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Introduction

Quantum Chromodynamics (QCD) is a field theory formulated in terms of
quarks and gluons and is believed to describe strong interactions. We live
in space-time with Minkowski metric, but it is possible to formulate QCD
in space-time with Euclidean metric, which is better suited for numerical
simulations. The results can then be related to a formulation in Minkowski
space-time.

Quantization of QCD in four dimensions leads to divergent contributions. In
the process of regularization the theory is manipulated, such that it is math-
ematically well-defined. There are different regularization methods available
that are more or less suited for different physical situations. Each of them
keeps some of the symmetries of the original theory intact and destroys oth-
ers. The lattice regularization is one that does not affect the gauge symme-
try, which is a vital ingredient of QCD. Instead of continuous space-time, the
theory is formulated on a lattice of space-time points with a specific lattice
spacing. Additionally only a finite set of points in each direction is consid-
ered and periodic (or anti-periodic) boundaries are imposed, which makes
the theory suitable for numerical simulations.

Among others, chiral symmetry, that is that left- and right-handed fermions
decouple, is a symmetry of the massless Lagrangian of QCD and an approx-
imate symmetry for the light quark sector. Upon quantization an additional
spontaneous breaking of chiral symmetry occurs. For a long time it has been
unclear how to translate chiral symmetry to the lattice. The original lattice
formulation proposed by Wilson has the problem of generating 16 lattice
fermions from one fermion in the continuum, but only one has the correct
dispersion relation. This issue is called the fermion doubling problem. The
additional doublers decouple from the theory when taking the continuum
limit, but spoil the realization of chiral symmetry at finite lattice spacing.
In 1981 Nielsen and Ninomiya showed that it is not possible to use the con-
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tinuum version of chiral symmetry while maintaining other vital properties
on the lattice.

Shortly thereafter in 1982 Ginsparg and Wilson suggested a relation that
defines a lattice version of chiral symmetry, but the first realization of an
operator satisfying this relation took until the 1990’s. The so-called chi-
rally improved Dirac operator is constructed as a general expansion of an
operator in terms of paths on the lattice containing all 16 Clifford algebra
elements. The expansion parameters are constrained by symmetries and the
Ginsparg-Wilson relation. For numerical applications the expansion is usu-
ally truncated to contain paths up to length four, hence the chirally improved
Dirac operator obeys the Ginsparg-Wilson relation only approximately.
Meson propagators can be computed using lattice QCD where especially for
the light quark sector chiral symmetry is of great importance. Therefore
actions with good chiral properties are supposed to provide reliable results
for quantities like the pion propagator when going to small quark mass pa-
rameters.

Chiral perturbation theory is believed to be a valid low energy effective the-
ory for QCD defined in the chiral limit. Mesonic chiral perturbation theory
uses pseudoscalar fields as fundamental degrees of freedom that are massless
in the chiral limit. In order to include non-vanishing quark and therefore also
meson masses a symmetry breaking term can be included in the Lagrangian
of the theory. Every interaction term, that is not excluded by the symmetries
can be included in the Lagrangian and the terms are ordered according to
the number of powers of momentum and mass. For this application only first
order terms are included.

Lattice QCD computations are typically performed at unphysically high
quark masses, whereas results obtained in chiral perturbation theory have
the best quality close to the chiral limit. There one hopes that higher or-
der corrections do not have a strong impact. Two parameters appear in the
lowest order of mesonic chiral perturbation theory: the pseudoscalar decay
constant, the parameter that determines the pion’s coupling to the weak cur-
rent, and the chiral condensate, which can be considered as order-parameter.
Correlation functions can be evaluated in both frameworks and provide a
means of using ab-initio results from lattice QCD to compute the low energy
parameters of chiral perturbation theory.

Results in lattice QCD always come with the regularization scale attached.
For quantities where the absolute value of the propagator plays a role, proper
normalization and renormalization is an issue. In [1] and [2] the renormal-



ization factors for the chirally improved action are computed and allow to
determine quark masses and the low energy parameters for this action in a
continuum renormalization scheme and a comparison to other approaches is
possible.

The outline of this thesis is as follows. Chapter 1 gives a short overview over
the basic properties of Euclidean QCD. The focus lies on the basic symme-
tries of QCD. In Chapter 2 the main ideas for formulating a gauge theory
on the lattice are collected. The symmetries of QCD in this framework are
worked out in Chapter 3. The emphasis lies on chiral symmetry and a lat-
tice formulation of this symmetry, the Ginsparg-Wilson relation. The Dirac
operator used for numerical simulations is introduced there. In Chapter 4
formulae for meson propagators from lattice quark propagators are worked
out and also the quenched approximation is explained. Chiral perturbation
theory and its basic formulae are introduced in Chapter 5. The connection
between a continuum effective theory for mesons and the ab-initio compu-
tations performed in lattice QCD is established in this Chapter. Numeric
results from our quenched lattice calculation are presented in Chapter 6,
which is heavily based on [3] and [4]. Starting from properly (re)normalizing
quark and meson propagators results for the quark mass, chiral condensate
and the pseudoscalar decay constants for pion and kaon are computed. The
lattice sizes range from 8% x 24 to 203 x 32 with lattice spacings between 1.2 fm
and 2.4 fm. The mass of the pion extends down to around 330 MeV. In the
Appendices properties of Pauli, Gell-Mann and Dirac matrices along with
the coefficients of the chirally improved action are collected. Additionally
the fitting method used is explained.
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Chapter 1

General introduction to QCD

1.1 Euclidean QCD

Quantum Chromo Dynamics (QCD) [5] is believed to be the right descrip-
tion of strong interactions on the level of quarks and gluons in a quantum
field theoretic framework. Here we define it straightaway in a Euclidean
framework, i.e., we replace the Minkowski time by imaginary time. Thereby
we also modify anti-commutation relations and the structure of the Dirac
matrices (see Sect. A.2 for definition of the matrices). In order to transform
correlation functions from Euclidean back to Minkowski metric, they have to
satisfy several conditions, among them one called reflection positivity [6].

1.1.1 The fields

In this description quarks and antiquarks are massive spin—% fermionic fields
that have spatial, Dirac, flavor and color structure. We can denote them by

Uhe(), dhe(2) (1.1)

where x is the space-time position of the field, « = 1,...,4 gives the Dirac
index, ¢ = 1, 2, 3 the color index and f = 1,..., Ny the flavor of the quark in
consideration. Quark fields and the renormalized mass are no observables,
i.e., they have to be defined within a theoretical framework, but we may
order quarks such that they fall into light and heavy sections compared to
the typical scale of QCD (e.g., the mass of the nucleon or 47 f,., which is both



roughly 1 GeV) in a specific scheme, the MS scheme [7, §]

m, = 0.0015 — 0.003 GeV me = 1.16 — 1.34 GeV
mg = 0.003 — 0.007GeV | < 1GeV <« | my =4.13 — 4.27GeV
ms = 0.070 — 0.120 GeV m; = 170.9 — 177.5 GeV

(1.2)
We can combine the quark masses to a matrix defined in flavor space, namely
the quark mass matrix

M = dlag (muamdamsamcambamt) (13)

and truncate it to the light (i.e., Ny = 3) or light, non-strange (i.e., Ny = 2)
sector for our purposes. The fact that the light quarks are so much lighter
than, e.g., masses of nucleons leads to an approximate global SU(2) and to
a lesser extent SU(3) symmetry of the QCD-Lagrangian. For the SU(2) and
SU(3) sector using the unit matrix plus the Pauli and Gell-Mann matrices,
respectively, the mass matrix reads the following way

My, — Mg My + My
M=——)\ —1
2 BT T (1.4a)
== Mg)\g + M()I[,
m, — My My, + mg — 2my My + Mg + My
=% %A A 1
M SRR 2 s 3 (1.4b)
== Mg)\g + Mg)\g + M()I[

with the definitions

M; = w (1.5)
Mo = w (1.5b)
for SU(2) and
M; = w (1.62)
Mg = my, + m2d — 2m87 (1.6b)
Mo =T . s (1.6¢)



for SU(3). In Minkowski space-time using the operator approach, the fermion
fields are related by

¥ = ¢y, (1.7)
whereas in the Euclidean path integral we integrate over two independent
Grassmann fields ¢) and 1. Gluons on the other hand are incorporated in

form of the gauge fields
Ayea(x) € su(3) (1.8)

having spatial (z), Dirac () and color (¢, d) structure, but no flavor content.

1.1.2 QCD action
The action can be split into a fermionic and a gauge or gluonic part

Socp = /dtLQCD = /d45€£QCD = /d45€ (Lr + Lc) (1.9)

where the action is the integral of the Lagrangian L over the time direction.
The Lagrangian itself is the spatial integral of the Lagrangian density L.

Fermionic part

The fermionic contribution is bilinear in the quark fields and given by
el 4] = [ ' 3(z) (0 (B, + ig Ay()) + M) 6(2)

= [ @0 0t,() (s (Gua By + 9 Apes(a) (1.10)
+ dap Ocd Mffl) e

where summation over Dirac flavor and color indices is implied. The constant
g arises from the coupling of quark and gluon fields in the covariant derivative

D,(z) = 0, + igA,(x). (1.11)

Gauge part

The gluonic part only depends on the gauge fields and reads

SelA] = 2ig2 / 442 T [y () Fon ()] (1.12)
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In contrary to the fermion fields, which are in the fundamental representation
of the associated gauge group (SU(3) for QCD), the gauge fields are in the
adjoint with the Gell-Mann flavor matrices from Sect. A.1.3 as basis

N7-1 \
Ayx) =Y AD@) 2 1.13
(o) = 3 A0 (113
The components can be retrieved using the projection property of the \’s
; 1
AL) = §Tr NiAu(x)]. (1.14)

1.2 Path integral quantization

Up to that point we only dealt with the theory at the classical level. There
are many ways to quantize a theory, all of them having advantages and
disadvantages making them especially suitable for different classes of theories.
We use the path integral formalism [9]. The generating functional for QCD
reads

2= [ dida)diaje-se, (1.15)

where we integrate over all possible values of the fields 1, ¥ and A. Note,
that in the usual Minkowski metric we would have an additional imaginary
unit in front of the action, which would cause rapid oscillations, but by going
to Euclidean space we replaced this by a monotonic function. Expectation
values of functions F' can be computed using

1

(F) = [ did) ) dia) P, v, yeSoee (1.16)

with the Grassmann variables 1/ and 1.

1.3 Symmetries of the QCD Lagrangian

1.3.1 General transformations

In order to illustrate the symmetry properties of the Lagrangian it is useful
to split the fermionic part into a massless (£%) and a mass term (Lx!)

Lr =LY+ L. (1.17)
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For checking under which transformations the massless Lagrangian stays in-
variant, we define local unitary transformations on the quark fields

w/ _ eie(x)A,l?b’ ,IE/ — @Eeie(x)z (118)

with the local parameter €(z) and the global Hermitian operators A and A.
For the global operators the following relations hold:

[A,D,] =0, (1.19a)
[A,D,] =0. (1.19b)

The Lagrangian can now be expressed in terms of the transformed fields

310, 4] =¥ (e D(o) R

(w)e B, WA, (1)) () (1200

L0, o, A) — () () [Boye + 3] D) (o)

= 0ue(@) T3 80 (2) + O ().
|-

I
h ASH|

LD, , Al = LA ¢, A] — ie(2)d (x) [AM + MA] ¢/ (2) + O ()
= L' [V ¢, Al
—ie(z)Y (z) [(A+ A) M+ [M,A]] ¢/ (z) + O (¢%)
(1.20b)
resulting in

0Ly =e(x)i(x) [Z% + WA} D, (z)¢(z) (1.21a)

+ (9ue(2)) ¥ ()7, A9 (2) + O (€) '
P0LY =e(x)U(z) [(A+A) M+ M, Al] ¢(z) + O (€7) . (1.21b)

We can utilize Nother’s theorem to identify contributions with currents J,
and the derivative thereof

oL oL
J, =% 95 A
" 00, Zaam v (1.22a)
L oL oL
Odu ="5c = Ti5p Y ~ g R0

:_“Z(x r7u+7u } D,(x) (1.22b)

(@) [(A+B) M+ M, Al] (@),
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1.3.2 Chiral representation

Let us introduce right- and left-handed projection operators on the fields

Pr=51+7), Po=5(0-1) (1.23)

N —

1
2
with the following properties

Ph=Pr, P.=Py, PpPL=PPr=0,
PR + PL,: 1 ’)/MPL = PR’)/M, ’)/MPR = PL’)/M. (124)

Due to these relations the action can be block-diagonalized

LU, 1, A] = Y PrDPgip + P D P

— GpDin + DDV (1.25)

with the definitions

Yri = Prrt, Yrr=vPrr (1.26)

denoting the left- and right-handed components of the Dirac fields. Let us
consider operators for A and A that can be built from left- and right-handed
projectors, namely the vector and axial-vector combinations

w =Y (Pr+ Pr) =71, ( )
Uyi =77, (Pr+ Pr) = 77,1, ( )
La, =7 (Pr— Pr) = 775, (1.27¢)
Lu;, = 77, (Pr — Pp) = Tivuys. ( )

Additionally we want to take a look at scalar and pseudoscalar combinations
[s=(Pr+Pr) =1,
Lgi =7 (Pr+ Pr) = 71,

( )
( )
I'p=(Pr—Pr) =15, (1.28¢)
Lpi =7 (Pr— Pr) = 777s. ( )



