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Abstract
Quantummachine learning recently gained prominence due to the promise of quantum computers in solvingmachine learning
problems that are intractable on a classical computer. Nevertheless, several studies on problems which remain challenging for
classical computing algorithms are emerging. One of these is classifying continuously incoming data instances in incremental
fashion,which is studied in this paper through a hybrid computational solution that combines classical and quantum techniques.
Hybrid approaches represents one of the current ways for the use of quantum computation in practical applications. In
this paper, we show how typical issues of domain-incremental learning can be equally addressed with the properties of
quantummechanics, until to offer often better results. We propose the frameworkQUARTA to combine algorithms of quantum
supervised learning, that is, variational quantum circuits, and techniques used in quantum unsupervised learning, that is,
distance estimation. We aim at keeping the classification capabilities, which have learned on previously processed data
instances, preserved asmuch as possible, and then acquiring newknowledge on newdata instances. Experiments are performed
on real-world datasets with quantum simulators.

Keywords Incremental learning · Quantum classification · Quantum distance estimation

1 Introduction

Quantum machine learning has been introduced with the
promise to handle machine learning problems that are
intractable on a classical computer, especially those charac-
terized by huge amounts of data. In the research on quantum
computing (QC) technologies, the current status sees the
era of noisy intermediate scale quantum (NISQ) comput-
ers (Preskill 2018), which are devices able to deal with
low-middle size data problems. An approach which seems
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bringing practical advantages is instead the one of hybrid
frameworks (Callison and Chancellor 2022) that combine
classical and quantummethods and allow to exploit quantum
physics properties while limiting the impact of the exist-
ing restrictions of the quantum devices. Clearly, these are
not yet the technologies which will guarantee exceptional
speed-ups to large data sizes over classical computing, but
pave the way to the design of near future algorithms for data-
intensive problems. Actually, when the complexity moves to
the tractability of the problem rather than the scalability to
data volumes, the current purely quantumroutines are already
of usefulness, for instance in cryptography (Bova et al. 2021).

One of the categories of data-intensive problems in which
the research on classical computing dedicates many efforts is
the incremental learning of predictive models from sequen-
tial data (Gunasekara et al. 2023). In incremental learning,
data instances are acquired sequentially and therefore are
not available in their whole for a batch learning process.
This requires capacity to make predictions in real-time,
adapt dynamically to shifting data distributions (referred to
as concept drifts), and maintain computational efficiency
throughout the learning process (Halstead et al. 2022,Mai
et al. 2022,Gunasekara et al. 2022). Even current research in
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deep learning struggle with incremental learning issues. This
is demonstrated by a numerous list of works focused on the
phenomenon of catastrophic forgetting (Peng et al. 2022).
Specifically, catastrophic forgetting refers to the tendency of
an artificial neural network to abruptly and drastically forget
previously learned information when exposed to new data.
In such cases, the focus shifts from designing algorithms
for massive computation to ensuring the quality of models
remains high over unbounded sequences of data.

What sets incremental learning apart is its resilience to
the constraints of QC devices. Unlike certain computation-
ally intensive tasks, incremental learning does not impose
stringent requirements on the computational capabilities of
quantum devices. Consequently, it holds promise for imple-
mentation on NISQ devices, which are currently at the
forefront of QC technology. NISQ devices, while limited in
their computational power compared to fully fault-tolerant
quantum computers, possess sufficient capabilities to tackle
moderate-scale data problems, making them viable candi-
dates for incremental learning tasks.

Despite its potential, incremental learning remains rela-
tively under explored in the domain of quantum machine
learning. This can be attributed in part to the inherent chal-
lenges associated with this learning paradigm.

As a basis, classical data instances can bemapped to quan-
tum states corresponding to points of theHilbert space,which
promises a potential exponentially enlarged representation
space to embed real-life data distributions (Jiang et al. 2022;
Dunjko and Briegel 2018). Indeed, the features of classical
data (for instance, a feature vector with three entries) can be
blow up into a representational space larger than the classical
one (for instance, eight dimensions, resulting from 23, three
is the feature vector size) (Hur et al. 2022).

Second, the capacity of accommodating changes and
adapt the models to new incoming data calls for techniques
able of tuning the properties of the models, which is the main
characteristic of variational quantum circuits (VQCs). VQCs
are steady structures of gates characterized by a fixed num-
ber of free parameters trainable over an optimization process
(Benedetti et al. 2019). So, when concept drifts occur, one
can adapt the existing models by updating model parameters
along the incoming data.

Third, in incremental learning, data does not hold the IID
property; data or descriptive features can be inter-related;
inter-relationships can evolve too and concern other fea-
tures. This can threaten the predictive capabilities whether
the models do not adequately accommodate changes related
to the inter-relationships. Emblematic is that in deep learn-
ing, to capture this aspect, one has to design specific neural
architectures, for instance, by means of convolutional neural
networks. Instead, QC offers the possibility to straightfor-
wardly account for inter-relationships through the gate-based
operations designed for qubit registers. The emblematic case

is represented by the controlled gates that can check the
presence of relationships of the form event-action: when
the event occurs (control qubits activated), the action is exe-
cuted (target qubit function is applied). Specifically for the
entanglement circuits, based on controlled gates, it is largely
recognized their ability in capturing non-local correlations.
For instance, in Sharma et al. (2022), the authors show how
improving the performances in a document classification task
by applying entanglement circuits on words as a means to
consider forms of correlation in a high-dimensional data sce-
nario.

In summary, while incremental learning holds consid-
erable promise for leveraging the capabilities of QC, its
adoption and exploration remain nascent. Addressing the
challenges posed by data availability and variability is
paramount to unlocking the full potential of incremental
learning algorithms in QC environments. As research in this
area progresses, it is poised to contribute significantly to the
advancement of lifelong learning paradigms and their prac-
tical applications across various domains.

This manuscript proceeds as follows: Sect. 2 discusses the
design decisions behind the proposed framework, QUARTA
(QUantum-classical framework for binAry classification
in IncRemental learning with disTance estimAtion). Sec-
tion3.1 described the procedure adopted by QUARTA
through the execution of the each component. Section3.2
reports technical details of each component constituting
the framework. Section4 gathers numerical experimental
results concerning the performance of QUARTA on real-
world datasets and comparison with alternative techniques.
Section5 overviews the scientific themes related the contri-
bution of this manuscript. Finally, Sect. 6 closes the paper.

2 Contributions

In this paper, we investigate the machine learning problem of
the binary classification in the peculiar scenario of domain-
incremental, where the target (labeling) remains consistent
across time, despite variations in domain distributions (data
properties). This means that while the types of inputs may
change, the expected outcomes or labels remain constant
throughout time. Data arrive sequentially at a regular timing,
without no uniform allocation of labeled and unlabeled data.
There is no predetermined sequence between the operations
of model learning and label prediction.

These points highlight that the classification problem at
hand does not necessitate scalable computation or massive
data processing typically associated with quantum comput-
ing. Instead, it alignswith the lifelong learning paradigm (Liu
2017), focusing on computation over long collections of data
rather than large-scale collections. As such, our focus lies on
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leveraging quantum techniques to improve classification per-
formance, not solely on computational speed-up (Herrmann
et al. 2023).

The points outlined suggest us to work on succession of
sub-tasks by alternating model learning (training session)
with label prediction (prediction session), dependently on
label availability of the data flow. The classification model
is trained at the beginning and adapted on new incom-
ing data, while keeping knowledge learned from previously
training sessions as much as possible, without counting on
the availability of the previously processed data and with-
out retraining from scratch at the arrival of new data. This
way, the model is updated and ready to work on predic-
tion sessions. Every session is associated with a small-data
size sequences which comprises labeled data if it concerns
the training activity, while it comprises unlabeled data if it
concerns the prediction. In these terms, the method trains
and updates a classifier on sub-sequences of incoming data
instances marked as labeled. Then, the classifier is used to
estimate the class value of unseen incoming data instances.
The update is performed only when there are changing data,
which are identified as labeled data distant from the class
prototypes. To detect such changes,we rely on a quantumdis-
tance estimation technique, often used in quantum clustering.
Thus, labeled data which turn out to be distant from the class
prototypes are candidates to be deemed as changing. The
class prototypes are continuously updated to accommodate
the changes of the class characteristics due to the incoming
labeled data.

In crafting such a method, we could only not rely on
quantum circuits, because the sequence of the gate-based
operations poses challenges in executing operations such
as alternating between two sessions. Moreover, the current
unavailability of noiseless quantum computers with thou-
sands of qubits paves the way to hybrid classical-quantum
methods. These methods aim to integrate quantum and clas-
sical computers in addressing machine learning challenges.
Consequently, we propose the quantum-classical framework
QUARTA, which leverages classical computing techniques
tomanage sessions, enhancemodel predictive capability dur-
ing training, and maintain updated class representatives.

Within QUARTA, quantum components encompass a
supervised learning approach for learning and updating a
binary classification model, alongside a distance estimation
technique for identifying labeled changing data. Both com-
ponents operate on classical data represented as quantum
states via data encoding techniques. Interestingly, they utilize
two distinct encoding schemes, each representing different
descriptive feature sets. Thismultifaceted perspective on data
resonates with the multi-view learning paradigm (Zhao et al.
2017).

To sum up, the technical contributions in terms of QC of
this paper are as follows:

• Development of two quantum circuits: one for a super-
vised learning task and the other for an unsupervised
learning task. The first circuit is employed to train and
update the classification model, while the second circuit
is used to identify changing data thatwarrantmodel adap-
tation.

• Implementation of the quantum supervised learning algo-
rithm in the form of a variational quantum circuit (VQC),
leveraging its tunable parameters to adapt the classifica-
tion model to labeled data.

• Adoption of different data encodings for the quantum
supervised and unsupervised algorithms to represent
classical data as quantum states. The quantum supervised
algorithm utilizes a feature map technique, while the
quantum unsupervised algorithm employs angle encod-
ing. This choice is based on previous literature findings
(Sierra-Sosa et al. 2023), indicating that the former offers
better performance at the expense of efficiency, which
is suitable for improving classification accuracy. Mean-
while, the latter is more efficient and robust, making it
suitable for detecting significant changes in data

• Usage of entanglement forms in the feature mapping and
VQC to better accommodate detected changes into the
classification model. Entanglement circuits have been
experimentally shown to capture and reveal pairwise cor-
relations amongclassical data encoded through two-qubit
registers. Strong correlations maintain expected values
around entangled states, while uncorrelated data result in
increased occurrences of outcomes relative to unentan-
gled states.

