ϕ1, . . . ,ϕN/2).

Then the vacuum Eq.(4.39), in turn, spontaneously breaks the U(N/2) symmetry of ~ϕ to

U(N/2− 1), leading to massless Goldstone modes. Altogether, the symmetry breaking pattern

is

SO(d +1,1)×O(N)→ SO(d)×D′×U(N/2−1) , (4.43)

where D = H is the generator of time translations and D′ = D+µQN/2.

Then, according to the charged Goldstone theorem, we expect dim(U(N/2)/U(N/2−1)) =

N−1 massless Goldstone bosons, once type II states are double-counted. This can be realized with

one type I scalar and one type II U(N/2−1)-vector. In fact, counting twice the type II modes we

have

1+2× (N/2−1) = N−1 . (4.44)

4.4 Fixed-charge operators

The goal of this section is to determine the MSD operator with total charge Q̄. In particular, we

will identify it as the anisotropic perturbations T0,Q̄ introduced in Eq.(4.13).

In CFT with global symmetries, we can organize the operators into multiplets transforming

21 In fact, we might as well have introduced the chemical potential as the zero component of a gauge field through the
usual covariant derivative. In such a case, the Lagrangian would have contained a mass term µ2σ jσ j for the radial
modes, which would explicitly break the symmetry. On the other hand, as can be seen from the fact that we can
always eliminate the chemical potential from the Lagrangian by a simple field redefinition, the charge-fixing symmetry
breaking should be retained purely spontaneous.
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according to irreducible representations of the symmetry group. Within any multiplet, component

operators are further distinguished by their charge configuration, i.e. the value of the charges asso-

ciated with the Cartan generators. Operators with different symmetry properties (i.e. belonging to

nonequivalent irreducible representations) do not mix under renormalization. Moreover, by virtue

of the Wigner-Eckart theorem, they necessarily have the same scaling dimension. We restrict our-

selves to the case when ε is small, and the theory is perturbative. We can, therefore, consider the

MCSD assumption introduced in Sec.4.1 and look for operators with the minimal classical dimen-

sion for a given charge configuration.

Let us start with a top-down approach. First, the MCSD assumption implies that the MSD

operator does not contain derivatives, since the latter increase the classical dimension. Furthermore,

since scalar fields commute, operators without derivatives live in the fully symmetric O(N) space.

The latter is composed by the Tp,Q̄ operators defined in Eq.(4.13) which have total charge Q̄ and

CSD Q̄+2p. At fixed Q̄, the MSD operator is clearly obtained when p = 0 and, as anticipated, we

are left with the T0,Q̄ operators.

For later convenience, we consider also a bottom-up approach performing the explicit construc-

tion of the MSD operators. The charge configuration is given by Eq.(4.24) and is parametrized

by a set of numbers {qi} such that ∑
k
i qi = 1. Without loss of generality, we assume all qi’s to be

positive. Hence, according to the MCSD assumption, the fixed-charge operator with the MCSD

can be written as22

Oqi ≡
k

∏
i=1

(ϕi)
Q̄qi . (4.45)

On the other hand, we know that we can use an O(N) transformation to set qk = 1 and qi6=k = 0.

Then the MSD operator becomes Oqi = (ϕk)
Q̄. Clearly, this operator transforms according to the

traceless symmetric O(N) representations, has total charge Q̄ and CSD Q̄. Then, we can again

identify the MSD operators as the T0,Q̄ anisotropic perturbations. Note that for N = 2 we have the

ϕ Q̄ U(1) operator we considered in Secs.3.6 and 3.7.

22 If some qi were negative, they would correspond to replace ϕi with ϕ̄i.
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4.5 The large charge expansion in the O(N) model: LO

We now have all the instruments to proceed with the semiclassical computation of ∆T0,Q̄
≡ ∆Q̄, i.e.

of the ∆ j coefficients in Eq.(4.41).

The leading term of the large charge expansion, ∆−1, is given by the effective action (4.38)

evaluated on the classical trajectory (4.32) at the fixed point

∆−1(A∗) =
R
4

(
3µ +

m2

µ

)
. (4.46)

Notice that, since this contribution is purely classical, bare and renormalized couplings coincide at

the LO.

By inserting the second equation in (4.33) into the first one and setting d = 4, we obtain

R3
µ

3−Rµ =
4
3
A∗ , (4.47)

with solution

Rµ =
3

1
3 +
(

6A∗+
√
−3+36A∗2

) 2
3

3
2
3

(
6A∗+

√
−3+36A∗2

) 1
3

. (4.48)

Then the leading order of the semiclassical large charge expansion reads

4∆−1 =
3

2
3

(
6A∗+

√
−3+36A∗2

) 1
3

3
1
3 +
(

6A∗+
√
−3+36A∗2

) 2
3
+

3
1
3

(
3

1
3 +
(

6A∗+
√
−3+36A∗2

) 2
3
)

(
6A∗+

√
−3+36A∗2

) 1
3

. (4.49)

We would like to stress again that this classical result resums an infinite series of Feynman

diagrams in the usual perturbative expansion. These are the diagrams shown in Fig.8. In particular,

Eq.(4.49) resums the leading power of Q̄ at every perturbative order. The expansion for small A∗

reads

Q̄∆−1 = Q̄
[

1+
1
3
A∗− 2

9
A∗2 + 8

27
A∗3− 14

27
A∗4 + 256

243
A∗5− 572

243
A∗6 +O

(
A∗7

)]
. (4.50)
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4.6 The large charge expansion in the O(N) model: NLO

The time is ripe to determine the leading quantum corrections ∆0 to be added to the classical result

(4.49). Since we will need to renormalize our results, we rewrite our expansion as

EQ̄R =
∞

∑
j=−1

g j
0e j(A0,d) =

∞

∑
j=−1

g jē j(A,d,RM) , (4.51)

where e j and ē j are, respectively, the bare and renormalized coefficients of the large charge expan-

sion.

In order to calculate e0, we have to expand the path integral (4.37) to the quadratic order as

〈ψ~Q|e
−HT |ψ~Q〉= e−

e−1(A0,d)T
g0R

∫
DσDχe−Ŝ

(2)

∫
DϕDϕ̄e−

∫ T/2
−T/2

√
g(gµν ∂ µ ϕ̄i∂ ν ϕi+m2ϕ̄iϕi)

= Ñ exp
{
−
[

1
g0

e−1(A0,d)+ e0(A0,d)
]

T
R

}
, (4.52)

where Ŝ(2) is the modified action at the quadratic order in the fluctuation fields. In order to find

Ŝ(2), we expand around the saddle point configuration (4.32) considering the ground state in (4.39).

We parametrize the fluctuations as



χi =−iµt + 1
v pi(x) , i = 1, . . . , N

2 −1 ,

χN/2 =−iµt + 1
v π(x) ,

σi = si(x) , i = 1, . . . , N
2 −1 ,

σN/2 = v+ r(x) .

, (4.53)

Expanding the Lagrangian (4.38) to the quadratic order in the fluctuations, we arrive at

L2 =
1
2
(∂π)2 +

1
2
(∂ r)2 +(µ2−m2)r2−2 i µ r π̇

+
1
2

∂ si∂ si +
1
2

∂ pi∂ pi−2 i µ si ṗi . (4.54)

The quadratic Lagrangian contains a "U(1) sector" given by π and r. To obtain their dispersion re-

lations, we move to Fourier space and define the inverse propagatorP−1(p), with p the momentum,
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as

S(2) =
∫ dd p

(2π)d [r(−p) π(−p)]P−1(p)

r(p)

π(p)

 . (4.55)

We have

P−1(p) =

 1
2
(
ω

2− p2)− (µ2−m2) iωµ

−iωµ
1
2
(
ω

2− p2)
 . (4.56)

The dispersion relations are then obtained from detP−1(p) = 0, and read

ω±(l) =

√
J2
` +3µ2−m2±

√
4J2

` µ2 +(3µ2−m2)2 , (4.57)

with

J2
` = `(`+d−2)/R2 = p2 . (4.58)

are the eigenvalues of the Laplacian the sphere. Their multiplicity n` has been given in Eq.(3.61).

These modes can be identified as one relativistic (type I) Goldstone boson χN/2 and one massive

state σN/2 with mass
√

6µ2−2m2. This is the fluctuation spectrum in the O(2) case. Additionally,

the non-abelian case also features k− 1 = N
2 − 1 non-relativistic (type II) Goldstone bosons and

N/2−1 massive states with mass 2µ (type III Goldstones)

ω±±(l) =
√

J2
` +µ2±µ . (4.59)

Notice that the gap of type III Goldstones is fixed by symmetry and does not receive radiative

corrections [122].

The counting of massless Goldstone bosons satisfies the charged Goldstone theorem. In fact

1+2×
(

N
2
−1
)
= N−1 = dim

(
U
(

N
2

)
/U
(

N
2
−1
))

. (4.60)

e0 is determined by the fluctuation functional determinant which can be written in terms of the

dispersion relations found above as
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T
e0

R
= log

√
det Ŝ(2)

det(−∂ 2
τ −∆Sd−1 +m2)

=
T
2

∞

∑
`=0

n`
∫ dω

2π
∑

i
gi log

[
ω2 +ω2

i (`)
][

ω2 +ω2
0 (`)

] (4.61)

=
T
2

∞

∑
`=0

n`

[
∑

i
gi(N)ωi(`)−Nω0(`)

]
, (4.62)

where i = +,−,++,−− and the sum runs over all the dispersion relations of the spectrum, each

counted with its multiplicity gi(N). ω2
0 (`) = J2

` +m2 is the free dispersion relation and satisfies

ω0(`)|d=4 =
1+l
R2 . We can compute the contribution of ω0(`) by using dimensional regularization,

where, for enough negative d, we have

∞

∑
`=0

n` =
∞

∑
`=0

n` `= 0 =⇒
∞

∑
`=0

n`ω0(`) = 0 . (4.63)

Then our final expression for e0 reads

e0 =
R
2

∞

∑
`=0

n`

[
ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]
. (4.64)

It is instructive to analyze what happens to our computation if we do not fix all the N/2 charges

Qi but only k < N/2 out of them. It is easy to show that in such a case, the number of type

II Goldstone bosons and massive particles with dispersion relation in Eq.(4.59) becomes k− 1,

whereas the spectrum is completed by 2× [(N/2−1)− (k−1)] = N−2k new massive "spectator"

states with mass µ and dispersion relation

ω∗(`) =
√

J2
` +µ2 . (4.65)

Accordingly, the expression for e0 becomes

e0 =
R
2

∞

∑
`=0

n` [ω+(`)+ω−(`)+(k−1)(ω++(`)+ω−−(`))+(N−2k)ω∗] . (4.66)

Since ω++(`)+ω−−(`) = 2ω∗(`), e0 does not depend on the number of charges we fix. This result

is consistent with the scaling dimension not being sensitive to the charge configuration but only to
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the sum of the charges.

The sum over ` in Eq.(4.64) diverges and needs regularization. This will be done in the next

section, along with the renormalization procedure.

4.7 Regularization and renormalization

The renormalization is performed by using Eqs.(4.7) and (4.10) into Eq.(4.51) and expanding every

term g j
0e j(Q̄g0,d) in powers of g. This procedure mixes the bare orders of the expansion. In

particular, we have
e−1(A0,d)

g0
=

e−1(A,d)
g

+ ∑
j=0

g j f j(A,d,RM) . (4.67)

Since f0 is of the same order O
(
g0) = O (Q̄0) of e0 in the renormalized large charge expansion,

we have

ē−1(A,d) = e−1(A,d) , ē0(A,d,RM) = e0(A,d)+ f0(A,d,RM) , (4.68)

We compute f0 by expanding e−1 (which is obtained as ∆−1 in Eq.(4.46) but working in d = 4− ε

instead that d = 4) in powers of g and retaining the term of order g0. We have

f0(A,d,RM) =
8+N

16
(µ2R2−1)2

(
1
ε
− log(MR

√
π)− γ

2

)
+

8+N
32

(µ2R2−1)(µ2R2 +3)+O(ε) , (4.69)

where we expand in ε by taking the renormalized coupling fixed. γ is the Euler–Mascheroni con-

stant. To compute ∆0, we have to consider the theory at the FP g∗ = g∗(ε) given by Eq.(4.11).

Being the fixed point coupling expressed as a power series in ε , this step mixes again different

orders of the expansion, now the renormalized ones. In particular, ∆0 is given by ē0 in d = 4 plus

the expansion of the LO ē−1/g to the first order in ε (for fixed coupling)

∆0 =

{
ē0(A,RM,4)+ ε

∂

∂ε

[
1
g

ē−1(A,RM,4− ε)

]
ε=0

}
g=g∗

=

{
lim
ε→0

[
R
2

∞

∑
`=0

n`

[
ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]

66



+
8+N
16ε

(µ2R2−1)2

]}
g=g∗

, (4.70)

where we take the ε → 0 limit by keeping the coupling fixed. Notice that at the FP the dependence

on the renormalization scale M drops, as expected from conformal invariance. On the other hand,

we are left with a 1
ε

term which diverges in the limit ε → 0 and must cancel after we regularize the

sum over `.

To perform the regularization, we first isolate the divergent part by performing an expansion of

the summand around `= ∞

Rn`

[
ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]
∼

∞

∑
n=1

cn`
d−n . (4.71)

In d = 4, the first five terms of the expansion diverge when `→ ∞. Their coefficients read

c1 = N +O (ε) , c2 = 3N +O (ε) ,

c3 =
1
2
[
(N +2)µ2R2 +5N−2

]
+O (ε) , c4 =

1
2
[
(N +2)µ2R2 +N−2

]
+O (ε) ,

c5 =−
(N +8)

(
µ2R2−1

)2

8
+

1
240

(
−45µ

4(N +8)R4−20µ
2(N−7)R2

+30γ(N +8)
(
µ

2R2−1
)2

+3N +220
)

ε +O
(
ε

2) . (4.72)

Then we can isolate the divergent part as23

R
2

∞

∑
`=0

n`

[
ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]
=

1
2

5

∑
n=1

cn

∞

∑
`=1

`d−n +
1
2

∞

∑
`=1

σ(`)+
R
2

ω+(0)+
R
2

(
N
2
−1
)

ω++(0) , (4.73)

with24

σ(`) = Rn`

[
ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]
−

5

∑
n=1

cn`
d−n

23 In writing this expression, we used that ω−(0) = ω−−(0) = 0.
24 Since σ(`) is a convergent sum, we can evaluate it directly in d = 4.
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= R(1+ `)2
[

ω+(`)+ω−(`)+

(
N
2
−1
)
(ω++(`)+ω−−(`))

]
d=4
−N `3−3N `2

+
1
2
(
2−5N− (2+N)R2

µ
2) `+ 1

2
(
2−N− (N +2)R2

µ
2)+ 1

8
(N +8)

(
R2

µ
2−1

)2 1
`
.

(4.74)

Finally, we zeta-regularize the divergent part by using that ∑
∞
`=1 `

x = ζ (−x) and ζ (1+ ε) =

1
ε
+ γ +O(ε). We obtain

1
2

5

∑
n=1

cn

∞

∑
`=1

`d−n =−8+N
16Rε

(µ2R2−1)2− 3µ4(N +8)R4 +6µ2NR2 +7N−24
32R

. (4.75)

The 1/ε term in the regularized contribution above cancels exactly the 1/ε term in f0. Hence

we can now consistently take the limit ε → 0 in Eq.(4.70), after which we are left with a finite

result. Notice that, since the two 1/ε terms come from different orders of the bare expansion, their

cancellation can be used as a non-trivial self-consistency check of the correctness of the calcula-

tions. This check can be particularly useful when dealing with more complicated theories such as

the U(N)×U(M) model that we will investigate in Chap.6.

4.8 Results

After regularization and renormalization, we finally obtain our final result for ∆0

∆0(A∗) = −15µ4R4 +6µ2R2−5
16

+
1
2

∞

∑
`=1

σ(`)+

√
3µ2R2−1√

2

− 1
16

(
N
2
−1
)[

7+Rµ
(
−16+6Rµ +3R3

µ
3)] , (4.76)

where σ(`) is given by Eq.(4.74), and all the quantities are evaluated in d = 4. As a non-trivial test

of our result, we now compare it with the known 2-loop perturbative result in Eq.(4.21). To this

end, we use Eq.(4.48) to express ∆0 as a function of A∗, and we expand ∆0 for small A∗, where

σ(`) can be computed analytically
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∆0(A∗) =−
(

5
3
+

N
6

)
A∗+

(
1
3
− N

18

)
A∗2 + 1

27
[N−36+28 ζ (3)+2N ζ (3)] A∗3 +O

(
A∗4

)
.

(4.77)

The sum of the classical contribution (4.50) and the leading quantum correction (4.77) reads

∆−1(A∗)
g∗

+∆0(A∗) = Q̄− A
∗

6
(10+N−2Q̄)+

A∗2

18
(6−N−4Q̄)

+
A∗3

27
[N−36+8Q̄+2(14+N)ζ (3)]+O

(
Q̄A∗4

)
,

(4.78)

Finally, evaluating the above expression at the fixed point (4.11), we obtain

∆Q̄ = Q̄+

(
−Q̄

2
+

Q̄(Q̄−1)
8+N

)
ε−
[

2
(8+N)2 Q̄3 +

(N−22)(N +6)
2(8+N)3 Q̄2 +O(Q̄)

]
ε

2 ,

(4.79)

in agreement with the diagrammatic result (4.21).

At order O(ε3) and O(ε4), our semiclassical computation captures the leading and next to

leading terms in the charge. However, we can determine also the remaining terms by asking that

we reproduce the known results for the cases Q̄ = 1 (4.18), Q̄ = 2 (4.19), and Q̄ = 4 (4.20). In this

way, we obtain the complete scaling dimension of the operators T0,Q̄ to order O
(
ε4), which reads

∆Q̄ = Q̄− Q̄
2

ε +
[
c1,1Q̄+ c1,2Q̄2]

ε +
[
c2,1Q̄+ c2,2Q̄2 + c2,3Q̄3]

ε
2 +
[
c3,1Q̄+ c3,2Q̄2

+c3,3Q̄3 + c3,4Q̄4]
ε

3 +
[
c4,1Q̄+ c4,2Q̄2 + c4,3Q̄3 + c,4Q̄4 + c4,5Q̄5

]
ε

4 +O
(

ε
5
)
, (4.80)

where

c1,1 =
−1

8+N
, c1,1 =

1
8+N

, c2,1 =−
184+N(14−3N)

4(8+N)3 ,

c2,2 =−
(N−22)(N +6)

2(8+N)3 , c2,3 =−
2

(8+N)2 ,
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c3,1 =
−69504+3N[−5216+N(184+N(86+N))]+64(8+N)(178+N(37+N))ζ (3)

16(N +8)5 ,

c3,2 =
−N4−57N3 +258N2−24(N +6)(N +8)(N +26)ζ (3)+8176N +31008

4(N +8)5 ,

c3,3 =
−456−64N +N2 +2(8+N)(14+N)ζ (3)

(8+N)4 , c3,4 =
8

(8+N)3 ,

c4,1 =
1

960(8+N)7 (45N6 +32π
4N5 +5820N5 +1952π

4N4 +322440N4 +40256π
4N3

+1972440N3 +380416π
4N2−16196640N2−9600(N +8)2(N(25N +418)+1240)ζ (5)

−240(N +8)(N(N(N(N(N +40)+1056)−3496)−100480)−300096)ζ (3)+1699840π
4N

−191091840N +2916352π
4−494461440) ,

c4,2 =−
1

80(N +8)7 (10N6 +4π
4N5 +915N5 +224π

4N4 +34120N4 +4464π
4N3 +86600N3

+41600π
4N2−3928440N2−400(N +8)2(N(65N +958)+2496)ζ (5)−35161600N

−20(N +8)(N(N(N(N(N +52)+904)−12224)−181184)−514112)ζ (3)+185344π
4N

+319488π
4−87127680) ,

c4,3 =
1

60(8+N)6 (π
4N4 +60N4 +38π

4N3 +4020N3 +528π
4N2−88800N2−1577280N

−4200(N−2)(N +8)2
ζ (5)−60(N +8)(N(N(3N−44)−1720)−7464)ζ (3)+3200π

4N

+7168π
4−5662560) ,

c4,4 =
−4N2−5(N +8)(N +30)ζ (5)−2(N +8)(6N +65)ζ (3)+476N +3344

(8+N)5 ,

c4,5 =−
42

(8+N)4 . (4.81)

As anticipated, the above result corrects the one in [148] demonstrating the power of the ap-

proach. Moreover, we can now predict the classical and quantum correction for the higher pertur-

bative loops of the anomalous dimension. To help future checks we provide explicit results up to

order g∗625.