Symmetry group of the massless Lagrangian

In Tab.s 1.2 and 1.1 the resulting properties for the different transformations
are listed. We see that the massless fermionic action is invariant under left-
and right-handed special unitary transformations, which can be rewritten
due to the properties of the projectors in terms of scalar and pseudoscalar
operators with vector and axial-vector, respectively, as the associated current.
The resulting symmetry group can therefore be denoted as

SU(Ny) x SU(Ns)gr = SU(Ny)y x SU(Ny) 4. (1.29)
Similarly the unitary transformations for the flavor singlet can be given as

So the chiral action is invariant under

SU(Nf)LXSU(Nf)RXU(l)LXU(I)R = SU(Nf)VXSU(Nf)AXU(l)VXU(l)A
(1.31)

Symmetry group of the massive, iso-symmetric Lagrangian

As soon as the quarks in the Lagrangian are given a mass, some of the
symmetries and the associated currents are no longer conserved. Let us
discuss two scenarios. In the first one we have degenerate, but non-zero
quark masses, i.e., m, = myg = mg; = m. The contributions to the mass
matrix from (1.6) then read

M3 = 0, Mg = 0, Mo = ml. (132)

Hence the term containing [M, A] in the derivative of the action vanishes.
The Lagrangian is also no longer invariant under left- and right-handed ro-
tations, neither is it under the axial-vector transformation but the vector
current is still conserved. The symmetry group is thereby reduced to

SU(Nf)VXSU(Nf)AXU(l)VXU(l)A — SU(Nf)VXU(l)VXU(l)A (133)

The broken axial SU(Ny) symmetry results in the so-called axial Ward-
Takahashi identities of the form

0uA, =2mP, (1.34a)
Al = 2mP". (1.34Db)

Note, however that this is only true on the classical level. Upon quantization
the expression for the singlet picks up an additional anomalous term.
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Symmetry group of the full Lagrangian

Now we also break flavor symmetry by giving the quarks individual masses.
The only remaining conserved current is the flavor singlet vector current.
The resulting Ward-Takahashi identities then read

0.V =1 M, 7], (1.35a)
Ay = 2y M, (1.35b)
A, = U5 {M, i} . (1.35¢)

The symmetry group is reduced even further to

-

A A WA A+ AIM M, A]
I's —I'g Ly, 0 0

Fsi —Fsi FV; 0 [M, 7'2-]
I'p I'p [y, 2I'p M 0

Fpi Fpi FAfL 2FP1’M Y5 [M,T,-]
P, —Pp | vwPL M 0

7P, —7Pr Tz'%PL — T M P [M, Ti]
Pr  —-P, | WwPr M 0

7.Pr —TPp Ti%PR 775 M Pr [Mﬂ'z']

Table 1.1: Transformation properties for the dynamic part of the QCD La-
grangian on the classical level before quantization. All of the above transfor-
mations satisfy Ay, +v,A = 0.



chiral, iso-symm. full
M=0 M=ml
A A 1y i0,J,  10,J, 10,J,,
I's —1I'g V., 0 0 0
FSz —Fsi VJ 0 0 ¢_{M3 [Tg,Ti] +M8 [Tg,Ti]}iﬂ
FP FP AH 0 2mP QwFPMID
[pi Ipi | Al 0 2mP" 20T p Mt + hy5 [M, 1] ¢
— G {Tp, M} Y
P, =Pr | YLy 0 —mP —yT'p My
=V, - A,
P, =7 Pr | Y1y, Pry | 0 —mP’ — YL M + PP [M, 7]
= Vi~ 4, ]
PR _PL Q/)’)/MPR’Qb 0 mP 'I/JFPM’Qb
=V, +A4,
iPr  —7PL | Y1y, PR | O mpP" YL My + ¢ Pg (M, 7] ¢
=Vi+ A,
Table 1.2: Transformation properties for the chirally symmetric, iso-

symmetric and full QCD Lagrangian on the classical level before quanti-

zation.



Chapter 2

Lattice regularization

Quantizing a theory like QCD confronts us with a lot of mathematical chal-
lenges. For example, we need a way to compute all possible paths of propa-
gation between two space-time points. One way to alter the theory such that
it is mathematically well-defined is to replace continuous space-time with a
space-time lattice. For this purpose we introduce an (artificial) regularization
parameter a, the lattice-spacing. The canonical lattice A has a hypercubic
symmetry,

A={z|z,/JacZ}. (2.1)

Furthermore we restrict ourselves to a finite system, i.e., after some distance
L, in a specific direction the boundaries are identified periodically such that
we end up with a torus in spacetime. Now we need to find a way to define
the elements appearing in the Lagrangian on A.

2.1 Gauge fields and action

Unlike fermion fields gauge fields are vector-fields and carry a space-time
index p. When a particle evolves, it picks up a (depending on the group and
representation possibly matrix-valued) phase-factor determined by the gauge
field

1) — Pexp <z’/da¢uA”) W, (2.2)
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where P denotes path ordering and the coupling g has been absorbed into
the definition of A. We introduce parallel-transporters of the form

Uu(2) = Uy grap = exp (iaA,(x)), (2.3)
Upiape = Uu(z)T. (2.4)

Doing this we changed from non-compact variables A* in the algebra su(3)
to compact variables U, in the corresponding group SU(3). Elitzur’s theo-

Uy (x4 9)
Uyx+ D) 0 Ry fit0)
DA (x+0)
w(x) Uglx+ )
o A A
Px+H) P(x+21)

Figure 2.1: Different objects on the lattice

rem [10] states that only gauge-invariant quantities can have non-vanishing
expectation values. Under gauge-transformations V' our fields behave like

b(x) = P(x)Vi(z), (2.5a)
V() = V(z)(z), (2.5b)
Uu(z) — V(2)U,(2)VT(x + afr). (2.5¢)

We can construct gauge-invariant quantities using link-variables U and fermionic
fields v and 1. Examples are (see Fig. 2.2) a quark created and annihilated
at the same site

Y(@)e() = VI (@)V (2)d(2) = p(2)d(2), (2.6)

a quark created and annihilated at different sites connected by a product of
gauge link variables

O(@)Uu(x) ... Uy(y — ad)ip(y) —
@VT(I)V(I)U;L(I)YT(SC +ap)V(r+ai). .. (y) (2.7)
= Y(2)Uyu(x) ... Uy(y — av)ih(y),

11



and a pure gluonic object, the so-called Wilson loop, a closed loop of path-
ordered gauge links

Tr U, (x)Uy(x+app)... U (x—av)] —

Tr [V(2)U,(2)V(z + a)V (z + aft)

x Uz +ap)Vi(z —ap)...U,(z — ad)V(z)]
=Tr[U,(x)Uu(z+ap)...U,(z—av)].

(2.8)

In order to discretize the gauge action Sg of the theory, we have to find a

O

Figure 2.2: (a) A quark and anti-quark at the same site, (b) a quark and
anti-quark at remote sites connected by gauge links, (c¢) a Wilson loop

prescription to define the field-strength tensor and the action

S = i / d'zF,, F", (2.9a)
Fou(@) = 0, A, () — 0, A,(x) — i [Au(w), Au(a)] (2.9b)

on the lattice. A naive discretization for the derivative modifies the field-
strength tensor such that

Fyul) = (A, 4 aft) — Ay(2)] ~ ~ [Au(x + a0) — A (o)
— i[A(2), Au(2)] + O (a) .

(2.10)

12



A candidate for the gauge action is the plaquette, the smallest possible, 1 x 1
Wilson loop building block which reads

Uw(z) =U,(2)U,(x + a/fL)UjL(x + ap)Ul(x)

iaA, (m)eiaA,,(x—l-a[L) —iaAy (w—l—aﬁ)e—iaAl, (z)

= ¢ [§

= exp [i0 (Au(a) + Ao + a) — G 14,00, Ao + 0] + O (@)

X exp {—ia (A (x+aD) + A, () + % [A, (x4 ap), A, (z)] + O (a?’)}

= exp [ia (A4u(0) = Ay(a + a9) + Aufo +a) ~ A,(o)

a2

-5 ([Au(z), Ay(z + afp)] + [Au(z + aD), Ay (2)]) + O (a?’)} :
(2.11)

In order to evaluate Uy, (x) we used the Baker-Campbell-Hausdorff formula
for multiplying the exponentials. The order a terms are the naive lattice
differentials of the fields in p and v direction and expanding the fields around
site x allows us to write the commutators as

[Au(@), A& + ai) +[Ap(@ + a0), 4,(2)] = 2 [A,(2), A4, (@)]+0 (a). (2.12)
We end up with connecting U, () with the field strength tensor
Uy () = /9% Fiur (@), (2.13)

2.1.1 Wilson gauge action
The plaquette action proposed by Wilson [11] reads

SUI=2_ Y. Sp(Uw(@)) (2.14)

z 1<pu<v<4
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and can be related using (2.13) to the continuum expression

(U (2)) = EReTr (1= Uy ()
= gReTr (1 — /99 P (2)
= IRerr (—igaF, I ()F O (a®
= 3ReTr { —iga () + N o (2) F(z) + O (a®)
ﬁ g2a4
= gTTTFMV( )FMV(IL") + O (a8) 5
(2.15)
where the quantity [ is related to the coupling
6
b= 7 (2.16)

Note that the order of correction is only due to the expansion of the expo-
nential. But there are also other corrections as we could include different
contributions to the field strength tensor that come with some order of a
smaller than 8.

2.1.2 Liischer-Weiss gauge action

Figure 2.3: (a) The plaquette U, (b) The 2 x 1 rectangle that leads to Uyce
(c) A parallelogram that leads to Upurg

In order to reduce lattice artefacts larger loops can be included to improve
the gauge action. In addition to closed paths of length four as in the Wilson
case, also length six paths are included in the Liischer-Weiss gauge action [12,
13]. The new contributions are the planar 2 x 1 loop and the parallelogram
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in 3 dimensions that each come with a new parameter (see Fig. 2.3). The
action then reads

S[U] :ﬂl Z %RGTT (1 - Up)
P

. . (2.17)

+ ) gReTr (1= Urewr) + B3 D gReTr (1= Upara)

rect para

The terms U,eer and Upg,, are constructed analogously to the plaquette. The
coefficients 3, and (33 have been worked out to be [14]

B
= — 1 A4 2.1
B 2002 [1+ 0.4805¢], (2.18a)
By = —% 0.033250., (2.18h)
0

with 4y and «a given in terms of the expectation value of the plaquette
sTr(Up) in [15]

1 1/4
Uy = <§ReTT<UP>) : (2.19a)
In (LReT
o — I GReTT(UrR) (2.19b)
3.06339

2.2 Fermion fields and action

We can put fermion fields on the lattice in a straight-forward way. In the
continuum the fields ¢/ (x,) and ¢J (z,) carry a Dirac (u), color (c) and
flavor (f) structure. We just adopt these properties, but restrict the values
of the space-time index to z, € A Eq. (2.1) instead of the whole Euclidean
space R*.

2.2.1 Nalve discretization

There is no unique way to define the equivalent of a derivative operator on
a discrete manifold. In principle all methods that approach the continuum
expression in the limit @ — 0 are valid definitions. Let us first consider the
2-point difference operator.

15



The free case

Let us start with the free case, i.e., the case where all gauge fields are set to
A, = 0. In the continuum the action reads

~Spli 0, A= 0] = ~S310,0] = [ @' 0(a) 0, + M) Ula). (2:20)
For the remaining discussion we only consider the iso-symmetric case where
M=ml. (2.21)

On the lattice we have to introduce a discretized derivative operator, that
approaches the continuum derivative operator when the lattice spacing is
taken to zero. The symmetric difference operation

lim, o (0 + ) — U — 1) = 0,(2) (2.22)

a—0 2a

fulfills this requirement. This leads to the following free, naive lattice action

SH15.4] = a* Y () (Zvﬂ(“m;a‘“g” = +mw<x>> (22)

TEA

The difference operator may also be written in the form

1

Aul,5) = 5 (B = i) (2.24)

which acts on a fermionic field in the way described above by summing over
the spatial index y

> Aua y)v(y). (2.25)

Now let us transform this operator to momentum space. The discrete Fourier
transform for the lattice reads

- 1 .
f(p) = W Z f(x)empumu7 (226)
where |A| = Ly LyL3L, and the momentum space is defined as
~ 2k L L
A= =__# =——E 41, =EY 2.2
I (227

16



The symmetric difference operator can then be evaluated

A 1 —iapyx ia,
Au(p) = er Pv ”AM({E,y)e PrYp

x7y

1 —tapy (T, —
= AN y)
x7y

1 .
_ —iapy (v —yv) o _
= 2a[AP Ze P W (Ozy—p = Ouy+i) (2.28)
"E7y
1 . )
— ap, _ ,—tapy
2a[A? Zy: (e —emm)
= — S1nf{a .
[A] 7

Note that in the continuum Au(p) would be proportional to p,. The free
Dirac operator in momentum space then reads

D(p) = ﬁ (Z i, sin(ap,) + m]I) ) (2.29)

and gives us the quark propagator

— >, tyusin(ap,) + aml
>, sin®(ap,,) 4 a?m?

Poles in the quark propagator tell us the masses of the particles involved. In
this case not only states at p, = 0, but also states at ap, = 7 give poles in
the propagator, so we have altogether we have 16 particles in the theory, but
15 of them are the so-called doublers, i.e., unphysical states in the theory.