3 The hybrid framework QUARTA

In the following, we first provide a procedural description,
then provide a description of each component constituent of
the method.

The binary classification problem investigated by QUARTA
can be formulated as follows: We have data instances X∪ y,
with x j ∈ X values of the set of descriptive features or
attributes F , while y ∈ {+1,−1} denotes the class label
domain, X ⊆ R

|F |. QUARTA addresses this problem within
the context of domain-incremental learning (Gunasekara
et al. 2023), which refers to a scenario where the distribution
of the class label y remains unchanged, those of x change
over time.

3.1 The procedure of QUARTA

The overall procedure of QUARTA (reported in Algorithm
1) relies on the classical computing (CC) techniques which
decide when activating quantum algorithms. The working
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Algorithm 1 [R2A2] Procedure of QUARTA.
Require: {L_container : 〈XL1 , yL1 〉, 〈XL2 , yL2 〉, . . . 〈XLi , yLi 〉, . . .}
Require: {U_container : 〈XU1 , yU1 〉, 〈XU2 , yU2 〉, . . . 〈XUi , yUi 〉, . . .}
1: h = 1, k = 1
2: LDh ← Return_block(L_container)
3: mF, nmF ← Feature_selection(LDh)

4: |�(LDh)〉 ← Data_encoding(LDh,mF)

5: |p+1〉, |p−1〉 ← Distance_estimation&Prototype_generation
(|�(LDh)〉)

6: |�(LDh)〉 ← Feature_aggregation(LDh , nmF)

7: F ← Binary_classi f ication(|�(LDh)〉)
8: while L_container �= 	 and U_container �= 	 do
9: if (LDh is ready) then
10: |�(LDh)〉 ← Data_encoding(LDh,mF)

11: if (Change_detector(|�(LDh)〉, |p+1〉, |p−1〉) raises)
then

12: LDh ← Data_replay(LDh ,∪(LDh−1, . . . LDh′ ))
13: |p+1〉, |p−1〉 ← Distance_estimation&

Prototype_generation(|�(LDh) ∪ {|p+1〉, |p−1〉}〉)
14: end if
15: h = h + 1
16: LDh ← Return_block(L_container)
17: end if
18: if (UDk is ready) then
19: |�(UDk)〉 ← Feature_aggregation(UDk , nmF)

20: UDk ← Binary_classi f ication(|�(UDk)〉,F)

21: k = k + 1
22: UDk ← Return_block(U_container)
23: end if
24: end while

scenario is that sequential data are acquired at a regular arrival
rate, which does not dictate the times of execution of either
CC or QC components. Given that the data arrive in a scat-
tered manner, without a predefined order between labeled
and unlabeled instances, one cannot know in advance when
the succession of CC or QC techniques to be executed or
when to engage in model learning or label prediction. This is
decided by the availability of labeled data and unlabeled data
and by the changes underlying the data. More precisely, as
the data arrive, they are separated in two different data con-
tainers, one for those labeled and the other one for those
unlabeled. The use of data containers allows us to light-
ening the burden of the data arrival rate on the processing
(lines 2, 16, and 22 in Algorithm 1)1. Thus, dependently on
the readiness of these containers, the framework carries out
either i) training session, in which the classification model
being learned/updated (line 9). The training session involves
a quantum unsupervised technique and eventually quantum
supervised algorithm) or ii) prediction session, in which the
classification model is used to estimate the class labels (line
18). Actually, in the first case (i)), the update of the model,

1 In the Algorithm 1, the notation of the double subscript XLi and
XUi refers to the i-th data instance labeled (Li ) and unlabeled (Ui ),
respectively. By coherence of notation, the targets of the unlabeled data
are reported as yU1 , but it is the information to be estimated.

through a quantum supervised approach, is activated only
whether there are changes (within the current set data stored
in the container of labeled data). The changes are being
detected by a procedure which combines a statistical test
and the quantum unsupervised technique. Note that we could
accumulate labeled data which do not denote changes for a
long,without the reasonable necessity of having to update the
classifier. In the second case, that is, ii) label prediction, the
quantum classifier is straightforwardly applied to the current
set of data (stored in the container of unlabeled data).

The data have a temporal connotation, although no time-
stamping information is used, and are characterizedbyvalued
features. The data arrive singularly, one after the other, but
are processed in sequences of consecutive data instances,
referred to as data blocks. Data blocks (LDh and UDk in
Algorithm 1) are a notion strictly close to the time-windows
models (Gama and Gaber 2007). Similarly to the time win-
dows, data blocks allow us to handle data instances by
equally-sized sequences onwhichwe train, update, and apply
the classification model. A data block can be fulfilled with
data instances taken from either two containers, whichmeans
a data block contains either labeled or unlabeled data. As
a data block is being filled (the number of collected data
instances is equal to the predefined size), we can proceed
either with a training session (in which data blocks with
labeled data are used, LDh in Algorithm 1) or with a pre-
diction session (in which the data blocks used contain data
instances with unknown label, UDk in Algorithm 1). The
succession of training sessions and prediction sessions is not
predefined, coherently with the realistic assumption accord-
ing to which the distribution of labeled and unlabeled data
instances is not previously established and therefore not all
the data instances are labeled.

As initialization of the entire process, the framework con-
siders the first labeled data block LD1 under the assumption
that LD1 is representative of the features (data properties) of
the next data. It uses the CC component of feature selection
to rank the original descriptive features F . Then, the frame-
work takes the first m ranked features to be used for the QC
components of data encoding and distance estimation and
prototype generation, while the remaining n − m (by tak-
ing them by even number) for the QC components Feature
aggregation and Binary classification (line 3). Data encod-
ing converts those data instances to define the quantum state
of one qubit by means of a dense angle encoding technique
(LaRose and Coyle 2020) (line 4). This choice proves to be
adequate for computing quantum distances between quan-
tum states. Our preliminary results suggest considering the
value ofm to be as low as possible. Subsequently, the compo-
nent Distance estimation & Prototype generation builds two
prototypes (|p+1〉, |p−1〉), that is, representatives of the two
classes, one for each class (line 5). The data block LD1 feeds
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also the quantum supervised part, that is, Binary classifica-
tion trains the classifier from scratch on the quantum states
encoding the data block LD1 through Feature aggregation.

Specifically, Feature aggregation takes as input the data
instances of LD1 described by the subset S of the n − m
previously ranked features (S has even cardinality). Then,
it combines them with the result to map the data instances

from the space R|S| to the Hilbert space with C
|S|
2 (line 6).

Subsequently, the component Binary classification learns an
initial classification hypothesis function through a process
which optimizes the parameters of a quantum circuit under-
lying the component (line 7). It results in a classifier which
could already estimate unknown data instances inmeanwhile
acquired (the data block UDk in Algorithm 1).

After the initialization, QUARTA continues to acquire
data instances and store them within the containers (lines
8, 16, 22). In cases where a data block of unlabeled instances
becomes available before a data block with labeled data, a
prediction session is initiated (line 18). Thus, QUARTA first
selects only the valued features S and then encodes the data
UDk through Feature aggregation (line 19). Finally, it uti-
lizes the classification hypothesis function so far constructed
to estimate the class labels (line 20). These operations are
replicated also for the data blocks, subsequent to UDk , that
consist solely of unlabeled data. Indeed, one cannot glean
information on changes within the data, and thus, there is no
reasonable need to update the classifier.

Conversely, in cases where a data block of labeled data
instances becomes available before a data block with unla-
beled data (line 9), another training session is conducted.
However, not all training sessions involve a learning step,
as the respective data blocks may have no change signifi-
cant enough to justify an update of the classifier. To check
the presence of changes, QUARTA combines a CC technique
(change detector) with theQC component of distance estima-
tion and prototype generation.Whenever a change is detected
(line 11), a training session, aiming at updating the classifica-
tionmodel, is performed bymeans of the components feature
aggregation and binary classification. The training set is built
by the component data replay and is composed of the data
instances of the current data block LDh and previously pro-
cessed data blocks (LDh−1 . . . LDh′, h′ ≥ 1) (line 12). The
data instances of LDh that were closer to the prototypes are
discarded, those more distant used to adapt the model. Sub-
sequently, new prototype(s) is (are) generated from a set of
labeled data instance which involves the current prototype
and data instances of LDh (line 13).

It should be noted that binary classification and dis-
tance estimation and prototype generation work on different
encoded feature sets (converted by means of different encod-
ing schemes, by the way). As our knowledge, this is one of
the first attempts to leverage multi-view learning in quan-

tum machine learning. The primary challenge in multi-view
learning is devising algorithms able of learning from mul-
tiple data perspectives (views) simultaneously behind the
assumption that multiple views may exhibit different statisti-
cal properties and, when processing them concurrently, they
can collectively contribute to enhancing predictive accuracy.
This entails leveraging the diversity inherent in each feature
set view while avoiding the curse of dimensionality.

3.2 The quantum-classical components of QUARTA

QUARTA is composed of QC routines and CC techniques.
The former are mainly used for machine learning steps; the
latter are used as data preparation tools and decision mak-
ers for the execution of quantum circuits. As preliminary
operation, QUARTA scales the values of the features of the
input classical data within the range of [0,1]. In preliminary
experiments, we acquainted that often the convergence of the
training sessions is faster when this transformation is applied
compared to the typical transformation into the range [0,π ].
The component is used for each incoming data block, both
those of training and those of prediction.
Data replay
It operates when it is necessary updating the model and
provides data for a training session. Specifically, it han-
dles two data samples (one for each class) of the labeled
data instances taken from the previously labeled data blocks
LDh−1 . . . LDh′, h′ ≥ 1 by keeping them in the order of
arrival of their corresponding data blocks. Every time a new
training session starts, the oldest data instances are discarded
from the sample, while the same number of data instances is
taken from the currently processed data block LDh . So, the
size of the container is always constant.

