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Abstract

We study the spectrum of operators carrying large values of the conserved charges in conformal
field theories (CFTs) with global symmetries. In particular, we explore the computation of the
related CFT data within the recently-developed large charge expansion framework.

In the first three chapters, we review the basics of CFT at large charge, focusing on the general
phenomenon of classicalization of quantum physics in the presence of large quantum numbers and
on the physical implications of the spontaneous breaking of conformal invariance induced by the
charge-fixing.

In chapter four, we show how to set up the large charge expansion in weakly-coupled non-
abelian theories. To this end, we focus on the O(N) critical model in d = 4 — € dimensions, which
is relevant for the description of the critical behaviour of a variety of real-world systems. Using
semiclassical methods, we compute the scaling dimensions of traceless symmetric composite op-
erators to the next-to-leading order in the large charge expansion and all-orders in the £-expansion.
Furthermore, we derive new results for the spectrum of anomalous dimensions in the O(N) model
with cubic anisotropy.

In4 < d < 6, the O(N) theory flows to an asymptotically safe UV fixed point that is believed to
play a relevant role in (higher-spin) AdS/CFT. Recently, it has been conjectured a dual description
of this critical theory in terms of the IR fixed point of an O(N)-invariant theory with N + 1 fields
and cubic interactions. In chapter five, we probe this conjecture by means of the large charge
expansion, arguing in favor of the equality of the large charge sectors of the two modelsind =6 —&
dimensions.

Chapter six concerns large charge operators in the U(N) x U(M) model in d = 4 — € dimen-
sions. The role of the charge configuration is investigated in detail via both group-theoretical
and semiclassical analyses. In particular, we show how, varying the charge assignment, we can
access the anomalous dimension of different operators transforming according to a variety of ir-
reducible representations. To this end, we introduce a novel general strategy apt at determining
the correspondence between the charge configuration and the related large charge operators in
generic non-abelian CFTs. As a byproduct of our investigation, we obtain many new results for the

U(N) x U(M) model.
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Hrvatski produljeni sazetak

Konformne teorije polja (CFT, od engl. conformal field theory) bez sumnje vrlo su vazne za opis
prirode. One imaju bitnu ulogu u teoriji kontinuiranih faznih prijelaza, te su kljucne za nase razu-
mijevanje kvantne teorije polja. Stovise, CFT-ovi imaju veliku vaZnost u teoriji struna i predstavl-
jaju jednu stranu proslavljene AdS/CFT korespodencije. Nadalje, CFT alati Cesto se koriste za
istraZivanje dinamike kvantnih teorija polja u reZimima u kojima se uobiCajene metode pokazu
neucinkovitima.

Za danu grupu simetrija, za rjeSavanje CFT-a potrebno je izraCunati njezine CFT podatke, tj.
dimenziju skaliranja svih primarnih operatora 1 potpun skup OPE koeficijenata teorije. CFT-ovi se
obi¢no proucavaju putem perturbativnog racuna [1], razvoja po epsilonu [2, 3], te neperturbativno
putem konformne bootstrap metode [4—6] te AAS/CFT korespodencije [7,8]. Nadalje, u posebnom
slu¢aju dvodimenzionalnog prostor-vremena, postoji mnogo primjera CFT-ova koji su egzaktno
rjesivi [9].

Nedavno je pokazano da se CFT podaci s obzirom na operatore koji nose veliku vrijednost
odredenog oCuvanog naboja mogu izracunati i putem razvoja po naboju u inverznim potencijama
Noetheri¢inog naboja, pri ¢emu su se prvi radovi fokusirali na limes velikog naboja [10-12]. U tom
limesu, CFT stanje i njegova pobudenja ulaze u “fazu kondenzirane materije slicnu supratekucini”
konacne gustoée. Takve su faze karakterizirane spontanim lomljenjem prostorno-vremenskih i
unutarnjih simetrija te ih se mozZe opisati efektivnom teorijom polja (EFT, od engl. effective field
theory) za Goldstoneove bozone simetrije.

Spomenuti EFT pristup pogodan je za bavljenje jako vezanim teorijama, parametariziranjem
nepoznate fizike kona¢nim brojem neperturbativnih koeficijenata u svakom redu razvoja po naboju.
Nadalje, razvoj po naboju sadrzi univerzalne koeficijente koje je moguce izraCunati 1 koji ne ovise
o mikroskopskom opisu CFT-a, ve¢ iskljucivo o simetriji 1 broju prostorno-vremenskih dimenz-
ija. Zapravo, ti pojmovi proizlaze iz univerzalnih znacajki fononskog spektra u generaliziranoj
supratekuéoj fazi. Pomocu EFT-a s velikim nabojem istraZeno je nekoliko teorija, poput O(N)
vektorskog modela u tri dimenzije [11], trodimenzionalnog SU (N) matricnog modela [13, 14], i
Chern-Simonsove teorije [15, 16]. Supersimetri¢ne teorije u limesu velikog R-naboja ispitane su

u [17-19].
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U slucaju kad je CFT perturbativno dostupan zahvaljujuci prisutnosti malog parametra €, moze
se zaobi¢i EFT konstrukciju i raditi izravno u potpunoj teoriji. Tada razvoj po velikom naboju
ima oblik 't Hooft-ovog razvoja [20], gdje se definira’ t Hooft-ova konstanta vezanja A = €Q, s
nabojem Q, i uzima limes € — 0 i Q — o uz drZanje A fiksnim. To omogucuje dobivanje rezultata
svakog reda u terminima A konstanti vezanja, resumirajuci odjednom beskonac¢ni niz Feynmanovih
dijagrama u svakom redu razvoja po velikom naboju. Nadalje, sada moZemo postaviti ¢vrst temelj
za EFT konstrukciju, povezujuéi perturbativnu i neperturbativnu fiziku.

Ovdje vaznu ulogu igra opceniti fenomen ,klasikalizacije* kvantnih sustava u prisutnosti ve-
likih vrijednosti nekog kvantnog broja. Ustvari, Feynmanovim integralima koji opisuju korelatore
operatora velikih naboja dominiraju netrivijalne klasi¢ne putanje karakterizirane specifi¢nim obras-
com lomljenja simetrije. Kao posljedica, razvoj po naboju svodi se na poluklasi¢ni razvoj oko tih
klasi¢nih rjeSenja.

Prva istrazivanja razvoja po naboju u slabo vezanim teorijama pojavila su se u [21-24], gdje su

se autori usredotogili na abelovu ¢* U(1) teoriju.

Ova doktorska disertacija fokusira se na razvoj, poopcenje i primjenu razvoja po naboju u CFT-
u, kao moénog pristupa u otkrivanju strukture kvantne teorije polja s posebnim naglaskom na slabo

vezane neabelove CFT-ove.

U drugom poglavlju uvodimo osnove konformne teorije polja usredotocujuci se na aspekte
relevantne za proucavanje sektora velikih naboja CFT-ova, kao Sto su radijalna kvantizacija, kore-
spondencija operator-stanje te Weylove transformacije.

Meduigra klasikalizacije CFT-ova s velikim nabojem i spontanog lomljenja relativisticke invar-
1jantnosti, Sto dovodi do netrivijalnog brojanja i svojstava Goldstoneovih bozona, €ini proucCavanje
CFT-a s velikim nabojem sloZenom i fascinantnom temom koju ¢emo pregledati u tre€em poglavlju.
Tamo takoder uvodimo poluklasi¢ni pristup razvoju po naboju i pokazujemo njegovu povezanost
s konvencionalnim razvojem po Feynmanovim dijagramima. Nadalje, pregledavamo poopcenje
Goldstoneovog teorema relevantno za QFT s velikim nabojem. (Djelomic¢ni) dokaz ovog teorema
dan je u dodatku.

U Cetvrtom poglavlju prouc¢avamo razvoj po naboju u O(N) kriti¢noj teoriji u 4-€ dimenzije, $to

je relevantno za opis kritiénog ponasanja razliCitih sustava iz stvarnog svijeta. Nakon opce rasprave



o neabelovim modelima s velikim nabojem, prou¢avamo postupak fiksiranja naboja i inducirano
spontano lomljenje simetrije u O(N) vektorskom modelu.

Konkretno, otkrivamo da ako je osnovno stanje prostorno homogeno, onda su sve moguée kon-
figuracije naboja s istim ukupnim nabojem povezane O(N) transformacijama. Zapanjujuca posljed-
ica je da u ovom modelu zbroj naboja djeluje kao jedinstveni naboj, dok konfiguracija naboja
uopce nema ulogu. Za homogeno osnovno stanje s ukupnim nabojem Q zatim identificiramo odgo-
varajucu familiju operatora fiksnih naboja kao Q-indekse simetri¢nih O(N) tenzora traga nula s
klasi¢nom dimenzijom Q te raCunamo njihovu dimenziju skaliranja do prvog reda iznad vodeceg u
razvoju po naboju i u svim redovima u konstanti vezanja. Te anomalne dimenzije definiraju skup
(kriticnih) eksponenata krizanja koji mjere nestabilnost sustava (npr. kriticnih magneta) protiv ani-
zotropnih perturbacija [25-27].

IzraCun je napravljen koriste¢i Weylove transformacije za preslikavanje teorije na cilindar i ko-
respondencije stanje-operator kako bi se dimenzije skaliranja povezale s energetskim spektrom na
cilindru. Potonje se izraunava semiklasicno rjeSavanjem odgovarajuceg klasicnog sustava i odredi-
vanjem spektra fluktuacija oko vodeée putanje. Akcija dobivena iz klasi¢nog rjeSenja daje vodeci
red anomalne dimenzije u razvoju po naboju, dok je slijedec¢i red odreden funkcionalnom deter-
minantom fluktuacija koja se moZe izraziti u terminima njihovih disperzijskih odnosa. Potvrdu-
jemo nas pristup testiranjem rezultata do najviSeg poznatog reda u perturbacijskoj teoriji (2 petlje u
razvoju po epsilon) i iskoriStavamo ih za "boost" same teorije perturbacije, dobivajuci potpun skup
eksponenata kriZzanja u 4 petlje u razvoju po epsilonu.

Nadalje, predvidamo ¢lanove proizvoljno visokog reda u razvoju po epsilonu, koji se mogu
koristiti za provjeru buduéih dijagramskih izracuna. Poglavlje zakljuCujemo raspravom o nas-
tanku faze nalik supratekucini u limesu velikog naboja i povezane pojave univerzalnih doprinosa u
razvoju po velikog naboju. Konacno, raspravljamo o ograni¢enjima metoda velikih naboja, s na-
glaskom na njihovu relevantnost za eksperiment. Konkretno, provodimo heuristicku analizu kako
bismo odredili raspon vrijednosti naboja takve da je razvoj po naboju pod nadzorom.

Zatim idemo izmedu Cetiri i Sest dimenzija, gdje O(N) kvarti¢ni model teCe u asimptotski sig-
urne [28,29] UV fiksne tocke pri negativnim vrijednostima konstanti vezanja [30], za Sto se vjeruje
da igra relevantnu ulogu u AdS / CFT-u (viSeg spina) [31,32]. Zanimljivo je da se odnedavno na-

gada dualan opis te kriti¢ne teorije u terminima IR fiksne to¢ke u O(N)-invarijantnoj teoriji s N + 1
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polja i kubi¢nim potencijalom [33,34].

U petom poglavlju istrazujemo ova nagadanja pomocu razvoja po naboju, argumentirajuéi u
prilog jednakosti velikih sektora naboja dvaju modela u 6 — € dimenzija.

Konkretno, usporedujemo dimenzije skaliranja operatora velikih naboja do prvog reda nakon
vodecéeg u razvoju po naboju i pronalazimo slaganje. Izracun dimenzija skaliranja u kubnom mod-
elu srodan je onom izvedenom u Cetvrtom poglavlju. Buduéi da nasi rezultati resumiraju beskon-
acni red Feynmanovih dijagrama, te ukljucuju beskonacnu familiju kompozitnih operatora, znaca-
jno proSirujemo prethodne testove ekvivalencije dvaju modela. To pokazuje kako metode velikih
naboja mogu biti korisne u ispitivanju dualnosti u kvantnoj teoriji polja.

Nadalje, analiziramo pojavu kompleksnih dimenzija skaliranja iznad kriti¢ne vrijednosti naboja.
Takva kriti¢na vrijednost netrivijalno je odredena parametrom N i brojem prostorno-vremenskih di-
menzija. Raspravlja se o odnosu doprinosa instantona slobodnoj energiji modela.

U Sestom poglavlju koristimo razvoj po naboju da bismo proudili dinamiku U (N) x U (M) mod-
ela, relevantnih za fiziku elementarnih Cestica 1 kozmologiju [35-37]. Konkretno, kada imamo
N = M = 2, ovaj model opisuje standardni Higgsov model, a u openitom slu¢aju N = M opisuje
kiralan fazni prijelaz na konacnoj temperaturi u kvantnoj kromodinamici (QCD) [36, 38].

Uz fenomenoloske primjene, imamo dvije razliCite motivacije za razmatranje ovog modela.
Prvo, u ovoj je teoriji moguce analizirati utjecaj konfiguracije naboja na razvoj po naboju za CFT
podatke. Stovise, u velikom dijelu svog prostora parametara, i u 4 — € dimenzije, ova teorija ne
teCe ni u jednu fiksnu tocku za realne vrijednosti njezinih dviju konstanti vezanja nego sadrzi dvije
kompleksno konjugirane fiksne tocke. Odgovarajuci kompleksni CFT nije unitaran i povezan je s
pojavom blizu konformnog ponaSanja tzv. walking tipa u teoriji [39,40].

Uspjesnom primjenom metoda velikih naboja ilustriramo, stoga, kako koristiti ove alate temel-
jene na CFT-u u raCunanju funkcija renormalizacijske grupe Cak i u teorijama bez fiksnih tocaka.
Nadalje, raspravljamo o uvjetima pod kojima korespondencija stanje-operator i Weylovo preslika-
vanje vrijede u neunitarnim CFT-ovima. U istom poglavlju pokazujemo kako mijenjajuci konfigu-
raciju naboja mozemo bez pomoci dijagramskih proracuna pristupiti anomalnoj dimenziji razli¢itih
operatora koji se transformiraju u skladu s razli¢itim ireducibilnim reprezentacijama globalne grupe
simetrije. To ilustrira posebnu uinkovitost metoda velikih naboja s obzirom na konvencionalni

razvoj po Feynmanovim dijagramima kada se radi o teorijama s uklju¢enim neabelovim grupama
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simetrije, kao $to je U(N) x U(M).

U tu svrhu upotpunjujemo semiklasi¢ni pristup razvijanjem opce strategije koja je sposobna
identificirati, za danu konfiguraciju naboja, operator fiksnog naboja s minimalnom dimenzijom
skaliranja, koja, putem korespondencije stanje-operator, odgovara osnovnom stanju teorije na cilin-
dru. Zapravo, kao sto ¢emo vidjeti u tom poglavlju, energija osnovnog stanja (a time i pripadajuéa
dimenzija skaliranja) moZe se tada lako izracunati semiklasi¢no kao funkcija konfiguracije naboja.
Nasa je strategija ukorijenjena u teoriji reprezentacije Liejevih grupa, a poduprta je eksplicitnom
konstrukcijom relevantnih operatora.

Kao nusprodukt nasih analiza dobivamo mnogo novih rezultata o spektru anomalnih dimenzija
u modelu U(N) x U(M). Rezultate testiramo usporedujuéi ih s literaturom, izvodeci dijagramske

izracune te uzimajuci odredene limese u prostoru parametara gdje model se pojednostavljuje.

Kljucne rijeci: konformna teorija polja, razvoj po naboju, semiklasi¢ne metode
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1 INTRODUCTION

If you ask a high-energy physicist “How things happen in nature?”, (s)he may answer “In all the
possible ways.., together”. Indeed, the path integral formulation of quantum field theory (QFT)
tells us that, to determine the probability of a certain event, we have to sum over all the paths,
processes, stories which may lead to that event. Unfortunately, when it comes to QFT, apart from
a few "lucky" cases, we actually do not know how to sum over all the paths.

Strikingly, in many cases, we can sum solely over some paths and still obtain precise results.
This is the case of classical physics, where a single classical trajectory (the least-action one) is so
predominant that we can completely forget about all the other possible (quantum) paths.

Another example is provided by low energy quantum electrodynamics (QED), where the small-
ness of the interaction strength allows us to efficiently organize the paths according to their rel-
evance, setting up a perturbative expansion so efficient that it led to some of the most precise
predictions of history of physics [41].

However, often nature is not so nice to us, and perturbative methods are not feasible. This hap-
pens in strongly-coupled QFTs, such as low-energy quantum chromodynamics (QCD). A common
strategy roughly consists in discretizing the spacetime in order to consider only a finite (although
huge) number of paths, computing the discretized path integral on a supercomputer, and finally
extrapolating the continuum limit. This non-perturbative first-principle approach takes the name of
lattice field theory. Another possibility is to adhere to the effective field theory (EFT) philosophy:
if you can’t beat em parametrize 'em, which, albeit often leaving a sense of bitterness, can be very
efficient in capturing the phenomenological aspects.

Leaving aside for a moment strongly-coupled systems, it is well-known that, in perturbative
theories, the conventional diagrammatic method becomes soon unpractical as we go beyond the
first few perturbative orders due to the fast growth of the number of Feynman diagrams with the
loop order.

Another case when perturbation theory can break down and become ineffective even in weakly-
coupled theories is when describing multi-particle production processes with a large number of final
states [42,43] and, more broadly, processes involving multi-legged amplitudes. This phenomenon

has important applications for future collider physics since perturbative unitarity may be violated



in multi-Higgs (or W, Z) boson production processes at energy scales as high as ©O(100) TeV'!
[44,45], which are expected to be accessible at the next generation of colliders such as the Future
Circular Collider (FCC) at CERN [46,47]. The renormalization of composite operators with a large
number of legs is, in itself, a notoriously tough task when tackled with conventional techniques.
The underlying reason is the rapid growth of the number of diagrams, not only with the number of
loops but also with the number of legs.

In the light of the above, every method able to give an insight into the structure of QFT should
be retained of great value’.

In this thesis, we focus on that subset of quantum field theories which are invariant under
conformal transformations. Conformal field theories are of general interest since they generally
occur at the extrema of the renormalization group (RG) flow. For this reason, every continuum QFT
can be seen as a (relevant) deformation of a CFT. The Standard Model itself, in many respects, can
be seen as a slight deformation of a CFT [49,50]. Furthermore, whenever in an arbitrary theory we
have a large hierarchy between two energy/length scales, the physics at intermediate scales is, in
first approximation, conformal.

In nature, CFTs appear in the description of continuous phase transitions [51, 52], such as the
ferromagnetic, superconducting, and superfluid transitions. In this case, the scaling dimensions
of the operators define the critical exponents describing the behavior of a physical system as it
approaches the critical point.

CFT plays a fundamental role in string theory too, where physical properties are encoded in
two-dimensional conformal theories living on the strings’ worldsheets [53]. Moreover, they may
provide a non-perturbative UV completion of quantum gravity via the AdS/CFT correspondence
[7,8].

For a given symmetry group, to solve a CFT amounts to compute its CFT data, i.e. the scaling
dimensions of all the primary operators and the full set of three-point function coefficients (OPE

coefficients) of the theory. CFTs are usually investigated via perturbation theory [1], the epsilon

An obvious question is: how many Higgs does it take? A recent analysis concluded that, at energies ~ O(100) TeV,
the number of Higgs bosons needed to have unitarity violation at the perturbative level is 130 [44].

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble. It there fore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed." P. Dirac (1929) [48].



expansion [2,3], and non-perturbatively by means of the conformal bootstrap method [4-6], Monte
Carlo simulations [54-56], and AdS/CFT [57, 58].

In this work, we study the spectrum of operators carrying a large value of one or more conserved
charges in CFTs with internal global symmetries. According to the state-operator correspondence,
this can be also viewed as the study of CFT in states with a large charge density. In general, a
conformal theory at large charge can be associated with a finite density “superfluid-like condensed
matter phase” characterized by a specific pattern of spontaneous symmetry breaking, which mixes
spacetime and internal symmetries and leads to a new form of Goldstone’s theorem. Moreover,
observables with large quantum numbers are generally controlled by classical physics. In other
words, the sum over paths is dominated by a leading classical trajectory around which we can set
up a semiclassical expansion. This is a general fact observed in a variety of systems, ranging from
the Hydrogen atom at large values of the magnetic quantum number to meson resonances with
large spin [59, 60].

Recently, this phenomenon has been further elucidated in [10], where, studying the three-
dimensional U (1) scalar CFT, the authors show that the scaling dimensions of operators carrying
large values of the U(1) charge Q can be computed via a semiclassical large charge expansion in
inverse powers of Q. To this end, they developed a powerful EFT approach suited to deal with
strongly-coupled theories, encapsulating the unknown non-perturbative physics in a finite number
of coefficients at every order of the 1/Q expansion.

After this first pioneering work, several theories have been investigated by means of the large
charge EFT, such as non-abelian scalar models [11, 13, 61-63], Chern-Simons theories [15, 16],
and non-relativistic systems with Schrodinger symmetry [64,65]. Supersymmetric theories at large
R-charge have been examined in [17—-19]. The first review on the topic appeared in [66].

The above works show that a general (and intriguing) feature of the large charge expansion
for CFT data is the presence of calculable universal terms that do not depend on the microscopic
description of the CFT but solely on the symmetry of the theory and the number of spacetime
dimensions. In fact, these terms stem from the universal features of the phonon-like spectrum in
the generalized superfluid phase.

When the CFT is perturbatively accessible thanks to the presence of a small parameter €, one

can bypass the EFT construction and work directly in the full theory. In this case, the large charge



expansion becomes a 't Hooft-like expansion [20], where one defines a 't Hooft coupling A = €Q,
and takes the limit € — 0 and Q — oo while maintaining A fixed. As a result, the scaling dimension’

Ap of (large) charge Q operators takes the form

|
Ap=Y, @Ak(A), (1.1)

k=—1

where Ay is the k + 1-loop correction in the large-Q semiclassical expansion. In the above form,
the large charge expansion shares many similarities with the large number of flavors [67-70] and
the large number of colors [20,71,72] expansions in gauge theories.

The exploration of the large charge expansion in weakly-coupled theories begun in [21-24],
where the authors focused on the U (1)-invariant ¢* scalar CFTs in d = 4 — & dimensions. Notice-
ably, every Ay in (1.1) resums at once an infinite series of Feynman diagrams of the conventional
perturbative expansion. This opens the intriguing possibility of accessing the large-order behavior
of perturbation theory, which is known to encode non-perturbative information [73—75], as well as
performing all-order tests of conjectured dualities in QFT.

Moreover, by studying weakly-coupled theories at large charge, we can put on firm ground and
"UV complete" the large charge EFT discussed above, bridging perturbative and non-perturbative
physics. This has been done in [76] for the three-dimensional U (1)-symmetric scalar CFT.

As we will argue in this thesis, large charge methods allow to efficiently compute the scaling di-
mension of composite operators with a large number of legs, being effective in realms (many loops,
many legs) where diagrammatic methods are not, providing then a complementary approach to the
latter. Indeed, large charge operators are naturally connected with the multi-legged amplitudes that,
as discussed above, are problematic within perturbation theory.

Ultimately, a shared hope is to be able, one day, to transfer the techniques and knowledge
matured by exploring CFT at large charge to the study of Standard Model processes involving a

large number of Higgs, W, and Z bosons.

In this thesis, we will mainly focus on the computation of the anomalous dimension spectrum of large charge operators.
However, the approach discussed here can also be extended to the computation of general correlators (and in particular
to the three-point functions) of large charge operators, as discussed in [77, 78] and [23] for strongly- and weakly-
coupled theories, respectively.



This thesis concerns the development and applications of the large charge expansion in CFT*
with a particular emphasis on weakly-coupled non-abelian scalar CFTs. The work is organized as

follows:

e In Chap.2, we introduce the well-known basics of conformal field theory, focusing on the as-
pects relevant to the study of the large charge sectors of CFTs, such as radial quantization, operator-

state correspondence, and Weyl transformations.

e In Chap.3, we review the main ideas underlying the study of CFT at large charge. There, we
also introduce the semiclassical approach to the large charge expansion and show its connection to

the conventional diagrammatic expansion.

e In Chap.4, we study the large charge expansion in the O(N) critical theory in 4-¢ dimensions.
In particular, we show how to apply (non-EFT) large charge methods to non-abelian theories and
use them to compute the anomalous dimensions of the spin-0 operators transforming as traceless
symmetric O(N) tensors to the next-to-leading order (NLO) in the large charge expansion. These
anomalous dimensions define a set of crossover (critical) exponents which measure the instability
of the system against anisotropic perturbations [25—-27]. We validate the approach by testing our re-
sults to the maximum known order in perturbation theory (2-loops in the €-expansion) and use them
to “boost” perturbation theory itself, obtaining the 4-loop crossover exponents in the £-expansion.
Furthermore, we predict an infinite number of higher-order terms that can be used to check future
diagrammatic calculations.

The emergence of a superfluid phase and the related EFT description is discussed. Finally, we
focus on the O(N) model with cubic anisotropy and perform a 1-loop study of the spectrum of

anomalous dimensions.

e In Chap.5, we study the O(N) theory in 4 < d < 6 dimensions. In this range of dimensions,
this model exhibits, at least for large N, a UV fixed point (FP) [30], which provides an example
of an interacting, strongly-coupled, non-supersymmetric CFT in d = 5, as well as a realization of

the asymptotic safety (or non-perturbative renormalizability) scenario [28], which may be realized

Notice that the large charge expansion considered here, where the charge is some internal quantum number, is a
particular case of a more general large quantum number expansion that includes, for example, also the large-spin
expansion in CFT [79] and QCD [80].



in nature by quantum gravity [29, 81, 82] and UV completions of the Standard Model [35, 83].
Moreover, it is believed that, in d = 5, this model has an AdSg holographic dual in terms of higher-
spin theories [31,32].

Interestingly, it has been conjectured a dual description of this UV fixed point (FP) in terms of
the IR Wilson-Fisher (WF) FP of an O(N)-invariant theory with N 4 1 fields and cubic potential
[33,34]. We will test this conjecture using large charge methods and argue in favor of the equality
of the large charge sectors of the two models in 6 — € dimensions. Specifically, we will compare
the scaling dimensions of large charge operators to the NLO in the large charge expansion finding
agreement. Since our results resum an infinite series of Feynman diagrams and involve an infinite
family of composite operators, we substantially extend previous tests of the equivalence between

the two theories.

e In Chap.6, we use the charge expansion to study the dynamics of the U(N) x U(M) Higgs
model in d = 4 — € dimensions. As we shall see, this model is suited to the investigation of the
role of the charge configuration in theories with multiple conserved charges. Specifically, we show
how large charge semiclassical methods can be efficiently employed to compute the scaling di-
mension of a variety of different operators identified by the charge configuration they carry. This
will illustrate the effectiveness of the approach when dealing with theories invariant under involved
non-abelian symmetry groups such as U(N) x U(M).

In a large region of its parameter space, the U(N) x U(M) theory does not flow to any FP.
Instead, the zeros of the beta functions occur at complex values of the two couplings of the the-
ory. The corresponding complex CFT is non-unitary and related to an emerging near-conformal
behaviour of the walking type [39,40]. We illustrate how to study the non-conformal theory by

considering the associated complex CFTs and applying large charge methods.
e In Chap.7, we offer our conclusions and discuss the future challenges in the field.

Finally, the thesis includes three appendices containing additional details on some of the com-

putations presented.

The original material starts from chapter 4 on, while previous chapters review the known liter-

ature. In particular, Chap.4 is based on our work [84], except for Sec.4.10, which presents material



from our publication [85], and Sec.4.9 that contains a (so far) unpublished novel analysis. Chap.6
is based on our publication [86] and our preprint [87]. Results from Chap.5 will appear in a paper
that is currently in preparation. Chaps.4 and 6, and related appendices, contain many unpublished

details absent in the original papers.

Keywords: conformal field theory, large charge expansion, semiclassical methods



2 BASICS OF CONFORMAL FIELD THEORY

In this section, we will introduce the basics of conformal field theory. Since this subject is well-
documented, we will just present the main results relevant to the study of the large charge sectors
of CFTs. The reader interested in a pedagogical introduction to CFT can refer to [88—90] (see also
chapter 2 of [53] for a more string-oriented introduction to 2D CFT) and references therein.

In general, a physical system looks different when examined at different energy/length scales.
In QFT and statistical physics the change of a system when probed at different scales is encoded
in the renormalization group (RG) flow in the space of the theories i.e. the space of the La-
grangians/Hamiltonians. Fixed points (FPs) of the RG flow are given by theories invariant under
RG transformation i.e. by scale invariant theories. At the quantum level, fixed points are defined
by the zeros of the beta functions for the couplings of the theory.

Amazingly, most scale invariant QFTs show an enhanced conformal symmetry, defined as in-
variance under general angle-preserving changes of coordinates. This is an intriguing fact of nature
that still asks for a full theoretical explanation®. Then CFTs represent useful oases in the space
of quantum field theories. Furthermore, conformal symmetry highly constrains the dynamics of
QFTs. In fact, it allows us to non-perturbatively define CFTs as well as obtain many important
results on their structure without making reference to any Lagrangian/Hamiltonian description. We

will illustrate this last point in the rest of this introductory section.

2.1 The conformal algebra

Conformal Transformations on a d-dimensional flat space with signature (p,q), p+¢q = d are
diffeomorphisms that locally preserve the angle between lines. This is realized if under the change

of coordinates x* — x’*(x), the metric changes only by an overall factor, that is

Muy — AX) My - 2.1)

See [91] for a comprehensive review on the relation between scale and conformal invariance and [92] for a discussion
in the four-dimensional case.



A local rescaling of the metric tensor as the one above is called Weyl transformation. An infinitesi-

mal transformation
M=t et (x)+0(e?) Alx) =" ~ T4+ w(x), (2.2)

is conformal if

8#8\/ + avg'u = W(x)n‘uv . (2.3)

The above condition can be rewritten as

2
w(x) = 38-8,
(Nuvd* +(d —2)9udy) w(x) = 0,
(d—1)3*w(x) = 0. (2.4)

For d = 2 the second and third equations coincide, leading to deep differences between the cases
d =2 and d > 3. We start from the case d > 3, where (2.4) has only four types of solution which

we give below together with the corresponding transformations and their generators

Solution Transformation Generator

e" = a" = const. Translations: x'* = x* 4 g* Py = —idy

et =x" oy, Rotations: x™* = x* + b x” Myy =i (xu0y —xy0y) (2.5)
et = At Dilatations: x™* = (14 A)x* D = —ixt9,

eh =2(b-x)xt —xX?b* SCT: XM =x* +2(b-x)x* —x*b' Ky = —i (2xux"dy — 29y

where @y, = —@yy and SCT stands for special conformal transformations. The global form of the
SCT reads
/ xH — pHy?
xt =
1—2(b-x)+b*x2"’

(2.6)

and diverges when the denominator vanishes. Thus, in order to globally define the SCT, we need
to perform a so-called conformal compactification, which adds the point at .

With the explicit expression for the generators given above, we can compute the commutation



relations defining the conformal algebra

My, Mps| = i(6upMys £ permutations)
Myv,Kp| =i(6vpKy — 8upKy) ,
uv:Kp vp L&y — Oup Ly 0.7

[PIJ7KV] - _2l(6‘uvD_M’uv) y

where the first two relations define the Poincare algebra. The overall number of generators is
3(d+1)(d+2). In fact, the conformal group acting on R”: Ues is isomorphic to SO(p+1,g+1).
This can be easily proven by using the so-called "projective light cone" formalism [93, 94] where
one embeds R7¢ into RPT14*! by considering a section of the light cone in the latter spacetime
to eliminate the additional coordinates. Since the conformal group acts linearly on RP+14F1  this
formalism is very useful for studying the implications of conformal invariance.