D(p)™" = alA| (2.30)

The interacting case

The naive discretization brings along a set of problems. But before turning
our attention towards curing those, let us write down the lattice action for

the interacting case. The link variables can be expanded in terms of the fields
A

n
Uu(z) = &) ~ 1 4 4ad, () + O (a?), (2.31a)
U_u(z) =Ul(z— ) = ¢ 1 — g A, (x — )+ O (), (2.31D)

17



where we used A, = AL. Plugging this into the action leads us to

SFW; Y, U] =a' Z@(x) (Z 7#% (Up(2)d(z + 1)

weh (2.32)

U ()bl — ) + mw<x>>> .

Note that this expression is invariant under gauge transformations
SF[&) % U] = SF[,QE/> W, U/] (233)

2.2.2 The Wilson action

Wilson’s suggestion to handle the problem doublers [16] was to add a term
that allows us to distinguish between proper poles and unphysical ones as
we approach the continuum limit. In momentum space the Wilson Dirac
operator reads

Dw(p) = D(p) + W(p)
— ﬁ (é Z% sin(ap,,) + 2 Z (1 — cos(ap,)) + m]I) :

The additional “Wilson-term” W (p) has no effect for py = 0, but adds a
mass to the doublers that goes like

(2.34)

21

where [ is the number of momentum components that are different from zero.
Taking the continuum limit sends the mass of such modes to infinity and they
decouple from the theory. Also the Wilson term itself is removed from the
action. In position space the term looks like

1 1
W(QE, y) = E 45%y - 5 Z ((5m+ﬂ,y + 5w—ﬂ,y)] 5 (236)
m
which leads to the full Wilson Dirac operator
1 4
pntl
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Just like in the naive case we added the link variables U, but also defined
Vop = —Yp for p=1,2,3,4.
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Chapter 3

Lattice symmetries

3.1 Chiral symmetry on the lattice

In the continuum the massless Dirac operator has, among others, symmetries
under charge conjugation C, parity transformation P, chiral symmetry and
fulfills the so-called ~5-hermiticity. Transferring these properties to the lattice
confronts us with a number of problems.

3.1.1 Nielsen-Ninomiya theorem

The Nielsen-Ninomiya theorem [17, 18] states the following. It is not pos-
sible to find a Dirac operator with the following four conditions satisfied
simultaneously:

1. The Dirac operator D(z,z -+ r) is bounded by Ce™"l,

2. The Dirac operator in the continuum limit can be written as D(p) =
>, uapy + O (a®p?) for small momenta.

3. The massless Dirac operator can be inverted for any momentum p # 0,
i.e., there are no massive doublers.

4. The Dirac operator fulfills the naive (continuum) version of chiral sym-
metry {D,~5} = 0.
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According to this theorem the Wilson Dirac operator cannot describe light
fermions reliably. Let us examine the last property for the massless case

{Due) 2} = =57 s sinfap) + 3 (1= cos(apy)) {1,725}
5 : : (3.1)
=% > (1= cos(apy)) -

The Wilson term breaks chiral symmetry explicitly and the term cannot be
modified such that the operator fulfills all the property stated above.

3.1.2 The Ginsparg-Wilson relation

In [19] a first method to overcome the restrictions imposed by the Nielsen-
Ninomiya theorem was worked out. The so-called Ginsparg—Wilson relation
redefines chiral symmetry on the lattice. One commonly used version of it
reads

{75, D} = aDsD. (32)
On the right-hand side there is a soft (local) symmetry-breaking term that
vanishes in the continuum limit. It can be viewed as a remnant chiral sym-
metry present on the lattice. We now want to analyze an operator that fulfills
the GW-relation. Together with ~5-hermiticity

D' = 45 Ds (3.3)
we can establish a relation
D+ D' =aDD'=aD'D, (3.4)

which reveals the eigenvalue structure for this operator. With D [A) = X |\)
we can relate the eigenvalues

A+ AT = a|A]?
T4 iy + v — iy = ar® + ay? (3.5)
(:If a) +y _a27

which are located on a circle with radius 1/a around (1/a,0) in the complex
plane. Note that this holds for the massless Dirac operator. If we include
a mass term, the circle gets shifted on the positive real axis by the mass.
Again, taking the continuum limit the eigenvalues lie on the imaginary axis
only.
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3.2 Ginsparg-Wilson type operators

Some time passed between the proposal of the GW relation and the first
realization of an operator obeying this relation. In this section we present
only two of them.

3.2.1 The overlap operator

The overlap operator [20, 21, 22] is an explicit solution of the Ginsparg-
Wilson equation. The explicit form reads

Dow = 2 (T = s sign(15A)) (3.6)

a
with A being a suitable v5-hermitian Dirac operator used as kernel. A pos-
sible choice is to use

A=(14s)T—aDw (3.7)

with the the massless Wilson operator Dw and a real parameter s. This ac-
cords to projecting all the eigenvalues of the Wilson operator to the Ginsparg-
Wilson circle and therefore exact chiral properties. One of the drawbacks is
the numerically costly evaluation of the sign function, though.

3.2.2 The chirally improved Dirac operator

A different approach is to construct an operator that satisfies this equation
only approximately, hence has only approximate chiral symmetry. The chi-
rally improved Dirac operator D¢y [23, 24] is such an operator. The starting
point is to write down a general form of the discretized derivative opera-
tor, not only including nearest neighbors, but also more remote connections.
Each pair of such points is connected via gauge links and can be viewed
as path with a certain length. Each such path can come up with a certain
prefactor and different Dirac structures attached, not only the unit matrix
and vectors 7, as in the Wilson case, but all possible elements of the Clifford
algebra (see Sect. A.2). In order for the operator to obey the symmetries
of the system we get restrictions for the coefficients. The general expression
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reads

D¢p =1

81<> + S9 Z<ll> + S3 Z<ll’l2> + S84 Z<ll, ll> +

Iy la#lh Iy

+ Z’yu Z SlgIl ll) [Ul <ll> + (%) Z [<ll, ZQ> + <ZQ, ll>] + U3<ll, ll> +

laFEp
2
+) vw Z sign(h) sign(la) Y € [ta(li 1) + . . ]
pu<v :iu i,j=1
=+ Z YV Vp
pu<v<p
3
X Z sign(ly) sign(ly) sign(l3) Z €ijk (a1 (li, L, L) + ... ]
ll:iilizp:iy i,5,k=1

+ 7 E sign(ly) sign(l2) sign(ls) sign(l4)
ly=+1,lg=%2
l3=%£3,ly==+4

4

XY g D1l Ly by 1) + ]

ij k=1

with (ly,(s,...l,) denoting paths of length n and the [;’s denoting the di-
rections. The real coefficients s;, p;, v;, a; and t; used in this work listed
in the Sect. A.3. In principle Eq. (3.8) contains an infinite set of paths, but
for practical purposes we have to truncate the series to finite path lengths,
usually of the order of 4. This is the reason why the operator is only an
approximate GW-operator.

(3.8)

3.3 Axial Ward identity

Just like in the continuum we want to establish the Ward identity for the
axial current on the lattice. Let us define transformations on the lattice,

PV =(1+eA)+0O (62) , (3.9a)
V=9 (1+eA)+0(), (3.9b)

23




where just as in the continuum case A and A denote operators for the devia-
tion from an identical transformation and e denotes a local parameter matrix,
i.e., a diagonal matrix in space-time with the entries €(x). Note, that we do
not demand that the 1 and 1 fields transform equally. The fermionic action
can then be expressed in terms of the transformed fields analogously to the
continuum case

—Sp [, ¢] =¢ (D+m)
=—Sp [V, ] =¢'e[A(D+m)+ (D+m)A] ¢
+ ¢/ [e, D] Ay + O (€?) (3.10)
= Sp [#',0/] — F'c [AD + DA] &/
—mi)'e [A+ Al + ' [e, D] Ay + O (€)
In addition to the fields in the action also the fields in the measure of the

generating functional Z have to be transformed, so let us take a look at those.
The condition for invariance looks like

Z= / (dAYd[dy] exp (— e[, ¥, A]) exp (—SalA])
(3.11)

— [1dA)a) v exp (~Se(d. o/, ) exp (~SelA)

and therefore we have to investigate the effect of the Jacobian of the trans-
formation matrices M

A

dv fjgf;’) = di/dy’' M, (3.12)
Ay Ay

dip dip = di)’dv)’ det (

which can be broken down to

M = det [1 + eA]det [1 + eA] = exp [Trlog (1 + eA)]exp [Trlog (1 + €A)]

T OOQA" T OOQZ"
r;n r;n

=1+4+Tr(e) (TrA+TrA) + O ().

= exp exp

(3.13)

The parameter matrix e behaves as a diagonal matrix in real space with
no Dirac or flavor structure, hence the trace can be written as a sum over
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the spatial index. Let us make a special choice for the transformation, the
so-called Liischer-rotation [25] with 7 being a matrix in flavor space

A =775 <1 — %D) ) (3.14a)
A= (1 . %D) s (3.14b)

This choice leads to

M=1+ QTTTZ e(z) |:T’l"’}/5 - %Tr [m:,D]}

(3.15)
=1—-"Trr Z x)Tr[vsD] .

If we now take a singlet operator for 7 (e.g., 7 = 1) the trace gives the number
of flavors Np. The trace over the Dirac operator can be replaced by the
topological charge density ¢(x) leading to the following U(1) transformation
of the integral measure

dip dip = do di) [1 — Np Y e(x)q(z)] (3.16a)

xT

a
(@) = $Tr Dl )
1 _ (3.16Db)
2
= %Fw(x)FW(x) + 0 (a?),

where the definition using the field-strength tensor comes from the continuum
definition. Considering a constant € matrix and the chiral limit we can show
that the Liischer-rotation leaves the action of a Ginsparg-Wilson operator
invariant. It leads to a cancellation of the term involving the Dirac operator
in expression (3.10)

_ a a

AD+ DA| = D —717=D~:D D~y —7=D~:D

[ + } Y5 7'2 Vs + 7D 7'2 V5 (3.17)
=7 [D + Dys — aDy; D] = 0,

for an operator satisfying the Ginsparg-Wilson (3.2) relation exactly. Allow-
ing a non-vanishing mass and non-constant matrix € we can identify terms in
(3.10) with terms from the continuum version of the axial Ward identity. In
order for the action to be invariant the following condition must be satisfied

mipe [A+ Al — i [e, D) Ay = 0. (3.18)
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The continuum version of the AWI reads
2mPT = 9,7 (3.19)

so the currents for a Ginsparg-Wilson action using the Liischer-rotation can
be identified as

Pra) =3 [y ([1- 2D v) @) (3.20a)
+<&P—%}>uy%w@} (3.20b)

0uAy (@) =D [9y)D(y. )75 |8, = 5D(w.2)| (2) (3.20¢)
+ () [ = 5D(,2)] 75D, 2)0(2)] (3.20d)

The commutator here play the role of the derivative in the directions in
Dirac space dressed with «,’s. The consequences of these modified currents
are worked out in Sect. 4.4.1.
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Chapter 4

Propagators on the lattice

4.1 Path integral on the lattice

We now want to translate the quantization prescription from Sect. 1.2 to the
lattice. In the continuum we need to integrate over all possible values of the
field variables at all possible space-time points. On the lattice this functional
integral is modified such that we have a product of integrations over the field
variables, where the quark fields are defined on the lattice sites and the gauge
fields on the links between the sites. Now the generating functional reads

Z = / [T ) [] dea’) T dU(z)eSecotowtl, (4.1)

zeA a'eA e
where Sqcp contains the action we are using and the product of the internal
(color, Dirac) degrees of freedom is implied. In this section we are interested
in 2-point functions GG; we need to evaluate an expression like

Gy, 7) = (D(y)d(x)) = / DA AAI () D). (4.2)

This integration can be split into a gauge part and a fermionic part, where the
latter can be evaluated in terms of Grassmann variables. Using the so-called
Matthews-Salam formula

ZF = /d?]NdﬁN e dﬁldﬁle(zf\’rjzl ﬁiMijnj) = detM (43)
the 2-point function G(y, ) can be rewritten as

G(y,x) = /[dA]eSGdetSF Spl(y, z). (4.4)
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4.2 Quenched approximation

It is very expensive to calculate the deteminant numerically, which is why a
common, although uncontrolled approximation, is to set it to unity in numer-
ical simulations. This is called the quenched approximation. Physicswise it
is equivalent to forbidding closed quark loops in propagators. For example a
propagator for the 77’ meson involves not only a single disconnected term, but
also an infinite tower of contributions with an increasing number of closed
quark loops in between (see Fig. 4.1). In the quenched approximation only
the leading term is present.

Quenching also violates unitarity, but still it seems to be a justifiable ap-
proximation for a large part of lattice QCD, e.g., the spectrum of hadrons
(excluding pathological particles like the 1) is reproduced reasonably.

>+ _DO0C_+_H00C

Figure 4.1: Some contributions to the n’ propagator. Only the first one is
present in the quenched approximation, though.

4.3 Quark propagators

In order to compute a quark propagator we have to define a quark source
on a specific lattice site and then compute the correlation to a quark sink
(i.e., an anti-quark) at a remote site. Point sources can easily be related to
correlators from ChPT, but they are not the only possibility. We can, for
example, also define sources and sinks that spread over more than one lattice
point. Modified quark sources allow us to reduce the error in a propagator
computation. This means introducing extended source operators S and ST

(cax) ZS cx;d 2 )(d ar) = (SZW) (cax), (4.5a)
(caw) ZS (ca;d 2)(d az') = (¥S;) (caz), (4.5Db)

which are diagonal in Dirac space. The smearing operators we use here is a
Jacobi-type smeared one [26]. It starts out with a point source operator

Sp(coapxo;cax) = 0y Oy alug - (4.6)
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By applying the smearing kernel H = H'

Si(cx;d 2’y = Hy(d 2'; " ") Sp(ca; 2", (4.7)
with
N;
Hi(d ;" 2") = Z/{?K" (4.8)

we end up with a smearing operator with a smearing parameter x;. The
kernel has been applied NNV; times. The two parameters x; and N; determine
the width of the quark source. For each gauge configuration the smearing
kernel can be constructed from the gauge fields

K(e@d o) = Z U (Z ¢ 2 O (T4, x )+UT(fC,£/C/)5($ p,a’). (4.9)

1=2,3,4

The operator K is hermitian and therefore also H is hermitean. Let us now
compute a quark propagator between for two smeared quark sources.