In the literature, data replay (also called as data rehearsal)
is one of the three approaches (Lange et al. 2022), namely,
replay methods, regularization-based methods, and parame-
ter isolationmethods designed to i) deal with the catastrophic
forgetting effect raising when updating neural networks and
ii) retain knowledge of previous data blocks or experiences
while learning new data blocks. Considering that the replay
methods represent the solution which asks for less and leaves
unchanged the number of hyper-parameters of the neural net-
work, we lean for that approach.
Feature selection
One of the preliminary actions of any machine learning
project is to minimize the number of descriptive features
while preserving essential information, achieved through
a suitable transformation from raw data to training data.
Feature selection methods can be categorized in filters,
embeddings, andwrappers (Chandrashekar and Sahin 2014).
In the current work, by following the conventional setting
of the incremental learning, we resort to a filter mechanism
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which works on the first data block and selects the subset of
the descriptive features which we will use in the next data
blocks. The filter relies on CC techniques which consider
the mutual information between the class labels, as proposed
in Ross (2014). Mutual information measures the degree of
relatedness between variables; it detects any sort of relation-
ship between variables whatsoever, whether it involves the
mean values or the variances or higher moments. When the
variables are both discrete (one of them is the class label), it
estimates the true frequencies of all combinations of val-
ues. When the variables are continuous and discrete, the
techniques use aweighted form of the Jensen-Shannon diver-
gencewhich is used as ameasure of the dissimilarity between
two or more continuous probability distributions.
Data encoding
Machine learning techniques leverage featuremaps to project
input (classical) data into distinct spaces, aiming to attain
advantageous properties of the new spaces. Quantum encod-
ing is a method used to encode classical data a ∈ X into
quantum states within a Hilbert space |φ〉 ∈ H through
the use of a quantum feature map � : R → H, that is,
a → |�(a)〉. The quantum feature map is equivalent to
applying a unitary transformation U�(a) to the default ini-
tial state |0〉 to produce |�(a)〉. Such unitary transformations
often involve parameterized gates, where the parameters
often take the (normalized) values of the features of clas-
sical data (Lloyd et al. 2020; Schuld and Killoran 2019).

There are various techniques to design data encoding, from
thesimplerones likeamplitudeandangle to thosemorecomplex,
such as Hamiltonian embedding and re-uploading (Pérez-
Salinas et al. 2020). Although those more sophisticated may
contribute to improving the expressiveness of quantum circuits
and accuracy of data representation, they require additional
computational times, which in a scenario of continuous com-
putation is not desirable. This is the reason why we propose
angle encoding techniques for the distance estimation (Sec-
tion Quantum distance estimation & Prototype generation
below). Angle encoding relies on parameterized rotation
gates Rk and maps a single real-value a of a classical feature
into a quantum state identifiable in the geometrical repre-
sentation of the Bloch sphere (Nielsen and Chuang 2011):

a → Rk(ψ) = e−i ψ
2 σk (1)

with k=x, y, z axis of the three-dimension space of the
sphere, σk is the Pauli matrix representation of the rotation
gate Rk , ψ is the normalization of the classical data value a
and is the parameter used for the angle of rotation in Rk .

In the Bloch sphere, a quantum state can be expressed as
a vector denoted with two spherical coordinates 0 ≤ θ < π ,
0 ≤ φ < 2π corresponding to the angle ofmagnitude (drawn
with respect to the z-axis) and angle of phase (drawn with
respect to the x-axis).

The angle encoding technique proposed here is designed
to better leverage the Hilbert space. The circuit is composed
of the gates Ry and Rz . By thinking in terms of Bloch sphere,
Ry applies a rotation which leads the vector to range between
the basis states and therefore contributes to the encoding
through a magnitude angle specific for the parameter. Rz

applies a rotation which by itself does not change the mag-
nitude (and therefore the amplitudes) but contributes to the
encoding through an appropriate relative phase specific for
the parameter. The relative operator can be so formulated.

U�(X) = (
Rz(ψ

m)Ry(ψ
m)

)
. . .

(
Rz(ψ

j )Ry(ψ
j )

)

. . .
(
Rz(ψ

1)Ry(ψ
1)

)
H |0〉 (2)

with ψi parameter which takes the normalized value of
xi ∈ X out of the m-selected features.

In simpler terms, the operator enqueues gate blocks com-
posed of two rotational gates, specifically Rz() and Ry(), on
the same qubit, for each valued feature in X. A gate block
allows us to exploit the range [0, π ] for the magnitude and
associates a periodicity of π to the magnitude. Also, it gives
a wider variability to relative phase, both over [0, π ] and
over (π , 2π ]. One can experimentally prove that this does
not happen even with other rotation-based encodings built
upon two gates. For instance, the variant of the operator (2)
in which the rotations are inverted, that is, Ry(ψi )Rz(ψi )H ,
associates a range shorter than [0, 7

10π ] to the magnitude.
This choice guarantees that each unique input x will have
a unique quantum encoding without requiring an arbitrarily
large number of qubits but related to the number of features
representing the data instance. We also conjecture that this
choice augments the discriminatory power of the component
of quantum distance estimation and prototype generation.

Feature aggregation
To handle the presence of the curse-of-dimensionality,
one can resort to feature aggregation or dimensionality
reduction, which transform high-dimensional data into a
lower-dimensional representation, leveraging sparsity and
redundancy. Feature aggregation, traditionally originating
from multimedia data processing, involves the fusion of
highly correlated low-level features to define high-level fea-
tures. This provides a more abstract view of the properties
of the data (Guo et al. 2021). Dimensionality reduction aims
to project the data into a different feature space, giving pri-
ority to data correlation rather than robustness and outlier
sensitivity (Yu et al. 2023 Lloyd et al. 2014). However,
dimensionality reduction builds new representational spaces
where the new features combine linearly those original while
neglecting non-linear correlations. This is the reason why
we propose a hierarchical feature aggregation offered by the
neural-based operation pooling (Galanis et al. 2022). Indeed,
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the pooling operator may keep under control the genera-
tion of the new features by constructing progressively new
features over a hierarchical representation. Additionally, it
improves the robustness to small translations or shifts in
the data and, specifically for quantum solutions, allows to
handle the problem of representing one-feature with one-
qubit when the features are numerous. The pooling layers are
used prominently to design convolutional neural networks
thanks to the capacity of selecting representative values from
neighboring points, thus reducing the computational load
in subsequent layers and extracting high-order correlations
(Hur et al. 2022). In QC, the pooling techniques are typically
used in quantum convolutional neural networks to reduce the
dimensions especially when the number of qubits equals the
number of the features. The blueprint is of tracing out half of
the qubits, while retaining as much information as the other
half of the qubits. In fact, the pooling operator compresses
the pair of features on two qubits into one qubit, so the infor-
mation of a pair of quantum states is conveyed on one of the
two qubits. The disregarded qubit will be neglected in the
future calculations or measurements for the rest of the quan-
tum circuit. [R2A4] The operator can be seen as a quantum
feature map � : R2 → H which encodes a pair of classical
data xi ∈ X, xi+1 ∈ X into quantum states within a Hilbert
space |�〉 ∈ H. For the purpose of this work, we refer to
the structure proposed in Vatan and Williams (2004), which
has also been proven to be optimal (Madden and Simonetto
2022). The optimality ensures that no smaller circuit, using
the same family of gates, can achieve the same unitary oper-
ation. The circuit is based on a two-qubit design built upon
controlled-not and single-qubit parameterized gates. The cor-
responding unitary operator can be formulated as follows.2

U�(xi ,xi+1) =(I i ⊗ Ry
i+1(λ)) CXi,i+1 (Ri

z(ω) ⊗ Ri+1
y (φ))

CXi+1,i (I i ⊗ Rz
i+1(−π

2
))|02〉 (3)

withω andφ parameters which take the normalized values
of the classical data xi , xi+1 ∈ X. The parameter λ has value
as (1-xi ) (1-xi+1). Each gate Ry() and Rz() is a specific case
of the generic Pauli rotation gate Rk above introduced and
work similarly. The two-qubit gate CXi,i+1 has the control
qubit denoted as qi and target qubit denoted as qi+1 (analo-
gously for CXi+1,i ).

In simpler terms, the circuit implementing the operator
(3) establishes a dependence between the quantum state of
qi and quantum state of qi+1, that is, the quantum state of
qi+1 would affect the one of qi . Then, the qubit qi+1 effec-
tively traces out from the circuit, aggregating the information
conveyed by two features on the two qubits. Specifically, the

2 In the notation of operator (3), the superscripts i and i +1 refer to the
order of the qubits in the input qubit register, hence qi and qi+1.

gates Rz induce a phase change in both quantum states, while
Ri
z(ω) operates dependently on the parameterω that takes the

value from the feature associated to qi . On the other hand,
the gateCXi+1,i establishes a relationship between the “por-
tion” of the base state |1〉 of qi+1 and the quantum state of
qi . This relationship is reinforced by the action of the gate
Ri+1
y (φ), inducing a change in the magnitude of qubit qi+1.

Consequently, due to the influence of CXi+1,i , the magni-
tude of qubit qi is also altered. Subsequently,CXi,i+1 plays a
crucial role in solidifying this interdependence in the reverse
direction, functioning akin to CXi,i+1. Intuitively, in this
context, the quantum state of qubit qi+1 assimilates infor-
mation from the quantum state of qubit qi . This interaction
is ultimately guided by qubit qi+1 through the magnitude
alteration brought by the Ry

i+1(λ).
It is important to emphasize that in the current study, this

circuit differs from the conventional use of standard ansatz,
where parameters are typically fine-tuned through an opti-
mization process. Instead, the parameters λ, ω, and φ are
contingent upon the input data and remain fixed without
undergoing any tuning operation.

The component of feature aggregation is completed with
the assignment of pairs of the valued features in X to con-
secutive qubits (qi , qi+1). Each feature is paired with the
one with which has higher value of the Kendall Tau corre-
lation (Kendall 1938). Both features contribute to the state
preparation of the operator formulated at the (3). Kendall Tau
correlation is a statistical measure used to quantify the degree
of association or correlation between two variables. It is par-
ticularly useful when dealing with ordinal or ranked data,
where the actual numerical differences between values may
not be meaningful. Thus, the calculation of such correlation,
implemented in this study as classical computing operation,
allows us to assess the similarity of the orderings of values
between two features, regardless of their actual values.