5-loops:
(

256
243

Q̄+
1

243
[3(−800+7N)+28ζ (3)(28+3N)

+40ζ (5)(22+N)+14ζ (7)(62+N)]

)
(A∗)5 , (4.82)

25 After this work appeared, an independent 4-loop diagrammatic check of our results has been carried out in [151].
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6-loops:
(
− 572

243
Q̄+

2
279

[10191−64N−2ζ (3)(1327+160N)−2ζ (5)(1441+80N)

−70ζ (7)(46+N)−21ζ (9)(126+N)]

)
(A∗)6 . (4.83)

It is instructive to study also the large A∗ limit of our results, which, according to Eq.(4.47),

corresponds to the large chemical potential limit. When µ is large the massive particles decouple

from the IR physics and can be integrated out. Furthermore, we can also neglect the type II Gold-

stone bosons since they are slow with respect to the phonon excitations χN/2, which, in the large µ

limit, propagate at the speed of sound cs =
1√
d−1

. This can be seen by expanding their dispersion

relation (4.57) for large µ

ω
2
−(p) =

1
3

p2 +O
(
µ
−2) . (4.84)

In the large A limit we can, therefore, describe the theory via a large charge EFT of phonons,

as discussed in Sec.3.5 using RG arguments. In fact, the parameter which separate the two regimes

is the chemical potential µ that controls the gap of the massive modes. We are then providing a

microscopic description of the large charge EFT. Furthermore, since in the IR limit the O(N) model

has the same spectrum of the U(1) model considered in Sec.3.5, (i.e. a single phonon mode whose

universal properties are dictated by conformal symmetry), the effective action is again given by

Eq.(3.56), and all the difference between the two models (i.e. the dependence on N) is contained

in the non-perturbative Wilson coefficients ci of the effective action. As a consequence, we expect

the large A∗ limit of our result for ∆Q̄ to take the form (3.58), which we propose again below

∆Q̄ = Q̄
d

d−1

[
α1 +α2Q̄

−2
d−1 +α3Q̄

−4
d−1 + . . .

]
+ Q̄0

[
β0 +β1Q̄

−2
d−1 + . . .

]
+ . . . . (4.85)

The large A∗ expansion of ∆−1 reads

Q̄∆−1 =
3

4g∗

[
3
4

(
4g∗Q̄

3

) 4
3

+
1
2

(
4g∗Q̄

3

) 2
3

+O(1)

]
. (4.86)

The largeA expansion of ∆0 can be obtained as explained in [21], i.e. we approximate the sum over

`, evaluate ∆0 numerically at large values of µ , and, finally, fit the results to the expected functional
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form (3.58). As a result, we have

∆0 =

[
α +

N +8
48

ln
(

4g∗Q̄
3

)](
4g∗Q̄

3

) 4
3

+

[
β − N +8

72
ln
(

4g∗Q̄
3

)](
4g∗Q̄

3

) 2
3

+O(1) ,

(4.87)

where

α =−0.4046−0.0854N ,

β =−0.8218−0.0577N . (4.88)

The values of α and β do not appear in our publication [84], on which most of this chapter is

based. Instead, they have been derived few months later by I. Jack and D. R. T. Jones in [151]26.

By combining Eqs.(4.86) and (4.87) and rewriting the result at the FP, we obtain

∆Q̄ =
1
ε

(
4εQ̄

N +8

) d
d−1
[

3(N +8)
16

+ ε

(
α +

3(3N +14)
16(N +8)

)
+O(ε2)

]
+

1
ε

(
4εQ̄

N +8

) d−2
d−1
[

N +8
8

+ ε

(
β − 3N +14

8(N +8)

)
+O(ε2)

]
+O[(εQ̄)0] , (4.89)

which agrees with the general form (3.58). Since the coefficients in (3.58) are combinations of the

ci Wilson coefficient of the EFT (3.56), Eq.(4.89) represents a first-principle calculation of the EFT

coefficients at the leading order in the ε-expansion. Below, we compare our prediction (4.89) (with

ε = 1) for the leading coefficient α1 in Eq.(3.58) with the results obtained via the large N expansion

(at LO in 1/N and d = 3) [137] and Monte Carlo simulations [11, 12, 130, 152]

ε-expansion 1/N-expansion Monte Carlo

N = 2 0.424 0.471 0.337

N = 3 0.39 0.39 0.32

N = 4 0.368 0.333 0.301

N = 5 0.35 0.30 0.29

(4.90)

26 However, the comparison with Monte Carlo and large N results is original and does not appear elsewhere.
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The comparison is encouraging, despite the evident limitations of taking ε = 1, and motivates

the computation of higher orders ∆k of the large charge expansion. The first Wilson coefficient c1

of the effective action (3.56) can be obtained from α1 using Eq.(3.59).

4.9 How large is the charge?

It is crucial to know how large the charge has to be in order to have the 1
Q̄ expansion under control.

In other words, at which value of Q̄ we expect to obtain good predictions for experiments? To

partially answer this question, we conduct a heuristic analysis along the lines of [153], where the

author studied the same issue in the context of the large number of flavor N f expansion. Consider

the scaling dimension at the FP for the ϕ Q̄ operators in the U(1) theory in 4− ε dimension

∆Q̄ = ∑
k=−1

1
Q̄k ∆k(A) , A≡ Q̄ε . (4.91)

Numerically, this expansion reads

∆Q̄ = Q̄
[(

1+0.1A−0.02A2 +0.008A3−0.0042A4 +0.00256A5 + . . .
)
+

1
Q̄
(−0.1A

+0.08A2−0.01953A3 +0.007697A4−0.003227A5 + . . .
)
+

1
Q̄2

(
−0.05A2−0.04175A3

+0.009723A4 +0.00093A5 + . . .
)
+

1
Q̄3

(
0.06279A3 +0.06284A4−0.01067A5 + . . .

)
+

1
Q̄4

(
−0.8858A4−0.246A5 + . . .

)
+

1
Q̄5

(
0.268A5 + . . .

)
+ . . .

]
. (4.92)

The terms up to orderO
(
A4) follow from Eq.(4.80) for N = 2. The remaining terms have been

computed in [21]. Following [153], we compare the leading terms in A at each order in 1
Q̄ , and we

ask the k-th order to be strictly smaller than the k− 1-th one for all k ≥ 6 and A as big as 5. The

valueA= 5 marks the transition between perturbative and superfluid regimes where the expansion

takes, respectively, the form of Eqs.(4.79) and (4.86)27. We found out that quite large values of the

charge Q̄ & 70 are needed to control the expansion when A= 5. If instead we just ask for the sum

27 Note that a key difference between the case at hand and the large N f expansion in gauge theories considered in [153],
is that the latter has a finite radius convergence in the ’t Hooft coupling, which is determined by the pole structure.
Less is known about the pole structure of the large charge expansion, and we cannot naturally set an upper limit on A.
Thus, we instead ask to be in the perturbative regime, i.e. A ≤ 5. Notice that this is needed in order to consistently
truncate every order of the expansion at the leading power of A.
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of all the subleading orders to be strictly smaller than the leading one, we obtain smaller values

Q̄ & 6. Of course, when A� 5 both limits decrease accordingly.

Finally, notice that the large Q̄ perturbativity is intimately related to the suppression of the

instanton contributions in the large Q̄ limit. In fact, they typically scale as e−
1
λ = e−

Q̄
A , and thus

go exponentially to zero for Q̄→ ∞ when A is kept fixed. This is related to the slow (polynomial)

growth of the number of Feynman diagrams which contribute to a given order of the 1
Q̄ expansion.

This observation has been illustrated via a specific example in [154].

4.10 Cubic anisotropy

In this section, we continue the exploration of anisotropic perturbations in the O(N) model by

studying the spectrum of anomalous dimension in the O(N) model with cubic anisotropy. The

impact of the latter on the critical properties is controlled by T0,4 [152]. In nature, this model

appears in the description of critical cubic magnets [51], structural phase transitions in crystals

[155], and the randomly dilute Ising model [156]. The action of the theory reads

S =
∫

Ddx
(
(∂φi)

2

2
+

(4π)2

4!
Vi jklφiφ jφkφl

)
, (4.93)

where

Vi jkl =
g1

3
(δi jδkl +δilδk j +δikδ jl)+g2δi jkl , (4.94)

with

δi jkl =

1, when i = j = k = l ,

0, otherwise .

(4.95)

When g2 = 0, we re-obtain the O(N) action (4.6). On the other hand, the g2 coupling breaks

the O(N) symmetry to the hypercubic group HN ⊂ O(N), realized as the symmetry group of an

N-dimensional hypercube.

An RG analysis of the model reveals that, at the 1-loop level, it exhibits four FPs

(gG
1 ,g

G
2 ) = (0,0) , (gI

1,g
I
2) =

(
0,

ε

3

)
,
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(gO
1 ,g

O
2 ) =

(
3 ε

N +8
,0
)

, (gC
1 ,g

C
2 ) =

(
ε

N
,
(N−4)

3N
ε

)
. (4.96)

There is a Gaussian FP, an Ising-like FP (N decoupled Ising models), and an O(N)-symmetric

FP. The fourth one is the so-called cubic fixed point and is described by an HN-invariant CFT.

Note that for N = Nc =
1-loop

4 the cubic FP reduces to the O(N) symmetric one, while, for

N→ ∞, it coincides with the Ising one. When N = 1, there is only one coupling constant g1 +g2,

and the cubic FP becomes non-interacting.

Moreover, when N = 2, the interaction term is invariant under a combined π

4 rotation of the

fields [132],

φ
′
1 =

φ1 +φ2√
2

, φ
′
2 =

φ1−φ2√
2

, (4.97)

and redefinition of the coupling constants

g′1 = g1 +
3
2

g2 , g′2 =−g2 . (4.98)

This turns the cubic FP into the Ising one.

The limits described above will be used to test our results.

The value of Nc such that O(N) and cubic FPs coincide, determines the stability of the cubic FP

with important implication on the critical behaviour of cubic N = 3 magnets. In fact, the cubic crit-

ical regime is realized only when N > Nc. Otherwise, the critical system belongs to the Heisenberg

(O(3)) universality class. Since Nc ∼ 3, the existence of magnets in the cubic universality class has

been discussed for a long time [132, 152, 157]. Recently, this issue has been settled, in favor of a

stable cubic FP controlling the critical behaviour, via a bootstrap analysis in [158].

Present-day results on the HN model include the beta function and some critical exponents at

the 6-loops level in the ε-expansion [157, 159]. Recently, this theory has been also explored non-

perturbatively via the conformal bootstrap method [158, 160–163]. Nevertheless, little is known

about the operator content of the hypercubic model. The present section aims to fill this gap. To this

end, we consider composite operators with arbitrarily large classical dimension n but no derivatives,

and we compute the entire spectrum of 1-loop anomalous dimensions for such operators. Since the

global symmetry group is discrete, we have to momentarily leave aside the large charge method

discussed so far. Instead, it is well-known that 1-loop anomalous dimensions can be calculated by
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solving a diagonalization problem involving only free-theory CFT data [52]. We explicitly illustrate

this point by making use of a recently-developed method [164, 165] combining the EOM with the

conformal constraints. The idea is to use the EOM inside the three-point function 〈2φiSnSn+1〉 to

rewrite it as

〈2φiSnSn+1〉=
(4π)2

3!
〈(g1φiφ

2 +g2φ
3
i )SnSn+1〉 , (4.99)

where Sn is a composite operator with classical dimension (in d=4) n and scaling dimension

∆Sn = n
(

1− ε

2

)
+ γSnε +O(ε2) , (4.100)

with γSn defined as the coefficient of the 1-loop anomalous dimensions. As we saw in Chap.2,

conformal symmetry fixes entirely the form of the three-point functions. Then Eq.(4.99) can be

cast as an eigenvalues equation for γSn

γSnSi1,i2,..,in =
n(n−1)

2
Vj1, j2,(i1,i2Si3,..,in), j1, j2 . (4.101)

Here, Vj1, j2,i1,i2 is the tensor defined in Eq.(4.94), while the tensors S are given by

Si1,i2,..,in =
1
n!

∂i1∂i2...∂inSn . (4.102)

Finally, it is convenient to rewrite the eigenvalue equation as

DSn = γSnSn , (4.103)

with

D =
1

3N

(
φ 2∂ 2

2
+(φ ·∂ )2−φ ·∂ +

N−4
2 ∑

i
φ

2
i ∂

2
i

)
. (4.104)

The next step is the explicit construction of the Sn operators.

4.10.1 Composite operators in the HN model

Here, we construct composite operators with no derivatives and transforming according to the HN

irreducible representations. Our construction builds upon the results obtained in [166–168].
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To work out the irreducible representations of HN , we use that HN = SN nZN
2 , and we start by

building the irreps of ZN
2 . Labeling as [12] and [2] the two irreducible representations of Z2, the

irreps of ZN
2 are given by

[2]⊗α ⊗ [12]⊗β , α +β = N . (4.105)

Then we take the wreath product SN nZN
2 by splitting the symmetric group SN into direct

products Sα × Sβ . Finally, we obtain the irreducible representations of HN by multiplying these

products with the corresponding irreps of ZN
2 in Eq.(4.105) [169].

The main consequence of the above construction is that we can represent the irreducible rep-

resentations of HN as double-partitions of N, (α,β ) which can be depicted as ordered pairs of

Young tableau with, respectively, α and β boxes [168, 170]. The left (right) tableau represents α

(β ) objects, even (odd) under Z2, and transforming according to Sα (Sβ ) under the action of the

symmetric group.

For instance, the irreducible representations of Z3
2 are

[2]⊗3, [2]⊗2⊗ [12], [2]⊗ [12]⊗2, [12]⊗3 . (4.106)

Multiplying them, respectively, with the irreducible representations of S3, S2×S1, S1×S2, and

S3, we obtain the ten irreducible representations of H3

([2]⊗3⊗S3) : ( , /0),( , /0),( , /0); ([2]⊗2⊗ [12]⊗S2×S1) : ( , ),( , );

([12]⊗3⊗S3) : ( /0, ),( /0, ),( /0, ); ([2]⊗ [12]⊗2⊗S1×S2) : ( , ),( , ) ,

(4.107)

where " /0" stays for the empty partition.

The dimension of the (α,β ) representation is [170]

dim(α,β ) =

 N

α

×dim(α)×dim(β ) , (4.108)

with dim(α) (dim(β )) the dimension of the corresponding irrep of Sα (Sβ ) which can be easily
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obtained through the hook’s rule.

The defining N-dimensional vector representation is

φi = (N−1,1) = ( . . .︸ ︷︷ ︸
N−1

, i ) . (4.109)

The decomposition of the tensor product of (N− 1,1) with an arbitrary representation (α,β ) is

given by

(N−1,1)⊗ (α,β ) = ∑
α+, β−

(α+,β−)⊕ ∑
α−, β+

(α−,β+) , (4.110)

where α+ (α−) is obtained by moving one box from β to α (α to β ). The same procedure applies

to β+ and to β−. For instance

( ...︸ ︷︷ ︸
N−1

, )⊗ ( ...︸ ︷︷ ︸
N−1

, ) = ( ...︸ ︷︷ ︸
N

, /0)⊕ ( ...︸ ︷︷ ︸
N

, /0)⊕ ( ...︸ ︷︷ ︸
N−2

, )⊕ ( ...︸ ︷︷ ︸
N−2

, ) . (4.111)

To construct composite HN operators with CSD n and no derivatives we start by listing the cor-

responding HN-irreps, which are obtained by computing n times the tensor product of the defining

representation (4.109) with itself.

The resulting bi-tableaux can be divided into two families. The members of the first family

are those bi-tableaux which do not appear at smaller n. These representations correspond to a

unique composite operator with CSD n, which is the MSD operator transforming in the given

representation of HN . Instead, in the second family fall all the bi-tableaux that already appeared at

lower n. In such a case, it is possible to associate more than one operator with CSD n to the same

irrep, and it will be, therefore, necessary to solve the mixing among them.

Consider a unique composite operator in the representation (α = N, β = 0 ). For instance

(
...

, /0

)
. (4.112)

We begin by filling the tableau with indices

(
µ1 µ2 ... µs

i j
k

, /0

)
, (4.113)
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on which we impose the condition i 6= j 6= k 6= µ1 6= µ2 6= ... 6= µs .. . In fact, since we are

considering MSD operators, we cannot contract any pairs of indices.

We then write an indexed field raised to the zeroth power for every box in the first row; indexed

fields raised to the second power to the boxes in the second row and so on, with increasing even

powers of the fields for subsequent rows.

Finally, we impose the symmetry properties of the given tableau on the indices. For our exam-

ple, this leads to (n = 8 in this case)

(
µ1 µ2 ... µs

i j
k

, /0

)
= (φ 4

[kφ 2
i φ 0

µ1]
) · (φ 2

[ jφ
0
µ2]

) ·φ 0
µ3

φ 0
µ4
...φ 0

µs
=

= (φ 4
k φ 2

i +φ 4
µ1

φ 2
k +φ 4

i φ 2
µ1
−φ 4

k φ 2
µ1
−φ 4

i φ 2
k −φ 4

µ1
φ 2

i ) (φ
2
j −φ 2

µ2
) i 6= j 6= k 6= µ1 6= µ2 .

(4.114)

The same rules apply also to the right partition β , but now considering odd powers of the fields28.

The most general Young diagram has k different "types" of columns (with a different number of

boxes) that we label with the index i. Each type of column can occur with multiplicity pi. Hence,

we can write the unique operator corresponding to the most general bi-tableau as

Hn,{mi},{pi} =
k

∏
i=1

(φ mi
[µ i

1
φ

mi−2
µ i

2
φ

mi−4
µ i

3
...φ M

µ i
qi
])

pi µ
i
1 6= µ

i
2 6= ... 6= µ

i
qi
, (4.115)

where we labeled the highest power of the field in a given column by mi and

M =

0 if mi is even

1 if mi is odd .

(4.116)

We now consider the second family of bi-tableaux, i.e. those which "reappeared" at the level n

and correspond to non-MSD operators. In this case, we can build more than one operator with the

same CSD and belonging to the same irrep. The guiding principle is that everything that can mix

will do it. Then these operators can be found by writing the corresponding unique MSD operator

28 If a bi-tableau appears for the first time at a value of n too small to allow the construction of the operator here described,
then the corresponding operator requires derivatives to be constructed.
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by using the procedure described above and multiplying the result with the power of φ 2 needed to

reach CSD n. For example, for n = 6, we have

( ...︸ ︷︷ ︸
N

, /0 ) = (φ 2)2(φ 2
i −φ

2
j ) , i 6= j .

Then one has to "redistribute" the φ 2 factors through the rest of the tensor in all the possible ways

as follows:

( ...︸ ︷︷ ︸
N

, /0 ) =


(φ 2)2(φ 2

i −φ 2
j )

(φ 2)(φ 4
i −φ 4

j )

(φ 6
i −φ 6

j )

i 6= j .

Eventually, we need to consider also the mixing between powers of φ 2 and the other HN-scalars

with the same CSD. These are given by products and powers of all the operators of the form

∑
i

φ
2
i = φ

2, ∑
i

φ
4
i , ∑

i
φ

6
i , ...,∑

i
φ

n
i . (4.117)

In our example, (φ 2)2 mixes with ∑i φ 4
i , and we have to add one more operator to our list, obtaining

( ...︸ ︷︷ ︸
N

, /0 ) =



∑k φ 4
k (φ

2
i −φ 2

j )

(φ 2)2(φ 2
i −φ 2

j )

(φ 2)(φ 4
i −φ 4

j )

(φ 6
i −φ 6

j )

i 6= j .

This procedure provides a basis of operators with the same CSD and symmetry properties. By

acting on these operators with D defined in Eq.(4.104), one obtains the mixing matrix that needs

to be diagonalized in order to find the energy eigenstates, i.e. the operators with a definite scaling

dimension.
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4.10.2 Spectrum of anomalous dimensions in hypercubic theories

Using the above construction, one can build all the composite HN operators with no derivatives.

Here, we give explicit results for their anomalous dimensions to 1-loop. We check our results by

considering the cases N = 1 ,2 ,4 ,∞ previously discussed.

Since we are considering operators without derivatives, the O(N) operators that we recover

when N = 4 are again the Tp,Q̄ introduced in Eq.(4.13), which have CSD n = Q̄+ 2p and 1-loop

anomalous dimensions given by [171, 172]

γQ̄,p =
Q̄(Q̄−1)+ p(N +6(p+ Q̄)−4)

N +8
. (4.118)

Instead, in the Ising model, which is obtained for N = 2 and N = ∞, all the HN representations

collapse to the φ n operators, whose 1-loop anomalous dimension reads

γn =
n(n−1)

6
. (4.119)

In full analogy with (4.118) and (4.119), there is an infinite family of HN composite operators

whose 1-loop anomalous dimensions can be written in close form. These are the MSD operators.