(Wi(d By) dicam)), = <;§j<dy; dyYYid B.y) 3 Silew;d dYb(c aa'))y
= i Sj(cx;ca’) g(dy;d'?;')W(d'ﬁyW(C ‘aal))y
= d yz”” Si(cw;d a")Si(dy; d'y)D™H(d By'; ¢ aa’)

_ Glddysican
(4.10)

In order to find a propagator for point sources we replace the smearing oper-
ators S; and S; by identity matrices (which is equal to setting the smearing
indices to zero) and find

G(dBy0;car0)=D"YdBy,car). (4.11)

For typical lattice sizes it is much too expensive to invert the full Dirac
operator from all to all sites. Due to translation invariance of the theory
it is sufficient to compute the propagator for a quark source at a fixed site.
The inversion is then done for each component of the 12-component spinor
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separately by solving the equation

Z D(d o 2" " ") u(d" " ") = Si(cax;d ' x)
C/la//w// (4.12)

where v(c”" o 2") = G(" " 2" 0;ca 1)

with the center of the source at (ca ).

4.4 Meson propagators

For all computations in this text we use flavor non-singlet bilinear interpola-
tors. Therefore we define U and D as fields for up and down quark flavors.
Sandwiching a Dirac structure I', between the two quark fields leads to a
meson interpolator for this Dirac structure with the quantum numbers of
that very operator

M,(z) = D(caz)Ty(ad)U(ca ). (4.13)
Analogously let us define an operator for smeared quark sources

My(z) = Z D(cdaz')Si(dz';cx)To(aad) Sy 2" ca)U(d" o ).
(4.14)
Using flavor non-singlets only ensures that there are only correlators without
backtracking loops. This means we only simulate pions (or also kaons and
the 1), but not the 7 (see Fig. 4.2 and Fig. 4.3). The correlator of the meson
operator then reads

(My(y) Mi(x))y = > (DBBy)T(BA)UDSY)

a,b,a,0 3,0
x Ulca' ) Ty(a/ o) D(caz))y

i (4.15)
=— ) BTy a)
a,b,a,0 3,6
x D cay;bBx)D b B z;cady)
With the ~vs-hermiticity property
DY caw;dBy) =vs(ad) D-Hdyy;cdx) 5(v ) (4.16)
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u u u u u u
+ + >< + ..
u ) ( u u u u u
Figure 4.2: Some of the contributions to the singlet meson propagator.
u u u u
=T+ .
u u u u

Figure 4.3: The only contribution to the nonsinglet meson propagator at the
same order as in Fig. 4.2.

we can rewrite the correlator such that we only use quark propagators that
run from site z to site y

(My(y) MI(z))y = — DY d B y;ca’ x) DN dyy;céx)
x (150) (v8) (1517) T ('6)

Having the quark propagators on a gauge configuration we can compute all
the interpolating meson correlators. Again for smeared sources the expression
has to be somewhat altered. Analogous to the quark propagators we can
make use of the smeared propagators G to find

(My;(y) Ml(2))y = — G(d B yjicd' xi) G(dvyyjicdxi)
x (1513) (78) (1sTa) T ('6)

(4.17)

(4.18)

4.4.1 Pseudoscalar propagator

Let us investigate the correlation between pseudoscalar currents. To this end
we use the lattice version of the currents Eq. (3.20)

Grplt) = 3 (PE.0)P(0.0))
=3 (@) [ —y) = 5D(.y)| v(y)

T Y,z

X $(0)73s [8(:) = SD(0,2)] (=) )
= Z > " Dyl(z,2)D4(y,0) (75 [5(93 —y) - gD(x, y)D

T

aa’

< (3 [9:) = 3D00.2)] )

8o’
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Z yu,zZv
x D7y, u; 0,0)75D(0, 0; 2, v)]

The first term gives the contribution
- ZTT [D_l(aao;f> t)75D_1(f>t;67 0)75i| (420)

which is what we would expect for an unimproved current. The mixing terms
result at order a in

_ZTT[ () DY (Z, t;0,0)ys + D~Y(0,0; Z, )56 (Z)5 (¢ )75]

Z(S Tr[ 10,0, 0)] (4.21)

and the a? term yields

2

@ Z Tr rs3(@)0(1)150(@)3(0)] = — 6T [1]

= —3a%5(t).

(4.22)

Putting all together the pseudoscalar correlator for a GW operator reads

Gpp(t) ZTT [ 7, )15 D (7, 10, 0)s
(4.23)
+ad(t)Tr [D— (@, 0; 0, 0)] — 3a25(1)

Hence the only terms that are modified are contact terms at ¢t = 0.
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4.4.2 Kaon propagators

In first approximation we can build a kaon propagator from a pion propagator
with higher mass, namely taking for the quark mass the average of light and
strange quark masses. For kaons we can also fix the mass of the strange
quark to a “physical” value and vary the other mass. The pseudoscalar
masses squared depend linearly on the quark masses at first order due to the
GMOR relation Eq. (5.32). For a given coupling constant we fix the strange
quark mass parameter such that the kaon obtains its physical mass value
when we extrapolate to the physical light quark mass, i.e. the point, where
the pion has its physical mass [27].
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Chapter 5

Chiral perturbation theory for
mesons

Results in lattice QCD are typically obtained at unphysically high quark
masses. In order to connect those results with physical quantities at zero or
finite, but realistic quark masses, we can make use of Chiral Perturbation
Theory (ChPT). This is believed to be a valid low energy effective theory
for QCD defined in the chiral limit. In this section we collect the important
results for ChPT for mesons at leading order. In this case pseudoscalar fields
are treated as the fundamental degrees of freedom of the theory. This section
mainly follows [28].

5.1 Definition of the fields

The fundamental fields of this effective field theory are

Ulz) = exp <¢¢<x)) , (5.1a)

f‘
N7-1
$x) =Y Nt (5.1b)
a=1

where the constant F can be connected to the experimentally known pion
decay constant f; ~ 93 MeV via the weak decay. The number of flavors is
denoted by Ny and governs the symmetry, i.e., which matrices A\, are used.
Two flavors implies using Pauli matrices A.1.2, 3 flavors means Gell-Mann
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matrices A.1.3. The matrix ¢(z) for SU(2) and SU(3) respectively looks like

_ ¢ o1 —iga\ [ 7 V2rT
oz) = <¢1 +3i¢2 1—¢3 2) N (\/iﬁ_ —70 ) ’ (5.2)
¢z + %Gﬁs O1— i Py — 105

d(r)=| o1 +ida —@3+ %% G6 — 17
G4 + 15 P6 + g7 —%ébs (5.2)
70 4+ %77 \/§7r+ \/§K+ ’
=| V27 - +ﬁ%n \/§2K°
V2 K V2K — 5"
The fields can be projected out using
1
¢a = §T’l“ [)‘a¢] (53)

with the following particles

70 = ¢, = 1 (1 — i) , = 1 (p1 + i), (5.4a)

V2 V2
K 7 (6 —ic7) K° 7 (¢6 +id7), (5.4b)
_ 1
K 7 (¢4 + ’L¢5) K ﬁ (¢4 — Z(Z)5) (54C)
n= ¢s. (5.4d)

5.2 The Lagrangian and its transformation
properties
The effective Lagrangian density L.g at lowest order is given by

f‘2
Log =" Tr (90" U™ . (5.5)
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The fields have to satisfy certain transformation properties under left and
right handed transformation L and R. For the moment let us just consider
global SU(Ny) transformations.

U—RULT, (5.6a)
U —LU'R, (5.6b)
dU —0, (RULY) = (0, R)UL" + R (8,U) L' + RU(9, L")
~—~ ~—~—
0 0 (5.6¢)
= R(0,U) LT,
U —L (0,U") RT. (5.6d)
This leaves L ¢ invariant
f’2
Log = Tr [ROUL'LO"U'RY]
e (5.7)

=T [0 U"U'] .

In the last line we used the cyclic property of the trace. As mesons have
baryon number B = 0 they transform trivially under a global U(1)y trans-
formation, i.e., ¢ — ¢. In principle there are also other terms with the same
number of derivatives, but we can show that they can be expressed in terms
of the free part of L.g. Such a term is evaluated in the following lines:

0,Tr (U] = 0,Tr {U%Aaaﬂ@w}

— 9,Tr {%Aaaﬂ@} ~0 (5.82)
=Tr [(0,0MU)UT] + Tr [0"UOUT]
= Tr [(0,0UU"] = =Tr [0"UOU'] . (5.8b)

So all terms with two derivatives either evaluate to zero or can be rewritten
to be equal to the terms in L.z we already have.
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5.2.1 Expansion of Leg

Let us now expand the effective Lagrangian in terms of the fields ¢

Loy = %QTT {(%augb) (—j—iﬁ”aﬁ)} L0 (6"

_ iTr 10 (Mata) 0 (Nsn)] + O ()

= iTr M) 8,040y + O (¢4) (5.9)

1

= §5abau¢aau¢b +0 (¢4)

1
= 5 u¢a8H¢a + £int-

The first term resembles the free Klein-Gordon Lagrangian and all higher
order terms can be absorbed into the interaction term L.

5.2.2 Local symmetries

Let us now turn our attention towards local symmetries. We define the
operators L and R with local parameters ©L = ©L(z) and ©F = 0F(x)
respectively.

L = exp (—i@ﬁ%) : (5.10a)
R
R =exp | —iO), 5 ) (5.10Db)

We can examine left- and right-handed rotations separately by, i.e., setting
OF = 0 for the left-handed case. The fields transform as

Aa
U—U =RUL =U (1+¢@§7+O(®§)2), (5.11a)
Ut —ut’ = LU'R = (1 - i@f% + 0 (@5)2) ut, (5.11b)
OU — U = 0U [1 + i@fb%} - uz’au@f% +0 (8L, (5.11c)

Ut — o.ut’ = [1 — i@ﬁ%} U — i@u@f%w +0 (1. (5.11d)
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In order to extract symmetry currents we need to consider the variation of

the Lagrangian utilizing 0" (UU) = (0"U) U + UT (0"U) = 0

SLl = LogU', UY) = Log@, UM
2

T Kma“@g%) Ut + oU (—zau@g%w)]

4
) A, (5.12)
_ %ia“@gﬂ [3 (UNU — uT(WU))]
f‘2
= 10.0,Tr [Ma("UNU] .
For the right-handed case we just set ©L = 0 and end up with
R f2 . R t
Lo = —Izau@a Tr [Aa(c‘?“u )Z/{} . (5.13)
The symmetry currents then turn out to be
L 2
Jp = % = z'%Tr [N(0"uUNU] (5.14a)
H>~a
R 2
Jt = % = —i%Tr (A (0"UY)] . (5.14b)
H>~a

5.2.3 Axial vector and vector currents

The axial vector and vector currents are combinations of the left and right
handed currents

2

e A 0 AN
2

R U Y

where the script symbols are used for the currents in ChPT. They have the
same quantum numbers as their counterparts in QCD. Note that under the

transformation ¢ — —¢ the currents transform in the expected manner (with
U =uUt and U =U)

pia Y (5.16a)
ARy — A (5.16b)
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Let us now expand the axial current

A — _@'};Tr [Aa {1 +0(9), NRLA WQH (5.17)
= —F"¢.+0(9)".
On the other hand for the vector current we find
pre — —i};TT {Aa [1 + %AM +0(9)", —ikcif_%c - Ab(ﬁb;"f%c +0 (¢)3H
— _iigbb@“qﬁcTT Do Ao Ad] + O (0)°
= 30" b frea + O (6)"
(5.18)
where we have used
Tr [Aa Moy Acl] = T [2i frearadd] = 4 foca. (5.19)

This knowledge allows us to check the coupling of the axial current to the
meson field. To this end we compute the matrix element

(0]A*(2)[¢"(p)) = (0] = FO"¢a(2)|6"(p))
= —F 0" (0|¢a(2)|6"(p))
= —F 0" exp (—ipx) dup
= i Fptexp (—ipx) dgp.