Finally, we should note that not all the original features are
aggregated pairwise by this component, but only the subset of
n −m remaining features identified by feature selection (the
first m features have been used for data encoding). Also, as
anticipated,we consider the even number lower than but clos-
est to n − m. This clarifies that feature aggregation embeds
as many pooling circuits (operator 3) as the pairs of features
are. Feature aggregation does not encode data instance for
all the data blocks, but only when changes are detected in the
current data block.

Distance estimation and prototype generation
Distance computation is a frequent operation in machine
learning, holding significant importance in both unsuper-
vised and supervised methods. In the literature of QC,
a measure of distance is the trace distance (Nielsen and
Chuang 2010), which is related to the maximum probabil-
ity of distinguishing between two quantum states through
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measurement. The notion of distance is closely related to the
(dis)similarity between quantum states. Conceptually oppo-
site to the distance, there is the fidelity (Jozsa 1994) that
quantifies the similarity between two quantum states. These
two measures offer quite desirable properties, such as non-
negativity and symmetry, which enable to work on metric
spaces. Indeed, quantum states can be represented as points
in a quantum metric space, where the distance between two
quantum states captures their distinguishability or dissimilar-
itywhich is fundamental for tasks such as quantum clustering
and classification (Havlícek et al. 2019).

In the current work, the concept of distance is closely
linked to the update of the classification model. Therefore,
generally speaking, we assert that quantum distance estima-
tion supports the training process of a classifier constructed
using quantum solutions. Going deeper, the distance aids in
detecting changes and determining whether the classification
model needs updating. Thus, we apply the distance metric to
new labeled data instances in comparison to those previously
processed to identify potential changes. This enables us to
ascertain whether the classification model employed thus far
is suitable for these data instances or if it requires adaptation.

To do that, we resort to the notion of the quantum fidelity
that measures the similarity, which is complimentary to
the distance. The distance between quantum states can be
immediately derived from the similarity by using inverse
transformation functions. The fidelity acts as an overlap func-
tion by returning two results, one representing the case in
which the two states are identical and the other one rep-
resenting the case in which they are orthogonal. It can
be implemented through the so-called Swap test operator
(Barenco et al. 1997) defined on three qubits as here reported:

(H1 ⊗ I 2 ⊗ I 3)CSW AP{1}{2,3}(H1 ⊗ I 2 ⊗ I 3) (4)

The operator consists of single-qubit gates (H and I ) and
a 3-qubit gate, CSW AP ,3 responsible for exchanging the
states between the qubits indexed as 2 and 3 under the control
of the qubit indexed as 1. As to the formulation (4), the qubits
2 and 3 encode the two quantum states, while qubit 1 serves
as an ancillary qubit initialized to |0〉. The fidelity value is
determined by measuring qubit 1, yielding outcome 0 with
a probability of 1 if the two quantum states are identical.
Otherwise, if the two quantum states are orthogonal or have
no overlap, the outcome is 1with a probability of 0.5 (Kavitha
and Kaulgud 2023).

However, such a dichotomy does not fully resolve the
problemof detecting changes, as itwould restrict to searching
for changes only when the outcome is |0〉 with a probabil-

3 The notation CSW AP{1}{2,3} in the (4) indicates that the superscript
1 denotes the control qubit, while 2 and 3 denote the two target qubits of
the controlled-swap gate, also known as Fredkin gate (Patel et al. 2016)

ity of 1. Instead, we propose utilizing fidelity in a frequentist
approach, which enables us to i) tie the similarity of the quan-
tum states to statistics of the resulting basis states and ii)
quantify the magnitude of changes within a variability range
(Acampora et al. 2021). To compute the frequencies, we need
to collect the results of measurement outcomes. Therefore,
we execute the operator Swap test multiple times, with each
execution yielding one of several possible measurement out-
comes. Consequently, after completing the specified number
of executions, we obtain counts for each possible outcome.
From these counts, we compute the relative frequency as
the ratio of each count to the total number of executions. In
essence, the counts represent the distribution of occurrences
of the outcomes, and the ratios relative to the total occur-
rences resemble probability values for the outcomes, with
their sum totaling 1. Since the measurements for the Swap
test concern only the ancillary qubit, we will have the rela-
tive frequencies for the two outcomes, that is, 0 and 1. The
outcome 0 with probability 1 represents the full overlap of
the two quantum states, so we consider the relative frequency
computed for the outcome 0 as similarity between the two
states. A brief example follows. Suppose the total number of
executions be 512, with 400 times turning on the outcome 0,
while 112 time turning on the outcome 1. So, the estimation
of the similarity is 400/512 and consequently the distance is

1

similari t y
.

Once introduced the notion of similarity, we can explain
how it is used to support the update of the classification
model. This concept of similarity, and specifically its com-
plementary concept of distance, is utilized to generate two
prototypes, one for each class of the binary classification
problem under consideration. These prototypes serve as rep-
resentatives for their respective classes and are constructed
by synthesizing the properties of the data instances associated
with each class. They are computed as medoids of the data
instances of each class and correspond to the data instance
X whose sum of distances with all the others Y of the same
class C reaches minimum (Aïmeur et al. 2013):

∑

Y∈C
dist(X,Y) ≤

∑

Y∈C
dist(Z,Y),∀Z ∈ C (5)

Thus, the distance is computed between the medoids
and labeled data instances currently processed. Indeed, this
allows us to verify whether these data instances adhere to the
properties of their respective classes (represented by their
medoids) or whether they exhibit significant changes neces-
sitating to update the classification model.

Both when determining the medoids and when comput-
ing the distances between medoids and data instances, the
calculation concerns quantum states built by the component
data encoding. Indeed, the operator at the (2) performs a state
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preparation operation outputting the quantum states |φ〉 and
|ψ〉 for the Swap test operator.

Finally, it is worth noting that the search for prototypes
described above resembles the construction of centroids
in quantum clustering techniques (Benlamine et al. 2020;
Kavitha and Kaulgud 2023; Kerenidis et al. 2019). In those
works, centroids are determined using classical computing
(CC) methods, which involve calculating distances between
data instances in their original representation. In contrast,
the proposed concept of medoids relies on quantum distance
computation between quantum states.

Change detector
Change detection is a topic investigated in machine learning
both through unsupervised techniques and those supervised.
However, the latter require training data and learning step,
which in a scenario of continuous computation is not desir-
able. This is the reason whywe propose an approach inspired
to the unsupervised setting. The component change detector
exploits the Page-Hinkley statistical test (PH) (Page 1954),
originally defined to identify sudden changes on a vari-
able monitored over time or deviations from the expected
behavior. The Page-Hinkley test is a non-parametric method
and does not require any assumption about the underly-
ing distribution of the data. Specifically, the test evaluates
the cumulative sum of the deviations between the observed
variable and the expected mean. In this work, the variable
observed over time is the sum of the squared errors (SSE),
which is traditionally utilized in clustering to denote the
internal homogeneity of a cluster. It measures the extent
to which data instances within a cluster deviate from the
prototypes of that cluster. However, unlike its conventional
usage, SSE here denotes the homogeneity of the labeled data
instances included in the data blocks processed so far, for
either classes. Specifically, SSEworks on quantum states and
uses the notion of quantum distance (explained in Section
Distance estimation & Prototype generation). The value of
SSE computed between the prototypes obtained before pro-
cessing the data block LDh and the data instances of LDh is
so formulated:

SSE y
h :

∑

instanceyh j
∈LDh

dist(prototypeyh ,

instanceyh j
), y ∈ {+1,−1} (6)

Thus, after having processed the data block LDh , we

update the mean value SSE y
h including the values of SSE y

h
computed on the previous data blocks, cumulative sum of the
deviations �h , and minimum value of the deviations �MI N

h :

SSE y
h = 1

h

h∑

t=1

SSE y
h

�h = �h−1 + (SSE y
h − SSE y

h ), t = 1 . . . h,�0 = 0 (7)

�MI N
h = min

t=1,...,h
�t

Once a labeled data block has been processed, the test
checks for the discrepancy between the cumulative sum
and the minimum value �i − �MI N

i . When this difference
exceeds a certain threshold τ , even if it pertains to only one
class, it triggers a training session to update the classification
model.

Binary classification
The component is in charge of training a classification model
in a supervised setting and keeping it update to deal with
changes related to the data referred to the two class labels,
without possibly forgetting the old data properties of the same
two classes. It operates in two alternative modalities, training
andprediction.During the training sessions, the classification
model learns on the block of labeled data instances currently
acquired. The training procedure is not invoked on all the
data blocks, but onlywhen changes associated to labeled data
instances are being detected. Differently, during the predic-
tion sessions, the model is used to infer the class labels on
the unseen data instances.

To train the model, we rely on a variational quantum
circuit (VQC), that is, a class of hybrid classical-quantum
methods based on a quantum circuit with learnable parame-
ters optimized through classical algorithms (Benedetti et al.
2019). Similarly to the classical neural networks, their crucial
peculiarity is the capability to approximate any continuous
function (Arthur and Date 2022).

From the procedural viewpoint, a VQC works as fol-
lows. The quantum circuit prepares a quantum state, guides
its evolution, and performs measurements on it. The out-
comes of these measurements undergo post-processing by
CC techniques to generate estimations or predictions. These
estimates are refined by means of a classical optimization
algorithm that updates the model parameters, aiming at min-
imizing a cost function defined on those parameters. The
updated parameters are then injected into the circuit, result-
ing in improved estimations. This entire process operates
in a closed loop between classical and quantum algorithms,
leading to an improved model represented by a refined-
parameters quantum circuit, ready to process data that have
not been used in the loop.

