
Dark Matter Phenomenology: Sterile
Neutrino Portal and Gravitational Portal in

Extra-Dimensions

PhD Thesis

Miguel García Folgado
IFIC - Universitat de València - CSIC

Departamento de Física Teórica

Programa de Doctorado en Física

Under the supervision of

Andrea Donini
Nuria Rius Dionis

Roberto Ruiz de Austri Bazan

Valencia, Marzo 2021





Andrea Donini, Científico titular del Consejo Superior de Investigaciones
Científicas,

Nuria Rius Dionis, Catedrática del departamento de Física Teórica de la
Universidad de Valencia, y

Roberto Ruiz de Austri Bazan, Científico titular del Consejo Superior
de Investigaciones Científicas,

Certifican:

Que la presente memoria, Dark Matter Phenomenology: Sterile Neu-
trino Portal and Gravitational Portal in Extra-Dimensions ha sido
realizada bajo su dirección en el Instituto de Física Corpuscular, centro mix-
to de la Universidad de Valencia y del CSIC, por Miguel García Folgado,
y constituye su Tesis para optar al grado de Doctor en Ciencias Físicas.

Y para que así conste, en cumplimiento de la legislación vigente, presenta en
el Departamento de Física Teórica de la Universidad de Valencia la referida
Tesis Doctoral, y firman el presente certificado.

Valencia, a 10 de Diciembre de 2020,

Andrea Donini Nuria Rius Dionis Roberto Ruiz de Austri
Bazán





Comité Evaluador

Tribunal titular

Dr. Alberto Casas González Universidad Autónoma de Madrid

Dr. Matthew McCullough University of Cambridge/CERN

Dr. Verónica Sanz González Universitat de València

Tribunal suplente

Dr. Arcadi Santamaría Luna Universitat de València

Dr. David García Cerdeño Universidad Autónoma de Madrid

Dr. Geraldine Servant Deutsches Elektronen Synchrotron





A mi familia, amigos y Andrea.
Sin vuestro apoyo incondicional
esta tesis no existiría





It’s a dangerous business
going out your door. You step
onto the road, and if you don’t
keep your feet, there’s no knowing
where you might be swept off to.

J. R. R. Tolkien,
The Lord of the Rings





List of Publications

This PhD thesis is based on the following publications:

Probing the sterile neutrino portal to Dark Matter with γ rays [1],
Miguel G. Folgado, Germán A. Gómez-Vargas, Nuria Rius and Roberto
Ruiz De Austri.
JCAP 1808 (2018) 002, [arXiv:1803.08934].

Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions [2],
Miguel G. Folgado, Andrea Donini and Nuria Rius.
JHEP 01 (2020) 161, [arXiv:1907.04340].

Gravity-mediated Dark Matter in Clockwork/Linear Dilaton Extra-
Dimensions [3],
Miguel G. Folgado, Andrea Donini and Nuria Rius.
JHEP 04 (2020) 036, [arXiv:1912.02689].

Kaluza-Klein FIMP Dark Matter in Warped Extra-Dimensions [4],
Nicolas Bernal, Andrea Donini, Miguel G. Folgado and Nuria Rius.
JHEP 09 (2020) 142, [arXiv:2004.14403].

i

https://doi.org/10.1088/1475-7516/2018/08/002
http://arxiv.org/abs/arXiv:1803.08934
https://doi.org/10.1007/JHEP01(2020)161
http://arxiv.org/abs/arXiv:1907.04340
https://doi.org/10.1007/JHEP04(2020)036
http://arxiv.org/abs/arXiv:1912.02689
https://doi.org/10.1007/JHEP09(2020)142
https://arxiv.org/abs/2004.14403


Other works not included in this thesis are:

On the interpretation of non-resonant phenomena at colliders [5],
Miguel G. Folgado and Veronica Sanz.
[arXiv:2005.06492].

Spin-dependence of Gravity-mediated Dark Matter in Warped Extra-
Dimensions [6],
Miguel G. Folgado, Andrea Donini and Nuria Rius.
[arXiv:2006.02239].

Exploring the political pulse of a country using data science tools [7],
Miguel G. Folgado, Veronica Sanz.
[arXiv:2011.10264].

Kaluza-Klein FIMP Dark Matter in Clockwork/Linear Dilaton Extra-
Dimensions [8],
Nicolas Bernal, Andrea Donini, Miguel G. Folgado and Nuria Rius.
[arXiv:2012.10453].

ii

https://arxiv.org/abs/2005.06492
https://arxiv.org/abs/2006.02239
https://arxiv.org/abs/2011.10264
https://arxiv.org/abs/2012.10453


Abbreviations

ΛCDM The standard cosmological model

AdS Anti-de-sitter

ATLAS Spin dependent

ALPs Axion Like Particles

BBN Big Bang nucleosintesis

BE Bose-Einstein

BSM Beyond the standard model

CC Electroweak Charged Currents

CDM Cold dark matter

CERN Conseil EuropÃľen pour la Recherche NuclÃľaire

CFT conformal field theories

CMB Cosmic Microwave Background

CMS Spin dependent

CNNS coherent neutrino-nucleus scattering

CKM Cabibbo-Kobayashi-Maskawa matrix

COBE Cosmic Background Explorer

CP Charge-conjugate Parity

CPT Charge-conjugate Parity time

iii



CW/LD Clockwork/Linear Dilaton

DD Direct Detection

DRU Differential rate unit

dSphs dwarf spheroidal galaxies

ED Extra-Dimensions

EW Electroweak

EWSB Electroweak symmetry breaking

FD Fermi-Dirac

FIMP Feebly Interactive Massive Particle

FLRW Friedman-Lemaître-Robertson-Walker Metric

GC Galactic Center

GCE Galactic Center γ-ray Excess

GIM Glashow-Iliopoulos-Maiani mechanism

HDM Hot dark matter

ID Indirect Detection

KK Kaluza-Klein

LED Large Extra-Dimensions

LHC Large hadron collider

LSB low surface brightness

NC Electroweak Neutral Currents

NFW Navarro, Frenk and White

PMNS Pontecorvo-Maki-Nakagawa-Sakata

QED Quantum Electrodynamics Detection

QCD Quantum Chromodynamics

iv



RS Randall-Sundrum

SD Spin dependent

SI Spin independent

SIDM Self-interactive dark matter

SM Standard Model

SSB Spontaneous Symmetry Breaking

SUSY Supersymmetry

UED Universal Extra-Dimensions

VEV Vacuum Expectation Value

WDM Warm dark matter

WIMP Weakly Interactive Massive Particle

WMAP Wilkinson Microwave Anisotropy Probe

v





List of Figures

1.1. Standard model of particles . . . . . . . . . . . . . . . . . . 4

1.2. Representation of the Spontaneous symmetry Breaking . . . 13

1.3. Muon decay channel µ→ νµ + e− + ν̄e . . . . . . . . . . . 16

2.1. Results obtained by Edwin Hubble comparing the measure-
ments about the radial velocity of the galaxy with the red
shift of 22 different astronomical clusters . . . . . . . . . . . 26

2.2. Thermal history of the Universe . . . . . . . . . . . . . . . . 30

2.3. Cosmic microwave background (CMB) . . . . . . . . . . . . 33

3.1. Galaxy rotation curve of NGC 2903. . . . . . . . . . . . . . 36

3.2. Bullet Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3. Energy and matter content of the Universe . . . . . . . . . . 39

3.4. Examples of structure formation of hot, warm and cold Dark
Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5. DM halo profile models . . . . . . . . . . . . . . . . . . . . . 44

3.6. Freeze-out and Freeze-in couplings to obtain the correct DM
relic abundance . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7. Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1. Degrees of freedom in energy g? and entropy g?s. . . . . . . . 56

4.2. Freeze-out and Freeze-in examples . . . . . . . . . . . . . . . 67

vii



5.1. Dark Matter detection techniques. . . . . . . . . . . . . . . . 71

5.2. Bounds from Dark Matter Direct Detection Spin Independent
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3. SM spectra generated by DM . . . . . . . . . . . . . . . . . 81

6.1. Large Extra-Dimensions 5D space-time . . . . . . . . . . . . 92

6.2. Randall-Sundrum 5D space-time . . . . . . . . . . . . . . . . 95

6.3. ADS/CFT correspondence . . . . . . . . . . . . . . . . . . . 99

6.4. Clockwork/Linear Dilaton 5D space-time . . . . . . . . . . . 100

7.1. Results from Probing the sterile neutrino portal to Dark Mat-
ter with γ-rays. . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2. Results from Gravity-mediated Scalar Dark Matter in Warped
Extra-Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 110

7.3. Results fromGravity-mediated Dark Matter in CW/LD Extra-
Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4. Results from Kaluza-Klein FIMP Dark Matter in Warped
Extra-Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 116

8.1. Modelo Estándar de las interacciones fundamentales . . . . . 312

8.2. Estatus actual de los experimentos de detección directa. . . . 322

8.3. Resultados del primer artículo. . . . . . . . . . . . . . . . . . 331

8.4. Resultados del segundo artículo. . . . . . . . . . . . . . . . . 335

8.5. Resultados del tercer artículo. . . . . . . . . . . . . . . . . . 339

8.6. Resultados del cuarto artículo. . . . . . . . . . . . . . . . . . 341

viii



List of Tables

1.1. Properties of SM particles. . . . . . . . . . . . . . . . . . . . 5

1.2. Charge of the different SM fermionic components under the
gauge fields of the SM SU(3)C × SU(2)L × U(1)Y . . . . . . . 9

2.1. Cosmological parameters . . . . . . . . . . . . . . . . . . . . 34

3.1. Dark Matter halo profiles. . . . . . . . . . . . . . . . . . . . 43

3.2. Fitted parameter of the Dark Matter halo profiles. . . . . . . 44

5.1. Matrix element of the axial-vector current in a nucleon. . . . 75

5.2. Contributions of the light quarks to the mass of the neutron
and proton. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3. Direct Detection experimental landscape. . . . . . . . . . . . 78

5.4. Velocity dependence of the cross-section according to the col-
lision angular momentum. . . . . . . . . . . . . . . . . . . . 80

5.5. Propagation coefficients of electrons and positrons through
the galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6. Propagation coefficients of protons and antiprotons through
the galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1. LED bounds from deviations of the Newton’s law. . . . . . . 94

ix





Preface

The Standard Model of Fundamental Interactions (SM) represents one
of the most precise theories in physics. Among the predictions of the
SM we find, for instance, the anomalous magnetic moment of the elec-
tron ae = 0.001159652181643(764) [9, 10]. This prediction agrees with the
experimental results to more than ten significant digits, the most accurate
prediction in the history of physics. However, nowadays we have several
evidences that the SM only explains 5% of the matter content of the Uni-
verse. The other 95% are composed by the so-called Dark Energy and Dark
Matter. As their names suggest, the nature of these two components of the
energy/matter content of the Universe is still unclear and represents one of
the most important challenges for the particle physicists. In this Thesis we
have focused in the study of the phenomenology of one of these mysterious
components of the Universe, the Dark Matter. Although we have many
evidences of its existence, this new type of matter has not been detected
yet. As a consequence, the landscape of the models that can explain the
Dark Matter properties is huge. In the present work we propose and study
several Dark Matter models, setting limits by using experimental results.

This Thesis is organized in three parts: introduction (Part I), scientific
research (Part II) and Resumen de la Tesis (Part III). First, in Part I
we provide an overview of the current status of the Dark Matter phys-
ics: Chapter 1 explains the fundamental properties of the Standard Model,
showing its different open problems. In Chapter 2 we review the standard
cosmological model ΛCDM. Chapter 3 summarizes the fundamental prop-
erties and evidences of Dark Matter. Chapter 4 deals with the tools needed
to understand the thermal evolution of cold relics, which plays a central
role in this Thesis. In Chapter 5 we review the Dark Matter experimental
landscape, focusing in Direct Detection and Indirect Detection. Chapter
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6 discusses the fundamental tools to understand extra-dimensional models.
To conclude, in Chapter 7 we summarize the most important results of the
publications that compose this Thesis. In Part II we present a collection of
the publications done during the research.

Finalmente, la Parte III consiste en un resumen de la Tesis en español.
Este resumen está compuesto por dos partes: en la primera parte se explican
de forma general las características, evidencias, etc. de la Materia Oscura,
mientras que en la segunda parte se resumen los artículos que componen la
presente Tesis.
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Chapter 1

Standard Model of Particles:
A Brief Review

Humankind have always tried to understand the great mysteries of the
Universe, as well as those of the matter that surrounds us. The Greeks were
the first to try to model nature by postulating that all forms of matter can be
understood starting from four fundamental elements: water, earth, fire and
air. It took thousands of years to refine this description. In the 17th century
the first definition of a chemical element was made and after two centuries
(1869) the periodic table of the elements was published, which order them
according to their chemical properties, with a number of elements very
similar to that we know today.

The high number of elements that were known at the beginning of the
20th century led us to think that there had to be a more elementary un-
derlying structure that we did not understand. It was finally Niels Bohr
who first proposed the current atomic theory [12–14], in which matter was
explained by electrons, protons, and subsequently neutrons. This simplified
theory was refined over the years, giving birth to in the Standard Model of
Fundamental Interactions (SM).

The model accurately describes nature at the microscopic level using a
total of twelve elementary particles that constitute matter at the funda-
mental level and three force fields. The gravitational field is excluded from

3
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Figure 1.1: Standard model of particles: Purple, green and red particles represents,
respectively, quarks, leptons and gauge bosons. The yellow particle represents the Higgs
boson. Image taken from Ref. [11].

this description since, to this day, the principles of the quantum world and
the theory of General Relativity have not been reconciled.

1.1. Particle Content

The Standard Model of particles [15–25] is a relativistic quantum field
theory with gauge symmetry SU(3)C × SU(2)L × U(1)Y (in the next sec-
tion we provide a quick justification for the choice of these groups). The
model describes with great precision the strong, weak and electromagnetic
interactions through the exchange of different spin-1 fields, which constitute
the gauge bosons of the theory. The symmetry group SU(3)C is the one
associated with strong interactions, while SU(2)L×U(1)Y is the symmetry
group of the Electroweak Theory, that unifies electromagnetic and weak
interactions.

The fundamental constituents of matter are fermions, described by the
fermionic sector of the Standard Model. It is made up of quarks and
leptons, both types of particles separated into three flavour families. Quarks
are charged under SU(3)C . As a consequence, each quark appears in the
model in three different colours. Leptons can be separated into two kinds of
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Table 1.1: Properties of SM particles. Idea taken from [46]. The different data has
been extracted from [47]. Up, down and strange quark masses are estimates of so-called
current quark masses. On the other hand, charm and beauty quark masses are the
running masses, while the top quark mass comes from direct measurements.
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particles: charged leptons and neutrinos (the SM predicts zero mass for the
neutrinos). The Standard Model is a chiral gauge theory, in the sense that
it treats differently particles with right- and left-handed chiralities, group-
ing the right-handed in singlets and the left-handed in doublets under the
symmetry group SU(2)L. The properties of all these particles are collected
in the Review of Particle Physics [47], published and reviewed annually by
the Particle Data Group (PDG). To date, no evidence of the existence of
right-handed neutrinos has been found, so that they are not included in the
model:

1st Family : L1 ≡

 νe

e−


L

; e1 ≡ e−
R

; Q1 ≡

 u

d


L

; U1 ≡ uR ; D1 ≡ dR ,

2nd Family : L2 ≡

 νµ

µ−


L

; e2 ≡ µ−
R

; Q2 ≡

 c

s


L

; U2 ≡ cR ; D2 ≡ sR ,

3rd Family : L3 ≡

 ντ

τ−


L

; e3 ≡ τ−
R

; Q3 ≡

 t

b


L

; U3 ≡ tR ; D3 ≡ bR .

The different interactions are mediated by spin-1 particles, the so-called
gauge bosons. The electromagnetic and strong interactions are mediated
by the photon γ and the gluon Ga (with a = 1, ..., 8), respectively, and
have an infinite range of interaction, due to the zero mass of the mediators.
The weak interactions are mediated by the massive W± and Z bosons; due
to the mass of the mediators the weak interaction is a short-range force.
Eventually, the only spin-0 particle in the model is the Higgs boson, the
most recently discovered components of the SM. The interaction of the
Higgs field with the rest of the particles explains the mass generation in
the SM. The different properties of particles and mediators of the SM are
collected in Tab. 1.1.
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1.2. Electroweak Unification: The Election
of SU(2)L × U(1)Y

Having understood the components of the Standard Model that we ob-
serve in experiments, we will try to establish the theoretical framework in
which the interactions between the different fermions take place. In order
to do this, we must first talk about the choice of the symmetry group.

The description of the weak interactions was one of the great problems of
the second half of the 20th century. At that moment, only one gauge theory
was known: Quantum Electrodynamics (QED) [48–54] that describes the
electromagnetic interactions. The structure of QED is very simple, as the
gauge group is U(1), the only mediator is the photon. Its simplicity allows
to point out clearly two important characteristics of every gauge theory: on
the one hand, the interaction is composed by a gauge field times a fermionic
current; on the other hand, the associated charge in QED is the symmetry
group generator. However, the observation of the parity violation [55, 56]
makes weak interactions totally different from QED.

The election of SU(2) to describe a gauge theory of the weak interaction
seems logic: experimentally, we observe three gauge bosons (W±, Z0) and
SU(2) has three generators. The weak interaction between charged leptons
and neutrons would be described by the Lagrangian

L ∝ (JµW µ + h.c) , (1.1)

with
Jµ ≡ ν̄eγµ(1− γ5) e , (1.2)

where Jµ is the weak current and γµ and γ5 are Dirac matrices1. The gauge
bosons in this group are denoted as W µ

i = (W µ
1 ,W

µ
2 ,W

µ
3 ). This description

has several problems, starting with the fact that the term with W3 is not
electrically neutral. On the other hand, the three charges of this Lagrangian
(T1, T2, T3) do not form a closed algebra.
1There are many books where it is possible to find a complete description of the algebra
of these matrices [57,58], known as Clifford Algebra.



8 Chapter 1. Standard Model of Particles: A Brief Review

SU(2) can not explain the weak interaction since mZ 6= mW , but
SU(2) × U(1) can explain it2 (at the same time that unifies it with the
electromagnetic interaction!). The U(1) group of this new theory is dif-
ferent to the U(1) of QED. The conserved charge in this case is not the
electrical charge Q. The gauge boson of this new U(1) symmetry group is
denoted as Bµ. In order to obtain zero electrical charge for all Lagrangian
terms, at the same time that it mixes charged leptons and neutrinos, a
complicate structure that differentiate between left- and right-handed fields
is needed. The left-handed fields are charged under the SU(2) while the
right-handed fields are neutral under this group (for this reason the group
is labelled as SU(2)L). This charge is the so-called weak isospin, T3. On
the other hand, the charge of the new U(1) group Y receives the name of
hypercharge and is related with Q and T3 by Y = Q− T3.

The unification of QED and the weak interactions receives the name of
the Electroweak Theory [15–17].

1.3. Quantum Chromodynamics (QCD):
The Strong Interaction Gauge Group

The gauge theory that describes the strong interactions is called
Quantum Chromodynamics (QCD). The fundamental structure of QCD is
similar to the QED structure, both are vector theories: left- and right-
handed representations are the same. Such as in the QED case, QCD
presents a conserved charge called colour. The particles that have colour
charge in the SM are the quarks while QCD mediators are the gluons, which
contrary to the photon also have color. Despite the similarities, QCD has
two main properties that makes it totally different to QED. On the one
hand, the theory presents color confinement: it is impossible to observe free
particles with colour charge. On the other hand, the theory has asymptotic
freedom: discovered by David Gross [60] and Frank Wilczek [61] in 1973,
2Historically, the election of the group was not clear until the observation of the Z boson
mass. If the mass of the three mediators would have been equal, mZ = mW , the gauge
group O(3) [59] could have explained the weak interaction. However, the discovery
that mZ and mW are related via the Weinberg angle was the key to understand that
SU(2)× U(1) was the correct gauge group.
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Particle Name Field SU(3)C × SU(2)L × U(1)Y
Quarks left-handed Qα (3, 2, 1/6)

Quarks right-handed Uα (3, 1, 1/6)

Dα (3, 1,−1/3)

Lepton left-handed Lα (1, 2,−1/2)

Lepton right-handed eα (1, 1,−1)

Table 1.2: Charge of the different SM fermionic components under the gauge fields of
the SM SU(3)C × SU(2)L × U(1)Y . In all fields α = 1, 2, 3 represents the family.

this property can be described as a reduction in the strength of interactions
between quarks and gluons, going from low to high-energy. This two prop-
erties makes Quantum Chromodynamics one of the most complex theories
in particle physics, as at low energies the relevant degrees of freedom are not
quarks and gluons (that are confined) but colourless mesons and baryons.
A complete description of this theory can be found in Ref. [62].

Until the present day, the Electroweak Theory and QCD have not been
properly unified. However, both theories can be grouped under the simple
group:

G = SU(3)C × SU(2)L × U(1)Y , (1.3)

the gauge symmetry group of the Standard Model. The different charges of
the right- and left-handed fermionic fields under the electroweak symmetry
group are summarized in Tab. 1.2.

1.4. Standard Model Lagrangian without
masses

In the previous section we have established the gauge symmetry group
of the theory. The gauge fields of SU(2)L×U(1)Y areW µ

i = (W µ
1 ,W

µ
2 ,W

µ
3 )

and Bµ, while the QCD gauge boson is the gluon Gµ
a , where (a = 1, ..., 8).

It is very common to distinguish between two sectors to describe the SM
Lagrangian: the gauge sector, that describes the interactions between the
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different gauge fields, and the fermionic sector, that describes the matter
Lagrangian.

The Lagrangian that describes the gauge sector can be written as:

Lkin,gauge = −1
4G

a
µνG

µν
a −

1
4W

i
µνW

µν
i −

1
4BµνB

µν , (1.4)

where, from the gauge fields, the following tensors have been defined

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν a, b, c = 1, ..., 8 ;

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν i, j, k = 1, 2, 3 ;

Bµν = ∂µBν − ∂νBµ ,

(1.5)

being (gs, g, g′) the different couplings of each symmetry group of the SM,
SU(3)C , SU(2)L and U(1)Y , respectively. In the above expressions fabc and
εijk are the antisymmetric structure constants of the SU(3)C and SU(2)L
gauge groups and are defined through the commutators of the different
group generators


[λa, λb] = ifabcλc ,

[σi, σj] = 2iεijkσk ,
(1.6)

where λ and σ are the Gell-Mann and Pauli matrices.

The Lagrangian that describes the fermionic content of the Standard
Model can be written as

Lkin,fermions = i
∑
α

(
Q̄αγ

µDµQα + Ūαγ
µDµUα + D̄αγ

µDµDα

+ L̄αγ
µDµLα + ēαγ

µDµeα
)
, (1.7)

where the sum is over the three flavour families. Dµ is the covariant deriv-
ative that preserves the gauge invariance of the Lagrangian and γµ are the
Dirac matrices. The covariant derivative can be written as

Dµ ≡ ∂µ − igs
λa
2 G

a
µ − ig

σi
2 W

i
µ − ig′Y Bµ , (1.8)
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where the interaction with a given gauge boson arises only if the matter
field is charged under the corresponding group.

With the Lagrangian described in this section, the particle content of
the SM is fixed. The problem with this description is that the SM does
not accept the existence of masses for any field. On the one hand, left-
and right-handed fermions are different with respect to the SU(2)L gauge
group. This fact makes it impossible to write gauge invariant mass terms
for the fermions in the Lagrangian. On the other hand, any mass term for
the gauge fields is not gauge invariant. As a consequence, all gauge and
fermionic fields are massless in the described theory. If the weak theory did
not exist, this issues would not affect the description of QED and QCD: in
both theories, left- and right-handed representations of the fermions fields
are the same and the mediators (gluons and photons) are massless. However,
the SU(2)L description of the weak interaction and the fact that the range
of this interaction is finite (which implies massive mediators) points out a
problem of the Lagrangian in Eq. 1.4 and 1.7.

In order to understand the problem with the fermion masses we must re-
member the structure of the electroweak interaction and the different treat-
ment of the right-handed (singlets of SU(2)L) and left-handed (doublets of
SU(2)L) fields. The mass terms usually have the form

mψψ̄ψ = mψ

(
ψ†LψR + ψ†RψL

)
. (1.9)

As a consequence of the different representation of left- and right-handed
fields under the SU(2)L group, Eq. 1.9 can not be part of the Lagrangian
because it explicitly breaks SU(2)L invariance. For this reason, in Eq. 1.7
these kind of terms are not present.

1.5. The Higgs Mechanism

The scalar sector was the last stone added to the SM at the turn of the
beginning of the 21st century. The gauge bosons of the Electroweak Theory
have mass. However, gauge invariance forbids explicit mass terms in the
Lagrangian. The solution to this problem was proposed by Peter Higgs,



12 Chapter 1. Standard Model of Particles: A Brief Review

Robert Brout, Francois Englert, Gerald Guralnik, Carl Richard Hagen and
Tom Kibble in 1962 and developed in what is currently known as the Higgs
Mechanism [18–21].

The Higgs Mechanism is based on the idea of the Spontaneous Symmetry
Braking (SSB). The symmetry that we have to break is the electroweak
symmetry, that has four generators, or four gauge bosons. The final four
bosons have to be (W±

µ , Z
0
µ) and Aµ (the gauge field of QED, the photon),

of which three have non-zero mass. On the one hand, the Electroweak
Theory mixes the weak neutral currents with the hypercharge one; on the
other hand, we know that QED has only one generator. In other words, the
Higgs Mechanism must break the electroweak symmetry to QED:

SU(2)L × U(1)Y −→ U(1)EM . (1.10)

The idea of the mechanism consists in to add a new scalar field with a non-
zero vacuum value that breaks the symmetry, giving masses to the fermions
and gauge fields. The question now is, how must be the structure of this
new field?

Before starting to describe the Higgs Mechanism it is important to un-
derstand the meaning of SSB. According to the Noether theorem [63], each
Lagrangian symmetry implies a conserved charge. This theorem was pro-
posed for classical mechanics and is totally valid in quantum mechanics and
quantum field theory. However, there are two different ways to realize the
theorem in Nature. On the one hand, the most common one is to assume
that the vacuum is symmetric under the associated transformation (if Q
represents the charge operator, then Q|0〉 = 0). This quantization mech-
anism is known as Wigner-Weyl quantization [64] and the symmetries that
describes are called exact symmetries. On the other hand, if the vacuum
state is not symmetric under some Lagrangian symmetry (Q|0〉 6= 0) we say
that the symmetry is spontaneously broken. This case is known as Nambu-
Goldstone quantization [65, 66] and its most relevant consequence is the
prediction of massless bosons associated with the broken symmetry, known
as Goldstone bosons3. More concretely, for each broken generator of the
theory a new Goldstone boson appears. Fig. 1.10 shows a representation
3The prediction is known as Goldstone theorem.
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of the implications of this kind of symmetries. Despite the fact that the
potential is symmetric under a certain transformation, its vacuum state is
not (it presents a non-zero expectation value).

The Higgs Mechanism breaks three generators of the original Elec-
troweak Theory. In order to break the Electroweak Theory as in Eq. 1.10,
according to the Goldstone theorem, three massless real scalar fields appear.
These fields are eaten by the gauge bosons of the Electroweak Theory, be-
coming on its longitudinal degrees of freedom and providing masses for the
particles of the SM. One of this new real scalar fields takes a non-zero va-
cuum expectation value (VEV), providing the structure for the mass terms
of the Lagrangian. This field must be electrically neutral. The reason is
easy: the electromagnetism is an exact symmetry of the vacuum and, as a
consequence, the field that takes the VEV cannot be charged under U(1)EM.

Figure 1.2: Representation of the Spontaneous symmetry Breaking.

As the theory does not allow terms like Eq. 1.9 for the fermions, it is
necessary that the new field couples to the left-handed doublets of SU(2)L
to generate this kind of mass terms. The minimal candidate that fulfills all
requirements is

Φ =

 Φ+

Φ0

 =


Φ+

1√
2

(v + φ1 + iφ2)

 , (1.11)

where the Φ+ is a complex scalar field, φ1 and φ2 are real scalar fields and
v is the VEV of the Higgs field. The charges of this field under the gauge
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groups of the SM SU(3)C × SU(2)L × U(1)Y are (1, 2, 1/2). The scalar
sector of the Lagrangian of the SM takes the form

Lscalar = (DµΦ)†(DµΦ)† − µ2
ΦΦ†Φ− λ4(Φ†Φ)2 . (1.12)

If the mass of this new field is imaginary (µ2
Φ < 0) there will be a VEV

different from zero

〈Φ〉 =

 0

v/
√

2

 =


0√
−µ2

Φ
2λ4

 (1.13)

A clever way to break the symmetry is to use the Kibble parametrization
[21]

Φ = exp
i ~σ2 ·

~θ

v




0

H + v√
2

 , (1.14)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices, ~θ = (θ1, θ2, θ3) are the three
real fields (Goldstone bosons) that will be absorbed by gauge bosons after
the SSB and H the massive field responsible for the SSB (Higgs boson).
Applying the corresponding gauge transformation to Eq. 1.14 the scalar
doublet takes the form

Φ =


0

H + v√
2

 . (1.15)

In July of 2012, the hypothesis of the Higgs Mechanism was confirmed
with the discovery at CERN, simultaneously by the LHC experiments AT-
LAS [44] and CMS [45], of a new particle with mass mH = 125.3± 0.4 GeV
that coincides in properties with the boson mediator of the Higgs field (a
spin-0 particle with positive parity). The data from CDF and D0 collabor-
ations of the Tevatron experiment at Fermilab confirmed the discovery [67].
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1.5.1. Gauge Bosons Masses

The mass terms of the gauge fields come from the derivative terms of
Eq. 1.12. If we consider the electroweak structure of Eq. 1.8 the derivative
term of the Higgs potential is:

(DµΦ†)(DµΦ) =
∣∣∣∣∣
(
ig
~σ

2
~Wµ + ig′

2 Bµ

)
Φ
∣∣∣∣∣
2

= (v +H)2
(
g2

4 W
+
µ W

µ− + g2

8 cos2(θW )ZµZ
µ

)
,

(1.16)

where the mass states are given by

W± ≡ 1√
2

(W µ
1 ∓ iW µ

2 ) (1.17)

and  Aµ

Zµ

 ≡

 cos(θW ) sin(θW )

− sin(θW ) cos(θW )


 Bµ

W µ
3

 , (1.18)

where Aµ represents the gauge field of the photon while (W±
µ , Zµ) are the

weak bosons, that acquire masses after the SSB thanks to the VEV of the
Higgs field.