To study the conformal algebra in d = 2 dimensions, we consider the Euclidean signature and

I'_ ix2. Hence, Eqgs.(2.4) reduce to

introduce complex coordinates z = x" +ix', 7 =x
d,€E=0:¢=0, (2.8)

where
e=e"+ie!, e=&"—ie!, o=

(°—id')y, =-("+id"). (2.9

| =

1
2

Thus the group of infinitesimal conformal transformations in two dimensions is generated by all

the meromorphic functions € = €(z) and € = (), which can be Laurent-expanded as

ez) =Y &', £(2) =Y &zt . (2.10)
(VA

nez

10



Then a basis of generators is given by
lL,=—2""9,, L,=-7""'9., nez, (2.11)

and generates the Witt algebra

[lns1n] =0 (2.12)

The Witt algebra is infinite-dimensional, and this highly constrains the CFT dynamics, sometimes
allowing a complete solution of the theory [9]. On the other hand, the group of globally defined
conformal transformations depends on the topology of the considered space. For instance, it is easy
to prove that the group of conformal transformations on the two-sphere S? 22 C U oo, is the Mobius
group PSL(2,C) = SL(2,C)/Z,, which is generated by [_1,lo,l; and [_1,lo,;. In particular, [_;
generates translations, [y generates complex dilatations (which can be seen as real dilatations plus

rotations), while /| generates the SCT.

2.2 Radial quantization and state-operator correspondence

We move to analyze the Hilbert space of a CFT and the action of the conformal group on opera-
tors. From now on, we will focus uniquely on case d > 3, to which is devoted the content of this
dissertation.

In general, we construct the space of states of a quantum theory by foliating the spacetime into
d — 1 dimensional surfaces. States defined on the same surface belong to the same Hilbert space.
Moreover, if the surfaces are related by a symmetry transformation, then the Hilbert space is the
same on each surface. It is, therefore, convenient to choose a foliation according to the symmetries
of the theory.

A prototypical example is a foliation into equal-time surfaces in theories with Poincare symme-
try. In that case, we create states on a given surface ¢ = ' by inserting operators in its past 7 < ¢’ and

computing the path integral over the field configuration in the past. States on different equal-time

11



surfaces # = ' and ¢ = ¢ are hence related by the time evolution unitary operator U = ("),

where the Hamiltonian H corresponds to the operator generating time translations.

In theories with conformal symmetry, it is convenient to foliate the space into spherical surfaces
centered in the origin x = 0. Then we can move from one surface to another by acting with the
dilatation operator D, which takes the role of the Hamiltonian. For obvious reasons, this approach
takes the name of radial quantization.

Since the angular momentum operator M, commutes with D, we can label the states with the
eigenvalues of D and their spin /. We naturally choose the vacuum |0) to be conformal invariant
and thus annihilated by all the conformal generators. The action of the conformal generators on the

operators is [95]

[Pu, O(x)] = =idy O(x) ,

x)| =i xH x
[D,0(x)] = i(A+x"u)O(x) , 213
Myuv,0(x)] = —i(Zuy + x40y —xvd, ) O(x)

(K, O(x)] = —i(2xy A+ 22425, + 25, (xP 9p) — 120 ) O(x)

where A is the scaling dimension of O(x) and X,y acts on the spin indices according to the SO(p, q)
irreducible representation (or irrep) of O(x).

Eigenstates of D are created by inserting operators with scaling dimension A in the origin
D|A) = DOA(0)[0) = [D, 0A(0)]|0) + Oa(0)D[0) = iAOA(0)[0) = iAA) . (2.14)

Since dilatation moves the insertion point, when x # 0 the insertion of operators inside a sphere
does not generate eigenstates of D, but a superposition of them.
From the commutators (2.7), we have that the action of P, increases the scaling dimensions by

1, whereas K|, decreases them by 1
PulA) < |A+1),  Ky|A)oe<]|A—1). (2.15)

Therefore, P, and K}, act, respectively, as raising and lowering operators of the conformal algebra.

A classic result [96] is that, in unitary theories, the scaling dimensions of primary operators are

12



bounded from below as®

Amin(l) =14+D—2, 1> 0 (Spin-/ traceless symmetric representations of SO(p,q))

D (2.16)

Apin(0) = 7 1, I =0 (Scalar representations) .

Then, by repeatedly acting with K, on an arbitrary state at some point we will encounter a state |A)
such that K, |A) = 0. The operators creating such states are called primary operators and satisfy
the following defining property

Ky, 0(0)]=0. (2.17)

Starting from a primary operator O and acting with the raising operator P, we can build a confor-
mal multiplet of O, {O,P,O,P,P,O,...}. The members of the multiplet are obtained by differ-
entiating O (remember that [P, O(x)] = —idy O(x)) and are called descendants operators. In this
way, we can obtain all the operators with a definite scaling dimension and use them to construct the
entire Hilbert space.

To sum up, the insertion of local primary operators at the origin produce the highest weight
states, which have a definite scaling dimension and are annihilated by K),. Vice versa, from an
eigenstate of D satisfying K}, |A) = 0, we can build a local primary operator with scaling dimension
A. This one-to-one correspondence between states and local operators is called state-operator

correspondence [98,99] and plays a fundamental role in CFT’ .

2.3 Correlation functions

In CFT, the interesting physical quantities are the scaling dimensions and the correlation functions
of the scaling operators of the theory. Given two scalar primaries O; and O jg, the requirement of
conformal invariance fixes entirely the two-point function as

5
(0i(x)0;(y)) = cm , (2.18)

6 See [88,89,97] for a detailed derivation of the so-called unitarity bounds (2.16).
In non-conformal field theories, states and local operators are not equivalent since the former carry non-local informa-
tion about the entire field configuration. On the other hand, in a CFT, we can map the entire space to the origin and we
can think at the Hilbert space of the theory as living in a single point.

8 The indices of the operators represent the complete set of their quantum numbers and uniquely identify them.
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where A is the scaling dimension of O;(x) and c is a normalization factor which is fixed by the
normalization of the operators’. This can be easily proven by acting with the conformal generators
on the two-point function and using Eq.(2.13). Analogously, the three-point functions are fixed by
conformal symmetry up to a constant C;j; [100]

Cijk
<Oi(X)Oj<y)Ok(Z>> - |x—y’Ai+Aj7A"|y—Z|Al‘+Ak*Ai‘Z—x‘Ak+AﬁAJ’ :

(2.19)

The constants C; i are called 3pt function coefficients, OPE coefficients, or structure constants and
play a fundamental role in CFT. Higher-point functions are less constrained than the two and three-
point function but are, of course, more constrained than in absence of conformal symmetry. For

instance, in CFT, the four-point function of 4 identical scalars takes the form

2 .2

1 XTHX
(O(x1)0(2)O(x3)O(x4)) = <55z f(,v) , u="3, v=upos, xj=xi—x;. (2.20)
12434 X13%24

Analogous considerations apply to correlators involving composite operators with non-zero spin.

2.4 The operator product expansion

The operator product expansion (OPE) in QFT is a formal expansion of the product of two local

operators as a series of other local operators

Oi(x)O0;(y) :zk:lijk(\xi—xj\)Ok(z) , (2.21)

where the sum goes over all the local operators in accord with any requirements of conserved
quantum numbers. In general QFT the OPE is an asymptotic series formally valid in the limit
x — y. On the other hand, the conformal OPE is, when viewed as an operator equation, an exact
expression with a radius of convergence equal to the distance to the next field insertion, as proved
long ago by G. Mack in [101]. In fact, via the state-operator correspondence, the CFT OPE can
be simply viewed as an expansion of the state created by the insertions of O;(x) and O;(y) in
eigenstates of the dilatation operator.

Furthermore, the contribution of descendants fields can be adsorbed in a differential operator

° In particular, we can always set ¢ = 1.
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Aijk(|x; —x;|,0;) which is fixed by conformal invariance up to a constant C; ;. We then have
Oi()0;(y) = Y Aije(|xi —x;1,9) Ok (2) , (222)
k

where the sum now involves only the primaries of the theory. The constants C;j; are the same
appearing in the expression for the three-point functions (2.19). In fact, by using the OPE, we

can reduce any n-point function to a n — 1-point function'’

. As a consequence, a CFT is fully
characterized by the spectrum of local primary operators O;, their scaling dimensions Agp,, and the
set of OPE coefficients C;jx. This information is collectively denoted as CFT data. The goal of
CFT is to compute CFT data and use them to make predictions for experiments and understand

the structure of the quantum world. CFT data can be computed perturbatively or by means of

non-perturbative techniques such as functional RG methods, conformal bootstrap, and lattice.

2.5 Weyl maps

Weyl invariance is the invariance of the theory under Weyl transformations of the metric, which, in

curved spacetimes, read

guv — A(x)guv ~ guv +w(x)guv - (2.23)

General Weyl transformations can change the spacetime geometry while those considered in the
definition of the conformal transformations map the flat spacetime into itself. This subclass of
Weyl maps can be realized by diffeomorphisms i.e. they are induced by conformal changes of
coordinates.

Clearly, Weyl invariance implies conformal symmetry, but the opposite is not generally true.
By definition, the theory is Weyl invariant if the change of the action 0S5 under a Weyl rescaling

vanishes

5S = / dhx/aTH Sguy = / dhx /g w(x) = 0, (2.24)

where we have used the infinitesimal form of the Weyl transformation (2.23) and T*V is by defini-

tion the energy-momentum tensor of theory. Since w(x) is arbitrary, the condition for infinitesimal

10 Asking consistency between the different ways we can reduce a four-point function to three-point functions by means
of the OPE, it is possible to derive the crossing symmetry constraints at the heart of the conformal bootstrap method
[5,102,103].
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Weyl invariance is

Ty =0, (2.25)

i.e. the energy-momentum tensor has to be traceless''.

It can be proven that this happens in
all local unitary CFTs [88, 105]. This allows us to exploit Weyl invariance in order to simplify
computations. In particular, to apply large charge methods we will often map our CFTs from R? to
a cylinder R x §¢-1 12,

Considering polar coordinates (r,Q4_1) for R¢, the map reads
RY R x 5971 (nQu_1) = (7,Qq_1),  r=Re"/R, (2.26)
and corresponds to a Weyl rescaling of the metric

dsiy = dv* + RdQ) | = If—jdsﬁat : (2.27)
with R the radius of the sphere and 7 the time coordinate on the cylinder. Under this map, dilatations
D become time translations on the cylinder, and thus the radial quantization in flat space reduces
to the usual equal-time quantization on the cylinder; states are classified according to their energy
and live on spheres connected by time evolution. The latter is generated by the dilatation operator
D, which plays the role of the Hamiltonian.

Under a Weyl transformation (2.23), correlation functions change according to

1 A0, 1
<1—>g<01(x1)...c9n(xn)>g= 1:[A(xi) 2 m<ol(x1)...o,,(xn)>A(x)g. (2.28)

Under the map to the cylinder (2.26), the two-point function of a scalar primary operator O and

! Since Tﬁl gets a non-vanishing vacuum expectation value (vev) on curved even-dimensional spacetimes, to prove
invariance under finite Weyl transformations is more complicated. This is known as the Weyl anomaly. In what
follows, we will not consider theories living in an even number of dimensions, and thus we will not face this issue. We
refer the reader to Refs. [104—106] for detailed discussions and recent progress on the relation between conformal and
Weyl invariance, including the implication for correlation functions.

12 Notice that the Weyl map on the cylinder is not conformal for d > 2.
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its conjugate O transforms as [89, 90]

_JxplPo)x|Re

(OT(x1)O(x1)) oy = erl x| * (O (x ) O (x1) ) = , (2.29)

iy — xi[*A0
where x ¢ ; are the Cartesian coordinates on the plane, and the operators are canonically normalized.
Notice that the limit x; — 0 corresponds to T; — —oo on the cylinder. In view of the state-operator
correspondence discussed in Sec.2.2, the action of an operator O at T = —oo creates a state on the

cylinder with the same quantum numbers and with energy given by

Eo="2. (2.30)

Due to the above relation, our goal of computing scaling dimensions of fixed charge operators will
often turn to the computation of the energy spectrum on the cylinder.

Finally, consider a conformal theory of massless scalar fields living on R¢. When we map the
theory to the cylinder, the scalar fields will couple to the Ricci scalar R of S¢~!, generating a mass
term with m? = ER in the Lagrangian. Naively, we might think to preserve conformality by taking
the renormalized & to vanish, but it can be shown that if we fix & = 0 at some energy scale it will
be generated anyway during the RG flow. Instead, it can be proven that the conformal coupling is
dictated by conformal invariance to be JTZ%% [107]. On a d — 1-dimensional sphere of radius R, we

have R = (d_ll)e#, and thus the mass of a conformal scalar on the cylinder is

m=——. (2.31)

2.6 Complex CFT

It can happen that fixed points of the RG flow occur at complex values of the couplings. Even if
the theory will not actually flow to the FP, considering the associated complex CFT, which is, in
general, non-unitary, can be a useful tool to explore the associated non-conformal theory. This can
be achieved, for instance, using the so-called conformal perturbation theory [40, 108—110], where
one perturbs the CFT by adding an operator O with some (in general complex) coupling g, or with

the aid of large charge methods, as we will show in Chap.6.
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Furthermore, complex CFTs are strictly related to a RG behaviour of the walking type which,
being a general natural mechanism for generating hierarchies in QFT, has been invoked in the liter-
ature for models of dynamical electroweak symmetry breaking [111-114] and for describing weak
first order phase transitions (i.e. first order phase transitions near the critical point) in condensed
matter systems [40, 110, 115,116].

To illustrate the general connection between complex CFT, walking and hierarchies, consider a
theory with only one coupling g. Then walking dynamics is realized when the beta function of g is
very small but there is no FP. Then, there is a, eventually long, range of energies where the coupling
is close to a constant value and the system shows near-conformal dynamics i.e. the coupling does

not run but walks. To see this, consider a toy beta function given by '’

B(s) =u§—j (@)~ (g—g")? . 232)

with u the RG scale and o an external parameter”. For o > «,, there are real FPs

gr=g VA, (2:33)

where the plus and minus signs correspond, respectively, to ultraviolet (UV) and infrared (IR) FPs.
Consider now decreasing the value of o. Then the two FPs will approach each other till they merge
and disappear to the complex plane giving rise to two complex CFTs. For o < o, there are no FPs
at real value of the coupling.

This behaviour of the beta function is shown in Fig.1 together with the corresponding "walking"
of the coupling as a function of the RG time r = log(u) for o slightly smaller than a.. In fact, this
case clearly illustrates how a hierarchy of scale arises: if one takes the coupling at a UV scale Ayy
to have the value gyy < g*, flowing towards the IR, g grows, lingers near g = g*, and finally blows
up quickly. This defines an intrinsic IR scale Ajg, which is insensitive to the UV part of the flow

and to the precise initial value gyy. In particular, assuming |gyv g — &*| >|o — 0| to integrate

13 This simple example has been first presented in the classical paper [39].
14 In concrete cases, the role of ¢ could be played by (a function of) the number of spacetime dimensions, colors, flavors,
etc.
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B(g)
a> g(t)

t = log(u)

Figure 1: Left: The toy beta function (g), Eq.(2.32), for various values of the parameter . For a > o,
there are two FPs which merge when o = «.. For o < «., there are no real FPs and the beta function has a
"bump" centered in g*. Right: The running of the g coupling for @ < o, and |0t — o,.| < 1 (blue solid line).
The dashed red line indicates the value of g*.

Eq.(2.32), we obtain Ajg as

A ¢IR _dg_ -
MR el Bl ~ oV (2.34)

Ayy
We have just generated a hierarchy: the theory contains two energy scales and the physics in the
intermediate range between them is approximately scale invariant.
This concludes our general introduction to CFT. In the next section, we will explore what
happens in CFTs with continuous internal global symmetries when we fix the value of the conserved

charges.
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3 QFT AT LARGE CHARGE

In the previous section, we introduced the CFT fundamentals. In particular, we saw that solving a
CFT amounts to the computation of its CFT data. This thesis concerns CFT data relative to opera-
tors carrying a large value of some (internal) quantum number in theories with global symmetries.
Via the state-operator correspondence, this can be also seen as the study of CFT in states of fixed
charge density. In this section, we will introduce the main ideas behind CFT at large charge.

Given a Noether current j* (dy j* = 0), the associated conserved charge is

Q:/M*Wm 20=0. (3.1)

Then, we say that an operator O carries a value Q of the charge Q if

[0,0] =00, (3.2)

with Q # 0.

In what follows, we will argue that the spectrum of operators carrying a large charge clas-
sicalizes and can thus be studied via a semiclassical expansion corresponding to a large charge
expansion in inverse powers of the charge. To provide the reader with physical intuition on how
classical physics emerges from a large value of some conserved quantum number, we start by ex-

amining two simple quantum mechanical examples, namely the hydrogen atom and the free particle

on S2.

3.1 Invitation I: the semiclassical Hydrogen atom

Our first example of quantum systems at large charge is the quantum mechanical Hydrogen atom
in the limit of infinite mass of the proton and at large values of the magnetic quantum number. The

electron Hamiltonian is given by

=2
P o

H=— = .
XM 1 (3-3)

where p and M are, respectively, the momentum and mass of the electron. The second term in

the RHS is the usual Coulomb potential with & the fine structure constant. The eigenvalues of the
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Hamiltonian are found by solving the Schrodinger equation and read

Mo?

B ==

(3.4

where 7 is an integer quantum number which labels the energy levels. The corresponding eigen-
states of the Hamiltonian are labelled by n and other two quantum numbers: [ ,that labels the
eigenvalues of the angular momentum L?> = [(I + 1), and m, labelling its projection on the z-axis
L, = m. n, [, and m are known, respectively, as the principal, azimuthal and magnetic quantum
numbers and are bounded asn > 1, 1 </ <n—1, and —/ < m < [. At fixed m, the ground state

saturates these bounds as m = [ = n — 1 and has energy given by

Ma?

Ep(m) = —m )

(3.5)

Consider now the corresponding classical system at fixed angular momentum / = m. The ef-

fective potential V, s = # — & contains a centrifugal and a Coulomb term. By minimizing V, ¢
we have the minimal energy solution as a circular motion with radius r* = ;7. Evaluating the

Hamiltonian on this solution gives the ground state energy

Mo?

E(C)’laSS(m> — 2m2 )

(3.6)
By comparing the classical result for Ey above with the quantum one (3.5), we see that the differ-
ence goes to zero for m — oo. In fact, for m > 1, m+1 ~ m, and we have

EO o E(c)lass
Ey N

SRS

(3.7)

Consistently, the semiclassical WKB approximation [117] can be used when the de Broglie wave-
2n
|l
tive behaviour of the classical effective potential is shown in Fig.2; the centrifugal barrier keeps the

length App = 5 ~ ™ is slowly varying, i.e. di}% < 1, which in turn implies m >> 1. The qualita-

electron localized on the classical trajectory r = r* and at large m we can study the corresponding

quantum mechanical path-integral via a saddle point expansion around it.
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Figure 2: The qualitative behaviour of the effective potential V, s as a function of r.

3.2 Invitation II: the spinning rigid rotor

As our second example of a quantum system at large charge, we consider a free quantum mechani-
cal particle living on a 2-sphere. This example has been already presented in [77]. The Lagrangian
of the model reads

Iy 0
£:§(92—|—sm29(p2) : (3.8)

with / the moment of inertia while the dot denotes the time derivative. By solving the Schrodinger
equation, one finds that the states are organized in SO(3) multiplets |L? = I,L, = m), and have
energy E; = [(141)/2I. ' As in the previous example, the ground state with fixed m satisfies
! = m and has energy

_ m(m+1)

Our goal is to reproduce this result semiclassically as an expansion in 1/m. To this end, consider
the transition amplitude between states with fixed L, = m which, since L; and ¢ are canonically

conjugate, we can write as

. 60.9(7r)=067,0¢
(67, m|e” (=% |6, m) = o / DOD@ ¢/ 4% Lo~ deyd g . (3.10)
6’(p(fi):9ia(l)i

15 The energy eigenfunctions are given, as usual, by the spherical harmonics Y;,,(0, ¢).
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where H is the Hamiltonian and 7 the time coordinate. In fact, if we fix L, to be an integer m, then
its wave function is ¢”?, while the operator L, acts as —i%.

We can bring the second exponential term in the RHS into the Lagrangian by noting that ¢y —
Q= ffff d7@®. Then the above amplitude can be computed by means of the modified fixed-charge
Lagrangian

Lon=L+im . (3.11)

Taking the limit T = 7y — 7; — oo amounts to project this matrix element onto the ground state

with fixed L, = m, |m).
Tim (67, mle™7 (01, m) = (8, mlm) |6y, m) e~ E0 )T [1 L O(eBEmTY] (3.12)
—»00

where AE (m) is the energy gap of the first excited state with fixed m.
Inspired by the previous example, let us compute the above via a saddle-point expansion around

the solution of the corresponding classical system. The equations of motion (EOM) are

6 =sinOcosO ¢> , Isin’0 ¢ = —im. (3.13)

We are free to choose the in and out states as long as they have L, = m and overlap with the ground

state. A convenient choice is given by 6; = 6y = 7/2, and leads to the following classical solution

/4 m
0, = R Q5 = —171'+ Qo , (3.14)

where ¢ is an integration constant. Plugging this solution into the modified Lagrangian £, (3.11),

we obtain

2
EQ (m) = %/ﬁmdf = (3.15)

This is the leading order (LO) of the semiclassical expansion. As for the Hydrogen atom, by
comparing the above with (3.9), we see that the difference between classical and quantum results
vanishes in the limit m — oo.

Notice that the integration over ¢ in the path integral does not affect the computation of the

energy levels. On the other hand, it enforces L, invariance when computing correlators involving
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o [77].
The classical variable conjugate to m is i¢y = 7 = @, which can be identified as a chemical
potential measuring the response of the system with respect to a change of m. In fact,
oE\" (m) m
0
——=qu. 3.16
om 7 H (3.16)
To compute the leading quantum correction to the classical result, we parametrize the quantum

fluctuations as 6 = 6, + &, @ = @, + x. Rescaling the time as T — 7/m we have

m? int
(r/2,mle"HT|7/2,m) :e—zzT/Dgpxemfdf(ﬁ(”*ﬁ( ), (3.17)
where
o) Ll o, 14
= E é +x +I—2§ , (3.18)
. 1
£ — o (sin?& — &%) — ( zmx) sin? & . (3.19)

From Eq.(3.17) we see that 1 /m plays the role of the loop counting parameter. Hence our semiclas-
sical expansion is actually a large quantum number expansion in 1/m, as anticipated. Therefore,

we have

Ey= Z E) <1+ Z apm” ) : (3.20)

We proceed by computing aj. This 1-loop contribution arises from the quadratic Lagrangian £®

and is given by the corresponding fluctuation functional determinant as

AVEy = ; ‘éw (In(@? +m?*/I?) +Inw?) = AUV+2—[ (3.21)

We have a regularization scheme-dependent divergent term plus a finite part corresponding to the
zero-point energy of the harmonic oscillator . After adding this contribution to the classical result
(3.15) we obtain the exact result (3.9). In fact, it can be proved that higher-loops contribution

vanishes [77].
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3.3 Fixing the charge

The idea suggested in the previous examples is that physical systems with large quantum numbers
are amenable to semiclassical treatment. As we will see, this conclusion applies also to relativistic
scalar QFTs with global symmetries at large (internal) charge. In general, as most non-trivial
classical solutions, the leading trajectory around which we will set up the semiclassical expansion
will break both spacetime and internal symmetries.

Consider a conserved Noether current j,. The charge fixing constraint is

0= / 4 xjo=0, (3.22)

with Q a certain constant. Fixing the time component of the conserved current, which transforms

as a d-vector, induces an asymmetry between time and space breaking relativistic invariance.
Consider a relativistic theory with Hamiltonian H and fix the charge Q. The ground state |0) can

be found via the standard method of Lagrange multipliers to implement the charge fixing constraint

(3.22). We, therefore, consider the modified Hamiltonian
H=H-ugQ, (3.23)

where the Lagrangian multiplier u is a non-zero chemical potential. The ground state minimize H,
Le.

H|0)=0. (3.24)

If the symmetry generated by Q is also spontaneously broken (for instance, by a non-zero
vev generated by the charge fixing), then |0) cannot be an eigenstate of Q. Hence (3.23) says
that |0) cannot be an eigenstate of H too, implying that we cannot classify the states with the
eigenvalues of H but we have to diagonalize H. However, to describe the system by using the
non-relativistic Hamiltonian H is just a, usually convenient, mathematical choice. The underlying
system is relativistic and it is H that generates the microscopic time evolution of the operators. On
the other hand, the ground state of its fixed charge sectors spontaneously breaks Lorentz invariance
via the coupling of the charge to tt, which can be seen as the zeroth-component of an external gauge

field.
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This point of view can be applied to more general cases. In fact, since the fundamental laws
of physics are relativistic, real-world non-relativistic systems can always be seen as states of a
relativistic theory that spontaneously break Lorentz invariance. Actually, this can be taken as a
definition of condensed matter itself, and we can classify condensed matter systems according to
the spacetime symmetries they break [118].

Which is the condensed matter phase of a relativistic QFT at large charge?

Consider for simplicity a system with an internal U (1) symmetry generated by Q, i.e. [Q,H| =
0. The symmetry breaking pattern which field-theoretically defines the superfluid phase is realized
when Q is broken and the Poincare group generated by { Py, P;,J;, K;} breaks to {f’o,Pi,Ji} [77,118,
119] with

Py=Py—pQ. (3.25)

Here Py = H generates time translations, P; generates space translations, J; generates rotations, and
K; generates boost. By comparing with Eq.(3.23), we see that a superfluid-like phase arises as a
natural situation in QFTs at large charge.

Consider a classical U (1)-invariant scalar theory with Lagrangian
L=0du9""o-V(p p), (3.26)
The U (1) charge is given by Eq.(3.1) with
H=ilp o e —pd* "), duj* =0. (3.27)
The canonical Hamiltonian density is
H=IT'TI+Vo*-Vo+V(¢p ), (3.28)

with IT = dy¢ the momentum canonically conjugate to @. We can rewrite the charge density in

terms of IT as

Q= i(ITg* ~Tlg). (3:29)

As discussed above, the ground state minimizes the fixed-charge Hamiltonian H of Eq.(3.23),
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Veff (,0 )

Figure 3: The effective potential V, s¢(p) for the radial mode of the complex field in the broken phase.

which we can rewrite as
H=|—iug* >+ V* - Vo +Verr(0*0) . (3.30)

We can minimize separately the first two terms and the effective potential V,pr =V — u>e*o.
As a consequence, the ground state is a spatially homogeneous field configuration minimizing
Verr(@*@). Also, the time dependence is fixed by the first term in the effective Hamiltonian. This

is minimized by IT = iu¢*, yielding
(1) = @(0)e M. (3.31)

For any V bounded from below and that asymptotically grows faster than ¢@*¢, the minimum
of Verr is not at @ = O for enough large u, i.e. we have a broken phase. In the broken phase, the
radial mode of the ¢ field, ¢*@ = p?, acquires a non-zero vev which spontaneously breaks the
U(1) symmetry. For example, for a quartic potential V = m?p? + Ap* the qualitative behaviour
of the effective potential for p is shown in Fig.3. The broken phase realizes the superfluid pattern
(3.25).

From the above discussion, it is clear that SSB plays a fundamental role in studying QFTs at
large charge. In the next section, we will revisit the Goldstone theorem identifying the generaliza-

tion relevant for large charge systems.
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3.4 Goldstone bosons at large charge

In relativistic theories, SSB is described by the Goldstone theorem [120], stating that the spectrum
of a theory with spontaneously broken internal symmetries contains as many massless relativistic
modes (Goldstone bosons) as the number of broken generators. Furthermore, given that the group
G breaks down to H, the Goldstone excitations live in the coset space G /H.

The Goldstone theorem does no longer apply in non-relativistic theories and this leads to a
much more variegated connection between SSB and the low-energy spectrum of the theory. QFTs
at large charge lies between the relativistic and non-relativistic cases. In fact, according to the
discussion in the previous section, we are still dealing with a relativistic QFT, but its fixed charge
sector breaks both spacetime and internal symmetries. We will call the relevant generalization of

the Goldstone theorem, the Charged Goldstone theorem.
Charged Goldstone theorem

Consider a relativistic theory with a global (internal and continuous) symmetry group G gen-
erated by Q,, a = 1,...,rank(G). Fix a charge Q| = Q and introduce the effective Hamiltonian
H=H+ uQ. We denote as G the subgroup of G commuting with H.

Assume that

1. n generators of G are spontaneously broken, i.e. there exist n fields (order parameters) ¢;

such that
det (0[¢:(0), Qu(#)]0) #0 , (3.32)

where |0) is the H-vacuum. Denote the number of spontaneously broken generators of G as

m.
2. Translational invariance is not completely broken.

3. The currents jéf evolve in time according to H, i.e.

- —
—

A (1,7) = & HIZPR) jl () 1HIZPE) (3.33)

where P generates the spatial translations.
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4. @G is a direct product of simple compact Lie groups.

Then

In the spectrum of the theory, there are three types of "generalized" Goldstone bosons:

1. Type I ("relativistic") Goldstone bosons with low-energy dispersion relation E; ~ k>*! with

s an integer.

2. Type II ("non-relativistic") Goldstone bosons with low-energy dispersion relation Ej ~ k>

with s an integer.

3. Type II ("gapped") Goldstone bosons with gapped dispersion relation and gap fixed non-

perturbatively as Ej_.o = g, With g, a group-theoretical calculable factor.

The number of Type-I and type-1I Goldstone bosons equals the number of broken generators of

g,ie.

ni+2ng=m. (3.34)
The number of type II modes is
1 —~ o~ — —_
m=5p,  p=rak(),  (Par=(0[0u: 050} . (3.35)

where {é\a} is the subset of {Q,} which generates G.

The number of type III modes is

iy = 3 (ank(p) ~p) . (P)as = (01Qu, 04J0) (3.36)

Part of this result, i.e. ny + 2n;; > m, has been proved by H. B. Nielsen and S. Chadha in their
classical paper [121]. This result has been later improved in [122—124] till the equality sign has
been finally proven years later by H. Watanabe and H. Murayama in [125] following Leutwyler’s
works [126, 127]. These works implicitly assumed that the Hamiltonian governing the time evolu-

tion was H and not H. Then the existence of gapped modes with symmetry-controlled dynamics
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in theories with SSB, i.e. Type III Goldstone bosons, has been not pointed out till the work of
A. Nicolis and F. Piazza [128], which explained the necessary condition for their presence in the
spectrum. The final result about the counting of Type III modes has been given in [129].

Type I modes are the usual Goldstone bosons appearing in the relativistic Goldstone theorem
at zero charge. According to the charged Goldstone theorem, Type II bosons appear when two
broken generators Q,, Q) satisfy (0[Q,, 0p]0) # 0. In such a case, the corresponding Goldstone
bosons become canonically conjugate variables effectively reducing the number of degrees of free-
dom. This is the reason why they count double with respect to the number of broken generators
of G. [123]. Finally, Type III modes appear when the broken generators do not commute with the
modified Hamiltonian H. From the point of view of the latter, the chemical potential acts as an
explicitly symmetry breaking term that leads to a mass proportional to t. A partial proof of the

theorem is given in App.A.

3.5 The RG flow at large charge

In this section, we illustrate how fixing the charge affects the RG flow by a toy-model analysis. To
this end, we consider a U (1) massless scalar theory in d < 4 dimensions. In particular, following
[10], we will show how fixing the charge introduces a scale in the CFT and how the infrared physics
of the fixed charge sectors of the theory is described by an approximately scale-invariant action.