From the structural viewpoint, aVQC is composedof three
main constituents: i) an encoding circuit designed with quan-
tum gates (typically with fixed parameters) and in charge of
representing classical data into quantum states to be man-
aged by the parameterized part; ii) a composite gate block
(also called as ansatz) built upon the parameterized part and
in charge of approximating the cost function; iii) observables
that will be considered as circuit outputs.
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As to the encoding circuit, we use the component fea-
ture aggregation described above that comprises also angle
encoding transformations. As to the ansatz, it is important
to say that the design of a specific-by-problem solution is
crucial as it impacts the handling of vanishing gradients in
classical optimizers and determines the balance between cir-
cuit depth, model accuracy, and training time. A promising
and straightforward approach seems to be considering “tem-
plate” quantum circuits that previous research has shown to
be effective for training tasks and classification problems. To
this regard, the studies of Sim et al. (2019) and Hubregtsen
et al. (2021) report experimental evaluations to assess the
utility of selected circuit structures based on two quantita-
tive descriptors: expressibility and entangling capability. The
first descriptor denotes the ability to generate pure quantum
states capable of fully exploring and representing the Hilbert
space. The second descriptor refers to the ability to gener-
ate entangled states aimed at exploring the solution space
for classification problems while capturing non-trivial corre-
lations. Drawing inspiration from these studies, we identify
two circuits that have shown performing relatively. Consider-
ing the input qubit register with four qubits, we can formulate
these two circuits as follows:

A(�, λ) = (Ry
i (�0) ⊗ Ry

i+1(�1) ⊗ Ry
i+2(�2) ⊗ Ry

i+3(�3))

(CXi+3,i ) ⊗ CXi+2,i+3 ⊗ CXi+1,i+2 ⊗ CXi,i+1)

(Ry
i (�4) ⊗ Ry

i+1(�5) ⊗ Ry
i+2(�6) ⊗ Ry

i+3(�7))

(CXi+3,i+2 ⊗ CXi,i+3 ⊗ CXi+1,i ⊗ CXi+2,i )|0⊗4〉λ

(8)

with λ of size 4 denoting a set of four quantum states
(resulting from the component feature aggregation on eight
selected features), � of size 8 denoting the parameter set of
the circuit (one parameter for each rotation gate Ry()). The
term � represents the parameters that are tuned by classical
algorithm of optimization.

The second circuit has a larger set of parameters and
presents two-qubit gates based on rotational gates Rx ():

A(�, λ) = (Ry
i (�0) ⊗ Ry

i+1(�1) ⊗ Ry
i+2(�2) ⊗ Ry

i+3(�3))

(CRXi+3,i (�4) ⊗ CRXi+2,i+3(�5) ⊗ CRXi+1,i+2(�6) ⊗ CRXi,i+1(�7))

(Ry
i (�8) ⊗ Ry

i+1(�8) ⊗ Ry
i+2(�10) ⊗ Ry

i+3(�11))

(CRXi+3,i+2(�12) ⊗ CRXi,i+3(�13) ⊗ CRXi+1,i (�14) ⊗ CRXi+2,i+1(�15))|0⊗4〉λ

(9)

with CRXcontrol,target denoting the two-qubit controlled
gate with a rotation gate Rx () operating on the control qubit,
λ is the same as above, � of size 16 denoting the parameter
set of the circuit (one parameter for each rotation gate Ry()

and controlled rotation-x gate CRX()).

The operators (8) and (9) are both organized in two main
blocks, each containing single and two-qubit gates. The sin-
gle qubit gates are parameterized rotation gates, denoted as
Ry(), which, in the representation of theBloch sphere, induce
changes in the magnitudes of the state vectors. A common
characteristic is the utilization of qubits in controlled gates,
where they serve both as controls and targets. This choice
aims to capture various forms of correlation between pairs
of selected features encoded by the respective qubits. Addi-
tionally, two-qubit gates are employed to establish a cyclic
connectivity pattern, wherein nearest-neighbor interactions
occur between consecutive qubits, supplemented by non-
local interactions to complete the cycle. Contrary, the two
circuits differ in the usage of two-qubit gates. In fact, the
operator in the formula (9) incorporates parameterized two-
qubit gates. These gates potentially enhance the variability
of states, leading to a richer representation of input data
compared to the fixed two-qubit gates of the circuit in the
formula (8). Also, we can note that the circuit in the formula
(9) presents a larger number of parameters than that in the
formula (8). This could lead to increased complexity in the
optimization process and longer computation times.

To operate on a set of qubits larger than four, we extend
the circuits while preserving both their original design deci-
sions and the operativity of the gates across the entire block
(Schuld et al. 2020). Specifically, we propose to maintain the
initial stack of rotational gates Ry() and introduce consec-
utive controlled gates, with each connected to the previous
one. More precisely, once a controlled gate is inserted, the
control qubit becomes the target qubit for the subsequent con-
trolled gate. This process is replicated for both blocks within
each circuit. This approach aims to propagate the effect of
a qubit not only to adjacent qubits but also to those further
away, thereby attempting to capture non-local correlations.

Finally, the quantum state provided by the ansatz under-
goes measurements and needs to be decoded to obtain the
desired output (estimation of the class label). This entails
finding anoptimalmappingof the outcomesofmeasurements
into the class labels. The usual way is reading an observable
of the quantum circuit, that is, measuring the final quantum

state of one or more qubits through a Pauli spin operator (a
particular axis in the Bloch sphere representation). In this
work, we consider the Pauli-Z σz operator (namely, the her-
mitian matrix of σz) and use it to calculate the expectation
value 〈�|σz |�〉 (|�〉 denotes the final quantum state of the
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ansatz, and 〈�| denotes its complex conjugate). The expected
value can be approximated by taking the result of 〈�|σz |�〉
across multiple runs of the circuit.

The operator σz returns either the value +1 or the value -1,
representing even or odd parity, respectively. Parity refers to
the count of qubits resulting in either |0〉 or |1〉. Thus, when
calculating the expectation value, it will fall within the range
[-1, +1]. We utilize this value to establish the mapping of the
circuit output into the class labels. Thus, the expectationvalue
of the circuit quantifies the probability of a data instance x
to belong to either class:

P(y|x) = yE(x,�) + 1

2
(10)

where y represents the class labels −1,+1, and E(x,�)

denotes the expected value over the qubit register of the
ansatz sized as n:

|E(x,�) = 〈φ(x,�)|σ⊗n
z |φ(x, θ)〉 (11)

The probability P(y|x) is utilized in the optimization pro-
cess of the parameters �. The classical optimizer iteratively
updates the circuit parameters by minimizing a cost function
that is based on the negative log-likelihood of the probabili-
ties P(y|x) computed on the current labeled data block, that
is,

− 1

|datablock|
|datablock|∑

i=1

log(P(yi |xi )) (12)

where |datablock| is the number of data instances of the
data block, and xi is the i-th data instance of the data block.

The cost function is minimized by the classical optimizer
based on gradient. The derivative concerns the expectation
value E() with respect to the current values of � and is com-
puted by means of the parameter shift rule (Wierichs et al.
2022):

dE
d�

= E(� : k + ε) − E(�k − ε)

2
(13)

Thegradient value is the differencebetween the twooutput
values of the circuit: the first value is the output of the circuit
with the parameter�k increased by a value ε, and the second
value is the parameter �k decreased by ε.

4 Experiments

Weevaluated the proposed frameworkQUARTAon two pub-
lic real-world datasets, namely precisely

• Ozone level detection.4 (having 2536 data instances,
73 real-valued features)- Ozone for brevity. It contains
timestamped data related to the detection of ozone levels
in the atmosphere, typically meteorological measure-
ments (e.g., temperature, humidity, wind speed) and
other environmental variables. Ozone is used to develop
machine learning models that can accurately predict the
presence or absence of high ozone levels based on the
available features.

• Spambase (having 4600 data instances, 57 real-valued
features).5 It contains features extracted from times-
tamped emails, such as word frequencies, character
frequencies, and other attributes, along with labels indi-
cating whether each email is classified as spam or
non-spam.

QUARTA has been implemented in Python 3.9 and IBM
Qiskit SDK 0.7 (Anis 2021) and tested on the simulator
WashingtonV2 (a fake 127 qubit backend). The following
available implementations were used: library Scikit-learn
v1.4 (Pedregosa et al. 2011) for the CC component fea-
ture selection in the default setting; optimization algorithm
ADAM for the QC component binary classification with
batch size as 30 and learning rate as 0.01. The number of
training epochs fixed to 30.

4.1 Algorithms

Two algorithms have been utilized for comparative analysis.
The first algorithm, named PerceptronMask, is built on clas-
sical computing neural perceptrons (Montiel et al. 2018). The
second algorithm, based on a quantum computing approach
proposed in Situ et al. (2022), was originally designed for
task-incremental learning, where the model is trained on a
sequence of distinct classification problems and the learned
is signaled when the data instances of a task end and start
those of the next task. Therefore, for a fair comparison, we
adapted it to the domain-incremental setting.

In addition to these algorithms, we evaluated two vari-
ants of QUARTA, each involving different design decisions
regarding the quantumcomponents. Thefirst variant, referred
to as fm_QUARTA, replaces feature aggregation with a basic
feature mapping technique. This technique encodes each
qubit using the operator Ry(λ)H |0〉, where λ represents the
feature value. The purpose of this variant is to assess the
impact of a quantum-based feature compression technique.

The second variant, referred to as ce_QUARTA, differs
from QUARTA in the design of the Change detector built
upon CC techniques only. Specifically, it maintains the orig-

4 https://archive.ics.uci.edu/ml/datasets/ozone+level+detection.
5 https://archive.ics.uci.edu/ml/datasets/Spambase.
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inal representation of the data instances, computes prototypes
as centroids for each class, and uses the CC notion of
Euclidean distance. The objective of this variant is to assess
the efficacy of a quantum-based technique for prototype gen-
eration.