The mixing angle between (Bµ,W µ
3 ) and (Aµ, Zµ) is defined as a com-

bination of the g and g′ couplings to the gauge groups

cos(θW ) = g/
√
g2 + g′2 , (1.19)

and the masses of the gauge bosons are given by the different quadratic
terms in Eq. 1.16:



mW = 1
2gv ,

mZ = 1
2v
√
g2 + g′2 ,

mA = 0 .

(1.20)
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The difference mW 6= mZ was the key to understand that SU(2) × U(1)
is the gauge group of the weak interaction. This fact ends the discussions
about the possible description of the weak theory using O(3).

1.5.2. Vacuum Expectation Value and Higgs Boson
Mass

The mass of the Higgs boson H is given by the non-derivative terms in
Eq. 1.12:

mH =
√

2λ4 v . (1.21)

The question now is, how to compute the VEV? The value of this constant is
computed using the muon decay channel µ→ νµ + e− + ν̄e. The prediction

W 

e 

µ 

− 

ν 

ν 

e − 

µ − 

Figure 1: µ-decay diagram.

W 

e 

µ 

+ 

ν 

ν 

− µ 

e − 

Figure 2: νµe
− → µ−νe through W exchange.

Eq. (2.11) is then obtained with the identification

g2

8M2
W

=
GF√

2
. (3.4)

In order to have a perturbative coupling, i.e. g < 1, the massive intermediate boson should
satisfy MW < 123 GeV.

The interaction (3.2) gives rise to a better high-energy behaviour for νl− → νl−,

σ(νµe
− → µ−νe)

s→∞∼ G2
FM2

W /π . (3.5)

Although there is still a violation of unitarity, the cross-section does not grow any longer with
energy. However, the unphysical rise of the cross-section reappears now in those processes
where longitudinal W bosons are produced:

σ(νeν̄e → W+
L W −

L )
s→∞∼ s ; σ(e+e− → W+

L W −
L )

s→∞∼ s . (3.6)

The origin of the problem can be better understood analyzing the 1–loop box amplitude
T (e+e− → W+W − → e+e−), where the W fields appear virtually [the absorptive part of
this amplitude is related to the e+e− → W+W − production process]. The bad high-energy
behaviour stems from the qµqν piece of the W propagators, which gives rise to a quadratically
divergent loop integral [T ∼ ∫

d4q/q2 = ∞]. A similar diagram exists in QED, with photons
instead of W ’s; however, the conservation of the electromagnetic current, qµJ

µ
em = 0, makes

those qµ contributions harmless. The absence of this problem in QED is related to the associated
gauge symmetry [see Sect. 4], which requires a massless photon.

A possible way out would be the existence of an additional contribution to the W+W −

production amplitudes, which cancels the rising of the cross-section at large energies. In fact,
since the W ’s have electric charge, one should also consider the s-channel contribution e+e− →
γ → W+W −, which gives rise to a similar σ ∼ s behaviour. The bad high-energy behaviour
could be eliminated from the sum of the weak and electromagnetic amplitudes, provided that
the weak coupling g and the electromagnetic coupling e are related; this points towards some
kind of electroweak unification. However, even if one succeeds to realize this cancellation, the
problem still remains in the νeν̄e → W+W − production amplitude, because the photon does
not couple to neutrinos.

3.2 Neutral currents

The high-energy cancellation can be realized introducing an additional neutral intermediate
boson Z, which couples both to neutrinos and charged leptons. By cleverly choosing the Z

5

Figure 1.3: Muon decay channel µ → νµ + e− + ν̄e. The prediction of the effective
weak theory of this decay, compared with the result of the Electroweak Theory, was used
to calculate the VEV.

of the Electroweak Theory is proportional to g2/(8m2
W ), while the prediction

of the effective weak currents (where the gauge boson has been integrated
out) is GF/

√
2, where GF = 1.17×10−5 GeV represents the Fermi constant.

Both prediction must be the same and, as a consequence,

v = 1√√
2GF

w 246GeV . (1.22)

1.5.3. Fermion Masses

As already commented, the SM does not allow mass terms for the fer-
mion particles. The reason is the difference between the left- and right-
handed fields, doublets and singlets of SU(2), respectively. One can ana-
lyse the problem using the hypercharge. All terms in the Lagrangian must
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have zero hypercharge. However, fermionic mass terms have non-zero hy-
percharge


Y (Q̄1D1) = −1/2 ,

Y (D̄1Q1) = 1/2 .
(1.23)

Now, in order to give mass to the gauge bosons Z and W± we have
introduced a new scalar field. The hypercharge of the Higgs field is irrelevant
to give mass to the gauge bosons as only the combination g′ Y is relevant.
However, we can choose Y (Φ) = 1/2 to solve at the same time the fermion
mass problem. Therefore, terms like Q̄iΦDi or Q̄iΦ̃Ui (where Φ̃ = iσ2Φ∗)
have zero hypercharge and can be part of the Lagrangian. After the SSB,
when the Higgs field takes a VEV, mass terms are generated automatically
in the Lagrangian

Q̄1ΦD1 + h.c. −−→
SSB

(ū1 d̄1)L

 0

v/
√

2

D1 + h.c.

= v√
2

(d†LdR + d†RdL) = v√
2
d̄d . (1.24)

Once Y (Φ) is fixed to 1/2, terms that mix leptons and quarks are not
allowed because the hypercharge continues to be different to zero.

One problem of the SM is that we have three different flavour families
of fields. This makes it more difficult to write the mass terms. Terms
that mix leptons and quarks have non-zero hypercharge and are forbidden,
but terms that mix quarks from different flavour families can be part of the
Lagrangian, and the same happens for the leptonic terms. As a consequence,
the most general Lagrangian that we can build is

LY = −L̄α Y L
αβ Φ eβ − Q̄α Y

d
αβ ΦDβ − Q̄α Y

u
αβ Φ̃Uβ + h.c. , (1.25)

where Yαβ are the (3× 3) Yukawa matrices.
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After the SSB, the Yukawa Lagrangian takes the form:

LY = −H + v√
2

(
ēLα Y

L
αβ eRβ + ūLα Y

u
αβ uRβ + d̄Lα Y

d
αβ dRβ + h.c.

)
. (1.26)

The Yukawa matrices are not diagonal in general. In order to obtain the
mass and interaction eigenstates it is necessary to diagonalise them. First, a
redefinition of the fields is needed. For instance, for the leptonic left-handed
doublet, L → UL L. At the end, we need five matrices belonging to global
SU(3) flavour group, one per field in Tab. 1.2: (UL,UQ,Ue,Uu,Ud). Now, we
can fix these matrices in order to diagonalise the different Yukawa matrices.
For the charged leptons it is an easy task: ML ≡ U †LY LUe, we can always
find two SU(3) matrices that diagonalise the Yukawa matrix Y L.

The case of the quarks is more complicate. We can find two matrices
to diagonalise Y u matrix Mu ≡ U †QY uUu. The problem appears when we
try to do the same for the Y d matrix, M̃d ≡ U †QY dUd: the UQ matrix has
already been fixed to diagonalise Y u and, as a consequence, it is impossible
to diagonalise simultaneously the two Yukawa matrices of the quarks. How-
ever, we can chose Ud in order to get M̃d = M̃†

d.

1.5.4. Cabibbo-Kobayashi-Maskawa (CKM) matrix

While the zero mass of the neutrinos always allows to transform the
leptonic fields to obtain a diagonal basis, in the quark sector up and down
types fields are massive. As a consequence, it is impossible to diagonalise
both kind of fields simultaneously keeping the Lagrangian invariant. How-
ever, it is possible to introduce a rotation matrix to obtain Y d diagonal
keeping the gauge invariance. After the diagonalization of Y L and Y u,
Eq. 1.26 can be written as

LY = −
(

1 + H

v

) (
ēLαML

αβ eRβ + ūLαMu
αβ uRβ + d̄Lα M̃d

αβ dRβ + h.c.
)
,

(1.27)
where it has been reabsorbed a factor v/

√
2 in the definition of the

matrices. The diagonal matrices are Mu = diag(mu,mc,mt) and ML =
diag(me,mµ,mτ ), while M̃d is an hermitian matrix. One can always find a
V matrix that diagonalise M̃d. If we assume the presence of this V matrix
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we can write M̃d = VMdV †, where Md = diag(md,ms,mb). In order to
keep the invariance of the Lagrangian it is necessary to rotate the d-type
fields 

dR → V dR ,

dL → V dL .

(1.28)

With this new rotation, the d-type fields are diagonals at the same time
that we keep diagonal the other two Yukawa matrices. The question now
is, what implications have this rotation?

The interaction between W±, Z and A gauge bosons and the matter
fields are determined by the Neutral Currents (NC) and Charged Currents
(CC) Lagrangians. The rotations of the d−type fields imply that the rota-
tion matrix V appears in the CC Lagrangian. The final interaction is given
by

LCC = g√
2
W+
µ (ūLα γµ Vαβ dLβ + ν̄Lα γ

µ eLα) + h.c. . (1.29)

The rotation matrix Vαβ receives the name of Cabibbo-Kobayashi-Maskawa
(CKM) matrix [68, 69] and it is the source of the flavour changing in CC
processes.

The NC Lagrangian does not mix the quark flavour, it can be written
in compact form

LNC = − eAµ
∑
f

Qf f̄ γµ f − e

sin(θW ) cos(θW ) Zµ
∑
f

f̄ (vf − af γ5) f ,

(1.30)
where e is the electron charge and the sum is over all the physical fermions.
The different af and vf constants depend on each fermion:


af = 1

2T
f
3 ,

vf = 1
2T

f
3

[
1− 4|Qf | sin2(θW )

]
,

(1.31)

where T f3 and Qf are the isospin and the electrical charge of the fermion
f . Notice that in this case, rotating d → V d does not introduces any
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matrix in NC processes, as they cancel in terms such as dΓd (being Γ some
combination of Dirac matrices).

1.6. Open Problems of the Standard Model

The Standard Model represents one of the most relevant achievements
in physics. It took many years to understand how the microscopic world
works. But this is not the end of the story as the SM presents various
problems that until the present day have no solution. Examples of open
problems in particle physics are the neutrino masses, the hierarchy problem
or the strong CP problem. In the rest of this Section we described briefly
these topics.

In addition to these problems, there are strong cosmological evidences of
the existence of a new kind of matter that does not have the same interaction
rules that the particles of the SM. This new kind of matter receives the
name of Dark Matter (DM). Its phenomenology is still a mystery and it
is the main topic of this thesis. The nature and properties of DM will be
studied in Chapter 3.

1.6.1. The Hierarchy Problem

There are some hints for the existence of physics beyond the SM (BSM).
However, it is unclear at which scale this new physics enters the game.
According to the Higgs Mechanism, the new physical scale must be close
to the electroweak scale: the technical reason is that the Higgs mass is
quadratically sensitive to high scales. If we analyse the Higgs potential
(Eq. 1.12), the first order quantum corrections to the mass parameter µΦ

are given by

δµ2
Φ = Λ2

32π2

[
−6Y 2

t + 1
4 (9 g2 + 3 g′2) + 6λ4

]
, (1.32)

where Λ is the cutoff of the theory, Yt the top Yukawa coupling and g

and g′ the electroweak couplings. Since we know the value of the VEV
of the Higgs field (Eq. 1.22) and the Higgs mass, we can calculate the
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value of λ4 = 0.13 using Eq. 1.21. If the scale of the new physics is close
to the EW scale, the hierarchy problem is not a real problem. However,
the landscape of the current experiments in high-energy physics makes us
think that these scales are not as close as it should. If the new scale is
Λ � 1TeV the Eq. 1.32 implies δµ2

Φ � µ2
Φ. If quantum corrections are

much larger than the experimentally measured value of µΦ, then extremely
large, cancellations should be at work. This fact is known as hierarchy
problem, a complete revision about this topic can be found in Ref. [70].
Different models to try to solve the hierarchy problem have been proposed
in the last decades. The most popular are Supersymmetry (a review can
be found in Ref. [71]), technicolor [72–74], composite Higgs [75] and warped
extra-dimensions [76,77].

1.6.2. Strong CP problem

Quantum Chromodynamics predicts the existence of processes with CP
violation. However, no violation of the CP-symmetry is observed experi-
mentally. There are no theoretical reasons to preserve this symmetry and,
as a consequence, this represents a fine tuning problem.

The absence of any observed violation in strong interactions is a problem
because the QCD Lagrangian presents natural terms that break the CP
simmetry [78]:

L ⊃ −nfg
2
sθCP

32π2 GaµνG̃
aµν , (1.33)

where θCP is the vacuum phase and nf the number of flavours. This term
comes directly from the vacuum QCD structure and it would be absent in
presence of massless quarks. The phase is related to the value of the neutral
dipole moment [79], whose current limits [80,81] implies that |θCP | < 10−10.

Different solutions have been proposed to solve the problem, the most
popular among them being the one proposed by Roberto D. Peccei and
Helen R. Quinn in Ref. [82], introducing a new symmetry U(1)PC. This
new symmetry is spontaneously broken generating the Weinberg-Wilczek
axion [83, 84] (the Goldstone boson of the broken PQ symmetry). In this
scenario, the θ-phase is related with the VEV of a new field and its small
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value is the consequence of the symmetry breaking at high scales. The value
of θ in this approach is determined by irrelevant operators [85,86].

Different reviews about the strong CP problem and its possible solutions
can be found in Refs. [87,88].

1.6.3. Neutrino Masses: The Seesaw Mechanism

In the Standard Model the neutrinos are massless, but nowadays it is
experimentally shown that they have a non-zero mass. In 1957 Bruno Ponte-
corvo predicted the existence of neutrino oscillations [89], as a consequence
of the difference between the interaction (weak) and mass eigenstates. This
effect implies non-zero mass for the neutrinos and ever since Pontecorvo pre-
dicted its existence, several experiments searched for it and studied their
effect [90–106].

There are different mechanisms to generate neutrino masses, for instance
add a new right-handed neutrino (N). However, when we add a mass term
for the neutrinos with a new state N , singlet under the SM symmetry
group, we have the same problem as for the quarks: we need a new matrix
to diagonalize charged leptons and neutrino mass matrices simultaneously.
The relation between the mass and weak eigenstates can be fixed using the
unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Uαi [107,108]:

να =
∑
i

Uαiνi , (1.34)

where α = e, µ, τ represent the weak eigenstates while i = 1, 2, 3 are the
mass eigenstates. The PMNS matrix can be parametrized with three mixing
angles (θ12, θ23, θ13) and a CP-violating Dirac phase δ. The mixing angles
are usually refereed to as solar, atmospheric and reactor angles, respectively,
because at the kind of experiment where they were measured for the first
time. On the other hand, the oscillation lengths are (∆m12,∆m23,∆m13).
The most recent values of all of these parameters can be found in Ref. [109].

Until this point we only talked about the mixing and oscillation paramet-
ers; but what is the mass scale of the neutrinos? The KATRIN experiment
puts the upper bound at ∑mν . 2.7 eV at 95% Ref. [110]. Extending the
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SM to add neutrino masses is not a complicated task: it is enough to intro-
duce three new fields N that represent the right-handed neutrinos4. In that
case, an extra term would appear in Eq. 1.25 giving mass to the neutrinos
via the Higgs Mechanism, as in the case of quarks and charged leptons. The
question now is, if the mechanism to give mass to the neutrinos is the Higgs
Mechanism, why the neutrinos masses are so different from the rest of the
fundamental particle masses?

The right-handed neutrinos N have a special property that make them
different from the rest of the SM particles: they are singlets under all SM
gauge groups. This allows the neutrino to be its own antiparticle! While
the usual fermions receive the name of Dirac particles, this kind of particles
receives the name of Majorana particles [111]. This means that we could
add a new extra term to the Lagrangian:

L = −L̄i Y ν
ijΦNj −

1
2N

T
i C

−1MR
ijNj + h.c. , (1.35)

where MR is the 3 × 3 right-handed neutrino Majorana mass matrix, Y ν

the Yukawa matrix of the neutrinos and C the charge conjugate operator.
The usual mass of the neutrinos, the so-called Dirac mass, is given by the
Yukawa couplings

mD = v√
2
Y ν . (1.36)

It is important to keep in mind that we have three flavour families and, as
a consequence, mD is not a parameter, but a 3× 3 matrix.

After SSB, the mass matrix of the neutrinos takes the form:

Mν =

 0 mD

mT
D MR

 , (1.37)

As an example, consider the 2× 2 case (i.e. for one generator only). In the
limit |mD| � |MR| there is a large hierarchy between the eigenvalues, that
are given by mν w m2

D/M
R and mN wMR, and approximately corresponds

to the eigenvectors of ν1 v νL and ν2 v N . In this way, we could have
4Actually, two new fields are sufficient to explain present observations; albeit, with the
consequence that the lightest neutrino should be massless.
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a natural explanation why neutrinos are much lighter than other fermions,
even if their Yukawa couplings (and, thus, mD) are similar. This mechanism
receives the name of seesaw mechanism type I [112–116], as the larger MN

the smaller mν . This is only one of the different seesaw mechanisms able to
provide mass to the neutrinos. However, other variants of this mechanism
do not need the existence of the right-handed neutrinos.

Complete reviews of different seesaw models can be fond in Ref. [117].



Chapter 2

Introduction to Cosmology:
The Homogeneous Universe

2.1. An Expanding Universe: The FLRW
Metric

Developing a theory related to the matter of the Universe, regardless
of what type the matter is, implies a deep knowledge of the shape of the
Universe on large scales. The science that is investigating this is called cos-
mology. Although the word cosmology was used for the first time in 1656 in
Thomas Blount’s Glossographia [118], its origins began long ago. Already
the ancient Greeks tried to explain the position and nature of the astronom-
ical objects they observed. At that time notable authors such as Aristoteles
and Claudius Ptolemy developed the geocentric model, which placed the
Earth as the center of the Universe. Many centuries later, Nicolás Coperni-
cus (1473-1543) developed the heliocentric model, which was strongly sup-
ported by Galileo Galilei (1564-1642), laying the first foundations for our
current astronomical models. However, the modern cosmology was born
during the first half of the 20th century with the discovery of the expan-
sion of the Universe. In 1929 Edwin Hubble found the first evidence of the
expansion of the Universe [119]. He observed that all distant galaxies and

25
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astronomical objects were moving away from us as

z = λobserved − λemitted

λemited
w H0 dL . (2.1)

This expression is called the Hubble Law and establishes a relationship
between the luminosity distance1 dL of some astronomical object with its
redshift2 z. At first order, the relation is linear and only depends on the
Hubble constant [120]

H0 = 100h km s−1 Mpc−1 = 67.66± 0.42 km s−1 Mpc−1 , (2.2)

where h is the reduced Hubble constant.The Expanding Universe 5

Figure 1.3: Original figure from [35] demonstrating the expansion of the Universe.
On the y axis the velocity is expressed in terms of km/s and on the x axis distance is
measured in pc © 3.09 ◊ 1016 m. The linear relation is given by Hubble’s law v = cH0d.
The fact that distant galaxies are receding at a velocity that scales linearly with the
distance is understood as a result of the expansion of the Universe.

the Cosmic Microwave Background and the Large Scale Structure that are
described in what follows.

1.2 The Expanding Universe

In 1929, Edwin Hubble [35] discovered that galaxies are receding from
us at a velocity proportional to their distance through the study of Cepheid
variable stars, see Figure 1.3. The fact that the Universe is expanding was
a clear prediction of the Big Bang model under the assumption that the
Universe is homogeneous and isotropic. This assumption is usually dubbed
the Cosmological Principle, and as of today we are very confident that the
Universe resembles highly homogeneous and isotropic [12, 13, 36, 37, 38], at
least at large scales L & 100 Mpc. In addition, since Hubble’s discovery, fur-
ther evidence for the expansion of the Universe has been accumulated [39].
Through the study of type Ia supernovae two groups demonstrated [40, 41]
that our Universe is currently undergoing a period of accelerated expansion.
The driver of this accelerated expansion is the so-called dark energy, and
as far as we know [13, 39], it highly resembles a cosmological constant � in
Einstein equations.

The Big Bang theory, namely, the assumption of an homogeneous and
isotropic Universe governed by the General Relativity theory, leads to a

Figure 2.1: Original figure of [119] showing the results obtained by Edwin Hubble com-
paring the measurements about the radial velocity of the galaxy with the redshift of 22
different astronomical clusters. The results shown in this figure represent the first proof
of the expansion of the Universe.

The results obtained by Hubble are shown in Fig. 2.1. The original
results of Hubble’s work analysed 22 different galaxies. Nowadays, we have
data of thousands of galaxies and the most part of these shows z > 0. This
fact is considered an irrefutable proof of the expansion of the Universe. The
1Defined as dL = 10(m−M)/5+1, whereM is the absolute magnitude whilem the apparent
magnitude of an astronomical object. The luminosity distance is usually measured in
parsecs (pc).

2The redshift z is the difference between the observed and the emitted wavelength of the
astronomical body.



Einstein Field Equations 27

expansion of the Universe and the assumption that we live in an isotropic
and homogeneous Universe3 lead us to the Big Bang model.

Nowadays, our understanding of the evolution of the Universe is based
on the Friedman-Lemaître-Robertson-Walker (FLRW) cosmological model,
that describes an isotropic, homogeneous and expanding Universe [122–125]
with metric

ds2 = gµνdx
µdxν = dt2 − a(t)2

[
dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ

]
, (2.3)

where (t, r, θ, φ) are the comoving coordinates and a(t) is the cosmic scale
factor. The curvature of the space-time is given by k and can be +1, −1 or
0 describing an open, close and flat space-time, respectively.

In order to quantify the expansion of the Universe it is necessary to study
the variation of the scale factor a(t). The most convenient way to perform
this study is to analyse the so-called expansion rate or Hubble parameter,
defined as

H ≡ ȧ

a
, (2.4)

where ȧ = da/dt. The current value of the Hubble parameter is the Hubble
constant, H0, defined in Eq. 2.2.

2.2. Einstein Field Equations

To understand the evolution of the Universe through the FLRW met-
ric a deep knowledge of General Relativity and the Einstein gravitational
field equations is necessary. First proposed in 1915 by Albert Einstein in
Ref. [126], the gravitational field equations take the form:

Gµν = 8 π G
c4 Tµν + Λ gµν , (2.5)

where Tµν is known as the energy-momentum tensor and represents the
energy flux and momentum of a matter distribution, Λ is the cosmological
constant and Gµν is the unique divergence free tensor which can be built
with linear combinations of the space-time metric and its first and second
3This is called cosmological principle and is backed up by strong evidences [120,121].
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derivatives
Gµν ≡ Rµν −

1
2gµνR . (2.6)

The Einstein field equations form a system of ten coupled differential
equations and describe the evolution of the space-time metric tensor gµν
under the influence of the Tµν tensor, and vice-versa. To understand Eq. 2.5,
a deep knowledge of the different elements of the differential geometry is
needed (see, for instance, Ref. [127]):


Γµαβ = 1
2g

µν

(
−∂gαβ
∂xν

+ ∂gνα
∂xβ

+ ∂gνβ
∂xα

)
Cristoffel Symbols ,

Rα
βγσ =

∂Γαβσ
∂xγ

− ∂Γαγσ
∂xβ

+ ΓµβσΓαγµ − ΓµγσΓαβµ Riemann Tensor ,

Rσν = Rρ
σρν Ricci Tensor ,

R = Rµ
µ Scalar Curvature .

(2.7)

In General Relativity gµν plays a fundamental role: each solution of the
Einstein field equations is characterized by its respective metric, which is
defined by the energy density of the Universe. The existence of the last
term of Eq. 2.5 has been a topic of debate since Einstein postulated it to
give a solution of his equations that predicted a static Universe. In the
original formulation of the FLRW model, Λ is supposed to be absent (to get
a constant expansion of the Universe). Current cosmology rescued it as a
possible explanation of the observed accelerated expansion of the Universe
at recent times [128].

2.3. Dynamics of the Universe

The structure of the Universe is fixed by Eq. 2.5. In order to solve this
equation it is necessary to know the form of the energy-momentum tensor
Tµν . Under the assumption of homogeneity and isotropy, the content of the
primordial Universe can be described as a perfect fluid, and the energy-
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momentum tensor can be written as:

T µν = p gµν + (ρ+ p)UνUµ ≡ diag(ρ,−p,−p,−p) , (2.8)

where Uµ ≡ dXµ/dτ is the four-velocity of the fluid, ρ the energy density and
p the pressure. The energy-momentum conservation principle dU = −p dV ,
where U = ρ V is the total energy of the fluid and V ∝ a3 the volume,
directly implies

dρ

dp
+ 3 ȧ

a
(ρ+ p) = 0 . (2.9)

Eq. 2.9 allows to obtain the relation between the energy density ρ and
the scale factor a when the relation between the energy density and the
pressure4 p is known. Most cosmological fluids can be described by a simple
time-independent equation of state, where the energy and the pressure are
proportional, p = ωρ, being ω an arbitrary constant. In these cases the
energy density can be expressed as ρ ∝ a−3(1+ω).

In order to describe the evolution of the Universe, it is necessary to un-
derstand the different components that contribute to the energy-momentum
tensor. It is possible to distinguish three different components of the con-
tent of the Universe: matter, radiation and Dark Energy. The nature of
the first two components is easy to explain: the cosmological definition of
matter says that it includes all the different non-relativistic matter species,
while radiation includes the relativistic particles.

The third component, the Dark Energy, is a kind of unexplained energy
with negative pressure that is necessary to understand our current know-
ledge about the evolution of the Universe. Quantum field theory predicts
the existence of a vacuum energy with negative pressure [129]. This energy
can be calculated for the energy-momentum tensor as T vac

µν = ρvacgµν . The
problem with this explanation of the Dark Energy nature lies in the fact
that there is a large discrepancy between the observed and the calculated
energy density

ρvac

ρobs
v 10120 . (2.10)

4The relation between the pressure and the energy density is called equation of state.
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This huge discrepancy receives the name of vacuum catastrophe5. The
nature of this component of the Universe is still unclear. The scientific
community agrees that it could be related to the cosmological constant,
but alternative ideas could also work. A detailed description of the current
status of the problem can be found in Ref. [130].

It is possible to distinguish between three different epochs in the evol-
ution of the Universe, depending on whether matter, radiation, or Dark
Energy dominates.

p = 1
3ρ ⇒ ρ ∝ a−4 Radiation Epoch ,

p = 0 ⇒ ρ ∝ a−3 Matter Epoch ,

p = −ρ ⇒ ρ ∝ const. Dark Energy Epoch .

(2.11)

Figure 2.2: Different epochs of the Universe, depending on which contribution dom-
inates. The red dot-dashed, blue dashed and green solid lines represent the different
contributions of radiation, matter and Dark Energy (or vacuum energy), respectively.
The black dashed vertical line shows the present moment of the Universe.

Fig. 2.2 shows the different contributions to the total energy density of
the different components of the Universe. The red dot-dashed, blue dashed
and green solid lines show, respectively, the radiation, matter and Dark
5Also called sometimes cosmological constant problem.
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Energy contributions. In the early Universe, most parts of the components
were relativistic; this era is dominated by the radiation contribution. In
the adolescent Universe the SM particles, except photons and neutrinos, are
non-relativistic, the matter contribution dominates the total energy density.
The present moment of the Universe (black-dashed line in Fig. 2.2) is close
to the point at which the vacuum contribution begins to dominate over the
matter contribution (z w 0.55). This fact receives the name of coincidence
problem [131] and its possible anthropic implications have been studied by
different authors (see, for instance, Refs. [132,133]).

2.4. The Friedman Equations

To analyse the evolution of the scale factor it is necessary to simplify the
different terms of Eq. 2.5 using the definitions of Eq. 2.7 with the metric
of Eq. 2.3 and the form of the energy-momentum tensor that, under the
assumption of homogeneity and isotropy, takes the form of Eq. 2.8. The
resulting expressions receive the name of Friedman equations

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 ,(
ä

a

)
= −4πG

3 (ρ+ 3p) ,
(2.12)

where ρ and p can be understood as the sum of all contributions to the
energy density and pressure in the Universe. The first Friedman equation
is usually written in terms of the Hubble parameter (Eq. 2.4)

H2 = 8πG
3 ρ− k

a2 . (2.13)

The flat space case (k = 0) in Eq. 2.13 defines the critical case

ρcrit ≡
3H2

8πG , (2.14)

that can be estimated today using Eq. 2.2 obtaining ρcrit,0 ≡ ρcrit|H=H0
=

1.9 × 10−29 h2 g cm−3. The critical density is used to define dimensionless
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density parameters
Ω ≡ ρ

ρcrit
. (2.15)

This is very convenient because the energy densities of the different com-
ponents of the Universe have enormous values. Since the density parameter
Ω is related with k, which describes the curvature of space-time, its value
allows to analyse the geometry of the Universe

Ω > 1 Closed ,

Ω = 0 Flat ,

Ω < 1 Open .

(2.16)

The first Friedmann equation (Eq. 2.13) can be written in terms of Ω
and the Hubble constant

H2 = H2
0

[
Ωr

(
a0

a

)4
+ Ωm

(
a0

a

)3
+ Ωk

(
a0

a

)2
+ ΩΛ

]
, (2.17)

where Ωr, Ωm, Ωk and ΩΛ denotes the density parameters of radiation,
matter, curvature and vacuum in the present epoch, respectively. In Eq. 2.17
we define the curvature density parameter in the present epoch as Ωk ≡
−k/(a0H0). The expression is written in terms of H0 and a0, where a0

represents the scale factor today. It is very common in cosmology to take
the normalization for the scale factor a0 ≡ 1. With this normalization, the
above expression becomes

H2 = H2
0

(
Ωr a

−4 + Ωm a
−3 + Ωk a

−2 + ΩΛ
)
. (2.18)

The question now is, what is the value of these parameters?