We take the UV Lagrangian of the theory to be

i A
Euv==8¢8¢——z(¢¢f. (3.37)

For d < 4, this model flows to an infrared Wilson Fisher (WF) fixed point which, in d = 3, is
strongly-coupled and defines the XY universality class. By virtue of the Noether theorem, the U(1)
symmetry implies the existence of a conserved charge Q given by (3.1) with the Noether current
given by Eq.(3.27). We consider this theory as living on R x X, where X is an arbitrary compact

homogeneous two-dimensional manifold with volume V. One can derive the commutation relation

0.0l =0, (3.38)
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from canonical commutation relations for the field operator ¢. This equation says that the U (1)
charge of ¢ is +1. Then the operator (pQ (Q is a positive integer) has U(1) charge Q. Besides
the normalization of the U(1) charge, which can be changed by multiplication by a nonzero real
number the charge of the operators of the theory will be an integer multiple of the charge of ¢, as
long as we can write them as a linear combination of products of ¢ and its derivatives (non-integer
powers of fields and their derivatives are ill-defined). This illustrates the important feature that the
charge is discretized for well-defined local operators of the theory, regardless of the normalization
convention.

We consider polar coordinates for the field:

(p o % el% R (p g ﬁ eii% . (3.39)
and the Lagrangian becomes
== = ——p~. 4
Lyy =5(9p)"+5p7(9%)" = 1P (3.40)

Following [10], we consider a toy-model RG evolution where we truncate the exact Wilsonian
RG flow to the flow for the quartic coupling A, neglecting all other operators. By integrating
out modes and lowering the cutoff A we generate the RG evolution of the quartic coupling A (A).
Furthermore, we assume that the theory flows to an attractive FP in the infrared. We can define
a dimensionless coupling Aas A=A} (A). Essentially, the coupling defines the characteristic
scale of the system. Then when we start flowing towards the infrared, the first scale we meet is

fixed by A as

e
Agy = A54 | (3.41)
and the quantum corrections to the free theory for processes at energy A are suppressed as ﬁ

Then at A = Ayy, the quantum corrections to the coupling are of the same order of the coupling
itself, and A is quickly attracted by the FP. Then, below Ayy, A takes its fixed point value A = A*

and we have

=A1", AL Ayy . (3.42)
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We now fix the charge as Q = Q where Q is a certain fixed number. Alike the Hydrogen atom
studied in Sec.3.1, this operation produces a centrifugal barrier in the effective potential for the
radial mode. This is the effective potential depicted in Fig.3 and results in a non-zero vev for p.
Furthermore, by considering the classical EOM and the charge-fixing constraint, it can be easily
shown that the field d) gets a vev too. The latter can be identified with the chemical potential

canonically conjugate to Q, in full analogy with the rigid spinning rotor of Sec.3.2. Then, we have

pr)=vtrlx),  (pl)=v, (Ix(x))=n. (3.43)

Let us have a look at the symmetry breaking pattern induced by the charge fixing. The starting
theory possesses conformal symmetry plus a global U(1) symmetry. However, the ground state

spontaneously breaks boosts, time-translations, and the global symmetry, resulting in
50(d,2) xU(1) = SO(d) x Dx U(1) ~ SO(d) x D, (3.44)

where D' = D+ Q. As expected, the large charge sector of the theory is in a superfluid phase. The
charged Goldstone theorem predicts the existence of a single type I Goldstone mode which can be
identified with the angular mode. In condensed matter language this mode is called the superfluid
phonon. In other words, the Goldstone theorem implies that the field d ¥ remains free and massless
in the infrared.

On the other hand, since there is a potential term for p, we expect its fluctuations r(x) to be
gapped, and thus we can decouple them from the RG flow below their gap. In fact, by expanding
the potential term 1’%(\/ +r)*, we can immediately read off the squared mass of the r field as
, 3
:

— 2. (3.45)

r =g

This is the next scale we encounter as we flow to the IR. Below m,, r decouples from the RG

flow and its contributions to the running of the quartic coupling are suppressed by positive powers
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of A/m,. As a consequence, the coupling A (A) freezes and takes the value

3 \4d 1/(d—2)
Amy) = Ams 4 = ((gvz) ),*2> : (3.46)

3 1/(d-2)
m, = (gx*#) . (3.47)

implying

Plugging the above results into the effective Lagrangian £4, we obtain

2 4—d 1/(d=2)
3 A
La=—auxd*y— (2 a2 vz +0 (- . (3.48)
2 8 yd—2
Then, the infrared effective action is approximately (classically) scale-invariant up to (quantum)
corrections suppressed by A/ y2/(d=1) " Of course, the full theory is still conformally invariant, but
in its charged sectors conformal invariance is spontaneously broken by the vev of the radial mode
(p) =v.
Since the y field is shifted by a constant under U(1) transformation only its derivative is phys-
ical. Then, to analyze the IR dynamics of the y field, it is useful to introduce a new scalar d.o.f. as

B=(duxd"x) /2 which satisfies (B) = . In the IR pu is related to v by

1
2d (344 a2
- 2 (g ,1*2) i (3.49)

while they are both related to the charge density % by'®

_d=2 _d=2
p= 63T (_dgz) Y oI (%) s (3.50)

— 1
4-d d 2(d-1) Q\ a1
=621 [ —— A= ) 51

In the spirit of effective field theory, we can integrate out the radial mode p which does not par-

ticipate in the IR dynamics. In practice, this is too cumbersome to be done without resorting to

16 Since the underlying theory is conformal, Eq.(3.50) follows directly from dimensional analysis alone by noting that p,
U, and v have mass dimension [p] =d — 1, [u] = 1, and [v] = (d — 2) /2, respectively.
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approximations. However, to leading order in the saddle-point approximation, we can simply elim-

inate it via its EOM, obtaining

d
2 .

Lerr(x) = 1B+ =c1(dux o' x)? +... , (3.52)

with c¢; a dimensionless constant. This Lagrangian is both scale and Weyl invariant. Analogously,
higher-order terms can be obtained in the usual EFT spirit via dimensional analysis and symmetry
constraints. However, the novelty is that we can now organize the terms appearing in the EFT
action for the B field by analyzing their Q-scaling which acts as a useful organizing principle. In
fact, in the large charge regime, we can consistently truncate the effective action retaining only
terms with a positive Q-scaling.

Independently from the details of the construction of the EFT, it will have the same structure of
Eq.(3.48) i.e. it will contain a scale-invariant part, plus quantum corrections which are controlled

by A/m,~ A/(B) = A/u

LA(B)=La(B)+ Y AT2LM (B, A<, (3.53)
A<d
where A is the dimension of the corresponding operators. Notice that the upper limit A < d in the
above sum does not imply a finite number of terms in the effective action since in general B can
appear at the denominator.
Fixing the charge we introduced a new scale in the theory, which controls the low-energy

physics when the following hierarchy is realized

r

J | l

Scale-invariant EFT  _fycuations are frozen A is frozen

for B

Furthermore, if we work on a compact curved manifold with a characteristic length scale R as we

will do later, the EFT is well-defined only on length scales that are < R, with R acting as an IR
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cutoff. Then the above hierarchy becomes

< Ayv, (3.54)

and can be satisfied only if the charge is large i.e. Q > 1. The condition of being at the fixed point
fixes entirely the terms appearing in the quantum part of the effective Lagrangian £EIA) (B) in terms
of the ones in L (B) as

0L

AR Y (A—d- )AL (3.55)
A<d

where the LHS has to be interpreted as the result of integrating out an infinitesimal shell of mo-
menta. Besides being calculable, the cutoff-dependent terms are, in general, scheme-dependent and
their physical role in the present context is solely to enforce conformal invariance at the quantum
level.

In the EFT (and CFT) spirit, we now forget about the microscopic Lagrangian description
(3.37) and consider a generic d-dimensional U (1)-invariant scalar CFT in its superfluid large charge
phase. It is convenient to work on a cylinder of unit radius R x S¢~! and switch to Euclidean
signature. The key observation is that the modified metric gy, = g#sz, where g,y is the cylinder

metric and B is now defined as B = (—dyxg"¥ dux) 1/2

, 1s invariant under Weyl transformations.
The invariant operators entering the EFT action can, therefore, be built out of B, gﬂw and the

covariant derivative 13; consistent with g,y The first terms of the effective action read

Serr(x) =1 [ d'x /g e [ dx/oBt {% +(d=1)(d-2) (Dgf)z }

HxadVy ~d—4
e / déx,/gB" {RWT T } o (QH) . (3.56)
where R and R,y are, respectively, the Ricci scalar and Ricci tensor of gd-1
The leading term of the effective action is given by Eq.(3.52) and scales as Q%, while the
remaining term scales as Q% By organizing the EFT operators according to their Q-scaling as
done above, we can use the action (3.56) to compute CFT data in a well-defined é expansion. At

every order in the large charge expansion, we have only a finite number of terms in the effective
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action, and the predictions are, therefore, given in terms of a finite number of unknown coefficients
¢;. The latter can be fixed by experiments or computed with Monte Carlo methods.

A quantity which is particularly easy to obtain in this framework is the ground state energy on
the unit-cylinder E 5 which, according to Eq.(2.30), delivers the scaling dimension A of the charge
Q-operator with the minimal scaling dimension (MSD). This is the part of the CFT data in which
we will be mainly interested in the rest of this thesis, and that is usually computed in the large
charge literature.

E can be calculated by considering the expectation value of the evolution operator eHT (with
H the Hamiltonian and T = 77 — 7;) in an arbitrary state |Q) with fixed charge Q and then taking
the limit 7 — oo to project out the ground state from it. That is

(Qle HT|0) = Ne Eol =Nre 20T . (3.57)

Notice that we only require |Q) to have a non-zero overlap with the lowest-lying state in the
fixed charge sector. Then once we insert a complete set of energy eigenstates in the left-hand
side (LHS) of the above equation, only the contribution of the lowest energy state survives, with
a prefactor NV that is independent of T but depends on the overlap between the states. Therefore,
we may always extract the ground state energy from the 7-dependent part of the expectation value.
Eq.(3.57) is the CFT analogous of Eq.(3.12) for the rigid rotor and can be computed semiclassically
by using the effective action Eq.(3.56). The result reads [10, 66]

d

Ag =0 a1+a2Qd%21+a3Qd;fl+...} +Q° [ﬁ0+31Qd%21+...] T (3.58)

The terms in the first square bracket come from the leading (classical) order in the semiclassical

expansion. The o coefficients are combinations of the ¢; in (3.56). For instance

o= ci(d —1)Qq—y R c2(d—1)(d—=2)Qu 7 (3.59)

(—c1dQq_1)aT (_Clde—l)%

with Q,;_; the solid angle in d dimensions.

The terms in the second square bracket in (3.58) represent instead the 1-loop quantum correction
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to the classical result. It can be shown that it is given by the sum of zero-point phonon energies as

1 - 2
EanngﬁO‘i‘ﬁlQ T4 ... (3.60)
4
where
2+d-2)T'(l+d—-2
ng:( + )T+ ), (3.61)
r(d+1rd-1)
is the multiplicity of the eigenvalues of the Laplacian on $¢~!, J;, and
1
oy =csJy+O ( — ) , (3.62)
Qa-T
is the dispersion relation of the phonon mode. The speed of sound is ¢; = —A— and is dictated by

Vd—1
tracelesness of the energy-momentum tensor [119]. As a consequence, when d is odd, the order

(@) (QO) term in the large charge expansion is calculable and universal, in the sense that it does
not depend on the microscopic description of the CFT but only on symmetry and d. Two-loop
corrections to AQ start at order O <Q_d%l).

For instance, in d = 3 we have

[\STIS8]

Agli—s= 103 + 0% —0.0937255+ O (Q_’%) . (3.63)

The value of the universal coefficient Byl;—3 = —0.0937255 has been later confirmed via lattice
studies [12, 130] and first-principle computations [76]. In an even number of dimensions the large
charge EFT predicts instead the existence of a universal Q°In Q term with calculable coefficient &,
e.g. 50‘61:4 = _ﬁ [131]. This term arises in the renormalization of f3), which features a pole in

even dimensions.

More details on the EFT construction in U (1)-invariant CFTs can be found in [10, 66, 77].

3.6 Feynman diagrams at large charge

The EFT approach discussed in the previous section is suited to deal with strongly-coupled systems

where there are no small parameters other than L On the other hand, when the theory has a

0
perturbative parameter A, one can bypass the EFT construction and work in the full theory. The
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large charge expansion takes the form of a 't Hooft-like expansion, where one introduces a "t Hooft
coupling A = A0, and consider the limit A — 0 and Q — o with A fixed. In this and the next
section, we focus on the large charge expansion in perturbative theories.

The scaling dimensions can be computed in perturbation theory via the usual diagrammatic
loop-expansion. Here, we will show how this expansion can be reorganized when dealing with large
charge operators. We will mainly follow the analyses originally presented in [21,22]. Let’s keep
considering the scalar %(p4 theory studied in the previous section. We take the number of spacetime

dimensions to be d = 4 — €, with € > 0 and consider Euclidean signature. The Lagrangian reads

L =09dPyd o+ %(@0%)2 . (3.64)

In d = 4 this theory has trivial (free) infrared physics, whereas, as shown in the previous section,
in 2 < d < 4 this model exhibits an infrared Wilson-Fisher (WF) FP that, when € < 1, is weakly
interacting and can be investigated by means of the so-called €-expansion in powers of €.

As we saw before, the composite operators (pQ and @Q have, respectively, charge +Q and —Q.
We work in the minimal subtraction (MS) scheme and renormalize the coupling and the fields

according to

ho = MF12;., of =259, (3.65)

where M is the RG scale. The two-loop beta function of the model reads

IA A2 A3 A
FTIYYi =B(A)=—¢€A +5(47r)2 — 15(47:)4 +0 <(47L')6> . (3.66)
The condition B(A) = 0 determines the value of the FP coupling as
AT 1 3, 3
anp = 55T s +0(e’) . (3.67)

In general, the scaling dimensions are scheme-dependent and, therefore, unphysical quantities.

However, they become physical at the FP. We write the scaling dimension of (pQ at the FP as

_(d
AQ:Q(§—1> (A7), (3.68)
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Figure 4: The only Feynman diagram contributing at 1-loop. The crossed vertex represents the operator
insertion.

with 7,5 the anomalous dimension of (pQ. Yp 1s related to the renormalization factor Z; by

8 anQ

YQ(M — T (3.69)

We proceed by diagrammatically computing the 1-loop anomalous dimensions. Working in
momentum space, we consider the insertion of the (pQ operator with Q incoming momenta p. The

relevant correlator is

(@200 (p)90(p) .- G0(p)) = Z5ZS (92 9 (p) B (p)... ®(p)) . (3.70)

As usual, we fix Z5 and Z, such that the renormalized correlator (@2 (p)@(p)...¢(p)) is finite.
The Feynman rule for the propagator and the quartic vertex are, respectively, iz and —A. At one-

loop we simply have Z, = 1 , while the coupling counterterm is &, = [132]. Furthermore,

1671728

there is only one diagram to calculate, which is shown in Fig.4, where the crossed vertex represents

the insertion of the ¢< operator. This diagram evaluates to

0(0-1) % 1 A 0(0-1) (2 M?
2 (27)4 k2 ( k+2p) T lenr 4 ( T2 Hln( p? >)+O()
(3.71)

The @ factor arises from the combinatorics, being the number of ways we can connect the

external momenta to form the diagram by choosing legs among Q. Then, from Eq.(3.69), we have
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the 1-loop anomalous dimension of (pQ

A QQ-1)

%= Te 2 +0(2%) . (3.72)

We would like to reorganize our perturbative expansion in powers of Q. To this end, we classify
the diagrams according to their leading Q-scaling and loop order. As for the 1-loop diagram of

Fig.4, which scales as ~ Q?, the Q-scaling of a given diagram arises from the combinatorics. In

particular, the combinatorial factor is proportional to (Q%'k), with k the number of legs of the inserted

(pQ operator which do undergo interaction, i.e. the number of external legs. At large O, we can use

the de Moivre-Stirling formula to obtain

0!
(0—Kk)!

~ 0~ . (3.73)

Then the leading Q-scaling of a diagram is given by k while its loop order is determined by the
number of vertices.

At loop order ¢ < @, the diagrams contributing to Z; goes from /0% to A*Q. However, it can
be shown that, at any loop order, the terms with the highest powers of Q exponentiate terms from
lower loops [21,22]. As a consequence, the leading contribution at order k scales like as, A¢Q‘+1.

Hence the perturbative expansion takes the following form

- (d - (d -
AQ—ZQ<§—1) +7(A") =0 (5—1+ZA*€P5(Q)> , (3.74)
=1

where we have considered the expression at the fixed point and P, is a polynomial of degree /. We

can reorganize the above as a large charge expansion in terms of powers of Q

1 _
Ag= Y @Ak(A*) . AT=270, (3.75)
k=—1

where we introduced the (renormalized) 't Hooft coupling .4 in order to take consistently the limit
A — 0, Q — oo by keeping A fixed. In fact, like the original perturbative expansion, the large charge
expansion is an asymptotic series formally valid in the limit Q — 0. Notice that all the functions Ay

receive contributions from arbitrarily high loop orders of the conventional diagrammatic expansion.
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Figure 5: The only diagram which contribute to the two-point function (3.76) at order O(A

oo Y PP E>

~Q1QQ@ -1 ~QIQ@-1)(@-2) ~Q'eQ-D(@-2)@Q-3)

Ql

Figure 6: The four topologies contributing at order O(A?) and their Q scaling.

At criticality, Aj can also be computed by considering the following two-point function

(@2(x)920) = — 2. (3.76)

Following the analysis originally presented in [22], we now re-obtain the 1-loop result (3.72) by
studying the loop expansion for ($2(x)@2(0)) in order to make contact with the semiclassical anal-
ysis of the next section. Furthermore, we will explicitly show the exponentiation of the diagrams
discussed above.

At order O(A), there is only one diagram to compute, which is displayed in Fig.5.

The authors of [22] dubbed this diagram the 1-loop Kermit the frog diagram. We are going to
prove that the leading diagrams at every loop order are obvious generalizations of this diagram.

As before, the Q dependence is of combinatorial origin and it is given by Q! % 17 with k the
number of legs of the ¢ operator which enter in a vertex. For instance, consider the 4 topologies
contributing at two-loop, which are shown in Fig.6 together with their Q scaling. At large Q, the
fourth diagram scales as Q! % and is the dominant 2-loop diagram in this limit.

At the /-loop order, the diagram with the lowest number of legs that do not enter in a vertex is
realized when two legs of each vertex come from the insertion of the composite operator (pQ and

the other two legs come from the insertion of (Z)Q, i.e. we have an iteration of the Kermit diagram.

17 These diagrams have an additional Q! factor with respect to those contributing to Zp. It comes from the insertion of

2.
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At any loop order, these diagrams are leading in Q. In fact, they have combinatorial factor
0! /(0 —2¢)!, and then scale as Q! AQ*". The correlation function reads
_0 ) - 1 Q! 1
(@%(x)92(0)) = 0! Y (—iR) ' Ki 7 =7 o1 (3.77)
e;) 4t (Q—20)! ¢!
where K, denotes the /-loop Kermit diagram. Let us have a closer look at the various factors
appearing in (3.77): we have Q legs for every operator insertion and the permutations of the legs
give a factor (Q!)%. Next, we have to divide over the number of permutations that produces an
equivalent diagram. Clearly, we do not change the diagram if we exchange the (Q — 2/)! legs

which do no participate the interaction and this gives the factor —~~—. We can also permute pairs

(Q-20)!
of legs inside every loop and this produces the 1/2¢. Finally we have the usual 1/¢! from the Taylor
series of the exponential of the interaction term.

In the large Q limit the two-point function becomes

(3.78)

50 ()00 _ o —iQA fl
(02920 =0 LK (=)

where A is the ’t Hooft coupling introduced in Eq.(3.75). To evaluate the Kermit diagram we write

it in position space

4 _
K, = G(0,x)" *[] / d*z;G(0,)* G(zi, x)* = G(0,x)2 K" | (3.79)
i=1
where
1
= d*zG(0, 7)? . 3.80
K= G ] 4200266 (3.80)

with G(x, y) the propagator of ¢

1 1
Ge) = g ey (3.81)
Then _
(020992(0)) = 016002 ¥ (228 0160002 3w
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i.e. the Kermit diagrams exponentiate. Furthermore, we have

0! G(0,x)2 = (§2(x)92(0)), . (3.83)

where ((PQ(x)(pQ(O))O is the correlation function in the free theory (3.76). Thus

_0 0 _ 0! Q4K
(@209%0) = 8 (.84

To compute K we use the propagator (3.81) and obtain

] 1
G(O, X)ZIC = —w /d42m . (385)

To regularize this integral we introduce a cutoff A and we use that in d = 4 the following identity

holds [133]

1 1., (InZ?A?
A= _Za ( 2 ) . (3.86)
Using (3.86) into Eq.(3.85), we arrive at
_ _L 2.2
K= S In(A“x7) . (3.87)
Then ) i
_0 5 ! 1 !
(92(x)92(0)) = —2 = ¢ (3.88)

9 2A5 DA _ 3
(47)2|x| Q|x|1§7 (472)2 x> (@t 2z

Comparing with Eq.(3.76), we have the scaling dimension of ¢, i.e. we re-obtain Eq.(3.72)

——+0 (Q)> +0(2%) . (3.89)

Our large charge expansion formula (3.75) shares various similarities with other types of ’t
Hooft expansion, such as the large number of flavor Ny [67-70] and the large number of color

Nc [20,71,72] expansions in gauge theories. The main similarity is that we rewrite perturbation
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Figure 7: The dominant topology of Feynman diagrams in the large number of flavors limit. Note: reprinted
Sfrom [70].

theory to expand the observables (or other important quantities such as the beta function) as

observable ~ ) AP (N) = NjZ]%Fk(A) , (3.90)
t=loops k

where, for simplicity, we have considered a theory with just one coupling A and j is some number

that depends on the particular case under consideration. N = {N,Ny, Q ,..} is a large parameter.

A crucial difference of the large charge expansion is that, while N and Ny are parameters of the

theory, the charge Q is a property of the operators, or equivalently of the states, of a given theory.

In both the large Ny and N¢ expansion the Feynman diagrams can be organized according to
their Ny (N¢)-scaling. In the large Ny case, since every fermion loop comes along with a N factor,
the dominant diagrams at every fixed loop order /¢, are those which maximise the number of fermion
loops. These are the diagrams contributing to the function F; in Eq.(3.90) and are known in the
literature as bubble diagrams. An example of how they look is shown in Fig.7. Amazingly, in some
interesting cases, such as the MS beta functions in Standard model-like theories, it is possible to
completely resum the bubble diagrams and obtain the function F] in closed form.

In the large N¢ limit, the dominant topology is given by the so-called planar diagrams, i.e.
diagrams which can be drawn on a plane without superposing the lines. What about the large
charge expansion?

Consider the general form of the large charge expansion for Aj; (3.75). Our previous analysis
says that the leading order A_, among the diagrams contributing to Z, resums all the diagrams
that at the /-th loop order scale as A’Q’*!. These are the diagrams where the number of external
legs minus one is equal to the number of interaction vertices and are shown in Fig.8

To be more precise, A_j does not resum all these Feynman diagrams but only the leading
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~A(Q? ~A2(3 ~23Q*

Figure 8: The dominant topology of diagrams in the large charge expansion.

O contribution coming from each of them, i.e. it resums the highest powers of Q up to arbitrarily
high-loop orders. Computing the full A_; directly from the relevant diagrams is likely to be a tough
task and has never been performed so far. However, the examples analyzed until now strongly invite
us to perform the computation by exploiting the classicalization of the physics at large charge to

set up a semiclassical approach. This strategy is the content of the next section.

3.7 Path integrals at large charge

In this section, we will show how the scaling dimensions of large charge operators can be calculated
via a semiclassical expansion which coincides with the large charge expansion in Eq.(3.75).

To this end, we continue our investigation of the U(1) model in 4 — & dimension defined in
Eq.(3.64). As shown in the previous section, we can extract the scaling dimension of qu from the

following two-point function

o0y — S DAL (e ) @ (xi)exp [~ [ £]

‘QxQ,-:Z%‘x Q(x;)) = 391
(@) 0 () = 23 (e 9% ) Db e 39
The key observation made in [21,22] is that we can rewrite this path integral as
_ ~0[[ 290990+ %2 (@og0)>~ (1nGo (/) +1n @o x)) |
_0 5 -5) DeyD
Z5 (9% (xp) 9% (x:)) = g0/ PP e . (3.92)

[ DouDgy ¢ 2L/ PmInt 2 (@’

where we have rescaled the field as ¢ — (p\/é, brought the field insertions into the exponent,
and introduced the (bare ) ’t Hooft coupling Ay = QAg. From Eq.(3.92), we see that the charge O

takes the role of the loop counting parameter. For large values of the charge, the path integral will
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be, therefore, dominated by the extrema of the effective action

A
Seff=/8¢o3¢o+70(¢o¢o)2— (In@o(xs) +In@o(x;)) - (3.93)

When Q is large, we can compute this path integral via a saddle point expansion in é which,

independently from the details of the classical trajectory, can be written as

5 5 -0 . At .
<¢Q( )(PQ(Xi)> = 0! eQ L1 (Ao, x5i)+To(Ao, x7i)+ 51 (Ao, xfi)+-. : Xp=xp—xi.  (3.94)
where in the exponent on the right hand side, O counts the loop order while the coefficient functions
'y, depends only on the "t Hooft coupling Ay and x7;. We can renormalize Eq.(3.94) by isolating

the UV divergence in each term in the exponent

1
Qk

1
— Ty (Ao, xpi) = @rdW(A) + @rfe“(A, X, M) (3.95)

where A = A(M) is the renormalized coupling. Thus we can factorize Eq.(3.94) as

23 =exp [ Y /lkr,ﬂiV(A)] : (3.96)
k=—1

(@2(x)92(xi)) = ! exp [ i lkFZeH(AXﬁ,M)] ' (3.97)

k=—1

Hence the anomalous dimension of the (pQ operator takes the form (3.75)
- 1
Y%o=0Y =F(A), (3.98)
=@
and we re-obtain Eq.(3.75)
A= Y FMA),  A=270. (3.99)

Now we can identify the coefficients Ay of the large charge expansion as the k4 1 loop correction

to the saddle point expansion.
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The above analysis is based on general considerations on the form of the semiclassical expan-
sion. To actually compute the coefficients Ay, one needs to solve the EOM stemming from the
effective action (3.93). This step is, in general, not easy, and different strategies can be considered.
For instance, one may solve the EOM perturbatively for small .4. However, beyond the first few

orders, the computations become quickly cumbersome and unpractical '®

. Another possibility is to
work directly at the fixed point and use the CFT constraints to simplify our task. This is the strategy
we will follow in the rest of this thesis in order to compute the scaling dimensions of large charge

operators in the O(N) and U(N) x U(M) scalar CFTs.

18 This approach has been considered in [21-23].
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4 CHARGING THE O(N) MODEL

Until now, the discussion has been restricted to quantum mechanical models and abelian CFTs.
Here, we start our exploration of the large charge expansion in non-abelian theories. As we shall
see, the presence of multiple large quantum numbers leads to interesting new challenges related to
the role of the charge configuration in the expansion.

In this chapter, we focus on the time-honoured critical O(N) model in d = 4 — € dimensions,
which is relevant for the description of phase transitions in many real-worlds three-dimensional
condensed matter systems, such as dilute polymer solutions (N = 0), Ising magnets (N = 1), su-
perfluid helium and easy plan magnets (N = 2), isotropic (Heisenberg) magnets (N = 3), strongly-
correlated electronic systems at half-filling (N = 4) [?], and superconductors (N = 5) [134], to
name a few. Moreover, for € = 0 and N = 4, we recover the Higgs sector of the Standard Model up
to gauge and Yukawa interactions. Finally, the O(4) model appears also in the description of the
finite-temperature chiral phase transitions in two-flavor QCD [135, 136].

The large charge sector of the three-dimensional O(N) model has been first investigated in
[11,130], by means of the EFT approach discussed in Sec.3.5. Here, we instead conduct a first-
principle analysis, based on the microscopic description of the model in 4 — € dimensions. At the
end of this chapter, we will connect the two approaches by computing the Wilson coefficients of the
3d large charge EFT in the €-expansion and comparing with Monte Carlo simulations. A similar
approach, directly in d = 3 and at LO in the large N expansion, has been previously considered
in [137].

Before going into a detailed analysis of the large charge sector of the O(N) model, we start our

analysis with some general considerations on the large charge expansion in non-abelian models.

4.1 Charging non-abelian theories

Consider a general scalar d-dimensional CFT with a global symmetry group G of rank M. The
general goal is to efficiently determine correlators involving primary operators carrying large values
of the charges Q = (Ql, ey QM) associated with the Cartan generators Q;. On the other hand, in
this thesis, we will mainly focus on the more modest task of computing the ground state energy of

the CFT on the unit cylinder that, as we saw in Sec.3.5, is equal to the scaling dimension of the
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MSD operator with charge 0.
The ground state energy E o (at fixed charge Q) on the cylinder is given by the non-abelian
counterpart of Eq.(3.57). That is

(0le AT |0) = Ne Fal=fre e . 4.1)

where |Q) is an arbitrary state with fixed charge Q.

As discussed in the previous section, in the large charge limit the path-integral expression for
the above matrix element will be dominated by semiclassical trajectories. In particular, in weakly-
coupled theories, the semiclassical large charge expansion is a "t Hooft like expansion which in the

abelian case takes the form Eq.(3.75), i.e

1 * * * A
AQ:Z@A;{(A), A* =170 (4.2)
k=—1
How the non-abelian counterpart of the above equation looks?
First, consider fixing only one of the M charges, e.g. 0 = (01 = 0,0,0,...,0), in theories with
multiple (small) couplings A, A5, ... . In this case, the most natural procedure consists in defining

multiple ’t Hooft coupling A; = QA;, Ay = QA,, ..., and thus the large charge expansion for the

scaling dimension of the MSD operator with charge Q takes the form

1 * * * )

Ap= Y. @Ak({fl it) AT =470 (4.3)
k=—1

When we fix multiple charges, and we take all of them to be large, we can rescale them by

the same large parameter 0, i.e. O = O(q1,42,¢3,-..), where the {g;} are order O(1) parameters

which define the charge configuration, i.e. the specific quantum number assignment of the MSD

operator. Then the large charge expansion takes the following form

1 —
Y oA ad) . AT=20. (4.4)

A=
k=—1

Q

Similar considerations apply when not all the charges are large, with the order O(1) charges

playing the role of additional quantum numbers. The role of the charge configuration in the large
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Figure 9: The procedure we will follow to compute the scaling dimensions of large charge MSD operators
to NLO in the large charge expansion in non-abelian theories.

Solve EOM +
Charge Constraint

charge expansion will be explored in detail in Chap.6.

The practical way to compute the scaling dimension of the MSD operator is through Eq.(4.1). A
flowchart of the computational strategy that we will follow in the next chapters is shown in Fig.(9).
For a given charge configuration, we will map the theory to the cylinder and impose the charge
fixing constraints, after which we are left with an "effective" cylinder action. The latter will be
used to semiclassically compute the ground state energy from Eq.(4.1). The leading order of the
large charge expansion is obtained by solving the classical system, while the NLO is determined
by the dispersion relations of the fluctuation spectrum around the leading trajectory.