In fact, by plugging the family of operators defined in Eq.(4.115), Hn,{mi},{pi}, into the eigenvalue

equation (4.103), we have

γn,{mi},{pi} =
1

6N

(
2n(n−1)+(N−4)

k

∑
i=1

pi[mi(mi−1)+(mi−2)(mi−3)+ ...]

)
. (4.120)

For N = 4, Eq.(4.120) reduces to Eq.(4.118) with p = 0.

Let us proceed with a couple of examples. First, consider the family of bi-tableaux with one

row, that is k = 1, mi = 1, and pi = p = n

( ...︸ ︷︷ ︸
N−p

, ...︸ ︷︷ ︸
p

) . (4.121)
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The corresponding operators are

φµ1φµ2...φµp , µ1 6= µ2 6= ... 6= µp . (4.122)

Using Eqs.(4.108) and (4.120), one promptly obtains

dim =

 N

n

 , γn =
n(n−1)

3N
. (4.123)

We now move to the family of bi-tableau with two rows, i.e. k = 3, mi = {1,2,3} and pi =

{p1, p2, p3}. The first and second rows of the left (right) partition have, respectively, N− p1− p2−

p3 and p2 (p1 and p3) boxes. We can write the related operators as

φµ1φµ2...φµp1︸ ︷︷ ︸
p1 terms

(φ 2
µp1+1

−φ
2
µp1+2

)(φ 2
µp1+3

−φ
2
µp1+4

)...(φ 2
µp1+2p2−1

−φ
2
µp1+2p2

)︸ ︷︷ ︸
p2 terms

× (φ 3
µp1+2p2+1

φµp1+2p2+2−φ
3
µp1+2p2+2

φµp1+2p2+1)....(φ
3
µq−1

φµq−φ
3
µq

φµq−1)︸ ︷︷ ︸
p3 terms

, µ1 6= µ2 6= ... 6= µq ,

(4.124)

where

q = p1 +2p2 +2p3 , n = p1 +2p2 +4p3 . (4.125)

In this case, Eqs.(4.108) and (4.120) give

dim =

 N

p2

 N− p2

2p3 + p1

 2p3 + p1

p3 + p1

 (N− p1−2p3−2p2 +1)(p1 +1)
(N− p1−2p3− p2 +1)(p1 + p3 +1)

, (4.126)

and

γn,p1,p2 =
4n(n−1)+(N−4)(3n−2p2−3p1)

12N
. (4.127)

We may now proceed by considering bi-tableaux with three rows, four rows, and so on. In

short, Eq.(4.120) gives the anomalous dimension of all the MSD operators (i.e. all the operators

which, for a given irreducible representation, have the minimal scaling dimension).

Moreover, the procedure presented here allows the computation of γ for all composite operators

82



with no derivatives, not only the MSD ones. Below, we present explicit results up to CSD n = 5.

All the indices of the operators are understood to assume different values, e.g. when we write φiφ j,

we imply i 6= j.

For the case n = 2 we have

dim( ...︸ ︷︷ ︸
N−2

, ) =

(
N

2

)
φiφ j γ =

2
3N

dim( ...︸ ︷︷ ︸
N

, /0 ) = (N−1) φi
2−φ j

2
γ =

N−2
3N

dim( ...︸ ︷︷ ︸
N

, /0 ) = 1 φ
2

γ =
2(N−1)

3N
.

These results have been already obtained in [163] via the conformal bootstrap method.

The 1-loop anomalous dimensions of the operators with CSD n = 3 are

dim( ...︸ ︷︷ ︸
N−3

, ) =

(
N

3

)
φiφ jφk γ =

2
N

dim( ...︸ ︷︷ ︸
N−1

, ) = N(N−2) φi(φ j
2−φk

2) γ =
2+N

3N

dim( ...︸ ︷︷ ︸
N−1

, ) = N φiφ
2−2φ

3
i γ =

2(N−1)
3N

dim( ...︸ ︷︷ ︸
N−1

, ) = N φiφ
2 +

N−4
3

φ
3
i γ = 1 .

To the best of our knowledge, the results above are new. When N = 4 we obtain the corresponding

O(N) results Eq.(4.118) with p = 0 and Q̄ = 3 for the first three operators and p = Q̄ = 1 for the

last one. For N = 2 and N = ∞ only the last operator survives, and we obtain Eq.(4.119). Finally,

for N = 1, all the operators vanish except the third one, for which we obtain the free theory result

γ = 0.

For the operators with CSD n = 4, we have

φiφ jφkφl γ =
4
N

(φiφ
3
j −φ jφ

3
i ) γ = 1

(φ 2
i −φ

2
j )(φ

2
k −φ

2
l ) γ =

2(N +2)
3N
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φiφ j(φ
2
k −φ

2
l ) γ =

N +8
3N

1
12

(12−N +
√

N2 +24N−48)(φiφ jφ
2)+φiφ

3
j +φ jφ

3
i γ =

12+5N +
√

N2 +24N−48
6N

1
12

(12−N−
√

N2 +24N−48)(φiφ jφ
2)+φiφ

3
j +φ jφ

3
i γ =

12+5N−
√

N2 +24N−48
6N

4−N
2

(φ 2
i −φ

2
j )φ

2 +φ
4
i −φ

4
j γ = 1

4
3
(φ 2

i −φ
2
j )φ

2 +φ
4
i −φ

4
j γ =

2(3N−2)
3N

(φ 2)2−2
N

∑
i=1

φ
4
i γ =

4(N−1)
3N

(φ 2)2 +
N−4

3

N

∑
i=1

φ
4
i γ = 2 .

These results confirm those obtained in [173]. Finally, for n = 5, we obtain

φiφ jφkφlφm γ =
20
3N

φi(φ
2
j −φ

2
k )(φ

2
l −φ

2
m) γ =

2(N +6)
3N

φi(φ
3
j φk−φ

3
k φ j) γ =

3N +8
3N

φiφ jφk(φ
2
l −φ

2
m) γ =

16+N
3N

 φ
2
φiφ jφk

φ
3
i φ jφk + perm

 γ =
30+5N±

√
(46+N)(N−2)
6N
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
φ

2
φi(φ

2
j −φ

2
k )

φ
3
i (φ

2
j −φ

2
k )

φi(φ
4
j −φ

4
k )

 γ =
1

3N

 3(N +6) 3 6

2(N−4) 4(N +1) 0

4(N−4) 0 2(3N−2)




φi
(
φ

2)2

φ
5
i

φ
2
φ

3
i

φi

N

∑
j=1

φ
4
j


γ =

1
3N


4(N +5) 0 3 6

0 10(N−2) 6(N−4) 4(N−4)

4(N−4) 10 5(N +2) 4

4(N−4) 0 0 2(3N−2)

 .

The consistency checks for N = 1,2,4,∞ are passed as in the n = 3 case. We are not aware of

results for n≥ 5 in the literature.

We conclude this chapter with an intriguing feature of the spectrum of anomalous dimensions in

the hypercubic model. Consider the sum of the 1-loop anomalous dimensions of order n operators,

Sn, weighted by the dimensions of the corresponding HN-irreps dSn , that is

Wn = ∑
Sn

dSnγSn , (4.128)

where the sum runs over all the irreducible representations appearing at the level n. Clearly, the

Gaussian limit requires Wn ∝ N−1. Moreover, the values of Wn show an intriguing pattern

W2 =
2
3
(N−1), W3 =

2
3
(N−1)(N +2),

W4 =
1
3
(N−1)(N +2)(N +3), W5 =

1
9
(N−1)(N +2)(N +3)(N +4) , (4.129)

suggesting the existence of a general formula for Wn. After [85] was published, a general expression

for Wn (or better, for a related quantity) has been derived from first principles in [174].
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5 CHARGING A QUARTIC/CUBIC DUALITY

5.1 The O(N) model in 4 < d < 6

In the previous chapter, we investigated the g(φaφa)
2 O(N) theory in 4−ε dimensions. Instead, the

goal of the present chapter is to extend our results above four dimensions. At first sight, this idea

may sound weird as in d > 4 the quartic interaction becomes RG irrelevant, resulting in trivial IR

physics. However, in the large N expansion, it can be shown that in the UV the model flows to an

interacting FP, which makes the theory, at least at large N, non-perturbatively renormalizable [30].

The idea that a theory may be UV completed by the emergence of a nontrivial FP takes the

name of asymptotic safety (AS) and has been firstly proposed long ago by S. Weinberg as a possi-

ble scenario for quantum gravity [81]. The existence of interacting UV FP in gravity is in general

investigated through functional RG methods, which, over the course of the years, provided intrigu-

ing results supporting it [82,175–178]. However, critiques to the AS program, or better to its actual

practice, have sometimes been raised in the literature [179,180]. Recently, the emergence of an in-

teracting UV FP has been explored also in four-dimensional Standard model-like theories [35,181].

In the light of the above, it is, therefore, of general interest to explore realizations of the AS scenario

in non-gravity theories such as the one at hand29.

In parallel, it has been pointed out that d-dimensional O(N) CFTs can have a holographic

description in terms of Vasiliev higher-spin theories in AdSd+1 [31, 183, 184]. In particular, the

AdS6 dual of the critical d = 5 quartic model (4.6) was explored in [32].

The scaling dimension of the φaφa operator is 2+O(1/N), and thus it violates the unitarity

bound (2.16) in d > 6. We will then focus on 4 < d < 6, where the UV CFT might be unitary. In

this range, the O(N) model is usually investigated via the large N expansion, which is generated by

performing a Hubbard-Stratonovich transformation, which turns the Lagrangian Eq.(4.6) in

S =
∫

ddx
(

1
2
(∂φa)

2 +
1
2

σφaφa−
3σ2

2g0(4π)2

)
, (5.1)

where we introduced an auxiliary field σ that can be integrated out via its EOM σ = (4π)2g0
6 φiφi to

29 Interestingly, also Einstein gravity, when coupled to N matter fields, develops a UV interacting FP at large enough N
in 2 < d < 4 [182].
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come back to the original action (4.6). It can be shown that at the critical point we can neglect the

last term and we are left with the following action [185]

Scrit =
∫

ddx
(

1
2
(∂φa)

2 +
1

2
√

N
σφaφa

)
, (5.2)

where we have rescaled σ as σ → σ√
N

. The 1/N expansion is then obtained by integrating out the

fields φa which appear quadratic in the action.

In [33], the authors conjectured an alternative UV-complete description of the quartic O(N)

model given by a theory with N+1 fields, O(N) symmetry, and cubic potential, which is described

by the Lagrangian

L=
1
2
(∂φa)

2 +
1
2
(∂η)2 +

g0

2
η(φa)

2 +
h0

6
η

3 , (5.3)

where φa is again an O(N) vector. This model is usually studied near its upper critical dimension,

d = 6, where the infrared dynamics become free. In d = 6− ε , the one-loop beta functions of the

model read

β1 =−
ε

2
g+

(N−8)g3−12g2h+gh2

12(4π)3 , β2 =−
ε

2
h+
−4Ng3 +Ng2h−3h3

4(4π)3 , (5.4)

and at LO in large N simplify as

β1 =−
ε

2
g+

Ng3

12(4π)3 , β2 =−
ε

2
h+
−4Ng3 +Ng2h

4(4π)3 . (5.5)

The FPs have been computed at the four-loop level in [186]

g∗ ≡
√

6ε(4π)3

N
x , h∗ ≡ 6

√
6ε(4π)3

N
y , (5.6)

where

x = 1+
22
N

+
726
N2 −

326180
N3 + ...+

(
−155

6N
− 1705

N2 +
912545

N3 + ...

)
ε

+

(
1777
144N

+
29093/36−1170ζ (3)

N2 + ...

)
ε

2 +O
(
ε

3) , (5.7)
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y = 1+
162
N

+
68766

N2 +
41224420

N3 + ...+

(
−215

2N
− 86335

N2 − 75722265
N3 + ...

)
ε

+

(
2781
48N

+
270911−157140ζ (3)

6N2 + ...

)
ε

2 +O
(
ε

3) . (5.8)

The critical value of N above which this FP exists and gives rise to a unitary CFT is an interesting

open question. From the four-loop beta functions, it can be derived that for ε = 1 we have Ncrit ≈

400.

In proposing the equivalence of the critical quartic (4.6) and cubic (5.3) O(N) theories, Ref.

[33], showed that the scaling dimensions of the φa and η operators at the FP strikingly match those

of the φa and σ field in the quartic O(N) model. This analysis has been later extended to the

three-loop level in [34]. Notice that the manifest instability of the cubic potential is reflected by the

fact that in 4+ ε dimensions, the UV FP trivially obtained by analytically continuing Eq.(4.11) to

negative ε and occurs at a negative value of g. However, the FP theory may be metastable, at least

at large enough N [33].

The instability is realized by instantonic effects that, in the O(N) quartic model, give rise to

complex scaling dimensions. At large N, the imaginary parts are exponentially suppressed as

e−N f (d), where f (d) is given by the free energy of a conformal scalar on Sd−2 [187]

f (d) =
1

sin(πd/2)Γ(d−1)

∫ 1

0
dxxsin(πx)Γ

(
d
2
+ x−1

)
Γ

(
d
2
− x−1

)
. (5.9)

The function f (d) is shown in Fig.10.

In [187], it was shown that in 6− ε dimensions, the instantonic corrections to the scaling di-

mensions in the cubic and the quartic theory match, providing another non-trivial test of the duality.

Notice that, in general, the cubic theory exhibits a larger universality class, and only by further fine-

tuning the theory to a critical manifold it is possible to reach the universality class of the quartic

model.

In this chapter, we use the large charge expansion to non-trivially test the equivalence between

the two CFTs by computing the scaling dimensions for the whole family of charge Q̄ MSD O(N)

operators T0,Q̄ defined in Eq.(4.13) in the cubic model and comparing with the existing O(N) lit-
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Figure 10: The instantonic function f (d).

erature. The large charge expansion allows comparing terms at arbitrarily high perturbative orders

providing non-trivial insights about the dual picture.

To this end, we begin by reviewing large N results regarding the critical O(N) quartic model in

4 < d < 6. T0,1 is the fundamental φa field. Its scaling dimension in 6− ε reads [186]

∆̃φ = 2− ε

2
+

(
1
N
+

44
N2 +

1936
N3 + ...

)
ε +

(
− 11

12N
− 835

6N2 −
16352

N3 + ...

)
ε

2 +O
(
ε

3) , (5.10)

We use the "tilde"s to denote the scaling dimensions computed in the quartic theory.

The scaling dimension of the T0,Q̄ operators has been computed for arbitrary Q̄ at LO ( 1
N ) in the

large N expansion [188]

∆̃Q̄ =

(
d
2
−1
)

Q̄−
2d−3d sin

(
πd
2

)
Γ
(d−1

2

)
π3/2Γ

(d
2 +1

) Q̄(Q̄−2)+ 4Q̄
d

N
+O

(
1

N2

)
, (5.11)

and in d = 6− ε reads

∆̃Q̄ = 2Q̄− ε

2
Q̄+

1
N

[(
−3Q̄2 +4Q̄

)
ε +

(
7
4

Q̄2− 8
3

Q̄
)

ε
2 +O

(
ε

3)]+O( 1
N2

)
. (5.12)

Furthermore, these operators have been recently studied to the leading order in the large charge

expansion in [137] (d = 3) and [189] (in arbitrary d). In both cases, the scaling dimension of the
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T0,Q̄ operators takes the form

∆̃Q̄ = ∑
k=−1

1
Nk ∆̃k(J) , (5.13)

where J = Q̄/N is the ’t Hooft coupling of the large charge semiclassical expansion. Here 1/N,

where N is taken to be large, has the role of the coupling constant of the theory. ∆̃−1 reads [189]

∆̃−1 =

 f (cσ )+ J

√(
d
2
−1
)2

+ cσ


cσ=cσ (J)

, (5.14)

where cσ (J) solves

d
dcσ

 f (cσ )+ J

√(
d
2
−1
)2

+ cσ

= 0 , (5.15)

and f (cσ ) is given by

f (cσ ) =−
cσ

d−2

∫
∞

0
dt

J2
(√

cσ t
)

t(2cosh t−2)
d
2−1

, (5.16)

with J2 the Bessel function of the first kind. The small J expansion of ∆̃−1 reads [189]

∆̃−1 =

(
d
2
−1
)

J+h2(d)J2 +h3(d)J3 + . . . , (5.17)

where

h2(d) =−
2d−3d sin

(
πd
2

)
Γ
(d−1

2

)
π3/2Γ

(d
2 +1

) ,

h3(d) =−
(d−2)d2Γ(d−2)2

(
π2−6ψ(1) (d

2

))
6Γ
(
2− d

2

)2
Γ
(d

2 −1
)4

Γ
(d

2 +1
)2 ,

h4(d) = . . .

(5.18)

In d = 4− ε , Eq.(5.17) reproduces the leading N terms of our previous result (4.80). Instead,

in d = 6− ε , we have

N∆̃−1 = 2Q̄− ε

2
Q̄+ Q̄∑

j

(
Q̄
N

) j (
α jε

j +β jε
j+1 + γ jε

j+2 + . . .
)
. (5.19)

For later comparison with the scaling dimensions in the cubic model we list below the values

of the first α j and β j coefficients
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α1 =−3 , α2 =−45 , α3 =−1350 , α4 =−
213597

4
, α5 =−2457216

α6 =−
995773905

8
, α7 =−6739459200 , α8 =−

24526111620285
64

. (5.20)

β1 =
7
4
, β2 =

3
4
(48ζ (3)+31) , β3 =

27
2
(128ζ (3)+40ζ (5)+41) ,

β4 =
81
16

(18208ζ (3)+7168ζ (5)+1792ζ (7)+3117) ,

β5 = 648(8202ζ (3)+3510ζ (5)+1218ζ (7)+252ζ (9)+677)

β6 =
2187
32

(4727888ζ (3)+2109440ζ (5)+836864ζ (7)+256000ζ (9)+45056ζ (11)+110211) .

(5.21)

Finally, the large J expansion of ∆̃−1 in d = 6− ε dimensions reads [189]

N∆̃−1 ≈−e±i4π/5 5N
3
(2ε)1/5J6/5 , (5.22)

while, in d = 4+ ε , we have

N∆̃−1 ≈−e±iπ/3 3N
24/3 ε

1/3J4/3 . (5.23)

In both cases, the scaling dimension in the large J expansion is complex. In fact, in [189], it has

been observed that in 4< d < 6, it exists a critical value of J, Jc, above which the scaling dimensions

become complex. This happens when there are no real solutions to the saddle point equations.

In [189], Jc has been evaluated numerically, with the result displayed in Fig.11. Intriguingly, Jc(d)

looks very similar to the instantonic function f (d).

The first test of the equivalence of the large charge sector in the two descriptions has been

carried out in [154], where the authors showed that exponentiation of the diagrams with the leading

Q̄-scaling at every loop order30, leads to the same result in both models. This result is ∆̃Q̄ at LO in

all the expansion parameters: 1/Q̄, 1/N, and ε .

In the next section, we will re-derive Eqs.(5.12) and (5.19) in the cubic model in 6− ε , signifi-

30 This exponentiation is analogous to that of the Kermit diagrams discussed in Sec.3.6.
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Figure 11: Jc as a function of d, for 4 < d < 6. Note: reprinted from [189].

cantly extending previous tests of the duality.