(5.20)

The 7t and 7~ have a dominant decay channel (99.99% [29]) to muon and
anti-neutrino (or their anti-particles) via the weak interaction. The weak
decay constant measured in the experiment is equal to our coupling to the
axial current. In fact, taking the derivative of the above gives the PCAC
relation

(0[0, A" (2)|¢"(p)) = Fp"p, exp (—ipz)

5.21
= FM? exp (—ipx) Oup. (5.21)
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5.3 The symmetry breaking term

In QCD the mass term that accounts for explicit symmetry breaking looks
like

B B m, O 0
ﬁM = —QﬂRMiﬂL - lpLMTiﬂR, M = 0 my 0 . (5.22)
0 0 ms,

Quark masses in the Lagrangian of QCD are bare masses, but ChPT is an
effective theory. We can introduce a symmetry breaking term inspired by
QCD, but already with a renormalized mass matrix

m" 0 0
M) = 0 mg) 0 ) (5.23)
o 0 m"

The lowest order Lagrangian that is invariant under the transformations

U RULT, (5.24a)
U — LU'RT, (5.24D)
M s RM® LT (5.24c)
is
_ F’B F2B

Tr [MOUT+UMT| =217 [RMO L LU RS

+ RL{LTLMWRT]

F’B
2

Tr [MOU 4+ UMD
(5.25)

We have introduced a new parameter B into the theory here. Of course we

could also use the unrenormalized mass matrix M, which would just lead to

a different B. Note that a term like Tr M) is excluded as it is not invariant
under those transformations. Also a term like T'r [./\/l Myt — UM (’")T] is not

allowed due to non-invariance under parity and the property M) = Mo
requires us to only use terms even in ¢ in the expansion. The zeroth order
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term in expanding Ly, is just a constant and can therefore be neglected,
but the second order term exposes the masses of the Goldstone bosons (here
only shown for the 777~ and 7%7° contributions)

B 22 4(7) 4

Loy == Tr (> M| + O (9)

B (5.26)
=3 [2(m<;> + )t + () + m{)r07 | + O (¢).
Comparing mass terms in the effective Hamiltonian and the QCD-Hamiltonian
in the chiral limit allows us to give a meaning to the parameter B. The vac-
uum in the effective theory corresponds to U = 1, i.e., the energy ground
state is (from Eq. (5.25))

(0| Hei0) = (Heg) = —F2BTrM® = —F2B(m") + m) + m).  (5.27)

Let us now consider the mass terms in the ground state of QCD in some
renormalization scheme

(01 Haon|0)?) = (Haon)" me (D). (5.28)

We can also take the derivative of the QCD ground state with respect to
quark masses and set them to zero afterwards

9 (0] Haen|0)

= n" 5.29

my=0

with the renormalized quark or chiral condensate defined as
I -\
20 = — ()7 (5.30)
Ny
This allows us to identify two of the above terms
FB=-x0, (5.31)

For the pion mass we then find (using Eq. (5.26))

2%(")
M2 = — = (1)
T (5.32)
= 2Bm"
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which is the Gell-Mann—-Oakes-Renner (GMOR) relation. The average renor-
malized light quark mass is denoted as

o
2

If we extend this calculation to also include the strange sector the kaon
receives a mass of

(5.33)

»r . .
Mic = = (m 4 m{7), (5.34)
=B (m™ +m{),

Setting m,, = mg = m suppresses ¥ mixing and the 7 acquires a mass of
2
2 — (r r
My = 2B (m™) +2m{)). (5.35)

Independent of the value of the parameter Bthe meson masses satisfy the
so-called Gell-Mann—Okubo relation

AME = AB(m™ +m") = 2B+ 2B(m") + 2m{")) = 3M; + M2 (5.36)
We can now combine these to the second order Lagrangian

$(r)

I [P MT]+0(0)". (5.37)

1
Eeff = 5 “(baﬂ(b -

5.3.1 The pion coupling constant G
Let us first normalize the fields by defining

(0l¢" (2)|¢°(p)) = dace ™" (5.38)
If we now take an arbitrary operator ® satisfying
(012 (x)[¢°(p)) = dace™™* (5.39)

we have an operator containing the pion, i.e., an interpolating pion operator.
The pseudoscalar operator can serve as such an interpolator for our purposes
if we introduce a normalization constant, namely the pion coupling constant
G. The matrix element then reads

(0[P*(2)]6°(p)) = Gdace™ ™", (5.40)
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ie.,

Piz) = GO(). (5.41)

The axial Ward identity relates the local operators A, and P in QCD. Written
in matrix elements this means

{0/ A5 |¢")
0[P~ 0[67)

= 2m"), (5.42)

Note that we don’t need to worry about renormalization in ChPT as it is an
effective theory. Borrowing this result and applying it to the matrix elements
computed from ChPT yields

(o) g

_ (5.43)
O[pe|gh)  FMy
hence we can identify
G
=2m!". 44
Fa, " (5:44)

5.3.2 The decay constant F

Also correlations between the axial-vector components can be evaluated in
the framework of ChPT. The pion decay constant is the wave function of the
pion in the origin and related to the derivative of the axial current. Using
the axial Ward identity Eq. (5.21) and the PCAC relation Eq. (5.21) together
with the definition of G we end up with

2om\"G = 2BF = M>F. (5.45)

5.3.3 Useful matrix elements

For calculating propagators later on we need to know elements of operators
sandwiched between the vacuum and a meson field. We want to concentrate
directly on components defining the 7% that are built up from elements of
the su(N) algebra. The modified pseudoscalar operators in QCD are given
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_ +
p* = ¢757¢
A N2 5.46
=5 9 (0 ( )
=Pl +iP?
with
Pt = PF, (5.47)

The axial-vector operators A*¥ are constructed analogously. The same is
true for ChPT with

PE =Pl +iP? (5.48a)
A=A, +iAD (5.48Db)
o = ' £ ig? (5.48c¢)

Let us now evaluate matrix elements for the field, the pseudoscalar operator,
the axial-vector current and the derivative of the latter

(0]¢*()|¢"(p))y = e~ #" [6" £ 6] (5.49a)
(0P (2)|¢"(p)) = Ge™™ [6" + i6%]
— ‘;.m—]\({%e—ipx [511) + i52b] (549b)
<O|Aff(x)\¢b(p)> = iFpue P [6' £ 6] (5.49¢)
O] (0" A) (2)]6"(p)) = FMZe ™" [6" £1i6™] . (5.49d)

5.4 Propagators
Let us first define what a complete set of pseudoscalar fields is supposed

to look like. The typical definition of the integration measure is that each
momentum differential dp; comes with a factor of 27 and that we restrict the
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states to the mass shell and positive energies. This means

= / %zwmw - MO0) 36" (6"

- / (;lw];?» / dpoé(pup“—M?)@(po)ZW(ﬁ)) (@@ (5.50)

3
- [ 5 WZW @@,

where in the last line we used the properties of the delta distribution.

Correlators between operators X (x) and )(y) can be computed in both
frameworks, the one of ChPT and lattice QCD. Let us define

Gay(z,y) = (0]X (2)TV(y)]0) = (¥ ()" V(y)). (5.51)
Inserting a complete set of fields ¢ yields
"6°(p)) (&°(0)| Y (1)]0) -

Gustr1) = [ 55 2 ()
(5.52)

In order to extract masses it is appropriate to project the object to 3-
momentum zero. Utilizing translational invariance we can shift the space
variables in the propagator such that y =0

d3z d®p . -
Govlt) = [ G5 2¢WZ< X (Z0)T16°(p) (0 (p) (0. 0)[0)
(5.53)

Using the matrix elements from Sect. 5.3.3 we can find expressions for the dif-
ferent combinations of pseudoscalar and axial-vector current and the deriva-
tive of the latter. Also the propagator for the fields can be evaluated

Goot) = | Tpda S (016°(@)16°(p)) (6 (p) ¢"(0) 0)
(2m)? 2\/p- ﬁ+M2

3 3 .
N S
m)° 2./p P+ M -

-/ d‘q’pa—\w IR d(®)

= ——e Mgy,

2M,
(5.54)
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The axial current correlator can also be calculated

G g (£) = (AP () A"(0)) = (0] A» () A (0)]0)

d3 ,ua c c v,b
Ny s 2 A @) (A0

d®p 1
meé[lc 60
= | sy i

d3 f‘2
— 5a Ve —ipT
b/ CrP2/5 i+ M2 P

3 2
:5ab/ dp f pup —iA /pp—i—MTrte—zpm‘
(2m)32\/p - P+ M2

(5.55)

Again, we are interested in the correlators depending only on time separation
g_Au,aAub( ) /dsx <A'ua Ayb( )>
2 3. 73 v
_ s / Cadp PP ipw -i/FEeae
2 (2m)3 \/W

F? NEEmY
— 5 d3 —z p-p+M:z t5 (ﬁ)
VP p+M2

2
= i 5abM 50u 501/ Mt
2
B i5abMe Mt =0AV=0 (5.56)
0 pu#0Vr#0
The correlators that are used in this work are listed below
1 .
Goror (1) = Ee_ZM’Tt7 (5.57a)
G? .
g’PIPi (t) = Mfi_ZMﬂt
1 (FM2\* ..,
e — T — W 557b
M, <2m<">) ’ 0:970)
_ M) oMt
2m(r) ’
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G 5 ax (t) = F2Mpe™ M, (5.57c)
gA(:)FPi (t) = ifGe_iMﬂt
e
= Zme(r) e
— _Z'E(’r‘)e—iMﬂ-t’
ga,u@pi (t) = FM, Ge ™Mt
2
= FM FM, e~ Mt (5.57e)
"om(r)
— _Z(T’)Mﬂe—ith’
Gonazoraz(t) = (FMZ)?Gyrge(t)
FM3)?
~ I et (5.571)
= (Qm(r))2gp1p:l: (t)

(5.57d)

The propagators in ChPT are worked out as correlation functions between
two local pointlike operators in the continuum. Propagators on the lattice
can be connected to the ones in ChPT as soon as they are normalized to
pointlike propagators and translated to a continuum scheme. Let us intro-
duce renormalized lattice correlators with renormalization factors Zx (see
Sect. 6.2). We make the following identifications

Gus(t) ~ G (1) = = Gov(t) = SX(EOY(EL0) (559)

N
T

where we have to be aware that the correlators in ChPT are worked out in
Minkowski metric and our correlators are in FEuclidean metric. The main

difference is the additional imaginary unit in the exponent and in front of
Eq. (5.57d). We can also relate

F = fr and (5.59a)
G=Gw (5.59b)

used later on.
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Chapter 6

Results

6.1 Lattice ensembles

In Table 6.1 we present the different parameter sets for the lattices we use
in this work. Note that all of them are in the quenched approximation using
the D¢r action for the fermions and Liischer-Weiss action for the gaugefields.
Note that 3 denotes the coupling 3; in Eq. (2.17). The remaining couplings
are computed using Eq. (2.18). For the two largest lattices in physical units
we have data for degenerate and non-degenerate quarks in the meson prop-
agators, that are computed using Eq. (4.18).

6.2 Renormalization

Quantities like the quark mass, the decay constants and the chiral condensate
are not directly accessable by experiment. Instead they are defined in some
theory and can be determined by analyzing processes there is experimental
data for in this theoretical framework. The results are typically scheme and
scale dependent, so one needs to specify which renormalization scheme and
at which renormalization scale one is working in. In [2] conversion factors
for the D¢ action in the quenched case were computed. These conversion
factors allow us to relate meson correlators in our lattice formulation to
the according point to point meson correlators in the continuum theory in
the modified minimal subtraction scheme (MS) at the renormalization scale
1= 2GeV. In Table 6.2 the results for quark bilinears in the different Clifford
sectors are collected. Note that for the pseudoscalar renormalization factor
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LP*xT B affm] L*xT[m?* #cf. am (am,) mO[MeV]

8 x24 790 0.148 1.2°x3.6 200  0.02 —-0.20 24-236
123 x 24 790 0.148 1.8°x3.6 100 0.02 —0.20 24-236
123 x 24 835 0.102 1.23x25 100 0.02 —0.20 37-372
163 x 32 7.90 0.148 243 x 4.7 99 0.02 —0.20 24-236
163 x 32 835 0.102 1.6°>x3.3 100 0.02 —0.20 37-372
163 x 32 870 0.078 1.32x25 100 0.02 —0.20 53-528
163 x 32 7.90 0.148 243 x 4.7 100 0.02 - 0.20 24-245

(0.08,0.10)
202 x 32 815 0.119 243 x 3.8 100 0.017 —0.16 26-236
(0.06)

Table 6.1: Different parameter sets the computations are based on. The
coupling (3 is actually the coupling /3; in the Liischer-Weiss action Eq. (2.17),
the other couplings are computed therefrom using Eq. (2.18).

the influence from the pion pole has been subtracted, hence the notation
Z3% For 3 = 8.15 we use interpolation between the other values of the
coupling, as there are no explicit values available.

3 Zs Zy Zr 7 Z3up

790 1.1309(9) 0.9586(2) 0.9944(3) 1.0087(4) 1.0281(5)
8.15* 1.081(1) 0.967(1) 1.014(1) 1.011(1) 1.012(3)
8.35 1.039(1) 0.973(1) 1.028(2) 1.012(1) 0.987(4)
870 0.959(2) 0.979(1) 1.049(1) 1.0095(7) 0.915(1)

Table 6.2: Renormalization constants taken from [2]. The values for § = 8.15
have been obtained by interpolation.

6.3 Quark norm evaluation

In Sect. 4.3 smearing operators for quark and anti-quark sources have been
introduced. In order to compute prefactors of exponential decaying functions
in a meaningful way, i.e., such that we can compare them to the definitions
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usually made in the continuum theory, we need to relate the quantities cal-
culated from smeared sources to ones from point sources. Depending on the
configurations we have either one (denoted as n(arrow), Table 6.1) or two
different widths (n and w(ide)) of smeared sources available. In addition we
have pointlike sinks (p(oint)) in our datasets. The smearing parameters are
chosen such that the effective size of a given source is approximately the same
for all lattice spacings [30]. Let us denote a mesonic operator by Xj,,, built
up from an antiquark of smearing type s; and a quark of smearing type s,
with s; = n,w, p. First we compute the ratio of meson correlators

C§325334 = M (6.1)

<X8182XPP>

It turns out that the ratios for a given set s3 and s, are relatively independent
of the choices of s; and so, which can be seen in Fig. 6.1. We also demand the
ratios to be symmetric under exchange of s3 and s; due to the symmetries
of the meson propagator. We find excellent plateaus for the time range

4 pp

A :<

Qo

o~ | 1 -

(ﬂN 2]

Qﬁq 5;%355Ef}f%E*ﬁe&ﬁ%i§i{isiiéiis§éé?g% 4?

v 107 SEWS=WE vV

A [ 1A

&g i%Z%iﬁEEffi=—ae;ﬁr§ifs=iiﬁﬁﬁs!-z*‘i %

a s,=ns=w | ~

o’ | | %

v ;%é{}siEaé—‘aggf——§2;‘§;§§f__i=a§ <?