An important feature of this approach is that we do not fix the full symmetry properties of the
MSD operator corresponding to the ground state on the cylinder'”. In fact, in choosing the state Oin
Eq.(4.1), we fix only the eigenvalues corresponding to a set of Cartan charges. Put it simpler, we fix
only the group-theoretical weights (the charge configuration) but not the irreducible representation

the MSD operator belongs to. Multiple irreducible representations can share the same weight,

19 This is very different from conventional perturbative methods, where the explicit form of the composite operator is
needed as input for the computation of its scaling dimension.
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and a given irreducible representation can be realized by different sets of local operators. This
is where the Lie algebraic theory cannot tell us more, and we need some dynamical information.
This information is contained in the MSD condition. The problem is thus to identify, among all
the operators with fixed charge 0, the one with the lowest scaling dimension. This is in general
not an easy task and, for this reason, the explicit form of the considered MSD operator is often
left unspecified in the literature. In weakly-coupled theory, where the anomalous dimensions are
small, we can make progress by assuming that the minimal scaling dimension operator has also
the minimal classical scaling dimension (MCSD or minimal-CSD). This will be called the MCSD
assumption and can be taken as our definition of perturbativity. For instance, in the U(1) theory
discussed in the previous chapter, the MCSD operator with U (1)-charge Q is obviously q)Q. In fact,
any additional (9 ¢) factor or derivative would necessarily increase the classical scaling dimension.
Therefore, at small values of the coupling A we expect the ground state energy on the cylinder to
deliver the scaling dimension of (pQ.

On the other hand, in the strongly-coupled regime, level crossing between operators with differ-
ent MCSD can occur, and the MSD operator might no longer be (pQ. In general, the identification
of the MSD operator in strongly-coupled theory is an extremely hard task which implies having
already (at least partially) solved the theory.

In the U(1) case, the identification in the weakly-coupled regime is relatively easy since there
is only one charge with the charge configuration playing no role. In non-abelian weakly-coupled
theories, the situation is more involved. Given a charge configuration, a brute force strategy may
consist of listing all the candidates using the MCSD assumption and then compute their scaling
dimension in perturbation theory. In absence of particular degeneracies in the 1-loop spectrum
of anomalous dimensions, the 1-loop scaling dimensions are enough to identify the MSD opera-
tor. However, after all, we are interested in the large charge expansion because we do not want
to compute Feynman diagrams. This approach can be improved if employing group-theoretical
considerations one can narrow down the list of candidate operators.

As we will show in Chap.6, there are cases when group theory alone uniquely selects the MSD
operator. Furthermore, in the same section, we will propose an alternative identification procedure
that does not require diagrammatic computations. Notice that, even if the precise form of the

MSD operator does not affect the calculation of its scaling dimension, it, however, enters in the
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computation of the normalization of the correlator A/, and thus of higher-point functions.

We conclude this section with some general considerations about the symmetry breaking pattern
induced by the charge-fixing. As discussed before, abelian theories at large charge realize the
superfluid pattern (3.25). For non-abelian theories at large charge, a natural situation corresponds to
a generalized superfluid phase whose definition generalizes Eq.(3.25). This phase occurs when both
dilatations D and G are broken, but at least one linear combination of the generators D' = D + u;Q;

remains unbroken. That is
SO(d+1,1)®G — SO(d)®D' @G, (4.5)

where G is the unbroken subgroup of G, and the y; have the role of i chemical potentials. Since D is

the cylinder Hamiltonian H, the generalized superfluid condition can be read also as H=H+ wiQ;.

4.2 The critical O(N) model in d = 4 — € dimensions

In this section, we use the large charge expansion to investigate the critical O(N) vector model in

d = 4 — € dimensions described below

2 2
S= / d"x((a"z’“) - “’2 go(%%)z) . (4.6)

The renormalized coupling g is related to the bare coupling gg as
go=MgZs (4.7)

with M the RG scale. In dimensional regularization and MS scheme, Z, can be expanded as a

Laurent series in € poles

> Zok(8)
Z,(g,6) =1 AL 4.8
4 (g ) ) + ]; € k ) ( )
where every Z, (g) is a formal power series in g. The beta function of the coupling g is related to
Z, by

_ ag . 28Zg,l(g)
[3(8;5’3):#%——%4‘8 o 4.9)
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where

8+ N
Ze1(8) = ¥+0(g2) : (4.10)

In d = 4 — ¢ this theory features an infrared WF fixed point at g* = g*(€). The fixed point value has

been computed to 6-loop in [138]. For our analyses, we will make use of the 4-loop result reported

below
3¢ 9(3N +14)e? & 3 ) N
“(g) = = (4544 4 1760N + 110N? — 33N
A S v i M ER e vl Flacaa s * )
4
~36 £(3)(N+ 8)(5N+22)} Ty [120 (2N* 455N +186) (N +8)*¢(5)

1
+6 (63N> — 82N% —3796N —9064) (N +8)¢(3) + 6 (—SN5 —2670N* — 5584N3

1
+52784N? +309312M +529792) — g7r4(5N+ 22)(N + 8)3] +0(e%). (4.11)

In what follows, we will be interested in composite operators with no derivatives and transform-
ing according to the traceless symmetric O(N) representations with O(N)-spin Q. These represen-

tations can be depicted as Young tableaux with Q boxes in a single row

EEERYE] 4.12)
| ———
0
while the operators can be written as
aj...ap
T,5= (015 ""%(9a) , (4.13)
where tg--ag is a homogeneous polynomial of degree Q in the ¢, that is traceless and symmetric in

the indices while p counts the ¢ factors. The CSD of T,51s Q +2p. The explicit form of the first

four tg "2 polynomials reads

1(9) =0, (4.14)

1
5°(9) = 07" — 8¢, (4.15)
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2
té‘sz((p) :(Pa(Pb(pc_Nq:—z (¢a6bc+¢b6ac+¢c6ab> ’ (416)
tzbcd(¢):¢a¢b¢c¢d_N_l|_4¢2 <5ab¢c¢d+5ac¢b¢d+5ad¢b¢c+5bc¢a¢d+6bd¢a¢c+6cd¢a¢b)
1 22 (gabsed | sacshd | sad sbe
e @ (7 R e a7

Physically, the T, 5 operators represent anisotropic perturbations in O(N)-invariant critical sys-
tems. Their scaling dimensions define a family of crossover (critical) exponents controlling the
capacity of the perturbations to influence and change the critical behavior. Crossover exponents
are relevant for a variety of condensed matter systems, such as density-wave systems [139, 140]
and magnets with a cubic crystal structure [85, 141]. These crossover exponents determine also
the behavior near bicritical points at the intersection of two transition lines with different O(N)
symmetries [142, 143]. This multicritical behavior appears in the SO(5) theory of superconductiv-
ity [134, 144].

Below, we report the known results for Tp y [138,145], Ty [146], and Tp 4 [1441°° up to 4-loops

e2

16(N +8)*

) 2
€ WH2e ( e [-N?4+56N+272] -

Ary, =Ap=1-=
o1 =00 2 ANt 8 4(N+8)2[

x [SN* +230N3 — 1124N? — 17920N — 46144 + 3848 (3)(N + 8)(5N+22)]) +O (85) ,

(4.18)

2 (-N?+18N+88) , 1
£+ et s
N+38 2(N+38)3 8(N+38)>
x [~5SN* = 134N? — 960N*{ (3) + S6N* — 11904N & (3) +4192N — 33792 (3) + 10624] €7
1
160(N +8)7
—1607*N* — 79720N* + 1113600N>¢ (5) + 592000N> ¢ (3) — 45447 N> — 403960N°

AT0,2:2_8+

+ [8ON6C(3) — 65N® + 1920N°¢ (3) — 4100N° 4-25600N*¢ (5) 4 65280N*¢ (3)

+15283200N2¢ (5) 4 138240N%{ (3) — 47616 N? — 533920N2 4 83148800N ¢ (5)

—11719680N¢ (3) — 2170887*N + 1275520N + 152371200 (5) — 24944640 (3)

20 There is a misprint in equation (3.14) of [144]: the sign of the first term in C4,4 18 wWrong.
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~3604487 +-3571200] €* + O (&°) (4.19)

(N+20)  (=5N*—14N—152) , 1
Ap,, =4-2¢ € £ —
Tos TNEs T (Nysp 2N 18)

X [13N* +398N> 4 1464N> — 192(N + 8)(N(N 4 7) +46) (3) + 1568N — 17024]¢*
+< 120 (13N2 + 130N +712) {(5) 27 (N?+ TN +46)

(N +8)> 5(N+8)%
29NO + 1516N° +27272N* + 112856N3 + 223328 N2 + 402304N + 2995712
16(N +8)7
3 (NS — 8N* +256N3 + 1592N? + 1664N —21568) (3
n ( )¢0G) £4+(’)(£5> . (4.20)
(N+8)°
The scaling dimension of 7;, 5 with arbitrary Q is known to order O (82) [147]
_ 0 0(0-1) 184+ N(14—3N) -
Ar - =As= 2 2R\
oo =0 Q+( > T8N 4(84N)3
(N—=22)(N+6) - 2 2 3
O . 4.21
2(84+N)3 ¢ +(8+N)2Q e+0(e) #21)

There is also an old O(&?) result [148], but we found out that it disagrees with the known
literature for the cases Q = 2,3,4 considered above. In the next section, we will compute AQ to

NLO in the large charge expansion. Moreover, we will use our results to obtain A to order O (84).

4.3 Charging the system

The conserved Noether current associated with the global O(N) symmetry transforms in the adjoint

representation of O(N), and it is given by

() ap = (920" O — $0" ¢4) (4.22)
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The corresponding conserved charge is matrix-valued and can be decomposed in terms of the gen-

erators of the O(N) algebra T4

Q=[x (), =L 0 (14) . (4.23)

A

The O(N) group with even (odd) N has rank (i.e. the number of mutually commuting Cartan
generators H;) N /2 (N%l) which corresponds to the number of "charges" Q4 we can fix. Without
loss of generality, we focus on the even-N case, and we fix k < N/2 charges via k constraints
0; = Q;, where {Q,} is a set of fixed constants and i = 1,...,k. According to the discussion at the

beginning of this chapter, we write the charge configuration as

0=0(q1,---q) , (4.24)

where 0 = Zé‘:l Q; is the sum of the charges and Zle gi = 1. To make explicit the relation be-
tween fields and charges, we consider the SU (N /2) x U(1) subalgebra of O(N) and introduce N /2

complex field variables as

1 .

7(% +i¢y) = 75 er (4.25)
1 .

7— (03 +is) = 5% e (4.26)

0=
03 4.27)
Then ¢; has charge Q; = +1, while @; has Q; charge —1. In fact, we can use an O(N)) rotation to

write

0 O
. -0 0
) 0= 0 0 . (4.28)
i=1 _Q2 0
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Then
Dini1 = /dx(¢i90(Pi— 0:0°¢;) = /dx(o,-)za% =0, i=1,....k, (4.29)

and the charges Q; are canonically conjugated to the angular modes ;.

Having fixed the charge, we now focus on the computation of the scaling dimension of the MSD
operators with charge 0. As we will see in the next section, these operators can be identified as the
T} p anisotropic perturbations.

As anticipated, we work at the Wilson Fisher FP g*, and we map the theory onto the cylinder,

R? — R x $¢~1. The cylinder action reads

_ _ 4m)go , -
Syt = / dx\/g <guv3“ 30" @; +m> ;¢ + ( 6) i (<p,-<p,-)2) . (4.30)
) ) . . . ) . d—
As discussed in Sec.2.5, the cylinder action contains an effective mass term with m = SR where

R is the radius of S“~!. We are interested in the computation of the scaling dimension of the
MSD O(N) operator with charge 0, i.e. of the ground state energy on the cylinder. According to
Eq.(4.1), the latter can be obtained from the matrix element (Q|e 7 |Q) with |Q) an arbitrary state
with charge 0.

Stemming from the considerations made in the previous chapter, we expect this matrix element
to be controlled by a modified Hamiltonian H = H + Q- [i, where [i = (1;,..., ) is a set of k
(a priori) independent chemical potentials. On the other hand, in the ground state, simplifications

occur. This can be seen by solving the classical EOM, which read

2
<—82 + [(9x))* +m?] + @goqq) 6;=0, idy(cicig"dvy) =0, (4.31)

and have to be solved together with the k charge-fixing constraints Q; = Q;. The solution with

minimal energy is spatially homogeneous, and it is given by

o;=A;, i=—iut i=1,... )k,
oA (4.32)

O =0, j=1,....N/2—k.
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The striking consequence of this homogeneous solution is that all the chemical potentials are equal,
U; = U, even if the charges Q; are different. This solution describes k circular motions in the planes
spanned by the real and imaginary parts of the ¢;. These motions are synchronous with the same
angular velocity u but different radii of the circles A;. u and the A; are fixed by the EOM and the

charge constraints as

2
2 o (4w o, 0
u-—m- = 8oV, Qd—le_l

. =’ (4.33)

where Q; | = F2(7rd_d//22) is the solid angle in d dimensions, and we have defined the sum of the square

VEVS as

k
V=Y A7 (4.34)
i=1

The presence of a single chemical potential implies that the non-relativistic effective Hamilto-
nian reads

~

H=H+Q-i=H+0u, (4.35)

i.e. i couples to the sum of the charges. In fact, a convenient choice for |Q) in (4.1) is given by

Rd—l_Qd_]

0) = [ Dauti) {ﬁexp {L / deloci(?z)} } A, &) | (436)

where 7 identify points on S~ ! and |A, 6(#)) is the state with fixed values of the fields 0;(7) = A;
and y; = o;(7). The term in the brace can be thought of as a wave-functional for the state in radial
quantization which fixes its charge to 0. Now consider fixing all the charges, i.e. k =N /2. Then

Eq.(4.36) leads to

= N 1 0;=A; ~
Qle™10)=5 [ DloDiye, (4.37)
C;=A;
with
~ T/2 1 1 2 m2 2 (47[)2 2 lQ .
S = /_T/zdt /del (5361'30','%—561- ax,axﬁt?o,- + Y go(GiGi) —I—W qi Xi)

T/2 1 1 m? (4m)? uo
o~ Q-1 | 500,001+ 50679 %+ —0F + ~——80(0i0;)* + = | .
/_md’ /d d 1(23036+2q %92+ = 0i + - —80(0i0)) +Qd_le_]>

(4.38)
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where the sum over i runs from 1 to N/2 and the ~ has to be understood as equivalence up to a
term which is linear in the fluctuations of the J; fields, and does not affect the computation of the
ground state energy. In the last line, we made explicit that the physics is controlled by the modified
Hamiltonian H given by Eq.(4.35). Notice the analogy with the rigid rotor of Sec.(3.2); specifically,
Eq.(4.37) corresponds to Eq.(3.10), while Eq.(4.38) is the counterpart of Eq.(3.11).

In short, in presence of a homogeneous background, the sum of the charges acts as a single
U (1) charge while the charge configuration plays no role. This fact can be made explicit by using

an O(N) transformation to rotate the ground state as

|
E(Al,...,AN/z) —(0,...,0, %) . (4.39)

N/2-1

This operation assigns "all the vevs" to a single radial field oy, and all the charge to one Cartan

generator Hy o, 1.e.

0=0(0,..0,1). (4.40)
N——
N/2-1

At large values of Q, Eq.(4.37) can be computed via a semiclassical expansion resulting in
oo s . (o] 1
Ap=EsR="Y g Aj(A") =Y @AJ-(A*), (4.41)
j==1 j=-1
where the * denotes the quantities evaluated at the FP.

This can be easily seen by rescaling the radial fields as o; — \/écri as done in Sec.(3.7), in order
to exhibit Q as the loop counting parameter. This analysis shows that we can organize our large
charge expansion as a semiclassical expansion in 1,/Q with fixed ’t Hooft coupling A = goQ, in full
analogy with the abelian case (3.75). To access more general charge configurations, it is necessary

to consider non-homogeneous ground states, as done for the O(4) case in [130, 149, 150].

Let us analyze the symmetry breaking pattern produced by the classical solution. In general,
the breaking is a direct consequence of the fact that the ground state is an eigenstate of the non-
relativistic Hamiltonian H and not of H. This breaking can also be viewed as an explicit breaking

induced by the charge-fixing followed by an SSB due to the ground state (4.39). In fact, according
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to the charged Goldstone theorem discussed in Sec.3.4, we will have both massive (type III) and
massless (type I and type II) Goldstone bosons. Specifically, the ones commuting with H are
massless, while the others have a mass gap proportional to (. Then we can think of the chemical
potential as an explicit symmetry-breaking term setting the mass scale for the type ITI Goldstones”'.

Consider the "explicit" breaking due to the charge fixing, i.e. by the ny/ 2 WQ; term in H. Since
all the charges couple to the same chemical potential, an U (N/2) subgroup of the original O(N)

symmetry remains unbroken. In fact, the term
Y uoi=nY [de(@°0i-0°¢) —u [dx(30°6-60°F) . @42

is clearly invariant under U (N /2) rotations of the vector ¢ = (@1, ..., @y /2).

Then the vacuum Eq.(4.39), in turn, spontaneously breaks the U(N/2) symmetry of @ to
U(N/2 — 1), leading to massless Goldstone modes. Altogether, the symmetry breaking pattern
is

SO(d+1,1) x O(N) = SO(d) x D' x U(N/2—1) , (4.43)

where D = H is the generator of time translations and D' = D + uQy /2-

Then, according to the charged Goldstone theorem, we expect dim(U(N/2)/U(N/2—1)) =
N — 1 massless Goldstone bosons, once type II states are double-counted. This can be realized with
one type I scalar and one type Il U(N/2 — 1)-vector. In fact, counting twice the type II modes we
have

1+2x (N/2—1)=N—1. (4.44)

4.4 Fixed-charge operators

The goal of this section is to determine the MSD operator with total charge Q. In particular, we
will identify it as the anisotropic perturbations Tj 5 introduced in Eq.(4.13).

In CFT with global symmetries, we can organize the operators into multiplets transforming

In fact, we might as well have introduced the chemical potential as the zero component of a gauge field through the
usual covariant derivative. In such a case, the Lagrangian would have contained a mass term ,uszGj for the radial
modes, which would explicitly break the symmetry. On the other hand, as can be seen from the fact that we can
always eliminate the chemical potential from the Lagrangian by a simple field redefinition, the charge-fixing symmetry
breaking should be retained purely spontaneous.

60



according to irreducible representations of the symmetry group. Within any multiplet, component
operators are further distinguished by their charge configuration, i.e. the value of the charges asso-
ciated with the Cartan generators. Operators with different symmetry properties (i.e. belonging to
nonequivalent irreducible representations) do not mix under renormalization. Moreover, by virtue
of the Wigner-Eckart theorem, they necessarily have the same scaling dimension. We restrict our-
selves to the case when ¢ is small, and the theory is perturbative. We can, therefore, consider the
MCSD assumption introduced in Sec.4.1 and look for operators with the minimal classical dimen-
sion for a given charge configuration.

Let us start with a top-down approach. First, the MCSD assumption implies that the MSD
operator does not contain derivatives, since the latter increase the classical dimension. Furthermore,
since scalar fields commute, operators without derivatives live in the fully symmetric O(N) space.
The latter is composed by the T, 5 operators defined in Eq.(4.13) which have total charge 0 and
CSD O+ 2p. At fixed Q, the MSD operator is clearly obtained when p = 0 and, as anticipated, we
are left with the T; ; operators.

For later convenience, we consider also a bottom-up approach performing the explicit construc-
tion of the MSD operators. The charge configuration is given by Eq.(4.24) and is parametrized
by a set of numbers {g;} such that Zé‘ gi = 1. Without loss of generality, we assume all g;’s to be
positive. Hence, according to the MCSD assumption, the fixed-charge operator with the MCSD

. M
can be written as~~

k _
O =T (9:)%" . (4.45)

i=1
On the other hand, we know that we can use an O(N) transformation to set g = 1 and g;« = 0.
Then the MSD operator becomes O, = ((pk)Q. Clearly, this operator transforms according to the
traceless symmetric O(N) representations, has total charge Q and CSD Q. Then, we can again

identify the MSD operators as the Tj, ;5 anisotropic perturbations. Note that for N = 2 we have the

@2 U(1) operator we considered in Secs.3.6 and 3.7.

221f some ¢; were negative, they would correspond to replace ¢; with ;.
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4.5 The large charge expansion in the O(N) model: LO

We now have all the instruments to proceed with the semiclassical computation of Az, = Ap, Le.
of the A; coefficients in Eq.(4.41).
The leading term of the large charge expansion, A_j, is given by the effective action (4.38)

evaluated on the classical trajectory (4.32) at the fixed point

2
A1 (AY) = § (3,4 + %) . (4.46)

Notice that, since this contribution is purely classical, bare and renormalized couplings coincide at
the LO.

By inserting the second equation in (4.33) into the first one and setting d = 4, we obtain
3,3 4
R°u” —Ru = §A , (4.47)

with solution

Wl

3+ (647 +V/=3+3642)
Ru = — . (4.48)
33 <6A* vV 3+ 36A*2> ’

Then the leading order of the semiclassical large charge expansion reads

1

3 (64" +v/=3+3647)" 3§(3§+<6A*+ _3+36A*2>§)
-

4A_| = 1
354 (64 + V=3 +364%) (647 +v=3+3642)"

(4.49)

Wity

We would like to stress again that this classical result resums an infinite series of Feynman
diagrams in the usual perturbative expansion. These are the diagrams shown in Fig.8. In particular,
Eq.(4.49) resums the leading power of Q at every perturbative order. The expansion for small A*

reads

A A 1 * 2 %2 8 *3 14 x4
Ag=014-A =242 243 - 2y
A-1=0 3A 9‘/4 A 27A

256 .5 572
27 w3 s

e 243A*6+O(A*7>] . (4.50)
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4.6 The large charge expansion in the O(N) model: NLO

The time is ripe to determine the leading quantum corrections Ag to be added to the classical result

(4.49). Since we will need to renormalize our results, we rewrite our expansion as

EsR=Y glej(Ao,d)= Y g/¢j(A,d,RM), 4.51)
j==1 j=-1
where e and ¢; are, respectively, the bare and renormalized coefficients of the large charge expan-

sion.

In order to calculate ey, we have to expand the path integral (4.37) to the quadratic order as

e . _S®
Wgle Ty = R /DoDye™®
o [

[ DoD@e |12 VE(sud 40 grt 2 gi)

:Nexp{— {iel(Ao,d)—i-eo(Ao,d)] Z} , (4.52)
80 R

where 8@ is the modified action at the quadratic order in the fluctuation fields. In order to find

~,

S@, we expand around the saddle point configuration (4.32) considering the ground state in (4.39).

We parametrize the fluctuations as

xi:—im +%p,~(x), l'=1,...,%/—1,

Anjp = —iut +ta(x)

, (4.53)
o; = si(x) , iZ],...,%]—l,
\GN/Z :V+7"(X) .
Expanding the Lagrangian (4.38) to the quadratic order in the fluctuations, we arrive at
1 2, 1 2 2 2y,2 . .
Ly 25(871') +§(8r) + (U —mH)r-=2iprn
1 1

+§8s,~8si+§8pi8pi—2 iUs;pi. (4.54)

The quadratic Lagrangian contains a "U (1) sector" given by 7 and r. To obtain their dispersion re-

lations, we move to Fourier space and define the inverse propagator P~!(p), with p the momentum,
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as

d r
= [ Gaatn sppPt |71 (459)
p
We have |
P1(p) = 3 (02— p?) — (2 —m?) 1 iou | (456
i 5 ( 2 _p2>

The dispersion relations are then obtained from det?~!(p) = 0, and read

w4 (l) = \/Jg+3u2—m2i \/4Jgu2+(3u2—m2)2, (4.57)

with
J;=0(l+d-2)/R* = p?
7 =L(l+d—2)/R"=p~. (4.58)
are the eigenvalues of the Laplacian the sphere. Their multiplicity n, has been given in Eq.(3.61).
These modes can be identified as one relativistic (type I) Goldstone boson /> and one massive
state Oy /, with mass 1/ 612 —2m?2. This is the fluctuation spectrum in the O(2) case. Additionally,

the non-abelian case also features k — 1 = %’ — 1 non-relativistic (type II) Goldstone bosons and

N/2 — 1 massive states with mass 2 (type III Goldstones)

O () =\/J7+u2+pu. (4.59)

Notice that the gap of type III Goldstones is fixed by symmetry and does not receive radiative
corrections [122].

The counting of massless Goldstone bosons satisfies the charged Goldstone theorem. In fact

1+2><(g—l):N—lzdim<U(%v)/U(%v—l>) . (4.60)

eo is determined by the fluctuation functional determinant which can be written in terms of the

dispersion relations found above as
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eo detS®?) T & dw (0% + @?(0)]
T—=1o = — — log ————= 4.61
R g det(—0%2 —Aga-1 +m?) 2 Z 2 ;gl 8 [(1)2 + 603(5)} ( )
T (o]
=3 L | LasNo(0) —New (), (4.62)
where i = +, —,++, —— and the sum runs over all the dispersion relations of the spectrum, each

counted with its multiplicity g;(N). @3 (¢) = J? +m? is the free dispersion relation and satisfies
@o(£)|g=4 = 1+l. We can compute the contribution of @wy(¢) by using dimensional regularization,

where, for enough negative d, we have
Yn=Ynt=0 = Y npan(6)=0. (4.63)
(= =0 (=0

Then our final expression for e reads

€0=7 Y nlop () +o_(0)+ (g — 1) (0 (O)+o__(0)] . (4.64)

It is instructive to analyze what happens to our computation if we do not fix all the N /2 charges
Q; but only k < N/2 out of them. It is easy to show that in such a case, the number of type
IT Goldstone bosons and massive particles with dispersion relation in Eq.(4.59) becomes k — 1,
whereas the spectrum is completed by 2 x [(N/2—1) — (k—1)] = N — 2k new massive "spectator”

states with mass  and dispersion relation

@.(0) = \/ 2+ 2 . (4.65)

Accordingly, the expression for eg becomes
R (e o]
=2 Ll (0)+0- () + (k= )04+ (0) + 0 (0) + (N —20)0,] (4.66)
=0

Since @41 (£) 4+ w-_(£) =2w,(¢), eg does not depend on the number of charges we fix. This result

is consistent with the scaling dimension not being sensitive to the charge configuration but only to
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the sum of the charges.
The sum over ¢ in Eq.(4.64) diverges and needs regularization. This will be done in the next

section, along with the renormalization procedure.

4.7 Regularization and renormalization

The renormalization is performed by using Eqgs.(4.7) and (4.10) into Eq.(4.51) and expanding every
term gée j(ng,d) in powers of g. This procedure mixes the bare orders of the expansion. In

particular, we have

el(;jo’d) _ €1<(;4ad) I Zgjfj(Aad,RM) ) (4.67)
=0

J

Since fy is of the same order O (go) =0 (QO) of eg in the renormalized large charge expansion,
we have

é—l(Aad) = €_](A,d) ’ é()(*Aad,RM) = 60(A7d) +f0<A7d7RM) ) (4.68)

We compute fj by expanding e_; (which is obtained as A_; in Eq.(4.46) but working ind =4 — ¢

instead that d = 4) in powers of g and retaining the term of order go. We have

oy =N 12 (L togeym) - 1)
* Sger(“sz ~1)(’R*+3)+0(e) , (4.69)

where we expand in € by taking the renormalized coupling fixed. 7y is the Euler—Mascheroni con-
stant. To compute Ay, we have to consider the theory at the FP g* = g*(¢&) given by Eq.(4.11).
Being the fixed point coupling expressed as a power series in €, this step mixes again different
orders of the expansion, now the renormalized ones. In particular, Ay is given by ép in d = 4 plus

the expansion of the LO ¢_; /g to the first order in € (for fixed coupling)

Ay = {e_()(.A,RM,4)—|—8i {15_1(A7RM,4—8)] }
Jde | g 0

g=g"

- { im [’g Lofon o+ (3-1)@o0r0 0)

=0
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8+N, 5 5 ’
+——(U°R -1 4.7
(1 )” R (4.70)
8=8

where we take the € — 0 limit by keeping the coupling fixed. Notice that at the FP the dependence
on the renormalization scale M drops, as expected from conformal invariance. On the other hand,
we are left with a % term which diverges in the limit € — 0 and must cancel after we regularize the

sum over /.

To perform the regularization, we first isolate the divergent part by performing an expansion of

the summand around ¢ = o

Rny |0y (0) +o_ () + (%V — 1> (041 (0)+0__(0)] ~ icned—" . (4.71)

In d = 4, the first five terms of the expansion diverge when ¢ — oo. Their coefficients read

=N+0(e), c2=3N+0(¢),
1 1
3= [(N+2)u*R*+5N-2] +0(e) , cs=5 [(N+2)u*R*+N 2] +0(e) ,
N+8) (LR —1)° 1
C5:—( i W; ) +510 (—45u* (N +8)R* —20p*(N —7)R?
+30Y(N+8) (1R~ 1) 43N +220) e+ O () . (4.72)

Then we can isolate the divergent part as””

t\.)l’;u

i" O+o-(0)+ (%V - 1) (@14(0) +w__<£>>] ~

l\)lH

with?*

5
(0) =Ry | 0, (0) + 0_(0) + (%V _ 1) (@4 () + w__(é))} Sy et
n=1

23 In writing this expression, we used that ®_(0) = @__(0) = 0.
24 Since o(¥) is a convergent sum, we can evaluate it directly in d = 4.
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=R(1+0)? |0, (0)+ o_(0)+ <%’ — 1) (041 (0)+a__(0)) . ~ N —3N?

- 21
z .
(4.74)

+-(2-5N—(2+N)R*p?) £+% (2—N—(N+2)R*u?) +%(N+ 8) (R*u*—1)

| =

Finally, we zeta-regularize the divergent part by using that Y7 ; ¢* = {(—x) and {(1+¢€) =
1 .
¢ TY+O(g). We obtain

1S & 8+N 3u*(N +8)R* + 6u>NR> + 7N — 24
Y, Y= — ZR2 1) — : 4.75
s Lok 16Re ) 32R (+75)

The 1/¢ term in the regularized contribution above cancels exactly the 1/€ term in fy. Hence
we can now consistently take the limit € — 0 in Eq.(4.70), after which we are left with a finite
result. Notice that, since the two 1 /€ terms come from different orders of the bare expansion, their
cancellation can be used as a non-trivial self-consistency check of the correctness of the calcula-
tions. This check can be particularly useful when dealing with more complicated theories such as

the U(N) x U (M) model that we will investigate in Chap.6.

4.8 Results

After regularization and renormalization, we finally obtain our final result for A,

o ISR OEPRE -5 1 V3R — 1
M) = T Rl T —
LN, 7+ Rt (—16+ 6Ru + 3R> 11?)] (4.76)
16 \ 2 ’ '

where o (/) is given by Eq.(4.74), and all the quantities are evaluated in d = 4. As a non-trivial test
of our result, we now compare it with the known 2-loop perturbative result in Eq.(4.21). To this
end, we use Eq.(4.48) to express Ag as a function of 4%, and we expand Ag for small A*, where

o (¢) can be computed analytically
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Ag(A) = — (5 +%V) A+ (1 - ﬁ) A L[N =36428 (3) 42N {(3)] AP 40 (A

3 3 18 7
4.77)

The sum of the classical contribution (4.50) and the leading quantum correction (4.77) reads

A * _ * B *2 _
#4—&@4*) :Q—"%(lo-l-N—ZQ)—i-“Lll8 (6—N—40)
*3
+“;l7 [N—36+80+2(14+N){(3)]+ 0 (QA™) |
(4.78)
Finally, evaluating the above expression at the fixed point (4.11), we obtain
A (0, 00-1D\ 2 5 N=22)(N+6) - N
Ao _Q+( 2T RN )8 {(8+N)2 Ny L o)

(4.79)

in agreement with the diagrammatic result (4.21).