5.2 Large charge expansion in the cubic model: LO

In order to compute the leading (classical) order in the semiclassical large charge expansion, we

follow the procedure outlined in the previous chapter. Since this model shares the same O(N)

symmetry, most of the considerations made there still apply to the theory at hand. For instance, the

T0,Q̄ operators are the MSD operators with total charge Q̄, and, in the saddle-point expansion, their

scaling dimension takes the form

∆Q̄ = ∑
k=−1

1
Q̄k ∆k(A) , A= Q̄ε . (5.24)

We start by introducing N/2 complex fields as

ϕ j = φ2 j−1 + iφ2 j =
1√
2

ρ jeiχ j , j = 1, . . . ,N/2 , (5.25)

and we map the theory to the cylinder. The cylinder Lagrangian reads

Lcyl = (∂~ϕ)2 +
1
2

∂η∂η +g0η~ϕ2 +
h0

6
η

3 +
m2

2
η

2 +m2~ϕ2
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=
1
2

∂ρi∂ρi +
1
2

ρiρi∂ χi∂ χi +
1
2

∂η∂η +
g0

2
η(ρiρi)+

h0

6
η

3 +
m2

2
η

2 +
m2

2
ρiρi , (5.26)

where m is given by Eq.(2.31). The EOM are

(
∂

µ
∂µ −∂

µ
χ j∂µ χ j +g0η +m2)

ρ j = 0 , (5.27)

∂
µ

∂µη =
g0

2
(ρiρi)+

h0

2
η

2 +m2
η , (5.28)

i∂ µ
(
σiσi∂µ χi

)
= 0 . (5.29)

We look for a spatially homogeneous solution, which is given by

ρi = Ai , χi =−iµt i = 1, . . . ,k ,

η = v ,

(5.30)

where k ≤ N/2 is the number of charges we fix. As explained in the previous chapter, the value of

k is irrelevant for the computation of the scaling dimension of the MSD operators as long as it is

different from zero. Notice that, due to the interactions between ϕ and η , at equilibrium, we have

a non-zero vev also for the latter field. The parameters Ai, v, and µ are fixed by the EOM and the

expression for the Noether charge as

µ
2−m2 = g0v ,

g0

2
f 2 +

h0

2
v2 +m2v = 0 ,

Q̄
Ωd−1Rd−1 = µ f 2 , (5.31)

where R is the radius of Sd−1, and we defined

f 2 ≡
N/2

∑
i=1

A2
i , Q̄≡

N/2

∑
i=1

Q̄i , (5.32)

with Q̄ the sum of the charges. From Eq.(5.31), we have

Rµ
[
(Rµ)2−4

](
8g0 +h0

[
(Rµ)2−4

])
+

Q̄g3
0

π3 = 0 , (5.33)

which, once rewritten at the FP, implicitly defines the chemical potential as a function of the ’t
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Hooft coupling A. The above equation can be solved numerically, or analytically for small/large

values of A. The former expansion reads

Rµ = 2−
g2

0Q̄
64π3 −

g3
0Q̄2(3g0 +2h0)

16384π6 −
g4

0Q̄3 (2g2
0 +2g0h0 +h2

0
)

524288π9 . (5.34)

The classical energy is obtained by adding the usual charge-fixing boundary term, i.e. H → Ĥ =

H + Q̄µ

Eclass =−
f 2µ2

2
+

g0v f 2

2
+

h0v3

6
+

m2 f 2

2
+

m2v2

2
+

Q̄µ

V
. (5.35)

Using Eq.(5.34) in the classical energy above and evaluating the result at the FP, we obtain the

leading order ∆−1 of the large charge expansion. By expanding ∆−1 in the perturbative regime and

plugging the FP value of the couplings (5.6), we obtain

Q̄∆−1 = 2Q̄ − εQ̄2
(

3
N
+O

(
1

N2

))
− Q̄3

ε
2
(

45
N2 +O

(
1

N3

))
− Q̄4

ε
3
(

1350
N3 +O

(
1

N4

))
− Q̄5

ε
4
(

213597
4N4 +O

(
1

N5

))
− Q̄6

ε
5
(

2457216
N5 +O

(
1

N6

))
− Q̄7

ε
6
(

995773905
8N6 +O

(
1

N7

))
− Q̄8

ε
7
(

6739459200
N7 +O

(
1

N8

))
− Q̄9

ε
8
(

24526111620285
64N8 +O

(
1

N9

))
+O

(
Q̄10

ε
9) . (5.36)

The above remarkably reproduces the α j coefficients in Eq.(5.20) for the scaling dimension in

the quartic O(N) model. Notice that ∆̃−1(J) in (5.19) and ∆−1(A) in (5.36) are the leading order

of two distinct expansions, which besides taking the charge to be large assume, large N and small

ε , respectively. However, since at LO in the 1/N expansion the cubic FPs (5.6) are 1-loop exact (in

the ε-expansion), all (and only) the terms scaling as Q̄
(

Q̄ε

N

) j
appear at the LO of both expansions.

For this series of terms, we have31

Q̄∆−1 = N∆̃−1 . (5.37)

31 In truth, at the moment, we explicitly checked the agreement only up to order O
(
ε10
)
, i.e. α10.
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The expansion of ∆−1 for large ’t Hooft coupling A reads

Q̄∆−1 =−e±
4iπ
5 (2ε)

1
5

5N
3

J6/5−e±
2iπ
5

5N
6
(2ε)−

1
5 J4/5+

N
9
(2ε)−

3
5 J2/5− 5N

324ε
+O

(
J−

2
5

)
, (5.38)

where we rewrote the result in terms of J. The above matches the O(N) result (5.22), confirming

Eq.(5.37). Notice that Eq.(5.38) agrees with the expected form (3.58) of the large charge expansion

in the large chemical potential limit obtained via the large charge EFT in Sec.3.5. As for the quartic

model in 4 < d < 6, we again observe that in this limit the scaling dimensions become complex

signaling instability of the ground state of the theory. On the other hand, since every order of the

small ’t Hooft coupling expansions (5.19) and (5.36) is real, the appearance of complex anomalous

dimensions implies the existence of non-analytic terms, i.e. the classical ground state shows some

non-perturbative features.

5.3 Large charge expansion in the cubic model: NLO

The time is ripe to compute the leading quantum correction ∆0 in the semiclassical expansion,

which, as we saw in the previous chapter, is given by the functional determinant of the fluctuation

around the classical solution (5.30). We start by noting that we have the same superfluid symmetry

breaking pattern (4.43) discussed for the O(N) model in Sec.4.3, whose obvious generalization in

the case we fix only k over N/2 charges is

SO(d +1,1)×O(N)→ SO(d)×D′×O(N−2k)×U(k−1) , (5.39)

and, according to the charged Goldstone theorem, we expect 2k− 1 massless modes (counting

twice the type II Goldstones)32 i.e. one type I scalar plus one type II U(k−1)-vector. Moreover, as

shown in Chap.4, we can use an O(N) rotation to assign all the charge to a single Cartan generator.

For sake of simplicity, we then fix only one charge. Then, in the light of the discussion in Sec.4.6,

we expect one relativistic Goldstone boson (the U(1) phonon), two gapped modes, and N − 2

32 Indeed, this is the dimension of the coset of the "spontaneous" part of the total symmetry breaking, which is U(k)→
U(k−1).
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"spectator" states, with gap µ and dispersion relation given by Eq.(4.65)

ω∗ =
√

p2 +µ2 . (5.40)

For the remaining three d.o.f., we can expand the fluctuations as follows:

ρ1 = f + r(x) , χ1 =−iµt +π(x) ,

η = v+ η̃(x) .
(5.41)

Then the quadratic Lagrangian for these three modes reads

L(2) = 1
2
(∂ r)2 +

1
2
(∂ η̃)2 +

1
2
(∂π)2−2iµrπ̇ +g0 f η̃r+

h0

2
vη̃

2 +
m2

2
η̃

2 +
m2

2
r2 . (5.42)

The dispersion relations can be computed as explained in Sec.(4.6), i.e. we go to momentum space

and consider the inverse propagator P−1(p)

S(2) =
∫ dd p

(2π)d [r(−p) η̃(−p) π(−p)]P−1(p)


r(p)

˜η(p)

π(p)

 , (5.43)

with p the momentum. Then the dispersion relations are the positive energy solutions of detP−1(p)=

0, where

P−1(p) =


1
2
(
ω

2− p2) iωµ A

−iωµ
1
2
(
ω

2− p2) 0

A 0
1
2
(
ω

2− p2)−B

 , (5.44)

with

A =
1
2

√
(m2−µ2) [2g0m2 +h0 (µ2−m2)]

g0
, (5.45)

B =
1
2

(
m2 +

h0

g0

(
µ

2−m2)) . (5.46)

It is easy to check that one of the dispersion relations describes a relativistic massless Goldstone

boson which at large µ propagates at the speed of sound
√

1
d−1 = 1√

5
.
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Clearly, at large N the N spectator fields provide the leading N contribution to ∆0, which we

denote as ∆
(N)
0 . Since our goal is to compare with large N results in the quartic model, we start by

computing ∆
(N)
0 . First, we write the large charge expansion in its bare and renormalized forms

E(N)

Q̄ R =
∞

∑
j=−1

1
Q̄ j e(N)

j (g0,h0, Q̄,d) =
∞

∑
j=−1

1
Q̄ j ē(N)

j (g,h, Q̄,d,RM) . (5.47)

As shown in Chap.4, e0 is given by

e0(g0,h0, Q̄,d) =
R
2

∞

∑
`=0

n`∑
i

ωi(p2 = J`) , (5.48)

where the second sum runs over the dispersion relations of all the fluctuations. The expressions

of the eigenvalues of the Laplacian on the sphere J` and their multiplicity n` have been given in

Eqs.(4.58) and (3.61), respectively.

The renormalization is carried out at the LO order in 1/N. From the beta functions Eq.(5.5), it

is easy to derive the relation between bare and renormalized couplings at the 1-loop level

g0 = Mε

(
g+

g3N
1536π3ε

)
, h0 = Mε

(
h+

g2N(h−4g)
512π3ε

)
, (5.49)

with M the sliding scale. Proceeding as in Sec.4.7, we have33

ē(N)
0 (g,h, Q̄,d,RM) = e(N)

0 (g,h, Q̄,d)+ f (N)
0 (g,h, Q̄,d,RM) , (5.50)

where

f (N)
0 =

N
(
µ2R2−4

)2 (
µ2R2−2

)
384R

(
1
ε
− log(MR

√
π)

)
− N

1536R

×
((

µ
2R2−4

)(
(2γ−3)µ4R4−12γµ

2R2−2µ
2R2 +16γ +24

))
+O(ε) . (5.51)

with γ is the Euler–Mascheroni constant. Finally, we evaluate this expression at the FP. In order to

include in ∆
(N)
0 all the terms with the right scaling, we need to add the expansion of Q̄ē−1 to the

leading order in ε . After this procedure, the term which depends on M drops and ∆
(N)
0 depends

33 The dependence on charge and couplings is hidden in µ .
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only on the combination A= Q̄ε . We have

∆
(N)
0 (A) =

{
lim
ε→0

[
R
2

∞

∑
`=0

n`Nω∗(`)+
N
(
µ2R2−4

)2 (
µ2R2−2

)
384Rε

]}
g,h=g∗(ε),h∗(ε)

. (5.52)

The sum over ` can be regularized as done in Sec.4.7. In the regularization procedure, also the 1
ε

pole in Eq.(5.52) cancels, providing an internal consistency check of our computation. The final

result reads

∆
(N)
0 =N

25R6µ6−130R4µ4−640R2µ2 +2304Rµ−1568
4608

+
N
2

∞

∑
`=1

σ
(N)(`) , (5.53)

where the sum over ` converges and σ(`) is given by

σ
(N)(`) =

1
192

(16(`+1)(`+2)2(`+3)
√

R2µ2 + l(`+4)− 1
`

[
R6

µ
6 +32

(
R2

µ
2−1

)
−2(`(`+2)+5)R4

µ
4 +8`(`+2)(`(`+4)+5)R2

µ
2 +16`(`+2)3(`(`+4)+1)

]
) .

(5.54)

For small ’t Hooft couplings the sum over ` can be computed analytically, yielding

∆
(N)
0 =−Q̄ε

[
1
2
+

22
N

+
242
N2 +O

(
1

N3

)]
+(Q̄ε)2

[
7

4N
− 1106

N2 +O
(

1
N3

)]
+O

(
(Q̄ε)3) .

(5.55)

Let us compare the above with Eq.(5.12) for the scaling dimension in the quartic model. We

have a − ε

2Q̄ term which matches. Furthermore, also the coefficients of the term of order Q̄2ε2

N

agree between the two formulas. Since these terms, being leading in 1/N, do not receive other

contributions, this constitutes another check of the duality, now at the NLO in the large charge

expansion. The subleading term −22ε

N Q̄ instead receives contributions from the remaining modes

in the fluctuation spectrum. This contribution can be computed by means of the same procedure

used for the spectator fields but with two crucial differences. First, now one cannot truncate the

expression to the leading 1/N order. Second, being the dispersion relations more involved, the

fluctuation determinant has to be regularized and evaluated numerically at fixed values of N, Q̄,

and ε . Then, in order to determine the coefficient of the term scaling as ε

N Q̄, which is leading in

ε , we considered small values of ε and performed a numerical fit. After summing the result to the
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contribution of the spectator fields we obtained that such a coefficient is +4, again in agreement

with Eq.(5.12). To summarize, we add Q̄∆−1 to ∆0 and rewrite our findings as

∆̃Q̄ = 2Q̄− ε

2
Q̄+

1
N

[(
−3Q̄2 +4Q̄

)
ε +

(
7
4

Q̄2−O(Q̄)

)
ε

2 +O
(
ε

3)]+O( 1
N2

)
, (5.56)

which matches Eq.(5.12), including the term 4Q̄ε

N , which is in the NLO of the large charge expansion

in both models i.e. is contained in both ∆0 and ∆̃0.

Notice now that all the terms scaling as N
(

εQ̄
N

) j
in ∆0 can come only from the contribution

of the spectator fields. These terms have exactly the right scaling to match the β j coefficients in

Eq.(5.21). We have

∆̃Q̄ =−Q̄ε

[
1
2
+O

(
1
N

)]
+(Q̄ε)2

[
7

4N
+O

(
1

N2

)]
+(Q̄ε)3

[
3

4N2 (48ζ (3)+31)+O
(

1
N3

)]
+(Q̄ε)4

[
27

2N3 (128ζ (3)+40ζ (5)+41)+O
(

1
N4

)]
+(Q̄ε)5

[
81

16N4 (18208ζ (3)+7168ζ (5)+1792ζ (7)+3117)+O
(

1
N5

)]
+(Q̄ε)6

[
648
N5 (8202ζ (3)+3510ζ (5)+1218ζ (7)+252ζ (9)+677)+O

(
1

N6

)]
+(Q̄ε)7

[
2187
32N6 (4727888ζ (3)+2109440ζ (5)+836864ζ (7)+256000ζ (9)+45056ζ (11)

+110211)+O
(

1
N7

)]
+O

(
(Q̄ε)8) , (5.57)

in remarkable agreement with the values listed in Eq.(5.21) for the quartic model. Our findings

provide a non-trivial check for the equivalence between the cubic and the quartic critical theories,

showing at the same time the power of the large charge expansion.

We conclude this section with a simple observation. In 5d, both the O(N) and the cubic theory

are non-perturbative but accessible by the large charge EFT considered in Sec.3.5. This opens the

interesting possibility of non-perturbatively testing the duality in the large charge limit. To this end,

notice that, as we saw in Sec.3.5, the form of the EFT action is dictated by symmetry arguments

and thus is trivially the same in both models. In particular, as discussed in the previous chapter,
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Figure 12: F(µ) as a function of µ .

the effective action is again given by Eq.(3.56), and eventual differences between the cubic and the

quartic theory are contained in the Wilson coefficients. The scaling dimension thus takes the form

of Eq.(3.58), that is

∆Q̄ = a1Q̄5/4 +a2Q̄3/4 +a3Q̄1/4−0.1079+O
(

Q̄−1/4
)
. (5.58)

The ai coefficients can be determined on the lattice. Notice the appearance of the universal Q̄0

term typical of the large charge expansion in an odd number of dimensions, which as discussed in

Sec.3.5, comes from the zero-point energy of the phonon mode. For 5d O(N)-invariant CFTs, this

term has been originally computed in [131].

5.4 Complex anomalous dimensions

As in the O(N) model, our results show the existence of a critical value of the charge above which

the scaling dimensions are complex. The imaginary part arises in the chemical potential µ , which

is given implicitly by Eq.(5.33). Let us fix R = 1 and rewrite Eq.(5.33) in terms of J. We have

F(µ) =
1

192
µ
(
3µ

4−20µ
2 +32

)
=− J ε +O

(
ε

2) . (5.59)

The plot of F(µ) is given in Fig.12.
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Figure 13: Im(µ) (left) and Re(µ) (right) as a function of a = Jε . The imaginary part starts at ac =

1
90

(
−9+

√
105
)√

1
30

(
15+

√
105
)

.

Since by definition, we are interested in the region where F(µ) is negative, i.e. where Jε > 0,

we note that only a limited range of values of the product Jε ≡ a are allowed when the chemical

potential is real. As in the O(N) case, above Jc there are no real solutions to the saddle-point

equations. In Fig.13 we show real and imaginary part of the chemical potential as a function of

a. The imaginary part arises at the global minimum of F(µ). There the real part of the chemical

potential has a spike and its first derivative diverges. This gives Jc to the leading order in the

ε-expansion and in large N

Jc =
1

90ε

(
−9+

√
105
)√ 1

30

(
15+

√
105
)
. (5.60)

In Fig.14 we show the plot of Jc as a function of d. Notice that the difference with the numerical

evaluation of Jc(d) shown in Fig.11 and performed in [189], does not come from the FPs truncation

but instead from terms with higher powers of ε , which are subleading in our large charge expansion

(5.24) but not in the expansion (5.13).

For the sake of completeness, we study the O(N) model in 4− ε with ε < 0, which is obtained

by continuing the results of the previous chapter to negative ε . First, we expand Eq.(4.49) for large

values of µ , obtaining

Q̄∆−1 =−e±iπ/3 3N
24/3 ε

1/3J4/3 , (5.61)

in agreement with Eq.(5.23). To study the imaginary part, we proceed as above and rewrite
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Figure 14: Jc as a function of the spacetime dimension d.
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Figure 15: F4(µ) as a function of µ .

Eq.(4.47) at the large N FP g∗ = 3
N ε (setting R = 1) as

F4(µ) =
1
4
(
µ

3−µ
)
= Jε . (5.62)

The plot of F4(µ) is shown in Fig.15 We have two regimes which correspond to ε positive and

negative. For positive ε , F4(µ) is positive and monotonic and there are no complex anomalous

dimensions, as expected. At negative ε , there is a minimum in µ = 1√
3
. As before, Jc critical is
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Figure 16: The leading behaviour of J(tot)
c near d = 4 (red curve) and d = 6 (blue curve).

given by

Jc =
F4

(
1√
3

)
ε

=− 1
6
√

3ε
, (5.63)

that is where the square roots in (4.48) vanish.

In Fig,16, we show the two tails we found for Jc around 6 and 4 dimensions. We observe that

the qualitative behaviour is controlled by having the free theory on both sides.
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6 CHARGING NON-ABELIAN HIGGS THEORIES

In the previous chapters, we saw that in O(N)-symmetric theories, if the ground state is spatially

homogeneous, then every charge configuration ~Q = Q̄(q1,q2, . . . ,qN/2) can be O(N)-rotated to the

simple configuration ~Q = Q̄(1,0, . . . ,0). Thus we effectively have only one charge Q̄, and the

charge configuration does not affect the computation of the scaling dimension of the MSD opera-

tors. Additionally, this fact almost trivializes the identification of the fixed-charge MSD operator

when the theory is perturbative.

To allow for more variations in the charge configuration without having to consider non-homogeneous

ground states, which lead to complicated saddle-point equations, in this chapter, we investigate the

large charge expansion in the U(N)×U(M) CFT in d = 4− ε dimensions. As we shall see, the

non-trivial structure of this model allows studying classical configurations with different values of

the Cartan charges, corresponding to primary operators transforming in different irreducible rep-

resentations. This opens the intriguing possibility of computing the scaling dimensions of MSD

operators as explicit functions of their quantum numbers (i.e. of the charge configuration) and

obtaining with a single computation the scaling dimension of a wide range of operators, pushing

forward the frontiers of large charge methods.

On the other hand, as discussed in Sec.4.1, given a charge configuration, we do not know, a

priori, the exact form of the corresponding MSD operator. We will, therefore, develop a general

operator-identification strategy based on the interplay between semiclassical methods and group

theory constraints. Even though we focus on the U(N)×U(M) model, the ideas presented here can

be easily generalized to other non-abelian theories.

In Euclidean spacetime, the Lagrangian of the theory reads

L= Tr(∂ µH†
∂

µH)+u0Tr(H†H)2 + v0(TrH†H)2 , (6.1)

where H is an N ×M complex matrix. For N = M and v0 > 0, this model describes the finite-

temperature phase transition in massless QCD with N flavors [36,135,136], with H playing the role

of the order parameter. In the last years, this model has also been studied in relation to asymptoti-

cally safe theories structurally similar to the Standard Model [35, 181, 190], of which it constitutes
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the Higgs sector. In [61], the large charge regime of this model has been investigated in exactly

four dimensions via the EFT approach introduced in Sec.3.534. Notice that, for u = 0, we recover

the O(2NM) theory studied in Chap.4. This fact will be used to non-trivially test our results.