5,=ns,=n
w0 L L 1A VY 1w0h L L L R
0 8 16 24 0 8 16 24
alt alt

Figure 6.1: The ratios Cg, ., in Eq. (6.1) for X = P on the left and
X = A4 on the right on a 16 x 32 lattice at 3 = 7.90 and am = 0.02. One
can see small differences in the behavior at small time separations and at the

symmetry point depending on which smearing width s3 is used.

t,t' € [4,T — 4] and perform plateau fits to those. We want to check if the
normalization factors for mesons factorize into a product of normalization
factors for quark sources such that

Xopsy = CF Xpp = CXC2 X, (6.2)

5152

X, CX_ and C and performing an exponential fit
to those we find an agreement of the factorization hypothesis up to O (1.2%)

Using the numbers for CX
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for 8 = 7.90 and O (2.2%) for 3 = 8.15. In Fig. 6.2 the results for CX are
displayed. For large physical lattice sizes we find only O (1%) dependence
of the coefficients on the quark mass, which goes up to O (5 — 10%) for the
smallest volumes. The statistical errors are so small that we neglect them in
the further analysis.

\ \ \ \ \
500 i M 7
400+ =
OO~
300+ =
=< n o—ao X=P, s=n
&) o—o X=P, ssw
200 a2 X=A,sn| |
—v X:A4, S=wW
%
100 ’ | | | | | | | | | | | | ! [ ]
0 0.04 0.08 0.12 0.16 0.2

Figure 6.2: The normalization factors for operators P and A, for a 163 x 32
lattice at 8 = 7.90 computed from Eq. (6.1) and Eq. (6.2).

6.4 Masses

As mentioned before all the quantities in lattice computations appear with
the regularization scale a attached, i.e., masses only appear in products like
aM,. One physical quantity has to be sacrificed to set the scale of the
calculation. We use the string tension to assign a physical value to the
parameter a [31]. Furthermore for quantities that cannot be observed directly
we have to agree to a certain renormalization scheme in order to compare
the values. In this case we quote the values for the MS scheme at the scale

2GeV.
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6.4.1 Meson masses

In Fig. 6.3 we show the masses of pseudoscalar mesons determined from the
axial correlator. M2 and M% are obtained directly from the fit, and M,
is computed therefrom using the Gell-Mann-Okubo relation (5.36). Also a
linear fit and extrapolation to the squared meson mass suggested by the Gell-
Mann—Oakes—Renner relation is included. It is interesting to note that there
is a small residual pion mass at m, = 0 in the extrapolation, which indicates
a small residual additive mass. In Fig. 6.4 the behavior of the kaon mass and

I T I
15k © T B=7.90,16x32 i
o K,B=790,16°x32
< 1, B=790, 1632 -
o & 1 B =8.15, 20°x32 e
R} v K, =8.15,20°x32 e .
~ > 1, B=81520%32 . - P
Eﬂ- s <t
..... =g
‘ 1 1 ‘
0.16 0.20

Figure 6.3: M7, M} and M} determined from the asymptotic behavior of the
axial correlator. M? and Mp- are obtained directly from the fit, M? is com-
puted from the Gell-Mann—Okubo relation (5.36). The strange quark mass
for the 8 =7.90 and 3 = 8.15 is am, = 0.089 and amy = 0.06 respectively.

the determination of the strange quark mass according to the prescription in
4.4.2 is displayed. For the 163 x 32 lattice at 3 = 7.90 we interpolate Mz
linearly between the two values of the strange quark mass (am; = 0.08 and
amg = 0.10) neighboring the physical point at am; = 0.089 whereas for the
20% x 32 lattice at 8 = 8.15 the physical point is at am, = 0.06.
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Figure 6.4: M7 and M} plotted vs M?2. For the 16° x 32 lattice we have
an interpolation between two values of the strange quark mass, while for the
203 x 32 the value am = 0.06 already corresponds to the physical value. The
curves correspond to the linear fits in Fig. 6.3.

Topological finite size effects

Exact GW Dirac operators have exact zero modes. In contrary to full QCD
these are not suppressed by the fermionic determinant in quenched situations.
However, their effects for, e.g., the pion correlators [32], are hard to detect
unless one approaches very small pion masses O(250 MeV) [33]. We don’t
have an exact GW-operator, but only an approximate one, where there is the
possibility that slightly misplaced zero modes occur. These lie on the real axis
and lead to divergencies in the quark propagator already at some positive, but
usually small mass. The effect is stronger the smaller the mass parameter in
the Dirac operator gets and is often referred to as topological finite size effect.
There have been various suggestions on how to deal with this problem [34, 35,
36, 37]. One of them is based on the fact that iso-non-singlet pseudoscalar and
scalar correlators receive the same contributions from such zero modes, but
the masses of the propagated ground states is separated by roughly an order
of magnitude. Hence one can consider the difference between pseudoscalar
and scalar correlators, which leads to a cancellation of the contributions
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and extract the mass from the resulting correlator. For exactly chiral Dirac
operators one expects a different behavior of contributions from topological
finite size effects for the axial and the pseudoscalar correlator, that both
mediate the pion as lowest lying state, Aj-correlators are supposed to have
O(1/m) terms whereas P-correlators only come with O(1/m?) terms. In
Fig. 6.5 we plot the ratios of the pion mass obtained from (PP) and (A;A4)
for two different lattice ensembles at the same physical volume with two
different types of sources. Additionally there is one determination from the
variational method [30] included in the plot. In this method we have a set of
sources as an operator basis and then perform a diagonalization in order to
find optimal combinations of these sources for the ground and excited states,
such that the wave functions are orthonormal and the sum of exponentials
appearing in the correlator can be disentangled. A fit to the function = +b+
c¢m is included in order to account for the different behavior of the correlators
at small masses. Even for our smallest quark mass parameters the deviation
from one is only 3% for the 163 x 32 and 1% for the 20% x 32 lattice, hence
we can use either operator for measuring the pion mass.

Finite size dependence

ChPT calculations can also be performed in a finite volume, just as we have
on the lattice. In this case we can distinguish between two regimes of ex-
pansion [38, 39, 40]. The p-regime is where M, L > 1 holds. The expansion
parameters are the same as we had in the infinite volume case discussed in
Sect. 5. In the case M, L < 1 the expansion breaks down and one has to use
a different expansion parameter leading to the so-called e-expansion. The
physical interpretation of this case is that the pion Compton wave length is
of the order of the lattice extent and correlations that are mediated over the
periodic boundaries become important. We work in the p-regime here. In
Fig. 6.6 we show the dimensionless unrenormalized pion coupling constant for
the pion a2G, = a2 G /Zp determined from Eq. (5.57b) for three volumes
with but at the same lattice spacing. The values of the bare quark mass
parameter range down to am > 0.01, but already at am = 0.06 we find
strong volume effects for the smallest lattice. This is to be expected since
the inverse mass of the pion is already in the range of half the spatial lattice
size, i.e., we are around the transition to the e-regime. For larger lattices
the effect is significant only for am < 0.02. In the subsequent discussion we
therefore only use the largest lattices in physical units, namely the sets with
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Figure 6.5: Ratio of the pion masses obtained from the pseudoscalar prop-
agator (PP) and the axial propagator (A4A,) for the same physical volumes
but two different lattice spacings. We display results for n(arrow) and w(ide)
sources as well as for the variational method. A fit to a function = +b+cm
(dotted lines: standard sources, dashed lines: variational method) is included
to check for topological finite size effects.

163 x 32 at 3= 7.90 (a = 0.148 fm) and 20° x 32 at 3 = 8.15 (a = 0.119 fm).
In the latter we allow quark mass parameters of am > 0.017.

Chiral logs

As discussed in Sect. 4.2 quenched QCD does not include closed quark loops.
Quenched chiral perturbation theory (QChPT) [41, 42, 43] accounts for those
missing graphs and new singular correction terms to standard ChPT arise,
the so-called quenched chiral logs. It is hard to identify these correction
terms in numerical simulations, though [37, 33, 44], due to the fact that one
needs to go to relatively small pion masses (usually well below 300 MeV )
in order to observe them. Additionally the role of zero modes and variation
in the fit range obscure the effects. For the pseudoscalar mass the expected
behavior in the quenched situation is [32, 45]

(a Mp)? o (am)/ 1+ (6.3)
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Figure 6.6: a®>GY)/Zp from Eq. (5.57b) for 3 = 7.90 and lattice sizes 8 x 24,
123 x 24 and 16® x 32. The finite size significantly affects the small volume
data (8% x 24) for am < 0.06. For the other volumes finite size effects become
important for am < 0.02.

where the parameter ¢ ranges from 0.19 to 0.23 in the simulations mentioned
above. Consequently we do not attempt to determine ¢ here.

6.4.2 Quark masses

For determining the quark mass we utilize the AWTI (see Sect. 3.3). We can
use a plateau
Za (0:A4X)
Zp (PX)

with X being either P or A4. In Fig. 6.7 we show data for the two choices.
X = A4 means we have to take the ratio of two correlators with hyperbolic
sine shape that leads to numerical instabilities especially around the symme-
try point in ¢. Thus we cannot reliably determine the plateau values for this
choice at small quark masses. At mass values we can compare the results,
they are in excellent agreement, though. For further analysis we stick to the
more stable choice X = P. In Fig. 6.8 we plot the renormalized quark mass
against the pion mass squared for the two lattices with largest physical size.

= Zm2m = 2m") (6.4)
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Figure 6.7: The renormalized quark mass am(”) (in the MS scheme) vs
the bare mass parameter on a 163 x 32, 3 = 7.90 lattice determined from
Eq. (6.4). The circles show the data with X = P and the squares with
X = A,. For the second choice values below am = 0.06 have been ommited
due to numerical instabilities in the fits.

The linear extrapolations to the physical point are in good agreement with
the Particle Data Group [29] average for the light quark mass. Logarithmic
corrections due to quenching are not taken into account here. Averaging over
the extrapolated values at the physical point leads us to a value of

% (mfj’ + mg)) =m" ~ 4.1(2.4) MeV (6.5)
in the MS scheme for the average light quark mass. The error is mainly due
to the residual quark mass (see Fig. 6.3 and Fig. 6.7). The mass parameter
for the strange quark has been fixed such that the kaon gets the correct
physical mass for the light quark at physical mass. In Fig. 6.9 we display
the corresponding renormalized strange quark mass in lattice units. The
fitted lines for the strange quark are close to being parallel with negative
intercepts. The fit touches the negative z-axis at the bare strange quark mass
indicating very little additive mass renormalization of the Chiral Improved
Dirac operator. In Fig. 6.8 we display the renormalized mass again in physical
units. The fits for light and strange quarks coincide and give us our estimate
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Figure 6.8: The renormalized quark mass m) vs M2 for the two largest
lattices. The extrapolation is in good agreement with the expected light
current quark mass.

for the strange quark mass in the MS scheme. Our average of renormalized
light and strange quark obtained from the fit is

1
5 (m™ +m") ~ 52(3) MeV (6.6)

and with Eq. (6.5) we find
m") = 101(8) MeV (6.7)

in the MS scheme at 2 GeV . We did not consider possible finite size,
quenching or other systematic effects on the chiral extrapolation here. The
error is given, just as in the case of the light quark mass, by the standard error
and deviations on different lattice spacings. The pion data on the slope of
m(") also gives us the mass renormalization constant (according to Eq. (6.4))
which is given in Table 6.3. For actions respecting chiral symmetry we expect
Zs = 1/Z,,, which is indeed well realized. The PCAC relations lets us also
expect that for the kaon data we find

(ms +m)

"~z
am m—

(6.8)
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the pion data provides Z,,.

which is indeed observed. The numbers obtained here are in good agreement
with determinations from the overlap action in [46, 47] and also to a lesser
extent with [48].

6.5 Low energy parameters

6.5.1 Decay constants

The pseudoscalar decay constants have been extracted from the axial correla-
tion function according to (5.57¢) for pion and kaon. In Fig. 6.10 we display
the dimensionless pseudoscalar decay constants afps. A quadratic extrap-
olation to the chiral limit is also shown with the error bands coming from

ﬂ a[fm] a[GeV‘l] Zs 1/Z5 Zm ZmZS
7.90 0.148 0.750 1.1309(9) 0.8842(7) 0.891(4) 1.007(5)
8.15 0.119 0.605 1.081(1)  0.9250(9) 0.916(5) 0.991(6)

Table 6.3: Renormalization constant Zg from [2] (see Table 6.2) compared to
the values of Z,, as derived from the slope of the renormalized quark mass.
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the jackknife analysis. In Fig. 6.11 the decay constant is plotted versus the
according pseudoscalar mass. The data for pion and kaon essentially overlap
and exhibit a universal functional behavior. This again confirms that for
mesons the strategy to use two moderately heavy quarks to simulate states
with one light and one strange quark is a reasonable one. For full QCD the
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Figure 6.10: The dimensionless decay constants a f, and a fr, determined
with Eq. (5.57¢), vs. am.

chiral expansion of the pion decay constant reads [49]

2
% =1+&0L+0(&) with &= (414}) : (6.9)
where f denotes the decay constant at the chiral limit and f, and M,
denotes the corresponding values at the physical point. The parameter
l, = —In(M2/A?) depends on the intrinsic QCD scale A with the value
A =~ 47 f, suggested in [49]. In [50] a value of f4 ~ 4.0 £ 0.6 is quoted.
ChPT also relates the decay constant of both, the pion and the kaon to the
scalar charge radius by

frx/f=1+ é<r2>sMiK + %g + O(€?). (6.10)
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Figure 6.11: a fr x vs. (a Mpg)? with error bands for chiral extrapolations as
discussed in the text. The fit includes only data in the indicated range.