2.5. Cosmology in the present days: ΛCDM
model

In 1964 Arno Penzias and Robert Woodrow Wilson [137] discovered the
Cosmic Microwave Background (CMB), a noise, apparently isotropic, in the
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The Initial Conditions for Simulations

Figure 2.3: Evolution along the last 30 years of the measurements of the anisotropies in
the temperature of the Cosmic Microwave Background. From the left to the right the figure
shows the data from COBE (Cosmic Background Explorer) [134], WMAP (Wilkinson
Microwave Anisotropy Probe) [135] and Planck [120]. Image taken from [136].

form of electromagnetic radiation that populates the Universe. Since then,
several experiments measured the CMB finding small temperature aniso-
tropies (the evolution of our knowledge about the CMB can be observed in
Fig. 2.3) such as the case of COBE (Cosmic Background Explorer) [134],
WMAP (Wilkinson Microwave Anisotropy Probe) [135] or Planck [120], the
latter being the most accurate measurement today. The CMB discovery
confirmed a key prediction of the Big Bang cosmology. Since that moment,
the scientific community accepted that the Universe started in a hot and
dense state and has been expanding ever since.

The current cosmological model includes a non-vanishing cosmological
constant Λ, that represent the Dark Energy or vacuum component of the
Universe. As for matter, it assumes that most part of the matter is non-
barionic and is mostly composed of Cold Dark matter6 (CDM). The evidence
of this fact will be commented in Chapter 3. Respect to the curvature, the
model assumes that the Universe is practically flat at large scale. The
6See Sect. 3.3 for more details.
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Cosmological Parameters Planck 2018

Expansion h = 0.677± 0.004

Barionic Matter Ωbh
2 = 0.02242± 0.00014

Dark Matter ΩDMh
2 = 0.1193± 0.0009

Dark Energy ΩΛh
2 = 0.689± 0.006

Radiation Ωrh
2 = (9.2± 0.4)× 10−5

Curvature Ωkh
2 = −0.004± 0.015

Table 2.1: Cosmological parameters published by Planck [120]. These values represent
the conclusion of the Experiment.

name of this model that accepts the existence of two new, and unexplained,
components of the energy density receives the name of ΛCDM model.

The ΛCDM model is a parametrization of the cosmological measure-
ments. The accuracy of the model depends on the precision of the astro-
physical experiments that estimate its parameters. Tab. 2.1 shows the most
recent measurements taken by the Planck collaboration of the cosmological
parameters. These results show that the most part of the Universe being
Dark Energy (v 69%) and Cold Dark Matter (v 26%) while the baryonic
matter only represents v 5% of the total energy content. The Dark Energy
is still a complete mystery today: the most accepted theory is that is related
to the cosmological constant of the Einstein field equations. On the other
hand, what is this Dark Matter? This v 26% of the content of the Universe
is the main topic of this Thesis.



Chapter 3

About the Nature of Dark
Matter

As it was explained in Sect. 2.5, there are unequivocal evidences that
point out that the baryonic matter (where baryonic in cosmology includes
not only baryons, but also all of the SM particles) represents the v 5% of the
energy density of the Universe, while Dark Matter constitutes the v 26%.
The implication of this fact is absolutely strong: the SM of fundamental
interactions described in Chapter 1 only explains a minuscule portion of
the matter of the Universe, the rest is still a mystery. Along this Thesis we
try to bring some light over the DM enigma. In order to perform this task
it is necessary to understand the nature of this new kind of matter. What
are the evidences of DM? is it possible to observe these elusive particles?
which is its the nature?

3.1. Dark Matter Evidences

The first observational evidence of the existence of DM date from the
early 1930’s when Fritz Zwicky measured the velocity dispersion of several
galaxies of the Coma Cluster. Zwicky concluded that a bigger amount
of matter than the visible one was necessary to keep the galaxy cluster

35
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together1 [139, 140]. Previously to Zwicky, other observations suggesting
missing mass in our galaxy were made by Jacobus Cornelius Kapteyn (1922)
[141] and by Jan Hendrik Oort (1932) [142].
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Figure 3.1: Galaxy rotation curve of NGC 2903 [143]. The solid line represents the
data fit of the observed galaxy rotation curve while the dashed, dotted and dash-dotted
represent, respectively, the rotation curves of the individual components: the visible com-
ponents, the gas and the dark halo.

In the 1960’s and 1970’s the first astrophysical Dark Matter studies
were made. Vera Cooper Rubin, Kent Ford and Ken Freeman measured the
velocity rotation curve of different spiral galaxies [144,145]. In these works
they concluded that the velocity rotation curve of the spiral galaxies display
an anomalous behaviour contrary to the galaxies luminosity measurements.
According to our knowledge about the relation between the luminosity and
the mass of the galaxy, if the only kind of matter in it is baryonic, the
rotational velocity should follow the dash line in Fig. 3.1. Conversely, as
we can understand from the data points in the Figure, the velocity remains
almost constant. Since then, many measurements of the velocity rotation
curves of several galaxies have been done (see, for instance, Refs. [146,147]).
Nowadays, there are strong evidences that the 95% of the matter content
of almost every galaxies is DM.
1More precise estimations were made after the first Zwicky observation, using the virial
theorem [138].
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Galaxy rotation curves were the first solid proof, and probably the most
famous, of the DM existence, but are not the only one. Several evidences of
the DM content in the Universe have been discovered since Rubin, Ford and
Freeman researches, including the fact that the mass of the galaxy clusters
is in agreement with the ΛCDM model, supporting the DM theories [148].

One of the ways to estimate the mass of any astronomical body is the
gravitational lensing. This method uses light that arrives at the Earth emit-
ted by galaxies, clusters, quasar and other astronomical objects. In most
cases, these objects are not located close to the Earth, as a consequence, it is
quite common the presence of some astronomical bodies along the emitted
light path to the Earth. When the light goes through these astronomical
objects, according to General Relativity, the gravitational field distorts its
propagation. This distortion receives the name of gravitational lensing. The
measurement of this effect allows the mass of galaxies, clusters and other
astronomical bodies between us and the light source to be estimated. The
gravitational lensing measurements of different astronomical objects point
to DM predominance in almost every galaxies and clusters [149–152].

No. 2, 2006 DIRECT EMPIRICAL PROOF OF EXISTENCE OF DARK MATTER L111

Fig. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657!558, with the white bar indicating 200 kpc at the distance of the
cluster. Right panel: 500 ks Chandra image of the cluster. Shown in green contours in both panels are the weak-lensing k reconstructions, with the outer contour
levels at k p 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of the k peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

TABLE 2
Component Masses

Component
R.A.
(J2000)

Decl.
(J2000)

MX
(1012 M,)

M∗
(1012 M,) k̄

Main cluster BCG . . . . . . . . 06 58 35.3 !55 56 56.3 5.5 ! 0.6 0.54 ! 0.08 0.36 ! 0.06
Main cluster plasma . . . . . . 06 58 30.2 !55 56 35.9 6.6 ! 0.7 0.23 ! 0.02 0.05 ! 0.06
Subcluster BCG . . . . . . . . . . 06 58 16.0 !55 56 35.1 2.7 ! 0.3 0.58 ! 0.09 0.20 ! 0.05
Subcluster plasma . . . . . . . . 06 58 21.2 !55 56 30.0 5.8 ! 0.6 0.12 ! 0.01 0.02 ! 0.06

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees,
arcminutes, and arcseconds. All values are calculated by averaging over an aperture of 100 kpc radius
around the given position (marked with blue plus signs for the centers of the plasma clouds in Fig. 1);
measurements for the plasma clouds are the residuals left over after the subtraction of the circularlyk̄

symmetric profiles centered on the BCGs.

Both peaks are offset from their respective BCGs by ∼2 j but are
within 1 j of the luminosity centroid of the respective component’s
galaxies (both BCGs are slightly offset from the center of galaxy
concentrations). Both peaks are also offset at ∼8 j from the center
of mass of their respective plasma clouds. They are skewed toward
the plasma clouds, and this is expected because the plasma con-
tributes about one-tenth of the total cluster mass (Allen et al. 2002;
Vikhlinin et al. 2006) and a higher fraction in nonstandard gravity
models without dark matter. The skew in each k peak toward the
X-ray plasma is significant even after correcting for the overlap-
ping wings of the other peak, and the degree of skewness is
consistent with the X-ray plasma contributing of the ob-"9%14%!8%
served k in the main cluster and in the subcluster (see"12%10%!10%
Table 2). Because of the large size of the reconstruction (34! or
9Mpc on a side), the change in k due to themass-sheet degeneracy
should be less than 1%, and any systematic effects on the centroid
and skewness of the peaks are much smaller than the measured
error bars.
The projected cluster galaxy stellar mass and plasma mass

within 100 kpc apertures centered on the BCGs and X-ray
plasma peaks are shown in Table 2. This aperture size was
chosen because smaller apertures had significantly higher k
measurement errors and because larger apertures resulted in a
significant overlap of the apertures. Plasma masses were com-
puted from a multicomponent three-dimensional cluster model
fit to the Chandra X-ray image (details of this fit will be given
elsewhere). The emission in the Chandra energy band (mostly
optically thin thermal bremsstrahlung) is proportional to the
square of the plasma density, with a small correction for the

plasma temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplicity of this
cluster’s geometry, especially at the location of the subcluster,
this mass estimate is quite robust (to a 10% accuracy).
Stellar masses are calculated from the I-band luminosity of

all galaxies equal in brightness or fainter than the component
BCG. The luminosities were converted into mass by assuming
(Kauffmann et al. 2003) . The assumed mass-to-lightM/L p 2I
ratio is highly uncertain (and can vary between 0.5 and 3) and
depends on the history of the recent star formation of the gal-
axies in the apertures; however, even in the case of an extreme
deviation, the X-ray plasma is still the dominant baryonic com-
ponent in all of the apertures. The quoted errors are only the
errors on measuring the luminosity and do not include the
uncertainty in the assumed mass-to-light ratio. Because we did
not apply a color selection to the galaxies, these measurements
are an upper limit on the stellar mass since they include con-
tributions from galaxies not affiliated with the cluster.
The mean k at each BCG was calculated by fitting a two-

peak model, each peak circularly symmetric, to the reconstruc-
tion and subtracting the contribution of the other peak at that
distance. The mean k for each plasma cloud is the excess k
after subtracting off the values for both peaks.
The total of the two visible mass components of the sub-

cluster is greater by a factor of 2 at the plasma peak than at
the BCG; however, the center of the lensing mass is located
near the BCG. The difference in the baryonic mass between
these two positions would be even greater if we excluded the
contribution of the nonpeaked plasma component between the

Figure 3.2: Image taken from [153]. It shows the gas distribution of the Bullet Cluster.
Contour lines depict gravitational equipotential lines which indicate the DM location.

The Bullet Cluster is probably the best example of how gravitational
lensing proofs the existence of DM. The Bullet Cluster or 1E 0657-562 has
2The Bullet Cluster is composed by two colliding clusters. Was discovered in 1995 by
Chandra X-ray [154].
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displaced its center of mass with respect to the observed baryonic center of
mass. DM models can easily explain this effect. Other alternatives would
require a modification of General Relativity [155,156].

All the evidences illustrated above are astrophysical proofs, but there
are several cosmological indications of the existence of DM in agreement
with these evidences. The Friedmann equations and General Relativity
describe a homogeneous Universe. As a consequence, the galaxies, stars
and the rest of the astronomical bodies were originated by small density
perturbations after the Big Bang. If had only existed baryonic matter in the
early Universe, the presence of galaxies and clusters would not be possible
today. In that hypothetical case, the evolution of the primordial density
perturbations would not have been sufficient [157–159].

On the other hand, the temperature anisotropies measured in the CMB
by COBE, WMAP and Planck [121, 134, 135] absolutely agree with a Uni-
verse made of 69% Dark Energy and 31% matter.

In summary, nowadays there are several irrefutable evidences of the ex-
istence of DM. It is true that no direct or indirect detection of DM has been
until today, but the exceptional predictive power of the ΛCDM cosmological
model represents an excellent proof that our Universe is mostly dark.

3.2. Properties of Dark Matter

As it was explained in Sect. 3.1, there are several cosmological and astro-
physical evidences of the existence of DM. It is true that, to until now, Dark
Matter observations have not been done. As a consequence, the interactions
and properties of DM are still unknown. However, the different proofs that
we have about its existence allow us to predict some of its properties.

The abundance of DM along the evolution of the Universe is well known:
Fig. 3.4 shows the matter and energy content of the Universe today (left)
and after the CMB decoupling (right). Nevertheless, the abundance of DM
is not the unique property that it is possible to predict with the current
data. In this section we explain the mostly accepted DM properties by the
scientific community.
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Figure 3.3: Energy and matter content of the Universe in two different ages. Left:
today; Right: at the CMB decoupling.

3.2.1. DM - SM interactions

Assuming that Dark Matter exists, the first question we must ask is:
how does it interact with the rest of the particles? We have clear proofs
that DM interacts, at least, through one of the four fundamental forces, the
gravitational one. This fact is indisputable: all evidences of the existence of
Dark Matter are related to gravitation. Now, what about the other three?

In 1990 strongly interacting DM was proposed [160]; nevertheless, not
many years later this option was totally ruled out. The implications of the
existence of this Dark Matter type are so strong that even in the Earth heat
flow it would be detected [161].

Another Dark Matter theory proposal assumes that DM has electrical
charge [162]. However, non-detection of DM and other reasons set strong
limits on DM particles with an electric charge, practically ruling out this
option. [163]. Consequently, the most accepted hypothesis is that DM is
a singlet under the color and electromagnetic SM gauge groups. However,
some physicists have speculated about the possibility of having DM com-
posed of particles with a fractional electrical charge, also known as milli-
charged particles [164–169]. These kind of DM candidates may have effects
in the CMB, setting strong bounds [170]. Besides the CMB, there are other
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sources of bounds for this type of particles (different constraints are sum-
marized in Ref. [171]).

Regarding the last of the 4 forces, the weak interactions of DM with SM
neutrinos are analysed in several works [172–175]. The elusive nature of
neutrinos makes it difficult to constrain these kind of interactions. Weakly
interacting DM will be reviewed in Sect. 3.5.2.

3.2.2. Dark Matter self-interactions

In Sect. 3.2.1 it were examined the different DM interactions with SM
particles. However, what happens with the self-interaction of the DM?
The self-interactions of DM have been a subject of debate for many years.
Theories with self-interactive Dark Matter (SIDM) were proposed at the
end of the last century [176], motivated by the problems generated by the
most popular kind of DM, the Cold Dark Matter3.

However, since DM must explain observations such as the bullet cluster,
in order to keep General Relativity, strong bounds are imposed on SIDM
[177–181]:

σ/m . 10−24 cm2/GeV. (3.1)

3.2.3. Dark Matter stability

If there is a clear property of Dark Matter in which everybody agrees is
the DM lifetime. In order to reproduce the current observations of the Dark
Matter abundance, any candidate must have a lifetime larger than the age
of the Universe, t0 = 13.8Gyr [120]. Nowadays, DM is part of the content of
the Universe as a relic density. If the lifetime condition is not satisfy, Dark
Matter would have started to decay after the decoupling moment; therefore,
there would be nothing today.
3See Sect. 3.3.
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3.3. Hot, Warm and Cold Dark Matter

Since Dark Matter is the dominant matter component, the formation of
the different structures observed nowadays in the Cosmos is fixed by the
random movement of DM in the early times. The DM velocity in the prim-
ordial Universe is a function of the distance travelled by the DM particles
due to their random motion. The name of this distance is free streaming
length, λFS. According to λFS, DM can be classified into three groups: if λFS

is much smaller than a typical protogalaxy size (� v 300 pc), DM is cold; if
it is much larger hot and finally if it is comparable warm [182, 183]. In the
middle of the 1990’s theories of mixed DM became popular, nevertheless
today are ruled out. In Fig. 3.4 are represented the structures predicted by
the three DM types.

Figure 3.4: Examples of structure formation with hot (left), warm (middle) and cold
(right) Dark Matter. Simulation made by Ben Moore, Zurich University [184].

Hot Dark Matter (HDM) refers to particles that move with velocity close
to the speed of light, like SM neutrinos. The main property of the HDM is
that the DM species are relativistic at the time of the structure formation,
this implies large damping scales4. Nowadays, the HDM is disfavoured by
N-body simulations since the Universe predicted by this Dark Matter type
is incompatible with the current observations of the structure formation.
For a complete description about the HDM problems see Ref. [187].

Cold Dark Matter (CDM) was proposed in 1982 in Refs. [188–190] (the
details of the theory were developed in Ref. [191]). Nowadays, CDM is
4Photons and baryons are imperfectly coupled and, as a consequence, a series of aniso-
tropy damping are produced in small scale, this effect is the so-called Silk damping [185].
Collision-less species that move from areas of higher density to areas of lower density
also produce this kind of effects [186].
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the most accepted DM model. Its predictions are in agreement with a
great number of observations, such as the abundance of clusters at z . 1
and the galaxy-galaxy correlation function. However, in the last years,
several discrepancies have been found in CDM scenarios. For example,
the CDM models usually predict more Dwarf Spheroidal Galaxies5 (dSphs)
than observed ones [192, 193]. In addition to this problem, N-body CDM
simulations predict rotation curves for low surface brightness galaxies6 not
compatible with the observations [194–197]. A complete review of CDM
can be found in Ref. [198].

In order to alleviate the Cold Dark Matter problems, Warm Dark Matter
was proposed (WDM). The larger λFS of WDM with respect to the CDM
ones suppresses the formation of small structures, solving the Dwarf Spher-
oidal Galaxies problem. In the WDM case, the current DM abundance can
be obtained for λFS v 0.3Mpc [199]. The WDM inhibit the formation of
small DM halos at high redshift, that are needed in the star formation pro-
cesses. This fact, and the observations of the so called Lyman-α forest7, set
bounds to the WDM mass.

3.4. Dark Matter distribution in the Galaxy

In previous sections, all properties and proofs of the existence of DM
have been explained, as well as the amount of DM that populates our Uni-
verse. But how is the DM distributed? is it possible to predict the density
profile of DM in our galaxy? The answer is yes!

There are several models that describe the distribution of DM along the
Milky Way. The distribution is given by a Dark Matter halo profile model,
that relates, for each point, the DM density with the distance between this
point and the Galactic Center (GC).
5Low-luminosity galaxies with older stellar population.
6Low surface brightness galaxies are a diffuse kind of galaxies with a surface brightness
that is one magnitude lower than the ambient night sky.

7Discovered in 1970 by Roger Lynds with the observations of the quasar 4C 05.34 [200],
the Lyman-α forest is a series of absorption lines in electron transition of the neutral
hydrogen atom.
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Profile Name Predicted density ρ(r) Ref.

NFW ρs
η

(1 + η)−2 [201]

Einasto ρs exp
(
− 2
α

[(η)α − 1]
)

[202,203]

Isothermal ρs
1 + η2 [143,204]

Burkert ρs
(1 + η) (1 + η2) [205]

Moore ρs η
−1.16 (1 + η)−1.84 [206]

Table 3.1: List of the most common Dark Matter halo profiles. We have defined
η = r/rs to alleviate the notation. In all profiles there are two parameters that it is
necessary to determine with observations: rs, that represents a typical scale radius, and
ρs, a typical scale density. The Einasto profile presents an extra parameter, α, that varies
from simulation to simulation.

Tab. 3.1 summarizes the most common DM density profiles in the lit-
erature. The most common one is the Navarro, Frenk and White (NFW)
profile, motivated by N-body simulations. However, recent simulations fa-
vour the Einasto profile over the NFW [207,208]. Other models, such as the
Isothermal or the Burkert profiles, seem more motivated by the observations
of galactic rotation curves. All profiles showed in Tab. 3.1 assume spherical
symmetry8. A complete discussion about the advantages and disadvantages
of different DM density profiles can be found in Ref. [210].

All models present two free parameters9 (rs, ρs) that must be determined
using astrophysical observations of the Milky Way. The two fundamental
measurements used to fit these free parameters are the DM density at the
Sun location respect to the Galactic Center10, ρ� = 0.3 ± 0.1GeV/cm3

[214]11, and the DM contained in 60 kpc, estimated asM60 = 4.7×1011M�

[216–218].
8There are strong evidences in N-body simulations to assume spherical symmetry in the
DM halo profiles [209].

9The Einasto profile needs an extra parameter, α. This shape parameter varies from
simulation to simulation.

10Recent measurements determined R� = 8.33 kpc [211, 212], in any case, the most
extended value for the distance GC-Sun is still R� = 8.5 kpc [213].

11Measurements of the Sloan Digital Sky Survey estimate ρ� = 0.46GeV/cm3 [215].
However, the most extended value is still ρ� = 0.3GeV/cm3.
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Profile α rs [kpc] ρs [GeV/cm3]

NFW − 24.42 0.184

Einasto 0.17 28.44 0.033

EinastoB 0.11 35.24 0.021

Isothermal − 4.38 1.387

Burkert − 12.67 0.712

Moore − 30.28 0.105

Table 3.2: Fitted parameter of the Dark Matter halo profiles.

Tab. 3.2 shows the values of the free parameters of the DM halo profile
models, which have been taken from Ref. [219]. The Einasto and EinastoB
models have the same dependence with the distance to the GC, nevertheless
they are completely different in terms of particle inclusion. While in the
first one the baryons are not considered, in the second one all SM is present.
Fig. 3.5 shows the DM density as a function of the distance r for the different
DM halo profile models.

Figure 3.5: DM density as a function of the radius to the GC for different DM halo
profile models.
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3.5. Candidates

Up to this time the evidences and general properties of DM have been
explained. The next step is to analyse the possible Dark Matter candidates
that would fit the observations. The DM candidates landscape is huge; here
we will make a summary of those that are, or have been, most popular. For
a complete review about the DM candidates see Ref. [220].

3.5.1. MACHOs

One of the first studied cases was the possibility that the DM was ba-
ryonic matter. In this hypothesis DM would consist of small astronom-
ical inert bodies that receive the name of MACHOs12 [221]. Nowadays,
it is known that this kind of DM involves several problems. The current
bounds are derived from the microlensing observations causing the exclu-
sion of masses below the solar mass, M� [222, 223]. Besides, since the
MACHOs were produced after the BBN, its existence should leave a mark
on the abundance of baryons that has not been observed [224].

3.5.2. Weakly interactive massive particles (WIMPs)

One of the most studied Dark Matter candidates is the weakly interactive
massive particles (WIMPs). Firstly Proposed by Benjamin W. Lee and
Steven Weinberg [225] and studied later in several researches, this kind of
particles interact very weakly with the rest of the particles of the SM. In
the WIMP paradigm the DM particles were in thermal equilibrium with the
SM in the early Universe. When the rate of the interactions between the
DM and the SM particles became smaller than the expansion rate of the
Universe, the WIMP particles decoupled from the thermal bath leaving a
relic abundance that can be observed nowadays13. If the WIMP particles
are in the GeV-TeV mass range, the interaction scale to obtain the current
DM abundance of the Universe is just the electroweak scale [225–228]. This
12Massive Astrophysical Compact Halo Objects. This term was coined by the astrophys-
icist Kim Griest.

13This process receives the name of freeze-out.
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fact, that receives the name of WIMP miracle, has motivated the study
of these particles during the last 40 years. For instance, in Refs. [1–3, 6]
(included in Part II) we have analysed different scenarios where the DM is
a WIMP particle. As WIMPs are the main DM candidate studied in the
this Thesis, a detailed description of the processes needed to generate the
DM abundance in this scenario is provided in Sect. 4.4. Several examples of
theories that predict the existence of stable particles at the electroweak scale
that can be interpreted as WIMP particles are: SUSY [229–233], UED [234]
or little-Higgs theories14 [235–237].

Until the present day, WIMP searches have been unsuccessful. As a
consequence, the possible cross-section of WIMP DM with the SM particles
in the mass range mDM ∈ [1, 1000] GeV is significantly constrained. How-
ever, great efforts are being made by the experimental community in this
area. Nowadays, there are three fundamental strategies in order to detect
WIMP Dark Matter: Direct Detection (DD), Indirect Detection (ID) and
collider searches. The DD consists in the detection of DM-nucleus scatter-
ing processes. Some DD experiments are, for instance, Xenon1T [238] or
PandaX-II [239]. On the other hand, ID experiments try to observe the SM
particles that results from the annihilation and decay of particles in the cos-
mic ray fluxes. Different examples of ID techniques include the detection
of γ-rays (such as the Fermi-LAT experiment [240, 241]) or the detection
of charged particles (such as AMS-02 [242]). The detection techniques of
the WIMP DM are described in detail in Chapter 5. For interesting recent
reviews about this topic see Refs. [220,243–246].

3.5.3. Feebly interactive massive particles (FIMPs)

In order to produce the light elements and the observed structure of
the CMB, the SM particles must have been in thermal equilibrium in the
early Universe. However, DM may or may not have been part of the same
heat bath that the SM. If DM never was in thermal equilibrium with the
rest of the particles, the observed DM abundance could be generated via
the freeze-in mechanism15 [248–252]. Fig. 3.6 shows the values of the DM
14In all cases the stable particle is consequence of a conserved symmetry.
15In Sect. 4.5 all the details of the freeze-in production mechanism are explained.
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Figure 1. A schematic representation of the regions where each of the four mechanisms described in
the text dominate. The observed DM relic abundance is obtained on the dashed gray line, and the
arrows show the gradient for DM abundance. The parameters y and � are the DM coupling to the
visible sector and the DM self-coupling, respectively.

2. Freeze-in mechanism: DM was never in thermal equilibrium with the visible sector,
and the comoving DM abundance freezes to a constant value when the number densi-
ties of visible sector particles producing DM either by decays or annihilations become
Boltzmann-suppressed, ending the yield. This requires usually a very small coupling,
y ' O(10�7) or less, to prevent the dark sector from thermalizing with the visible
sector and to obtain the correct relic abundance.

3. Dark freeze-out mechanism: DM never became in thermal equilibrium with the
visible sector but comprised an equilibrium heat bath within its own dark sector, which
was initially populated by a freeze-in-type yield from the visible sector. In this scenario
DM does not annihilate into visible sector particles but into states of the dark sector.
The dynamics are similar to the usual freeze-out scenario except for the fact that the
two sectors may have di↵erent temperatures.

4. Reannihilation mechanism: A scenario where the dark sector thermalizes within
itself but where the dark freeze-out would occur already before the yield from the
visible sector has ended. The on-going particle production from the visible sector
keeps increasing the DM relic abundance and thus resumes annihilations of dark sector
particles, forcing the comoving number density of DM to freeze out only after the yield
has ended.

In Fig. 1, the dashed gray line illustrates the values of the DM coupling to the visible sector
y and the DM self-coupling � for which di↵erent DM production mechanisms are realized in
a scenario where the dark sector consists of the DM particle only (see also Fig. 3 of Ref. [240]
and Fig. 4 of Ref. [241]). Next, we will discuss all these mechanisms one by one.

– 8 –

Figure 3.6: Values of the DM-visible sector coupling (y) and the DM self-interaction
coupling (λ) to obtain the correct Dark Matter relic abundance. Image taken from
Ref. [247].

coupling to SM particles (y) and the DM self-coupling (λ) with which it
can be obtained the correct relic abundance. While in the WIMP scenario
to figure the correct relic abundance the needed interaction scale is the
electroweak scale, in this new paradigm the interaction scale is much weaker
because the DM particles never reached thermal equilibrium with the SM
particles. The name of this new DM candidate is Feebly Interacting Massive
Particles (FIMPs) [252]. In Ref. [4] we have considered a FIMP candidate
to solve the DM problem.

The detection of FIMP particles is difficult. Since the interaction scale
between the SM and the DM candidate is log10(y) ∈ [−10,−7], the DD
experiments can not impose limits to the scattering cross-section. On the
other hand, the signature of the mediators can be searched in the LHC,
setting different limits. A summary of the different detection techniques
and signals of FIMP Dark Matter can be found in Ref. [247].
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3.5.4. Axion Dark Matter

In 1977 Roberto Peccei and Helen Quinn proposed an elegant mech-
anism to solve the strong CP problem16 [82]. This mechanism assumes
the existence of a new symmetry spontaneously broken. After the SSB
of the Peccei-Quinn symmetry, a new light particle appears, the so-called
axion17 [253, 254]. QCD non-perturbative effects generate a potential for
the axion, giving mass for this particle. The mechanism did not predict
the mass of this new light boson, that depends on the scale at which the
Peccei-Quinn symmetry is broken.

Axions were very popular in the scientific community since they may
solve at the same time both, the strong CP problem and the DM problem.
The way to produce the current DM abundance is not related with the
thermal mechanism. In this case, it is assumed that the Dark Matter axions
were produced in the early Universe as a result of coherent oscillations of
the axion field. These oscillations generate bosonic condensates that today
would be measured as CDM. The couplings between the Dark Matter axions
and the other particles are model dependent and are generally assumed quite
small. Nowadays, experimental bounds constrain the original Axion as a
DM candidate. If the SSB of the PQ symmetry takes place after inflation,
the misalignment angle is fixed, θCP w π2/3, and the bounds over the mass
exclude the axion DM. However, particles that produce the DM abundance
through the same mechanism are very dear to the scientific community. The
name of these particles is Axion Like Particles, ALPs.

Currently, the two most accepted benchmark realizations of the Peccei-
Quinn mechanism are the KSVZ 18 [255,256] and DFSZ19 [257,258] models.
The feeble interaction between the axion DM field and the SM particles is
also a consequence of the axion small masses, since mass and coupling are
16See Sect. 1.6.2 for more details.
17The particle was predicted at the same time, independently, by Wilczek and Weinberg.
Wilczek was the one who baptised the particle with the name of axion, inspired in
a detergent brand (see Fig. 3.7), while Weinberg called it Higglet. The name that
Wilczek gave to the particle became so popular that even Weinberg agreed to adopt
it. The origin of the joke is that the axion is a pseudoscalar particle, consequently, the
symmetry broken is an axial symmetry.

18Kim-Shifman-Vainshtein-Zakharov.
19Dine-Fischler-Srednicki-Zhitnitsky.
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Figure 3.7: Picture of the detergent in which Wilczek was inspired to name the axion.
Surely, the marketing department of the detergent brand never thought that their product
would be part of the history of high energy physics.

inversely proportional:
ma w mπ

fπ
fa
, (3.2)

where mπ and fπ are the pion mass and decay constant, respectively.