At order O(&?) and O(e*), our semiclassical computation captures the leading and next to
leading terms in the charge. However, we can determine also the remaining terms by asking that
we reproduce the known results for the cases Q = 1 (4.18), O = 2 (4.19), and Q = 4 (4.20). In this

way, we obtain the complete scaling dimension of the operators T, ; to order O (84), which reads

_ 0 i} i i} i} i} i} i
Ap=0- JEF [c110+c120%] €+ [c210+ 220 + 230 €2+ [310 + 3207

+e330° +c340% € + {CauQ 120 +ca30’ +ca0t + C4,5Q5} et+0 (85> ,  (4.80)

where
~1 1 184+ N(14—3N)
C = —_— C = — C _ —
Mg N MTgrN 21 4(8+N)?
(N —22)(N+6) 2
22 =— 3=—""—"7
o 2(8+N)? 3T T (B+N)2
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—69504 4+ 3N[—5216 4 N(184 + N(86 +N))] +64(8 + N) (178 + N(37+N)){ (3)

€31 =

16(N +8)3 ’
—N*— 57N> +258N? — 24(N +6)(N + 8)(N +26) & (3) + 8176N + 31008
2= 4(N +8) ’
—456 — 64N + N2 +2(8+N)(14+N)¢(3) 8
€33 = 8 +N)4 ) €34 = m )
¢4 ! (45N° +327*N° + 5820N° + 19527 N* 4 322440N* 440256 *N°

~ 960(8+N)?
+ 1972440N3 + 3804167 N? — 16196640N> — 9600(N + 8)*(N(25N +418) + 1240)¢ (5)
—240(N + 8)(N(N(N(N(N +40) + 1056) — 3496) — 100480) — 300096)( (3) + 16998407* N

— 191091840N +29163521* — 494461440) ,

1
80(N + 8)7(

+416007*N? — 3928440N2 — 400(N + 8)%(N(65N +958) +2496)( (5) — 35161600N

40 = 10N® +47*N° +-915N° +2247*N* 4 34120N* + 44647* N 4 86600N°

—20(N +8)(N(N(N(N(N +52) +904) — 12224) — 181184) — 514112){ (3) + 1853447*N

+3194887* — 87127680) ,

1
~ 60(8+N)°

— 4200(N —2)(N +8)2L(5) — 60(N + 8) (N(N(3N — 44) — 1720) — 7464){ (3) + 32007*N

€43 (m*N* 4 60N* + 387*N3 + 4020N° 4 528 N* — 88800N2 — 1577280N

+71687* — 5662560) ,

—4N? —5(N+8)(N+30)¢(5) —2(N +8)(6N +65)¢ (3) +476N + 3344
(84+N)> ’

C44 =

42
C45 = —( (481)

8+N)*
As anticipated, the above result corrects the one in [148] demonstrating the power of the ap-
proach. Moreover, we can now predict the classical and quantum correction for the higher pertur-
bative loops of the anomalous dimension. To help future checks we provide explicit results up to

order g*%%.

256 - 1
loops: | =20+ —[3(— 2 2
5-loops (243Q+243[3( 800+ 7N)+28L(3)(28+3N)

+40¢(5)(22+N) + 14@(7)(62+N)]) (A*)°, (4.82)

25 After this work appeared, an independent 4-loop diagrammatic check of our results has been carried out in [151].
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572 2
6—100ps:<—%Q+m[10191—64N 2¢(3)(1327 + 160N) — 2£ (5)(1441 + 80N)

—70¢(7)(46 4 N) — 214;(9)(126+N)]) (A)° (4.83)

It is instructive to study also the large .4* limit of our results, which, according to Eq.(4.47),
corresponds to the large chemical potential limit. When u is large the massive particles decouple
from the IR physics and can be integrated out. Furthermore, we can also neglect the type II Gold-
stone bosons since they are slow with respect to the phonon excitations X ,, which, in the large p
limit, propagate at the speed of sound ¢y = \/d;j. This can be seen by expanding their dispersion
relation (4.57) for large u

02 (p)==p*+0(u?) . (4.84)

In the large A limit we can, therefore, describe the theory via a large charge EFT of phonons,
as discussed in Sec.3.5 using RG arguments. In fact, the parameter which separate the two regimes
is the chemical potential u that controls the gap of the massive modes. We are then providing a
microscopic description of the large charge EFT. Furthermore, since in the IR limit the O(N) model
has the same spectrum of the U(1) model considered in Sec.3.5, (i.e. a single phonon mode whose
universal properties are dictated by conformal symmetry), the effective action is again given by
Eq.(3.56), and all the difference between the two models (i.e. the dependence on N) is contained
in the non-perturbative Wilson coefficients c; of the effective action. As a consequence, we expect

the large A* limit of our result for A to take the form (3.58), which we propose again below

- d_ =2 - 4 =
— 07 oy + 0 07T + 03077 .. } [ﬁo 1 BOT ] o (4.85)
The large A* expansion of A_; reads

= 3 4g*Q 4g*0
QA—1—4g* [4( 3 > +2( 3 ) +0(1)

The large A expansion of Ag can be obtained as explained in [21], i.e. we approximate the sum over

(4.86)

¢, evaluate Ag numerically at large values of u, and, finally, fit the results to the expected functional
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form (3.58). As a result, we have

B N+8. [(4g*0 4¢*0 3 _N+38 4¢*Q 4¢*0\ 3
ol G () (5°) b5 (59) | (5°) oo,

where

o =—0.4046 — 0.0854N

B =—0.8218 —0.0577N . (4.88)

The values of a and 8 do not appear in our publication [84], on which most of this chapter is
based. Instead, they have been derived few months later by I. Jack and D. R. T. Jones in [151]°°.

By combining Eqs.(4.86) and (4.87) and rewriting the result at the FP, we obtain

- ( 4€0 )ddl [3(N+8) e ((H 33N + 14)) +O(82)}

e \N+8 16 16(N +8)
1 (460 \ T [N+8 3N+ 14 ) o
+E<N+8) { 3 “(ﬁ s(N—+s))+0<8 )}JF@[(EQ)], (4.89)

which agrees with the general form (3.58). Since the coefficients in (3.58) are combinations of the
c¢; Wilson coefficient of the EFT (3.56), Eq.(4.89) represents a first-principle calculation of the EFT
coefficients at the leading order in the €-expansion. Below, we compare our prediction (4.89) (with
€ = 1) for the leading coefficient o in Eq.(3.58) with the results obtained via the large N expansion

(at LO in 1 /N and d = 3) [137] and Monte Carlo simulations [11, 12,130, 152]

g-expansion 1/N-expansion Monte Carlo

N=2 0.424 0.471 0.337
N=3 0.39 0.39 0.32 (4.90)
N=4 0.368 0.333 0.301
N=5 0.35 0.30 0.29

26 However, the comparison with Monte Carlo and large N results is original and does not appear elsewhere.
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The comparison is encouraging, despite the evident limitations of taking € = 1, and motivates
the computation of higher orders A; of the large charge expansion. The first Wilson coefficient ¢

of the effective action (3.56) can be obtained from ¢ using Eq.(3.59).

4.9 How large is the charge?

1
0

In other words, at which value of Q we expect to obtain good predictions for experiments? To

It is crucial to know how large the charge has to be in order to have the = expansion under control.
partially answer this question, we conduct a heuristic analysis along the lines of [153], where the
author studied the same issue in the context of the large number of flavor Ny expansion. Consider

the scaling dimension at the FP for the (pQ operators in the U(1) theory in 4 — € dimension

1 ]
Y @Ak(A) : A= Q¢ 4.91)

Ag=
k=—1

Numerically, this expansion reads

_ 1
Ap=0 {(1 +0.1A - 0.0247 +0.008.4° — 0.00424° +0.00256.A° + .. ) + 5014
1
+0.08.4% — 0.01953.4% +0.007697.A* — 0.003227.45 + .. ) T (—0.05.4% —0.04175.4°

1
+0.009723.A% + 0.00093.4° + . .. ) + > (0.06279A3 +0.06284.4% —0.01067.4% + ... )

+é (—0.8858A4 —0.246.4% + . ) n é (0.268A5 ¥ ) ¥ } . (4.92)

The terms up to order O (A4) follow from Eq.(4.80) for N = 2. The remaining terms have been
computed in [21]. Following [153], we compare the leading terms in A at each order in é, and we
ask the k-th order to be strictly smaller than the k — 1-th one for all K > 6 and A as big as 5. The
value A = 5 marks the transition between perturbative and superfluid regimes where the expansion

takes, respectively, the form of Eqs.(4.79) and (4.86)*7. We found out that quite large values of the

charge Q > 70 are needed to control the expansion when A = 5. If instead we just ask for the sum

27 Note that a key difference between the case at hand and the large N '+ expansion in gauge theories considered in [153],
is that the latter has a finite radius convergence in the 't Hooft coupling, which is determined by the pole structure.
Less is known about the pole structure of the large charge expansion, and we cannot naturally set an upper limit on .A.
Thus, we instead ask to be in the perturbative regime, i.e. .4 < 5. Notice that this is needed in order to consistently
truncate every order of the expansion at the leading power of .A.
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of all the subleading orders to be strictly smaller than the leading one, we obtain smaller values
Q > 6. Of course, when A < 5 both limits decrease accordingly.

Finally, notice that the large Q perturbativity is intimately related to the suppression of the
instanton contributions in the large Q limit. In fact, they typically scale as e i = e*%, and thus

go exponentially to zero for Q — o when A is kept fixed. This is related to the slow (polynomial)

1

0 expansion.

growth of the number of Feynman diagrams which contribute to a given order of the

This observation has been illustrated via a specific example in [154].

4.10 Cubic anisotropy

In this section, we continue the exploration of anisotropic perturbations in the O(N) model by
studying the spectrum of anomalous dimension in the O(N) model with cubic anisotropy. The
impact of the latter on the critical properties is controlled by 7p 4 [152]. In nature, this model
appears in the description of critical cubic magnets [51], structural phase transitions in crystals

[155], and the randomly dilute Ising model [156]. The action of the theory reads

s= [ D' ((a"z”')z + (4z>2wjkz¢,~¢j¢k¢z) , (4.93)
where

Vi = g?l(&j&d + 016k + 6 0j1) + 826iji » (4.94)
with

I, when i=j=k=1,
Ojjkl = (4.95)

0, otherwise .
When g, = 0, we re-obtain the O(N) action (4.6). On the other hand, the g coupling breaks
the O(N) symmetry to the hypercubic group Hy C O(N), realized as the symmetry group of an
N-dimensional hypercube.

An RG analysis of the model reveals that, at the 1-loop level, it exhibits four FPs

(g7.85) =(0,0) , (g,8)

I
~—~
=
W] m
~—
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(gf.89) = (N3—f8,0> : (g5,85) = <]£\, (N3]_\,4) 8) : (4.96)
There is a Gaussian FP, an Ising-like FP (N decoupled Ising models), and an O(N)-symmetric
FP. The fourth one is the so-called cubic fixed point and is described by an Hy-invariant CFT.
Note that for N = N, l-liop 4 the cubic FP reduces to the O(N) symmetric one, while, for
N — oo, it coincides with the Ising one. When N = 1, there is only one coupling constant g; + g2,
and the cubic FP becomes non-interacting.

Moreover, when N = 2, the interaction term is invariant under a combined % rotation of the

fields [132],

P+ )0 —P
_ ’ — , 4.97
(p] \/5 ¢2 \/i ( )
and redefinition of the coupling constants
! 3 I
81 =81+582, §=-82- (4.98)

This turns the cubic FP into the Ising one.

The limits described above will be used to test our results.

The value of N, such that O(N) and cubic FPs coincide, determines the stability of the cubic FP
with important implication on the critical behaviour of cubic N = 3 magnets. In fact, the cubic crit-
ical regime is realized only when N > N,. Otherwise, the critical system belongs to the Heisenberg
(O(3)) universality class. Since N, ~ 3, the existence of magnets in the cubic universality class has
been discussed for a long time [132, 152, 157]. Recently, this issue has been settled, in favor of a
stable cubic FP controlling the critical behaviour, via a bootstrap analysis in [158].

Present-day results on the Hy model include the beta function and some critical exponents at
the 6-loops level in the e-expansion [157, 159]. Recently, this theory has been also explored non-
perturbatively via the conformal bootstrap method [158, 160—163]. Nevertheless, little is known
about the operator content of the hypercubic model. The present section aims to fill this gap. To this
end, we consider composite operators with arbitrarily large classical dimension » but no derivatives,
and we compute the entire spectrum of 1-loop anomalous dimensions for such operators. Since the
global symmetry group is discrete, we have to momentarily leave aside the large charge method

discussed so far. Instead, it is well-known that 1-loop anomalous dimensions can be calculated by
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solving a diagonalization problem involving only free-theory CFT data [52]. We explicitly illustrate
this point by making use of a recently-developed method [164, 165] combining the EOM with the
conformal constraints. The idea is to use the EOM inside the three-point function (0¢;S,S,+1) to

rewrite it as

\S}

4m)
3!

(00iSnSnt1) = ( ((g10:0% + 8207 )SuSn+1) (4.99)

where S, is a composite operator with classical dimension (in d=4) n and scaling dimension

n

As :n<1—§> Fys e+ O(e?), (4.100)

with ¥s defined as the coefficient of the 1-loop anomalous dimensions. As we saw in Chap.2,
conformal symmetry fixes entirely the form of the three-point functions. Then Eq.(4.99) can be

cast as an eigenvalues equation for ys,

nin—1)

YS;zSi17i27~~,in == —2 le,jz,(i1,izSi3,..,in),j1,j2 . (4101)
Here, Vj, j,.i\.i, 18 the tensor defined in Eq.(4.94), while the tensors § are given by
1
Sitinyensin = ;ailaizmainsn : (4.102)
Finally, it is convenient to rewrite the eigenvalue equation as
DS, = ¥s,Sn , (4.103)
with
1 (¢%0? 2 N—4 2
=— ) —¢-d o7 | . 4.104
3N(2+(¢)¢+2;¢11 ( )

The next step is the explicit construction of the S, operators.

4.10.1 Composite operators in the Hy model

Here, we construct composite operators with no derivatives and transforming according to the Hy

irreducible representations. Our construction builds upon the results obtained in [166—168].

76



To work out the irreducible representations of Hy, we use that Hy = Sy X ZN and we start by
building the irreps of ZY. Labeling as [1?] and [2] the two irreducible representations of 25, the
irreps of Zév are given by

2@ 12*F, a+B=N. (4.105)

Then we take the wreath product Sy X Zév by splitting the symmetric group Sy into direct
products S¢ X Sg. Finally, we obtain the irreducible representations of Hy by multiplying these
products with the corresponding irreps of Zév in Eq.(4.105) [169].

The main consequence of the above construction is that we can represent the irreducible rep-
resentations of Hy as double-partitions of N, (a,3) which can be depicted as ordered pairs of
Young tableau with, respectively, o and B boxes [168, 170]. The left (right) tableau represents o
(B) objects, even (odd) under Z;, and transforming according to Sy (Sp) under the action of the
symmetric group.

For instance, the irreducible representations of ZS are
2%, 21T e[, RIe 177, 1. (4.106)

Multiplying them, respectively, with the irreducible representations of Sz, S; X Sy, S| X &7, and

S3, we obtain the ten irreducible representations of Hj

([2]®3®S3) : (D:‘:L@)?( 70)?(@7®); ([2]®2®[12]®SZXSI) : (D:IﬂD)7(H7D)’

()82 070, 00,00 (2o 1?8 x82): (L0 ).

(4.107)
where "0" stays for the empty partition.
The dimension of the (o, ) representation is [170]
N
dim(o,B) = x dim(o) x dim(f) , (4.108)

with dim(a) (dim(3)) the dimension of the corresponding irrep of S¢ (Sg) which can be easily
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obtained through the hook’s rule.

The defining N-dimensional vector representation is

oi=WN-1,1)=(_[J..[ ],[i]). (4.109)

N-1
The decomposition of the tensor product of (N — 1, 1) with an arbitrary representation (., ) is

given by
N—-L)@(p)= ) (a5 p)e Y (a7, (4.110)

ot B o, B*
where ot (or™) is obtained by moving one box from 8 to & (@ to 3). The same procedure applies

to B and to . For instance

_ |
(@D@(@/;,D)—(@ﬂ)@(;’:,@)@(w,\ | ‘)@(QL'/"H)' (4.111)
N—1 N—1 N N-2 N—=2

To construct composite Hy operators with CSD n and no derivatives we start by listing the cor-
responding Hy-irreps, which are obtained by computing n times the tensor product of the defining
representation (4.109) with itself.

The resulting bi-tableaux can be divided into two families. The members of the first family
are those bi-tableaux which do not appear at smaller n. These representations correspond to a
unique composite operator with CSD n, which is the MSD operator transforming in the given
representation of Hy. Instead, in the second family fall all the bi-tableaux that already appeared at
lower n. In such a case, it is possible to associate more than one operator with CSD n to the same
irrep, and it will be, therefore, necessary to solve the mixing among them.

Consider a unique composite operator in the representation (&« = N, 8 =0 ). For instance

< "D,(b) . (4.112)

We begin by filling the tableau with indices
Hi|H2
ilJj 0, (4.113)
k
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on which we impose the condition i # j # k # U # Uy # ... # Us .. . In fact, since we are
considering MSD operators, we cannot contract any pairs of indices.

We then write an indexed field raised to the zeroth power for every box in the first row; indexed
fields raised to the second power to the boxes in the second row and so on, with increasing even
powers of the fields for subsequent rows.

Finally, we impose the symmetry properties of the given tableau on the indices. For our exam-

ple, this leads to (n = 8 in this case)

(

= (

E

.. ]
: ,@> (00700 (0740, 0000l =

NEE

LOF+ O OF+ 0108 — Of 0k — 01 0F — 01 07) (07 —90F,)  iFjAkF A .
4.114)

The same rules apply also to the right partition 3, but now considering odd powers of the fields”®.
The most general Young diagram has k different "types" of columns (with a different number of
boxes) that we label with the index i. Each type of column can occur with multiplicity p;. Hence,

we can write the unique operator corresponding to the most general bi-tableau as

k

Hy (i} {pi} = 11<¢{,’121¢33;2¢;12;4.-.¢%qi]>’” [THECY T Sy TI (4.115)

where we labeled the highest power of the field in a given column by m; and

0 if m; is even
M= (4.116)

1 if m; is odd.

We now consider the second family of bi-tableaux, i.e. those which "reappeared" at the level n
and correspond to non-MSD operators. In this case, we can build more than one operator with the
same CSD and belonging to the same irrep. The guiding principle is that everything that can mix

will do it. Then these operators can be found by writing the corresponding unique MSD operator

28 If a bi-tableau appears for the first time at a value of 7 too small to allow the construction of the operator here described,
then the corresponding operator requires derivatives to be constructed.
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by using the procedure described above and multiplying the result with the power of ¢ needed to

reach CSD n. For example, for n = 6, we have

(L ey = 02202 -02),  i#)
b N

Then one has to "redistribute" the ¢ factors through the rest of the tensor in all the possible ways

as follows: )

(02P(07 - 9})
(=T weet-0h i

Eventually, we need to consider also the mixing between powers of ¢ and the other Hy-scalars

with the same CSD. These are given by products and powers of all the operators of the form

Y07 =0% Y 00 Y00, ) e (4.117)

In our example, (¢?)? mixes with ¥; l-4 , and we have to add one more operator to our list, obtaining

Yi 0 (97 — ¢7)

22062 _ ¢2
(T gy J@PE@ =0
— (097~ 6})

(99~ 0f)

This procedure provides a basis of operators with the same CSD and symmetry properties. By
acting on these operators with D defined in Eq.(4.104), one obtains the mixing matrix that needs
to be diagonalized in order to find the energy eigenstates, i.e. the operators with a definite scaling

dimension.
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4.10.2 Spectrum of anomalous dimensions in hypercubic theories

Using the above construction, one can build all the composite Hy operators with no derivatives.
Here, we give explicit results for their anomalous dimensions to 1-loop. We check our results by
considering the cases N = 1,2 ,4 oo previously discussed.

Since we are considering operators without derivatives, the O(N) operators that we recover
when N = 4 are again the 7}, 5 introduced in Eq.(4.13), which have CSD n = 0O+ 2p and 1-loop

anomalous dimensions given by [171,172]

00 -1)+pWN+6(p+0)—4)
or= N+38 '

(4.118)

Instead, in the Ising model, which is obtained for N = 2 and N = o, all the Hy representations

collapse to the ¢" operators, whose 1-loop anomalous dimension reads

(4.119)

In full analogy with (4.118) and (4.119), there is an infinite family of Hy composite operators
whose 1-loop anomalous dimensions can be written in close form. These are the MSD operators.
In fact, by plugging the family of operators defined in Eq.(4.115), H,, ¢} 5;}» into the eigenvalue

equation (4.103), we have

1 k
Yo Amiy {pi} = @ (21’1(1’1 — 1) + (N— 4) ;pi[mi(m,- — 1) -+ (m,' — 2) (m,- — 3) + ]) . (4.120)

For N =4, Eq.(4.120) reduces to Eq.(4.118) with p = 0.
Let us proceed with a couple of examples. First, consider the family of bi-tableaux with one

row, thatisk=1,m;=1,and p,=p=n

(L

~

e [T T T ) (4.121)

~

|
N—p ;
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The corresponding operators are

Py, ¢M2"'¢Mp ) My # Ho 7 .o F Uy (4.122)

Using Eqs.(4.108) and (4.120), one promptly obtains

N _
dim = : =" 1) (4.123)
n

We now move to the family of bi-tableau with two rows, i.e. k =3, m; = {1,2,3} and p; =
{p1,p2,p3}. The first and second rows of the left (right) partition have, respectively, N — p; — p2 —

p3 and py (p1 and p3) boxes. We can write the related operators as

J/

2 2 2 2 2 2
\¢‘U] ¢'u'2“'¢'uplj(¢“pl+l - ¢.Up1+2)(¢ﬂp1+3 - ¢:upl+4)“'(¢:upl+2p271 - ¢:u'pl+2p2)

~~

p1 terms p2 terms

3 3 3 3
X (¢Mp]+2p2+1¢“ﬂ1+2p2+2 a ¢ﬂpl+2p2+2¢“p1+2p2+l)""((pﬁqul(p“q o (pﬂq(p“qfl) , M A F e F Hq

N

p3?err1ns
(4.124)
where
q=pi1+2p2+2p3, n=pi+2py+4ps3. (4.125)
In this case, Eqgs.(4.108) and (4.120) give
N N — 2p3+ N—p1—2p3—2 1 1
dim = p2 p3T P (N=p1—2p3—2p2+1)(p1 +1) (4126
D 2p3+pi pstp | N=—pP1=2p3—p2+1)(p1+p3+1)
and
dn(n—1)+(N—4)(3n—2py —3
e = 0 DW= 292 = 301) (.127)

We may now proceed by considering bi-tableaux with three rows, four rows, and so on. In
short, Eq.(4.120) gives the anomalous dimension of all the MSD operators (i.e. all the operators
which, for a given irreducible representation, have the minimal scaling dimension).

Moreover, the procedure presented here allows the computation of y for all composite operators
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with no derivatives, not only the MSD ones. Below, we present explicit results up to CSD n = 5.
All the indices of the operators are understood to assume different values, e.g. when we write ¢;¢;,
we imply i # j.

For the case n = 2 we have

2

dim([ITT..,, (1) = ( ) ) 0i0; "= 3N
N-2

N-—2

dim([H..., 0) = (N—1) 0% = 9° T=73N
N

2N -1

dim(TTT..., 0) =1 0 r= <3N )

N

These results have been already obtained in [163] via the conformal bootstrap method.

The 1-loop anomalous dimensions of the operators with CSD n = 3 are

2
aim( e )= () 09701 y==
N-3
2
dim(FF0..,0) =NIN=2) (07— ) ="
N-1
dim((I10...,0)=N ¢i9* —2¢7 y= —2“\3]];1)
N-1
dim([livjj]...,m)zN ¢,-¢2+NT_4¢,~3 y=1.

To the best of our knowledge, the results above are new. When N = 4 we obtain the corresponding
O(N) results Eq.(4.118) with p = 0 and Q = 3 for the first three operators and p = Q = 1 for the
last one. For N =2 and N = oo only the last operator survives, and we obtain Eq.(4.119). Finally,

for N =1, all the operators vanish except the third one, for which we obtain the free theory result

Y=0.
For the operators with CSD n = 4, we have
00 =3
10 Pk Y=~
(9:65 — 9;07) y=1
2 4242 42 2(N+2)
(07 —07)(¢ —¢) Y="3N
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N+38
Y= "=

¢l¢](¢/{2_¢12) 3N

- 124 5N + VN2 +24N — 48

i(12-N+ VN2 24N —48)(0:;0%) + 9,0 + 6,07 6N

12

/- 12+ 5N — /N2 + 24N — 48

é(u—zv— V/N? 424N — 48)(¢:0;0°) +0:0; + 0,07

6N

N 02— 0D 0~ o r=1
20707107 +0i —of y=200"2
<¢2>2—2§1¢;‘ 7=4(]§]§1)

(¢2)2+NT_4§¢,~4 r=2.

These results confirm those obtained in [173]. Finally, for n = 5, we obtain

0:0,000100m r=2v
0:07 — 02) (97 — 82) y=2019
6:(030c— 079 y=070
097097 — 92) y=10tN

9070100 ,_ 30+SNE V@6 +N)(N—=2)
07 0k + perm 6N
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¢2¢i(¢j2 —9) 1 3(N+6) 3 6

¢i3(¢12_¢k2) Y= 3N 2(N—4) 4(N+1) 0
¢4(¢4 _ (P/?) 4(N—4) 0 2(3N—2)
Yj
2
o (9?)
e AN +5) 0 3 6
' _ b 0 10N=2) 6(N—4) 4(N—4)
A V=N | sveey 10 s 4
N AN-4) 0 0 23N-2)
oY o}
=1

The consistency checks for N = 1,2,4,c are passed as in the n = 3 case. We are not aware of
results for n > 5 in the literature.

We conclude this chapter with an intriguing feature of the spectrum of anomalous dimensions in
the hypercubic model. Consider the sum of the 1-loop anomalous dimensions of order n operators,

Sy, weighted by the dimensions of the corresponding Hy-irreps ds, , that is

W, =Y ds, %, , (4.128)
Sn

where the sum runs over all the irreducible representations appearing at the level n. Clearly, the

Gaussian limit requires W,, o« N — 1. Moreover, the values of W, show an intriguing pattern

Wo= (V- 1), Wy = 2(N - 1)(N+2)
Wy = %(N— D(N+2)(N+3),  Ws= é(zv— D(N+2)(N+3)(N+4), (4.129)

suggesting the existence of a general formula for W,,. After [85] was published, a general expression

for W, (or better, for a related quantity) has been derived from first principles in [174].
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5 CHARGING A QUARTIC/CUBIC DUALITY

51 The O(N) modelin4 <d <6

In the previous chapter, we investigated the g(¢,¢,)> O(N) theory in 4 — £ dimensions. Instead, the
goal of the present chapter is to extend our results above four dimensions. At first sight, this idea
may sound weird as in d > 4 the quartic interaction becomes RG irrelevant, resulting in trivial IR
physics. However, in the large NV expansion, it can be shown that in the UV the model flows to an
interacting FP, which makes the theory, at least at large N, non-perturbatively renormalizable [30].

The idea that a theory may be UV completed by the emergence of a nontrivial FP takes the
name of asymptotic safety (AS) and has been firstly proposed long ago by S. Weinberg as a possi-
ble scenario for quantum gravity [81]. The existence of interacting UV FP in gravity is in general
investigated through functional RG methods, which, over the course of the years, provided intrigu-
ing results supporting it [82,175—178]. However, critiques to the AS program, or better to its actual
practice, have sometimes been raised in the literature [ 179, 180]. Recently, the emergence of an in-
teracting UV FP has been explored also in four-dimensional Standard model-like theories [35,181].
In the light of the above, it is, therefore, of general interest to explore realizations of the AS scenario
in non-gravity theories such as the one at hand”’.

In parallel, it has been pointed out that d-dimensional O(N) CFTs can have a holographic
description in terms of Vasiliev higher-spin theories in AdS;; [31, 183, 184]. In particular, the
AdS¢ dual of the critical d = 5 quartic model (4.6) was explored in [32].

The scaling dimension of the ¢,¢, operator is 2+ O(1/N), and thus it violates the unitarity
bound (2.16) in d > 6. We will then focus on 4 < d < 6, where the UV CFT might be unitary. In
this range, the O(N) model is usually investigated via the large N expansion, which is generated by

performing a Hubbard-Stratonovich transformation, which turns the Lagrangian Eq.(4.6) in

3 2
S = /dd ( a(Pa G(Pa(])a_wjn)z) ) (5-1)

2
where we introduced an auxiliary field o that can be integrated out via its EOM ¢ = @qmpf to

29 Interestingly, also Einstein gravity, when coupled to N matter fields, develops a UV interacting FP at large enough N
in2<d<4[182].
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come back to the original action (4.6). It can be shown that at the critical point we can neglect the

last term and we are left with the following action [185]

Serit = / dx ( (90 + fo%%) , (5.2)

where we have rescaled ¢ as ¢ — f The 1/N expansion is then obtained by integrating out the
fields ¢, which appear quadratic in the action.

In [33], the authors conjectured an alternative UV-complete description of the quartic O(N)
model given by a theory with N + 1 fields, O(N) symmetry, and cubic potential, which is described
by the Lagrangian

= %(8¢a>2+%<8n)2+g§n(¢a)2+h—6°n3, (53)

where ¢, is again an O(N) vector. This model is usually studied near its upper critical dimension,

d = 6, where the infrared dynamics become free. In d = 6 — €, the one-loop beta functions of the

model read
B — _; gy V= 8)813224;2>§2h+gh2 g _; L stzh — 33 s
and at LO in large N simplify as
£ Ng £ —4Ng3 +Ng?h
ﬁ1=—§g+m, pr=—5h+ 4(@n) : (5.5)
The FPs have been computed at the four-loop level in [186]
g = 68(]4\1]7t)3x | =6 68(]4\1]7t)3y 7 (5.6)
where
xX= 1+g+E—M+...+ (—155 _ 1705 +912545 +> €
N = N? N3 6N N2 N3
(177, 209336 108, )2 o) -
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_ 162 68766 41224420 (215 86335 7572265
YEITN T2 N3 N N2 N3
2781 270911 — 157140 (3) ) X
0 (%) . 58
(48N+ e + )8—|— (e7) (5.8)

The critical value of N above which this FP exists and gives rise to a unitary CFT is an interesting
open question. From the four-loop beta functions, it can be derived that for € = 1 we have N ~
400.

In proposing the equivalence of the critical quartic (4.6) and cubic (5.3) O(N) theories, Ref.
[33], showed that the scaling dimensions of the ¢, and 1) operators at the FP strikingly match those
of the ¢, and o field in the quartic O(N) model. This analysis has been later extended to the
three-loop level in [34]. Notice that the manifest instability of the cubic potential is reflected by the
fact that in 4 + € dimensions, the UV FP trivially obtained by analytically continuing Eq.(4.11) to
negative € and occurs at a negative value of g. However, the FP theory may be metastable, at least
at large enough N [33].

The instability is realized by instantonic effects that, in the O(N) quartic model, give rise to
complex scaling dimensions. At large N, the imaginary parts are exponentially suppressed as

e where 1S g1ven the ifree energy of a conformal scalar on 5%
Nf(d) where f(d) is given by the fi ay of a conformal scalar on §9~2 [187]

F(d) = Sin(ﬂd/zl)r(d— 5 /Oldxxsin(nx)r (%l—i—x— 1) F(g—x— 1) . (5.9)

The function f(d) is shown in Fig.10.

In [187], it was shown that in 6 — € dimensions, the instantonic corrections to the scaling di-
mensions in the cubic and the quartic theory match, providing another non-trivial test of the duality.
Notice that, in general, the cubic theory exhibits a larger universality class, and only by further fine-
tuning the theory to a critical manifold it is possible to reach the universality class of the quartic
model.