The scalar charge radius is then given by

(r?)s = %2112 (ll — % + 0(5)) (6.11)

with an expected value of (r?), = 0.61(4) fm® at f./f = 1.072(4) [50]. We
use results from quenched calculations where one expects correction terms
with a logarithmic singularity in the valence quark mass m. On the other
hand the leading order logarithmic terms m logm involves quark loops that
are absent in the quenched case and only higher order logarithmic terms
may play a role [42]. In addition to the linear term in our extrapolation we
also allow a term m?logm (as discussed in [33]), but the deviance from a
quadratic fit is only of the order of lioa.

In Fig. 6.12 we display the decay constants in physical units. The values
extrapolated to the chiral limit agree quite well, but away from the chiral
limit we still have considerable dependence on the lattice spacing a. Using
(6.9) we can assign values of (r?), = 0.08fm? and (r?), = 0.13fm* to the
scalar charge radius, which are much smaller than expected from full QCD.
This intriguing fact is also somewhat confirmed by studies of the scalar form
factor, which also contains the scalar charge radius as the slope. The authors
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of [51] quote a value of (r?), = 0.054(16) fm*. Since the D¢; is not an exact
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Figure 6.12: Chiral limit of f, jc vs. M3g. Error bands for quadratic extrap-
olation.

GW operator we cannot exclude linear corrections to the scaling behavior. In
the comparison of our results from different lattice sizes we therefore perform
a constant fit in order to get our continuum limit result and statistical error
bar and take the deviation from a linear fit as our systematic error. The
corresponding data and both extrapolations, as well as the data for the ratio
f=/ fr are displayed in 6.13. In this ratio we expect the leading order scaling
corrections to cancel. For the two largest lattices we had data for pions and
kaons, while for the smaller ones we used the pion decay constant at the
kaon mass as our result for the kaon decay constant, which is justified by the
universal behavior shown in Fig. 6.11. We find values of f, = 96(2) MeV for
a constant fit and f; = 100(10) MeV for a linear fit which gives us the final
continuum extrapolation value of

fr = 96(2)(4) MeV. (6.12)

In the same manner we find a continuum value for the kaon decay constant
of
frx = 106(1)(8) MeV. (6.13)
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The ratio f./fx is indeed compatible with a constant and has a value of

fr/ [ = 1.11(1)(2) (6.14)

in the continuum limit. Studies using the overlap operator give similar results
for fr [33, 52, 53, b4, 55, 56, 48, 44]. The experimental values from [29] are
fr =92.4(0.3) MeV and fx = 113.0(1.3) MeV, where we have adjusted the
values to the definition used here by dividing by a factor of v/2.
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6.5.2 Condensate

One method for determining the chiral condensate for exact GW-operators
is to use the trace of the inverse Dirac operator, which has been success-
fully applied to calculations using the overlap operator [57, 58]. For the D¢y
this does not work, because the subtraction constant is not known to a high
enough precission, which was shown in [59]. Another method is to derive
the condensate’s value from the density distribution of the low-lying com-
plex eigenvalues of the Dirac operator, which is rather involved concerning
computational efford. Instead we use the GMOR ((5.32)) and the quantities
therein, Eq. (5.57¢) and a combination of Eq. (5.57b) and Eq. (5.57¢) reading

ZaZp\/(AAL)(PP) ~ |S0)]|e~Mrt, (6.15)

For the first determination we use the decay constant, quark mass and the
pion mass determined previously. For relation two and three, which im-
plicitely use the GMOR as well, we perform an exponential fit and the pref-
actor gives us the renormalized chiral condensate. Numerous studies were
performed in the e-regime [57, 52, 53, 54], but again, we want to work in the
p-regime here, though. In Fig. 6.14 we show data and results for all three de-
termination methods including linear extrapolations to the chiral limit. We
find excellent agreement of all three methods. In Fig. 6.15 the same quantities
are displayed in physical units. Here we can see that also the values for the
two largest lattices are consistent within error bars. The dependence on the
quark mass is also compatible with the leading linear chiral behavior. So far
we have restricted ourselves to the discussion of the two lattices with largest
physical volume. Just like in Sect. 6.5.1 we now want to analyze the scaling
behavior and continuum limit of the chiral condensate. To this end we also
include lattices with smaller lattice spacing and smaller physical volume. In
Fig. 6.16 we plot the dimensionless results as well as results in physical units
against the lattice spacing. Again, as we cannot exclude linear corrections
to the constant scaling behavior, we perform both, a constant and a linear
extrapolation. We use the mean value and error from the first fit to claim our
value in the continuum limit with the statistical error, whereas the deviation
of constant and linear fit gives us the systematic error. We do this for all
three types of derivations and end up with || = (286(4) MeV)? for the
constant fit. The linear fit leads to a larger value of |X("| ~ (318(25) MeV)3.
Combining the two we find a value of

12| = (286(4)(32) MeV)? (6.16)
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for the renormalized chiral condensate in the continuum limit. This value
is slightly larger, but still within the error limits of a determination using
the overlap operator [44] and larger than results in [47, 55, 56]. Results
in the eregime [52, 53, 54] also agree well. In [60] a study using spectral
decomposition of the overlap operator was performed and our result is in
agreement with a continuum extrapolation of the results therein.

6.5.3 Collection of the results and concluding remarks

Within the Bern-Graz-Regensburg collaboration two Ginsparg-Wilson type
Dirac operators, namely the so-called fixed-point operator [61] and the D¢y
operator, have been studied. Both of them do not obey the GW-relation
exactly, but to a good approximation. For the D¢; action we know the
quark bilinear renormalization constants [2], which enables us to determine
basic low energy constants for both, the light- and the strange-quark sector.
All the computations were done in the quenched case, because only recently
first results for the D¢ in full QCD became available [62, 63, 64, 65]. Also
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the condensate was worked out using a different method [66]. Since the D¢y
provides good chiral properties, but is much less expensive than the overlap
operator, it was possible to work at several lattice spacings ranging from 0.15
fm to 0.08 fm with different lattice sizes and different physical volumes. The
results are mainly based on the two physically largest lattice ensembles with
spacings 0.15 fm and 0.12 fm with a spatial extent of 2.4 fm. Only for the
study of finite-size effects and scaling behavior we used data from lattices
with smaller extent. We used quark mass parameters corresponding to pion
masses ranging between 330 MeV and roughly 1 GeV. All quantities have
been converted to the MS scheme at 2 GeV and the final list of renormalized
physical values in the chiral limit reads:

Quark masses: m = 4.1(2.4) MeV ,
ms = 101(8) MeV ,
Condensate: ¥ = —(286(4)(32) MeV)? , (6.17)
Decay constants:  f, = 96(2)(4) MeV , '
f = 105(2)(8)MeV |

fr/fr = L111(1)(2) .
Like many quenched results, these numbers are surprisingly close to exper-

imental values [29]. Still, it would be very interesting to perform such cal-
culations also for full QCD. By the time of writing gauge configurations and
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meson propagators for three different lattice sizes and up to five different pa-
rameter sets are available. The renormalization constants are yet unknown,
but a determination is in progress.
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6.5.4 Tables

In Tables 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9 we collect the results fo_rmeson and
quark masses, the decay constants and the condensate in the MS scheme at
2 GeV.

am | a®M? M?GeV? M MeV] a®>M} Mz[GeV?] Mg[MeV]
0.02 [ 0.062(3)  0.110(5) 332(7) 0.163(2)  0.290(3) 538(3)
0.03 | 0.092(2)  0.163(4) 404(5) 0.178(2)  0.317(4) 563(3)
0.04 | 0.121(2)  0.216(4) 465(4) 0.194(2)  0.344(4) 586(4)
0.05 | 0.151(2)  0.269(4) 519(4) 0.209(2)  0.371(4) 609(4)
0.06 | 0.181(2)  0.322(4) 568(4) 0.224(3)  0.398(5) 631(4)
0.08 | 0.241(3)  0.429(5) 655(4) 0.254(3)  0.452(5) 672(4)
0.10 | 0.301(3)  0.536(6) 732(4) 0.284(3)  0.505(5) 711(4)
0.12 | 0.362(3)  0.644(6) 803(4) 0.314(3)  0.559(6) 747(4)
0.16 | 0.488(4)  0.868(7) 931(4) 0.375(3)  0.666(6) 816(4)
0.20 | 0.618(4)  1.098(7)  1048(3) 0.436(4)  0.775(7) 880(4)

Table 6.4: The pion and kaon masses computed from Eq. (5.57b) on the
163 x 32, 8 = 7.90 lattice. As soon as the light quark mass exceeds the
(fixed) strange quark mass, the kaon becomes lighter than the pion.

am a®? M? M2[GeV?] M.[MeV] a*>M} M}[GeV?] Mg[MeV]
0.017 [ 0.052(1)  0.143(4) 378(5) 0.108(2)  0.295(5) 543(4)
0.02 | 0.060(1)  0.164(4) 405(4) 0.112(2)  0.305(5) 553(4)
0.025 | 0.073(1)  0.199(4) 447(4) 0.118(2)  0.323(4) 568(4)
0.03 | 0.086(1)  0.235(4) 484(4) 0.125(2)  0.341(4) 584(4)
0.04 | 0.112(1)  0.305(4) 552(4) 0.138(1)  0.376(4) 613(3)
0.06 | 0.164(1)  0.448(4) 669(3) 0.164(1)  0.448(4) 669(3)
0.08 |0.217(1)  0.592(4) 769(2) 0.190(1)  0.519(4) 721(3)
0.10 | 0.271(1)  0.739(4) 860(2) 0.217(1)  0.592(4) 769(2)
0.12 | 0.326(1)  0.890(4) 943(2) 0.243(1)  0.664(4) 815(2)
0.16 |0.439(2)  1.200(5)  1096(2) 0.297(1)  0.810(4) 900(2)

Table 6.5: The pion and kaon masses computed from Eq. (5.57b) on the
20% x 32, B = 8.15 lattice.
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am afr/Za afr f=IMeV] afix/Za afk frx[MeV]
0.02 0.076(2) 0.076(2) 101(3) _ 0.080(2) 0.079(2) 106(2)
0.03 0.076(2) 0.075(2) 101(3)  0.080(2) 0.079(2) 106(2)
0.04 0.077(2) 0.076(2) 102(3)  0.080(2) 0.080(2) 106(2)
0.05 0.079(2) 0.078(2) 104(3)  0.081(2) 0.080(2) 107(2)
0.06 0.080(2) 0.079(2) 105(2)  0.082(2) 0.081(2) 108(2)
0.08 0.082(2) 0.082(2) 109(2)  0.083(2) 0.082(2) 109(2)
0.10 0.084(1) 0.084(1) 112(2)  0.084(1) 0.083(1) 111(2)
0.12 0.086(1) 0.086(1) 114(2)  0.085(1) 0.084(1) 112(2)
0.16 0.089(1) 0.089(1) 118(2)  0.086(1) 0.085(1) 114(2)
0.20 0.002(1) 0.091(1) 121(2)  0.087(1) 0.087(1) 115(2)
(sermni-)chir. 0.072(3) 0.071(8) 95(4)  0.078(2) 0.077(2) 103(3)

Table 6.6: Pion and kaon decay constants (from Eq. (5.57¢c)) for 163 x 32,
B = 7.90 lattice. In the last line we give the extrapolation to the (semi-)chiral
limit (where the light quark masses vanish) as it is discussed in the text.

am afr/Zs afr [x[MeV] afrx/Zs afk frx[MeV]
0.017 0.062(1) 0.061(1) 101(2)  0.067(1) 0.066(1) 109(2)
0.02 0.063(1) 0.062(1) 103(2)  0.067(1) 0.066(1) 110(2)
0.025 0.064(1) 0.063(1) 104(2)  0.067(1) 0.067(1) 110(2)
0.03 0.065(1) 0.064(1) 106(2)  0.0678(9) 0.0670(9) 111(1)
0.04 0.067(1)  0.0661(9) 109(2)  0.0686(8) 0.0679(3) 112(1)
0.06 0.0703(8) 0.0695(8) 115(1)  0.0703(3) 0.0695(8) 115(1)
0.08 0.0730(7) 0.0721(7) 119(1)  0.0716(7) 0.0708(7) 117(1)
0.10 0.0752(6) 0.0744(6) 123(1)  0.0728(7) 0.0720(7) 119(1)
0.12 0.0772(6) 0.0763(6) 126(1)  0.0737(7) 0.0729(7) 121(1)
0.16 0.0801(6) 0.0792(6) 131(1)  0.0752(6) 0.0743(6) 123(1)
(semi)chir. 0.058(2) 0.058(2) 95(3)  0.065(1) 0.064(1) 106(2)