The number of experiments that try to find evidences of the existence of
axions is enormous. Several experiments base their search in the Primakoff
effect20 [259] such as ADMX [260], HAYSTAC [261], CULTASK [262] and
ORGAN [263]. Other experiments, as PVLAS, search changes of the po-
larized light in a magnetic field [264]. The mentioned experiments are only
an infinitesimal example of the large experimental landscape. For more in-
formation about the detection and the astrophysical implications of axion
DM see Refs. [265–267].

3.5.5. Primordial Black Holes (PBHs)

Primordial Black Holes (PBHs) were firstly proposed in the 1970’s in
Refs. [268–270]. While the standard Black Holes are the consequence of
the gravitational collapse of a star, the PBHs were originated due to the
extreme density of the Universe at the beginning of its expansion. Since
20The Primakoff effect is the resonant production of neutral mesons via high-energy
photons interacting with a nucleus.
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PBHs were formed in the very first moments of the Universe, before the
BBN, bounds on baryonic matter do not apply to them, became PBHs in
a good DM candidate [271,272].

In order to obtain the correct relic abundance of the DM it is necessary
that the PBHs survive until today. As the Primordial Black Holes are
not stable21, a lower bound on their mass exists. If we assume that all DM
abundance is due to PBHs, this lower bound ismPBH > 3.5×10−17M� [276].
The idea of PBHs as DM has been revived with the detection of gravitational
waves by LIGO [277] since these observations can be explained with two
coalescing Primordial Black Holes [278].

21PBHs can evaporate through Hawking radiation [273–275].
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Evolution of the Universe: A
Thermodynamic Description

In order to understand any form of matter that surrounds us today, we
need to ask ourselves which has been its evolution starting from the first
moments of the Universe. This is obviously a problem of many bodies that
must be statistically analysed. At the beginning of the 20th century it was
thought that the Universe was practically empty, except for slight singular-
ities (galaxies, planets, ...) that were completely lost in the immensity of
space-time. In the middle of the century, the Cosmic Microwave Background
was accidentally discovered. Nowadays, we know that the radiation from
the CMB, measured at T w 2.725 K [120], is the echo of the first moments
after the Big Bang. The existence of a Cosmic Microwave Background is
one of the great predictions of cosmological models based on the Big Bang
hypothesis, according to which the original Universe was a plasma, at very
high temperature, formed by baryons, electrons and photons. As the plasma
cooled down, due to the adiabatic expansion of the Universe, the baryons
and electrons recombined to form atoms, thus decoupling the photons in
equilibrium.

The cooling of the Universe caused the different particles, that popu-
lated that hot and inert Universe, to decouple thermodynamically from the
plasma until finally a small fraction remained, the CMB that we observe
today, and slowly dilutes. Since the primordial Universe can be described

51
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as a plasma in thermodynamic equilibrium with good accuracy, developing
any evolution model will involve understanding statistical thermodynamics.

4.1. Equilibrium description

4.1.1. Fundamental Thermodynamic Variables

Due to the asymptotic decrease in the strong interaction at high ener-
gies/temperatures, we can consider the plasma that formed the primordial
Universe as a set of ideal gases in equilibrium with g internal degrees of
freedom. The number density n, the energy density ρ and the pressure p
of this fluid can be written based on its distribution function in the phase
space:


n ≡ g

(2π)3

∫ ∞
−∞

d3p f(~p, t) = g

2π2

∫ ∞
m

dE E (E2 −m2)1/2 f(E, T ) ,

ρ ≡ g

(2π)3

∫ ∞
−∞

d3pE(~p) f(~p, t) = g

2π2

∫ ∞
m

dE E2(E2 −m2)1/2 f(E, T ) ,

p ≡ g

(2π)3

∫ ∞
−∞

d3p
|~p|2

3E(~p) f(~p, t) = g

6π2

∫ ∞
m

dE (E2 −m2)3/2 f(E, T ) ,

(4.1)

where the distribution function is Fermi-Dirac (FD) or Bose-Einstein (BE),
depending on whether we are working with fermions or bosons:

f(~p) = 1
e(E−µ)/T ± 1 , (4.2)

where µ is the chemical potential of the species. The value of the sign in the
denominator corresponds to −1 for the BE case and +1 for FD statistics,
respectively. In the above expressions E =

√
|~p|2 +m2 represents the energy

of a particle with momentum p and mass m. If the species are in chemical
equilibrium under the interaction i + j ←→ a + b, the different chemical
potentials associated with the species are related:

µi + µj = µa + µb . (4.3)
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The different thermodynamic quantities described in Eq. 4.1 have simple
limits when µ/T � 1. On the one hand, the different approximations for
the T � m case are given by:

ρ =


g

7
8
π2

30T
4 Fermions ,

g
π2

30T
4 Bosons ,

n =


g

3
4
ζ(3)
π2 T 4 Fermions,

g
ζ(3)
π2 T 4 Bosons.

(4.4)

p = ρ/3 ,

where ζ(3) w 1.202. On the other hand, for the T � m case the Maxwell-
Boltzmann distribution is a good approach for both, fermions and bosons.
In this case, the energy density and the pressure take the following form:

n = g
(
mT

2π

)3/2
e−(m−µ)/T ,

ρ =
(3

2T +m
)
n ,

p = nT .

(4.5)

In general, the average energy per particle can be obtained as 〈E〉 ≡ ρ/n.

4.1.2. Energy Density of the Universe

The contribution of non-relativistic species to the total energy density is
negligible with respect to the relativistic one. As a consequence, during the
radiation dominated era the total energy density can be approximated as
the radiation energy density, composed by the contribution of all relativistic
particles:

ρ w ρR = π2

30g?T
4 , (4.6)
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where
g? ≡

∑
i=bosons

gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
(4.7)

is the effective number of relativistic degrees of freedom of the relativistic
species, gi describes the degrees of freedom of each particle, Ti its temper-
ature and T the temperature of the thermal bath, which coincides with the
temperature of the photons.

In general, relativistic species in thermal equilibrium with the photons
have Ti = T � mi. However, when the temperature of the thermal bath
drops below the particle mass mi, that specie becomes non-relativistic and
must be removed from Eq. 4.7. In the epoch where the temperature of
the Universe was larger than the top mass mt, all species were relativistic
and g? = 106.75, its maximum value. Throughout the evolution of the
Universe, the temperature decreases and the different particles become non-
relativistic, decreasing the total number of relativistic degrees of freedom,
until the current value:

g?(today) = 2 + 7
8 × 2× 3×

( 4
11

)4/3
= 3.36 . (4.8)

This value, which remains invariant since e−e+ annihilation, takes into ac-
count the three neutrino species and photons, the only relativistic particles.
Neutrinos decoupled from the thermal bath when T v 1MeV, which led
to a slightly cooler temperature from then of Tν = (4/11)1/3Tγ [47]. Un-
der the hypothesis that Eq. 4.6 represents a good approximation to the
energy density of the Universe and that large-scale space-time is flat, Fried-
man’s equations (Eq. 2.12) lead to an expression for the Hubble parameter
(Eq. 2.4) as a function of the equilibrium temperature of the Universe:

H =
√

8π
3

ρ

MP
=
√

4π3

45
√
g?
T 2

MP
, (4.9)

where MP = 1.22× 1019 GeV is the Planck mass.
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4.1.3. Entropy Conservation in the Universe

An analysis of the evolution of any species of particle throughout the
expansion of the Universe can be, in principle, complicated. In order to
simplify the calculations, it is convenient to work with quantities that are
conserved. Within the scope of equilibrium thermodynamics, the most com-
monly used conserved quantity in a comoving1 volume is the entropy, de-
scribed by the second principle of thermodynamics:

T dS = dU + p dV = d(ρV ) + p dV = d[(ρ+ p)V ]− V dp , (4.10)

where V is the comoving volume. Using the relation between the pressure
and the temperature, dp/dT = (p+ ρ)/T , Eq. 4.10 is directly integrable:

S/V = p+ ρ

T
≡ s , (4.11)

where the entropy density s is conserved through the expansion of the Uni-
verse, ds/dt = 0. The net transfer of energy in a closed system is null,
which means that the total creation and destruction of particles is zero for
a Universe in equilibrium. Using Eq. 4.5 the entropy density can be written
as

s = g? s
2π3

45 T
3 , (4.12)

where
g?s ≡

∑
i=bosons

gi

(
Ti
T

)3
+ 7

8
∑

i=fermions
gi

(
Ti
T

)3
(4.13)

is the effective number of degrees of freedom in entropy.

Before neutrino decoupling g? = g?s (all relativistic species were in the
thermal bath). When T v 1 MeV, before nucleosynthesis, neutrinos de-
couple from the thermal bath, remaining constant its comoving temperat-
ure. At T ∼ 0.5 MeV, photons are not energetic enough to create e± pairs
anymore. Thus, electrons and positrons annihilate, slightly heating the
thermal bath and increasing the temperature of the photons. Thenceforth,
1The comoving variables are defined in such a way that they are independent of the
expansion of the Universe.
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the number of relativistic degrees of freedom in entropy becomes

g?s(today) = 2 + 7
8 × 2× 3×

( 4
11

)
= 3.91 . (4.14)

Since then, both g? and g?s remain constant, although differing, since the
plasma has been heated up while neutrinos have not. Fig. 4.1 shows the
evolution of g? and g?s as a function of the temperature. As can be seen
in the Figure, the difference between the degrees of freedom in energy and
entropy is only important after the neutrino decoupling. This is due to the
fact that neutrinos are the unique species that remains relativistic after its
decoupling from the primordial plasma.
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Figure 4.1: Evolution of the relativistic degrees of freedom in density g? (green solid
line) and in entropy g?s (orange dashed line). The red dotted lines show the temperature
of the EW and QCD transition. The arrows indicate the moment when each species
becomes non-relativistic.

4.2. Beyond the Equilibrium Description

4.2.1. The Idea of Thermal Decoupling

At the beginning of time, the most part of the constituents of the Uni-
verse were in thermal equilibrium. For this reason, a description based on
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thermodynamic equilibrium is a good approximation of the early thermal
history of the Universe. However, if the Universe were actually in complete
thermal equilibrium, its current appearance would be that of a gas in equi-
librium at the CMB temperature, which is not true. The Universe as we
observe it today is the result of a multitude of processes out of equilibrium.
A deep knowledge of these processes is the key to understand the evolution
of the different particle species that were decoupled from the thermal bath,
leaving a little background known today as relic abundances. There are
different examples of decoupling from this thermal equilibrium, such as the
case of neutrino decoupling, the background radiation, etc.

The problem is therefore reduced to analysing what has been the evol-
ution of the abundance of these particles throughout the history of the
Universe and what has been the remnant that they have left. The first task
is to understand what equilibrium plasma decoupling actually means. Let’s
suppose the following 2→ 2 reaction:

χ χ̄←→ ψψ̄ , (4.15)

where χ represents the particle that will be decoupled (WIMP DM particles,
for example) and ψ are the rest of the particles of the primordial plasma.
As long as the χ particle is in thermal equilibrium, the reaction given by
Eq. 4.15 occurs. The reaction is possible in both directions while the tem-
perature is high enough for the less massive particles to be annihilated giving
rise to the more massive ones. The net destruction of χ particles is then
null. As the Universe expands, however, the temperature drops until the
process can only occur in one direction: there is destruction of χ particles,
but there is no creation anymore:

χ χ̄ −→ ψψ̄ . (4.16)

At that moment, we say that χ is decoupled from the bath.

The criterion to determine if some kind of particles is coupled or de-
coupled to the primordial plasma involves the comparison of the interaction
rate of the particle, usually called Γ, with the expansion rate of the Universe
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(Hubble parameter):


Γ > H (coupled) ,

Γ . H (decoupled) .
(4.17)

The interaction rate is determined by all reactions that keep the species in
thermal equilibrium.

After the decoupling, the amount of χ particles falls to the point where
the annihilation practically stops. The rest of the thermal bath particles
will follow the equilibrium distribution, while the χ species will follow a new
distribution function. How is the form of this new distribution function?
To determine this it is necessary to understand the Boltzmann equation.

4.2.2. Boltzmann Equation

The evolution of the particle number densities depends on the evolution
of the distribution function f(pµ, xµ) of χ species in phase space, but mod-
elling this mathematically is tricky. Liouville’s theorem2 [280] tell us that
the volume of the phase space of a distribution remains constant during the
evolution of each particle of the system, as long as the system is collisionless.
The theorem can be written in terms of the so-called Liouville operator (or
Liouvillian):

L̂[f ] = 0 . (4.18)

The general covariant form of this operator is given by [226]:

L̂ = pα
∂

∂xα
− Γαβγpβpγ

∂

∂pα
. (4.19)

All the gravitational effects of the problem then come from the affine con-
nection of the metric. For the FLRW model, the phase space density is
homogeneous and isotropic: this means that f = f(|~p|, t) (or equivalently
f = f(E, t)). The Liouville operator in this model takes the following form

L̂[f(E, t)] = E
∂ f

∂ t
− ȧ

a
|~p|2 ∂ f

∂ E
, (4.20)

2See Ref. [279] for a modern description of the theorem.
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where a is the scale factor of the FLRW metric.

In order to describe a system where χ species interacts with the rest
of the particles of the SM it is necessary to modify Eq. 4.18 adding the
collision operator3 Ĉ:

L̂[f ] = Ĉ[f ] , (4.21)

that receives the name of Boltzmann Equation4 and determines the evolu-
tion of the distribution function f(pµ, xµ) of any species of particles. Using
the definition of the number density in terms of the phase space density
Eq. 4.1, and integration Eq. 4.21, it is easy to obtain:

dnχ
dt

+ 3Ṙ
R
nχ = g

(2π)3

∫
Ĉ[f ]d

3p

E
, (4.22)

where nχ refers to the numerical density of the χ particle.

In order to solve the equation, the collision term can be derived assuming
that the colliding particles are not connected before the collision (the so-
called Stosszahlansatz ormolecular chaos hypothesis) [282–284]. Within this
hypothesis, Eq. 4.22 can be written as:

g

(2π)3

∫
Ĉ[f ]d

3pχ
Eχ

= −
∫
dΠχdΠadΠbdΠjdΠi

× (2π)4δ4(pχ + pa + pb − pi − pj)
×

[
|M|2χ+a+b→i+jfafbfχ(1± fi)(1± fj)

− |M|2i+j→χ+a+bfifj(1± fa)(1± fb)(1± fχ)
]
,

(4.23)

having used the relativistic kinetic theory (see Ref. [285]). In Eq. 4.23 fi,
fj, fa and fb are the phase space densities of species i, j, a, b; fχ represents
the phase space density of χ (the species that we try to analyse); ± changes
for bosons (+) and for fermions (−). Finally, the integration measure is:

dΠ ≡ g
1

(2π)3
d3p

2E , (4.24)

3For a derivation of the collision operator in quantum field theory see Ref. [281].
4The equation was proposed in 1872 by Ludwig Boltzmann in the context of kinetic
theory of gases [282].
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where g counts the internal degrees of freedom. For simplicity, Eq. 4.23 is
particularized for χ + a + b ←→ i + j case. However, it can be generalized
to any number of colliding species.

Two well-motivated approximations can be used in order to simplify
Eq. 4.23. The first assumption is CP invariance, that implies

|M|2i+j→χ+a+b = |M|2χ+a+b→i+j ≡ |M|2 . (4.25)

The second one is to use the Maxwell-Boltzmann statistics for all species, in-
stead than Fermi-Dirac for fermions or Bose-Einstein for bosons. In absence
of Bose condensation or Fermi degeneracy, 1 ± f w 1, fi(Ei) = e−(Ei−µi)/T

can be used for all species in thermal equilibrium. With these approxima-
tions, the Boltzmann Equation takes the form

ṅχ + 3Hnχ = −
∫
dΠχ dΠa dΠb dΠj dΠi (2π)4|M|2

× δ4(pi + pj − pχ − pa − pb) [fafbfχ − fifj] ,
(4.26)

where H ≡ ȧ/a is the Hubble rate. Analysing the meaning of the different
terms of Eq. 4.26 one finds that while 3Hnχ is the dilution of the particle
density as a consequence of the expansion of the Universe, the right hand
side term represents the variation produced by the interactions with the
rest of the particles of the plasma.

In the analysis of the Boltzmann Equation it is very common to translate
nχ into the yield:

Y ≡ nχ
s
. (4.27)

This quantity takes into account the expansion of the Universe and re-
mains constant throughout its evolution if interactions are absent. As a
consequence, the yield only variates with the collision term. The evolu-
tion of the yield since the beginning of time is better expressed in terms
of temperature rather than time. For this reason, it is common to use the
dimensionless variable

x ≡ m/T , (4.28)
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wherem is some mass scale useful for our problem (typically the mass of the
χ species). Under the assumption that the number of relativistic degrees of
freedom in energy (g?) and entropy (g?s) are independent of time, time and
x can be related during the radiation dominated epoch as dt/dx = 1/(Hx).
Eventually, it is very common to define

H(m) =
√

4π3

45
√
g?
m2

MP
, (4.29)

related with the Hubble parameter as H = H(m)/x2.

Under the manipulations described above, it is easy to obtain the more
usual form of the Boltzmann Equation:

dY

dx
= − x

H(m) s

∫
dΠχdΠadΠbdΠjdΠi(2π)4|M|2

× δ4(pi + pj − pχ − pa − pb)[fafbfχ − fifj] .
(4.30)

4.3. Abundance analysis of the out of equi-
librium species

4.3.1. Integrated Boltzmann Equation

The general case of the Boltzmann Equation has been described in
Sect. 4.2.2. In this section we study the relic abundance generated by a
stable or long-lived particle, the relevant case for the works that compose
this Thesis. We can separate the analysis depending on the nature of the in-
teraction: on the one hand, if the particles are stable, only processes 2 → 2,
such as Eq. 4.15, change the number of χ and χ̄ in a comoving volume. On
the other hand, if the particles are unstable, other processes must be con-
sidered (1 → 2, the different decays of χ). The description performed in
this section follows Ref. [226].

First, we consider a χχ̄→ ψψ̄ process, where ψ and ψ̄ particles represent
some SM specie in thermal equilibrium. The distribution functions of these
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bath particles are given by the equilibrium distribution:

fψ = e−Eψ/T ,

fψ̄ = e−Eψ̄/T .

(4.31)

The δ-function in Eq. 4.30 implies:

Eχ + Eχ̄ = Eψ + Eψ̄ . (4.32)

Using this information, it is easy to obtain:

fψfψ̄ = e−(Eψ+Eψ̄)/T = e−(Eχ+Eχ̄)/T = f eq
χ f

eq
χ̄ . (4.33)

This information allows to simplify Eq. 4.30, obtaining
[
fχfχ̄ − fψfψ̄

]
=[

fχfχ̄ − f eq
χ f

eq
χ̄

]
. Defining the thermal average annihilation cross-section for

2→ 2 processes:

〈σv〉 ≡ (neq
χ )−2

∫
dΠχΠχ̄ΠψΠψ̄(2π)4

× δ4(pχ + pχ̄ − pψ − pψ̄)|M|2e−Eχ/T e−Eχ̄/T ,
(4.34)

the Boltzmann Equation takes the form

dY

dx
= −x〈σv〉 s

H(m)
(
Y 2 − Y 2

eq

)
, (4.35)

where Y = nχ/s = nχ̄/s is the yield of χ and χ̄ particles while Yeq = neq
χ /s =

neq
χ̄ /s is the equilibrium yield. Eventually, in order to obtain the total

abundance, it is necessary to sum over all possible annihilation processes. To
compute the evolution of the yield, it is necessary to know the abundance of
all of the species of the Universe, the so-called equilibrium abundance [228]:

Yeq = 45
4π4

x2

g?s
K2(x) , (4.36)
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where K2(x) is the second modified Bessel function of the second kind,
which can be calculated using the following integral [286]:

Kn(y) =
√
π

(n− 1/2)! (y/2)n
∫ ∞

1
dt e−y t

(
t2 − 1

)n−1/2
. (4.37)

There are cases in which processes 1 → 2 have an important relevance
in the evolution of the abundance. In those cases, the Boltzmann Equation
must be modified as

dY

dx
= − x 〈Γ〉

H(m)(Y − Yeq) , (4.38)

where 〈Γ〉 represents the thermally averaged decay rate. In the most general
case, both terms are relevant. The Boltzmann Equation can be written then
as:

dY

dx
= −x [〈σv〉 s + 〈Γ〉]

H(m)
(
Y 2 − Y 2

eq

)
. (4.39)

4.3.2. Thermally-Average of Physical Observables

Eq. 4.35 allows obtaining the abundance of some species out of the ther-
modynamic equilibrium. In order to obtain the yield, it is necessary to
evaluate the thermal-averaged annihilation cross-section 〈σv〉 and decay
rate 〈Γ〉. For the 〈σv〉 case, the first task is to understand what exactly
is v. In the non-relativistic case, v is the relative velocity between the two
initial particles, defined as |v1 − v2|. In the relativistic scenario (the most
general case) the relative velocity is non-Lorentz invariant. Instead of the
classical relative velocity expression, the so-called Møller velocity must be
used [287]

vMøl =
[
|~v1 − ~v2|2 − |~v1 × ~v2|2

]1/2
. (4.40)

Using this expression, the thermal-averaged annihilation cross-section can
be written as:

〈σv〉 = 1
8m4TK2

2(m/T )

∫ ∞
4m2

ds(s− 4m2)σ
√
sK1(

√
s/T ) (4.41)

whereK1(y) andK2(y) are the modified Bessel functions of the second kind.
On the other hand, the thermally-averaged decay rate 〈Γ〉 can be written
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as
〈Γ〉 = ΓK1(x)

K2(x) . (4.42)

4.4. Freeze-out: WIMP Dark Matter

As it has been commented in Sect. 3.5.2, the WIMP paradigm assumes
that the DM was in thermal equilibrium with the rest of the particles of the
SM in the early times of the Universe. This kind of DM was first studied
by Benjamin W. Lee and Steven Weinberg [225]. Since then, several studies
have been done on this scenario. This section aims to understanding how the
abundance of the DM is generated for WIMP particles using the Eq. 4.35.
The final form of the Boltzmann Equation for 2 → 2 processes presented
in Sect. 4.3.1 is written as a function of the Hubble rate and the entropy
density. Replacing these two functions, the Boltzmann Equation takes the
form:

dY

dx
= − λ

x2 〈σv〉
(
Y 2 − Y 2

eq

)
, (4.43)

where
λ ≡

√
π

45
g?s√
g?
MP mDM . (4.44)

When x = 0 the WIMP scenario assumes Y = Yeq (the DM is in thermal
equilibrium with the SM species). The expansion of the Universe decreases
the rate of the interactions, that for the particular 2→ 2 case varies as

Γan = neq〈σv〉 . (4.45)

When Γan w H, the DM species decouples from the primordial plasma.
This occurs at x = xfo, the so-called freeze-out. Under this hypothesis, it is
easy to get an approximated value for xfo

xfo w log
√ 45

32π6MP mDM

√
xfo

g?
〈σv〉fo

 , (4.46)

where g? must be evaluated at the freeze-out and 〈σv〉fo ≡ 〈σv〉|x=xfo . The
usual values of xfo in the WIMP scenario are xfo v 20 − 25, practically
regardless of the DM mass in the GeV-TeV region. After the decoupling,
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the rate of the interactions becomes negligible, freezing the abundance. It
is possible to take into account two approximations about the evolution of
the yield. On the one hand, the DM before the freeze-out is in thermal
equilibrium with the primordial plasma. Therefore, when x ≤ xfo, the DM
yield is equal to the equilibrium yield:

Y (x) = Yeq(x). (4.47)

On the other hand, after the decoupling, the rate of the interactions de-
creases to practically zero. This fact implies that the yield remains constant

Y (x) = Y (xfo), (4.48)

when x > xfo.

The background temperature today is T∞ = 2.725 ± 0.001 K [47] while
the observed abundance is given by Y∞ = Yx→∞ w Y (x � xfo). The yield
is related with the relic density via [288]

ΩDMh
2 = 2.755× 108mDM

GeV Y∞ . (4.49)

As we have commented in Tab. 2.1, the value of the relic abundance that
we observe nowadays is ΩDMh

2 = 0.1121 ± 0.0056 [120].

In order to solve Eq. 4.43, it is necessary to use different numerical
techniques. The annihilation cross-section is, in general, too complicated to
obtain an exact solution of the Boltzmann Equation. However, the special
conditions of the evolution of the DM abundance in the WIMP scenario
allow for an analytical approach to be found. As shown in the right panel
of Fig. 4.2, after the freeze-out the DM yield remains constant, while the
equilibrium yield falls. Therefore, it is reasonable to neglect Yeq for x > xfo.
Moreover, Y = Yeq before the freeze out. Under both assumptions

1
Y∞

= 1
Yfo

+
∫ ∞
xfo

dx

x2 λ 〈σv〉 . (4.50)



66 Chapter 4. Evolution of the Universe: A Thermodynamic Description

The dependence of λ with x comes from the variation of g? s and g? with the
temperature. Taking g? s and g? at the value of Tfo and neglecting 1/Yfo,

Y∞ =
(
λfo

∫ ∞
xfo

dx

x2 〈σv〉
)−1

, (4.51)

where λfo ≡ λ|x=xfo .

The relative DM velocity in the WIMP scenario is small, fact which
allows to write the cross-section in terms of the relative velocity between
the two DM particles of the process. Under this assumption, we can expand
the cross-section times v as a power series of v:

σv w a+ b v2 + c v4 +O(v6) , (4.52)

where v w
√
s/m2

DM − 4. The different terms of the expansion represent the
s-wave, p-wave and the d-wave contributions, respectively. From Eq. 4.41,
we thermally average the above expression [289]

〈σv〉 = x3/2

2
√
π

∫ ∞
0

dv v2(σv)e−xv2/4 w a+ 6 b
x

+ 15 c
x2 +O(1/x3) (4.53)

In the particular case where DM annihilation takes place in s-wave, the
thermal-averaged cross-section remains constant and Eq. 4.51 gives a trivial
solution for the DM yield:

Y∞ = xfo

〈σv〉λfo
. (4.54)

Thanks to the relation between the yield and the relic density, it is easy to
obtain:

ΩDMh
2 = 1.04× 109 xfo√

g?sMP 〈σv〉
GeV−1 . (4.55)

Eq. 4.55 assumes that the relativistic degrees of freedom in entropy and en-
ergy are equal for the typical decoupling temperatures in the WIMP scen-
ario, g? = g?s w 80 − 100. The exact value of xfo depends on the mass of
the DM particle. However, xfo v 20 − 30 in the mass range for which it
is possible to describe the DM relic abundance through freeze-out. There-
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fore, in that range, the relic abundance only depends on the annihilation
cross-section, and not directly on the mass.

In general, if mDM ∈ [10−1, 104] GeV, the value of 〈σv〉 to obtain the cor-
rect relic density must be5 〈σv〉 ∼ 2× 10−26cm3/s. Only small variations of
〈σv〉 occurs in this mass range [290]. However, the approximation described
in Eq. 4.53 is not always valid. There are situations, close to a resonance
for instance, where is more convenient solve Eq. 4.43 numerically.

Figure 4.2: Different examples of the two thermal production mechanisms described
in this Chapter. The plots show the abundance Ωh2 as a function of x = mDM/T for
two representatives values of the DM mass. In both plots the red solid horizontal line
shows the current DM abundance. Left plot: solution of the Boltzmann Equation 4.43
for different values of the thermal-averaged annihilation cross-section in the freeze-out
regime Y (x0) = Yeq(x0). The orange solid line represents the abundance associated to
the equilibrium distribution for a DM particles with mDM = 100GeV. The correct relic
abundance is reached for 〈σv〉 ∼ 1 pb. Right plot: solution for the freeze-in regime,
Y (x0) = 0. In this case, the orange solid line shows the abundance produced by the
equilibrium distribution for mDM = 10MeV .

Left panel of Fig. 4.2 shows the numerical solution of Eq. 4.43 for differ-
ent values of the thermal-averaged annihilation cross-section. Independently
of the DM mass value, the current value of the DM abundance is reached
for 〈σv〉 w 2 × 10−26cm3/s v 1 pb. This value is pretty close to the typ-
ical electroweak interaction values: this fact receives the name of WIMP
miracle.
5The conversion factors between the cross-section units are 1GeV−2 = 3.89 × 108 pb =
1.17× 10−17cm3/s.
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4.5. Freeze-in: FIMP Dark Matter

Sect. 4.4 describes the case where the DM and the SM particles were in
thermal equilibrium in the early Universe. However, when the visible and
DM sectors interact with small couplings, v O(10−7) [247], the interaction
rate is too small to reach thermal equilibrium. Therefore, the freeze-out
mechanism cannot take place. In this particular case, the abundance of the
DM in the early times was negligible:

Y (x0) w 0. (4.56)

As long as the temperature is high enough, though, the interactions with the
SM increases the yield. When the temperature of the Universe decreases, the
possibility of generating more DM particles is reduced. As a consequence,
the DM freezes-in and the yield remains constant until today. This kind of
DM receives the name of FIMP6 (Feebly Interacting Massive Particles) [252].
As we commented in Sect. 4.4, the freeze-out always occur for x = mDM/T v
20 − 25. This fact allows finding a typical value of the thermal-averaged
cross-section to obtain the correct yield. Unlike WIMP, on the other hand,
the FIMP scenario is highly dependent on initial conditions. Therefore, it
is not possible to find a model-independent cross-section that reproduces
the current relic abundance.