We work in the MS scheme. The couplings are renormalized as

u0M−ε = u+
∞

∑
n=0

a(n)u (u,v)
εn , v0M−ε = v+

∞

∑
n=0

a(n)v (u,v)
εn . (6.2)

The beta functions of the couplings are given by

βu ≡
du

d logM
|ε=0=−εu+u

∂a(1)u

∂u
+ v

∂a(1)u

∂v
−a(1)u ,

βv ≡
dv

d logM
|ε=0=−εv+u

∂a(1)v

∂u
+ v

∂a(1)v

∂v
−a(1)v , (6.3)

and, at 1-loop, read [191]

βu(u,v) = −εu+
1

4π2

(
6uv+(N +M)u2) , (6.4)

βv(u,v) = −εv+
1

4π2

(
(NM+4)v2 +2(N +M)uv+3u2) . (6.5)

At the 1-loop level, the model features four fixed points: a Gaussian FP (u∗ = v∗ = 0), an O(2NM)

FP (u∗ = 0), and are other two FPs given by

u∗± = 4π
2 AMN∓3

√
RMN

DMN
ε , v∗± = 4π

2 BMN± (M+N)
√

RMN

2DMN
ε , (6.6)

where

AMN = NM2 +MN2−5N−5M , BMN = 36− (M+N)2 ,

RMN = 24+M2 +N2−10MN , DMN = (MN−8)(M+N)2 +108 . (6.7)

The beta functions to five loops have been derived in [38], where the authors concluded that no

stable FP, with both u∗ and v∗ real and different from zero, exists for N = M and d = 3. This

34 In 4 dimensions the FP is obtained by introducing additional degrees of freedom.
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suggests that the finite-temperature chiral phase transition in QCD is first-order. When RMN < 0,

the fixed points are complex, and thus, as discussed in Sec.2.6, we expect regions of the parameters

space where the theory exhibits near-conformal "walking" dynamics. To elucidate the emergence

of a near-conformal behaviour and its connection with complex CFTs, we take N = M and consider

the large N limit. To this end, we introduce the N-rescaled couplings αh =
uN

(4π)2 and αv =
vN2

(4π)2 ,

and consider their 1-loop beta function

βαv = −εαv +4α
2
v

(
1+

4
N2

)
+16αvαh +12α

2
h , (6.8)

βαh = − εαh +
24
N2 αvαh +8α

2
h . (6.9)

At infinite N, αv does not influence the running of the αh coupling which flows to an interacting

fixed point in the infrared α∗h = ε/8. Substituting this value in the beta function for the double-

trace operator, one notices that the double-trace beta function is positive and has a minimum near

the origin, with the distance from the origin controlled by ε2. Hence, the running of αv slows near

this point, i.e. its running behaviour is replaced by a walking one. At the same time, the zeros of

βαv occur at complex conjugate values of the αv coupling α∗v =− ε

8

(
1± i
√

2
)

. One can also show

that such behaviour persists at finite N.

Since complex CFTs are non-unitary, it is natural to wonder if large charge methods and the

related CFT tools, such as Weyl maps and state-operator correspondence, can still be applied to

them. In the affirmative case, this offers the attractive opportunity of studying non-conformal field

theories via large charge methods by considering the associated complex CFTs and extrapolating

the results to the theory with real couplings. Notice that, in general, such an extrapolation is

straightforward and limited only by the knowledge of the value of the couplings at the FP. In fact,

it is enough to use the latter to rewrite the obtained scaling dimensions as a power series in the

couplings. Clearly, the resulting expression will be valid for any value of the coupling and not only

at the FP. Together with the study of the charge configuration, exploring the large charge expansion

in complex CFTs is our second main motivation for considering the U(N)×U(M) model.

The u coupling breaks the O(2NM) symmetry to U(M)×U(N). It is, therefore, convenient

to think about representations of this model as a decomposition of the O(2NM) multiplets. In

particular, the defining (vector) and the 2-index traceless symmetric representations of O(2NM),
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decompose as

O(2NM) = 2NM = [N,M̄]⊕ [N̄,M] , (6.10)

O(2NM) = (1,Adj)⊕ (Adj,1)⊕ (Adj,Adj)⊕ [( , ∗ )⊕ ( , ∗ )⊕ c.c.] ,

2N2M2 +NM−1 = N2−1⊕M2−1⊕
(

N2−1
)(

M2−1
)

⊕ 2
(

N(N+1)
2

)(
M(M+1)

2

)
⊕2
(

N(N−1)
2

)(
M(M−1)

2

)
,

(6.11)

where in the last line we explicitly show the dimension of the representations appearing in the

decomposition. Little is known about composite operators in the U(N)×U(M) model. Thus,

as the first step of our investigations, we compute the scaling dimensions of the MSD operators

transforming according to the irreps appearing in the RHS of (6.11) for N = M and to the first loop

order. As discussed in Sec.(4.10), the 1-loop anomalous dimension can be obtained by means of

an eigenvalue equation that follows directly from the EOM and conformal symmetry. The details

of the computation are given in App.B, while the final results read

Rep. (Adj,1) (Adj,Adj) ( , ∗ ) ( , ∗)

Oper. Tr
[
HTaH†

]
Tr
[
TaHTaH†

]
Tr
[
KiHK̄iH

]
Tr
[
LiHL̄iH

]

γ1-loop
v+Nu

4π2
v

4π2
v+u
4π2

v−u
4π2

(6.12)

where the T a are the generalized Gell-Mann matrices and Ki(K̄i) and Li(L̄i) are the Clebsch-

Gordan coefficients for the SU(N) representations ( ∗) and ( ∗), respectively [192].

The scaling dimensions for the operators transforming in the representations (1,Adj) and (Adj,1)

are identical. Notice that for u = 0 all these operators have the same scaling dimensions, due to

the enhanced O(2N2) symmetry. To the best of our knowledge, the results in Eq.(6.12) are new,

except the scaling dimension of the bi-adjoint operator Tr
[
TaHTaH†] which has been computed to
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two-loops in [190] and reads

∆Tr[TaHTaH†] = 2− ε +
v

4π2 +
1

64π4

[(
N2−5

)
u2−4Nuv−

(
N2 +5

)
v2] . (6.13)

This result will be used as a check for our semiclassical computations.

6.1 Charging the system

The global symmetry of the model is

G ≡ SU(N)L×SU(M)R×U(1)A , (6.14)

in which U(1)A is the universal phase rotation of the H field 35. Under SU(N)L×SU(M)R, the H

and H† fields transform as

H→ LHR†, H†→ RH†L† , (6.15)

with L ∈ SU(N) and R ∈ SU(M).

We start, as usual, by Weyl mapping the theory to a cylinder of radius R, i.e. Rd → R×Sd−1.

The cylinder action is given by

Scyl =
∫

ddx
√

g
[
Tr(∂ µH†

∂
µH)+u0Tr(H†H)2 + v0(TrH†H)2 +m2Tr(H†H)

]
. (6.16)

where g denotes the metric determinant and m is given by Eq.(2.31).

As in the previous chapters, we look for a spatially homogeneous solution to the EOM that, if

existing, is the solution with the smallest energy. We, therefore, consider the following homoge-

neous ansatz

H0 (τ) = e2iME τB , (6.17)

35 It does not matter whether the universal U(1) rotation acts from the left or the right. Therefore, precisely speaking, the
global symmetry should be written as Eq. (6.14). Writing it as U(N)×U(M) is less rigorous but more convenient, see
[38] for example.
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with τ the cylinder time. ME is an N×N diagonal matrix while B is an N×M matrix of the form

BN×M =
(

BN×N 0N×(M−N)

)
, (6.18)

where B is an N×N diagonal matrix. The Noether charges associated with the Cartan generators

are encoded in the following charge matrices

QL =−V Ḣ0H†
0 , QR =V H†

0 Ḣ0 , (6.19)

with V = Rd−1Ωd−1 being the volume of Sd−1. Plugging in the ansatz Eq. (6.17), it is straightfor-

ward to show that

QL =−2iV MEB†B, QR = 2iV ME

 B†B 0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

 . (6.20)

If we parametrize QR as

QR =

 QR 0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

 , (6.21)

then from Eq. (6.20) we find the constraint

QL +QR = 0 . (6.22)

Since B is diagonal, QL and QR are diagonal too. From now on, we restrict our attention to the

sector neutral under U(1)A, which implies

TrQL = TrQR = 0 . (6.23)

To simplify the notation, in the following we will denote QL simply as Q, that is

Q≡QL =−QR . (6.24)
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The Euler-Lagrange equations read

∂
2
0 H +∇

2H +2u0H
(

H†H
)
+2v0Tr

(
H†H

)
H +m2H = 0 , (6.25)

and for our homogeneous ansatz Eq. (6.17), they reduce to:

2M2
EB =−u0B†B2− v0Tr

(
B†B

)
B− m2

2
B . (6.26)

We label the diagonal entries of ME as ME,ii = −iµi, and those of B as Bii = bi. The µi are a

set of chemical potentials and should not be mistaken with the group-theoretical weight matrix µ

used later in this chapter. Unlike the other models considered in this thesis, here we have multiple

independent chemical potentials, whose relative importance is determined by charge configuration.

The EOM can be rewritten in component form as

2µ
2
i = u0b2

i + v0

N

∑
k=1

b2
k +

m2

2
, (6.27)

while the corresponding "charges" read

Ji ≡ (QL)ii =−2V b2
i µi . (6.28)

Then, unlike the O(N) case, a spatially homogeneous ground state is compatible with every diago-

nal charge matrix Q.

The classical energy E is given by evaluating the cylinder Lagrangian Lcyl in (6.16) with an

appropriate boundary term −∑
N
i=1 µi

∂Lcyl
∂ µi

, which implements the charge fixing. We obtain

E
V

= Lcyl−
N

∑
i=1

µi
∂Lcyl

∂ µi
= 4

N

∑
i=1

b2
i µ

2
i +u0

N

∑
i=1

b4
i + v0

(
N

∑
i=1

b2
i

)2

+m2
N

∑
i=1

b2
i . (6.29)

Before proceeding with the computation of the scaling dimensions, in the next section, we will

perform a group-theoretical analysis of the U(N)×U(M) model apt at determining the relation

between a given charge configuration and the associated MSD operators.
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6.2 Fixed-charge operators in the U(N)×U(M) model

In this section, we study the identification of the irreducible representation associated with a given

charge configuration from Lie algebraic considerations. To this end, we will introduce and prove

several propositions about the group-theoretical properties of the MSD operators. We assume per-

turbativity and make use of the MCSD assumption introduced in Sec.4.1.

Proposition 1: Consider a fixed-charge operator O with minimal CSD. We denote the CSD of

O by D. Furthermore, supposeO belongs to some irreducible representation (ΓL,ΓR) of SU(N)L×

SU(M)R in the U(1)A-neutral sector. Then ΓL must appear in (AdjL)
D/2 , with AdjL being the

adjoint representation of SU(N)L; ΓR must appear in (AdjR)
D/2 , with AdjR being the adjoint

representation of SU(M)R.

Proof of Proposition 1: Since we are considering a homogeneous ground state and MCSD, O

must be a Lorentz scalar with no derivatives. Then O must be built out of the product of D/2 H

fields and D/2 H† fields (so that O is also neutral under U(1)A). Now, under SU(N)L×SU(M)R

H ∼ (FL, F̄R) , H† ∼ (F̄L,FR) , (6.30)

where FL and F̄L are the fundamental and anti-fundamental representations of SU(N)L, respec-

tively. The notation for representations of SU(M)R is self-explanatory. Therefore, O must trans-

form as an irreducible component inside the reducible representation

(ΓL0,ΓR0) , ΓL0 ≡ (FL⊗ F̄L)
D/2

, ΓR0 ≡ (FR⊗ F̄R)
D/2

. (6.31)

On the other hand, the tensor product FL⊗ F̄L decomposes as

FL⊗ F̄L = 1L⊕AdjL , FR⊗ F̄R = 1R⊕AdjR , (6.32)

and thus

ΓL0 = (1L⊕AdjL)
D/2 , ΓR0 = (1R⊕AdjR)

D/2 . (6.33)
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All singlet components in 1L⊕AdjL and 1R⊕AdjR can be dropped because O is an MCSD op-

erator. In fact, if a singlet component contributes, then one would be able to construct another

operator that corresponds to the same charge configuration with less number of H and H† fields, in

contradiction to the MCSD requirement. Then proposition 1 follows.

Proposition 2: (ΓL,ΓR) must appear in the U(1)A-neutral sector of the decomposition of the

D-index traceless fully symmetric tensor of O(2NM) under the branching

O(2NM)⊃ SU(NM)×U(1)A ⊃ SU(N)L×SU(M)R×U(1)A . (6.34)

Proposition 2 follows straightforwardly from the MCSD assumption.

6.2.1 The charge configuration

Our next step is to determine the precise correspondence between the charge matrices Q and the

weight of the irreducible representations of U(N)×U(M) . By definition, they have to be equal

up to a normalization factor which we now determine. The matrix Q belongs to the special linear

algebra sl(N;C), which is the space of all the traceless N×N complex matrices. sl(N;C) is the

complexification of the real Lie algebra of the SU(N) group [193]. The Cartan subalgebra h of

sl(N;C) can be characterized by

h=




λ1

...

λN


∣∣∣∣∣∣∣∣∣λ j ∈ C, λ1 + ...+λN = 0

 . (6.35)

A weight is a linear functional on h. Nevertheless, it is convenient to identify linear functionals on

h with elements of h itself, by virtue of an inner product on h. Suppose K and K′ are two elements

of h, we define their inner product by

〈K,K′〉= Tr(K∗K′) . (6.36)
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If φ is a linear functional on h, there is a unique element λ in h such that

φ(K) = 〈λ ,K〉 ∀ K ∈ h . (6.37)

Therefore, by virtue of the inner product defined in Eq. (6.36), a weight µ can be thought of as

an element in h.

The charge configuration matrixQ should be proportional to some weight µ of a representation

of sl(N;C). Let us now determine the precise correspondence, assuming Q=QL is normalized as

in Eq. (6.19). Suppose Q can be decomposed as

Q=
N−1

∑
j=1

x jĥ j , (6.38)

with ĥ j being a set of orthonormal basis elements of h, with the orthogonality defined through the

inner product (6.36), and the normalization condition being

Tr(ĥ2
j) =

1
2
, j = 1,2, ...,N−1 . (6.39)

For instance, the following element is normalized

ĥ1 =
1
2
(E11−E22) , (6.40)

where Ei j is an N×N matrix with a "1" in the (i, j) entry and "0" elsewhere. The normalization of

basis elements is required as in Eq. (6.39) because, for example, one can compute the commutation

relation

[ĥ1,E12] = E12 , (6.41)

which implies a raising operator constructed with a single E12 will carry charge +1 corresponding

to ĥ1. One may wish to make this argument more precisely by rewriting Eq. (6.41) as a commutation

relation between the corresponding charge operator and the corresponding fixed-charge operator,

computed with the help of canonical commutation relations of fundamental fields.
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Then x j in Eq. (6.38) gives the Cartan charge associated with ĥ j, and can be computed as

x j = 2Tr(Qĥ j) . (6.42)

On the other hand, for the weight µ , the Cartan charge associated with ĥ j is given by

µ(ĥ j) = 〈µ, ĥ j〉= Tr(µ∗ĥ j) . (6.43)

Here we use the same symbol µ for the weight as a linear functional and as an element in h. We

will only be concerned with the case of real µ , and therefore the Cartan charge reads

µ(ĥ j) = Tr(µ ĥ j) . (6.44)

Comparing Eq. (6.42) and Eq. (6.44), we conclude that the correspondence between Q and µ is

Q=
1
2

µ . (6.45)

This leads to the following proposition

Proposition 3: SupposeO belongs to the irreducible representation (ΓL,ΓR) of SU(N)L×SU(M)R

in the U(1)A-neutral sector. Then 2Q must be a weight of ΓL, and −2Q must be a weight of ΓR.

Since the weights of Lie algebra representations sit on a discrete weight lattice, we then deduce

from Eq. (6.45) that the charge configuration Q is also quantized.

According to Proposition 1, the weights of our interest should belong to (AdjL)
D/2 when we

consider the SU(N)L factor. The nonzero weights of AdjL are nonzero roots of sl(N;C), which are

given by [193]

α jk = e j− ek , j 6= k , j,k = 1,2, ...,N , (6.46)

where e j’s denote the standard basis elements of CN , that is

e j = {0, ...,0︸ ︷︷ ︸
j−1

,1,0, ...,0︸ ︷︷ ︸
N− j

} , (6.47)
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for j = 1,2, ...,N. Note that in this representation of roots we have identified h with the subspace

of CN consisting of vectors whose components sum to zero [193]. Since the weights of a tensor

product representation are given by the sum of the weights of the component representations [194],

we conclude that if µ is a weight of (AdjL)
D/2, then we can express it as

µ =
D/2

∑
p=1

spα jpkp , with sp = 1 or 0 , (6.48)

and for p = 1,2, ...,D/2, α jpkp = e jp− ekp with jp 6= kp is one of the weights in Eq. (6.46). From

Eq. (6.48) we deduce that if we write µ = (µ1,µ2, ...,µN) , then µi ∈ Z, ∀i = 1,2, ...,N, and then

Eq. (6.45) tells us the diagonal entries of Q must be integers or half-integers.

Given a vector ν ≡ (ν1,ν2, ...,νN) ∈ CN , we define the A-length A[ν ] of ν as

A[ν ]≡
N

∑
i=1
|νi| . (6.49)

The A-length satisfy the following triangle inequality

A[ν +ρ]≤ A[ν ]+A[ρ] , ν ,ρ ∈ CN . (6.50)

In fact

A[ν +ρ] =
N

∑
i=1
|νi +ρi| ≤

N

∑
i=1
|νi|+

N

∑
i=1
|ρi|= A[ν ]+A[ρ] . (6.51)

Also, the A-length has clearly a linearity property with respect to multiplication by a c-number.

Then by using the triangle inequality (6.50) and the linearity property of the A-length, Eq. (6.48)

yields

A[µ]≤
D/2

∑
p=1

A[spα jpkp] =
D/2

∑
p=1
|sp|A[α jpkp] . (6.52)

Now let us note that

|sp|≤ 1 , A[α jpkp] = 2 , (6.53)
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and thus

A[µ]≤ 2×D/2 = D . (6.54)

On the other hand, from Eq.(6.45), we have

A[Q] = 1
2

A[µ] , (6.55)

then

D≥ 2A[Q] , (6.56)

and we arrive at the following proposition

Proposition 4 The classical dimension D of an operator carrying the charge configuration

Q= diag{Q1,Q2, ...,QN} satisfies the inequality

D≥ 2
i=N

∑
i=1
|Qi| . (6.57)

Eq.(6.57) relates the classical dimension of the operators with the charge configuration they

carry.

6.2.2 Scaling dimension and operator construction

All the conclusions achieved so far are deduced without the explicit construction of the operators.

Here, we illustrate how to construct the MSD operators and show that they satisfy Eq. (6.57) with

the equality sign. To this end, we first consider building blocks with simple definite transformation

properties under SU(N)L× SU(M)R×U(1)A, and then we iterate them. Intuitively, we build the

fixed-charge operators as a product of "unit-charge" blocks. For example, consider the block

Tr(τLHτ
†
RH†) , (6.58)
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where τL is an N×N matrix in some root subspace of the sl(N;C) Lie algebra, and τR is an M×M

matrix related to τL in the following manner

τR =

 τL 0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

 . (6.59)

The building block in Eq. (6.58) lives in the bi-adjoint representation of SU(N)L× SU(M)R, i.e.

(AdjL,AdjR). It is constructed such thatQL +QR = 0 is manifestly satisfied, withQL correspond-

ing to a weight of AdjL. The explicit form of τL is given by

τL = Epq , (6.60)

for some p,q = 1,2, ...,N and p 6= q. This follows from the commutation relation

[ĥ j,Epq] =
1
2
(δ jp−δ jq−δ j+1,p +δ j+1,q)Epq , (6.61)

where j = 1,2, ...,N−1 and ĥ j is defined by

ĥ j ≡
1
2
(E j, j−E j+1, j+1) , (6.62)

which satisfy the normalization condition Tr(ĥ2
j) =

1
2 .

Let us identify the charge configuration associated with Eq. (6.58). Define a set of N linear

functionals εp, p = 1, ...,N acting on h as follows:

εp(ĥ j) =
1
2
(δ jp−δ j+1,p) . (6.63)

Then Eq. (6.61) can be written as

[ĥ j,Epq] = {εp(ĥ j)− εq(ĥ j)}Epq , (6.64)

which means Epq corresponds to the root εp−εq, which when mapped into h using the inner product
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Eq. (6.36) gives αpq defined in Eq. (6.46) 36. This αpq corresponds to the weight of AdjL associated

with Eq. (6.58) and the related charge configuration is simply 1
2αpq, according to Eq. (6.45).