In this chapter, we use the large charge expansion to non-trivially test the equivalence between
the two CFTs by computing the scaling dimensions for the whole family of charge Q MSD O(N)

operators T 5 defined in Eq.(4.13) in the cubic model and comparing with the existing O(N) lit-
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Figure 10: The instantonic function f(d).

erature. The large charge expansion allows comparing terms at arbitrarily high perturbative orders
providing non-trivial insights about the dual picture.
To this end, we begin by reviewing large N results regarding the critical O(N) quartic model in

4 <d < 6. Ty is the fundamental ¢, field. Its scaling dimension in 6 — € reads [186]

~ E
A¢:2——+

(1 44 1936 > ( 11 835 16352
5 +... | €&

2 3
T At SR LI o ) E+0(), (510
NN N 6N N ) +0(E), 10

We use the "tilde"s to denote the scaling dimensions computed in the quartic theory.
The scaling dimension of the 7;, 5 operators has been computed for arbitrary QatLO (Ilv) in the

large N expansion [188]

and in d = 6 — € reads

. - e 1 o A 7. 8. 1
Ap=20-50+ [(—3Q2+4Q)e+(ZQ2—§Q> 82—|—O(83)] +0(1W) . (512

Furthermore, these operators have been recently studied to the leading order in the large charge

expansion in [137] (d = 3) and [189] (in arbitrary d). In both cases, the scaling dimension of the
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T}, ¢ operators takes the form

~ 1 -
Ap= k_zlmAk(J) : (5.13)

where J = Q/N is the *t Hooft coupling of the large charge semiclassical expansion. Here 1/N,

where N is taken to be large, has the role of the coupling constant of the theory. A_; reads [189]

- d 2
A= f(ccy)+J\/(§ - 1) +co ; (5.14)
co=co(J)
where ¢ (J) solves
d d \’
— f(cc)-i—J\/(——l) +co| =0, (5.15)
dcs 2
and f(cg) is given by
(v/<ot)
fleo —, (5.16)
t(2cosht —2)27!

with J; the Bessel function of the first kind. The small J expansion of A_ reads [189]

A= (%l— 1)J+h2(d)J2+h3(d)J3-|—... , (5.17)
where 3 ) (d 1)
B _2 —dsin ”7 S
hZ(d) - 7T3/2F(% 1) )
) (d-2)d’r(d ~2) (7~ 6y (9)) (5.18)
2T 6r(2—4)°r(4—1)'r(¢+1)°
hy(d) =

Ind =4 —¢, Eq.(5.17) reproduces the leading N terms of our previous result (4.80). Instead,
ind =6 — &, we have
. _e. < /(0\, . . .
NA_1=20--0+0) (ﬁ> (aje! +Bje/t +yelt2 4 ) . (5.19)
J

For later comparison with the scaling dimensions in the cubic model we list below the values

of the first a; and fB; coefficients
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213597

o = -3 s O = —45 s o3 = —1350 , oy = — 4 s O5 = —2457216
77 245261116202
O = _ 95773905 , o7 = —6739459200 , og = — 5260111620285 . (5.20)
8 64
7 3 27
Bi=y. B=3(BC()431),  Py="(1285(3)+400(5)+41),
81
Bs = 16(18208(:( )+71688(5) +1792¢(7)+3117)
Bs = 648(82028(3) +35108(5) 4+ 12188 (7) +2528(9) + 677)
2187
Be = 32 (4727888¢(3) 421094408 (5) + 836864 (7) + 2560008 (9) + 450568 (11) +110211) .
(5.21)
Finally, the large J expansion of A_; in d = 6 — & dimensions reads [189]
NA_, ~ —eii“”/S%\/(ze)l/Sﬁ/S : (5.22)
while, in d = 4 + €, we have
Nﬁfl ~ :l:lﬂ.'/3 3N 1/3J4/3 (523)

24/3
In both cases, the scaling dimension in the large J expansion is complex. In fact, in [189], it has
been observed thatin 4 < d < 6, it exists a critical value of J, J.., above which the scaling dimensions
become complex. This happens when there are no real solutions to the saddle point equations.
In [189], J. has been evaluated numerically, with the result displayed in Fig.1 1. Intriguingly, J.(d)
looks very similar to the instantonic function f(d).

The first test of the equivalence of the large charge sector in the two descriptions has been
carried out in [154], where the authors showed that exponentiation of the diagrams with the leading
Q-scaling at every loop order’", leads to the same result in both models. This result is AQ at LO in
all the expansion parameters: 1/Q, 1/N, and .

In the next section, we will re-derive Egs.(5.12) and (5.19) in the cubic model in 6 — &, signifi-

30 This exponentiation is analogous to that of the Kermit diagrams discussed in Sec.3.6.
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Figure 11: J, as a function of d, for 4 < d < 6. Note: reprinted from [189].

cantly extending previous tests of the duality.

5.2 Large charge expansion in the cubic model: LO

In order to compute the leading (classical) order in the semiclassical large charge expansion, we
follow the procedure outlined in the previous chapter. Since this model shares the same O(N)
symmetry, most of the considerations made there still apply to the theory at hand. For instance, the

T} p operators are the MSD operators with total charge 0, and, in the saddle-point expansion, their

scaling dimension takes the form

1 _
As=) @Ak(/l) , A= Q¢ (5.24)
k=—1
We start by introducing N/2 complex fields as
j=1,....N/2, (5.25)

: 1 i
@ =j-1+id; = Epjel%] ;
and we map the theory to the cylinder. The cylinder Lagrangian reads
2o 1 o ho 5 M, 222
Loy = (99)" + 59090 + 80N @~ + 0" + 50" +m"¢
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m2

N N U g v hoos om o, m?
= 59pi0pi+ S piPidXidxi + 5IMIN + 2 n(pipi) + -7+ N7+ pipi, (5.26)

where m is given by Eq.(2.31). The EOM are

(8“8,4 —d*xjduxi+gom +m2) pi=0, (5.27)
otdun = g?O(PiPi) + %nz +m’n (5.28)
iot (G[Gia“%i) =0. (5.29)

We look for a spatially homogeneous solution, which is given by

pi=A;, yi=—iut i=1,... )k,
oA (5.30)

n=v,

where k < N /2 is the number of charges we fix. As explained in the previous chapter, the value of
k is irrelevant for the computation of the scaling dimension of the MSD operators as long as it is
different from zero. Notice that, due to the interactions between ¢ and 1, at equilibrium, we have
a non-zero vev also for the latter field. The parameters A;, v, and u are fixed by the EOM and the

expression for the Noether charge as

2 2 _ 80 .2 ho » 2. 0 2
u-—m" = gov, ?f +?V +mv=0, W—‘Uf s (5.31)
where R is the radius of S~ !, and we defined
N/2 N2
fF=Y A7, 0=Y 0, (5.32)
i=1 i=1
with Q the sum of the charges. From Eq.(5.31), we have
2 2 Qgg _
Ru [(Ru)” —4] (8g0+ho [(Ru)* —4]) + =5 =0, (5.33)

which, once rewritten at the FP, implicitly defines the chemical potential as a function of the ’t
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Hooft coupling .A. The above equation can be solved numerically, or analytically for small/large

values of A. The former expansion reads

860  80°(3g0+2ho)  80° (285 +280h0 +5)
6473 1638476 5242881

Ru=2— (5.34)

The classical energy is obtained by adding the usual charge-fixing boundary term, i.e. H — H=

H+Q0u
2u? govf?  he mPf? ou
Eijass = — > + > + G + > + 2 +— (5.35)

Using Eq.(5.34) in the classical energy above and evaluating the result at the FP, we obtain the
leading order A_ of the large charge expansion. By expanding A_ in the perturbative regime and

plugging the FP value of the couplings (5.6), we obtain

S o R CR )
oo o) o of )

- 995773905 1 - 6739459200
e (e ro ) ) -0 (T o () )
+

_ 24526111620285 1
—Q%S( < 9)> 0'%%) . (5.36)

64N3
The above remarkably reproduces the «; coefficients in Eq.(5.20) for the scaling dimension in

the quartic O(N) model. Notice that A_{(J) in (5.19) and A_(A) in (5.36) are the leading order

of two distinct expansions, which besides taking the charge to be large assume, large N and small
g, respectively. However, since at LO in the 1/N expansion the cubic FPs (5.6) are 1-loop exact (in
the g-expansion), all (and only) the terms scaling as Q (%) ’ appear at the LO of both expansions.
For this series of terms, we have’!

OA_; =NA_, . (5.37)

3!'In truth, at the moment, we explicitly checked the agreement only up to order O (810), ie. 0.
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The expansion of A_ for large "t Hooft coupling .A reads

SN

_ din 1 5N 2in SN 1 N 3
A_p=—et5 (28)5 ==JO — 5 - (28) SIS + = (26) 525 —
0n1 =¥ o)t 2N 155 N eyt sy Mgy pis - O

+O (J—%) . (5.38)
where we rewrote the result in terms of J. The above matches the O(N) result (5.22), confirming
Eq.(5.37). Notice that Eq.(5.38) agrees with the expected form (3.58) of the large charge expansion
in the large chemical potential limit obtained via the large charge EFT in Sec.3.5. As for the quartic
model in 4 < d < 6, we again observe that in this limit the scaling dimensions become complex
signaling instability of the ground state of the theory. On the other hand, since every order of the
small "t Hooft coupling expansions (5.19) and (5.36) is real, the appearance of complex anomalous
dimensions implies the existence of non-analytic terms, i.e. the classical ground state shows some

non-perturbative features.

5.3 Large charge expansion in the cubic model: NLO

The time is ripe to compute the leading quantum correction Ag in the semiclassical expansion,
which, as we saw in the previous chapter, is given by the functional determinant of the fluctuation
around the classical solution (5.30). We start by noting that we have the same superfluid symmetry
breaking pattern (4.43) discussed for the O(N) model in Sec.4.3, whose obvious generalization in

the case we fix only k over N/2 charges is
SO(d+1,1) x O(N) = SO(d) x D' x O(N —2k) x U(k—1) , (5.39)

and, according to the charged Goldstone theorem, we expect 2k — 1 massless modes (counting
twice the type IT Goldstones)®” i.e. one type I scalar plus one type I1 U (k — 1)-vector. Moreover, as
shown in Chap.4, we can use an O(N) rotation to assign all the charge to a single Cartan generator.
For sake of simplicity, we then fix only one charge. Then, in the light of the discussion in Sec.4.6,

we expect one relativistic Goldstone boson (the U(1) phonon), two gapped modes, and N — 2

32 Indeed, this is the dimension of the coset of the "spontaneous” part of the total symmetry breaking, which is U (k) —
Uk-1).
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"spectator"” states, with gap u and dispersion relation given by Eq.(4.65)

o, =\/p>+u? . (5.40)

For the remaining three d.o.f., we can expand the fluctuations as follows:

pr=f+rx), x1=—-iut+m(x),

(5.41)
n=v+Mfx).
Then the quadratic Lagrangian for these three modes reads
2) 1 2 1o 1 2 A . hy ., omP_, m?,
L\ = 5(8r) + 5(817) + E(an) —2iurt+gofNr—+ S + > + 5T (5.42)

The dispersion relations can be computed as explained in Sec.(4.6), i.e. we go to momentum space

and consider the inverse propagator 2 (p)

y r(p)
s = [ S0 p) it(~p) 2(-)P () |0 (543
=] Gaap n(-p p r)(n(p)| > :
(p)
with p the momentum. Then the dispersion relations are the positive energy solutions of detP?~!(p) =
0, where |
> (@* — p?) iou A
_ 1
Plp)=|  —ion S (0?=p) 0 , (5.44)
1
A 0 ~(0*—p*)—B
5 (@ =p7)
with
1 2_u)2 2405 2 _ 2
AZ_\/(m 2) Rgom? +ho (42 — )] 545
2 80
1 ho
B=_(m*+— 2—m2) : (5.46)
2 ( 80 (k )

It is easy to check that one of the dispersion relations describes a relativistic massless Goldstone

boson which at large u propagates at the speed of sound 4/ d]T] = %
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Clearly, at large N the N spectator fields provide the leading N contribution to Ay, which we

denote as A(()N). Since our goal is to compare with large N results in the quartic model, we start by

computing A(()N). First, we write the large charge expansion in its bare and renormalized forms

oo 1 _ > 1 _ -
E(QN) - jz_ @eﬁm (g0, h0,0,d) = ,-Z_l @eﬁm (g,h,0,d,RM) . (5.47)

As shown in Chap.4, eg is given by

o)

- R
e0(g0,h0, 0,d) =5 Y nY oi(p*=J), (5.48)
/=0 i

where the second sum runs over the dispersion relations of all the fluctuations. The expressions
of the eigenvalues of the Laplacian on the sphere J; and their multiplicity ny, have been given in
Eqgs.(4.58) and (3.61), respectively.

The renormalization is carried out at the LO order in 1/N. From the beta functions Eq.(5.5), it
is easy to derive the relation between bare and renormalized couplings at the 1-loop level

3 2
_ e g'N e g"N(h—4g)
go=M (g+15367r38)’ ho=M <h+ sian’e ) (>49)

with M the sliding scale. Proceeding as in Sec.4.7, we have’?

e (¢,h, 0,d,RM) = &) (g, 1, 0,d) + £ (3,1, 0,d,RM) , (5.50)
where
22 20 2m2
) _ N(WR —4)" (R =2) (1 N
fo = 384R ; ~loe(MRVT) | — en
X ((u2R2—4) ((2y—3)u*R* — 12yuR* —2u*R* + 16y+24)) +0(¢) . (5.51)

with 7 is the Euler—Mascheroni constant. Finally, we evaluate this expression at the FP. In order to

include in A(()N) all the terms with the right scaling, we need to add the expansion of Qé_; to the

leading order in €. After this procedure, the term which depends on M drops and A(()N) depends

33 The dependence on charge and couplings is hidden in .
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only on the combination A = Q¢. We have

o 2/ 0m2
W S | R N (R —4)" (WR*-2)
A (A)_{g% lz%nﬂvw*(fw 384RE h ()h(). (5.52)

The sum over ¢ can be regularized as done in Sec.4.7. In the regularization procedure, also the %
pole in Eq.(5.52) cancels, providing an internal consistency check of our computation. The final

result reads

N 25R6,u6—130R4,u4—64OR2,u2+2304Ru—1568 N &
Ay’ =N 21603 Z , (5.53)

where the sum over ¢ converges and ¢ (/) is given by

o™ () = 1;2(16(€+1)(£+2) (0+3 \/R2 241(0+4)— HR6H6+32(R2;12—1)
—2(£(6+2) +S)R* U +80(£+2)(£(£+4) + S)RPu* + 16L(£+2)* (L(L+4) +1)] ) .
(5.54)

For small ’t Hooft couplings the sum over ¢ can be computed analytically, yielding

AN = Q¢ %+%+3€—22+O (%)} +(Q¢)? {% - 1]1,—26“9 (1%)} +0((0¢)?) .
(5.55)
Let us compare the above with Eq.(5.12) for the scaling dimension in the quartic model. We
have a —QQ term which matches. Furthermore, also the coefficients of the term of order Q ¢?
agree between the two formulas. Since these terms, being leading in 1/N, do not receive other
contributions, this constitutes another check of the duality, now at the NLO in the large charge
expansion. The subleading term —%Q instead receives contributions from the remaining modes
in the fluctuation spectrum. This contribution can be computed by means of the same procedure
used for the spectator fields but with two crucial differences. First, now one cannot truncate the
expression to the leading 1/N order. Second, being the dispersion relations more involved, the
fluctuation determinant has to be regularized and evaluated numerically at fixed values of N, Q,

and €. Then, in order to determine the coefficient of the term scaling as %Q, which is leading in

€, we considered small values of € and performed a numerical fit. After summing the result to the
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contribution of the spectator fields we obtained that such a coefficient is +4, again in agreement

with Eq.(5.12). To summarize, we add QA_; to Ay and rewrite our findings as

1
N?

1

- _ € _ _ _ 7T _ _
Apg=20-50+y (—3Q2+4Q)8+(ZQQ—O(Q))82+O(83)}+(9< ) (5.56)

which matches Eq.(5.12), including the term %, which is in the NLO of the large charge expansion
in both models i.e. is contained in both Ay and Ay.
5\ J
Notice now that all the terms scaling as N <%> in Ag can come only from the contribution

of the spectator fields. These terms have exactly the right scaling to match the f3; coefficients in

Eq.(5.21). We have

-0 |5 +0 (3 )| +@er | o ()]

n (Qe)3 _%(48C(3)+31) +0O (1%)}

Ap

+ (Qe)* _22—]33(1284'(3)—1—405(5) +41)+0O (%)}

_ 81
| 16N*

+(Qe)® -%(SZOZC(.%) +35108(5) + 12188 (7) +2528(9) 4+ 677) + O (%)}

(182084 (3) +71688(5) +1792¢(7) +3117) + O (%)}

2187
32N6

+(Qe)’ [ (4727888 (3) + 2109440 (5) + 836864 (7) + 256000 (9) + 45056 (11)

+110211)+O(%) +0((Q¢)?) , (5.57)

in remarkable agreement with the values listed in Eq.(5.21) for the quartic model. Our findings
provide a non-trivial check for the equivalence between the cubic and the quartic critical theories,
showing at the same time the power of the large charge expansion.

We conclude this section with a simple observation. In 5d, both the O(N) and the cubic theory
are non-perturbative but accessible by the large charge EFT considered in Sec.3.5. This opens the
interesting possibility of non-perturbatively testing the duality in the large charge limit. To this end,
notice that, as we saw in Sec.3.5, the form of the EFT action is dictated by symmetry arguments

and thus is trivially the same in both models. In particular, as discussed in the previous chapter,
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Figure 12: F(u) as a function of p.

the effective action is again given by Eq.(3.56), and eventual differences between the cubic and the
quartic theory are contained in the Wilson coefficients. The scaling dimension thus takes the form

of Eq.(3.58), that is
Ay =10+ @ 0% +a30'* —0.1079+ 0 (Q—l/“) . (5.58)

The a; coefficients can be determined on the lattice. Notice the appearance of the universal Q"
term typical of the large charge expansion in an odd number of dimensions, which as discussed in
Sec.3.5, comes from the zero-point energy of the phonon mode. For 5d O(N)-invariant CFTs, this

term has been originally computed in [131].

5.4 Complex anomalous dimensions

As in the O(N) model, our results show the existence of a critical value of the charge above which
the scaling dimensions are complex. The imaginary part arises in the chemical potential u, which

is given implicitly by Eq.(5.33). Let us fix R = 1 and rewrite Eq.(5.33) in terms of J. We have

1
F(p) = 1g5k (Bu*—20u>+32) =—Je+0O (&) . (5.59)

The plot of F(u) is given in Fig.12.

100



Re[u(a)]

Im[u(a)] 2.00
0.0020
1.95
0.0015
0.0010+ 1.901
0.0005 Lasl
0012709 0012710 0012711 00127122 0.00 0.05 0.10 0.15 0202

Figure 13: Im(u) (left) and Re(u) (right) as a function of @ = Je. The imaginary part starts at a, =

L (_9+m) \/310 (15+\/ﬁ).

Since by definition, we are interested in the region where F (1) is negative, i.e. where J€ > 0,
we note that only a limited range of values of the product J& = a are allowed when the chemical
potential is real. As in the O(N) case, above J,. there are no real solutions to the saddle-point
equations. In Fig.13 we show real and imaginary part of the chemical potential as a function of
a. The imaginary part arises at the global minimum of F(u). There the real part of the chemical
potential has a spike and its first derivative diverges. This gives J. to the leading order in the

g-expansion and in large N

chg%g(—%m) \/% (15+\/ﬁ). (5.60)

In Fig.14 we show the plot of J,. as a function of d. Notice that the difference with the numerical
evaluation of J.(d) shown in Fig.11 and performed in [189], does not come from the FPs truncation
but instead from terms with higher powers of €, which are subleading in our large charge expansion
(5.24) but not in the expansion (5.13).

For the sake of completeness, we study the O(N) model in 4 — € with € < 0, which is obtained
by continuing the results of the previous chapter to negative €. First, we expand Eq.(4.49) for large
values of 1, obtaining

- /3 IN
QA—] :_eilﬂ/3m81/3j4/3 ’ (561)

in agreement with Eq.(5.23). To study the imaginary part, we proceed as above and rewrite

101



0.6F
0.5¢
0.4-
0.3F
0.2F
0.1F

5.6 5.7 5.8 5.9 d
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Figure 15: F;(u) as a function of u.
Eq.(4.47) at the large N FP g* = 1%8 (setting R =1) as
1 3
Fy(p) =7 (0 —p) =Je. (5.62)

The plot of Fy(u) is shown in Fig.15 We have two regimes which correspond to € positive and
negative. For positive €, Fy(ut) is positive and monotonic and there are no complex anomalous

dimensions, as expected. At negative €, there is a minimum in U = % As before, J,. critical is

102



0.4

03+

0.2+

0.1+

d

4.5 5.0 5.5 6.0

Jc(tot)

Figure 16: The leading behaviour of near d = 4 (red curve) and d = 6 (blue curve).

given by

€ 6v3¢e’

that is where the square roots in (4.48) vanish.

P, G5)_ (5.63)

In Fig,16, we show the two tails we found for J. around 6 and 4 dimensions. We observe that

the qualitative behaviour is controlled by having the free theory on both sides.
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6 CHARGING NON-ABELIAN HIGGS THEORIES

In the previous chapters, we saw that in O(N)-symmetric theories, if the ground state is spatially
homogeneous, then every charge configuration O = Q(q1,¢>,. .. ,qy /2) can be O(N)-rotated to the
simple configuration Q = O(1,0,...,0). Thus we effectively have only one charge O, and the
charge configuration does not affect the computation of the scaling dimension of the MSD opera-
tors. Additionally, this fact almost trivializes the identification of the fixed-charge MSD operator
when the theory is perturbative.

To allow for more variations in the charge configuration without having to consider non-homogeneous
ground states, which lead to complicated saddle-point equations, in this chapter, we investigate the
large charge expansion in the U(N) x U(M) CFT in d = 4 — € dimensions. As we shall see, the
non-trivial structure of this model allows studying classical configurations with different values of
the Cartan charges, corresponding to primary operators transforming in different irreducible rep-
resentations. This opens the intriguing possibility of computing the scaling dimensions of MSD
operators as explicit functions of their quantum numbers (i.e. of the charge configuration) and
obtaining with a single computation the scaling dimension of a wide range of operators, pushing
forward the frontiers of large charge methods.

On the other hand, as discussed in Sec.4.1, given a charge configuration, we do not know, a
priori, the exact form of the corresponding MSD operator. We will, therefore, develop a general
operator-identification strategy based on the interplay between semiclassical methods and group
theory constraints. Even though we focus on the U (N) x U (M) model, the ideas presented here can
be easily generalized to other non-abelian theories.

In Euclidean spacetime, the Lagrangian of the theory reads
L=Tr(d,H O"H) +ugTr(H H)* +vo(TrH H)? (6.1)

where H is an N X M complex matrix. For N = M and vy > 0, this model describes the finite-
temperature phase transition in massless QCD with N flavors [36,135,136], with H playing the role
of the order parameter. In the last years, this model has also been studied in relation to asymptoti-

cally safe theories structurally similar to the Standard Model [35, 181, 190], of which it constitutes
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the Higgs sector. In [61], the large charge regime of this model has been investigated in exactly
four dimensions via the EFT approach introduced in Sec.3.5**. Notice that, for u = 0, we recover
the O(2NM) theory studied in Chap.4. This fact will be used to non-trivially test our results.

We work in the MS scheme. The couplings are renormalized as

—e _ - a&n)(u,v) —& _ - a‘(’n)(”?v)
uoM _HZE)T’ voM _v+n§)T. (6.2)
The beta functions of the couplings are given by
B, = du lomo= —eu+ aa,(,])_i_ 861,(41) (1)
“= dlogM =0 T TV ey T
dv a4V
szm’8:0: —&v+tu 8v +v 8:/ —a&l), (6.3)
and, at 1-loop, read [191]
1
Bu(u,v) = —eu—i—m(6uv+(N+M)u2) , (6.4)
1
v, v) = —&v+-—= +4)v'+ +M)uv+3u”) . .
NM +4)v* +2(N + M)uv + 3u® (6.5)

4r?

At the 1-loop level, the model features four fixed points: a Gaussian FP (u* = v* = 0), an O(2NM)

FP (u* = 0), and are other two FPs given by

A 3vR Byy = (M+N)+/R
u1:47r2 MN MNe, vi_L:47'L'2 v+ (M +N) MNe, (6.6)
Dyn 2Dyn
where
Ayn =NM?+MN? —5N —5M,  Byny=36—(M+N)?,
Ryn =24 +M?* + N> — 10MN | Dyn = (MN —8)(M+N)?+108.  (6.7)

The beta functions to five loops have been derived in [38], where the authors concluded that no

stable FP, with both u* and v* real and different from zero, exists for N = M and d = 3. This

3*1n 4 dimensions the FP is obtained by introducing additional degrees of freedom.
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suggests that the finite-temperature chiral phase transition in QCD is first-order. When Ry < 0,
the fixed points are complex, and thus, as discussed in Sec.2.6, we expect regions of the parameters
space where the theory exhibits near-conformal "walking" dynamics. To elucidate the emergence

of a near-conformal behaviour and its connection with complex CFTs, we take N = M and consider

the large N limit. To this end, we introduce the N-rescaled couplings o, = ( fo)z and o, = %,
and consider their 1-loop beta function
= 402 (142 ) +16 1207 6.8
Ba, = —eo+4a; +]W + 160,00 + 120, (6.8)
24
Be, = —eah+mavah+8aﬁ. (6.9)

At infinite N, o, does not influence the running of the ¢, coupling which flows to an interacting
fixed point in the infrared o = €/8. Substituting this value in the beta function for the double-
trace operator, one notices that the double-trace beta function is positive and has a minimum near
the origin, with the distance from the origin controlled by £2. Hence, the running of «, slows near
this point, i.e. its running behaviour is replaced by a walking one. At the same time, the zeros of
Ba, occur at complex conjugate values of the ¢, coupling o.f = —% (1 + 1\/§> One can also show
that such behaviour persists at finite N.

Since complex CFTs are non-unitary, it is natural to wonder if large charge methods and the
related CFT tools, such as Weyl maps and state-operator correspondence, can still be applied to
them. In the affirmative case, this offers the attractive opportunity of studying non-conformal field
theories via large charge methods by considering the associated complex CFTs and extrapolating
the results to the theory with real couplings. Notice that, in general, such an extrapolation is
straightforward and limited only by the knowledge of the value of the couplings at the FP. In fact,
it is enough to use the latter to rewrite the obtained scaling dimensions as a power series in the
couplings. Clearly, the resulting expression will be valid for any value of the coupling and not only
at the FP. Together with the study of the charge configuration, exploring the large charge expansion
in complex CFTs is our second main motivation for considering the U (N) x U (M) model.

The u coupling breaks the O(2NM) symmetry to U(M) x U(N). It is, therefore, convenient
to think about representations of this model as a decomposition of the O(2NM) multiplets. In

particular, the defining (vector) and the 2-index traceless symmetric representations of O(2NM),
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decompose as

[ loeny = 2NM=[N.M]&[N,M], (6.10)

oy = (LAG)® (Adj, 1)@ (Adj,Ad) & (01,00 )& (1,0 ) @ccl
INPMZNM—1 — N2—1@M2—1@(N2—1> (M2—1>

. Z(N(N;l)) (M(N;Jrl)) @2<N(N2— 1)) <M(1V;—1)> |
(6.11)

where in the last line we explicitly show the dimension of the representations appearing in the
decomposition. Little is known about composite operators in the U(N) x U(M) model. Thus,
as the first step of our investigations, we compute the scaling dimensions of the MSD operators
transforming according to the irreps appearing in the RHS of (6.11) for N = M and to the first loop
order. As discussed in Sec.(4.10), the 1-loop anomalous dimension can be obtained by means of
an eigenvalue equation that follows directly from the EOM and conformal symmetry. The details

of the computation are given in App.B, while the final results read

Rep.  (Adj,1) (Adj,Adj)  (O,07)  (H.HY)

Oper. Tr [HTaHT] Tr [TaHTaHT] Tr [KiHKiH} Tr [LiHEiH} 6.12)
v+ Nu \% v+u vV—u
Ti-loop 472 472 472 472

where the T¢ are the generalized Gell-Mann matrices and K'(K') and L'(L’) are the Clebsch-
Gordan coefficients for the SU(N) representations (17 ([11*) and [ (H *), respectively [192].
The scaling dimensions for the operators transforming in the representations (1,Adj) and (Adj,1)
are identical. Notice that for u = 0 all these operators have the same scaling dimensions, due to
the enhanced O(2N?) symmetry. To the best of our knowledge, the results in Eq.(6.12) are new,

except the scaling dimension of the bi-adjoint operator Tr [TaHTaHT] which has been computed to

107



two-loops in [190] and reads

1

1%
Anfropren] =2 €+ 75+ [(N*=5) u? —4Nuv — (N> +5)v*] . (6.13)

This result will be used as a check for our semiclassical computations.

6.1 Charging the system

The global symmetry of the model is
G=SU(N)LxSUM)pxU(1)a, (6.14)

in which U(1)y4 is the universal phase rotation of the H field *°. Under SU(N). x SU(M)g, the H

and H' fields transform as
H— LHR', H" > RH'L', (6.15)

with L € SU(N) and R € SU (M).
We start, as usual, by Weyl mapping the theory to a cylinder of radius R, i.e. RY — R x §¢71,

The cylinder action is given by
Seyi = / d'x\/g [Tr(a uHOMH) +ugTr(H H)? +vo(TeH H)? +m*Tr(H' H) | . (6.16)

where g denotes the metric determinant and m is given by Eq.(2.31).

As in the previous chapters, we look for a spatially homogeneous solution to the EOM that, if
existing, is the solution with the smallest energy. We, therefore, consider the following homoge-
neous ansatz

Hy (1) = *ME"R (6.17)

351t does not matter whether the universal U (1) rotation acts from the left or the right. Therefore, precisely speaking, the
global symmetry should be written as Eq. (6.14). Writing it as U(N) x U (M) is less rigorous but more convenient, see
[38] for example.
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with 7 the cylinder time. Mg is an N x N diagonal matrix while B is an N x M matrix of the form

ENXM: (BNXN 0N><(M—N)> s (618)

where B is an N x N diagonal matrix. The Noether charges associated with the Cartan generators

are encoded in the following charge matrices
Qi =—VHoH},  Qr=VHjHo, (6.19)

with V = R4~1Q,_| being the volume of S?~!. Plugging in the ansatz Eq. (6.17), it is straightfor-

ward to show that

_ B'B 0 _
O; = —2iVMgB'B, Qg =2iVMg Nx(M=N) (6.20)
0r—nyxn Owr—n)x(m—n)
If we parametrize Op as
_ 0 _
oe— | & Nox=N) - 6.21)
Or—nyxn Or—N)x(m—n)
then from Eq. (6.20) we find the constraint
QL+Qr=0. (6.22)

Since B is diagonal, Q; and Qg are diagonal too. From now on, we restrict our attention to the

sector neutral under U (1)4, which implies

TrQ, =TrOr=0. (6.23)

To simplify the notation, in the following we will denote Q; simply as O, that is

Q=0 =-Qk. (624)
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The Euler-Lagrange equations read

ORH + V2H + 2uoH (H*H) 4 2uoTr (H*H) H+mH =0, (6.25)

and for our homogeneous ansatz Eq. (6.17), they reduce to:

2
OMEB = —ugB' B* — vyTr (BTB> B— ’%B . (6.26)

We label the diagonal entries of Mg as Mg ;; = —iyl;, and those of B as B;; = b;. The ; are a
set of chemical potentials and should not be mistaken with the group-theoretical weight matrix
used later in this chapter. Unlike the other models considered in this thesis, here we have multiple
independent chemical potentials, whose relative importance is determined by charge configuration.

The EOM can be rewritten in component form as

2 2 <o, m
21 = uobj + VO1;1 bi+ 5 6.27)
while the corresponding "charges" read
Ji=(Qu)ii = —2Vh7y; . (6.28)

Then, unlike the O(N) case, a spatially homogeneous ground state is compatible with every diago-
nal charge matrix Q.