In the freeze-in scenario, the term Y 2 in Eq. 4.35 can always be neg-
lected with respect to the equilibrium one, because the DM never reaches
the thermal equilibrium with the primordial bath. As a consequence, the
DM abundance before the freeze-in is always smaller than the equilibrium
abundance. The Boltzmann Equation for 2 → 2 processes can then be
simplified as

dY

dx
= λ

x2 〈σv〉
(
Y 2 − Y 2

eq

)
w −λ 〈σv〉

x2 Y 2
eq . (4.57)

Unlike the freeze-out scenario, where the abundance of the DM decreases
with the temperature, the yield of the FIMP increases through the evolution
of the thermal history of the Universe, until the freeze-in. The difference
between both frameworks produces a minus sign in Eq. 4.57 with respect to
6Despite the name was proposed in 2009, the idea was first studied in the late 1990’s in
Ref. [291].
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Eq. 4.35. The right panel of Fig. 4.2 shows the solution of the Boltzmann
Equation in the freeze-in scenario for different constant values of the thermal
average annihilation cross-section. In contrast to the freeze-out framework,
in this case, the interaction must be much smaller to reach the correct relic
abundance. In order to solve Eq. 4.57 we take g? = g?s = 106.75; this is
a direct consequence of the ultra-relativistic nature of DM species in the
FIMP regime.

The dependence from the initial conditions makes useful to analyse the
main aspects of the freeze-in Eq. 4.35 in terms of the temperature, instead
of 7 x = mDM/T . Therefore, the Boltzmann Equation can be written as:

dY

dT
= − γ

H sT

( Y

Yeq

)2

− 1
 w γ

H sT
, (4.58)

where γ is the interaction rate density, defined for a→ i+ j processes as:

γ1→2(T ) = m2
aT

2π2 K1

(
ma

T

)
; (4.59)

and, for a+ b→ i+ j as:

γ2→2(T ) = T

64 π4

∫ ∞
smin

ds
√
sσR(s)K1(

√
s/T ) , (4.60)

with smin = Max [(ma +mb)2, (mi +mj)2]. The reduced cross-section8

σR(s) is related to the total annihilation cross-section σ(s) via the Källén
function9:

σR(s) = 2λ(s,m2
a,m

2
b)

s
σ(s) . (4.61)

Eq. 4.59 and Eq. 4.60 show the interaction rate density for the two kind of
processes that can contribute to the DM production in this scenario.

It is easy to integrate Eq. 4.58,

Y (T ) =
( 45

4π3

)3/2 2MP

g?s
√
g?

∫ Trh

T

γ2→2(T )
T 6 , (4.62)

7Remember that there is a −1 factor between the Boltzmann Equation in terms of T
and x, dx = −(mDM/T

2) dT .
8The reduced cross-section represents the cross-section without the flux factors.
9Defined as λ(s,m2

a,m
2
b) =

[
s− (ma +mb)2] [s− (ma −mb)2].
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where Trh is the reheating temperature which, in the approximation of a
sudden decay of the inflaton10, corresponds to the maximal temperature
reached by the primordial thermal bath. For the previous analysis to be
valid, the DM has to be out of chemical equilibrium with the SM bath. One
needs to guarantee, therefore, that the interaction rate density is γ � neqH,
which translates into a bound over the reheating temperature.

10Hypothetical scalar field responsible of the inflation in the very early universe [292].



Chapter 5

Dark Matter Searches

In Chapter 3 we explained the properties and characteristics of a vi-
able Dark Matter candidate. In Chapter 4 we analysed the WIMP and
FIMP scenarios, explaining how the observed DM abundance is generated
in the early Universe. However, how can DM particles be detected? In the
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Figure 5.1: Schematic representation of the different techniques of DM detection. Image
taken from [293].

current particle physics landscape, it is possible to group the detection ex-
periments into three categories: DM production at hadron colliders, such as
the LHC [294]; Direct Detection (DD) of DM-nucleus scattering processes
in ultra-sensitive low-background experiments [295]; and eventually, Indir-
ect Detection (ID), or the detection of particles generated in Dark Matter

71
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annihilation processes [296]. Fig. 5.1 shows a schematic representation of
the three detection techniques. Although FIMPs can have similar prop-
erties to WIMPs, its coupling to the SM is much more suppressed, hence
makes their detection more difficult. Nevertheless, the detection techniques
in both cases are the same.

Several experiments are currently trying to detect DM, and identify its
nature and interactions beyond gravity. In this Chapter we analyse the
current DM detection landscape, focusing on WIMP Dark Matter searches.

5.1. Direct Detection

Nowadays, Direct Detection experiments represents one of the most
promising detection techniques of BSM physics. The idea of the DD was
first proposed by Mark W. Goodman and Edward Witten [297]. Since the
Dark Matter must be electrically neutral, the detection with electromag-
netic techniques is impossible. However, the possibility of elastic scattering
between the DM and atomic nucleis exist. As the Milky Way is surroun-
ded by a Dark Matter halo, the knowledge about its different astrophysical
properties allows us to predict the interaction rate of these DM particles
with the detectors located on the Earth.

5.1.1. Basic Ideas

The first derivation of the different formulas presented in this section can
be found in Ref. [298]. The following discussion is based on Refs. [299,300].
The most relevant quantity in DD experiments is the differential rate unit
(DRU) that represents the differential event rate, calculated per counts, kg,
day and keV:

dR

dENR
= ρ0

mNmDM

∫
v>vmin

vf(v) dσ

dENR
(v, ENR)dv , (5.1)

where mN is the nucleon mass, ENR is the nuclear recoil energy and σ

represents the DM-nucleon scattering cross-section.
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Typically, the DM Direct Detection experiments assumes that DM is
distributed in an isotropic singular isothermal sphere, ρ(r) ∝ r−2. The
local DM density is then ρ� = ρ|r=R� , where R� = 8.0± 0.5Kpc [301] is
the approximate distance of the Sun from the Galactic Center. The most
common value used in DD experiments for local DM density is given by1

ρ� = 0.3GeV/cm3 [214].

It is common to assume an isotropic and gaussian velocity distribution2

f(~v) = 1√
2πσv

e|~v|
2/(2σ2

v) , (5.2)

where σv represents the velocity dispersion in the DM gas. This approxim-
ation is called Standard Halo Profile and is supported by N-body simula-
tions [302]. The velocity dispersion is related to the total circular velocity
of the galaxy by σv =

√
3/2 vc, where vc = 220± 20 km/s [213].

The integral is over all velocities above the minimal velocity required
to induce a nuclear recoil. This velocity can be calculated with simple
kinematics:

vmin =
√
mNENR

2µ2
DM-N

, (5.3)

where µDM-N ≡ mNmDM/(mN + mDM) is the reduced mass of the DM
and nucleus system. When the velocity is larger than the escape velocity,
v > vesc = 544 km/s [303], the Dark Matter particles escapes from the Dark
Matter halo. Therefore, integrating Eq. 5.1 up to the escape velocity is a
good approximation.

The total event rate, calculated per kilogram and per day, can be ob-
tained integrating Eq. 5.1 in the range of the possible nuclear recoil energies,

R =
∫ ENR,high

ENR,low
dENRε(ENR) dR

dENR
, (5.4)

where ε(ENR) represents the efficiency of the detector. The maximal recoil
energy is constraint by the kinematics:

ENR, high = 2µDM-Nv
2
esc

mN
, (5.5)

1Note, however, that the most recent measurement finds ρ� = 0.46GeV/cm3 [215].
2Usually called Maxwellian.
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while the ENR, low represents the threshold of the detector.

5.1.2. DM-Nucleus Cross-Section

Eq. 5.4 gives the rate of the interaction per day and per kilogram of DM
particles with the detector. All information about the interaction between
the nucleus and the DM is given by the DM-nucleus cross-section,

dσ

dENR
=
(

dσ

dENR

)
SI

+
(

dσ

dENR

)
SD

, (5.6)

that consists of two contributions: Spin-Dependent (SD), the contributions
that arise from the DM couplings to the quark axial-vector current, and the
Spin-Independent (SI), that comes from the scalar and vector couplings in
the Lagrangian.

The DM-nucleus cross-section depends on the DM-nucleon cross-section,
that encodes the microscopic information of the collision. The small mo-
mentum transfer from the DM to the nucleus, q =

√
2mNENR, allows us

to obtain an expression that relates the microscopic and the macroscopic
cross-sections.

5.1.2.1. Spin-Dependent Cross-Section

The SD cross-section depends on the spin of the DM and the angular
momentum of the nucleus. For a fermionic3 DM the expression is given
by [299]

(
dσ

dENR

)
SD

= 16G2
F mN

πv2
J + 1
J

(ap〈Sp〉+ an〈Sn〉)2 S(ENR)
S(0) , (5.7)

where S(ENR) and S(0) are the form factors, 〈Sn,p〉 are the expectation
values of the spin content of the neutron and proton (that can be determined
experimentally) and J is the total angular momentum of the nucleus. The
3The expression for the spin-1 DM can be found in Ref. [304].
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Nucleon ∆u ∆d ∆s

Neutrons −0.46(4) 0.80(3) −0.12(8)

Protons 0.80(3) −0.46(4) −0.12(8)

Table 5.1: Matrix element of the axial-vector current in a nucleon. The first row
represents ∆n

q while the second represents ∆p
q . Data taken from [309].

coefficients ap and an are given by

ap = ∑

q=u,d,s
αA
q√

2GF
∆p
q ,

an = ∑
q=u,d,s

αA
q√

2GF
∆n
q .

(5.8)

The different αA are the couplings of the DM to the axial-vector quark cur-
rents, which are given by the model. On the other hand, the ∆n,p

q encode
the information about the quark spin content of the nucleon and are pro-
portional to 〈N |q̄γµγ5q|N〉. These coefficients are usually calculated with
two strategies: lattice QCD [305] and experimental nuclear physics tech-
niques [306–308]. The values of ∆n,p

q are summarized in Tab. 5.1.

5.1.2.2. Spin-Independent Cross-Section

In the zero-momentum transfer approximation [310] Spin Independent
contribution is independent of the DM and nucleus angular momentum.
The expression is then given by:(

dσ

dENR

)
SI

= 2mN

πv2

(
[Z fp + (A− Z) fn ]2 + B2

N
256

)
F 2(ENR) , (5.9)

where BN ≡ αV
u (A+Z) + αV

d (2A−Z) is the vector-vector contribution with
αV
u,d the vector-vector couplings between the DM and the u and d quarks,

(A,Z) the number of neutrons and protons of the nucleus and F 2(ENR)
another experimental form factor [311,312].
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Nucleon fTG fTu fTd fTs

Neutrons 0.910(20) 0.013(3) 0.040(10) 0.037(17)

Protons 0.917(19) 0.018(5) 0.027(7) 0.037(17)

Table 5.2: Contributions of the light quarks to the mass of the neutron and proton.
The numbers in parentheses are the one-sigma uncertainty. Data taken from [314].

Finally, the fp,n quantities that appear in Eq. 5.9 are

fp,n

mp,n

=
∑

q=u,d,s

αSq
mq

fpTq + 2
27f

p
TG

∑
q=u,d,s

αSq
mq

. (5.10)

The scalar-scalar coupling between the DM and the quarks is given by
αS
q . The coefficients fp,nTq encode the nucleon matrix elements and represent

the contribution of each light quark to the nucleon. These coefficients are
defined as:

fp,nTq = mq

mp,n

〈N |q̄q|N〉 , (5.11)

and must be calculated using Lattice QCD or experimentally, using meas-
urements of the pion-nucleon sigma term [313]. Finally, fp,nTG represent the
gluon contribution to the nucleon mass and is defined as

fp,nTG = 1 −
∑

q=u,d,s
fp,nTq . (5.12)

These different constants are summarized in Tab. 5.2.

For a detailed explanation about the contributions of the light quarks to
the mass and the matrix elements of the axial-vector currents see Refs. [315,
316].

5.1.3. Current Status of Direct Detection Landscape

The search for Dark Matter has become one of the great milestones
of high-energy physics. However, despite the efforts of many experimental
groups, no conclusive direct detection of Dark Matter has ever been made,
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neither of WIMP particles nor of any other form of Dark Matter4. There-
fore, currently we only have restrictive experimental bounds on theoretical
models.

The first DD experiment started in 1987: Ultralow Background Ger-
manium Spectrometer, with 0.72 kg of high purity germanium crystal [338].
Since then, several experiments have appeared, improving the limits on DD.
Nowadays, the landscape of DD is composed of a great number of exper-
iments. The most common are the experiments that use noble gases, like
xenon or argon, as a target. Tab. 5.3 summarizes the most important of
them, with its different properties.

The different DD experiments represent an important improvement in
the detection of the Dark Matter particles, placing strong bounds. On most
models, the strongest bounds come from the SI cross-section. Fig. 5.2 shows
some of this current limits.

5.2. Indirect Detection

Indirect Detection experiments try to observe the SM products of the
annihilation of stable particles in the cosmic rays fluxes. In general, it is
possible to distinguish between three kinds of detectable fluxes: charged
particles, like electrons and positrons, protons and antiprotons, deuterium
and antideuterium; photons and, finally, neutrino fluxes. Since the 1970’s,
several works appeared trying to find DM signatures. First publications
are: in γ-rays [340–343], in positrons fluxes [343–346], in antiproton fluxes
[343–347] and in antideuterons fluxes [348–350]. There are several reviews
about this topic. In this Thesis we have used Refs. [219,296].

Information on stable particle fluxes reaching the Earth can be used
to constrain DM models under specific conditions. In general, in all BSM
4There are some exceptions, such as the case of DAMA/LIBRA experiment, which ob-
tained data compatible with the existence of WIMP particles at specific values of the
mass, such as mDM = 7 − 12 GeV [317, 318]. The current statistical significance of
DAMA/LIBRA signal reaches the 12σ level. However, the annual modulation of the
number of detection events found by DAMA/LIBRA is under debate since other exper-
iments, as the experiments like LUX or Xenon1T, do not report any excess in that mass
region.
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Experiment Target Mass [Kg] Laboratory Ref.

ANAIS-112 NaI 112 Canfranc [319]

CDEX-10 Ge 10 CJPL [320]

CDMSLite Ge 1.4 Soudan [321]

COSINE-100 NaI 106 YangYang [322]

CRESST-II CaWO4 5 LNGS [323]

CRESST-III CaWO4 0.024 LNGS [324]

DAMA/LIBRA-II NaI 250 LNGS [325]

Darkside-50 Ar 46 LNGS [326]

DEAP-3600 Ar 3300 SNOLAB [327]

DRIFT-II CF4 0.14 Boulby [328]

EDELWEISS Ge 20 LSM [329]

LUX Xe 250 SURF [330]

NEWS-G Ne 0.283 SNOLAB [331]

PandaX-II Xe 580 CJPL [239]

PICASSO C4F10 3.0 SNOLAB [332]

PICO-60 C3F8 52 SNOLAB [333]

SENSEI Si 9.5× 10−5 FNAL [334]

SuperCDMS Si 9.3× 10−4 SNOLAB [335]

XENON-100 Xe 62 LNGS [336]

XENON-1T Xe 1995 LNGS [238]

XMASS Xe 832 Kamioka [337]

Table 5.3: Current Direct Detection experimental landscape in alphabetic order. The
table shows the target, mass in kg and the place of a great part of the current DD
experiments. Not all current experiments are included. The different data are extracted
from Ref. [295].
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Direct Detection of Dark Matter 32

Figure 12. The current experimental parameter space for spin-independent WIMP-

nucleon cross sections. Not all published results are shown. The space above the

lines is excluded at a 90% confidence level. The two contours for DAMA interpret

the observed annual modulation in terms of scattering of iodine (I) and sodium (Na),

respectively [125]. The dashed line limiting the parameter space from below represents

the “neutrino floor” [117] from the irreducible background from coherent neutrino-

nucleus scattering (CNNS), see Sect. 3.4.

target) are weaker due to their higher threshold and lower exposure.

In a mass range from 1.8 GeV/c2 . m� . 5 GeV/c2, the most stringent exclusion

limit was placed by DarkSide-50 using a LAr target depleted in 39Ar [126]. The

result from a 0.019 t⇥ y run is a based on using the ionization signal only, which

allowed reducing the analysis threshold to 0.1 keVee. The observed background of

1.5 events/(kg⇥ d⇥ keVee), corresponding to 5.5 ⇥ 105 events/(t⇥ y⇥ keVee), can be

attributed to known background sources above ⇠1.4 keVnr (corresponding to 8 e�).

Due to their much smaller total target mass and higher backgrounds, the cryogenic

experiments using Ge-crystals with ionization and phonon readout (EDELWEISS,

(Super)CDMS) or scintillating CaWO4-crystals with light and phonon readout

(CRESST) cannot compete in the search for medium to high-mass WIMPs. However,

due to their ability to reach extremely low thresholds well below 1 keVnr, they are very

sensitive to low-mass WIMPs with masses .5 GeV/c2. The Germanium-based detectors

SuperCDMS and EDELWEISS could improve their low-mass sensitivity by operating

the detectors with a high bias voltage, converting the ionization signals into Neganov-

Figure 5.2: Bounds from Dark Matter Direct Detection SI experiments. The space
above the different lines is excluded at 90% confidence level. The two contour red regions
represent the DM observation reported by DAMA/LIBRA experiment. The yellow region
represents the neutrino floor [339], the parameter space region where the detectors should
detect the coherent neutrino-nucleus scattering (CNNS). Image taken from Ref. [295].

models, the DM can be annihilated into SM particles, resulting, in its final
states, in stable particles. If these processes are possible, the signature of the
DM annihilations remain in the cosmic rays detected at the Earth. The ID
tries to trace the footsteps of these DM annihilations in the stable particle
fluxes detected in the experiments. However, not all DM annihilations leave
evidences in the cosmic rays. If the annihilation cross-section depends on
the relative DM velocity, the contribution of these processes to the stable
particle flux will be negligible, since the relative velocity of the DM particles
today is small. This situation takes place when the angular momentum of
the collision is l > 0. According to the velocity dependence, the different
annihilation cross-section terms receives the names summarized in Tab. 5.4.

In general, ID is possible in processes that take place in s-wave, where the
annihilation cross-section is not suppressed by the DM velocity. However,
the velocity suppression only affects the indirect signals today. This fact is
compatible with the DM production in the early Universe. Indeed, the DM
production takes place when DM is relativistic and, as a consequence, the
velocity suppression does not prevent reaching the current abundance [228].



80 Chapter 5. Dark Matter Searches

Name l Velocity dependence of 〈σv〉
s-wave 0 −
p-wave 1 〈σv〉 ∝ v2

d-wave 2 〈σv〉 ∝ v4

f-wave 3 〈σv〉 ∝ v6

Table 5.4: Velocity dependence of the cross-section according to the collision angular
momentum l.

5.2.1. Hadrons, leptons and photons spectra

For a given particle physics model, the spectrum of SM particles is not
easily calculated. Nowadays, the most efficient way to obtain the different
fluxes is to use a specific software, such as those in Refs. [351–355]. Fig. 5.3
shows different examples of spectra generated by annihilation of DM into
photons, neutrinos, positrons antideuterons and antiprotons.

In general, the different processes that generate the final SM particle
spectrum do not occur close to the Earth, where the detection is produced.
As a consequence, it is necessary to propagate the spectrum given by our
BSM model. The propagation is strongly dependent on the particle prop-
erties and of the cosmic-ray model employed. Indeed, there are different
propagation models for photons, neutrinos, positrons, antiprotons and an-
tideuterons. A very useful package to this task is PPPC4DMID and can be
found in Ref. [219].

5.2.2. Propagation models of charged particles

In this section, we will provide a general benchmark for the propagation
of the spectra of differently charged particles. The most common ones are
the antiprotons and positrons (both cases will be analysed). For a complete
description of deuterium propagation models see Refs. [350,356,357].
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15

Figure 5.3: Different examples of SM particles fluxes (from top to bottom, left to right,
photons, neutrinos, positrons, antideuterons and antiprotons, respectively) produced by
annihilation of two DM particles with mDM = 100 GeV. In all plots K represents the
kinetic energy of the final stable states. This examples are taken from Ref. [219].
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Model δ K0 [kpc2/Myr]

Min 0.55 0.00595

Med 0.70 0.0112

Max 0.46 0.0765

Table 5.5: Propagation Coefficients of electrons and positrons through the galaxy. The
different data are extracted from Ref. [359].

5.2.2.1. Electrons and positrons

The same formalism is used for electrons and positrons. Therefore in the
following expressions we will not distinguish between them. The evolution
of the electrons spectrum fe ≡ dNe/dE along the galaxy obeys the diffusion
loss equation

−∇ [K(~x,E)∇fe]−
∂

∂E
[b(E) fe] = Q(~x,E) , (5.13)

where Q(~x,E) takes into account of all sources, K(~x,E) is the diffusion coef-
ficient function and b(E) the energy loss coefficient function, that describes
the energy lost by charged particles. In general, the diffusion coefficient
depends on the position. However, in order to obtain a semi-analytical
solution of Eq. 5.13, the spatial dependence is usually neglected in the lit-
erature: K(E) = K0ε

δ, where ε ≡ E/GeV. In the same way, for high energy
b(~x,E) w b(E) ∝ E2 [358].

The propagation model is defined by the constants K0 and δ. Moreover,
Eq. 5.13 is usually solved in a diffusion region defined by a cylinder that
sandwiches the galactic plane. In Tab. 5.5 we summarize the three most
used models in the literature. The electron/positron flux Φe produced by
DM annihilation and decay can be obtained by solving Eq. 5.13:

dΦe

dE
(E, ~x) = ve

8πb(E, ~x)

(
ρ�
mDM

)2∑
f

〈σv〉f
∫ mDM

E
dEs

dN f
e

dEs
I(E,Es, ~x) ,

dΦe

dE
(E, ~x) = ve

4πb(E, ~x)

(
ρ�
mDM

)∑
f

Γf
∫ mDM/2

E
dEs

dN f
e

dEs
I(E,Es, ~x) ,

(5.14)
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Model δ K0 [kpc2/Myr] Vconv [km/s]

Min 0.85 0.0016 13.5

Med 0.70 0.0112 11

Max 0.46 0.0765 5

Table 5.6: Propagation coefficients of protons and antiprotons through the galaxy. The
different data are extracted from Ref. [361]

where ve is the velocity of the electrons, Es is the particle energy at the
production point and I(E,Es, ~x) is the generalized halo function, that en-
codes all astrophysical information of the propagation. Both b(E, ~x) and
I(E,Es, ~x) can be calculated for the three models described in Tab. 5.5 with
the PPPC4DMID package [219].

5.2.2.2. Protons and Antiprotons

Protons and antiprotons are charged particles as positrons and electrons.
Therefore, their propagation is defined by differential equation similar to
that given Sect. 5.2.2.1. However, it is necessary to include new terms and
effects in the model. It is common to find in the literature the expression
in cylindrical coordinates (r, z), where z is the distance from the Earth to
the source. The equation is given by

−K(K) · ∇2fp + ∂

∂z
[sign(z)fpVconv] = Q− 2hδ(z)Γannfp (5.15)

where fp ≡ dNp/dE, K is the kinetic energy of protons/antiprotons and
K = K0β (p/GeV )γ is the diffusion function, with p =

√
K2 + 2mpK the

momentum and β = vp/c the velocity of the proton/antiproton.

There are two extra terms in Eq. 5.15 with respect to Eq. 5.13. The
first one, Vconv, is the convective wind, assumed to be constant and directed
outward from the galactic plane. The value of Vconv, such as δ and K0, is
fixed by the model. The second new term takes into account the annihilation
of protons/antiprotons confined in the galactic plane, that has h = 0.1 kpc
of thickness (see Ref. [360] for more details). Tab. 5.6 summarizes the three
most common models for proton/antiproton propagation.
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Assuming steady state conditions, the first term in Eq. 5.15 can be
neglected, and the equation can be solved analytically [362–365]. Then, the
proton/antiproton flux Φp due to the DM annihilation and decay is given
by



dΦp

dE
(K) = vp

8π

(
ρ�
mDM

)2
R(K)

∑
f

〈σv〉f
dN f

p

dK
,

dΦp

dE
(K) = vp

4π

(
ρ�
mDM

)
R(K)

∑
f

Γf
dN f

p

dK
,

(5.16)

where R(K) encodes all astrophysical information about the propagation.
This function can be approximated with an accuracy better than 6% as

log10

(
K

Myr

)
= a0 + a1 κ+ a2 κ

2 + a3 κ
3 + a4 κ

4 + a5 κ
5 , (5.17)

where κ = log10 (K/GeV). The ai coefficients depends on the propagation
model (Min, Med, Max) and the DM density profile (the values can be
found in Ref. [219]).

Since the mass of the protons/antiprotons is larger than the elec-
tron/positron mass, it is necessary to take into account the effect of the
solar modulation. A complete description of this effect in the cosmic rays
can be found in Ref. [366].

5.2.3. Propagation of Uncharged Particles

Two fluxes of uncharged particles arrive at Earth: neutrinos and
photons. Regarding the neutrino flux, the most significant contribution
arriving at Earth is generated in the Sun (solar neutrinos) or in the Earth’s
atmosphere (atmospheric neutrinos). The weak interaction of the neutrinos
with the rest of the particles makes easier their propagation and larger their
mean path. However, it is necessary to take into account different effects,
such is the case for neutrino oscillations. A complete description of the
subtleties of the propagations of neutrinos can be found in Ref. [367].

The other neutral particles that reach the earth are γ-rays. The differ-
ential photon flux produced by DM annihilations that arrives at Earth from
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a window with size ∆Ω, is given by [219]

dΦγ

dE
(E) = J

8πm2
DM

∑
f

〈σv〉f
N f
γ

dE
(E) , (5.18)

where
J =

∫
∆Ω

dΩ
∫
ρ2(s)ds (5.19)

is called J-factor and it encodes all astrophysical information. In other
words, the J-factor is the integration of the DM profile along the line of
sight. If the γ-rays are generated through DM decay, the flux takes the
form

dΦγ

dE
(E) = J

4πmDM

∑
f

Γf
N f
γ

dE
(E) , (5.20)

with
J =

∫
∆Ω

dΩ
∫
ρ(s)ds . (5.21)

5.2.4. Experimental status of indirect detection:
Landscape and limits

The current landscape of ID experiments provides a good source of con-
straints to the BSM models that include Dark Matter candidates. In this
Section, we try to give a general overview of the experimental status.

5.2.4.1. γ-rays searches

The γ-ray search experiments represent the most promising source of
bounds in ID. The observation of photons coming from Dwarf Spheroidal
Galaxies can be used to set limits in different BSM models. DSphs are
objects dominated by DM and, thanks to their high latitude, these astro-
nomical objects suffer from low diffuse γ-ray emission.

In the last years, Fermi-LAT experiment5 has analysed the photon flux of
15 different dSphs. In general, the Fermi collaboration has studied photons
with energies between 500 MeV and 500 GeV [240,241]. It is easy to analyse
5The Fermi Large Area Telescope.
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the bounds imposed on some BSM models by the dSphs using gamLike
v.1.0 [368].

Although the dSphs are the strongest source of bounds, different ad-
vances are being made in the γ-rays coming from the GC and other galaxy
groups [369,370].

5.2.4.2. Charged particle searches

Several experiments have reported the observation of fluxes for positrons
and antiprotons. PAMELA has analysed the positron flux coming from the
centre of our galaxy [371], whereas AMS-02 did the same analysis but addi-
tionally observed the antiproton flux [372–374]. Some DM models predict
extra positrons and antiprotons that increase the fluxes predicted by the
SM. The SM+BSM flux can be studied and compared using different back-
grounds model, allowing to set bounds in specific regions of the parameter
space. In the last years, an excess of w 10 − 20 GeV cosmic-ray antipro-
tons has been reported by several authors in the data taken by AMS-02
experiment [375–379]. This excess, with a 4.7σ of significance with respect
to the background signal [375], has been studied as a DM prove by several
authors, some examples can be found in Refs. [380,381].

In general, the bounds imposed by charged particles are always worse
than the bounds from γ-rays or Direct Detection. Their propagation models
have many uncertainties and this makes difficult to set robust constraints.

5.2.4.3. Neutrino searches

Most of the neutrinos that reach the Earth are produced in the Sun or
in the Earth’s atmosphere. DM could be captured by the Sun and anni-
hilate into neutrinos, which would then be detected by different neutrino
experiments giving an excess with respect to solar neutrinos due to nuclear
reactions in the Sun. However, this is not the only neutrino source: fluxes
coming from the GC are looked for, too. Both neutrino fluxes can be used
to constrain DM models.



Indirect Detection 87

The weak interaction of neutrinos hinders their detection. However,
there are several neutrino experiments on Earth making possible the detec-
tion of these elusive particles. Nowadays, the two most important neutrino
telescopes are KM3Net and IceCube6.

With Respect to the GC neutrino bounds, the small number of detec-
tions in Icecube and Antares makes the bound over DM models due to GC
neutrino fluxes v 3 order of magnitude worse than the bounds from γ-
rays [382, 383]. However, very competitive bounds from the solar neutrino
searches are presented by both experiments [384,385].

5.2.5. Galactic Center γ-ray Excess (GCE)

The different fluxes explained in the previous sections describe measure-
ments that can be explained using only SM particle. This fact set limits
over the DM models. However, there is an unexpected signal detected in the
γ-ray data reported by the Fermi-LAT collaboration from the center of the
Milky Way, the so-called Galactic Center Excess (GCE). The distribution
and morphology of this photon excess is compatible with the predictions
about DM annihilation [386–395]. According to the last Fermi-LAT ana-
lysis, the GCE is peaked at v 3 GeV.

The physical origin of the GCE is unclear. The DM explanation is not
the only one, as the GCE could be caused by the emission of unresolved
point sources [396–400] or due to cosmic-ray particles injected in the galactic
center region, interacting with the gas or radiation fields [401]. In addition,
the nature of the GCE seems different below and above v 10 GeV. The high
energy tail may be explained as an extension of the Fermi bubbles observed
at higher latitudes [400], whereas the low energy excess might be produced
by DM annihilation, unresolved Millisecond Pulsars, or both.