To build operators in more general charge configuration, we may consider

Tr
[
Π j(τL jHτ

†
R jH

†)y j
]
. (6.65)

Here y j > 0 is a positive integer, and τL j is an N ×N matrix with the explicit form given by

τL j = Ep( j)q( j) for some p,q = 1,2, ...,N that depend on j. The way that Eq. (6.65) is constructed

implies that its charge configuration Q is simply the appropriate linear combination of the charge

configuration Q j of its corresponding building blocks

Q= ∑
j

y jQ j , (6.66)

where

Q j =
1
2

αp( j)q( j) . (6.67)

We can now reverse the logic and ask, for a given Q, how one may choose τL j and y j in order to

construct a MCSD operator in the form of Eq. (6.65). To this end, we may rewrite Eq. (6.66) as

2Q= ∑
j

y jαp( j)q( j) . (6.68)

Note that 2Q ∈ CN , with all entries being integers and the sum of all entries is zero. We also have

αp( j)q( j) ∈ CN , which for a given j has only two nonzero entries, filled by +1 and −1 respectively.

MCSD requires the minimization of ∑ j y j for a given Q. We can rewrite Eq. (6.68) as

2Q−∑
j

y jαp( j)q( j) = 0 , (6.69)

where now the LHS indicates a process in which we subtract αp( j)q( j)’s from the given CN vector

2Q. Suppose each time we are only allowed to subtract one αp( j)q( j), which we call an elementary

36 This can be deduced from the results in Appendix G of the textbook by J. F. Cornwell [194].
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subtraction. (For a given j we, therefore, eventually subtract it y j times). Hence the sum ∑ j y j

equals the total number of times we need to perform such elementary subtractions to make the

resulting CN vector vanish. Then ∑ j y j is minimized when, during the subtraction process, each

entry of the CN vector changes in a monotonic manner (or remains unchanged). For example, we

take 2Q= (2,−1,−1). The following subtraction process is monotonic

(2,−1,−1)→ (1,0,−1)→ (0,0,0) , (6.70)

while the following subtraction is not monotonic

(2,−1,−1)→ (1,0,−1)→ (1,−1,0)→ (0,0,0) . (6.71)

This simple example shows the general fact that non-monotonic subtractions increase the total

number of times we need to subtract the vector to zero. Monotonic subtraction can always be

realized, by subtracting from the positive entry with the largest absolute value and the negative

entry with the largest absolute value each time. In such a case, the total number of times we need

to perform elementary subtractions is simply A[2Q]/2 = A[Q], that is

A[Q] = ∑
j

y j . (6.72)

On the other hand, the CSD D of the operator in Eq. (6.65) is

D = 2∑
j

y j . (6.73)

Therefore, we conclude that the fixed-charge Q operators with the MCSD satisfy

D = 2A[Q] , (6.74)

saturating our previous finding Eq. (6.57), which we derived without constructing the operators.

Notice that the method does not guarantee that the MCSD operator is unique. In fact, one may

redistribute the trace operation (i.e. splitting one trace into multiple traces), change the order of
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matrix products for different τL jHτ
†
R jH

† factors, or change the root basis, to obtain more operators

associated with the same charge configuration. Even if we impose the MCSD requirement, there

can be multiple solutions. It is also not known whether the above method based on the τL jHτ
†
R jH

†

building blocks with appropriate application of the trace operation covers all fixed-charge MCSD

operators.

Nevertheless, for a special type of charge configuration, there is a unique answer, and we know

the above way of explicit construction must lead to the unique answer. This charge configuration is

QJ = diag{−J,J,0, · · · ,0} , (6.75)

with J integer or half-integer. This charge configuration corresponds to the highest weight in the

tensor product of AdjL, which is, in turn, the sum of the highest weight of AdjL. The uniqueness

results from the fact that the highest weight of a representation is always simple. This representation

has Dynkin label

ΓJ = (2J,0, ...,0,2J) . (6.76)

For J = 1/2 the MSD operator lives in the bi-adjoint representation (Adj, Adj). For N = M, its

2-loop scaling dimension is given by Eq.(6.13).

The above discussion paves the way for a general identification of the irreducible representa-

tions associated to a given charge configuration. Within the MCSD assumption, the MCSD can

be determined by virtue of Proposition 4 from the given charge matrix Q. Then the candidate

irreducible representations must satisfy the requirements of Proposition 1-3.

For a given charge configuration, we are, therefore, left with a (reduced by the above analysis)

list of candidates for the MSD operator. To further narrow down the list to a single operator, we

need to add to the group-theoretical constraints the actual computation of the scaling dimensions

in the large charge expansion. The complete strategy can be schematized as follows:

1. Fix the CSD. Then, list all the charge configurations which satisfy Eq.(6.74).

2. For each charge configuration list all the irreps satisfying propositions 1-3 that contain it, and

compute the ground state energy to NLO in the large charge expansion.

3. If for different charge configurations, we obtain different ground state energies, then the

120



corresponding MSD operators are distinct. This basic observation allows pinning down the

correspondence between charge configuration and MSD operators.

This procedure will be discussed in the next two sections.

6.3 Semiclassical expansion and results

Having introduced the necessary group-theoretical results, we proceed with the semiclassical cal-

culation of the scaling dimensions in the large charge expansion.

To this end, we start by considering a 2-parameters family of charge configurations

QJ,s = diag(J,J, . . .︸ ︷︷ ︸
s

,−J,−J, . . .︸ ︷︷ ︸
s

,0,0, . . .︸ ︷︷ ︸
N−2s

) . (6.77)

For N =M and varying s, this charge configuration interpolates between the ones considered in [86]

(s = 1; given in Eq.(6.75)) and [61] (s = N/2). From Eq.(6.74) we have that the CSD of the

corresponding operator is Q̄ = 4sJ. Notice that, since J ≥ 1/2, this implies that the results obtained

in [61] for the case M = N, s = N/2 make sense only when Q̄ ≥ N and not for arbitrary values of

Q̄ and N.

At fixed CSD we can access the anomalous dimension of operators transforming in various

irreducible representations by varying the parameters s and J.

The classical energy for this charge configuration can be easily computed along the lines of

Chap.4. By parameterizing the ME and B matrices as follow

µi =


µ i = 1, . . . ,s ,

−µ i = s+1, . . . ,2s ,

0 i = 2s+1, . . . ,N ,

bi =

b i = 1, . . . ,2s ,

0 i = 2s+1, . . . ,N ,

(6.78)

the charge constraint (6.28) and EOM (6.27) become

J = 2V µb2 , 2µ
2 = (u0 +2sv0)b2 +

m2

2
. (6.79)

121



We work with N-rescaled (renormalized37) ’t Hooft couplings, which we define as

Ah = J
uN

(4π)2 , Av = J
2svN
(4π)2 . (6.80)

Then the above equations imply

2
µ

m
=

3
1
3 + x

2
3

3
2
3 x

1
3

, x =
72
N
(Ah +Av)+

√
−3+

(
72
N
(Ah +Av)

)2

, (6.81)

and our semiclassical expansion takes the form

∆OJ,s = ∑
k=−1

1
Jk ∆k(A∗h,A∗v ,s) . (6.82)

The leading order in the semiclassical expansion follows straightforwardly from the results above

by setting d = 4 and Ah,v = A∗h,v, where the star denotes the value of the couplings at the FP. We

have

∆−1(A∗h,A∗v ,s) =
sN

144(A∗h +A∗V )
1

x∗
4
3

(
3
√

3x∗8/3−3x∗4/3 +6 3
√

3x∗2/3 +2 32/3x∗2 +35/3
)
. (6.83)

The expansion for small A∗h,v reads

J∆−1(A∗h,A∗v ,s) = Q̄

[
1+4

(
A∗h +A∗v

N

)
−32

(
A∗h +A∗v

N

)2

+512
(
A∗h +A∗v

N

)3

+O
(
A∗h +A∗v

N

)4
]
. (6.84)

We checked that for Ah = 0, Eq.(6.83) reduces to the classical energy of the O(2NM) model

(4.49).

Before proceeding with the computation of ∆0, it is useful to study the induced symmetry

breaking pattern. As in the O(N) case, it can be seen as a two-step process: an explicit symmetry

breaking induced by the charge-fixing term followed by an SSB induced by the classical ground

state. The explicit breaking can, in general, be deduced by adding the charge-fixing boundary term

37 At the classical level, bare and renormalized coupling are equal.
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−∑
N
i=1 µi

∂Lcyl
∂ µi

to the Lagrangian and check which symmetries it preserves.

We have

SU(N)L×SU(M)R×U(1)A =⇒
explicit

C(R)L×SU(M)R×U(1)A , (6.85)

where C(R)L is the SU(N)L subgroup commuting with P1 = diag(1,1, . . .︸ ︷︷ ︸
s

,−1,−1, . . .︸ ︷︷ ︸
s

,0,0, . . .︸ ︷︷ ︸
N−2s

) and

it is explictily given by

C(R)L = SU(s)Lu×SU(s)Ld×SU(N−2s)Ld×U(1)L3×U(1)L5 , (6.86)

where SU(s)Lu and SU(s)Ld are rotations in the first and second upper s×s blocks of SU(N)L while

SU(N− 2s)Ld rotates the lower N− 2s×N− 2s block. Finally U(1)L3 and U(1)L5 are generated,

respectively, by P1 and P2 = diag(1,1, . . .︸ ︷︷ ︸
2s

,0,0, . . .︸ ︷︷ ︸
N−2s

) and act on the left factor.

The spontaneous symmetry breaking is determined by the vacuum configuration, which is pro-

portional to the P2 matrix defined above. We have

C(R)L×SU(M)R×U(1)A =⇒
SSB

SU(s)Lu×SU(s)Ld×SU(N−2s)Ld×U(1)D3

×U(1)D5×SU(M−2s)Rd×U(1)A6 . (6.87)

Here, U(1)D3,5 are the diagonal subgroup of U(1)L3,5×U(1)R3,5 where U(1)R3,5 are the counter-

parts of U(1)L3,5 acting on the right factor. Finally, SU(M− 2s)Rd is defined as the SU(M− 2s)

rotation in the lower M− 2s×M− 2s block of SU(M)R. To define U(1)A6, we first introduce

U(1)L6 which is generated by diag(0,0, . . .︸ ︷︷ ︸
2s

,1,1, . . .︸ ︷︷ ︸
N−2s

) and acts on the left, and U(1)R6 which is gen-

erated by diag(0,0, . . .︸ ︷︷ ︸
2s

,1,1, . . .︸ ︷︷ ︸
M−2s

) and acts on the right. U(1)A6 is then defined as the axial part of

U(1)L6 and U(1)R6. Note the diagonal part of U(1)L6 and U(1)R6 is not independent from U(1)D5

and is thus not counted.

The total number of broken generators of the SSB is

M2−1−
[
(M−2s)2−1

]
= 4s(M− s) . (6.88)

In order to determine the NLO of the large charge expansion, we parametrize the fluctuations
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as

H (τ,x) = e2iME τ(B+φ (τ,x)) , (6.89)

where φ (τ,x) is a N×M matrix. The Lagrangian at the quadratic order in the fluctuations reads

L(2) =
N

∑
i=1

M

∑
j=1

∂µφi j∂
µ

φ
∗
i j−2µ

[
s

∑
i=1

M

∑
j=1

(
(∂0φi j)φ

∗
i j−φi j∂0φ

∗
i j
)
−

2s

∑
i=s+1

M

∑
j=1

(
(∂0φi j)φ

∗
i j−φi j∂0φ

∗
i j
)]

+2u0b2
N

∑
i=1

2s

∑
j=1

φ
∗
i jφi j +u0b2

2s

∑
i=1

2s

∑
j=1

(
φi jφ ji +φ

∗
i jφ
∗
ji
)
+ v0b2

[
2s

∑
i=1

(φii +φ
∗
ii)

]2

+
(
4sv0b2 +m2) N

∑
i=2s+1

M

∑
j=1

φi jφ
∗
i j . (6.90)

It is useful to write φ in a block form as

φ =


φ
(11)
2s×2s φ

(12)
2s×(M−2s)

φ
(21)
(N−2s)×2s φ

(22)
(N−2s)×(M−2s)

 . (6.91)

The blocks decouple and we can decompose L(2) as L(2) = L(2)
(11) +L

(2)
(12) +L

(2)
(21) +L

(2)
(22). The

dispersion relations of the fluctuations appearing in the various blocks can be computed from the

inverse propagator as explained in Sec.(4.6). The result reads

ω1 =
√

J2
` +4µ2 4s(N−2s) d.o.f.

ω2 =
√

J2
` +m2

2 2(N−2s)(M−2s)d.o.f

ω3,4 =
√

J2
` +4µ2∓2µ 2s(2M−3s) d.o.f.

ω5,6 =
√

J2
` +4µ2 +m2

1±2µ 2s2 d.o.f.

ω7,8 =
1√
2

√
2J2

` +m2
1 +16µ2±

√(
2J2

` +m2
1 +16µ2

)2−4J2
`

(
J2
` +m2

1
)

4s2−2 d.o.f.

ω9,10 =
1√
2

√
2J2

` +m2
0 +16µ2±

√(
2J2

` +m2
0 +16µ2

)2−4J2
`

(
J2
` +m2

0
)

2 d.o.f. ,

(6.92)
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where

m2
0 = 8µ

2−2m2 , m2
1 =

(
8µ

2−2m2) u0

u0 +2sv0
, m2

2 = 4sv0b2 +m2 . (6.93)

ω3 describes type II Goldstone bosons while ω8 and ω10 correspond to relativistic type I Goldstone

bosons. The remaining dispersion relations describe gapped modes. It’s easy to check that the

number of real d.o.f. sums to 2NM while the counting of Goldstone modes with respect to the

number of broken generators is

2× s(2M−3s)+2s2−1+1 = 4s(M− s) , (6.94)

which agrees with Eq.(6.88), as dictated by the charged Goldstone theorem of Sec.(3.4). Proceeding

as in Sec.4.6, it is easy to show that the (bare) NLO of the semiclassical expansion is given by

e0 =
R
2

∞

∑
`=0

n`∑
i

gi(M,N,s)ωi(`) . (6.95)

where ωi are the dispersion relations in Eq.(6.92) and gi(M,N,s) is the number of the corresponding

degrees of freedom. Regularization and renormalization are performed as outlined in Sec.(4.7),

yielding

∆0(A∗h,A∗v ,s) = ρ(x∗,M,N,s,A∗h,A∗v)+
1
2

∞

∑
`=0

[
R(1+ `)2

(
∑

i
gi(M,N,s)ωi(`,x∗,A∗h,A∗v)

)
d=4

+σ(`,x∗,M,N,s,A∗h,A∗v)
]
, (6.96)

where x∗ has been defined in Eq.(6.81) while ρ(x∗,M,N,s,A∗h,A∗v) and σ(`,x∗,M,N,s,A∗h,A∗v)

are given in App.C.

We checked the cancellation of the divergent 1/ε terms between ∆−1 and ∆0 as explained in

Sec.(4.7). For Ah = 0 the result reduces to its counterpart in the O(2NM) model (4.76).

The perturbative expansion of ∆0 for small t’ Hooft couplings reads

∆0 =−
4

N
(
A∗h +A∗v

) [2sA∗2h (M+N +7s)+A∗hA∗v(2s(2(M+N)+ s)+7)+(MN +5)A∗2v
]
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− 16
N2

[
2sA∗2h (M+N− s)+4A∗hA∗v(s(M+N−2s)−1)+(MN−3)A∗2v

]
+

128
N3

[
2A∗2h A∗v

(
6ζ (3)(s(M+N +5s)+2)+3Ms+3Ns−28s2−13

)
+A∗hA∗2v

(
12ζ (3)(s(M+N)+3)+MN +4Ms+4Ns−24s2−44

)
+2sA∗3h (2ζ (3)(M+N +18s)+M+N−16s)+A∗3v (2ζ (3)(MN +7)+MN−18)

]
+O

(
A∗4v,h

)
. (6.97)

The presence of the couplings at the denominator in the perturbative expansion above is a

somewhat surprising feature of our results which, at first sight, can look suspicious. Nevertheless,

one has to remind oneself that the above expression is strictly valid only at the FPs, so one should

look at the conformal dimension ∆ as a function of ε and not as a function of the couplings. On the

other hand, from the above results, we can also extract the full 1-loop scaling dimension, which we

can rewrite as a power series in the couplings

∆
1−loop
Q̄,s = Q̄

(
1− ε

2

)
+

4
N

(
A∗h
(
Q̄−2s2)+(Q̄−1)A∗v

)
= Q̄

(
1− ε

2

)
+

Q̄
(
Q̄−2s2)
(4π)2s

u∗+
2Q̄(Q̄−1)
(4π)2 v∗ , (6.98)

and depends neither on N nor M when rewritten in terms of the original couplings u and v. Notice

that the result above is obviously valid for arbitrary values of the couplings and not only at the FP.

This is the case also when there are no FPs for real couplings, and thus the CFT is complex. In other

words, Eq.(6.98) shows how large charge methods can be used to investigate also non-conformal

theory via the associated complex CFT, as anticipated at the beginning of this chapter.

Notice that, in deriving Eqs.(6.83) and (6.96), we implicitly assumed the validity of the operator-

state correspondence and the Weyl invariance of the theory. On the other hand, these features are

not guaranteed in non-unitary CFT [104–106]. Then, in order to validate our approach, we consider

the special case N = M and s = 1 and Q̄ = 2, where, according to Eq.(6.76), we expect to reproduce

the anomalous dimension of the bi-adjoint operator Tr
[
TaHTaH†]. We have

∆
1−loop
Q̄=2,s=1 = 2− ε +

v
4π2 , (6.99)
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in agreement with Eq.(6.13). It should be added that the known examples of CFT without Weyl

invariance [104–106], such as some higher-derivative scalar theories, are structurally very different

from the U(N)×U(M) model considered here.

Since ∆Tr[TaHTaH†] is known to the two-loop level for N = M, we are now in the position to

"boost" perturbation theory, as done for the O(N) model in Sec.4.8. In fact, by combining Eq.(6.13)

with our semiclassical results, we can obtain the 2-loop scaling dimension for the whole family of

SU(N)×SU(N) operatorsOJ = Tr[(E21HE12H†)Q̄/2] where Epq has been introduced in Eq(6.60) .

These operators have CSD Q̄ = 4J and live in the irreducible representations (ΓJ,ΓJ) of SU(N)×

SU(N) with ΓJ defined through its Dynkin label (6.76). We have

∆
2−loop
(ΓJ ,ΓJ)

=

(
d
2
−1
)

Q̄+
Q̄(Q̄−2)u

16π2 +
Q̄(Q̄−1)v

8π2 + Q̄

(
u2 (N2 +4N−3

)
128π4 +

uv(3N−2)
32π4

+
v2 (3N2−1

)
128π4

)
+ Q̄2

(
u2 (1−2N)

128π4 +
uv(3−2N)

32π4 +
v2 (3−N2)

64π4

)
− (u+2v)2

128π4 Q̄3 .

(6.100)

We emphasize again that the above expression is valid for every value of the renormalized

couplings and not only at the FP ones.

As clear from Eq.(6.98), for the considered family of charge configurations, there is no scal-

ing dimension degeneracy in the perturbative regime and thus the corresponding operators live in

different irreducible representations. These are accessed by varying s at fixed CSD Q̄. In the next

section, we will analyze some concrete examples by setting Q̄ = 2,4,8. To this end, we need to

consider one more charge configuration given by

QJ = diag{−2J,J,J,0, · · · ,0} . (6.101)

The ME and B matrices can be parametrized as

ME =−idiag{µ1,µ2,µ2,0, · · · ,0} , B = diag{b1,b2,b2,0, · · · ,0} . (6.102)
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Then the EOM and the charge constraints read

J =V µ1b2
1 , 2µ

2
1 = u0b2

1 + v0
(
b2

1 +2b2
2
)
+

m2

2
,

J =−2V µ2b2
2 , 2µ

2
2 = u0b2

2 + v0
(
b2

1 +2b2
2
)
+

m2

2
. (6.103)

The physical solution is

µ1 =
2Jµ2m3v0

C
, b1 =

√
C

4π2µ2v0
, b2 =

√
− Jm3

4π2µ2
, (6.104)

where C = Jm3(u0 +2v0)+8π2µ3
2 −2π2µ2m2 and µ2 solves the following equation

−
16J3µ2

2 m9v3
0

C3 +
Jm3

(
−2Jm3v2

0
C +u0 + v0

)
2π2µ2

+
Jm5v0

C
= 0 . (6.105)

We choose the solution of the above equation such that it reproduces the O(2NM) limit when

u0 = 0. The perturbative expansion of this solution reads

µ2 =−
m
2
− Jm(u0 +4v0)

4π2 +
J2m

(
3u2

0 +28u0v0 +48v2
0
)

16π4

+
J3 (−4mu3

0−67mu2
0v0−240mu0v2

0−256mv3
0
)

16π6 +O
(
J4) . (6.106)

This solution is valid when C < 0. It is easy to show that this condition is always satisfied at small

values of the couplings. The leading contribution in the semiclassical approximation is given by

the classical energy (6.29) evaluated on this solution

J∆−1 = Q̄

[
1+

Q̄(3u∗+8v∗)
64π2 −

Q̄2 (5u∗2 +24u∗v∗+32v∗2
)

1024π4

+
Q̄3 (9u∗3 +59u∗2v∗+144u∗v∗2 +128v∗3

)
8192π6 +O

(
Q̄4)] , (6.107)

where we set the couplings to their FP values and Q̄ = 8J is the CSD, as expected from Eq.(6.74).