The classical energy E is given by evaluating the cylinder Lagrangian Ly in (6.16) with an

ILeyl

appropriate boundary term — Zl e , which implements the charge fixing. We obtain

N N 2 N
E_ﬁcyl Zu, Cyl—42b2 +u02b?+v0<zb%> +m?Y b (6.29)
i=1 =1 i=1

Before proceeding with the computation of the scaling dimensions, in the next section, we will
perform a group-theoretical analysis of the U(N) x U(M) model apt at determining the relation

between a given charge configuration and the associated MSD operators.
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6.2 Fixed-charge operators in the U(N) x U (M) model

In this section, we study the identification of the irreducible representation associated with a given
charge configuration from Lie algebraic considerations. To this end, we will introduce and prove
several propositions about the group-theoretical properties of the MSD operators. We assume per-

turbativity and make use of the MCSD assumption introduced in Sec.4.1.

Proposition 1:  Consider a fixed-charge operator O with minimal CSD. We denote the CSD of
O by D. Furthermore, suppose O belongs to some irreducible representation (I'z,I'z) of SU(N)p X
SU(M)g in the U(1)4-neutral sector. Then I'; must appear in (Adj; )" /2, with Adj; being the
adjoint representation of SU(N)r; I'r must appear in (Ade)D/ 2, with Adjg being the adjoint

representation of SU (M)g.

Proof of Proposition 1:  Since we are considering a homogeneous ground state and MCSD, O
must be a Lorentz scalar with no derivatives. Then O must be built out of the product of D/2 H

fields and D/2 H' fields (so that O is also neutral under U(1)4). Now, under SU (N, x SU (M)g
H~ (FL,Fr),  H'~ (F,Fg), (6.30)

where Fy and F; are the fundamental and anti-fundamental representations of SU(N)y, respec-
tively. The notation for representations of SU (M )g is self-explanatory. Therefore, O must trans-

form as an irreducible component inside the reducible representation

(Ti0.Tro),  Tro=(FLe®n)”?,  Tro=(Frafr)™?. (6.31)
On the other hand, the tensor product F; ® F; decomposes as
F,®F, =1, ©Adj; , Fr @ Fr =1z © Adjg , (6.32)
and thus
o= (LL®Adj)”?,  Tro= (k@ Adjr)”? . (6:33)
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All singlet components in 1; & Adj; and 1z & Adjr can be dropped because O is an MCSD op-
erator. In fact, if a singlet component contributes, then one would be able to construct another
operator that corresponds to the same charge configuration with less number of H and H' fields, in

contradiction to the MCSD requirement. Then proposition 1 follows.

Proposition 2:  (I'z,I'g) must appear in the U(1)4-neutral sector of the decomposition of the

D-index traceless fully symmetric tensor of O(2NM) under the branching

O(2NM) > SU(NM) x U(1)4 D SU(N)L x SU(M)g x U(1)4 . (6.34)

Proposition 2 follows straightforwardly from the MCSD assumption.

6.2.1 The charge configuration

Our next step is to determine the precise correspondence between the charge matrices Q and the
weight of the irreducible representations of U(N) x U(M) . By definition, they have to be equal
up to a normalization factor which we now determine. The matrix Q belongs to the special linear
algebra sl(N;C), which is the space of all the traceless N x N complex matrices. sl(N;C) is the
complexification of the real Lie algebra of the SU(N) group [193]. The Cartan subalgebra b of
sI(N;C) can be characterized by

M
h= AieC, M+...+Av=0, . (6.35)
An

A weight is a linear functional on ). Nevertheless, it is convenient to identify linear functionals on
b with elements of b itself, by virtue of an inner product on . Suppose K and K’ are two elements

of h, we define their inner product by

(K,K') = Tr(K*K’) . (6.36)
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If ¢ is a linear functional on b, there is a unique element A in b such that
0(K)=(A,K) VKeb. (6.37)

Therefore, by virtue of the inner product defined in Eq. (6.36), a weight u can be thought of as
an element in h.

The charge configuration matrix Q should be proportional to some weight y of a representation
of sI(N;C). Let us now determine the precise correspondence, assuming Q = Q; is normalized as

in Eq. (6.19). Suppose Q can be decomposed as
0= Z xjh; (6.38)

with 1 ; being a set of orthonormal basis elements of b, with the orthogonality defined through the

inner product (6.36), and the normalization condition being

1
Tr(h3) = 5 i=1,2,..,N—1. (6.39)

For instance, the following element is normalized

~

1
hy = E(Ell —E»), (6.40)

where E;; is an N x N matrix with a "1" in the (7, j) entry and "0" elsewhere. The normalization of
basis elements is required as in Eq. (6.39) because, for example, one can compute the commutation

relation
[h1,E12] = Ei2, (6.41)

which implies a raising operator constructed with a single Ej, will carry charge 41 corresponding
to ﬁl . One may wish to make this argument more precisely by rewriting Eq. (6.41) as a commutation
relation between the corresponding charge operator and the corresponding fixed-charge operator,

computed with the help of canonical commutation relations of fundamental fields.
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Then x; in Eq. (6.38) gives the Cartan charge associated with h j» and can be computed as
xj =2Tr(Qh;) . (6.42)

On the other hand, for the weight u, the Cartan charge associated with n j 1s given by

~

w(hj) = (u,hj) = Tr(u"h;) . (6.43)

Here we use the same symbol p for the weight as a linear functional and as an element in . We

will only be concerned with the case of real u, and therefore the Cartan charge reads

~

w(hy) =Tr(uh)) . (6.44)
Comparing Eq. (6.42) and Eq. (6.44), we conclude that the correspondence between Q and U is
Q= 5 . (6.45)

This leads to the following proposition

Proposition 3:  Suppose O belongs to the irreducible representation (I'z,T'g) of SU(N) x SU (M )g

in the U(1)4-neutral sector. Then 2Q must be a weight of I';, and —2Q must be a weight of T'g.

Since the weights of Lie algebra representations sit on a discrete weight lattice, we then deduce
from Eq. (6.45) that the charge configuration Q is also quantized.

According to Proposition 1, the weights of our interest should belong to (Adj L)D/ % when we
consider the SU (N), factor. The nonzero weights of Adj;, are nonzero roots of sl(N;C), which are

given by [193]
Qjx=e¢€j—ek, ]75/(, j,kIl,Z,...,N, (6.46)
where ¢;’s denote the standard basis elements of CN, that is

ej=10,..,0,1,0,...,0} , (6.47)
N~ =
j1 NZj
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for j =1,2,...,N. Note that in this representation of roots we have identified h with the subspace
of CV consisting of vectors whose components sum to zero [193]. Since the weights of a tensor
product representation are given by the sum of the weights of the component representations [194],
we conclude that if 1 is a weight of (Adj L)D/ 2. then we can express it as

D)2

w=Y syt ,  withs,=1or0, (6.48)

p=1
and for p=1,2,...,D/2, @ x, = e, — e, With j, # k;, is one of the weights in Eq. (6.46). From
Eq. (6.48) we deduce that if we write g = (Uy, Up, ..., un) , then ; € Z, Vi=1,2,...,N, and then
Eq. (6.45) tells us the diagonal entries of Q must be integers or half-integers.

Given a vector vV = (Vq, Vy,..., Vy) € CV, we define the A-length A[v] of v as
N
Alv] =Y |vil. (6.49)
i=1

The A-length satisfy the following triangle inequality

Alv+p] <A[V]+Al]p], v,peCV. (6.50)
In fact
N N N
Alv+pl =Y [vi+pl <Y Vil + Y Ipil = A[V]+Ap] . (6.51)
i=1 i=1 i=1

Also, the A-length has clearly a linearity property with respect to multiplication by a c-number.

Then by using the triangle inequality (6.50) and the linearity property of the A-length, Eq. (6.48)

yields
D/2 D/2
Alu] < Y Alspor,] = ) IsplA[a,,] - (6.52)
p=1 p=1
Now let us note that
|sp|§ 1, A[Ocjpkp] =2, (6.53)
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and thus
Alu]<2xD/2=D. (6.54)
On the other hand, from Eq.(6.45), we have
A[Q] = SA[u] (6.55)
then
D =>2A[9], (6.56)

and we arrive at the following proposition

Proposition 4 The classical dimension D of an operator carrying the charge configuration

Q = diag{Q1,03,...,On} satisfies the inequality
i=N
D>2Y |0 . (6.57)
i=1

Eq.(6.57) relates the classical dimension of the operators with the charge configuration they

carry.

6.2.2 Scaling dimension and operator construction

All the conclusions achieved so far are deduced without the explicit construction of the operators.
Here, we illustrate how to construct the MSD operators and show that they satisfy Eq. (6.57) with
the equality sign. To this end, we first consider building blocks with simple definite transformation
properties under SU(N)z, x SU(M)g x U(1)4, and then we iterate them. Intuitively, we build the

fixed-charge operators as a product of "unit-charge" blocks. For example, consider the block

Tr(t HTH') (6.58)
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where 7z is an N x N matrix in some root subspace of the sl(N;C) Lie algebra, and tg is an M x M

matrix related to 7z in the following manner

T 0 _
Tk = L Nx(M=N) ) (6.59)

0 nyxv Or—n)x(m—n)

The building block in Eq. (6.58) lives in the bi-adjoint representation of SU(N)r x SU (M), i.e.
(Adjz,Adjg). It is constructed such that Q; + Qr = 0 is manifestly satisfied, with Q; correspond-

ing to a weight of Adjz. The explicit form of 77 is given by
. =Epq, (6.60)
for some p,g=1,2,...,N and p # q. This follows from the commutation relation
~ 1
[1j:Epql = 5(8jp = Ojg = 8j+1,p+ 8j1.9) Epg (6.61)
where j = 1,2,...,N — 1 and h; is defined by

hj=2(Ejj—Eji1j+1) (6.62)

| =

which satisfy the normalization condition Tr(ﬁ%) =1

Let us identify the charge configuration associated with Eq. (6.58). Define a set of N linear

functionals €,,p = 1,...,N acting on b as follows:
~ 1
Sp(hj) = 5(5] — 5j+17p) . (6.63)
Then Eq. (6.61) can be written as

(1), Epg) = {€(h}) — €4 (h))YEpq | (6.64)

which means E,, corresponds to the root €, — &;, which when mapped into b using the inner product
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Eq. (6.36) gives a4 defined in Eq. (6.46) 6 This 0y corresponds to the weight of Adjy, associated
with Eq. (6.58) and the related charge configuration is simply %ocpq, according to Eq. (6.45).

To build operators in more general charge configuration, we may consider
Tr |T1 (v H Ty HY Y| (6.65)

Here y; > 0 is a positive integer, and 7z; is an N X N matrix with the explicit form given by

‘L'Lj:E

p()alj) for some p,q = 1,2,...,N that depend on j. The way that Eq. (6.65) is constructed

implies that its charge configuration Q is simply the appropriate linear combination of the charge

configuration Q; of its corresponding building blocks
Q=Y 9/, (6.66)
J
where

Qj = 5%()q()) - (6.67)

We can now reverse the logic and ask, for a given Q, how one may choose 77; and y; in order to

construct a MCSD operator in the form of Eq. (6.65). To this end, we may rewrite Eq. (6.66) as
2Q =} ¥i%(q()) (6.68)
j

Note that 2Q € CV, with all entries being integers and the sum of all entries is zero. We also have

o

p()a(i) € CV, which for a given j has only two nonzero entries, filled by +1 and —1 respectively.

MCSD requires the minimization of ) iy for a given Q. We can rewrite Eq. (6.68) as
2Q =} 3%y =0, (6.69)
J

where now the LHS indicates a process in which we subtract a,(;),(;)’s from the given CV vector

q(Jj)

2Q. Suppose each time we are only allowed to subtract one @, j)4(j)» Which we call an elementary

)

36 This can be deduced from the results in Appendix G of the textbook by J. F. Cornwell [194].
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subtraction. (For a given j we, therefore, eventually subtract it y; times). Hence the sum }.;y;
equals the total number of times we need to perform such elementary subtractions to make the
resulting CV vector vanish. Then ¥, ;yj 1s minimized when, during the subtraction process, each
entry of the CV vector changes in a monotonic manner (or remains unchanged). For example, we

take 2Q = (2,—1,—1). The following subtraction process is monotonic
(2,—-1,-1) — (1,0,—1) — (0,0,0) , (6.70)
while the following subtraction is not monotonic
(2,-1,-1)— (1,0,—1) — (1,—1,0) — (0,0,0) . (6.71)

This simple example shows the general fact that non-monotonic subtractions increase the total
number of times we need to subtract the vector to zero. Monotonic subtraction can always be
realized, by subtracting from the positive entry with the largest absolute value and the negative
entry with the largest absolute value each time. In such a case, the total number of times we need

to perform elementary subtractions is simply A[2Q]/2 = A[Q)], that is
AlQI=Y ;- (6.72)
J

On the other hand, the CSD D of the operator in Eq. (6.65) is

D=2)y;. (6.73)

J

Therefore, we conclude that the fixed-charge O operators with the MCSD satisfy

D =2A[Q], (6.74)

saturating our previous finding Eq. (6.57), which we derived without constructing the operators.

Notice that the method does not guarantee that the MCSD operator is unique. In fact, one may

redistribute the trace operation (i.e. splitting one trace into multiple traces), change the order of
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matrix products for different 7, ;H ”L'; jH T factors, or change the root basis, to obtain more operators
associated with the same charge configuration. Even if we impose the MCSD requirement, there
can be multiple solutions. It is also not known whether the above method based on the 7, ;H ‘L';g H T
building blocks with appropriate application of the trace operation covers all fixed-charge MCSD
operators.

Nevertheless, for a special type of charge configuration, there is a unique answer, and we know

the above way of explicit construction must lead to the unique answer. This charge configuration is
Qy =diag{-J,J,0,---,0} , (6.75)

with J integer or half-integer. This charge configuration corresponds to the highest weight in the
tensor product of Adjz, which is, in turn, the sum of the highest weight of Adj;. The uniqueness
results from the fact that the highest weight of a representation is always simple. This representation
has Dynkin label

I'y=(2J,0,...,0,2J) . (6.76)

For J = 1/2 the MSD operator lives in the bi-adjoint representation (Adj, Adj). For N = M, its
2-loop scaling dimension is given by Eq.(6.13).

The above discussion paves the way for a general identification of the irreducible representa-
tions associated to a given charge configuration. Within the MCSD assumption, the MCSD can
be determined by virtue of Proposition 4 from the given charge matrix Q. Then the candidate
irreducible representations must satisfy the requirements of Proposition 1-3.

For a given charge configuration, we are, therefore, left with a (reduced by the above analysis)
list of candidates for the MSD operator. To further narrow down the list to a single operator, we
need to add to the group-theoretical constraints the actual computation of the scaling dimensions

in the large charge expansion. The complete strategy can be schematized as follows:

1. Fix the CSD. Then, list all the charge configurations which satisfy Eq.(6.74).

2. For each charge configuration list all the irreps satisfying propositions 1-3 that contain it, and

compute the ground state energy to NLO in the large charge expansion.

3. If for different charge configurations, we obtain different ground state energies, then the
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corresponding MSD operators are distinct. This basic observation allows pinning down the

correspondence between charge configuration and MSD operators.

This procedure will be discussed in the next two sections.

6.3 Semiclassical expansion and results

Having introduced the necessary group-theoretical results, we proceed with the semiclassical cal-
culation of the scaling dimensions in the large charge expansion.

To this end, we start by considering a 2-parameters family of charge configurations

Q= diag(J,J,...,—J,—J,...,0,0,...) . (6.77)
s s N-2
B —Ls

For N = M and varying s, this charge configuration interpolates between the ones considered in [86]
(s = 1; given in Eq.(6.75)) and [61] (s = N/2). From Eq.(6.74) we have that the CSD of the
corresponding operator is Q = 4sJ. Notice that, since J > 1/2, this implies that the results obtained
in [61] for the case M = N, s = N/2 make sense only when Q > N and not for arbitrary values of
QO and N.

At fixed CSD we can access the anomalous dimension of operators transforming in various
irreducible representations by varying the parameters s and J.

The classical energy for this charge configuration can be easily computed along the lines of

Chap.4. By parameterizing the Mg and B matrices as follow

Wi=Q —y i=s+1,...02s, bi = (6.78)

0 i=2s+1,...,N,

\

the charge constraint (6.28) and EOM (6.27) become

2
J=2Vub?, 20 = (up + 2sv0)b* + ’% . (6.79)
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We work with N-rescaled (renormalized’’) ’t Hooft couplings, which we define as

Ay = J% , A, =1 (2:;32 . (6.80)
Then the above equations imply
o 3343 72 72 2
ZZ: P x:N(Ah+AV)+\/—3+ (W(A;A—AV)) , (6.81)
and our semiclassical expansion takes the form
Ao, = Y, %Ak(flz’iy As) - (6.82)

k=—1

The leading order in the semiclassical expansion follows straightforwardly from the results above
by setting d = 4 and A, , = A; , where the star denotes the value of the couplings at the FP. We

have

N 1
A_] (AZ,A?;,S) = mg (%X*8/3 — 3X*4/3 + 6\3/§X*2/3 +2 32/3X*2 + 35/3> . (683)
h VX

The expansion for small A; | reads

* * * *\ 2
JA_ (A, A s) =0 [ 1+4 (#) _ 3 (Ah-l-.Av)

N
A+ AN Ar+ AN
+512<T) +(’)<T> . (6.84)

We checked that for A, = 0, Eq.(6.83) reduces to the classical energy of the O(2NM) model
(4.49).

Before proceeding with the computation of Ag, it is useful to study the induced symmetry
breaking pattern. As in the O(N) case, it can be seen as a two-step process: an explicit symmetry
breaking induced by the charge-fixing term followed by an SSB induced by the classical ground

state. The explicit breaking can, in general, be deduced by adding the charge-fixing boundary term

37 At the classical level, bare and renormalized coupling are equal.
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L : . o
- f'vzl Hi—5 ;yl to the Lagrangian and check which symmetries it preserves.

We have

SU(N)LXSU(M)RXU(I)A — C(R)LXSU(M)RXU(I)A, (6.85)

explicit

where C(R), is the SU(N)y, subgroup commuting with P, = diag(1,1,...,—1,—1,...,0,0,...) and
—_—— ———— T’z_/
N N —LS

it is explictily given by
C(R)L = SU(5)Lu X SU(5)1a X SU(N —28)1a x U(1)r3 X U(1)15 , (6.86)

where SU ()1, and SU ()4 are rotations in the first and second upper s x s blocks of SU (N);, while
SU (N — 2s) 4 rotates the lower N — 2s x N — 2s block. Finally U(1).3 and U(1),5 are generated,
respectively, by P; and P, = diag(1,1,...,0,0,...) and act on the left factor.

S——

2s N-—2s
The spontaneous symmetry breaking is determined by the vacuum configuration, which is pro-

portional to the P> matrix defined above. We have

C(R)L X SU(M)R X U(l)A ﬁ; SU(S)LM X SU(S)Ld X SU(N—ZS)Ld X U(I)Dg,

XU(l)DSXSU(M—2S)RdXU(1)A6. (687)

Here, U(1)p3 5 are the diagonal subgroup of U(1)35 < U(1)g3 s where U(1)g3 5 are the counter-
parts of U(1)73 5 acting on the right factor. Finally, SU(M — 2s)g, is defined as the SU(M — 2s)
rotation in the lower M — 2s X M — 2s block of SU(M)g. To define U(1)4¢, we first introduce

U (1)16 which is generated by diag(0,0,...,1,1,...) and acts on the left, and U (1)ge which is gen-
——

2s N-2s
erated by diag(0,0,...,1,1,...) and acts on the right. U(1)4¢ is then defined as the axial part of
—— ——

2s M-2s
U(1)16 and U(1)ge. Note the diagonal part of U (1) and U(1)ge is not independent from U (1) ps

and is thus not counted.

The total number of broken generators of the SSB is
M*—1—[(M—25)*—1] =4s(M —s) . (6.88)

In order to determine the NLO of the large charge expansion, we parametrize the fluctuations
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as

H(t,x) = *ME"(B+ ¢ (1,%)) , (6.89)

where ¢ (7,x) is a N x M matrix. The Lagrangian at the quadratic order in the fluctuations reads

N M s M
= Z Z aﬂ¢ijau¢i>’} _2“ Z Z 8o¢,] """ 80¢1] Z Z a()(pl] ¢)l_] ¢ljao¢l])]
i=1 j=1 i=1 j=1 i=s+1 j=
2s 2s 2s 2
—|—2u0b22 Z ¢z]¢u+u0b22 Z ¢IJ¢JI+¢1]¢]I) +V0b2 Z(¢ii+¢;)
i=1j= i=1j= i=
+ (4svob® +m?) Z Z 0191 - (6.90)
i=2s5+1 j=
It is useful to write ¢ in a block form as
¢2s X2s ¢25>< (M—2s)
¢ = . (6.91)

(1) (22)
¢(N72s) x2s ¢(N72s) X (M—2s)

The blocks decouple and we can decompose £(2) as £(2) = EEﬂ) + 58)2) + Eg)l )+ ‘Cg)z)' The
dispersion relations of the fluctuations appearing in the various blocks can be computed from the

inverse propagator as explained in Sec.(4.6). The result reads

=\/J? +4u? 4s(N —2s) d.o.f.

W =\/J7+m}j  2(N—2s)(M—2s)d.o.f

L

W34 =1/J2+4u2F2u  25(2M —3s) d.o.f.

wse=1\/J7+4pu2+m> £2u  2s* d.of.

1

w7 :E\/yg +mi}+16u? + \/(ng 3+ 16p2) =472 (2 +m?) 458 —2dof.
1 2 2 2 24 2 2)2 2(12 4 2

.10 =5 207 +mi+16u2 £/ (2J7 +m+16u?)" —4J7 (JZ+mj)  2d.of.,

(6.92)
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where

uo

m3 = 8u’ —2m* mi = (8,LL2 — 2m2) m3 = dsvob®> +m* . (6.93)

ug +2svp |

s describes type II Goldstone bosons while @wg and ¢ correspond to relativistic type I Goldstone
bosons. The remaining dispersion relations describe gapped modes. It’s easy to check that the
number of real d.o.f. sums to 2NM while the counting of Goldstone modes with respect to the

number of broken generators is
2% s(2M —3s)+ 25> — 1+ 1=4s(M —s) , (6.94)

which agrees with Eq.(6.88), as dictated by the charged Goldstone theorem of Sec.(3.4). Proceeding
as in Sec.4.6, it is easy to show that the (bare) NLO of the semiclassical expansion is given by
R oo
ey = EZI’Z@Z&'(M,N,S)(O,‘(@ . (6.95)
=0 i

where ; are the dispersion relations in Eq.(6.92) and g;(M, N, s) is the number of the corresponding
degrees of freedom. Regularization and renormalization are performed as outlined in Sec.(4.7),
yielding

%)

1
AO(A;;?At?S) = p(x*7M7N’S7AZ’A$) + E Z
(=0

{R(l +0)? (Zgi(M,N,S)wi(&x*,A%«“i))

d=4

—I—G(@,x*,M,N,S,AZ,At)} : (6.96)

where x* has been defined in Eq.(6.81) while p(x*,M,N,s, Ay, A) and o({,x*,M,N,s, A}, A})
are given in App.C.

We checked the cancellation of the divergent 1/¢ terms between A_; and Ag as explained in
Sec.(4.7). For Aj;, = 0 the result reduces to its counterpart in the O(2NM) model (4.76).

The perturbative expansion of Ag for small t” Hooft couplings reads

4

Ag— — ———
TN A

[25 A2 (M +N +75) + A AL (25(2(M +N) +5) +7) + (MN 4 5) A2
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1
- ]762 242 (M 4N — 5) + 4ALA (s(M 4N — 25) — 1) + (MN — 3) A%

128
TN

+A; A2 (128(3)(s(M +N) +3) + MN +4Ms + 4Ns — 245> — 44)

(2437 A5 (68 (3)(s(M + N +55) 4 2) + 3Ms + 3Ns — 285> — 13)

+25A;2 (28 (3) (M + N + 185) +M + N — 165) + A (2§ (3) (MN +7) +MN — 18))]
+0 (A3 - (6.97)

The presence of the couplings at the denominator in the perturbative expansion above is a
somewhat surprising feature of our results which, at first sight, can look suspicious. Nevertheless,
one has to remind oneself that the above expression is strictly valid only at the FPs, so one should
look at the conformal dimension A as a function of € and not as a function of the couplings. On the
other hand, from the above results, we can also extract the full 1-loop scaling dimension, which we
can rewrite as a power series in the couplings

E;ZOOPIQ(1—§>+ (A5 (0 —25%) + (0 —1)A%)
(1 &), 2(0=2) . 20(0-1) .
=0(1-3)+ @mEs T amE U

Q=&

(6.98)

and depends neither on N nor M when rewritten in terms of the original couplings u and v. Notice
that the result above is obviously valid for arbitrary values of the couplings and not only at the FP.
This is the case also when there are no FPs for real couplings, and thus the CFT is complex. In other
words, Eq.(6.98) shows how large charge methods can be used to investigate also non-conformal
theory via the associated complex CFT, as anticipated at the beginning of this chapter.

Notice that, in deriving Egs.(6.83) and (6.96), we implicitly assumed the validity of the operator-
state correspondence and the Weyl invariance of the theory. On the other hand, these features are
not guaranteed in non-unitary CFT [104—-106]. Then, in order to validate our approach, we consider
the special case N = M and s = 1 and Q = 2, where, according to Eq.(6.76), we expect to reproduce

the anomalous dimension of the bi-adjoint operator Tr [TaHTaHT} . We have

(6.99)
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in agreement with Eq.(6.13). It should be added that the known examples of CFT without Weyl
invariance [104—106], such as some higher-derivative scalar theories, are structurally very different
from the U (N) x U (M) model considered here.

Since ATr[TaHTaHT] is known to the two-loop level for N = M, we are now in the position to
"boost" perturbation theory, as done for the O(N) model in Sec.4.8. In fact, by combining Eq.(6.13)
with our semiclassical results, we can obtain the 2-loop scaling dimension for the whole family of
SU(N) x SU(N) operators Oy = Tr[(Ey1HE 1o H T)Q/ 2] where E »q has been introduced in Eq(6.60) .
These operators have CSD Q = 4J and live in the irreducible representations (I'y,T';) of SU(N) x
SU(N) with I'y defined through its Dynkin label (6.76). We have

2—loop ‘_l_ A Q(Q_z)u Q(Q—I)V A MZ(N2+4N_3) uv(3N_2>
(L) = (2 1)Q+ o2 T s 19 1287 MR

V2 (3N? —1) — [u?(1—-2N) N uv (3 —2N) N V(3N (ut2v)?
12874 12874 3274 64m4 12874

(6.100)

We emphasize again that the above expression is valid for every value of the renormalized
couplings and not only at the FP ones.

As clear from Eq.(6.98), for the considered family of charge configurations, there is no scal-
ing dimension degeneracy in the perturbative regime and thus the corresponding operators live in
different irreducible representations. These are accessed by varying s at fixed CSD Q. In the next
section, we will analyze some concrete examples by setting Q = 2,4, 8. To this end, we need to

consider one more charge configuration given by
Q;y =diag{-2J,1,J,0,---,0} . (6.101)
The Mg and B matrices can be parametrized as

ME:—idiag{‘l,tl,‘l,tz,‘l,tz,o,-",()} R B:diag{bl,bz,b2,0,~'-,0} . (6.102)

127



Then the EOM and the charge constraints read

2

m
J=Vubi, 20 = uobt +vo (b7 +203) + -,
2
m
J=—-2Vub3 , 243 = uoh3 +vo (b7 +2b3) + - (6.103)

The physical solution is

2Ju2m3v0 C Jm3
M C : 1 a2y 2 i, ( )

where C = Jm?3(ug + 2vo) + 872 [.123 — 2% ym? and 1y solves the following equation

27 3,2
1673 12m%v; Jm? (——"é i +u0+vo> TmSvy
- o3 I + = 0. (6.105)

We choose the solution of the above equation such that it reproduces the O(2NM) limit when

uy = 0. The perturbative expansion of this solution reads

—om Jm(ug+4vo) J*m (314% + 28ugvg + 48\%)
=77 an? 167
J? (—4mu(3) — 67mu(2)v0 — 240mu0v(2) — 256mv(3))

1676

+ +0(J%) . (6.106)

This solution is valid when C < 0. It is easy to show that this condition is always satisfied at small
values of the couplings. The leading contribution in the semiclassical approximation is given by

the classical energy (6.29) evaluated on this solution

O(3u* +8v*) 0% (Su™ +24u’v* +32v"2)
6472 102474

JA_ =0 |1+

03 (9u* + 59u*v* + 1441V 4 128v*3) iy
107
+ 1927 +0(0%) | , (6.107)

where we set the couplings to their FP values and Q = 8/ is the CSD, as expected from Eq.(6.74).

We checked that we recover the O(2NM) case when u = 0. To find the fluctuation spectrum, we
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expand around the classical trajectory as in Eq.(6.89). The dispersion relations read

)
34 =

@ =\/J}+4u?  2(N-3)dof.

=\/72+4u3  4(N-3)dodf.
J

2+4u? 21 2x(M—3)dodtf

@56 =1\/J7 + 413 £21, 2x2(M—3)d.o.f.

@ =\/J?+m}  2(N-3)(M-3)dodf.

Bu0111215 (U — 07 4 20(1 — 1)) [ — 0%+ 20041 — ) + 20 (0 +13)]

t4uw (b —b3) (W1 + 1) —40* (1 + 12)* =0 2x4d.o.f.

(1)14,15,16,17 s detDy (a),Jf) =0 4d.o.f.,

where m3 = 2vo(b? +2b3) +m? and

with

4
@* — J? 4 200 —gi(lh +21) 0 202

4. 2 > 4 .
gz(u1+2uz)a) 0 —Jj 5\/51(.”1—#2)(0

4 /. 2 p
202 —gx/iz(ul —Ww)o o —J;+z20

4 . 4.
5\/51(#1 —h)o 0 G+ )

4
—g\/ii(ﬂl — )@

4.
—51(2111 + )@

> —J?

4
0= —3 [(uo+ v0)b? + dvob b + 2 (o + 2v0)b%} 5

4
202 = 5 V2(b1 —ba) [(0 +vo)b1 + (g +2v0) 2]

2
0 =—- [4(u0 + V())b% — 8vob1by + 2(1"0 + 2\/0)]7%] :

3

@39 z\/Jg +2ub3 + 8u3 + \/(Jg F2ub3+8u2) —J2 (2 +4ubd)  2x3dodf.

(6.108)

(6.109)
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Although not obvious, for u = 0, we recover the fluctuation spectrum of the O(2NM) model dis-
cussed in Chap.4 when k = 3M charges have been fixed. In particular, one of the last four d.o.f.
reduces to the U(1) phonon with dispersion relation Eq.(4.57).

We weren’t able to find an analytical expression for A in this case. Instead, we computed it
numerically at fixed values of parameters and as a function of €. The results are given in the next

section.

6.4 On how to identify the fixed-charge operators

In this section, we focus on identifying the fixed charge operators associated with a certain charge
configuration. In particular, we propose a practical identification strategy which we outline by
performing a series of examples of increasing complexity. Since the MCSD assumption can be
violated at large coupling, the procedure is valid only when the anomalous dimensions of the op-
erators involved are small, i.e. in the perturbative regime. Since in weakly-coupled theories it is
easy to find the explicit form of the MSD operator once its irreducible representation is known,
we focus on identifying the latter. We first list the conclusions below before conducting a more

detailed discussion.

* The representation of the MSD operators can be uniquely determined when a charge configu-
ration is chosen. This conclusion is based on the three conditions summarized in Propositions

1—3in Sec.6.2.