4.2 Experimental setting and performance
measures

As to the settings of the competing algorithms,we aligned the
input parameters of PerceptronMaskwith those ofQUARTA,
maintaining consistency across the comparison. Parameters
such as window size and learning rate were set to identical
values, while other parameters retained their default settings.
As for QC_GEM, we configured the depth of the variational
quantum circuit to 1 and conducted training for 50 opti-
mization cycles. The number of “data instances from past
experiences” matched the size of the data sample used for
data replay of QUARTA. In the QUARTA setting, we ini-
tially select the top 50% highest-ranked features from both
datasets. Then, we retained the first five for Ozone and the
first three for Spambase as them-features used for the compo-
nents data encoding and distance estimation and prototype
generation. Subsequently, for both datasets, we considered
the remaining feature set from the top 50% (excluding the
m-features removed previously) with a cardinality that is a
multiple of 8. These additional features constitute set S for
the components of feature aggregation and binary classifica-
tion. Specifically, for both datasets, S comprises either 16 or
8 features, resulting in 8 or 4 as size of the qubit input regis-
ter for the binary classification. The parameters for the data
block size and threshold τ of change detectorwere adjusted to
examine their impact on the results. The data block sizeswere
chosen to process the flow of data with portions which go
from 10% to the 1% of the total length, resulting in the sizes
400, 250, 150, and 50 for Spambase and 250, 150, 100, and 25
for Ozone. The experimental values for the change threshold
τ were determined through preliminary experiments and set
to 0.1 and 5 as boundary values as to identity two main lev-
els of changes. The threshold τ=0.1 allows to trigger model
update in correspondence of changes greater than 0.1, that is,
milder and stronger. The threshold τ=5 leads to update the
model only when the changes are particularly intense. Addi-
tionally, the data sample size for data replay was set to half
the data block size. The quantum circuits with measurement
operations were run by 512 times.

As evaluation scheme, following the principle of the
sequential data where labeled and unlabeled data are not
available as a batch, but become available incrementally and
without a predefined order, we considered the prequential
evaluation (Gama et al. 2013), which is an approach very
often used for the evaluation of CC learner performances in

the SL, OL, and CL learning scenarios. Prequential evalua-
tion sequentially combines training data (labeled data used
during training sessions) and testing data (labeled data with
hidden labels during prediction sessions). This approach
allows us to assess the reliability and generalizability of the
classifier on unseen data that has not yet been acquired.When
new labeled data blocks (LD) become available, training ses-
sions begin, during which the classifier is trained on these
data. Subsequently, when new unlabeled data blocks (UD)
are ready, prediction sessions commence. During these ses-
sions, the classifier estimates labels and the hidden labels
are retained for evaluation. Once processed, the testing data
are discarded and not used for updating the classifier or sub-
sequent evaluations. This evaluation approach enables us to
assess the classifier performance as it encounters new data
and ensures that the model performance is evaluated on data
that closely reflects its operational environment. For evalu-
ation purposes, we prepared the datasets into two portions:
60% of the labeled data instances are allocated for training
sessions,while the remaining 40%are reserved for prediction
sessions, where the data instances are unlabeled. As to the
performance measures, we collect the i) F1-score value com-
puted once each prediction session has been completed for
QUARTA and the two competitors. ii) Average F1-score as
synthesis of the performances for some variants ofQUARTA.
iii) Loss function calculated once every labeled data block
has been processed in certain variants of QUARTA. This
encompasses data blocks that prompt model updates as well
as those falling below the change threshold.

The experimental results have been collected and pre-
sented in order to give empirical evidence to the following
research questions:

Q1) Evaluate the design of the VQC on the training capa-
bility of the binary classification

Q2) Evaluate the performance between prototypes gener-
ated using QC versus CC methods

Q3) Compare QUARTA against both the CC solution Per-
ceptronMask and QC competitor QC_GEM

Q4) Responsiveness of QUARTA to the data arrival rate

4.3 Experimental results

Q1. Evaluate the design of the VQC on the training capa-
bility of the binary classification
The first experiment concerns the study of the two alterna-
tive operators reported in the (8) and (9) for the component
binary classification.We name the two variants asQUARTA8

(that is, QUARTA executed with the operator at the formula
(8)) and QUARTA16 (that is, QUARTA executed with oper-
ator at the formula (9)). The results will allow us also to
identify the variant we can use for the remaining research
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questions. In Fig. 1, we present the values of the loss function
associated with the cost function defined in (12), projected
onto the dataset. Obviously, fewer values (and thus fewer
training sessions) are observed when the data block size is
larger (Fig. 1a). These values are computed at the conclusion
of each training session. We observe that the solution with
VQC using 8 parameters (QUARTA8) exhibits greater stabil-
ity, as evidenced by fewer fluctuations compared to themodel
with VQC using 16 parameters (QUARTA16). Specifically,
the loss values tend to lie within shorter ranges: [0.08, 0.12]
(Ozone), [0.08, 0.18] (Spambase) for larger data blocks, and
[0.07, 0.13] (Ozone), [0.06, 0.18] (Spambase) for smaller
data blocks. A general decreasing trend at larger data blocks
is particularly evident. However, despite the larger fluctua-

tions, QUARTA16 occasionally exhibits episodes of very low
loss, even surpassingQUARTA8. This can be attributed to the
optimization process of QUARTA16, which struggles with a
larger number of parameters compared to QUARTA8, yet
occasionally manages to effectively minimize the cost func-
tion. In Fig. 1, we also observe the contribution of the data
replay component, which is the first technique employed to
address catastrophic forgetting in this work. In the plots at
the top, as data instances flow, the loss does not consistently
worsen; instead, it is occasionally reduced. This suggests
that data replay operates more effectively with a larger pool
of data instances, as it can draw from a wider and more
diverse range, compared to situations where data blocks are
smaller (plots at the bottom), and thus cannot retain pre-

Fig. 1 Loss function values of QUARTA8 and QUARTA16 computed on the training sessions with data block size equal to 250 and 400 (a), 25 and
50 (b). The threshold τ is 0.1 and 5 for both
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viously achieved training capabilities. Conversely, the loss
ranges are more restricted compared to those in the plots at
the top, indicating that working with fewer data instances
generally leads to a reduction in loss, although the trend is
not consistently decreasing. For the next research questions,
we will adopt the variant QUARTA8, given its superior per-
formance observed in this analysis.
Q2. Evaluate the performance between prototypes gener-
ated using QC versus CC methods
This part of the experiments was conducted with the aim
to evaluate how two notions of prototypes (centroid versus
medoid) used by the change detector, implemented in dif-
ferent computational paradigms, affect the performance of
a QC classifier. The assessment of the effectiveness of the
change detection to reveal changes is beyond this experi-
ment. QUARTA (based on a QC medoid) and ce_QUARTA
(based on a CC centroid) were executed with the same data
block sizes used for Q1. Also in this case, the change thresh-
old was set at the lowest value of 0.1 and highest value of
5, and feature aggregation compresses 8 features into 4. The

results of the average F1-score are reported in Fig. 2. It can
be observed that the use of a dense angle encoding to repre-
sent class prototypes (and relative data instances) combined
with a quantum-based similarity notion is advantageous on
both datasets. Indeed,QUARTAhas better performances than
ce_QUARTAbothwhenworking on 25 and 50 data instances
at time (0.82 vs 0.72 and 0.73 vs 0.64 for Ozone, 0.78 vs
0.67 and 0.73 vs 0.67 for Spambase) and when processes
a larger set, that is, 400 and 250 (0.78 vs 0.7 and 0.73 vs
0.68 for Ozone, 0.727 vs 0.66 and 0.702 vs 0.66 for Spam-
base). While there are slight differences, this phenomenon
occurs with both stronger changes and those that are less
pronounced but still significant. This can be attributed to
the different nature of the two distances. The CC Euclidean
distance is determined by the original feature values and
therefore may suffer from high variability, especially when
works on stronger changes (τ=5). Differently, the frequency-
based distance, proposed in Section Distance estimation and
Prototype generation, is tied to the number of occurrences of
the outcomes measured on the Swap test circuit. This value

Fig. 2 Average F1-score values of QUARTA and variant ce_QUARTA computed on the prediction sessions with data block size equal to 250 and
400 (a), 25 and 50 (b). The threshold τ is 0.1 and 5 for both
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follows the controlled number of runs of a quantum circuit,
providing a more stable measure in the face of data variabil-
ity.
Q3. Compare QUARTA against both the CC solution Per-
ceptronMask and QC competitor QC_GEM
Similar to the variants of QUARTA, PerceptronMask is
designed for binary classification and relies on a learning
algorithm that optimizes weights (parameters). Specifically,
when new data arrives, it provides an initial estimation by
using the classifier so far built and, if the estimate is incorrect,
it updates the models by tuning the weights only for the fea-
tures relevant to the new data. QC_GEM has been built with
the variational quantum classifier of the original design (Situ
et al. 2023) and the Gradient Episodic Memory technique
(GEM) for handling catastrophic forgetting (Lopez-Paz and
Ranzato 2017). GEM keeps the classifier remembering pre-
viously learned tasks by limiting updates of the classifiers
to minimize interference with past experiences. Specifically,
before the gradient is used to update the parameters, it is
modified to avoid the reduction of the performance on old
tasks. When adapted to the domain-incremental scenario, it
interprets a labeled data block as a new classification task.
Both competitors can process both labeled andunlabeled data
blocks but lack mechanisms to update the model in response
to changes within these blocks, so their performances have
been collected by prediction session. The remaining param-
eters were kept at their default values. The distribution of
labeled and unlabeled data instances is obviously the same
for all the algorithms. Figures3 and 4 present the F1-score
values across the flow of data instances, 2536 long for Ozone

and 4600 long for Spambase. Each plot represents a dis-
tinct block size, namely 250, 150, 100, and 25 for Ozone
(Fig. 3) and 400, 250, 100, and 50 for Spambase (Fig. 4).
Upon analyzing the performance of QUARTA across the
plots, it becomes evident that better results, in terms of aver-
age F1-score, are achieved when the data are processed by
smaller pieces (data block size to 25 for Ozone (Fig. 3d) and
50 for Spambase (Fig. 4d). This suggests that QUARTAmay
have a greater ability to detect changes at a finer granularity
and subsequently adapt the model accordingly. In these situ-
ations, the task of the optimizer is facilitated, as it is required
to generalize over a smaller subset of data points rather than a
larger set. This behavior does not always occur, but onlywhen
the classification model is frequently updated, which hap-
pens when considering several magnitudes of change, that
is, when τ=0.1. Differently, at larger values of data block
size (250 and 150 for Ozone; 400 and 250 for Spambase),
QUARTA, configured with τ=0.1, takes on the role of the
runner-up. In these cases, the CC algorithm PerceptronMask
exhibits better performance, largely due to its utilization of
all training data. Unlike PerceptronMask, QUARTA follows
a “parsimonious” approach to data usage, since it exploits
the training data for the model update only in the presence of
data drifts; thus, when no drift occurs, the current data block
of labeled data is deemed to have the same properties of the
one processed previously and therefore it is not used for any
alignment.