It is true that the interpretation of the GCE as a signal of DM annihil-
ation is not robust, but currently it can not be ruled out either.
6KM3Net is located 2.5 km under the Mediterranean Sea off the coast of Toulon, France
(in the same place where ANTARES was located). On the other hand, IceCube is located
at the Amundsen-Scott South Pole Station in Antarctica, in the same location that
its predecessor AMANDA. In order to suppress the atmospheric neutrino background,
the neutrino telescopes explore upward-going neutrinos. Therefore, while ANTARES
explores the Southern Hemisphere, IceCube explores the Northern.
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5.3. Collider Searches

Sect. 5.1 and Sect. 5.2 give an overview about the different techniques of
Direct and Indirect DM Detection. In order to complete the DM detection
landscape it is necessary to talk about the DM production at colliders. The
strongest current bounds come from the searches at LHC. In general, the
DM signals at colliders consist on the detection of some missing energy or
momentum in the collision. Several reviews can be visited by the reader to
expand the brief summary made in this section, for instance Refs. [294,402–
404]

We can distinguish two kind of models analysed at colliders: models
where DM couple directly to SM particles and models where do not exist
such direct couplings. In the first case, we can find different interesting
channels to search for DM. On the one hand, channels related with the
Higgs boson have been one of the most promising searches as a consequence
of its special role in the electroweak interaction. The current bounds over
the invisible decay Br(H → inv) imposed by ATLAS and CMS can be found
in Refs. [405, 406] and constraints models where DM couple directly to the
Higgs. The limits over the DM mass in this case are mDM . mH/2 . On the
other hand, models where DM couple to the Z boson are constrained by the
precise measurements in LEP [407]. Analogous to the Higgs case, the limits
over this kind of models are mDM . mZ/2. The second kind of models is
composed by scenarios where DM do not couple directly to the SM particles.
In this context, the dijet and dilepton searches [408–412] play an important
role when DM interacts with quarks and leptons through BSM mediators.
In these cases, strong experimental constraints apply [408–412]. Finally, the
study of monojets has important implications in the DM collider searches.
In some DM scenarios, it is expected to produce DM at colliders together
with QCD jets which set strong bounds, for instance, on DM models with
leptophobic and coloured mediators mediators as shown by ATLAS [413]
and CMS [414] experiments.



Chapter 6

Extra-Dimensions

6.1. Motivation

To understand the original motivation for the extra dimensions it is ne-
cessary to go back to the second half of the 19th century. Between 1860 and
1870 James Clerk Maxwell published his work about the electromagnetic
field [415], which represented the unification of the electric and magnetic
interactions into the same force, the electromagnetism. The unification of
electromagnetism inspired many scientists to try to unify the two inter-
actions that were known at that time: electromagnetism and gravity. In
1916 Einstein published his results on General Relativity [126], the gravita-
tional interaction being fully described as a field theory. The first attempts
at unifying electromagnetism and General Relativity came soon. In 1921
Theodor Kaluza presented an extension of the theory of General Relativ-
ity into five dimensions [416], with a metric tensor of fifteen components.
These fifteen components would be distributed as follows: ten would corres-
pond to the classic 4D metric, explaining gravity; four would represent the
potential vector of electromagnetism; finally, the last component would be
an unidentified massless scalar field, usually called radion or dilaton. The
equation of motion of the theory provides both the Einstein equations and
the Maxwell equations, and identifies the electrical charge with the motion
into the fifth dimension.

89
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In 1926, Oskar Klein adds a quantum interpretation to the Kaluza the-
ory1 [418, 419], imposing the quantization of linear momentum in the fifth
dimension. Klein’s quantum interpretation gives a solution to the invis-
ibility of the extra-dimension: the new dimension is closed and periodic.
Indeed, the characteristic radius of the fifth dimension estimated by Klein
was v 10−30 cm, which explains the non-observation of the extra-dimension.

The discovery of the weak and strong interactions, and the subsequent
electroweak unification, made the original motivation of Kaluza and Klein’s
theory lost2. Years later, in the 1970’s, the emergence of string theor-
ies [422] revived the extra-dimensional theories in order to obtain a consist-
ent quantum gravity theory. Since the 1990’s, theories of extra-dimensions
have received much more attention in the scientific community. The Uni-
verse being formed by more than 4 dimensions could, for example, give a
solution to the hierarchy problem3. Also, many extra-dimensional models
present natural candidates for Dark Matter, such as the case of the lightest
Kaluza-Klein state in Universal Extra Dimensions (UED) [423,424]. In the
extra-dimensional theories it was assumed that the compactification radius
of the extra-dimension was of Planck lenght. However, In the 1990’s Igna-
tius Antoniadis in Ref. [425] and Arkani-Hamed, Dimopoulos, and Dvali
in Refs. [426–429] proposed the Large Extra Dimensions (LED). In this
scenario, the extra-dimension can be large of order TeV −1, provided that
only gravity propagates along the new dimension. Sect. 6.3 summarizes the
fundamental characteristics of LED models.

The space-time described by LED assumes new flat dimensions, that
is, with the same structure as the other three spatial dimensions already
known. This is equivalent to neglect the curvature effects of the gravita-
tional field over the new extra-dimension. The approximation is accurate
when the tensions of the branes are small. However, new interesting phe-
nomenology appears when this is not the case and its curvature becomes
relevant. These are the so-called Warped Extra-Dimensions scenarios, also
known as Randall-Sundrum models after the physicists who proposed them.
We review them in Sect. 6.4.
1That same year quantum physics began to take its first steps with the publication of
the Erwin Schrödinger Equation, Ref. [417].

2See, however, the works of Refs. [420,421].
3For a description of the problem see Sect. 1.6.1.
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Ever since Lisa Randall and Raman Sundrum proposed their extra-
dimensional model, this one and its variants have been the only models
of Warped Extra-Dimensions until 2016, when Gian Giudice and Matthew
McCullough proposed a new Warped Extra-Dimensional model, the Clock-
work/Linear Dilaton (CW/LD) model [430,431].

In the next Sections we develop the basic concepts of the extra-
dimensional models. Several reviews can be found to complete the inform-
ation of this Chapter, for instance Refs. [70,432–434].

6.2. Kaluza-Klein Decomposition

The Kaluza-Klein decomposition allows to write the extra-dimensional
fields as the sum of a tower of 4D fields. In this section we show the example
of the procedure for a scalar field in the 5-dimensional flat space. However,
this decomposition is valid as long as we work with a separable metrics.

In the General Relativity 5-dimensional extension, the space-time metric
can be written as ds2 = g

(5)
MNdx

MdxN . In the rest of the Chapter we use
Greek letters when we refer to the classical 4-dimensions xµ = (x0, x1, x2, x3)
and to denote the fifth-dimension we use x5 = y. For the 5-dimensional
index we use Latin capital letters xM = (x0, x1, x2, x3, y). Thereafter, the
signature of the metric is understood to be (1,−1,−1,−1,−1).

Let us now consider the specific case of a free real scalar field. The
action for a 5-dimensional Minkowski metric can be written as

S =
∫
d4x dy

1
2
[
(∂µφ)2 − (∂yφ)2

]
. (6.1)

The equation of motion is then given by ∂2
µφ − ∂2

yφ = 0. Imposing the
periodic boundary conditions in the extra-dimension, the equation accepts
as a solution:

φ(x, y) = 1√
2πrc

∞∑
n=0

φ(n)(x) ei n y/rc , (6.2)
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Figure 6.1: Representation of Large Extra-Dimensions 5D space-time.

where rc is the compactification radius of the extra-dimension. Using this
expression in Eq. 6.1, it is easy to obtain:

S =
∫
d4x

[∑
n>0

∂µφ
(n)† ∂µφ(n) − n2

r2
c

|φ(n)|2
]
, (6.3)

where the 5D field can be written as a sum of infinite 4D massive fields with
mass

mn = n

rc
. (6.4)

If the 5D field has a mass parameter m0, the mass spectrum is shifted as
mn = m0 + n/rc. As we can see, the Kaluza-Klein decomposition is an
expansion that transforms a 5D Lagrangian into a 4D Lagrangian with an
infinite spectrum of 4D massive particles.

6.3. Large Extra-Dimensions (LED)

The most famous scenario of flat extra dimensions is called Large Extra-
Dimensions [425–429]. This model implements one of the fundamental con-
cepts of the modern extra-dimensions, the so-called branes. Branes are
(3 + 1)-dimensional hypersurfaces that can trap fields on their surfaces.
The presence of these hypersurfaces implies the existence of fields that
only propagate on the brane (4-dimensional fields). In addition to the
brane fields, there can also exist fields that freely propagate into the extra-
dimensional space (the so-called bulk). If the SM is confined in the brane
and gravity freely propagates along the bulk, the gravitational interaction
is diluted along the extra-dimensional space. Therefore, while the funda-
mental scale of the higher dimensional gravity (MD) can be O(1) TeV, the
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fundamental scale on the brane is MP. The hierarchy problem then is only
an effect of the existence of the extra-dimensions. Fig. 6.1 shows a pictorial
representation of the Large Extra-Dimensions 5D space-time.

In order to obtain a relation between both fundamental scales, we assume
that the metric of the higher D-dimensional space-time is given by:

ds2 = G
(D)
MNdx

MdxN . (6.5)

The generalization of the Einstein-Hilbert action to more than 4 dimensions
keeps the 4-dimensional structure:

Sn = −MD−2
D

∫
dDx
√
G(D)R(D), (6.6)

where R(D) is the Ricci tensor in D = d+4 dimensions. On the other hand,
the usual 4-dimensional action is given by

S4 = −M2
p

∫
d4x
√
G(4)R(4). (6.7)

To know how the classical 4-dimensional gravity is contained inside the
higher dimensional metric (or equivalently, how the 4-dimensional graviton
is contained in the D-dimensional metric) we can expand the 4-dimensional
part of the metric:

ds2 = (ηµν + hµν)dxµdxν − r2
cdΩ2

d, (6.8)

where rc is related to the size of the extra-dimensions (the compactification
radius) and dΩd is the line element of the flat extra-dimensional space. The
perturbation hµν represents the 4-dimensional graviton in 5D. Finally, the
necessity to reproduce the Newton’s law in four dimensions gives a relation
between both fundamental scales:

M2
P = MD−2

D (2πrc)D. (6.9)

Stringent limits for LED models come from the deviations of Newton’s
law. If we assume MD v 1 TeV (value that solves the hierarchy problem),
the distance scale rc where we found O(1) deviations order one is given
by Eq. 6.9. Tab. 6.1 shows the expected values for rc as a function of the
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Number of extra-dimensions rc [cm]

d = 1 1013

d = 2 10−2

d = 3 10−7

d = 4 10−10

d = 5 10−12

d = 6 10−13

Table 6.1: LED bounds from deviations of the Newton’s law. rc represents the distance
scales where we expect deviations order one.

number of dimensions. It is clear that the one extra-dimension case is totally
ruled out because the scale is larger than the size of the Solar System! The
effects of the deviation should have been observed in that case. On the
other hand, for d ≥ 2 the LED model solves the hierarchy problem, being rc
compatible with present bounds on deviations from the Newton’s law4 [436].

6.4. Warped Extra-Dimensions

Complementary to the flat case, Warped Extra-Dimensions was pro-
posed, where the new dimensions are curved. This section summarizes the
basic concepts of RS scenario, whereas for a complete mathematical de-
scription we address to Ref. [2] (included in Part II of this Thesis). For
simplicity, we will only study the 5-dimensional case. However, the gener-
alization to D-dimensional bulk can be found in several references (see, for
instance, Refs. [70,432–434]).

6.4.1. The Randall-Sundrum Background

The first steps in these models were given by Lisa Randall and Raman
Sundrum at the end of 5 1990’s [76]. The popular Randall-Sundrum scenario
4In addition to the limits on deviations from the Newton’s law, supernovae and neutron
stars are sources of bounds for LED models [435].

5An alternative form of the model was published by the same authors shortly after [77].
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Figure 6.2: Representation of Randall-Sundrum 5D space-time.

consider a non-factorizable 5-dimensional metric in the form:

ds2 = e−2σ(y)ηµνdx
µdxν − r2

cdy
2 , (6.10)

where σ(y) = krc|y| and the signature of the metric is (+,−,−,−,−). In
RS scenario rc is the compactification scale, as in LED, while k v O(MP)
is the curvature along the 5th-dimension. We impose periodical boundary
conditions over the extra dimension, y = y + 2π, and reflectivity y = −y.
Therefore, the metric is defined in 0 ≤ y ≤ π region. The resulting space
S1/Z2 is called orbifold. We only consider a slice of the space-time between
two branes located conventionally at the two fixed-points of this orbifold,
y = 0 (the so-called UV-brane) and y = π (the IR-brane), with compacti-
fication radius rc. The 5-dimensional space-time is a slice of anti-de Sitter6

(AdS5) space and the exponential factor that multiplies theM4 Minkowski
4-dimensional space-time is called warp factor. Planck mass in this scenario
is related with the fundamental M5 as

M̄P
2 = M3

5
k

[
1− e−2kπrc

]
, (6.11)

where M̄P = MP/
√

8π is the reduced Planck mass. Unlike the flat case, in
RS MP and the new fundamental mass parameter M5 are the same order.
Fig. 6.2 shows how the extra-dimension changes along the 5-dimensional
6This mathematical space was proposed and studied by Willem de Sitter and Albert
Einstein in the 1920’s.
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bulk. The difference between the fundamental masses of the SM and the
Planck Mass is explained by the exponential growth between the IR and the
UV branes. The hierarchy problem is then a consequence of the warping of
the 5-dimensional space-time.

The original RS model assumes that all fields are confined on the IR-
brane, being gravity the only field that can propagate freely along the bulk.
While in the classical 4-dimensional space-time the scale of the interactions
is the Planck mass, M̄P

2, in RS is given by

Λ ≡ M̄Pe
−kπrc . (6.12)

Choosing k and rc such that Λ � M̄P, the RS scenario can address the
hierarchy problem (for σ = krc v 10).

To study in RS scenario the gravitational interaction in the brane we
expand the 4-dimensional component metric around the flat space metric:

G(4)
µν = e−2σ(ηµν + κ5hµν) , (6.13)

with κ5 = 2M−2/3
5 . The 5-dimensional hµν field play the same role that in

the classical space-time linearised gravity, the graviton. This field can be
decomposed as a KK-tower of infinite 4-dimensional massive modes in the
brane, usually called KK-gravitons. Notice that in the 4-dimensional de-
composition of a 5-dimensional metric, two other fields are generally present:
the graviphoton, hµ5 and the graviscalar h55. It has been shown else-
where [437] that the graviphoton KK-modes are reabsorbed by the (massive)
KK-gravitons. On the other hand, the graviscalar field is relevant to stabil-
ize the size of the extra-dimension and it will be discussed in Sect. 6.4.2.

The mass spectrum of the KK-gravitons is given by:

mn = kxne
−kπrc , (6.14)

where xn are the zeros of 7 J1(xn). Then, in RS the spacing between two
consecutive KK-modes is ∆m v k(xn−1−xn)e−kπrc . Notice that, for low n,
the KK-graviton masses are not equally spaced. This is very different from
7J1 is the first Bessel functions of the first kind. The first zero is x1 ≈ 3.83 while the
rest can be approximated by xn ≈ π(n+ 1/4) +O(n−1) [438].
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LED where the spacing between the masses of two adjacent KK-modes is
1/r2

c . However, for large n, as a consequence of the xn structure, the spacing
becomes approximately constant.

The strongest constraints in RS are given by the resonance searches
at LHC, assuming that all fields are located in the IR-brane. Once a KK-
graviton resonance is produced, we can study its decay modes in the narrow
width approximation. The KK-graviton decay channels that provide the
most stringent bound on m1 and Λ are pp → G1 → γγ [439] and pp →
G1 → `` [408].

6.4.2. Size Stabilization: The Goldberger-Wise
Mechanism

Stabilizing the size of the extra-dimension to be y = πrc is a complicated
task: bosonic quantum loops have a net effect on the border of the extra-
dimension such that the extra-dimension itself should shrink to a point (see,
e.g., Refs. [440–442]). This feature, in a flat extra-dimension, can only be
compensated by fermionic quantum loops and, usually, some supersymmet-
ric framework is invoked to stabilize the radius of the extra-dimension (see,
e.g., Ref. [443]). In Randall-Sundrum scenarios, on the other hand, a new
mechanism has been considered: if we add a bulk scalar field Φ with a scalar
potential V (Φ) and some ad hoc localized potential terms, δ(y = 0)VUV(Φ)
and δ(y = π)VIR(Φ), it is possible to generate an effective potential V (ϕ)
for the 4-dimensional field ϕ = fIR e

−kπT , where fIR is the IR-brane tension.
In order to have a stable background metric in Eq. 6.10 and 〈T 〉 = rc, the
condition fIR =

√
24M3

5/k must be satisfied. The minimum of this poten-
tial can yield the desired value of krc without extreme fine-tuning of the
parameters [444,445].

As in the spectrum of the theory there is already a scalar field, the
graviscalar G(5)

55 , the Φ field will generically mix with it. The KK-tower of
the graviscalar is absent from the low-energy spectrum, as they are eaten
by the KK-tower of graviphotons to get a mass (due to the spontaneous
breaking of translational invariance caused by the presence of one or more
branes). On the other hand, the KK-tower of the field Φ is present, but
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heavy (see Ref. [446]). The only light field present in the spectrum is a
combination of the graviscalar zero-mode and the Φ zero-mode. This field
is usually called the radion, r. Its mass can be obtained from the effective
potential V (ϕ) and is given by

m2
ϕ = k2v2

v

3M3
5
ε2 e−2πkrc , (6.15)

where vv is the value of Φ at the IR-brane and

ε = m2

4k2 , (6.16)

with m the mass of the field Φ. Quite generally, ε � 1 and, therefore, the
mass of the radion can be much smaller than the first KK-graviton mass.
Notice that mr is, thus, a new free parameter of the RS model, in addition
to m1 and Λ (or, alternatively, M5 and k).

6.4.3. AdS/CFT Correspondence and RS Model

In the original Randall-Sundrum scenario (and its subsequent general-
izations), the space-time is a slice of the AdS space. AdSn is a maximally
symmetric Lorentzian manifold8 with the peculiarity that presents a con-
stant negative scalar curvature (opposite to a de Sitter space, with positive
curvature.). In 1998 the so-called AdS/CFT duality was conjectured, es-
tablishing a relationship between quantum gravity theories (like M-theory
and string theory) defined in some D-dimensional AdS mathematical space
with conformal field theories (CFT) living on the boundary of such space.
The idea was proposed by Juan Maldacena9 in Ref. [447]. However, some
mathematical aspects were clarified by Steven Gubser, Igor Klebanov, Al-
exander Polyakov and Edward Witten in Refs. [448, 449]. The AdS/CFT
conjecture is also called holographic duality because the CFT can be in-
terpreted as a hologram that contains all physical information about the
higher-dimensional quantum gravity theory. Fig. 6.3 shows an artistic rep-
resentation of this duality.
8Mathematical space that are described by a Lorentzian metric.
9Hitherto, in 2020, Maldacena’s article is the most cited paper in high-energy physics
with 16000 citations!
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Figure 6.3: Artistic representation of ADS/CFT correspondence. Image taken from
Ref. [450].

Since AdS/CFT duality was proposed, different authors have studied the
implications of this conjecture in RS models. The idea was first explored
in the non-compact Randall-Sundrum model10 [77] (some examples can be
found in Refs. [451–455]). Shortly after, the implications of the Maldacena’s
duality were studied in the original RS model (first publications in this
direction include, for instance, Refs. [456,457]).

A complete review about the ADS/CFT conjecture can be found in
Ref. [458].

6.5. Clockwork/Linear Dilaton (CW/LD)
Extra-Dimensions

In 2016 Clockwork/Linear Dilaton model was proposed by Gian Giudice
and Matthew McCulloug [430, 431]. In this extra-dimensional scenario a
KK-graviton tower, with a spacing very similar to that of LED models,
starts at a mass gap k with respect to the zero-mode graviton. The funda-
mental gravitational scaleM5 can be as low as the TeV, where k is typically
10Usually called RS2, to distinguish it from original RS model, also called RS1.
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Figure 6.4: Representation of Clockwork/Linear Dilaton 5D space-time.

chosen in the GeV to TeV range. In this Section we have summarize the
most relevant properties of CW/LD model. A more complete and technical
review with all mathematical details can be found in Ref. [3], included in
Part II of this Thesis.

Clockwork/Linear Dilaton scenario is defined by the metric:

ds2 = e4/3krc|y|
(
ηµνdx

µdxν − r2
c dy

2
)
, (6.17)

where the signature of the metric is (+,−,−,−,−). This particular met-
ric was first proposed in the context of Linear Dilaton (LD) models and
Little String Theory (see, e.g. Refs. [459–461] and references therein). The
metric in Eq. (6.17) implies that the space-time is non-factorizable, as the
length scales on our 4-dimensional space-time depending on the particular
position in the extra-dimension due to the warping factor e2/3 krc |y|. Notice,
however, that in the limit k → 0 the standard, factorizable, flat LED case
is immediately recovered. As for the case of the Randall-Sundrum model,
also in the CW/LD scenario the extra-dimension is compactified on a S1/Z2

orbifold (with rc the compactification radius), and two branes are located
at the fixed points of the orbifold, y = 0 (IR-brane) and at y = π (UV-
brane). Fig. 6.4 shows the structure of the 5-dimensional CW/LD model.
As in the RS case, the hierarchy problem is solved by the growth of the
fundamental parameters along the bulk. However, there is a fundamental
difference between these two models: the warping factor in Eq. 6.10 multi-
plies only the four dimensional components, whereas, in the CW/LD case
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it multiplies all the 5-dimensional metric. The growing then is different in
the CW/LD respect to RS, giving a totally different phenomenology [431].

In the minimal scenario, Standard Model fields are located in one of
the two branes (usually the IR-brane). The scale k (also called the clock-
work spring11) is the curvature along the 5th-dimension and it can be much
smaller than the Planck scale. Being the relation between M̄P and the
fundamental gravitational scale M5 in the CW/LD model:

M̄P
2 = M3

5
k

(
e2πkrc − 1

)
, (6.18)

it can be shown that, in order to solve or alleviate the hierarchy problem,
k and rc must satisfy the following relation:

k rc = 10 + 1
2π ln

(
k

TeV

)
− 3

2π ln
(

M5

10 TeV

)
. (6.19)

For M5 = 10 TeV and rc saturating the present experimental bound on de-
viations from the Newton’s law, rc ∼ 100µm [462], this relation implies that
k could be as small as k ∼ 2 eV, and KK-graviton modes would therefore
be as light as the eV, also. This extreme scenario does not differ much from
the LED case, but for the important difference that the hierarchy problem
could be solved with just one extra-dimension (for LED models, in order
to bring M5 down to the TeV scale, an astronomical lenght rc is needed
and, thus, viable hierarchy-solving LED models start with at least 2 extra-
dimensions). In the phenomenological application of the CW/LD model
in the literature, however, k is typically chosen above the GeV-scale and,
therefore, rc is accordingly diminished so as to escape direct observation.
Notice that, differently from the case of Warped Extra-Dimensions, where
scales are all of the order of the Planck scale (M5, k ∼ M̄P) or within a few
orders of magnitude, in the CW/LD scenario, both the fundamental grav-
itational scale M5 and the mass gap k are much closer to the electro-weak
scale ΛEW than to the Planck scale, as in the LED model.
11A term inherited by its rôle in the discrete version of the Clockwork model [430].
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Expanding the metric at first order around its static solution, we have:

G
(5)
MN = e2/3S

(
ηMN + 2

M
2/3
5

hMN

)
, (6.20)

where s = 2krc|y| is the dilaton field. The 4-dimensional component of
the 5-dimensional field hMN can be expanded in a Kaluza-Klein tower of
4-dimensional fields (4-dimensional massive gravitons) with masses

m2
0 = 0 ; m2

n = k2 + n2

r2
c

. (6.21)

Instead of M̄P, in CW/LD the scale of the gravitational interactions is
enhanced (as it was for RS). Indeed, the scale of the interaction of this KK-
gravitons with the particles located in the IR-brane can be O(TeV). This
scale is related with the fundamental parameters of the model as

1
Λ0

= 1
MP

,

1
Λn

= 1√
M3

5πrc

(
1 + k2r2

c

n2

)−1/2

= 1√
M3

5πrc

(
1− k2

m2
n

)1/2

,

(6.22)

from which it is clear that the coupling between KK-graviton modes with
n 6= 0 is suppressed by the effective scale Λn and not by the Planck scale,
differently from the LED case and similarly to the Randall-Sundrum one.
In the RS scenario this scale is a global parameter (equal for all KK-
gravitons). However, in CW/LD each gravitons is coupled different to the
brane particles.

Stabilization of the radius of the extra-dimension rc is always an issue.
In the CW/LD scenario, differently from the RS one, we can use the already
present bulk dilaton field to stabilize the compactification radius. A com-
plete description of the mechanism can be found in Ref. [3], included in Part
II of this Thesis.

As a final comment, In CW/LD scenario the graviton resonances are
close enough to considerate a continuum spectrum. This fact allows to
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constrain the model using non-resonant searches at LHC in G1 → γγ and
G1 → `` channel. [408,439,463].





Chapter 7

Summary of the Results

In Chapters 1 to 6 a summary of the most relevant aspects of the Dark
Matter and Extra-Dimensions has been made. The aim of the introduction
is to offer the tools needed to understand the different models that compose
the original works of this Thesis. In this Chapter, on the other hand, we
summarize the basic ideas and results of the four papers that constitute the
second part of the Thesis. Technical details can be found in the complete
articles that are collected in Part II.

7.1. Probing the Sterile Neutrino Portal
with γ-rays

One of the most important open problems in high-energy physics is Dark
Matter, but, as we commented in Sect. 1.6, it is not the only one. Among
the various problems that currently exist in the Standard Model, one of
them is the neutrino masses: the model predicts zero mass for them. How-
ever, neutrino oscillations was suggested more than half a century ago as a
distinctive signature of neutrino masses. This interesting effect, experiment-
ally detected in 1998 [92], consists of a quantum-mechanical oscillation in
the leptonic flavor. The phenomenon has deep implications: the effect can

105
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only happen if at least one of the three SM neutrino is massive1. However,
the mass of these particles must be much smaller than the masses of all the
other SM particles in order to escape observation. This fact favoured the
development of models where the mass of the neutrinos is generated by the
so-called seesaw mechanisms. In Sect. 1.6.3 a small review about this topic
can be found.

The attempt to solve both the Dark Matter and the neutrino mass prob-
lems, at the same time2 led to the development of models with a sterile
neutrino portal to dark matter. This scenario has been studied by several
authors, setting limits on it using Direct Detection [466–468] and Indirect
Detection [469–471] experiments. This model is interesting from the point
of view of Indirect Detection for several reasons (see Sects. 5.1 and 5.2 for
details on DD and ID): on the one hand, Direct Detection does not happen
at the lowest order in perturbation theory. As a consequence, the limits on
the model due to Direct Detection experiments are worse than in other mod-
els. On the other hand, the mixing of sterile neutrinos with active neutrinos
causes Dark Matter annihilations to produce photons and charged particles,
as a result of several decays. All this makes it the perfect candidate to be
studied from the point of view of Indirect Detection, as we have done in
Ref. [1].

We analysed a particular model in which, besides the sterile neutrinos,
the SM is extended by a dark sector that contains a scalar field φ and a
fermion Ψ. These fields are both singlets of the SM gauge group but charged
under a dark sector symmetry group, Gdark, such that the combination Ψφ
is a singlet of this hidden symmetry.

The lightest of the two dark particles (φ or Ψ) turns out to be stable
if all SM particles, as well as the sterile neutrinos, are singlets of Gdark,
irrespective of the nature of the dark group. As a consequence, the stable
particle is a good DM candidate. We assume for simplicity that the dark
symmetry Gdark is a global symmetry at low energies, although we do not
expect significant changes in our analysis if it was local.
1Despite that the phenomenon could be explained with only one massive neutrino, the
observation of the effect in both atmospheric and solar neutrinos needs at least two
neutrinos to be explained [464].

2The most economical scenario, namely that the sterile neutrinos constitute the DM [465],
has been thoroughly studied [244].
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Allowed	Region	
(Testable	in	15	

years)

Best	fit

Figure 7.1: Limits over the sterile neutrino portal to Dark Matter model in the sterile
neutrino and DM masses space (MN ,Mψ). The yellow region shows the antiproton
limits, whereas the blue region are the dSphs limits. The different contours represent the
region where the GCE can be fitted with its respective p-value (with increasing p-value
going from outer to inner contours). Finally, the blue-dashed line shows our prediction
about the foreseen future limit from the dSphs in the next 15 years of the Fermi-LAT
experiment.

The most relevant terms in the Lagrangian are given by:

L ⊃ µ2
HH

†H − λH(H†H)2 − µ2
φφ
†φ− λφ(φ†φ)2 − λHφ(H†H) (φ†φ)

−
[
φΨ(λa + λpγ5)N + Y LLHNR + h.c.

]
.

(7.1)

The Yukawa couplings Y between the right-handed fermionsNR and the SM
leptons lead to masses for the active neutrinos after electroweak symmetry
breaking, via type-I seesaw mechanism. Although two sterile neutrinos
are required to generate the neutrino masses observed in oscillations, at
least, in our analysis we consider that only one species is lighter than the
DM and therefore relevant for the determination of its relic abundance and
indirect searches. The results can be easily extended to the case of two
or more sterile neutrinos lighter than the DM. Assuming that the DM is
described by the fermionic field Ψ (the analysis would be similar for Dark
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Matter being represented by φ) the masses of the model fulfill the relation
mN < mΨ < mφ.

Fig. 7.1 shows the final results of our analysis. Fixing the mass of the
scalar mediator field such as to obtain the correct relic abundance via the
freeze-out mechanism (this means 〈σ v〉 ∼ 2×10−26cm3/s), the figure shows
the different limits from photons and antiprotons in the parameter space
(MN ,MΨ). As it has been commented in Sect. 5.2.5, the Fermi-LAT experi-
ment has reported a Galaxy-Center γ-ray Excess (GCE). The studied model
predicts a photon excess that can be compatible with the GCE in a small
region of the parameter space (MN ,MΨ). In our analysis we assume that
there are two distinct sources for the GCE: one astrophysical, responsible
for the high energy tail of the γ-ray spectrum, and DM annihilation, that
we considered the only source of the low energy GCE,

Φ = Φastro + ΦDM . (7.2)

Notice that this astrophysical contribution to the flux is always needed to
fit the GCE, independently of the DM model considered. The contour
areas in Fig. 7.1 show the region where this fit is possible with different
p-values where the outer contours have a lower p-value than the inner con-
tours). However, the extra photons predicted by the model must also be
compatible with the rest of measurements made on the different photon
fluxes. Specifically, the same experiment performs measurements on the
γ-rays from 15 different Dwarf Spheroidal Galaxies3. The dark blue-shaded
region shows the area of the parameter space where the results obtained are
not compatible with these measurements at 90 % C.L.