* To determine the representation of the fixed charge operators, both group theory and the

actual semiclassical computations of the scaling dimensions should be implemented.
We start our analysis by considering operators with CSD Q = 2; Eq.(6.74) implies that we can
build only one N x N charge matrix

QLJ/Q:diag{—1/2,1/2,0,---,0} . (6.110)

This charge configuration is of the special type considered in Eq.(6.75). We can then imme-
diately identify the MSD operator as Tr [T“H T°H T] which sits in the bi-adjoint representation
(Adj,Adj) = (N> — 1,M? — 1). The underlying reason is that, at the level of operators with Q = 2
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fields, only this representation contains the weight (6.110). Its scaling dimension has been com-
puted in the previous section, being a special case (s = 1, J = 1/2) of the charge configuration
(6.77).

The simplest nontrivial example is obtained by fixing N = M = 3 and considering operators
with CSD Q = 4. Proposition 1 says that the fixed charge operators belong to the irreducible
representations (I'z,I'g) of SU(N)L x SU(N)g where I' =T'g = (Adj)Q/z. Thus, in the case at

hand, the operators live in the decomposition of the tensor product Adj ® Adj = 8 ® 8. We have
828=102(8)010010©27 . (6.111)
To construct all the relevant charge configurations, we impose the following three requirements:

1. The charge matrix is diagonal and traceless i.e. trQ = 0;

2. The diagonal elements of the charge configuration matrix can only be integer or half-integer

(Proposition 3);
3. The sum of the absolute value of the diagonal elements is equal to Q/2 = 2 (Proposition 4).

By following the above three constraints, we can only construct two different charge matrices:

1 0 0 10 0
o =10 -1 0|, @¥W=10 12 o |. 6.112)
0 0 0 0 0 —1/2

In Sec.6.2, we showed that the weight and the charge matrix are related as u = 2Q (Eq.(6.45)).

The nonzero roots of SU(3) are

1 0 O 00 O
=10 —1 0, =101 O , oz=0q1+00, (6.113)
0O 0 O 0 0 -1

and —o;, —0n, —a3. We, therefore, obtain /.13(1) =20y and /.13(2) =20 + ap. By using the Cartan
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matrix of the SU(3) algebra

Asu) = ; (6.114)

we obtain

o] =2w; —wy o) = —wi 42wy, (6.115)

where w; and w, are the fundamental weights of SU(3). Then we can decompose the weights

uiy, iy as

4
W) = dw — 2w, = (4,-2) |
@) (6.116)
Uy =3w; = (3,0) .
The next step is to determine which representations contain the above weights. By inspecting the
weight diagrams’® of the irreducible representation appearing in the RHS of (6.111), we see that
(4,—2) only appears in 27 while (3,0) appears in both 27 and 10. Thus, we can set the following
correspondence
(27,27)

ol : (27,27), ol -
34 3B (10710)

(6.117)

where we have already excluded asymmetric representations such as (27 ,1_0) since they do not
appear in the decomposition of the four indices traceless symmetric O(2NM) tensor (Proposition
2). Notice that Qg? is again of the type (6.75) and, indeed, it can be directly uniquely associated
with (27,27).

Using group-theoretical arguments, we arrived at (6.117). To further disentangle the represen-
tations, we employ the semiclassical results obtained in the previous section. In fact, if the scaling
dimensions stemming from the two charge configurations are different functions of € we have that
Qg‘g corresponds to (10,10). The scaling dimension of Qgi) at NLO in the large charge expansion
has been calculated analytically (s =J =1, N =M = 3 case of Eq.(6.77)) while Qg‘lg) corresponds
to the J = 1/2, N =M = 3 case of Eq.(6.101), and thus the associated scaling dimension has been
evaluated numerically at fixed values of €.

The results for the scaling dimensions at NLO in the large charge expansion are shown in

38 The weight diagrams are easily obtained with the help of the Mathematica package LieART [195, 196].
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Figure 17: The results for the real part of the scaling dimension at the fixed point for the U(3) x U(3)

operators with CSD Q = 4, carrying the charges Qg? (black line) and Qgg (red dots) as a function of €. The
. . . 4)

error bars encode the numerical error in evaluating Ay for Q3 B

Fig. 17, where the black line and red dots denote, respectively, the cases Qg? and Qé?. The error
bar on the red dots takes into account all the potential numerical errors®. Clearly, the two scaling
dimensions are different functions of €, and thus we can unequivocally associate representations
and charges as

ol : (27,27), ol : (10,10) . (6.118)

Notice that the scaling dimension corresponding to Q%) is smaller than the one associated with
ng‘), consistently with the MSD criteria selecting the fixed-charge operators.
As a third example, we keep Q = 4 and we set N = M = 4. We can now build three independent

charge matrices

39 The main source of error comes from performing a numerical Taylor expansion in € of the one-loop functional determi-
nant during the renormalization procedure. We estimate the numerical error as the difference of the scaling dimensions

of Qé‘g with the one of Qgi) in the limiting case of u — 0. As we know, in this case, the scaling dimensions for Q(;;)
and Q(;X should be equal and coincide with the O(18) result.

133



1 0 00 1 0 0 0
0 —1 0 O 0 —1/2 0 0
4 4)
oy = . Q= ,
0O 0 00 0 0 —1/2 0
0O 0 00 0 0 0 0

(6.119)
1/2 0 0 0

@ | 0 -12 0 0
0O 0 1/2 0
o 0 0 -—1/2

To connect this example with our semiclassical calculations, we note that Eq.(6.77) encompasses
O\ (s=J=1,N=M=4)yand Q\) (s=2,J = 1/2, N = M = 4) while Eq.(6.101) reduces to
Q%) when J = 1/2 and N = M = 4. By denoting the three fundamental weights of SU(4) as W1,

W,, and W3, we can express the weights associated with the above charge matrices as

uld = 4w, — 2w, = (4,-2,0) |

ui) = 3w, — W5 = (3,0,—1) (6.120)

uld = 2wy — 2wy +2ws = (2,-2,2) .

The tensor product of two adjoint representations of SU(4) decomposes as
15015=102(15) 020 ©450450 84 . (6.121)

Inspecting the weight diagram of the above representations, we obtain the correspondence summa-

rized below:
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(84,84) (84,84)
o :(84,84), QT QP! (4535) 6.122)
(45,45)
(20/,20/)

Again there is one charge matrix, QE&), which is of the type considered in (6.75) and thus cor-
responds to a unique representation, (84,84). Then one can proceed by computing the scaling
dimensions associated with QE&) and Qgg in the semiclassical expansion. If they are different then
Qé(fg corresponds to (45, E), and we can proceed by computing the scaling dimension correspond-
ing to QL(:‘C). If the latter is also different from the previous ones, then we can further conclude that
the operator with scaling dimension A o is in the (20',20’) representation. This is the case, as can

4C

1"V and imaginary part of the scaling dimensions at NLO, which

be seen from the results for the rea
are shown in Figs.18 and 19, respectively. Due to the numerical error, in this case, it is necessary to

look also at the imaginary part to disentangle the results. If the results for A ol were the same, we
4A

wouldn’t have been able to identify the representation associated with Qé(:g, and would have been
necessary to determine higher orders of the large charge expansion to check whether they broke the
degeneracy or not. However, we could always deduce the irrep related to Qé(éj) as (20/,20")*',

In conclusion, we have
Ql) : (84,84), Qi : (45,45) . Qi : (20,20') . (6.123)

As the last example, we keep N = M = 4 and consider Q = 8. The fourth tensor power of the

adjoint representation decomposes as

4B 4A
puzzle can be solved by taking into account the numerical errors plus the fact that the comparison of the magnitude

of the scaling dimensions at small € should in principle be performed in the expansion of conventional perturbation
theory rather than in the semiclassical expansion. The difference between the two expansion is of order O (Qsz),
but prefactors may magnify it and invert the scaling dimension hierarchy. By making use of the full 2-loop result

of [86,190], we estimated a difference between 0.04% and 0.5% for AQ<4) at € = 0.1. However, the difference in AQ(4>
4A 4B

40 From Fig.18, one may infer that Re {A Q(“)} > Re {A Q(‘”} , in apparent violation of the MSD criteria. This apparent

for the same value of epsilon may be much larger.

4UIf Re [A Q(@} = Re [A Q(4>], it follows that Re [A(4s5)| > Re [Asasa)]. but since Re [A Q<4>] < Re [Agasg)], then

4A 4B 4c

Re AQE(S = Re [A<201720/)]
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Figure 18: The results for the real part of scaling dimension for the U (4) x U (4) operators with CSD Q =4,
carrying the charges Qé(é‘) (black line), QE&? (red dots) and ch) (blue lines) as a function of €. The error bars

encode the numerical error in evaluating Ag for Qfé,).
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Figure 19: The imaginary part of the scaling dimension for the U(4) x U(4) operators with CSD Q = 4,
carrying the charges Q‘(&) (black line), QE&? (red dots) and QE:‘C) (blue lines )at the fixed point values as a

function of €. The error bars encode the numerical error in evaluating Ag for QE&?.
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15%% = 9(1) ©43(15) ©30(20') ®9(35) © 9(35) © 39(45) B 39(45) @ 42(84) © 4(105)
©39(175) & 3(189) & 3(189) & 24(256) & 24(256) & 6(280) & 6(280) < 12(300")
$2(360') ©2(360 ) 9(729) & (825) & 3(875) & 3(875) . (6.124)

We can build seven charge matrices

o'® = diag{2,-2,0,0,---,0} , o' = diag{—2,1,1,0,---,0} ,
o'®) = diag{1,~1,1,—1,0,---,0} , o' = diag{2,-3/2,—1/2,0,---,0} |

o) = diag{2,~1,-1/2,-1/2,0,---,0} , Q) =diag{3/2,1/2,—3/2,~1/2,0,---,0} ,
Q) = diag{3/2,1/2,~1,-1,0,---,0} . (6.125)

The corresponding weights, expressed in the fundamental weight basis, read

'uﬁg—f\) = (87_470) ? :u’ég}) = (6707 _2) ) .uﬁ‘) = (47_474) ) HS)) = (7727_1> )
Hﬁ? = (6,—1,0), uﬁ? =(2,4,-2), uﬁ;) =(2,3,0). (6.126)

By analyzing the weight diagrams and checking the decomposition of the O(2NM) traceless sym-

metric tensor of rank Q = 8, we obtain the correspondence below

(825,825) (825,825)
®) . 5. ) (825.825) 5 — OF _—
o'® . (825,825), ). T Q! (875.875) , QY4 (875.875)
(875,875) o

(360’,360> (729,729)
25529 ((825,825)
((825,825) (875’ﬁ) (875,875)
® | (875.875) ’ ® | (729,729)
o'®. oL (129,729) , Q) L 6.127)
(360/, 360 ) <360, W,) (360’, 360 )
(189, 189) B (280,280)
\ (280,280)
\ | (105,105)
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If all the corresponding semiclassical computations give different functions of € as result, then
we can uniquely identify all the irreps where the fixed charge operators sit. These are the repre-
sentations outlined in red above. To be more precise, to allow a complete identification it is not
needed that all the scaling dimensions differ; for example, the results for Q%) and QA(SV) or for Qé(é)
and Qi? can be equal.

To summarize, a general identification procedure consists in inspecting the weight diagrams
of the various representations in order to obtain correspondences as Eq.(6.127) and then looking
if the corresponding scaling dimensions are degenerate or not, following a sort of "identification
chain" that starts from "highest weight" charge matrices of the form (6.75) for which there is only
one candidate for the corresponding irrep. In the second step, the choice will be between this irrep
and one new candidate, and so on. We analyzed many other examples and our findings strongly
suggest that this identification procedure can always be implemented, and fails only in presence of

particular degeneracies in the semiclassical results.
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7 CONCLUSIONS

Every approach which can complement, extend, or even transcend ordinary diagrammatic methods
is of great importance, especially in the light of the growing interest in the large-order behavior
of perturbation theory (an area of research which takes the name of resurgence theory [197-200])),
and of the relevance of multi-legged amplitudes for the next generation of high-energy physics
experiments [44,201-203]. Furthermore, the search for a classification of critical phenomena [51,
173,204-207] demands novel methods able to shed light on the general properties of the spectrum
of anomalous dimensions in conformal theories.

In this thesis, we explored the recently-developed large charge approach to QFT and, in partic-
ular, to CFT. After having reviewed the basics of CFTs at large charge in the first two chapters, we
focused on the application of large charge methods in weakly-coupled non-abelian theories.

In Chap.4, we studied the O(N)) critical model in d = 4 — € dimensions. After having analyzed
in detail the charge fixing procedure and the resulting symmetry breaking pattern, we determined
the scaling dimensions of traceless symmetric composite operators to the next-to-leading order in
the large charge expansion. These operators correspond to spatially homogeneous ground states
when the theory is mapped to a cylinder. Interestingly, every order of the large charge expansion
resums terms up to arbitrarily high orders in the €-expansion. This allowed us to combine our
results with the known diagrammatic literature to obtain the scaling dimensions to O (84) in the
e-expansion as well as provide predictions for higher-order terms. This investigation paves the way
for the first-principle study of the large charge expansion in non-abelian theories. Subsequently,
we analyzed the € — 1 limit of our results, exploring the connection with previous EFT studies
of the strongly-coupled three-dimensional O(N) CFT. An obvious extension of our investigations
is the study of non-homogeneous ground states, which are related to operators transforming in the
antisymmetric and mixed-symmetry O(N) representations. Also, computing the NNLO of the large
charge expansion is strongly motivated by the possibility of comparison with the non-perturbative
large charge EFT and Monte Carlo simulations.

In the last part of the chapter, we continued studying the anisotropic perturbations of the O(N)
model, focusing on the critical theory with cubic anisotropy. The latter is in general induced by

the crystal structure of O(3) magnets and, being RG relevant, drives them to a universality class
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distinct from the Heisenberg one [158]. Leaving momentarily aside the large charge expansion,
we unveiled the operator content of the model and derived the full 1-loop spectrum of anomalous
dimensions for composite operators without derivatives and showed that it follows an interesting
pattern. A natural direction is to consider other subgroups of O(N), such as the hypertetrahedral
symmetry group H;.ranedral =~ Sn+1 @ 2. This line of research is also motivated by the recent
results on the classification of scalar CFTs [173, 174,207, 208].

In4 < d < 6, the O(N) theory exhibits a UV fixed point non-perturbatively realizing the asymp-
totic safety scenario often considered in the quantum gravity literature. In Chap.5 we studied its
proposed UV completion in terms of the WF IR fixed point of the cubic model, which, in 6 — &
dimension, is perturbative. We determined the scaling dimensions of a family of fixed-charge op-
erators to NLO in the large charge expansion in the cubic model, finding complete agreement with
previous calculations in the O(N) model, hence providing non-trivial support to the conjectured
duality between the two critical theories. It would be clearly interesting to compute the NLO in the
large N-large charge expansion of the O(N) model in various d. Furthermore, the appearance of
complex anomalous dimensions above a critical value of the charge is a curious phenomenon re-
lated to the instability of the theory and its large charge states, which deserves further investigation.

In Chap.6, we explored the role of the charge configuration in the large charge expansion. Our
findings show that by controlling the charge configuration, it is possible to efficiently calculate the
scaling dimension of a multitude of composite operators going beyond traditional diagrammatical
computations. We outlined our computational strategy, which merges large charge methods and
group-theoretical considerations, by deriving many new results for the scaling dimensions of com-
posite operators in the U(N) x U(M) CFT in d = 4 — € dimensions. For a wide range of N and
M, the CFT occurs at complex values of the couplings defining a non-unitary complex CFT related
to near-conformal dynamics. Starting from this observation, we illustrated how large charge meth-
ods can be successfully employed to compute renormalization group functions in theories without
fixed points by considering the associated complex CFTs. It would be worth pursuing the study of
the large charge expansion in near-conformal QFTs, for instance, using the semiclassical methods
described here to obtain a microscopic description of the model considered in [209], where the
near-conformal dynamics is guaranteed by adding a dilaton to the large charge U(1) EFT in d = 4.

The field of the large charge expansion is relatively young and continuously growing. We think
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that we are only at the beginning of the journey. For example, recently began the exploration of
the convergence and resurgent properties of the expansion [210,211] with the final ambitious goal
of extending the validity of large charge methods to any value of the charge, including the small
ones. Also, the first steps towards an efficient computation of the OPE coefficients, have been
recently made [78]. Another noteworthy line of research is the study of the holographic duals of
large charge CFTs [212-215]. For instance, there are indications that the large charge sector of the
U (1) three-dimensional scalar CFT extensively discussed in this thesis can be identified with AdS
boson star solutions of the Einstein-Maxwell theory in four dimensions [213,214]. In particular,
it would be interesting to investigate the AdSg holographic description [32] of the 5-dimensional
O(N) model considered in Chap.5.

One of the most important future challenges of the field is, in our opinion, to efficiently ap-
ply the ideas underlying large charge methods to non-conformal theories and the computation of
dynamical quantities such as cross-sections and decay rates. This would likely provide a break-
through in our understanding of high-energy multi-particle production processes in the Standard
Model. In fact, since the 90s, analogous semiclassical methods have been invoked in the literature
for computing the multi-particle production amplitudes in QFT [216-218]. Unfortunately, after
the first pioneering results, establishing the potential power of the approach, formidable technical
obstacles, in this case not tamed by conformal invariance, almost arrested the progress. The large
charge approach to CFT considered here, confirms (via an explicit realization) that, when dealing
with multi-legged amplitudes in perturbative theories, saddle-point methods around a non-trivial
trajectory provide a well-defined perturbative expansion even when the ordinary loop-expansion
breaks down, motivating and paving the way for future investigations.

Another interesting possible extension of the ideas presented here is the study of large charge
operators in fermionic CFTs, such as the infrared Banks-Zaks fixed point of SU(N) gauge theories
[1]. Intuitively, we expect their large charge sectors to be related to some superconducting-like

phase, with potential applications in QCD [219-221].
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Appendix A Proof of the charged Goldstone theorem

In this appendix, we present a partial proof of the charged Goldstone theorem stated in Sec.3.4. We
refer the reader to the original papers [121, 125, 128, 129] for details and examples. We start by

defining the matrix

Miq = (0[9:(0), Qu(1)]0) , (A.D)

which we rewrite as

M,a_/d3 (0[9;(0)j2(%,1)]0) — c.c. _/d3 (0]9;(0)eH 0= MHI=PR) 10y _cc. . (A2)

where we used assumption (3) (time evolution of the operators), and we take jg and ¢; to be Her-

mitian. Then we use the completeness relation to rewrite the integrand above as

<O|¢) ( ) l,LlQI O (Ht—P~)?)|O Zelkx 0|¢ l/JQl 0 qute—iﬁt|nk>
X (| :(0)e M e~ (0) (A3)
with |n;) a momentum eigenstate of the n-th particle species, which is also an eigenstate of A with

eigenvalue Ej. After performing the integral over the space in (A.2), only the zero momentum

states survive, and thus we have

Miq =Y e (0|2 jde M ne) (ni|i]0) —c.c. (A.4)
ny k—0
Consider first the case where O, commutes with the fixed charge Q. Then
!
=Le 01 ilmi) (el jal0) — c.c. (A.5)
n=1 k—0

The rank of M;, equals the number of broken generators m by definition. Let us see which in-
termediate states can contribute to M;, when [Q,,Q] = 0. Charge conservation and relativistic

invariance®” imply that M,-a = 0. Then the Fourier transform of M;, has the following general

42 n particular, we use that space-like separated local operators commute.
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form

FlMia) = K08 (k*)alko) + (K — k)b (k? k%) + 8 (k*)c(k*) + 2.8 (k) , (A.6)

for arbitrary a,b,c, and A.

The third term does not contribute. In fact, these intermediate states have k% = 0 for any k com-
pletely breaking translation invariance violating assumption (2). Also, in relativistic theories, the
fourth term has to be zero since it violates microcausality. In fact, M;, would receive a contribution
for all the positions in space. The remaining two terms imply massless states. Then the only states
which contribute to M;, have energy which goes to 0 as k — 0. These are massless Goldstone
bosons. We denote their number as /.

Consider then the following matrix

l

Via =Y., (0[@1n0) (no| j3|0) (A7)
n=1
such that
M, = 211’1’1(Vl'a) . (A.3)

Then Im(V;,) has rank m. In order to calculate rank(v;,) = p, we use that its columns are a linear

combination of the following [ vectors

(0]91|no)
A, = : , n=1,...1. (A.9)

(0] @n|no)

Then rank(v;,) < I. Moreover, let us introduce also

[
Va=Y An¥an , Yan = (n0|j2]0) (A.10)
n=1
so that we have
[ [
Im(v,) = Y Re(A,)Im(Yan) + Y, Im(An)Re(Yan) - (A.11)
n=1 n=1
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The above implies that the column of vj, is a linear combination of the 2/ column of Im(4,,) and
Re(A,). Then, since rank(Im(v)) = m, we have [ > m/2.
The next step is to prove that at least one type II Goldstone exists. Since p < [, there are m — p

linear relations
m
Y Gva=0, a=1,....m—p, (A.12)
a=1
where not all the c& vanish. Moreover,
m
Y () va#0, (A.13)
a=1
otherwise rank(Im(Vv)) < m, violating the assumptions. Consider now the following commutator

= (0[¢y, 5 Qa)0) , (A.14)

where a sum over a = 1,...,m is implied. Its Fourier transform F (N/) can be written as

3

f(zv,-“):—znis(k%rls Z (O %n_x) (n_r|g:0) | . (A.15)
n=1 a=1 k=0
Since the energies are positive F(N7) is non-zero only if kY < 0, i.e. on a hypersurface of the
k-space that is tangent to the k" = 0 plane from below. Furthermore, F(N¥) must be analytic in k
to preserve microcausality. Then, for k — 0, the hypersurface has to be of the form E; ~ k% with
n integer. This is a type II Goldstone boson.
The counting of the massless Goldstones with respect to the number of broken generators fol-

lows from the fact that we cannot find a set of non-zero constants 3, such that

m—p m
Y Ba) CFva. (A.16)
o=1 a=1
In fact, otherwise, we would have
m m—p
Z (BaCa™ +BaCe) (A.17)
a=1 a 1
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which contradict rank(Im(v)) = m. Then we can build (m — p) linearly independent vectors p*

l m
ZC“* Va)i = Z (0l¢ilno) (nol Y € ja10) (A.18)
n=1 a=1

and we must have at least m — p independent states (type II Goldstone bosons) which couple to the

m — p currents C%* jO. If we count the type II bosons twice, we have

ni+2np=1—(m—p)+2(m—p)=I+m—p>m. (A.19)

proving the inequality. We do not present the proof of the equality sign, which can be found
in [125].
We now return to Eq.(A.4) and consider instead the case where [Q,, Q] # 0. The commutators

are

[Qas ji(X)] = if, jO(x) (A.20)

with £, the structure constants of G. Using the commutator above, we can rewrite Eq.(A.4) as
MO e MO = (71 Jy (A21)

which can be derived by expanding the exponentials on the LHS. Here, f; is a real matrix whose

entries are ( fl)Z = flba. It is real because we are considering direct products of Lie groups.

Mig =Y e (e 1M (0] 12|y ) (| 4110 — c.c.. . (A.22)
n k—0

Assumption (4) implies that f7, is totally antisymmetric. Then the non-zero eigenvalues of f1 ' are
pure imaginary and occur in complex conjugate pairs (+ig,, —ig,). We can then find a basis where

flba is real and block-diagonal, with the blocks being

0 +a,
1 (A.23)

—qa 0

If jg corresponds to a vanishing eigenvalue of fi, then it commutes with Q, and, as discussed
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above, we have a massless Goldstone boson. Otherwise, the exponential in (A.22) mixes its matrix
elements with its block-partner. The mixing has frequency g, and generates the mass of the type
III modes. In fact, by rewriting ;0 as jO = 52 + }'27, with, }2 and }'BT an Hermitian-conjugate pair of

generators diagonalizing f1, we have

Mig =Y e " Ehaa (01701 (n|9:]0) + e Etiaal (0107 |y (my | §1]0) —c.c.| . (A24)
n k—0

Again, the states which contribute to M;, are those satisfying M;, # 0 and %Mia =0, as dictated by
charge conservation. By comparing the expression above with Eq.(A.5), we immediately see that

now we have contributions from gapped modes, with mass
Eq(0) = Ha - (A.25)

These are the type III Goldstone bosons. The proof of the part of the theorem concerning their

counting is not given here and can be found in the original publication [129].
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Appendix B One-loop computation in the U(N) x U(N) Higgs
model

In this appendix, we derive the 1-loop anomalous dimensions of the U(N) x U(N) operators with
classical dimension Q = 2 appearing in the decomposition (6.1 1) of the 2-index traceless symmetric

O(2N?) tensor. We write the H matrix as

N2—1

H=Y (oa+ipa)T*, (B.1)
A=0

where T4 are the generalized Gell-Mann matrices, extended to include Ty = \/%Wﬂ and normalized

as Tr (TATB) = %BAB. Introducing (a1, x42) = (Ca,Pa), the vertices read [222]

4! uTr[HH HH') = uUsip jckp1 XaiXBj XckXDi »
Unigjckpr = 8 [(Sascp + Ssanc)Niju + (Saspc + Ssaco)Nijik + (Sapsc + Space)Nujx| - (B.2)
4 v(Tr[HH))? = wWaip JCkDIXAiXBjXCkXDI 5

Vaigjckor = 2 [8a88cn 68k + 8ac 8800w 81 + 8apOpc 618k ] (B.3)

where Sapcp = TI”[TA TBTCTD] and Nijkl = N;jNi + NjiNjy with
(B.4)

We write the composite operators OQ as OQ = PAhil~,A27i27~--AQ'~,iQ_%A17i1xA27i2""%AéyiQ" Here Q is
both its CSD and its number of pair of indices. The 1-loop anomalous dimension yp 5 is determined

by the following eigenvalue equation

0(Q-1)

1
YOQ-PAI-,iqu,iz,---AQJQ: 2(47)2 <MUBl7j17BZ,j2,(A17i]7A27i2PA37i37~-~AQaiQ)7Bl7jla327j2

TVVBj1Bajn ALy 7A27i2PA37i37-~~AQaiQ_)7Bl J1 ,32>j2) ) (B.5)
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where the tensors Py, ;, 4, have to be totally symmetric under interchanges of pairs of

iz, Agiig
indices of the form (Agiq) <+ (Ag,ig). The symmetrizations on the RHS of Eq.(B.5) is understood
in the same way. The derivation of Eq.(B.5) is analogous to the one of Eq.(4.101) for the hypercubic
model. Notice the appearance of the usual Q(QT_I) combinatorial factor typical of quartic potentials.
In diagrammatic terms, it stems from choosing the two legs (on Q) of the operator insertion which
enter the quartic vertex.

Specializing on the case Q = 2, Eq.(B.5) becomes
1
YoPaigj = anp (uUnigjckpr + vVaisjckpt) Pekpi - (B.6)
For the (Adj, 1) operator, we have
TI’[HTEHT] = TI”[TATETB] 5,'ij,‘%3]' — PAiBj = TI’[TATETB](SU s (B.7)

where the index E runs solely from 1 to N> — 1. Using (B.6), we obtain

v+ Nu

YrriHTEHT) = T

- (B.8)

For the bi-adjoint operator Tr[TgHTgH'], we can use T(fﬁ Tfa = % (5a05ﬁp — Zl\,Saﬁ SPG) to

perform the sum over E (which again does not include 7p). We have

1 1 1 1
Tr[TeHTgH'] = 3 <TrHTrHT — NTr[HHT]) = Zaij (N5A06BO — N6AB) Xaixsi, (B.9)
and thus
y
Yrr(TeHTHT) = T (B.10)

We write the operators transforming in the anti/symmetric irreps as Tr [KiHI_(i H} and Tr [LiHI:,iH] ,
where K'(K') and L (L") are the Clebsch-Gordan coefficients for the SU (N) representations [T ( [T7*)

and H ( H *), respectively. K;, K;, L;, L; satisfy the completeness relations [192]
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_. 1
KPR, = 5 (8a088p + BapBps)

_; 1
L, = 5 (8083 — 8ap80) - (B.11)
We have
L 1
Tr [K'HK'H] = SRij (NSa0SB0 + OaB) XAIXB] (B.12)
o 1
Tr [L'HL'H] = SRij (N6a0SB0 — OaB) XAIXB] (B.13)

where R is a symmetric and traceless matrix given by
R= . (B.14)

Plugging the above tensors in the eigenvalue equation (B.6), we obtain

v+u

YTr[KiHKiH] = ar2 (B.15)
v—u

Yre[LiHLIH) = T (B.16)

where we used that Rijjvijkl = R,'J'Niﬂk =0 and Rl-jN,-ljk = Ry.
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Appendix C The functions p(A,", A) and 6 (¢, A", A%)

Here, we provide explicit expression for the functions appearing in Eq.(6.96). Recalling that x* =

Z(Ar+ A5+ \/—3 + (Z2(A; + A%))?, we have

1
p(x* M,N,s, Ay, A?) = ; [—2A;§A$ <2M (102Nx*4/ 3 4 24y/3Nx2/3

1445043 (A + A¥)
18 323Nx2 45 (16€f3x*8/3 1291543 1 216/3x 3 472 32352 4 48 32/3))

2N (16€/§x*8/3 +291x°434/3 1+ 216V/3x 23 +72 3232 4 48 32/3> +48¢/3x78/
1753043 1 5529/3x° %3 1184 32352 1 144 32/3> + A (—2M (72Nx*4/ St (16€/§x*8/ 3
135103 4 2649/3x°2/3 1 88 3232 448 32/ 3)) 25 (N <16\3/§x*8/ 3 1351043
126493523 188 3232 1 48 32/3> + 65 (16€/§x*8/3 23103 4 1687/3x°2/3

456 3232 148 3%/ 3))) e (MN (16€/§x*8/ 3 1495543 1 264+/3xY/3 4 88 32/3 52

48 32/3) +4 <16\3/§x*8/3 12613 1 1929/30°23 1 64 332 1 48 32/3)>]
2
4(x*2/3+3/§> Az
Ar+

3%}(*2/3 S2 1 2/3 *4/3
+(M —2s5)(N —2s) T+ A +§\/x*2/3 (4 A7) (6 (23 3y

252 — 1 B 1
2 Ox*4/6 (Ax + A

x [3 (4 32343 0123 12%) Ai 18 (32/3x*4/ ey 3\3@) A:]

1/2
+ox*2/3 +6\3/§> A +4 (32/3)6*4/3 +6x*%/3 +3\3/§> At) / +

3V33 " 8(x*2/3+\3/§)2 12 45 (x*2/3+\3/§) (M —N)
" An+ A MY ) i 32/39/x*
N (3 (4 32/344/3 4 912/3 1 12\3/5) A+ 8 <32/3x*4/3 42/ +3\3/§> A
2 Ox+4/6 (A% 4 A%)
4(x*2/3+ %)2 .
333027 ' 8 (x*2/3 + \3/5)2 12 gs (x*2/3 + \3/§> (N —2s)
" A+ A BT ) i 32/3/x
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252 <x*2/3 4 \%/g)

— (1)
and
3 ) (4 32/3,+4/3 4 15¢°2/3 4 12\3/5)2 )
O(Lx" M. N5, Aj A3) = —20MN — 6CMN + = FEwOE (2s,4;;
X(M+N + 6s) +2A; A5 (2Ms +2Ns+3) + (MN+4)A§2> + 9x*2/3(fl;‘l A

x [ A5 (S4MNx 4 M (8 334747 130477 1 24/3) 4+ 20s (4330743 415220

+12V3) ) + A7 (MN (4325547 46907 1+129/3) +4 323547 415077 1123 |
1

[—ZAZ <9MNx*2/3 + Ms (4 323543 4 15x+23 12\3/§>

2B (Ar + A7)
+Ns (4322548 115528 4 1203) ) - A7 (MN (432594 1337 1 12773)
+4 33040 115028 L 1273) | (C2)
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