Another consideration pertains to the F1-score values
across the flow of data instances. Even when QUARTA, at
τ=0.1, does not exhibit better performance, it demonstrates

Fig. 3 F1-score values of QUARTA, PerceptronMask, and QC_GEM computed on the prediction sessions with data block size equal to 250, 150,
100, and 25 for Ozone. The threshold τ for QUARTA is 0.1 and 5
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Fig. 4 F1-score values of QUARTA, PerceptronMask, and QC_GEM computed on the prediction sessions with data block size equal to 400, 250,
150, and 50 for Spambase. The threshold τ for QUARTA is 0.1 and 5

greater stability compared to PerceptronMask. Perceptron-
Mask showsmore fluctuations when operating on both larger
and smaller data pieces.
Q4. Responsiveness of QUARTA to the data arrival rate
In incremental learning, data are typically processed as they
arrive without particular stringent timing requirements to
provide immediate responses. To maintain control over the
rapid availability of data, time-window models are often
employed. In this work, we introduce data blocks as a
means to regulate the flow and employ change detection
techniques to determine whether data exhibit significant
changes warranting adaptation. However, the inclusion of
time-consuming techniques, such as parameter optimization,
and the need to determine an optimal data block size intro-
duce complexities that must be addressed. Therefore, it is
essential to investigate these aspects and provide experimen-
tal evidence to understand QUARTA capability to complete

Table 1 Responsiveness of QUARTA for Spambase to process labeled
data blocks within time limits. Binary classification with 8 qubits

Time limit (s)
Data block size 60 50 40 30 20 AvgF1 − score

100 Y Y Y Y Y 0.692

150 Y Y Y Y Y 0.692

250 Y Y Y Y N 0.677

400 Y Y N N N 0.622

450 Y N N N N 0.622

500 N N N N N –

training sessions effectively, especially when dealing with
large data block sizes. To address this, we conducted addi-
tional experimental sessions inwhichQUARTAwas required
to complete each training session within a specified time
limit, during which the data block for the next training ses-
sion would become available and ready for processing. The
results reported in Tables 1 and 2 have been obtained by
QUARTA working on Spambase, with τ=0.1 in the con-
figurations of QUARTA8 and QUARTA16 (8 qubits and 4
qubits respectively as input qubit register of the VQC). The
value “Y” denotes the completion of QUARTA within the
corresponding time limit value, the value “N” when exceeds

Table 2 Responsiveness of QUARTA for Spambase to process labeled
data blocks within time limits

Time limit (s)
Data block size 60 50 40 30 20 AvgF1 − score

25 Y Y Y Y Y 0.776

100 Y Y Y Y Y 0.762

150 Y Y Y Y Y 0.758

250 Y Y Y Y Y 0.727

400 Y Y Y Y Y 0.721

450 Y Y Y Y Y 0.721

500 Y Y Y Y Y 0.721

600 Y Y Y Y Y 0.705

700 Y Y Y Y N 0.646

800 Y Y Y Y N 0.657

900 Y Y Y Y N 0.645

Binary classification with 4 qubits
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that requirement. The column “AvgF1 − score” denotes
the mean of the average F1-score metric values computed
over the executions of QUARTA which terminate within the
time limit. The results obtained shed light on the operational
capabilities and limitations of QUARTA. When tasked with
processing input qubit registers nearing 8 (QUARTA16), the
algorithm struggles to complete the task within a few tens
of seconds, even when dealing with portions of data consist-
ing of only a few hundred samples (see Table 1, data block
size=400). This challenge likely arises from the significant
expansion of the parameter space that the optimization pro-
cess must explore. However, QUARTA16 also demonstrates
the ability to achieve good performances, surpassing even
QUARTA8 in certain scenarios (as seen in Table 1 vs Table 2,
data block size=25). This is further confirmed by the results
of the loss function analysis (see Fig. 1). We hypothesize
that this improvement may be attributed to the incorpora-
tion of parameterized entanglements. Conversely, the results
presented in Table 2 indicate that a QUARTA configuration
utilizing half the number of qubits can successfully process
data blocks containing almost one thousand of data instances
within a few tens of seconds, while still maintaining satis-
factory performance levels.

5 Related works

In the realm of quantum computing research, it is crucial
to navigate the challenges and diverse outcomes, especially
when revisiting problems previously tackled by classical
computing. Our work underscores the significance of uti-
lizing classical routines to build a hybrid quantum frame-
work. Although quantum computing has produced both
promising and mixed results, our approach aims to blend
classical methodologies with quantum principles. Hybrid
quantum-classical machine learning methods have recently
gained considerable attention for their ability to combine the
strengths of both classical and quantum computing, offer-
ing more efficient solutions to computationally complex
problems. These methods aim to leverage quantum comput-
ing for specific tasks while relying on classical computing
for others, such as data preprocessing or postprocessing
of results. In a recent study by Houssein et al. (2022),
a hybrid quantum-classical convolutional neural network
model was proposed for prediction based on X-ray images.
The model quantum component involves encoding, random
quantum circuits, and decoding phases. This hybrid model
demonstrated high accuracy, outperforming previous studies
utilizing classical machine learning approaches in sensitiv-
ity and F1-measure. Similarly, in Yang et al. (2021), a hybrid
quantum CNN model was introduced, employing a feder-
ated learning approach to protect models and prevent privacy

failures attacks. Experimental results showed that mod-
els with additional quantum convolution exhibited slightly
improved accuracy compared to baseline classical models.
Furthermore, Chen et al. (2022) presented a hybrid quantum-
classicalmodel of long short-termmemory (LSTM), a type of
recurrent neural network (RNN). Their study compared the
capability and performance of the hybrid model with its clas-
sical counterpart, revealing that the hybrid model converged
faster and achieved better accuracy, albeit under conditions of
noise and decoherence absence. Moreover, Herr et al. (2021)
designed a hybrid quantum-classical approach for genera-
tive adversarial learning, aiming to detect anomalies and
fraudulent transactions. Their model performance, measured
by the F1 score, was comparable to its classical counter-
part. Overall, recent research in hybrid quantum-classical
machine learning methods underscores their potential to
outperform classical machine learning algorithms on spe-
cific tasks, particularly those involving large or complex
datasets. As quantum computing technology advances, fur-
ther progress and the development of more powerful hybrid
quantum-classical algorithms are anticipated.
[R1A2] There have been proposed hybrid approaches also
for the binary classification, the same machine learning task
as investigated in this manuscript. Arthur and Date (2022)
implements a quantum-classical feed-forward neural net-
work by using VQCs as individual neurons. In contrast to the
one proposed here, the architecture has been tested also on
real-world and synthetic data in their whole size and proved
also on quantum devices. This indicates that they operate in
a traditional batch learning setting while we work in con-
tinuous computation. A challenging data scenario has been
investigated in Schetakis et al. (2022) where existing hybrid
solutions have been tested on real quantummachines to learn
binary classifiers in the unbalanced and noisy datasets, like
those in the financial industry. Contrary, the datasets used in
Sect. 4 are balanced and do not present data quality problems.

Incremental learning, often referred to as lifelong learn-
ing, continual learning, or sequential learning, constitutes
a field of research dedicated to devising methodologies for
acquiring knowledge from a perpetually evolving stream of
data encompassing multiple tasks. The literature of classi-
cal computing on the general task of incremental learning
is being a boost with the design of solutions based on neu-
ral models. Specific sub-areas, such as domain-incremental
learning and continual learning, experience the same evolu-
tion, before attention deserved on vectorized-features data
(Leo and Kalita 2024 Parisi et al. 2019) and then on complex
data, like the images and texts (Wang et al. 2024). All these
works are being tested on classical devices and are showing
very good performances in terms of time consumption. This
is an evaluation which we could not perform on the proposed
framework as we considered only simulators. On the other
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hand, at the present status of the quantum devices, the com-
parison in terms of running times with the CC algorithms
would not be practicable.

In the field of quantum machine learning, research on
continual learning remains sparse, relatively recent, and fre-
quently in nascent stages. Situ et al. (2023) focuses on
continual learning corresponding to a sequence of training
sessions each involving a distinct classification tasks. Specif-
ically, the authors center on a sequence of quantum state
classification tasks by employing a variational quantum clas-
sifier whose parameters undergo optimization via a classical
gradient-based optimizer. Drawing inspiration from category
replaymethods, akin to our approach in this study, the authors
advocate for constraining the model updates by projecting
the gradient direction onto the region delineated by previous
task gradients. This is achieved by retaining a portion of the
training data fromprevious tasks, termed as gradient episodic
memory (GEM), upon which gradient descent computations
are performed. However, a drawback of this approach is the
need to compute gradients of previous tasks at each train-
ing iteration. In contrast to our approach, they investigate a
multi-class problem (more than two labels) and concern the
type of complex data of images. Also, the flow of the images
is organized so that some classes can be processed in a data
block and do not present anymore in those future. While
QUARTA does not work on images but vectorized features
and is designed for two class labels.

Still concerning the continual learning, Jiang et al. (2021)
observed that as quantum classifiers encounter new clas-
sification tasks, their performance on previous tasks may
deteriorate. To mitigate this phenomenon, the method of
elastic weight consolidation (EWC) was introduced. EWC
aims to safeguard the parameters crucial for previous tasks
from undergoing significant updates. Numerical experiments
have demonstrated that a quantumclassifier can continuously
learn and adapt to three distinct classification tasks without
suffering from significant forgetting. However, it is worth
noting that this work primarily deals with classical data (e.g.,
MNIST images), which are originally unaffected by data dis-
tribution drift and class label changes but are characterized
by new class labels (tasks). Consequently, changes in the
data characteristics of the same labels may only be partially
addressed. [R1A2] The advantage of that method is that it
does not need to store data instances already processed in pre-
viously training sessions,which is instead the design decision
of the component data replay of QUARTA.