Table 6.7: Pion and kaon decay constants (from Eq. (5.57¢c)) for 203 x 32,
[ = 8.15 lattice.
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am a®|%] a® |3, a® |3s] N1 [[MeV]  /35|[MeV]  {/[23][MeV]
0.02 0.0101(5) 0.0101(3) 0.0104(5) 289(5) 288(3) 291(4)
0.03 0.0102(5) 0.0097(7) 0.0102(5) 289(4) 284(7) 290(5)
0.04 0.0103(4) 0.0098(6) 0.0103(5) 290(4) 285(6) 290(4)
0.05 0.0105(4) 0.0101(6) 0.0104(5) 292(3) 288(6) 291(4)
0.06 0.0108(4) 0.0104(6) 0.0107(4) 295(3) 291(5) 293(4)
0.08 0.0113(4) 0.0111(6) 0.0113(4) 300(3) 297(5) 299(3)
0.10 0.0119(4) 0.0117(5) 0.0119(4) 305(3) 303(4) 304(3)
0.2 0.0125(4) 0.0123(5) 0.0125(4) 309(3) 308(4) 309(3)
0.16 0.0136(4) 0.0134(5) 0.0136(4) 318(3) 317(4) 319(3)
0.20 0.0146(4) 0.0144(5) 0.0146(4) 326(3) 324(4) 326(3)
chir. 0.0092(5) 0.0087(3) 0.0092(6) 279(5) 274(3) 279(6)

Table 6.8: The light quark condensate as derived from different observables
(lattice size 16* x 32, 8 = 7.90). We use the abbreviations Xy = 34,p),
Yo = Yamor and Y3 = X(ppy(a,a,)- In the last line we give the extrapolation

to the chiral limit as discussed in the text.

am %] @S] ad|Ss] VS [MeV] ¥]Z.MeV] {/[Ts|[MeV]
0.017 0.0058(4) 0.0061(3) 0.0059(2) 297(6) 302(5) 299(4)
0.02  0.0059(3) 0.0061(3) 0.0059(2) 298(6) 302(5) 299(4)
0.025 0.0060(3) 0.0061(3) 0.0060(2) 300(5) 302(5) 301(3)
0.03  0.0061(3) 0.0062(3) 0.0061(2) 302(4) 304(4) 302(3)
0.04 0.0063(2) 0.0065(2) 0.0063(2) 305(3) 308(4) 306(3)
0.06  0.0069(2) 0.0070(2) 0.0068(1) 314(3) 317(3) 314(2)
0.08  0.0074(2) 0.0076(1) 0.0074(1) 323(2) 324(2) 322(2)
0.10  0.0080(1) 0.0081(1) 0.0079(1) 330(2) 331(2) 329(1)
0.12  0.0085(1) 0.0085(1) 0.0084(1) 337(2) 338(2) 336(1)
0.16  0.0094(1) 0.0094(2) 0.0093(1) 349(2) 349(2) 348(1)
chir.  0.0052(3) 0.0055(3) 0.0053(2) 287(6) 291(6) 289(4)

Table 6.9: The light quark condensate as derived from different observables
(lattice size 20° x 32, § = 8.15). We use the abbreviations ¥y = 34,p),

Yo = Yamor and X3 = Xippya,A,)-
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Appendix A

Appendix

A.1 Useful matrices

A.1.1 su(N)

Elements of the algebra su(N) obey the commutator relation

Ai A LA

with the so-called structure constants f;;;. Due to the commutator they have
to be antisymmetric in the first two indices

fijk = — fiik- (A.2)

A.1.2 Pauli matrices

The structure constants for the algebra su(2) are the elements of the anti-
symmetric tensor €;;,. The non-trivial entries are

€123 = €231 = €312 = 1, (A.Ba)

€132 = €321 = €213 = — L. (A-3b)

The canonical basis are the Pauli matrices

(O e (0) w00 aw
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All of those are traceless matrices and an expression for the product of two
matrices can be established

0,05 = 52']‘ -+ ieijko'k- (A5)

A.1.3 Gell-Mann matrices

The algebra su(3) is more complicated. The non-trivial entries for the struc-
ture constants are given in Table A.1. Here the canonical basis are the Gell-

f123 f147 f156 f246 .f257 f345 f367 f458 f678

1 1L _1 1 1 1 _1 _v3 _3
2 2 2 2 2 2 2 2
Table A.1: Structure constants for su(3)
Mann or flavor matrices
010 0 —i 0 1 0 0
M=1100}), X=[i 0 0f, A3=10 —1 0], (A.6a)
0 00 0 0 0 0 0 0
001 00 —i 000
AM=|000|, X=100 0], =10 0 1|, (A.6b)
1 00 t 0 0 010
00 0 7 0 0
A=100 —i|, =[0 5 0 (A.6c)
» 2

A.2 Clifford algebra

The connection between Dirac matrices in Euclidean -, and Minkowski space
! s

M23 = V193 (A.7a)
= =iy =% (A.7b)

The Euclidean Dirac matrices are chosen to be Hermitian
Yo = ’Vl (A.8)
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and satisfy
{7}17 71/} = 25,uu- (A9>

A.2.1 Chiral representation

Although the unit matrix is no element of the representations, as it does not
satisfy Eq. (A.9), but it is often referred to as I'g or I'g, as it is responsible
for the scalar density

Tg=1= (A.10)

o O O
o O = O
o= O O
_— o O O

We refer to I'i-I'y as the vector, often denoted as I'y or I'y,. The matrices
are

00 0 —2
00 — 0
¢ 00 O
0 00 -1
0 01 O
Py =7 = 0o 10 ol (A.12)
-1 0 0 O
0 0 -2 O
0 0 0 =«
0 —2 0 0
0010
0001
0100
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There are several ways to construct the matrices for the anti-symmetric ten-
sor 0,,. Commonly used combinations are

Ouv = YuVvs (A15a)
1
Ouw = 5 h/ua 71/] ) (A15b>
1
Ouw = 5 h/l“ 71/] . (A15C>
We use
i 0 0 0
0 — 0 0
I's =717 = o0 i ol (A.16)
0O 0 0 —
0 -1 0 O
1 0 0 O
Ls=mw1={y o o 21| (A.17)
0 0 1 0
0 — 0 O
— 0 0 0
F? = 7174 = O 0 0 7/ b (A18>
0 0 ¢ 0
0 ¢ 00
i 0 0 0
Ls = 7273 = 000 il (A.19)
0 0 2 O
0 -1 0 O
1 0 0 0
Fg = 7274 - O 0 O 1 b (A20>
0 0 =120
— 0 0 O
0 0 0
Pio =371 = 0 8 i 0 (A.21)
0 0 0 —2

Just like before, we have a bunch of options how to define the axial vec-
tor denoted as I'y,. Common choices are 7,75, 757, or combinations like
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Y1Y273, - - - , Where we use the first one

0 00 —1
0 01 0

Fll = 7175 = O 1 O 0 ? (A22>
-1 0 0 0
0 0 0 ¢
0 0 ¢z O

F12 =725 = O —Z O O ) (A23)
—1 0 0
0 1 0
0 0 01

Pz =737 = 1 0 ool (A.24)
0 -1 0 0
0 0 72 0
0 0 0 —

Pu=wws={, 4 o o (A.25)
0 — 0 0

The pseudoscalar is defined as the product of the basic 4 v-matrices. Note,
that while the 7, are defined in every space-time dimensionality from 3 on
upwards (even in non-integer cases used in dimensional regularization), s
only exists in even dimensions. The matrix 5 is also the kernel for the
pseudoscalar current and reads

0
0

s =75 = MY2Y37 = (A.26)

O O =

0
1
0

o O O

—1
00 0 -1

To check ~s-hermiticity of the Dirac operator we need to know the anticom-
mutator of 75 and the vector components of the Clifford-algebra. The matrix
gammas consists of the basic four y-matrices, so v, will anticommute with
three of them and pick up an additional term from the one, where the index
is equal. Let us consider the anticommutator with ~,

{’71> 75} = Y273Y4 — (—’V% + 211) Y2Y3Y4 = 0. (A.27)
The same applies for the other three vector components and we end up with
{775} = 0. (A.28)
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A.3 Coefficients for the Dcg

In Table A.2 the coefficients used in Eq. (3.8) for the D¢y operator are col-

lected.

S1
S2
S3
S5
Se
S8
$10
S11
$13

free case
0.1409870061 x 10*
—0.4063348276 x 107!
—0.1328179378 x 107!
—0.1707793316 x 102
0.1707277975 x 1072
—0.2995931667 x 1072
—0.4097715677 x 1073
—0.7711930549 x 1073
0.6542013926 x 1072

6 = 17.90, hyp smeared
0.1435242205 x 10!
—0.4423977491 x 1071
—0.1388845602 x 1071
—0.1857941213 x 1072

0.1844693091 x 1072
—0.3297305313 x 1072
—0.4380561498 x 1073
—0.8385459928 x 1073

0.6910343703 x 1072

o 0.2526693368 0.2359524603

Vs 0.4483311559 x 1072 0.5478266870 x 102
Uy 0.3493344361 x 1072 0.4024272445 x 1072
Us 0.1077099799 x 1072 0.1277439335 x 1072
t;  —0.7464002396 x 107! —0.7931477422 x 107"
ta  —0.1947456954 x 1072  —0.2132367624 x 1072
ts 0.1702447555 x 1072 0.1832223642 x 102
ts  —0.4273892564 x 1072 —0.4671766610 x 102
tis  —0.2924376836 x 1072  —0.3103630192 x 1072
p1 —0.6927076246 x 1072  —0.7366668038 x 102

Table A.2: Coefficients for the D¢; operator.

A.4 Fitting correlators

Correlators for mesons have the following behavior
Ct) =) Di(e ™Mt ™TD) with My< M <...,  (A29)

where the sign of the second term depends on the quantity in use. In prin-
ciple we have many contributions to the correlator, but for determining the
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quantities we are interested in it is sufficient to consider only the lowest lying
state. Hence let us denote the prefactor and mass for the ground state as
D:DoandM:Mo.

Fitting procedure

At larger ¢, where excited state contributions become negligible, the correla-
tors have a cosh or sinh functional behavior. Therefore we may extract the
prefactor D and the meson mass M performing a correlated least-squares fit
of the correlation function C'(¢) to

D(M) f(M, t) with f(M,t)= (e M £e MTN) (A.30)
by minimizing the merit function
X*=[C—Df(M),C—Df(M)]. (A.31)

The abbreviation
[A, Bl =Y A(t)Cov™'(t,t)B(t) (A.32)
t,t!

with t,t' € [t,, 1] and

Coviy = 0y (A.33a)
COVMI = 5t,t’0'(t)2 (A33b)
Covyy = Z (Ci(t) = (1)) Z (C;(t) = C(t))” (A.33¢)

is used here. We use Eq. (A.33a) for a fit without error information, Eq. (A.33b)
for a fit with error bars present and Eq. (A.33c) for a fit with the full covari-
ance information, e.g., if we have different jackknife blocks. The minimiza-
tion may be simplified by observing, that for given M the minimum of y? is

obtained for
a 2

X
2 — —2[7(M),C — Df(M) =0 (A.34)
resulting in
G f(M)]
DOD = 70, Fany 3

Using this relation one performs the one-dimensional minimization of Eq. (A.31)
with regard to M. In Fig. A.1 we display the merit function x? for the orig-
inal two dimensional case and the reduced case.
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1 2 -1 -0.5 0 0.5 1

Figure A.1: (a) Normalized x? for sample data using the reduction to one
parameter. (b) A contour plot of log(x?) for M on the z-axis and 15 on the
y-axis. The path in parameter space of the reduced problem is displayed as
a solid line. The dots mark the two minimal values.

Error estimation

The correlator values are arranged in overlapping blocks according to the
standard jackknife algorithm. Each block consists of typically 95% of all
hadron propagators for a given set of lattice parameters. For each such jack-
knife block we then determine the values of the propagator and the requested
ratios at various ¢, as well as the covariance matrix for the propagator and
the variance for the ratios. These are then fitted as discussed, i.e., either to
asymptotic cosh- or sinh-behavior or to a constant. For this fit the relative
weights (as defined from the covariance and variance) are important. We also
need variances for the correlators involving derivatives with regard to ¢, as
they also enter some of the ratios. Since we need these for each jackknife set
we estimate the variance of the derivatives by performing another jackknife
analysis within the given set. The fits are then repeated for all jackknife
blocks and the variation of the results for coefficients, mass values and ratios
leads to the estimate for the corresponding errors.

Numerical derivatives

For some of the ratios of correlators we need derivatives of the correlator with
regard to the time t. Numerical derivatives are always based on assumptions
on the interpolating function. Usual simple 2- or 3- point formulas assume
polynomials as interpolating functions. We can do better by utilizing the

79



information on the expected cosh- and sinh-dependence. In fact, we may use
these functions for local 3-point interpolation and get the derivative there-
from. A two point derivative based only on function values y; and y;_; is not
suitable since it provides values at half-integer t. We therefore use a local
3-point fit to y;_1, y; and y,11 to the functional form (A.30) (depending on
whether the correlator is symmetric or anti-symmetric in t), where the pa-
rameters D and M now depend on the actual value of t. We then reconstruct
the derivative as

o.f(M, t) = M (—e—m + e—mT—t)) (A.36)

Then the desired ratios can be computed in a straightforward manner and the
plateau values obtained by fits. When analyzing not ratios but the correlators
of type ((0;A4)X) directly we perform a global fit to (A4X) according to
Eq. (A.30) and take the analytic derivative.
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