We checked that we recover the O(2NM) case when u = 0. To find the fluctuation spectrum, we
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expand around the classical trajectory as in Eq.(6.89). The dispersion relations read

ω̃1 =
√

J2
` +4µ2

1 2(N−3) d.o.f.

ω̃2 =
√

J2
` +4µ2

2 4(N−3) d.o.f.

ω̃3,4 =
√

J2
` +4µ2

1 ±2µ1 2× (M−3) d.o.f.

ω̃5,6 =
√

J2
` +4µ2

2 ±2µ2 2×2(M−3) d.o.f.

ω̃7 =
√

J2
` +m2

3 2(N−3)(M−3) d.o.f.

ω̃8,9 =

√
J2
` +2ub2

2 +8µ2
2 ±
√(

J2
` +2ub2

2 +8µ2
2
)2− J2

`

(
J2
` +4ub2

2
)

2×3 d.o.f.

ω̃10,11,12,13 :
(
J2
` −ω

2±2ω(µ1−µ2)
)[

J2
` −ω

2±2ω(µ1−µ2)+2u
(
b2

1 +b2
2
)]

±4uω
(
b2

1−b2
2
)
(µ1 +µ2)−4ω

2(µ1 +µ2)
2 = 0 2×4 d.o.f.

ω̃14,15,16,17 : detDA
(
ω,J2

`

)
= 0 4 d.o.f. ,

where m2
3 = 2v0(b2

1 +2b2
2)+m2 and

DA =



ω
2− J2

` + z00 −4
3

i(µ1 +2µ2)ω z02 −4
3

√
2i(µ1−µ2)ω

4
3

i(µ1 +2µ2)ω ω
2− J2

`

4
3

√
2i(µ1−µ2)ω 0

z02 −4
3

√
2i(µ1−µ2)ω ω

2− J2
` + z22 −4

3
i(2µ1 +µ2)ω

4
3

√
2i(µ1−µ2)ω 0

4
3

i(2µ1 +µ2)ω ω
2− J2

`



,

(6.108)

with

z00 =−
4
3
[
(u0 + v0)b2

1 +4v0b1b2 +2(u0 +2v0)b2
2
]
,

z02 =−
4
3

√
2(b1−b2) [(u0 + v0)b1 +(u0 +2v0)b2] ,

z22 =−
2
3
[
4(u0 + v0)b2

1−8v0b1b2 +2(u0 +2v0)b2
2
]
. (6.109)
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Although not obvious, for u = 0, we recover the fluctuation spectrum of the O(2NM) model dis-

cussed in Chap.4 when k = 3M charges have been fixed. In particular, one of the last four d.o.f.

reduces to the U(1) phonon with dispersion relation Eq.(4.57).

We weren’t able to find an analytical expression for ∆0 in this case. Instead, we computed it

numerically at fixed values of parameters and as a function of ε . The results are given in the next

section.

6.4 On how to identify the fixed-charge operators

In this section, we focus on identifying the fixed charge operators associated with a certain charge

configuration. In particular, we propose a practical identification strategy which we outline by

performing a series of examples of increasing complexity. Since the MCSD assumption can be

violated at large coupling, the procedure is valid only when the anomalous dimensions of the op-

erators involved are small, i.e. in the perturbative regime. Since in weakly-coupled theories it is

easy to find the explicit form of the MSD operator once its irreducible representation is known,

we focus on identifying the latter. We first list the conclusions below before conducting a more

detailed discussion.

• The representation of the MSD operators can be uniquely determined when a charge configu-

ration is chosen. This conclusion is based on the three conditions summarized in Propositions

1−3 in Sec.6.2.

• To determine the representation of the fixed charge operators, both group theory and the

actual semiclassical computations of the scaling dimensions should be implemented.

We start our analysis by considering operators with CSD Q̄ = 2; Eq.(6.74) implies that we can

build only one N×N charge matrix

QL,1/2 = diag{−1/2,1/2,0, · · · ,0} . (6.110)

This charge configuration is of the special type considered in Eq.(6.75). We can then imme-

diately identify the MSD operator as Tr
[
T aHT bH†] which sits in the bi-adjoint representation

(Adj,Adj) = (N2−1,M2−1). The underlying reason is that, at the level of operators with Q̄ = 2
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fields, only this representation contains the weight (6.110). Its scaling dimension has been com-

puted in the previous section, being a special case (s = 1, J = 1/2) of the charge configuration

(6.77).

The simplest nontrivial example is obtained by fixing N = M = 3 and considering operators

with CSD Q̄ = 4. Proposition 1 says that the fixed charge operators belong to the irreducible

representations (ΓL,ΓR) of SU(N)L× SU(N)R where ΓL = ΓR = (Adj)Q̄/2. Thus, in the case at

hand, the operators live in the decomposition of the tensor product Adj⊗Adj = 8⊗8. We have

8⊗8 = 1⊕2(8)⊕10⊕10⊕27 . (6.111)

To construct all the relevant charge configurations, we impose the following three requirements:

1. The charge matrix is diagonal and traceless i.e. trQ= 0;

2. The diagonal elements of the charge configuration matrix can only be integer or half-integer

(Proposition 3);

3. The sum of the absolute value of the diagonal elements is equal to Q̄/2 = 2 (Proposition 4).

By following the above three constraints, we can only construct two different charge matrices:

Q(4)
3A =


1 0 0

0 −1 0

0 0 0

 , Q(4)
3B =


1 0 0

0 −1/2 0

0 0 −1/2

 . (6.112)

In Sec.6.2, we showed that the weight and the charge matrix are related as µ = 2Q (Eq.(6.45)).

The nonzero roots of SU(3) are

α1 =


1 0 0

0 −1 0

0 0 0

 , α2 =


0 0 0

0 1 0

0 0 −1

 , α3 = α1 +α2 , (6.113)

and −α1, −α2, −α3. We, therefore, obtain µ
(4)
3A = 2α1 and µ

(4)
3B = 2α1 +α2. By using the Cartan
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matrix of the SU(3) algebra

ASU(3) =

 2 −1

−1 2

 , (6.114)

we obtain

α1 = 2w1−w2 , α2 =−w1 +2w2 , (6.115)

where w1 and w2 are the fundamental weights of SU(3). Then we can decompose the weights

µ
(4)
3A , µ

(4)
3B as

µ
(4)
3A = 4w1−2w2 = (4,−2) ,

µ
(4)
3B = 3w1 = (3,0) .

(6.116)

The next step is to determine which representations contain the above weights. By inspecting the

weight diagrams38 of the irreducible representation appearing in the RHS of (6.111), we see that

(4,−2) only appears in 27 while (3,0) appears in both 27 and 10. Thus, we can set the following

correspondence

Q(4)
3A : (27,27) , Q(4)

3B :

(27,27)(
10,10

) , (6.117)

where we have already excluded asymmetric representations such as
(
27,10

)
since they do not

appear in the decomposition of the four indices traceless symmetric O(2NM) tensor (Proposition

2). Notice that Q(4)
3A is again of the type (6.75) and, indeed, it can be directly uniquely associated

with (27,27).

Using group-theoretical arguments, we arrived at (6.117). To further disentangle the represen-

tations, we employ the semiclassical results obtained in the previous section. In fact, if the scaling

dimensions stemming from the two charge configurations are different functions of ε we have that

Q(4)
3B corresponds to

(
10,10

)
. The scaling dimension ofQ(4)

3A at NLO in the large charge expansion

has been calculated analytically (s = J = 1, N = M = 3 case of Eq.(6.77)) while Q(4)
3B corresponds

to the J = 1/2, N = M = 3 case of Eq.(6.101), and thus the associated scaling dimension has been

evaluated numerically at fixed values of ε .

The results for the scaling dimensions at NLO in the large charge expansion are shown in

38 The weight diagrams are easily obtained with the help of the Mathematica package LieART [195, 196].
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Figure 17: The results for the real part of the scaling dimension at the fixed point for the U(3)×U(3)
operators with CSD Q̄ = 4, carrying the chargesQ(4)

3A (black line) andQ(4)
3B (red dots) as a function of ε . The

error bars encode the numerical error in evaluating ∆0 for Q(4)
3B .

Fig. 17, where the black line and red dots denote, respectively, the cases Q(4)
3A and Q(4)

3B . The error

bar on the red dots takes into account all the potential numerical errors39. Clearly, the two scaling

dimensions are different functions of ε , and thus we can unequivocally associate representations

and charges as

Q(4)
3A : (27,27) , Q(4)

3B :
(
10,10

)
. (6.118)

Notice that the scaling dimension corresponding toQ(4)
3B is smaller than the one associated with

Q(4)
3A , consistently with the MSD criteria selecting the fixed-charge operators.

As a third example, we keep Q̄ = 4 and we set N = M = 4. We can now build three independent

charge matrices

39 The main source of error comes from performing a numerical Taylor expansion in ε of the one-loop functional determi-
nant during the renormalization procedure. We estimate the numerical error as the difference of the scaling dimensions
of Q(4)

3B with the one of Q(4)
3A in the limiting case of u→ 0. As we know, in this case, the scaling dimensions for Q(4)

3B

and Q(4)
3A should be equal and coincide with the O(18) result.
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Q(4)
4A =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , Q(4)
4B =


1 0 0 0

0 −1/2 0 0

0 0 −1/2 0

0 0 0 0

 ,

Q(4)
4C =


1/2 0 0 0

0 −1/2 0 0

0 0 1/2 0

0 0 0 −1/2

 .

(6.119)

To connect this example with our semiclassical calculations, we note that Eq.(6.77) encompasses

Q(4)
4A (s = J = 1, N = M = 4) and Q(4)

4C (s = 2, J = 1/2, N = M = 4) while Eq.(6.101) reduces to

Q(4)
4B when J = 1/2 and N = M = 4. By denoting the three fundamental weights of SU(4) as W1,

W2, and W3, we can express the weights associated with the above charge matrices as

µ
(4)
4A = 4W1−2W2 = (4,−2,0) ,

µ
(4)
4B = 3W1−W3 = (3,0,−1) ,

µ
(4)
4C = 2W1−2W2 +2W3 = (2,−2,2) .

(6.120)

The tensor product of two adjoint representations of SU(4) decomposes as

15⊗15 = 1⊕2(15)⊕20′⊕45⊕45⊕84 . (6.121)

Inspecting the weight diagram of the above representations, we obtain the correspondence summa-

rized below:
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Q(4)
4A : (84,84) , Q(4)

4B :

(84,84)(
45,45

) , Q(4)
4C :


(84,84)(
45,45

)
(20′,20′)

. (6.122)

Again there is one charge matrix, Q(4)
4A , which is of the type considered in (6.75) and thus cor-

responds to a unique representation, (84,84). Then one can proceed by computing the scaling

dimensions associated with Q(4)
4A and Q(4)

4B in the semiclassical expansion. If they are different then

Q(4)
4B corresponds to

(
45,45

)
, and we can proceed by computing the scaling dimension correspond-

ing to Q(4)
4C . If the latter is also different from the previous ones, then we can further conclude that

the operator with scaling dimension ∆Q(4)
4C

is in the (20′,20′) representation. This is the case, as can

be seen from the results for the real40 and imaginary part of the scaling dimensions at NLO, which

are shown in Figs.18 and 19, respectively. Due to the numerical error, in this case, it is necessary to

look also at the imaginary part to disentangle the results. If the results for ∆Q(4)
4A

were the same, we

wouldn’t have been able to identify the representation associated with Q(4)
4B , and would have been

necessary to determine higher orders of the large charge expansion to check whether they broke the

degeneracy or not. However, we could always deduce the irrep related to Q(4)
4C as (20′,20′)41.

In conclusion, we have

Q(4)
4A : (84,84) , Q(4)

4B :
(
45,45

)
, Q(4)

4C : (20′,20′) . (6.123)

As the last example, we keep N = M = 4 and consider Q̄ = 8. The fourth tensor power of the

adjoint representation decomposes as

40 From Fig.18, one may infer that Re
[

∆
Q(4)

4B

]
> Re

[
∆
Q(4)

4A

]
, in apparent violation of the MSD criteria. This apparent

puzzle can be solved by taking into account the numerical errors plus the fact that the comparison of the magnitude
of the scaling dimensions at small ε should in principle be performed in the expansion of conventional perturbation
theory rather than in the semiclassical expansion. The difference between the two expansion is of order O

(
Q̄ε2

)
,

but prefactors may magnify it and invert the scaling dimension hierarchy. By making use of the full 2-loop result
of [86, 190], we estimated a difference between 0.04% and 0.5% for ∆

Q(4)
4A

at ε = 0.1. However, the difference in ∆
Q(4)

4B
for the same value of epsilon may be much larger.

41 If Re
[

∆
Q(4)

4A

]
= Re

[
∆
Q(4)

4B

]
, it follows that Re

[
∆(45,45)

]
≥ Re

[
∆(84,84)

]
, but since Re

[
∆
Q(4)

4C

]
< Re

[
∆(84,84)

]
, then

Re
[

∆
Q(4)

4C

]
= Re

[
∆(20′,20′)

]
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Figure 18: The results for the real part of scaling dimension for the U(4)×U(4) operators with CSD Q̄ = 4,
carrying the chargesQ(4)

4A (black line),Q(4)
4B (red dots) andQ(4)

4C (blue lines) as a function of ε . The error bars
encode the numerical error in evaluating ∆0 for Q(4)

4B .
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Figure 19: The imaginary part of the scaling dimension for the U(4)×U(4) operators with CSD Q̄ = 4,
carrying the charges Q(4)

4A (black line), Q(4)
4B (red dots) and Q(4)

4C (blue lines )at the fixed point values as a
function of ε . The error bars encode the numerical error in evaluating ∆0 for Q(4)

4B .
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15⊗4 = 9(1)⊕43(15)⊕30(20′)⊕9(35)⊕9(35)⊕39(45)⊕39(45)⊕42(84)⊕4(105)

⊕39(175)⊕3(189)⊕3(189)⊕24(256)⊕24(256)⊕6(280)⊕6(280)⊕12(300′)

⊕2(360′)⊕2(360′)⊕9(729)⊕ (825)⊕3(875)⊕3(875) . (6.124)

We can build seven charge matrices

Q(8)
4A = diag{2,−2,0,0, · · · ,0} , Q(8)

4B = diag{−2,1,1,0, · · · ,0} ,

Q(8)
4C = diag{1,−1,1,−1,0, · · · ,0} , Q(8)

4D = diag{2,−3/2,−1/2,0, · · · ,0} ,

Q(8)
4E = diag{2,−1,−1/2,−1/2,0, · · · ,0} , Q(8)

4F = diag{3/2,1/2,−3/2,−1/2,0, · · · ,0} ,

Q(8)
4G = diag{3/2,1/2,−1,−1,0, · · · ,0} . (6.125)

The corresponding weights, expressed in the fundamental weight basis, read

µ
(8)
4A = (8,−4,0) , µ

(8)
4B = (6,0,−2) , µ

(8)
4C = (4,−4,4) , µ

(8)
4D = (7,2,−1) ,

µ
(8)
4E = (6,−1,0) , µ

(8)
4F = (2,4,−2) , µ

(8)
4G = (2,3,0) . (6.126)

By analyzing the weight diagrams and checking the decomposition of the O(2NM) traceless sym-

metric tensor of rank Q = 8, we obtain the correspondence below

Q(8)
4A : (825,825) , Q(8)

4D :

(825,825)(
875,875

) , Q(8)
4B :


(825,825)(
875,875

)(
360′,360′

) , Q(8)
4F :


(825,825)(
875,875

)
(729,729)

,

Q(8)
4E :



(825,825)(
875,875

)(
360′,360′

)
(
189,189

)
Q(8)

4G :



(825,825)(
875,875

)
(729,729)(
360′,360′

)
(
280,280

)
, Q(8)

4C :



(825,825)(
875,875

)
(729,729)(
360′,360′

)
(
280,280

)
(105,105)

. (6.127)
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If all the corresponding semiclassical computations give different functions of ε as result, then

we can uniquely identify all the irreps where the fixed charge operators sit. These are the repre-

sentations outlined in red above. To be more precise, to allow a complete identification it is not

needed that all the scaling dimensions differ; for example, the results for Q(4)
4B and Q(4)

4F or for Q(4)
4E

and Q(4)
4F can be equal.

To summarize, a general identification procedure consists in inspecting the weight diagrams

of the various representations in order to obtain correspondences as Eq.(6.127) and then looking

if the corresponding scaling dimensions are degenerate or not, following a sort of "identification

chain" that starts from "highest weight" charge matrices of the form (6.75) for which there is only

one candidate for the corresponding irrep. In the second step, the choice will be between this irrep

and one new candidate, and so on. We analyzed many other examples and our findings strongly

suggest that this identification procedure can always be implemented, and fails only in presence of

particular degeneracies in the semiclassical results.
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7 CONCLUSIONS

Every approach which can complement, extend, or even transcend ordinary diagrammatic methods

is of great importance, especially in the light of the growing interest in the large-order behavior

of perturbation theory (an area of research which takes the name of resurgence theory [197–200]),

and of the relevance of multi-legged amplitudes for the next generation of high-energy physics

experiments [44, 201–203]. Furthermore, the search for a classification of critical phenomena [51,

173, 204–207] demands novel methods able to shed light on the general properties of the spectrum

of anomalous dimensions in conformal theories.

In this thesis, we explored the recently-developed large charge approach to QFT and, in partic-

ular, to CFT. After having reviewed the basics of CFTs at large charge in the first two chapters, we

focused on the application of large charge methods in weakly-coupled non-abelian theories.

In Chap.4, we studied the O(N) critical model in d = 4− ε dimensions. After having analyzed

in detail the charge fixing procedure and the resulting symmetry breaking pattern, we determined

the scaling dimensions of traceless symmetric composite operators to the next-to-leading order in

the large charge expansion. These operators correspond to spatially homogeneous ground states

when the theory is mapped to a cylinder. Interestingly, every order of the large charge expansion

resums terms up to arbitrarily high orders in the ε-expansion. This allowed us to combine our

results with the known diagrammatic literature to obtain the scaling dimensions to O
(
ε4) in the

ε-expansion as well as provide predictions for higher-order terms. This investigation paves the way

for the first-principle study of the large charge expansion in non-abelian theories. Subsequently,

we analyzed the ε → 1 limit of our results, exploring the connection with previous EFT studies

of the strongly-coupled three-dimensional O(N) CFT. An obvious extension of our investigations

is the study of non-homogeneous ground states, which are related to operators transforming in the

antisymmetric and mixed-symmetry O(N) representations. Also, computing the NNLO of the large

charge expansion is strongly motivated by the possibility of comparison with the non-perturbative

large charge EFT and Monte Carlo simulations.

In the last part of the chapter, we continued studying the anisotropic perturbations of the O(N)

model, focusing on the critical theory with cubic anisotropy. The latter is in general induced by

the crystal structure of O(3) magnets and, being RG relevant, drives them to a universality class
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distinct from the Heisenberg one [158]. Leaving momentarily aside the large charge expansion,

we unveiled the operator content of the model and derived the full 1-loop spectrum of anomalous

dimensions for composite operators without derivatives and showed that it follows an interesting

pattern. A natural direction is to consider other subgroups of O(N), such as the hypertetrahedral

symmetry group Htetrahedral ' SN+1⊗Z2. This line of research is also motivated by the recent

results on the classification of scalar CFTs [173, 174, 207, 208].

In 4 < d < 6, the O(N) theory exhibits a UV fixed point non-perturbatively realizing the asymp-

totic safety scenario often considered in the quantum gravity literature. In Chap.5 we studied its

proposed UV completion in terms of the WF IR fixed point of the cubic model, which, in 6− ε

dimension, is perturbative. We determined the scaling dimensions of a family of fixed-charge op-

erators to NLO in the large charge expansion in the cubic model, finding complete agreement with

previous calculations in the O(N) model, hence providing non-trivial support to the conjectured

duality between the two critical theories. It would be clearly interesting to compute the NLO in the

large N-large charge expansion of the O(N) model in various d. Furthermore, the appearance of

complex anomalous dimensions above a critical value of the charge is a curious phenomenon re-

lated to the instability of the theory and its large charge states, which deserves further investigation.