On the other hand, the model also predicts an increase of antiproton
flux. This increase has been compared with the antiproton flux from the
galactic center measured by the AMS-02 experiment4, observing that there
are areas in which the predictions of the model would not be compatible
with the experimental measurements at 95 % C.L. (light yellow-shaded area
in the Figure). However, notice that the antiproton limits are less robust
than the dSphs bounds, due to the large astrophysical uncertainties in the
3See Sect. 5.2.4.1 for more information about this measurement.
4See Sect. 5.2.4.2 for a description of the experimental results and Sect. 5.2.2.2 for the
details of the antiprotons propagation along the galaxy.
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propagation models of charged particles. Finally, an analysis of the pos-
sible impact of future Indirect Detection experiments on the model has also
been carried out. Particularly, an improvement in the dSphs data taken by
Fermi-LAT is expected and could set strong bounds on the studied model
(blue-dashed line). As a final comment, DM models in general, would only
marginally solve the GCE, but in our case, the model could be fully tested
in the next decade.

7.2. Gravity-mediated Scalar Dark Matter
in RS

All the evidence we have today about the existence of Dark Matter is
only related to gravitational interaction. This leads us to think about the
possibility that Dark Matter particles may only interact gravitationally. In
this case, DM would be undetectable by current and future particle physics
experiments and it could not be a WIMP, since the gravitational interaction
is too weak to produce the observed dark matter abundance through the
freeze-out mechanism. However, what would it happen if we lived in more
than 4 dimensions? This is the idea that inspired Ref. [2].

In this work we explored the possibility to obtain the current DM abund-
ance, under the assumption that is composed byWIMP scalar particles, only
through gravitational interaction and assuming a 5-dimensional RS space-
time. In the described scenario, Dark Matter and the Standard Model live
confined in the TeV-brane. Both types of matter interact through gravity,
which propagates in the 5-dimensional bulk, and is described in the effective
4-dimensional theory as a tower of massive gravitons (Kaluza-Klein modes).

The model is described using four physical parameters: the scale of the
interaction of 4-dimensional massive gravitons with matter, Λ; the mass of
the first graviton of the 4-dimensional KK-tower,m1; the Dark Matter mass,
mDM; and, the radion mass, mr. Our analysis shows that when mr < mDM

and, therefore, the annihilation channel into radions is open, the results
obtained are largely independent of the particular value of mr. Regarding
the virtual radion-exchange annihilation cross-section into SM particles, it
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Figure 7.2: Region of the (mDM,m1) plane for which 〈σv〉 = 〈σfov〉. Left panel: the
radion and the extra-dimension stabilization mechanism play no role in DM phenomen-
ology. Right panel: the extra-dimension length is stabilized with the Goldberger-Wise
mechanism, with radion mass mr = 100 GeV. In both panels, the grey area represents
the part of the parameter space where it is impossible to achieve the correct relic abund-
ance; the red-meshed area is the region for which the low-energy RS effective theory is
untrustable, as Λ < m1; the wiggled red area in the lower left corner is the region ex-
cluded by DD experiments; the blue area is excluded by resonant KK-graviton searches
at the LHC with 36 fb−1 at

√
s = 13 TeV; the dotted blue lines represent the expected

LHC exclusion bounds at the end of the Run-3 (with ∼ 300 fb−1) and at the HL-LHC
(with ∼ 3000 fb−1); eventually, the green-meshed area on the right is the region where the
theoretical unitarity constraints are not fulfilled. In the left panel, the allowed region is
represented by the white area, for which 〈σfov〉 is obtained through on-shell KK-graviton
production. In the right panel, in addition to the white area, within the tiny orange region
〈σfov〉 is obtained through on-shell radion production. The dashed lines depicted in the
white region represent the values of Λ needed to obtain the correct relic abundance.

only becomes relevant close to the resonance, mDM v mr/2. Thus, for
the study of the phenomenology we fix the radion mass and focus on the
remaining parameters.

The method followed for the analysis of the model has been the following:
we have first computed the relevant annihilation cross-sections for DM into
SM particles and KK-gravitons; then, we have studied a two-dimensional
grid with different values of the mass parameters (m1,mDM); for each point
on this grid, we have searched for the Λ value to obtain the current DM
abundance (for which 〈σv〉 w 〈σv〉fo = 2 × 10−26 cm3/s). In this way, for
each point the three free parameters (m1, mDM, Λ) are fully defined, which
allows us to establish different theoretical and experimental limits on them.
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Fig. 7.2 shows the final results of the phenomenological analysis of the
model. Following the above strategy, on the left panel the case without
radion has been explored, assuming that some alternative method could
be found to stabilize the radius of the fifth dimension. In comparison,
on the right panel it has been considered that the mass of the radion is
mr = 100 GeV (it is important to remember that the phenomenology is not
affected by the value of this mass). The dark gray-shaded area is the region
where it is not possible to obtain the current DM abundance for any value
of Λ, meanwhile the orange area represents the parameter space region
where the abundance is achieved thanks to the contributions of radionic
interaction channels. The green-meshed area is the region where we found
unitarity problems5, σ > 1/s. In addition to this limit, there is another
theoretical constraint: if Λ < mDM,m1 the effective theory that describes
the interaction of these quantum fields is not valid (as they should have
been integrated out). This occurs in the red-meshed region.

So far, we have summarized the different limits to the model from theor-
etical reasons. Now we turn to the experimental bounds. The current Direct
Detection experiments and the resonance searches in the ATLAS and CMS
experiments at the LHC can provide much more information to our analysis.
The red areas show the points where the cross-section of DM-nucleon inter-
action is already excluded by Xenon1T Direct Detection experiment, while
the blue area is the one excluded by the resonance searches (KK gravitons
searches, in our case) at the LHC. More concretely, the strongest bound
comes from searches at the LHC with 36 fb−1 at

√
s = 13 TeV in the γγ

channel. The two dotted lines show our prospect for the LHC-Run-3 (with
∼ 300 fb−1) and the HL-LHC (with ∼ 3000 fb−1).

The results of this work have been very rich: although similar analysis
had already been carried out in the Randall-Sundrum scenario, this is the
first paper that takes into account the Dark Matter annihilation channels
directly into KK-gravitons in such high regions of mass space (various TeV).
Without this annihilation channel, it is not possible to obtain the correct
DM relic abundance in this RS scenario. Likewise, a new diagram totally
5Dark Matter particles have a small relative velocity, so that s w m2

DM. Since to obtain
the correct relic abundance σ = σfo is needed, then the unitarity limit becomes a
restriction directly on the DM mass, m2

DM . 1/σfo. Therefore, in the mass plane
(mDM, m1) this bound appear as a vertical line.
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forgotten in the literature has been studied: the annihilation into gravitons
without a mediator, coming from the second order expansion of the interac-
tion Lagrangian. Apart from that, it should be noted that this analysis has
only been carried out for scalar Dark Matter. However, in Ref. [5], which
is currently in publication process, the fermionic and vector Dark Matter
cases are analysed. This new study shows that fermionic DM is disfavoured
respect to the scalar and vector ones. The reason is that the dominant
process (the annihilation directly into gravitons) is more suppress in that
case.

7.3. Gravity-mediated Dark Matter in
CW/LD

After the analysis of the implications of purely gravitational WIMP Dark
Matter in the Randall-Sundrum scenario, the question of what would oc-
cur in the recent Clockwork/Linear Dilaton model almost naturally arises.
This idea inspired Ref. [3]. CW/LD scenario displays more technical com-
plications than RS: the KK-tower of massive gravitons in this case has a
very small separation that makes more complicated the numerical analysis
of its phenomenology. A brief review about CW/LD extra-dimensions can
be found in Sect. 6.5.

The strategy to analyse the model is the same that we used in the
RS case. The main difference with the previous model is the parameters
chosen to study the phenomenology. In contrast with RS, in CW/LD the
couplings of the massive 4-dimensional gravitons to the rest of the particles
are not universal, but depend on the order n of the KK mode. Therefore,
it is more useful to characterize the model in terms of M5 instead of the
effective coupling Λn, that depends on the particular KK-mode studied. In
addition to that, the mass of the first graviton coincides with the value
of the curvature along the fifth dimension, m1 = k. In the original RS
scenario a stabilization mechanism was absent, and a new scalar field is
necessary to stabilize the fifth dimension. On the contrary, in CW/LD the
5-dimensional dilaton field takes this role. Unlike RS, where the radion
mass is a new parameter, in this scenario the mass of the radion is also
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determined by k. However, there are several ways to stabilize the size of
the extra-dimension with the dilaton field. The minimal case assumes that
the tension of the 4-dimensional branes is infinite. This framework receives
the name of rigid limit and it is the assumed case in this work. Currently,
we are working on the implications of the phenomenology out of the rigid
limit [472]. There is another important difference between both frameworks
relevant for the phenomenological study: in CW/LD the complete dilaton
KK-tower is relevant. In RS the KK tower of the Goldberger-Wise scalar
field was present, but heavy [446]. As a consequence, the only light field
present in the spectrum in that case was the radion.

Fig. 7.3 shows the results obtained for this scenario, following the same
strategy outlined in Sect. 7.2. As in the RS case, M5 has been fixed to
set the current abundance of Dark Matter for each point in the parameter
space (mDM, k). The different limits studied are the same as in the RS
case: the red-meshed region shows the area where the effective field theory
is untrustable, M5 < mDM,mG1 ; the green-meshed region represents the
area where σ < 1/m2

DM and, therefore, suffers from unitarity problems;
eventually, the blue-shaded area represents the limits imposed by the LHC.
As a consequence of the small separation between the KK-gravitons, the
strongest bound imposed by the LHC comes from non-resonant searches in
γγ channel. Finally, it should be noted that in the CW/LD case the limits
imposed by the Direct Detection of Dark Matter exclude very small DM
masses and, as a consequence, they do not appear in the Figure.

In this case, three possible Dark Matter particles spin have been ana-
lysed: scalar, fermion and vector. The two upper plots correspond to the
scalar case without taking into account the radion and the dilaton-tower
(left) and taking it into account (right). This is the only case where radion
and dilatons play an important role in the phenomenology of the model
and therefore it is worth showing what their impact is on the final results.
The lower panels correspond to the fermionic case (left) and the vector case
(right). In both cases the radion and the dilatons do not play any role.
The Figure shows that the fermionic case is disfavoured with respect to the
other two: the non-resonant searches at LHC impose strong limits in this
case. This fact is because in the fermionic case the dominant channel, the
annihilation of Dark Matter directly into KK gravitons, is suppressed.
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Figure 7.3: Region of the (mDM, k) plane for which 〈σv〉 = 〈σfov〉. Upper left panel:
scalar DM (unstabilized extra-dimension); Upper right panel: scalar DM (stabilized extra-
dimension in the rigid limit); Lower left panel: fermion DM (stabilized extra-dimension
in the rigid limit); Lower right panel: vector DM (stabilized extra-dimension in the rigid
limit). In all panels, the grey-shaded area represents the part of the parameter space for
which it is impossible to achieve the correct relic abundance; the red diagonally-meshed
area is the region for which the low-energy CW/LD effective theory is untrustable, as
M5 < k,mDM; the blue-shaded area is excluded by non-resonant searches at the LHC with
36 fb−1 at

√
s = 13 TeV [431]; eventually, the green vertically-meshed area on the right

is the region where the theoretical unitarity constraints are not fulfilled, mDM & 1/√σfo.
In all panels, the white area represents the region of the parameter space for which the
correct relic abundance is achieved (either through direct KK-graviton and/or radion/KK-
dilaton production, as in the case of scalar DM, or through virtual KK-graviton exchange,
as for fermion and vector DM) and not excluded by experimental bounds and theoretical
constraints. The dashed lines depicted in the white region represent the values of M5
needed to obtain the correct relic abundance.
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As a final comment to gravitational-interacting DM in RS and/or
CW/LD scenarios, we can say that in both cases a viable region of the
parameter space exists, for the DM masses in the range [1, 10] TeV approx-
imately and for m1 smaller than v 3 TeV, v 400 GeV and v 10 TeV for
the scalar, fermionic and vectorial cases, respectively. Most of the allowed
region could be tested by the LHC Run-3 or its high luminosity upgrade.
Notice that in the allowed region typically the scale of new physics (either
Λ or M5) is a bit too large to solve the hierarchy problem.

7.4. Kaluza-Klein FIMP Dark Matter in RS

In the three models analysed before it has been considered that the DM
is composed by WIMP particles. However, FIMP Dark Matter6 brings inter-
esting properties for the purely gravitational case. In the last work included
in this Thesis we explore the possibility to obtain the DM abundance using
gravitational interaction and FIMP particles in the RS scenario [4] (an ex-
tension to the CW/LD is in progress). The FIMP case raises very different
mathematical and numerical difficulties from the WIMP case: due to the
feeble interaction that displays these kind of particles, the mechanism to
obtain the DM abundance for FIMP particles is the freeze-in7, instead of
the freeze-out. Indeed, in the WIMP DM case, the abundance is always
obtained for 〈σv〉 = 〈σfov〉 for DM masses in the GeV-TeV range. However,
in the FIMP scenario the strong dependence of the evolution with the initial
conditions makes necessary to solve the Boltzmann Equation, Eq. 4.57, for
each point of the parameter space.

In the FIMP case, the abundance also has a strong dependence on a new
parameter: the highest temperature of the universe, the so-called reheating
temperature Trh. Due to the complexity of the parameter space, the analysis
in this scenario has been performed for a specific value of the Dark Matter
mass: mDM = 1 MeV. The values of Trh needed to obtain the observed
DM relic abundance are shown in Fig. 7.4. The blue-shaded region shows
the experimental limits imposed by resonance searches in pp → G1 → γ γ

channel at the LHC (and the two expected bounds from the Run-3 and
6Described in Sect 3.5.3.
7For a complete description of the freeze-in mechanism see Sect. 4.5.
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Figure 7.4: Parameter space required to reproduce the observed DM abundance for
mDM = 1 MeV and mr = m1/103, for several values of the reheating temperature Trh.
The blue areas are excluded by resonant searches at LHC and represent the current
bound and our prospects for the LHC Run-3 and the High-Luminosity LHC in the γ γ
channel [408, 439]. The upper left green corner corresponds to radion lifetimes longer
than 1 s. In the lower right red area (m1 > Λ) the EFT approach breaks down.

the HL-LHC). The red-shaded area represents the region where the EFT
approach breaks down. On the other hand, the upper left green corner
corresponds to radion lifetimes higher than 1 s, potentially problematic for
BBN (all the KK-graviton states are heavier than the radion and therefore
will have naturally shorter lifetimes).

In contrast with the WIMP case, this work shows that the RS model
with FIMP is much less constrained, because in order to obtain the correct
DM relic abundance via freeze-out Λ can not be larger that 104 TeV and
m1 < 10 TeV, while the allowed range of these parameters when the DM
abundance is set via freeze-in expands over several orders of magnitude. On
the other hand, in such regions the model does not solve at all the hierarchy
problem.
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aDepartamento de F́ısica Teórica and IFIC, Universidad de Valencia-CSIC,
C/ Catedrático José Beltrán, 2, E-46980 Paterna, Spain
bInstituto de Astrof́ısica, Pontificia Universidad Católica de Chile,
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a dark sector, besides generating active neutrino masses via the seesaw mechanism type I.
We show that, if dark matter annihilation into sterile neutrinos determines its observed relic
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a p-value of 0.78 in the best fit point, to the Galactic Center γ-ray flux, for DM masses in
the range (40-80) GeV and sterile neutrino masses 20 GeV . MN < MDM. Such values are
compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies
in the Milky Way halo, which rule out dark matter masses below ∼ 50 GeV (90 GeV), for
sterile neutrino masses MN .MDM (MN �MDM). We also estimate the impact of AMS-02
anti-proton data on this scenario.
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1 Introduction

Dark matter (DM) and neutrino masses constitute indubitable observational evidence for
physics beyond the Standard Model (SM) of fundamental interactions. Thus, the existence
of a connection between the new degrees of freedom needed to account for both observations is
an exciting possibility to explore. In particular, if DM is a thermal relic of the early Universe
and the seesaw mechanism is realized to generate neutrino masses, new massive particles
are required to solve both problems. The most economical scenario, namely that the sterile
neutrinos constitute the DM [1], has been thoroughly studied [2]. Hence we consider in this
work a different case: The sterile neutrino portal to DM. In this scenario DM is an SM
singlet state that interacts mainly with sterile neutrinos, being such interactions of the right
strength to produce the observed DM relic abundance [3–5].

DM interactions with SM particles are very weak to avoid collider and direct detection
constraints, although they must reproduce the correct abundance of DM thermally through
its annihilation into sterile neutrinos which eventually decay into SM particles. This decay
is due to Yukawa couplings of sterile neutrino and leptons which also generate a Majorana
mass for the light neutrinos via the type I seesaw mechanism. In general, if DM s-wave
interactions dominate the annihilation process, we expect to have indirect detection signals,
searches for these signals lead to the most stringent bounds on this scenario [5].

A comprehensive analysis of indirect detection hunts within the sterile neutrino portal
to DM has been presented in [6], including constraints from Planck CMB measurements,
γ-ray flux collected by the Fermi Large Area Telescope (LAT), and AMS-02 antiproton
observations. Indirect signals from solar DM annihilation to long-lived sterile neutrinos have
been analyzed in [7]. The primary target for neutral DM annihilation products is the Galactic
Center, as we expect there the largest DM concentration in the nearby cosmos. Interestingly,
an unexpected signal detected in the gamma-ray data collected by the Fermi LAT from the
inner Galaxy, the so-called Galactic Center Excess (GCE). It has created a great excitement
because its spectral energy distribution and morphology are consistent with predictions from
DM annihilation[8–17]. All those works devoted to analyzing the GCE confirm that its
properties strongly depends on the analysis method used to subtract it from the Fermi-LAT
data. The variation in the GCE properties with the analysis causes modifications in the
models able to explain it. The work in [18] shows that it is possible to account for the GCE
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obtained in [15] by DM annihilation into sterile neutrinos. In [6] the compatibility of the
GCE DM interpretation with the other indirect searches is discussed. The dwarf spheroidal
galaxies (dSphs) are pristine targets for DM signals because they lack detectable gamma-ray
sources. The authors of [19] use the Fermi-LAT gamma-ray data from dSphs to set limits on
DM annihilations into sterile neutrinos.

In this paper we consider a new Fermi-LAT analysis of Pass 8 data on Galactic Center
γ-rays presented in [20], and we explore the ability of the DM sterile neutrino portal to
account for the GCE, which is peaked at ∼ 3 GeV, that is, slightly higher energies than
reported in previous analysis. We also derive the limits from dSphs. Although we use a
particular realization of the sterile neutrino portal DM, the results of our analysis can be
applied to other models, provided the sterile neutrino decays only to SM particles.

The paper is organized as follows. In Sec. 2 we briefly review the sterile neutrino portal
scenario, and derive the SM particle spectra from sterile neutrino decays, relevant for the
indirect detection constraints on such portal. In Sec. 3 we describe the model independent
fit to the GCE, while in Sec. 4 we present the limits from Fermi-LAT dSphs and AMS-02
anti-proton data. We conclude in Sec. 5.

2 Sterile neutrino portal to Dark Matter

Our analysis can be applied to any type of sterile neutrino portal scenario up to the following
requirement: The observed DM relic abundance is determined by its interactions with sterile
neutrinos, which in turn generate light neutrino masses via the type I seesaw mechanism.
For definiteness in this section we consider a very simple realization studied in [5]. Besides
the sterile neutrinos, the SM is extended by a dark sector that contains a scalar field φ and
a fermion Ψ. These fields are both singlets of the SM gauge group but charged under a
dark sector symmetry group, Gdark, such that the combination Ψφ is a singlet of this hidden
symmetry.

The lighter of the two dark particles (φ and Ψ) turns out to be stable if all SM particles,
as well as the sterile neutrinos, are singlets of Gdark, disregarding the nature of the dark
group. The stable particle is a good DM candidate. We assume for simplicity that the dark
symmetry Gdark is a global symmetry at low energies, although our analysis is equally valid
whether it is local.

The relevant terms of the Lagrangian are:

L = µ2
HH

†H − λH(H†H)2 − µ2
φφ
†φ− λφ(φ†φ)2 − λHφ(H†H) (φ†φ)

−
(
φΨ(λa + λpγ5)N + Y LLHNR + h.c.

)
(2.1)

where we have omitted flavour indexes. The Yukawa couplings Y between the right-handed
fermions NR and the SM leptons lead to masses for the active neutrinos after electroweak
symmetry breaking, via type I seesaw mechanism. Although at least two sterile neutrinos are
required to generate the neutrino masses observed in oscillations, in our analysis we consider
that only one species is lighter than the DM and therefore relevant for the determination of
its relic abundance and indirect searches. The results can be easily extended to the case of
two or more sterile neutrinos lighter than the DM.
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Assuming that the dark fermion Ψ is Majorana and constitutes the DM, its annihilation
cross section into sterile neutrinos is given by 1

σv =
(α+ β rNΨ)2

4πM2
Ψ

√
1− r2

NΨ

(1 + r2
φ − r2

NΨ)2
+O(v2) (2.2)

where α = λ2
s − λ2

p and β = λ2
s + λ2

p, rφ = Mφ/MΨ, and rNΨ = MN/MΨ and v is the relative
velocity of the DM particles. In the following, we restrict ourselves to a scalar interaction
between the dark fermion and the N ′s, but from eq. (2.2) it is clear that a pseudoscalar
coupling λpγ5 leads to the same results. Only a chiral interaction gives rise to reduced
indirect detection signals, since for MN � MΨ the annihilation cross section is effectively
p-wave, and therefore velocity suppressed.

In the scenario presented above it is always possible to obtain the observed DM relic
abundance when MN < MΨ in the range MΨ ∈ [1 GeV, 2 TeV] with perturbative couplings
λs ≡ λ ∼ 0.01 - 1 and mediator masses Mφ ∈ [1 GeV, 10 TeV] [5]. It is worth noticing
that for sufficiently small Yukawa couplings of the sterile neutrinos, it could happen that
the DM Ψ and N bath decouple from the SM after the decay of the dark scalar, T . Mφ,
and remain in thermal equilibrium but with a different temperature. In this case, the DM
freeze-out leads to a larger relic abundance, so that a larger annihilation cross section (and
thus a larger coupling between DM and sterile neutrinos) is needed to reproduce the observed
value [21, 22]. In Sec. 4 we will see that the Fermi-LAT data from dSphs can set stringent
constraints on these scenarios.

If the scalar φ were the DM instead, the corresponding annihilation cross section is very
similar to eq.(2.2), including the fact that it becomes velocity suppressed for MN � Mφ if
the DM couplings are chiral. In [5] it has been shown that for scalar DM it is also possible
to get the correct relic abundance in a comparable region of the parameter space, therefore
our analysis applies to such scenario as well.

The indirect detection signatures depend on the thermally averaged total annihilation
cross section, 〈σv〉 (for a detailed calculation of the thermal average see for instance ref.[23]),
and on the energy spectrum of the final SM particles, which is determined by MΨ and MN .
Moreover, given a pair of values (MΨ,MN ), it is always possible to obtain a certain value of
the cross section by appropriately choosing the other two free variables, λ,Mφ, with the only
limitation of the coupling λ to remain perturbative. Therefore, in the next sections we will
consider as free parameters (〈σv〉,MΨ,MN ); in this way, our analysis is valid for any other
neutrino portal scenario able to reproduce the same annihilation cross section, provided the
sterile neutrinos decay only to SM particles.

Light neutrino masses are generated via TeV scale type I seesaw mechanism. We denote
να the active neutrinos and Ns the sterile ones. After electroweak symmetry breaking, the
neutrino mass matrix in the basis (να, Ns) is given by

Mν =

(
0 MD

MT
D MN

)
(2.3)

where MD = Y vH/
√

2 and Yαs are the Yukawa couplings. The matrix Mν can be diagonal-
ized by a unitary matrix U , so that

Mν = U∗Diag(Mν ,M)U † (2.4)

1Were Ψ a Dirac fermion, the exchange α↔ β should be performed in eq.(2.2).
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where Mν is the diagonal matrix with the three lightest eigenvalues ofMν , of order M2
D/MN ,

and M contains the heavier ones, of order MN .
The mass eigenstates n = (νi, Nh) are related to the active and sterile neutrinos, (να,

Ns), by
(
να
Ns

)

L

= U∗
(
νi
Nh

)

L

. (2.5)

The unitary matrix U can be written as

U =

(
Uαi Uαh
Usi Ush

)
(2.6)

where, at leading order in the seesaw expansion parameter, O(MD/MN ):

Uαi = [UPMNS ]αi Ush = I

Uαh = [MDM
−1
N ]∗αh (2.7)

Usi = −[M−1
N MT

D UPMNS ]si .

Notice that at this order the states Nh and Ns coincide, therefore we identify them in the
rest of this paper.

Sterile neutrinos are produced in DM annihilations and then decay into SM particles.
The decay channels depend on the sterile neutrino mass. Namely if the right-handed neutrino
is lighter than the W boson, N will decay through off-shell h, Z,W bosons to three fermions.
Since the decay via a virtual h is further suppressed by the small Yukawa couplings of the
SM fermions, it is a very good approximation to consider only the processes mediated by
virtual W,Z, whose partial widths read [24]:

Γ(N → νqq̄) = 3ACNN [2(a2
u + b2u) + 3(a2

d + b2d)]f(z) (2.8)

Γ(N → 3ν) = ACNN [
3

4
f(z) +

1

4
g(z, z)] (2.9)

Γ(N → `qq̄) = 6ACNNf(w, 0) (2.10)

Γ(N → ν`¯̀) = ACNN [3(a2
e + b2e)f(z) + 3f(w)− 2aeg(z, w)] (2.11)

where

A ≡ G2
FM

5
N

192π3
, Cij =

3∑

α=1

UαiU
∗
αj (2.12)

af , bf are the left and right neutral current couplings of the fermions (f = q, `), the variables
z, w are given by

z = (MN/MZ)2 , w = (MN/MW )2 (2.13)

and the functions f(z), f(w, 0) and g(z, w) can be found in [25].
On the other hand, if MN > MW two body decays to SM particles are open, and the

corresponding widths are [26]:

Γ(N →W±`∓α ) =
g2

64π
|UαN |2

M3
N

M2
W

(
1− M2

W

M2
N

)2(
1 +

2M2
W

M2
N

)
(2.14)

Γ(N → Z να) =
g2

64πc2
W

|CαN |2
M3
N

M2
Z

(
1− M2

Z

M2
N

)2(
1 +

2M2
Z

M2
N

)
(2.15)

Γ(N → h να) =
g2

64π
|CαN |2

M3
N

M2
W

(
1− M2

h

M2
N

)2

. (2.16)
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Figure 1. Photon spectrum different DM and sterile neutrino masses. In the upper figures we fix
the DM mass and in the lower figures the sterile neutrino one. Low DM masses (. 80 GeV) can fit
the Galactic center excess.

To obtain the final state’s SM particle spectrum from DM annihilation into sterile
neutrinos, dN/dE, we have used SPheno v.3.3.8 [27] to determine the decay rates of all
the particles, implementing first the model, at the Lagrangian level, using SARAH v.4.9.1
[28, 29]. Then, we simulate the DM to sterile neutrino annihilation with MadGraph5 v.2.5
[30], and we use Pythia v.8.2 [31] to compute the sterile neutrino decays and its parton
shower. Our analysis differs from ref.[6] in that they simulate the decay of sterile neutrino to
SM particles in the N -rest frame using SM HeavyN NLO model files [32, 33] and boost the
final spectrum to the DM rest frame. We have checked that both methods predict similar
photon and anti-particle spectra.

In Fig.1 it is depicted the photon spectrum that we obtain for different DM and N
masses: in the upper plots we show the dependence on the sterile neutrino mass for two fixed
values of the DM mass, namely MDM = 50 GeV, which as we will see in the next section can
fit the GCE, and MDM = 500 GeV, which do not. We observe that for a given DM mass,
the photon spectrum is harder for lighter sterile neutrino.

The reason for this behavior, also observable in the anti-particle spectra, is the boost
between the sterile neutrino and DM rest frames, which becomes larger for MN � MDM .
For instance, an isotropic spectrum with fixed energy E in the sterile neutrino rest frame
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becomes a box shaped spectrum when boosted to the DM rest frame, of the form [34]

dN

dE′
=

1

2γβ
√
E2 −m2

θ(E′ − E−)θ(E+ − E′) (2.17)

where E± = γ(E ± β
√
E2 −m2), θ is the Heaviside step function, γ and β are the boost

parameters, with γ = mDM/mN , and m = 0 for the case of photons As a consequence, the
more boosted the sterile neutrino, the harder the final spectrum.

In the lower plots the sterile neutrino mass is fixed, and in this case the spectrum is
harder for heavier DM mass, as we expected.

In our calculation we have taken only the Yukawa coupling of the sterile neutrino to the
first generation of SM leptons non-zero. We have checked that the photon spectrum has little
sensitivity to this choice of flavour, in agreement with ref. [19]; thus the photon spectrum
from DM annihilation do not provide insight into disentangling the structure of the sterile
neutrino Yukawa couplings.
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Figure 2. Positron and antiproton spectrum for different DM and sterile neutrino masses compared
with a simple case of a DM candidate that annihilates directly to bb̄ and W+W−.

We have calculated the positron and anti-proton spectra from DM annihilation into
sterile neutrinos and its subsequent cascade decay, shown in Fig. 2. While we find that
also the anti-proton spectrum is largely insensitive to the flavour structure of the Yukawa
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couplings, the peak in the electron spectrum at high energies is only present if the sterile
neutrino couples to the (e, νe) doublet, due to a strong component of the reaction N → We
which occurs only in this case.