An alternative to EWC is represented byGEM that utilizes
previously processed data stored in memory to modify the
gradient of current data. Indeed, in Jain (2023), the authors
prove that the performance of old data is more likely to
improve as these previous data are revisited during parame-
ter updates. The main difference with the current manuscript
is that these data instances are selected through classical

computing techniques, while we exploit the representation
of Hilbert space and a quantum-based distance to search for
data expressing changes. However, despite the growing inter-
est in applying quantum to handle continuous processing, our
results caution that, to provide a wide range of applications,
we need to take the tradeoffs of accuracy, speed, and the cost
of computing into consideration, as well as the kind of data
the system works with.

6 Conclusions

As the production of actual quantum processors increases,
quantum computing is gradually transcending its status as a
purely theoretical field within computer science. The foun-
dational principles governing QC are now firmly established,
and initial applications underscore the practical relevance of
quantum computational paradigms.

In light of these advancements, much of the current
focus in QC revolves around pinpointing problems that offer
tangible benefits from quantum computation over classical
methods. This is witnessed not only by the attention on areas
where quantum algorithms can achieve a significant speedup
compared to the best-known classical algorithms, but also
to a significant range of applications where quantum meth-
ods to generalize machine learning models efficiently from
limited training data (Caro et al. 2022) and achieve superior
prediction accuracies compared to the classical counterparts
(Mishra et al. 2020). These advancements have ignited opti-
mism regarding the prospect of attaining a tangible practical
advantage in the form of quantum utility (Herrmann et al.
2023).

Incremental learning, or more generally lifelong learn-
ing, represents a category of machine learning tasks focused
on the ability to learn, keep perpetually model capabili-
ties, and eventually adapt them whether the learning context
changes. This a study which does not demand exceptional
computational properties of the quantum devices and that,
theoretically, maywork onNISQ devices. To our knowledge,
there are very few works focused on this machine learning
paradigm, whose main challenges include the unavailability
of the data overall at one time and time-variability of the data
properties.

In this paper, we studied this problem through a computa-
tional solution, called QUARTA, able to learn and adapt the
capabilities of a predictive model represented by a quantum
model and built by means of a quantum circuit. QUARTA
enables the model to work in incremental learning, recog-
nizing changing environments and reacting to drifting data
scenarios while retaining previously assimilated knowledge.

The results demonstrate QUARTA ability to compete with
and, in some conditions, surpass competing models, both
quantum-based and classical-based. They also highlight the
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importance of the number of qubits in the design of the quan-
tum circuit, which can determine predictive performance
improvements and the utility of the method. Additionally,
the experiments underscore the significance of the number
of data instances processed each time for QUARTA to real-
istically function in an incremental learning setting.

[R1A1] Experiments also provide arguments on the
viability of QUARTA in different practical scenarios For
instance, we explored the case study of a spam detection
system for an email service, where QUARTA may support
the system in classifying incoming emails as either “spam”
or “not spam” based on a variety of features, such as the
frequency of certain keywords, the presence of suspicious
links, sender reputation. Unlike traditional machine learning,
where the model is trained on a fixed dataset, emails arrive
continuously, and the model must update in real-time with
availability of access to few historical data. Incoming emails
are accumulated in a container and time-regularly processed
by blocks. Thus, the model is initialized with the first train-
ing data block. Over time, spammers develop new techniques
to bypass traditional spam filters. These might involve using
new types of words or new domains for sending spam emails.
Therefore, as new spam emails with different characteristics
emerge, themodel is retrained incrementally,while including

a representative subset of older spam data. This guarantees
the model is continually adapted to these new spam strate-
gies without forgetting how to detect older types of spam.
Among the several quantum properties, the spam detection
system can benefit from the use of the exponentially growing
n-sized Hilbert space as the addressable feature space.

Future works include exploring machine learning para-
digms such as few-shot learning to facilitate the construc-
tion of a parsimonious set of labeled data, thereby alleviating
the encodingworkload.Another direction involves designing
quantum routines for change detection, potentially lever-
aging quantum parallelism to compute distances among
multiple data instances simultaneously. Finally, considering
more complex classical data may necessitate re-designing
the feature aggregation component to encode, for instance,
the flow of images.

Appendix 1. Quantum circuits employed
in QUARTA

[R2A3] In this section,weprovide a summaryof theQCcom-
ponents implemented in the framework QUARTA. Basically,
these components are involved in either quantum unsu-

Table 3 Quantum operators implemented in the QC components of QUARTA

QC component Formulation Explanation

Data encoding U�(X) = (
Rz(ψ

m)Ry(ψ
m)

)
. . .

(
Rz(ψ

j )Ry(ψ
j )

)
. . .(

Rz(ψ
1)Ry(ψ

1)
)
H |0〉

Adense data encoding technique to build quan-
tum states from classical data described by
the m first selected features finalized to the
component Distance estimation & Prototype
generation

Feature aggregation U�(xi ,xi+1) = (I i ⊗ Ry
i+1(λ)) CXi,i+1 (Ri

z(ω) ⊗
Ri+1
y (φ)) CXi+1,i (I i ⊗ Rz

i+1(−π

2
))|02〉

Construction of new features by aggregation of
pairs of features. The operator compresses the
pair of features on two qubits into one qubit,
so, the information of a pair of quantum states
is conveyed on one of the two qubits

Distance estimation &
Prototype generation

(H1 ⊗ I 2 ⊗ I 3)CSW AP{1}{2,3}(H1 ⊗ I 2 ⊗ I 3) Quantum fidelity is nested in the calculation
of the distance between quantum states encod-
ing classical data when deciding whether data
blocks exhibit changes

Binary classification A(�, λ) = (Ry
i (�0) ⊗ Ry

i+1(�1) ⊗ Ry
i+2(�2) ⊗

Ry
i+3(�3))(CXi+3,i ) ⊗ CXi+2,i+3 ⊗ CXi+1,i+2 ⊗

CXi,i+1)(Ry
i (�4) ⊗ Ry

i+1(�5) ⊗ Ry
i+2(�6) ⊗

Ry
i+3(�7))(CXi+3,i+2 ⊗ CXi,i+3 ⊗ CXi+1,i ⊗

CXi+2,i )|0⊗4〉λ

Template circuit with four-sized qubits and
eight parameters considered to design theVQC
finalized to learn the classification model. It
is organized by two main blocks with single
qubit and parameterized two qubit gates. The
whole VQC has a number of qubit determined
by Feature aggregation

Binary classification A(�, λ) = (Ry
i (�0) ⊗ Ry

i+1(�1) ⊗ Ry
i+2(�2) ⊗

Ry
i+3(�3))(CRXi+3,i (�4) ⊗ CRXi+2,i+3(�5) ⊗

CRXi+1,i+2(�6) ⊗ CRXi,i+1(�7))(Ry
i (�8) ⊗

Ry
i+1(�8) ⊗ Ry

i+2(�10) ⊗ Ry
i+3(�11))(CRXi+3,i+2

(�12) ⊗ CRXi,i+3(�13) ⊗ CRXi+1,i (�14)

⊗ CRXi+2,i+1(�15))|0⊗4〉λ

Template circuitwith four-sized qubits and six-
teen parameters considered to design the VQC
finalized to learn the classification model. It
is organized by two main blocks with single
qubit and parameterized two qubit gates. The
whole VQC has a number of qubit determined
by Feature aggregation
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pervised learning process or quantum supervised learning
process. We report the formulation of each quantum opera-
tor and explain the purpose in Table 3.

Appendix 2. Results on the effectiveness
of feature aggregation

[R2A1]. In addition to the experiments above presented,
we evaluated another variant of QUARTA, referred to as
fm_QUARTA, designed by replacing feature aggregation
with a basic feature mapping technique. This technique
encodes each qubit using the operator Ry(λ)H |0〉, where λ

represents the feature value. The purpose of this variant is to
assess the impact of a quantum-based feature compression
technique.

QUARTA and fm_QUARTA were executed with two dif-
ferent data block sizes per dataset, specifically 250 and 25 for
Ozone and 400 and 50 for Spambase. The change threshold
(τ ) was set at the lowest value of 0.1 and highest value of 5,

one aiming at facilitating model updates, the other one pre-
venting frequent updates. Feature aggregation compresses
8 features into 4. The results of the average F1-score are
reported in Fig. 5. The plots demonstrate the effectiveness
of the proposed solution for pairwise feature encoding, par-
ticularly in scenarios where the threshold τ = 0.1 (0.78
and 0.82 Ozone, 0.727 and 0.78 Spambase): low values of
τ allow to capture also mild changes, resulting in frequent
updates of the model. This happen regardless of whether the
data blocks are large or small. Moreover, the discrepancy
between QUARTA and fm_QUARTA is a bit larger when
τ = 0.1 (0.78 vs 0.73 and 0.82 vs 0.75 for Ozone, 0.727
vs 0.700 and 0.78 vs 0.73 for Spambase) than when τ = 5,
meaning that fm_QUARTA is less sensitive to mild changes.
Both approaches initially utilize identical feature sets, but the
potential advantage of fm_QUARTA, that is, a broader repre-
sentational space for its VQC, transforms into a disadvantage
because the optimizer must minimize the loss function while
dealing with a decoupled number of variational parameters,
unlike QUARTA. Notably, pairing quantum states offers sev-

Fig. 5 Average F1-score values of QUARTA and variant fm_QUARTA computed on the prediction sessions with data block size equal to 250 and
400 (a), 25 and 50 (b). The threshold τ is 0.1 and 5 for both
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eral advantages: (i) it allows for conveying more information
compared to a “flat” feature mapping approach that consid-
ers fewer features, while using the same number of resulting
qubits; (ii) it enables the synthesis of quantum states while
maintaining a high level of discriminative power among the
data; (iii) it exploits better theHilbert space to build encoding
able to discern features with both high variability from those
with marginal drifts. This result confirms the adequacy of
the operator 3 in halving the dimensionality and retaining of
important information, in addition to the one of supporting
convolutions in quantum neural networks Hur et al. (2022).
Clearly, this ability tends to diminish when τ values are
high, as the change detector reveals less changes and the data
blocks contain high variability data, requiring QUARTA to
encode and join features with several degrees of drifting.
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