In Chap.6, we explored the role of the charge configuration in the large charge expansion. Our

findings show that by controlling the charge configuration, it is possible to efficiently calculate the

scaling dimension of a multitude of composite operators going beyond traditional diagrammatical

computations. We outlined our computational strategy, which merges large charge methods and

group-theoretical considerations, by deriving many new results for the scaling dimensions of com-

posite operators in the U(N)×U(M) CFT in d = 4− ε dimensions. For a wide range of N and

M, the CFT occurs at complex values of the couplings defining a non-unitary complex CFT related

to near-conformal dynamics. Starting from this observation, we illustrated how large charge meth-

ods can be successfully employed to compute renormalization group functions in theories without

fixed points by considering the associated complex CFTs. It would be worth pursuing the study of

the large charge expansion in near-conformal QFTs, for instance, using the semiclassical methods

described here to obtain a microscopic description of the model considered in [209], where the

near-conformal dynamics is guaranteed by adding a dilaton to the large charge U(1) EFT in d = 4.

The field of the large charge expansion is relatively young and continuously growing. We think
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that we are only at the beginning of the journey. For example, recently began the exploration of

the convergence and resurgent properties of the expansion [210, 211] with the final ambitious goal

of extending the validity of large charge methods to any value of the charge, including the small

ones. Also, the first steps towards an efficient computation of the OPE coefficients, have been

recently made [78]. Another noteworthy line of research is the study of the holographic duals of

large charge CFTs [212–215]. For instance, there are indications that the large charge sector of the

U(1) three-dimensional scalar CFT extensively discussed in this thesis can be identified with AdS

boson star solutions of the Einstein-Maxwell theory in four dimensions [213, 214]. In particular,

it would be interesting to investigate the AdS6 holographic description [32] of the 5-dimensional

O(N) model considered in Chap.5.

One of the most important future challenges of the field is, in our opinion, to efficiently ap-

ply the ideas underlying large charge methods to non-conformal theories and the computation of

dynamical quantities such as cross-sections and decay rates. This would likely provide a break-

through in our understanding of high-energy multi-particle production processes in the Standard

Model. In fact, since the 90s, analogous semiclassical methods have been invoked in the literature

for computing the multi-particle production amplitudes in QFT [216–218]. Unfortunately, after

the first pioneering results, establishing the potential power of the approach, formidable technical

obstacles, in this case not tamed by conformal invariance, almost arrested the progress. The large

charge approach to CFT considered here, confirms (via an explicit realization) that, when dealing

with multi-legged amplitudes in perturbative theories, saddle-point methods around a non-trivial

trajectory provide a well-defined perturbative expansion even when the ordinary loop-expansion

breaks down, motivating and paving the way for future investigations.

Another interesting possible extension of the ideas presented here is the study of large charge

operators in fermionic CFTs, such as the infrared Banks-Zaks fixed point of SU(N) gauge theories

[1]. Intuitively, we expect their large charge sectors to be related to some superconducting-like

phase, with potential applications in QCD [219–221].
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Appendix A Proof of the charged Goldstone theorem

In this appendix, we present a partial proof of the charged Goldstone theorem stated in Sec.3.4. We

refer the reader to the original papers [121, 125, 128, 129] for details and examples. We start by

defining the matrix

Mia ≡ 〈0[φi(0),Qa(t)]0〉 , (A.1)

which we rewrite as

Mia =
∫

d3x〈0|φi(0) j0
a(~x, t)|0〉− c.c.=

∫
d3x〈0|φi(0)eiµQt j0

a e−i(Ht−P·~x)|0〉− c.c. , (A.2)

where we used assumption (3) (time evolution of the operators), and we take j0
a and φi to be Her-

mitian. Then we use the completeness relation to rewrite the integrand above as

〈0|φi(0)eiµQt j0
a e−i(Ht−P·~x)|0〉= ∑

nk

ei~k·~x〈0|φi(0)eiµQt j0
ae−iµQte−iH̃t |nk 〉

×〈nk |φi(0)eiµQt j0
ae−iµQte−iH̃t |0〉 , (A.3)

with |nk〉 a momentum eigenstate of the n-th particle species, which is also an eigenstate of H̃ with

eigenvalue Ek. After performing the integral over the space in (A.2), only the zero momentum

states survive, and thus we have

Mia = ∑
nk

e−iEkt〈0|eiµQt j0
ae−iµQt |nk〉〈nk|φi|0〉− c.c.

∣∣∣∣
k→0

. (A.4)

Consider first the case where Qa commutes with the fixed charge Q. Then

Mia =
l

∑
n=1

e−iEkt 〈0|φi|nk〉〈nk| j0
a|0〉− c.c.

∣∣∣∣
k→0

. (A.5)

The rank of Mia equals the number of broken generators m by definition. Let us see which in-

termediate states can contribute to Mia when [Qa,Q] = 0. Charge conservation and relativistic

invariance42 imply that d
dt Mia = 0. Then the Fourier transform of Mia has the following general

42 In particular, we use that space-like separated local operators commute.
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form

F [Mia] = k0
δ (k2)a(k0)+(k2− k02)b(k2,k0)+δ (k0)c(k2)+λδ

d(k) , (A.6)

for arbitrary a,b,c, and λ .

The third term does not contribute. In fact, these intermediate states have k0 = 0 for any k com-

pletely breaking translation invariance violating assumption (2). Also, in relativistic theories, the

fourth term has to be zero since it violates microcausality. In fact, Mia would receive a contribution

for all the positions in space. The remaining two terms imply massless states. Then the only states

which contribute to Mia have energy which goes to 0 as k→ 0. These are massless Goldstone

bosons. We denote their number as l.

Consider then the following matrix

νia =
l

∑
n=1
〈0|φi|n0〉〈n0| j0

a|0〉 , (A.7)

such that

Mia = 2Im(νia) . (A.8)

Then Im(νia) has rank m. In order to calculate rank(νia) = p, we use that its columns are a linear

combination of the following l vectors

An =


〈0|φ1|n0〉

...

〈0|φm|n0〉

 , n = 1, . . . , l . (A.9)

Then rank(νia)≤ l. Moreover, let us introduce also

νa =
l

∑
n=1

Anγan , γan = 〈n0| j0
a|0〉 , (A.10)

so that we have

Im(νa) =
l

∑
n=1

Re(An)Im(γan)+
l

∑
n=1

Im(An)Re(γan) . (A.11)
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The above implies that the column of νia is a linear combination of the 2l column of Im(An) and

Re(An). Then, since rank(Im(ν)) = m, we have l ≥ m/2.

The next step is to prove that at least one type II Goldstone exists. Since p≤ l, there are m− p

linear relations

m

∑
a=1

cα
a νa = 0 , α = 1, . . . ,m− p , (A.12)

where not all the cα
a vanish. Moreover,

m

∑
a=1

(cα
a )
∗
νa 6= 0 , (A.13)

otherwise rank(Im(ν))< m, violating the assumptions. Consider now the following commutator

Nα
i = 〈0[φi,cα

a Qa]0〉 , (A.14)

where a sum over a = 1, ...,m is implied. Its Fourier transform F(Nα
i ) can be written as

F(Nα
i ) =−2π

l

∑
n=1

δ (k0 +E−k)
m

∑
a=1

cα
a 〈0| j0

a|n−k〉〈n−k|φi|0〉
∣∣∣∣
k=0

. (A.15)

Since the energies are positive F(Nα
i ) is non-zero only if k0 < 0, i.e. on a hypersurface of the

k-space that is tangent to the k0 = 0 plane from below. Furthermore, F(Nα
i ) must be analytic in k

to preserve microcausality. Then, for k→ 0, the hypersurface has to be of the form Ek ∼ k2s with

n integer. This is a type II Goldstone boson.

The counting of the massless Goldstones with respect to the number of broken generators fol-

lows from the fact that we cannot find a set of non-zero constants βα such that

m−p

∑
α=1

βα

m

∑
a=1

Cα∗
a νa . (A.16)

In fact, otherwise, we would have

m

∑
a=1

Im(νa)
m−p

∑
α=1

(βαCα∗
a +β

∗
αCα

a ) , (A.17)
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which contradict rank(Im(ν)) = m. Then we can build (m− p) linearly independent vectors ρα

ρ
α
i =

m

∑
a=1

Cα∗
a (va)i =

l

∑
n=1
〈0|φi|n0〉〈n0|

m

∑
a=1

Cα∗
a j0

a|0〉 , (A.18)

and we must have at least m− p independent states (type II Goldstone bosons) which couple to the

m− p currents Cα∗
a j0

a. If we count the type II bosons twice, we have

nI +2nII = l− (m− p)+2(m− p) = l +m− p≥ m . (A.19)

proving the inequality. We do not present the proof of the equality sign, which can be found

in [125].

We now return to Eq.(A.4) and consider instead the case where [Qa,Q] 6= 0. The commutators

are

[Qa, j0
b(x)] = i f c

ab j0
c(x) , (A.20)

with f c
ab the structure constants of G. Using the commutator above, we can rewrite Eq.(A.4) as

eiµ Qt j0
ae−iµ Qt = (e− f1 µt)b

a j0
b , (A.21)

which can be derived by expanding the exponentials on the LHS. Here, f1 is a real matrix whose

entries are ( f1)
b
a = f b

1a. It is real because we are considering direct products of Lie groups.

Mia = ∑
n

e−iEkt (e− f1 µt)b
a 〈0| j0

b|nk〉〈nk|φi|0〉− c.c.
∣∣∣∣
k→0

. (A.22)

Assumption (4) implies that f c
ab is totally antisymmetric. Then the non-zero eigenvalues of f b

1a are

pure imaginary and occur in complex conjugate pairs (+iqa,−iqa). We can then find a basis where

f b
1a is real and block-diagonal, with the blocks being

 0 +qa

−qa 0

 . (A.23)

If j0
a corresponds to a vanishing eigenvalue of f1, then it commutes with Q, and, as discussed
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above, we have a massless Goldstone boson. Otherwise, the exponential in (A.22) mixes its matrix

elements with its block-partner. The mixing has frequency µqa and generates the mass of the type

III modes. In fact, by rewriting j0
a as j0

a = ĵ0
a + ĵ0

a
†, with, ĵ0

a and ĵ0
a

† an Hermitian-conjugate pair of

generators diagonalizing f1, we have

Mia = ∑
n

e−i(Ek−µqa)t 〈0| ĵ0
a|nk〉〈nk|φi|0〉+ e−i(Ek+µqa)t 〈0| ĵ0

a
†|nk〉〈nk|φi|0〉− c.c.

∣∣∣∣
k→0

. (A.24)

Again, the states which contribute to Mia are those satisfying Mia 6= 0 and d
dt Mia = 0, as dictated by

charge conservation. By comparing the expression above with Eq.(A.5), we immediately see that

now we have contributions from gapped modes, with mass

Ea(0) = µ qa . (A.25)

These are the type III Goldstone bosons. The proof of the part of the theorem concerning their

counting is not given here and can be found in the original publication [129].
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Appendix B One-loop computation in the U(N)×U(N) Higgs

model

In this appendix, we derive the 1-loop anomalous dimensions of the U(N)×U(N) operators with

classical dimension Q̄= 2 appearing in the decomposition (6.11) of the 2-index traceless symmetric

O(2N2) tensor. We write the H matrix as

H =
N2−1

∑
A=0

(σA + iφA)T A , (B.1)

where T A are the generalized Gell-Mann matrices, extended to include T0 =
1√
2N

1 and normalized

as Tr
(
T AT B)= 1

2δAB. Introducing (χA1,χA2) = (σA,φA), the vertices read [222]

4! uTr[HH†HH†] = uUAiB jCkDlχAiχB jχCkχDl ,

UAiB jCkDl = 8
[
(SABCD +SBADC)Ni jkl +(SABDC +SBACD)Ni jlk +(SADBC +SDACB)Nil jk

]
. (B.2)

4! v(Tr[HH†])2 = vVAiB jCkDlχAiχB jχCkχDl ,

VAiB jCkDl = 2
[
δABδCDδi jδkl +δACδBDδikδ jl +δADδBCδilδ jk

]
, (B.3)

where SABCD = Tr[T AT BTCT D] and Ni jkl = Ni jNkl +N jiNlk with

N =
1
2

 1 −i

i 1

 . (B.4)

We write the composite operators OQ̄ as OQ̄ = PA1,i1,A2,i2,...AQ̄,iQ̄ χA1,i1 χA2,i2....χAQ̄,iQ̄ . Here Q̄ is

both its CSD and its number of pair of indices. The 1-loop anomalous dimension γOQ̄
is determined

by the following eigenvalue equation

γOQ̄
PA1,i1,A2,i2,...AQ,iQ =

Q̄(Q̄−1)
2(4π)2

(
uUB1, j1,B2, j2,(A1,i1,A2,i2PA3,i3,...AQ̄,iQ̄),B1, j1,B2, j2

+vVB1, j1,B2, j2,(A1,i1,A2,i2PA3,i3,...AQ̄,iQ̄),B1, j1,B2, j2

)
, (B.5)
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where the tensors PA1,i1,A2,i2,...AQ,iQ have to be totally symmetric under interchanges of pairs of

indices of the form (Aα iα)↔ (Aβ , iβ ). The symmetrizations on the RHS of Eq.(B.5) is understood

in the same way. The derivation of Eq.(B.5) is analogous to the one of Eq.(4.101) for the hypercubic

model. Notice the appearance of the usual Q(Q−1)
2 combinatorial factor typical of quartic potentials.

In diagrammatic terms, it stems from choosing the two legs (on Q̄) of the operator insertion which

enter the quartic vertex.

Specializing on the case Q̄ = 2, Eq.(B.5) becomes

γOPAiB j =
1

(4π)2

(
uUAiB jCkDl + vVAiB jCkDl

)
PCkDl . (B.6)

For the (Adj, 1) operator, we have

Tr[HTEH†] = Tr[TATETB]δi jχAiχB j =⇒ PAiB j = Tr[TATETB]δi j , (B.7)

where the index E runs solely from 1 to N2−1. Using (B.6), we obtain

γTr[HTE H†] =
v+Nu

4π2 . (B.8)

For the bi-adjoint operator Tr[TEHTEH†], we can use T E
αβ

T E
ρσ = 1

2

(
δασ δβρ − 1

N δαβ δρσ

)
to

perform the sum over E (which again does not include T0). We have

Tr[TEHTEH†] =
1
2

(
TrHTrH†− 1

N
Tr[HH†]

)
=

1
4

δi j

(
NδA0δB0−

1
N

δAB

)
χAiχB j , (B.9)

and thus

γTr[TE HTE H†] =
v

4π2 . (B.10)

We write the operators transforming in the anti/symmetric irreps as Tr
[
KiHK̄iH

]
and Tr

[
LiHL̄iH

]
,

where Ki(K̄i) and Li(L̄i) are the Clebsch-Gordan coefficients for the SU(N) representations ( ∗)

and
( ∗), respectively. Ki, K̄i, Li, L̄i satisfy the completeness relations [192]
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Kαβ

i K̄i
ρσ =

1
2
(δασ δβρ +δαρδβσ ) ,

Lαβ

i L̄i
ρσ =

1
2
(δασ δβρ −δαρδβσ ) . (B.11)

We have

Tr
[
KiHK̄iH

]
=

1
2

Ri j (NδA0δB0 +δAB)χAIχB j , (B.12)

Tr
[
LiHL̄iH

]
=

1
2

Ri j (NδA0δB0−δAB)χAIχB j , (B.13)

where R is a symmetric and traceless matrix given by

R =

 1 i

i −1

 . (B.14)

Plugging the above tensors in the eigenvalue equation (B.6), we obtain

γTr[KiHK̄iH] =
v+u
4π2 , (B.15)

γTr[LiHL̄iH] =
v−u
4π2 , (B.16)

where we used that Ri jNi jkl = Ri jNi jlk = 0 and Ri jNil jk = Rkl .
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Appendix C The functions ρ(Ah
∗,A∗v) and σ(`,Ah

∗,A∗v)

Here, we provide explicit expression for the functions appearing in Eq.(6.96). Recalling that x∗ =
72
N (A∗h +A∗v)+

√
−3+

(72
N (A∗h +A∗v)

)2
, we have

ρ(x∗,M,N,s,Ah
∗,A∗v) =

1

144x∗4/3 (Ah +A∗v)
2

[
−2A∗hA∗v

(
2M
(

102Nx∗4/3 +24 3
√

3Nx∗2/3

+8 32/3Nx∗2 + s
(

16 3
√

3x∗8/3 +291x∗4/3 +216 3
√

3x∗2/3 +72 32/3x∗2 +48 32/3
))

+2Ns
(

16 3
√

3x∗8/3 +291x∗4/34/3+216 3
√

3x∗2/3 +72 32/3x∗2 +48 32/3
)
+48 3
√

3x∗8/3

+753x∗4/3 +552 3
√

3x∗2/3 +184 32/3x∗2 +144 32/3
)
+A∗h

2
(
−2M

(
72Nx∗4/3 + s

(
16 3
√

3x∗8/3

+351x∗4/3 +264 3
√

3x∗2/3 +88 32/3x∗2 +48 32/3
))
−2s

(
N
(

16 3
√

3x∗8/3 +351x∗4/3

+264 3
√

3x∗2/3 +88 32/3x∗2 +48 32/3
)
+6s

(
16 3
√

3x∗8/3 +231x∗4/3 +168 3
√

3x∗2/3

+56 32/3x∗2 +48 32/3
)))
−A∗v

2
(

MN
(

16 3
√

3x∗8/3 +495x∗4/3 +264 3
√

3x∗2/3 +88 32/3x∗2

+48 32/3
)
+4
(

16 3
√

3x∗8/3 +261x∗4/3 +192 3
√

3x∗2/3 +64 32/3x∗2 +48 32/3
))]

+(M−2s)(N−2s)

√√√√√√A∗h + 4
(

x∗2/3+
3
√

3
)2

A∗v

3
3
√

3x∗2/3

A∗h +A∗v
+

s2

3

√
1

x∗2/3
(
A∗h +A∗v

) (6
(

2 32/3x∗4/3

+9x∗2/3 +6 3
√

3
)
A∗h +4

(
32/3x∗4/3 +6x∗2/3 +3 3

√
3
)
A∗v
)1/2

+
2s2−1

2

(
− 1

9x∗4/6
(
A∗h +A∗v

)
×
[
3
(

4 32/3x∗4/3 +21x∗2/3 +12 3
√

3
)
A∗h +8

(
32/3x∗4/3 +6x∗2/3 +3 3

√
3
)
A∗v
]

+

4
(

x∗2/3+
3
√

3
)2

3
3
√

3x∗2/3
−1

A∗h
A∗h +A∗v

+
8
(

x∗2/3 +
3
√

3
)2

3 3
√

3x∗2/3

)1/2

+
4s
(

x∗2/3 +
3
√

3
)
(M−N)

32/3 3
√

x∗

+
2s2−1

2

(
3
(

4 32/3x∗4/3 +21x∗2/3 +12 3
√

3
)
A∗h +8

(
32/3x∗4/3 +6x∗2/3 +3 3

√
3
)
A∗v

9x∗4/6
(
A∗h +A∗v

)

+

4
(

x∗2/3+
3
√

3
)2

3
3
√

3x∗2/3
−1

A∗h
A∗h +A∗v

+
8
(

x∗2/3 +
3
√

3
)2

3 3
√

3x∗2/3

)1/2

+
8s
(

x∗2/3 +
3
√

3
)
(N−2s)

32/3 3
√

x∗
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+
2s2
(

x∗2/3 +
3
√

3
)

32/3 3
√

x∗
, (C.1)

and

σ(`,x∗,M,N,s,A∗h,A∗v) =−2`3MN−6`2MN +

(
4 32/3x∗4/3 +15x∗2/3 +12 3

√
3
)2

324`x∗4/3
(
A∗h +A∗v

)
2

(
2sA∗h

2

×(M+N +6s)+2A∗hA∗v(2Ms+2Ns+3)+(MN +4)A∗v
2
)
+

`

9x∗2/3(A∗h +A∗v)

×
[
A∗h
(

54MNx∗2/3 +Ms
(

8 32/3x∗4/3 +30x∗2/3 +24 3
√

3
)
+2Ns

(
4 32/3x∗4/3 +15x∗2/3

+12 3
√

3
))

+A∗v
(

MN
(

4 32/3x∗4/3 +69x∗2/3 +12 3
√

3
)
+4 32/3x∗4/3 +15x∗2/3 +12 3

√
3
)]

− 1
9x∗2/3(A∗h +A∗v)

[
−2A∗h

(
9MNx∗2/3 +Ms

(
4 32/3x∗4/3 +15x∗2/3 +12 3

√
3
)

+Ns
(

4 32/3x∗4/3 +15x∗2/3 +12 3
√

3
))
−A∗v

(
MN

(
4 32/3x∗4/3 +33x∗2/3 +12 3

√
3
)

+4 32/3x∗4/3 +15x∗2/3 +12 3
√

3
)]

. (C.2)
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