In this work we focus on the γ-ray probe for several reasons. First of all, we have found
that the positron flux generated in the DM sterile neutrino portal can not account for the
positron flux observed, for instance, by PAMELA [35] and AMS-02 [36, 37]. We have used
the approximation described in [38] to propagate the positrons and electrons, and obtain
the corresponding flux at Earth position. Although the approximation is not very accurate,
it is good enough to show that this scenario predicts a positron flux about two orders of
magnitude smaller than the measured one, for any value of the DM and N masses; therefore
it can not explain the positron excess.

On the other hand, regarding anti-protons, recent analyses of AMS-02 [39] data seem
to find an excess over the expected background; however a careful study would require a
complete fit of both the cosmic ray propagation and DM parameters, which is beyond the
scope of this work. Nevertheless, as an illustration we plot in Fig. 2 the anti-proton spectra
for several values of the DM and N masses, together with the spectra corresponding to DM
annihilation into WW and bb̄ for comparison. In Sec.4 we will also estimate which part of
the parameter space could be excluded by AMS-02 anti-proton data.

Finally, light neutrinos are also produced in DM annihilation, and IceCUBE can set
constraints on the cross section to neutrinos, but current limits are about three orders of
magnitude above the flux predicted within the sterile neutrino portal scenario [4].

Note that one can also constrain the sterile neutrino portal using the CMB anisotropy
measurements, which are sensitive to DM annihilation during the cosmic dark ages. Specially
if the annihilation products contain energetic electrons and photons, when these particles are
injected into the plasma will modify the ionization history, leading to observable changes in
the temperature and polarization anisotropies. These constraints have been estimated in [5],
and explicitly calculated in [6], and they exclude DM masses below ∼ 20 GeV, irrespective
of the value of MN . Therefore, such CMB bounds are weaker than the ones from Fermi-LAT
dSphs that we discuss in Sec. 4.

3 Analysis of the Galactic Center gamma-ray Excess within the sterile
neutrino portal

The Fermi-LAT has boosted significant advances in our knowledge of the gamma-ray sky over
the last few years. Regarding DM properties, if it is a weakly interacting particle (WIMP)
we expect that its annihilation in dense regions of the Universe, such as the our Galactic
Center or the DM rich dSphs, will produce a significant flux of SM particles. High energy
gamma rays are particularly interesting, since the signal can be traced back to the source,
providing information about the location of the DM reaction. Several studies of the Fermi-
LAT data show that the Galactic center is brighter than predicted by conventional models
of interstellar diffuse γ-ray emission [8–17, 40, 41], tuned with Galactic plane data and point
source catalogs. In a recent analysis by the Fermi-LAT collaboration [20], it has been found
that the GCE is a sub-dominant component (10%) of the observed flux, with a spectral
energy distribution peaked at about 3 GeV, slightly shifted towards higher energies than in
previous studies. We consider the GCE obtained in the so-called Sample Model of ref. [20],
and perform the fits using the covariance matrices derived in [42].
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Notice however that the origin of the GCE is still unclear: in addition to the DM
explanation, it could be due to the emission of a population of unresolved point sources [43–
47], or cosmic-ray particles injected in the Galactic center region, interacting with the gas
or radiation fields [48]. In fact, the excess could have different origins below and above ∼ 10
GeV [20, 49]: the high energy tail may be due to the extension of the Fermi bubbles observed
at higher latitudes, while the lower energy (< 10 GeV) excess might be produced by DM
annihilation, unresolved millisecond pulsars, or both. In conclusion, the interpretation of the
GCE as a signal of DM annihilation is not robust, but it can not be ruled out either [20, 47].

In general, the interpretation of the low energy GCE as originated by DM annihilation
is not easy to reconcile with DM direct detection constraints, since in particular models the
region able to reproduce the excess is already excluded by current experiments: for instance
in the context of the minimal supersymmetric standard model, DM can only account for a
∼ 40 % of the low energy (E < 10 GeV) GCE [42]. In our sterile neutrino portal scenario
direct detection limits can be easily avoided, provided the mixing angle between the SM
Higgs and the dark scalar is small enough; since the relic abundance is determined by the
DM annihilation into sterile neutrinos, it is possible to obtain the correct one independently
of such mixing. In fact, for this reason DM indirect searches are the most promising way to
constrain this scenario. See also [50], where an extended scalar-singlet Higgs portal model is
shown to provide an excellent fit to the GC excess, evading strong direct detection constraints
by adding a second (heavier) singlet scalar in the dark sector.

In our analysis we assume that there are two distinct sources for the GCE: one astro-
physical, responsible for the high energy tail of the γ-ray spectrum, and DM annihilation,
that we considerer the only source of the low energy GCE,

Φ = Φastro + ΦDM . (3.1)

For the astrophysical component, according to the morphological studies of [20] it seems
reasonable to consider a continuation to lower Galactic latitudes of the Fermi bubbles. Given
that above 10o in Galactic latitude the spectral shape of the Fermi bubbles is described by a
power low times an exponential cut off [51], we assume the same form for the astrophysical
contribution to the GCE,

Φastro = NE−αe−E/Ecut (3.2)

We leave N,α,Ecut as free parameters in the fit, in order to compare with the values α =
1.9 ± 0.2 and cutoff energy Ecut = 110 ± 50 GeV from the Fermi bubbles, according to the
results of ref. [51].

For the DM component, the differential flux of photons from a window with size ∆Ω,
is given by [52]

dΦγ

dEγ
(Eγ) =

J

8πM2
DM

∑

f

〈σv〉f
dNf

γ

dEγ
(Eγ) , (3.3)

where the J-factor is an astrophysical factor that only depends of the angle of the window
size and the DM density profile:

J =

∫

∆Ω
dΩ

∫
ρ2
DM (s)ds (3.4)

The J-factor is an integral of the DM profile over the line of sight. It is very common to adopt
the Navarro, Frenk and White (NFW) profile [53]. In our case this is the best option because
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we want to compare our results with the Fermi-LAT data of the GCE and the dSphs, and
this is the profile used by the Fermi-LAT Collaboration. The functional form of the NFW
profile is:

ρΨ(r) = ρs

(
r

rs

)−γ (
1 +

r

rs

)−3+γ

, (3.5)

where rs = 20 kpc is the scale radius and ρs is the scale density, which is fixed using data at
the location of the Sun: at r� = 8.5 Kpc, the DM density is ρ� = 0.3 GeV/cm3. We take
the central value of γ as determined in [20], γ = 1.25± 0.8.

In Fig.3 we can see different examples of the photon flux, for the same DM and N
masses as in Fig.1 and thermal annihilation cross section, 〈σv〉 = 2.2× 10−26 cm3/s.
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Figure 3. Photon flux for the same points of the parameter space that we chose in figure 1.

We perform a seven parameters fit: N,α,Ecut for the astrophysical flux and J , 〈σv〉,
MΨ, MN for the DM contribution. The quality of the fit is evaluated by constructing the χ2

estimator:

χ2 =
∑

i,j

(Φobs
i − Φm

i )Σ−1
i,j (Φobs

j − Φm
j ) , (3.6)

where i is the energy bin label, Φm
i is the predicted flux for a model, determined by the six

free parameters, Φobs
i is the flux in the Sample model (light blue points of Fig.5) and Σ−1

i,j is

– 9 –

178 Part II: Scientific Research



the inverse of the covariance matrix, calculated in [42]. Thus the derived information on the
GCE spectrum in [20] is contained in Φobs

i ,Σ−1
i,j .

Notice that since the functions used to fit the GCE are not linear, one can not use the
reduced χ2 to calculate p-values. Instead we perform the following procedure [42]:

1. For each point of the DM model, (〈σv〉,MΨ,MN ), we vary the astrophysical parame-
ters N,α,Ecut, as well as the J-factor to account for its uncertainties 2,so as to find the best
fit to the data, Φm

best.
2. We create a set of 100.000 pseudo-random data normal distributed with mean at

Φm
best, according to Σ−1

i,j .

3. We compute χ2 between Φm
best and each of the 100.000 pseudo-random data created

in 2.
4. We create a χ2 distribution using the values from 3.
5. The integrated χ2 distribution up to the best-fit-χ2 to the actual data gives the

p-value of the model.
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Figure 4. The color shows the parameter space region in which the model predicts a γ-ray flux
compatible with the Galactic Center excess for a fixed 〈σv〉 = 2.2 × 10−26cm3/s. For the fit we use
the combined DM and astrophysical components, eq. (3.1).

Due to the uncertainties on the J-factors, there is a degeneracy between J and 〈σv〉, so
that a very good fit can be obtained for 〈σv〉 in the range 0.2 . 〈σv〉/〈σv〉thermal . 1.5. As a
result, in the best fit point the value of 〈σv〉 is not unambiguously determined, and we have

2We consider one order of magnitude variation in the J-factors.
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chosen to present the results for the thermal one, 〈σv〉thermal = 2.2 × 10−26cm3/s because
this is the thermal cross section consistent with the observed DM density.

Fig. 4 shows the different p-values in the (MΨ,MN ) plane. Notice that it is only possible
to fit the GC excess in the low mass region for the DM particle and the sterile neutrinos,
more precisely within the range of mass 30-100 GeV for both particles. From the photon
fluxes depicted in Fig. 3 we can see that increasing the sterile neutrino mass leads to less
energetic γ-rays, while increasing the DM mass produces the contrary effect, the γ-rays are
more energetic. On the other hand, the flux decreases for heavier DM, since there are fewer
particles contributing. These features explain the shape of the fitting regions depicted in
Fig. 4.
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Figure 5. Fit to the GCE spectrum (blue dots) by the combination of a power-law with an exponential
cutoff, describing the astrophysical sources (orange line), plus the contribution of DM annihilation,
as given by dark matter annihilation into sterile neutrinos (red line). The purple line gives the final
prediction of the model. The dark green band represents the diagonal of the covariance matrix due to
excesses along the Galactic Plane, obtained using the same procedure as for the GCE [42]. The light
green band is the diagonal of the covariance matrix from variations in the GCE due to uncertainties
in modelling diffuse emission from ref. [41]

.

As already mentioned, the fit in Fig. 4 used the new GCE data reported by the Fermi-
LAT Collaboration [41]. The reference [6] provides an excellent analysis of a previous esti-
mation of the GCE in [15]. We find a larger parameter space allowed to fit the GCE data
than in [6] mainly because of the broader systematic uncertainties in the GCE estimation
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that we used and our inclusion of an extra astrophysical component to model the GCE.

Fig. 5 shows the photon flux for our best fit point of the parameter space. Combining
the astrophysical and the DM component, as given in eq. (3.1), we obtain that the best fit
point is (MΨ,MN ) = (55.1, 51.4) GeV for the DM component. For this point the best values
of the astrophysical parameters are (N,α,Ecut) = (3.81 × 10−8 GeVα, 1.7, 187.8 GeV). We
obtain a very good fit, χ2 = 24.9 for 27 energy bins, which corresponds to a p-value = 0.78.

4 Constraints from indirect detection: gamma rays from dSphs and anti-
proton data

In the previous section, we have analyzed the photon flux from DM annihilation into sterile
neutrinos, and its impact in the GCE. In this section, we will constrain the parameter space
with the non-detection of dSphs by the Fermi LAT. Given the large diversity of photon
spectra in the DM sterile neutrino portal to DM scenario, see fig. 1, we can not use the
limits presented in the Fermi-LAT Collaboration publications, as they are for some particular
annihilation channels [54]. Therefore, we use gamLike v.1.0 [55], a software that evaluates
the likelihoods for γ-ray searches using the combined analysis of 15 dSphs from 6 years of
Fermi-LAT data, processed with the Pass-8 event-level analysis. gamLike calculates the
Poisson likelihood following the method described in [56]. First of all we define the J-factor
likelihood:

LJ(Ji|Jobs,i,, σi) =
e−(log10(Ji)−log10(Jobs,i))

2/2σ2
i

ln(10)Jobs,i
√

2πσi
(4.1)

where Jobs,i is the measured J-factor with error σi in each dSphs i and Ji is the true J-factor
value. We then define the combined likelihood of all dSphs in the form:

Li(µ, θi|Di) =
∏

j

Li(µ, θi|Di,j) (4.2)

where µ are the parameters of the DM model, θi accounts for the set of nuisance parameters
from the LAT study and J-factors of the dSphs, and Di is the γ-ray data set.

Using these ingredients we perform a test statistic (TS) to obtain 90% C.L. upper limits
on the DM annihilation cross section. Such bounds are derived by finding a change in the
log-likelihood:

TS = −2 ln
L(µ0, θ̂|D)

L(µ̂, θ̂|D)
(4.3)

where µ0 are the parameters of the no DM case (when we do not have γ-rays in our model)
while µ̂ and θ̂ are the parameters for the point we want to analyze.

If TS > 2.71 the parameter space point is excluded because it is not compatible with
the background at 90% C.L. Using this method we can find the exclusion line in the plane
MΨ −MN .

We can see in Fig. 6 the contour limits, corresponding to different 〈σv〉 values. The
region to the left of the corresponding curve is excluded at 90% C.L. We show as a red-
dashed line the limit for a thermal annihilation cross-section, which in principle is the one
needed to obtain the observed DM relic abundance within the sterile neutrino portal scenario
under study. We find that DM masses MΨ < 60 GeV are excluded, in agreement with [6], a
somehow weaker limit than the one obtained in [19].
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Figure 6. dSphs exclusion limit defined using the compatibility with the background. In this plot
the color code shows the constrain for different values of 〈σv〉.

Note however than in some cases the dark sector (including the sterile neutrino) could
be at a different temperature than the SM, so that a larger freeze-out annihilation cross
section is required to fit the observed DM abundance [21, 22]. Therefore a larger region of
the parameter space (MΨ,MN ) is excluded in such cases.

Focusing on the standard thermal annihilation cross-section, we next analyze the impact
of the dSphs constraints on our fit of the GCE. In Fig. 8 we plot both results, and we can
see that the dSphs limit disfavours the low DM mass region of our fit of the GCE, although
a sizable range of (MΨ,MN ) able to fit the GCE, remains allowed.

We expect that the sensitivity of the Fermi-LAT telescope will improve significantly in
the next years by, among other reasons, the potential discoveries of new ultra-faint dwarf
galaxies [57]. Using a similar analysis to [58], we estimate that in 15 years of data taking
Fermi-LAT will have 3 times more dSphs discovered (45 dSphs) and considering that the point
spread function (PSF) sensitivity for the Fermi-LAT instrument increases approximately as
the square-root of the observation time (this is a conservative estimate), the Fermi-LAT
constraints will improve by a factor of (

√
15/
√

6) × 3 ' 5. In Fig. 8 we show the impact of
this prospect (dashed blue line): the region to the left of this line will be potentially excluded
in the next years by Fermi-LAT, including the GCE fit area (if we assume that all low energy
GCE is due to DM annihilation).

Finally, we roughly estimate the effect of anti-proton data from AMS-02 on the sterile
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neutrino portal allowed parameter space. The derivation of these bounds suffer from large
uncertainties, one of them being that the propagation parameters in the traditional MIN-
MED-MAX schemes are determined by old Cosmic Ray data, and they are not necessarily
guaranteed to describe the current status; indeed for instance the MIN propagation scheme is
seriously disfavored [59] by the preliminary anti-proton to proton ratio reported by AMS-02.
However, the MED scheme seems to provide a reasonable fit to the data, at least in the
low energy region, so we have considered it to assess the region that could be excluded by
AMS-02 data. Therefore our results should be taken as an indication of the parameter space
that would be excluded by a complete fit of the cosmic ray propagation and DM parameters.
We do not attempt here to explain the excess at high anti-proton energies.

We estimate the total flux of anti-protons within our model as the sum of the best
fit of the background in the MED scheme [59], Φp̄,bkg(K), plus the DM contribution, i.e.,
Φp̄(Ki,MΨ,MN ) = Φp̄,bkg(Ki) + Φp̄,Ψ(Ki,MΨ,MN ). Then, we calculate the ratio between
this flux and the proton flux data Φp(Ki) from AMS-02 [60], in order to compare it with the
last experimental data on the anti-proton-to-proton flux ratio R(Ki) ± σi, also obtained by
the AMS-02 experiment [39].
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Figure 7. Total anti-proton-to-proton flux ratio for different points of the parameter space compared
with the background contribution in the MED propagation scheme (gray line in both plots). Blue
dots correspond to AMS-02 data [39]. In the left panel we can see the effect of the variation of MΨ,
whereas in the right one the effect of the variation of MN

.

In Fig. 7 we show the anti-proton-to-proton flux ratio from the background (gray line)
and for different (MΨ,MN ) points as calculated in the MED propagation scheme, together
with the recent AMS-02 data. Notice that since the data is in agreement or below the
astrophysical background model at low values of the anti-proton kinetic energy K, points of
the parameter space leading to larger ratios are disfavored.

Now, for each point of our parameter space (〈σv〉,MΨ,MN ) we construct the estimator:

χ2 =
∑

i

[
R(Ki)− Φp̄(Ki,MΨ,MN ))/Φp(Ki)

σi

]2

, (4.4)

where i denotes the energy bins, and σi the corresponding uncertainty on the flux ratio.
Denoting χ2

0 the minimum chi-squared of the background-only case from [59], we can define
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the limit on 〈σv〉 for each point (MΨ,MN ) using the condition:

χ2(〈σv〉,MΨ,MN )− χ2
0 ≤ 4 (4.5)

Note that in this derivation we have used the Einasto DM density profile, since it is the one
employed by AMS-02.

In Fig. 8 we show the impact of the anti-proton AMS-02 data using the MED propaga-
tion scheme on the sterile neutrino portal parameter space. The orange region corresponds
to the (MΨ,MN ) points for which the limit on 〈σv〉 obtained in the way described above is
≤ 2.2× 10−26cm3/s. Our results for the MED propagation scheme agree with ref.[6], where
a similar analysis has been performed. As noticed there, the constrains from anti-proton are
complementary to the dSphs ones, and for a fixed MΨ they disfavour the high MN region of
the GCE fit, since heavier sterile neutrinos produce a larger anti-proton flux at low kinetic
energies K. However the astrophysical uncertainties are still very large, as has been shown
in [6] by using different propagation schemes and DM density profiles, as well as varying the
J-factors.
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Figure 8. Region of the parameter space that fit the GCE combined with the dSphs and AMS-02
anti-protons constrain for a thermal value of the 〈σv〉.

5 Conclusions

The DM relic abundance could be determined by the freeze-out of DM interactions with sterile
neutrinos, which in turn generate light neutrino masses via the seesaw type I mechanism;
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this is the so-called sterile neutrino portal to DM. Generically such scenario is challenging
to test at colliders and easily evades DM direct searches. However, it can be probed in
DM indirect detection experiments, since the sterile neutrinos copiously produced in DM
annihilations will subsequently cascade decay into SM final states due to its mixing with the
active neutrinos (unless the annihilation cross section is p-wave and therefore it is velocity
suppressed at present).

In this work, we focus on the impact of the new analysis of the Fermi-LAT Collaboration
of the Galactic Center region, based on the reprocessed Pass 8 event data, which confirms the
existence of a γ-ray excess peaked at ∼ 3 GeV. We assume that annihilation of DM into sterile
neutrinos is the main contributor to the low energy photon flux of the GCE (photon energy
< 10 GeV). The high energy tail of the GCE (> 10 GeV) could be due to an astrophysical
component, which we model as a power law with an exponential cut-off, eq. (3.2). Although
the interpretation of the GCE as DM annihilation is still under debate, it is worth to explore
whether a complete particle physics model can account for it.

We perform a model-independent analysis within the sterile neutrino portal scenario.
Indeed, our results only depend on the thermally averaged DM annihilation cross section into
sterile neutrinos, which we fix to 〈σv〉 = 2.2× 10−26cm3/s, and the DM and sterile neutrino
masses, (MΨ,MN ). Therefore, our analysis can be extended to any model able to reproduce
the thermal DM annihilation cross section into sterile neutrinos.

We find that the sterile neutrino portal to DM provides an excellent fit to the GCE:
χ2 = 24.9 for 27 energy bins (p-value = 0.78). The best fit corresponds to (MΨ,MN ) =
(55.1, 51.4) GeV.

We then check the compatibility of these results with the limits from Fermi-LAT Pass 8
data on the dSphs positions and anti-proton data from AMS-02. Fig. 8 summarizes our main
findings. We see that there is a sizeable region in the (MΨ,MN ) plane able to contribute
significantly to the GCE and allowed by the dSphs constraints. Indeed, the dSphs set an
stringent limit which excludes DM masses below ∼ 50 GeV (90 GeV), for sterile neutrino
masses MN . MDM (MN � MDM ). In particular, the above best-fit point to the GCE is
allowed. It is worth noticing that shortly further constraints from a larger number of dSphs
may be in tension with the explanation of the GCE, under the assumption that a large
fraction of the low energy sector of the GCE (below ≈ 10 GeV) is due to DM annihilation.

On the other hand, using the MED propagation scheme we find that current anti-
proton data from AMS-02 already disfavours a large fraction of the (MΨ,MN ) region able to
account for the GCE; however our analysis is not conclusive, given the large uncertainties in
the anti-proton background estimate and propagation parameters.
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1 Introduction

The Nature of Dark Matter (DM) is one of the long-standing puzzles that still have to be

explained in order to claim that we have a “complete” picture of the Universe. On the one

side, both from astrophysical and cosmological data (see, e.g., Ref. [1] and refs. therein),

rather clear indications regarding the existence of some kind of matter that gravitates but

that does not interact with other particles by any other detectable mean can be gathered.

On the other hand, no candidate to fill the rôle of Dark Matter has yet been observed in

high-energy experiments at colliders, nor is present in the Standard Model (SM) spectrum.

Within SM particles, the only ones that share with Dark Matter the property of being

weakly coupled to SM matter are neutrinos. However, experimental searches have shown

that neutrinos constitute just a tiny fraction of what is called non-baryonic matter in the

Universe energy budget [2]. Most of the suggestions for physics Beyond the Standard

Model (BSM), therefore, include one or several possible candidates to be the Dark Matter.

Under the assumptions of the “WIMP paradigm” (with “WIMP” standing for “weakly

interacting massive particle”), these new particles have in common to be rather heavy and

with very weak interactions with SM particles. Two examples of these are the neutralino in

supersymmetric extensions of the SM [3] or the lightest Kaluza-Klein particle in Universal

Extra-Dimensions [4, 5]. Searches for these heavy particles at the LHC have pushed bounds

on the masses of the candidates to the TeV range, a region of the parameter space rather

difficult to test for experiments searching for Dark Matter particles interacting directly

within the detector (see, e.g., Ref. [6]) or looking at annihilation products of Dark Matter

particles [7]. Both for this reason and for the fact that very heavy WIMP’s are relatively

unnatural in theories that want to solve the hierarchy problem and not only host some Dark

Matter candidates, models in which the Dark Matter particles are either “feebly interacting

massive particles” (FIMP’s) [8] or “axion-like” very light particles (see, e.g., Ref. [9]) have

been constructed. As a result, at present a very rich (and complicated) landscape of models

explaining the Nature of Dark Matter exists, and experimental searches have to look for

very different signals.

In this paper we want to explore in some detail a possibility that was advanced in

the literature several times in the last ten to twenty years. The idea is that the inter-

action between Dark Matter particles and the SM ones, though only gravitational, may

be enhanced due to the fact that gravity feels more than the standard 3 + 1 space-time

dimensions. Extra-dimensional models have been proposed to solve the hierarchy problem,

related to the large hierarchy existing between the electro-weak scale, ΛEW ∼ 250 GeV,

and the Planck scale, MP ∼ 1019 GeV. In all these models, the gravitational interaction

strength is generically enhanced with respect to the standard picture since the “true” scale

of gravitation is not given by MP but, rather, by some fundamental scale MD (where D is

the number of dimensions). The two scales, MP and MD are connected by some relation

that takes into account the geometry of space-time. In so-called Large Extra-Dimensions

models (LED) [10–14], for example, M2
P = Vd×M2+d

D (where d is the number of extra spatial

dimensions). If the extra-dimensions are compactified in a d-dimensional volume Vd, and Vd
is sufficiently large, then MD �MP , thus solving or alleviating the hierarchy problem. In
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warped extra-dimensions (also called Randall-Sundrum models) [15, 16], on the other hand,

the separation between MP and MD is not very large, M2
P = 8π(M3

D/k) [1− exp(−2πrck)],

where k is the curvature of the space-time along the extra-dimension and rc is the distance

between two points in the extra-dimension. However, all physical masses have an exponen-

tial suppression with respect to MP due to the curvature k, m = exp(−2πrck)m0. In this

picture, m0 is a fundamental mass parameter of order MP and m is the mass tested by

a 4-dimensional observer. In the ClockWork/Linear Dilaton model (CW/LD), eventually,

the relation between MP and MD is a combination of a volume factor, as for LED models,

and a curvature factor, as for warped models [17].

The possibility that Dark Matter particles, whatever they be, have an enhanced grav-

itational interaction with SM particles have been studied mainly in the context of warped

extra-dimensions. The idea was first advanced in Refs. [18, 19] and subsequently studied

in Refs. [20–24]. As already stressed, the Nature of Dark Matter is still unknown. In

particular, if new particles are added to the SM spectrum to act as Dark Matter particles,

their spin is completely undetermined. In the publications above, therefore, scalar, fermion

and vector DM particles have been usually considered. In this paper, on the other hand,

we only consider scalar Dark Matter. We have been led to this decision by the fact that,

maybe unexpectedly, we have found significant regions of the model parameter space for

which the thermal relic abundance can be achieved and that can avoid present experimen-

tal bounds and theoretical constraints (in contrast, for example, with the conclusions of

Ref. [21]). Interestingly enough, most of the allowed parameter space will be tested by

the Run III at the LHC and by its high-luminosity version, the HL-LHC. On the way

to achieve the correct relic abundance, we have found some discrepancies with existing

literature on the subject when looking for DM annihilation into Kaluza-Klein gravitons.

In addition, in order to give a consistent picture of this possibility in the framework of

warped extra-dimensions, we have also taken into account the DM annihilation through

and to radions within the Goldberger-Wise approach [25], finding that this channel may

also give the correct relic abundance, though in a very tiny region of the parameter space

difficult to test at the LHC.

In forthcoming publications we plan to extend our study to DM particles with a dif-

ferent spin and explore other extra-dimensional scenarios, such as LED and CW/LD.

The paper is organized as follows: in Sec.2 we outline the theoretical framework,

reminding shortly the basic ingredients of warped extra-dimensional scenarios and of how

dark matter can be included within this hypothesis; in Sec.3 we show our results for the

annihilation cross-sections of scalar DM particles into SM particles, KK-gravitons and/or

radions; in Sec.4 we review the present experimental bounds on the Kaluza-Klein graviton

mass from LEP and LHC, as well as on the DM mass from direct and indirect search

experiments, and we remind the theoretical constraints coming from unitarity violation

and effective field theory consistency; in Sec.5 we explore the allowed parameter space such

that the correct relic abundance is achieved for scalar DM particles; and, eventually, in

Sec.6 we conclude. In the Appendices we give some of the mathematical expressions used

in the paper: App. A contains the KK-graviton propagator and polarization tensor; in

App. B we provide the Feynman rules for our model; in App. C we give the expressions for
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the decay amplitudes of the KK-graviton and of the radion; and, eventually, in App. D we

give the formulæ for the annihilation cross-sections of dark matter particles into Standard

Model particles, KK-gravitons and radions.

2 Theoretical framework

In this Section, we shortly review the Warped Extra-Dimensions scenario (also called

Randall-Sundrum model [15]) and introduce our setup to include Dark Matter in the

model, we give the relevant formulæ to compute the DM relic abundance and eventu-

ally provide the DM annihilation cross-sections into SM particles, Kaluza-Klein gravitons

and into radions.

2.1 A short summary on Warped Extra-Dimensions

The popular Randall-Sundrum scenario (from now on RS or RS1 [15], to be distinguished

from the scenario called RS2 [16]) consider a non-factorizable 5-dimensional metric in the

form:

ds2 = e−2σηµνdx
µdxν − r2

c dy
2 (2.1)

where σ = krc|y| and the signature of the metric is (+,−,−,−,−). In this scenario, k is

the curvature along the 5th-dimension and it is O (MP ). The length-scale rc, on the other

hand, is related to the size of the extra-dimension: we only consider a slice of the space-time

between two branes located conventionally at the two fixed-points of an orbifold, y = 0 (the

so-called UV-brane) and y = π (the IR-brane). The 5-dimensional space-time is a slice of

AdS5 and the exponential factor that multiplies the M4 Minkowski 4-dimensional space-

time is called the “warp factor”. Notice that, in order to have gravity in 4-dimensions, in

general ηµν → gµν , with gµν the 4-dimensional induced metric on the brane.

The action in 5D is:

S = Sgravity + SIR + SUV (2.2)

where

Sgravity =
16π

M3
5

∫
d4x

∫ π

0
rcdy

√
G(5)

[
R(5) − 2Λ5

]
, (2.3)

with M5 the fundamental gravitational scale, G
(5)
MN and R(5) the 5-dimensional metric and

Ricci scalar, respectively, and Λ5 the 5-dimensional cosmological constant. As usual, we

consider capital latin indices M,N to run over the 5 dimensions and greek indices µ, ν only

over 4 dimensions. The Planck mass is related to the fundamental scale M5 as:

M̄2
P =

M3
5

k

(
1− e−2kπrc

)
, (2.4)

where M̄P = MP /
√

8π = 2.435× 1018 GeV is the reduced Planck mass.

We consider for the two brane actions the following expressions:

SIR =

∫
d4x
√−g

{
−f4

IR + LSM + LDM

}
(2.5)
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and

SUV =

∫
d4x
√−g

{
−f4

UV + . . .
}
, (2.6)

where fIR, fUV are the brane tensions for the two branes. In Randall-Sundrum scenarios,

in order to achieve the metric in eq. (2.1) as a classical solution of the Einstein equations,

the brane-tension terms in SUV and SIR are chosen such as to cancel the 5-dimensional

cosmological constant, f4
IR = −f4

UV =
√
−24M3

5 Λ5.

Throughout this paper, we consider all the SM and DM fields localized on the IR-brane,

whereas on the UV-brane we could have any other physics that is Planck-suppressed. We

assume that DM particles only interact with the SM particles gravitationally and, for

simplicity, we focus on scalar DM. More complicated DM spectra (with particles of spin

higher than zero or with several particles) will not be studied here. Notice that, in 4-

dimensions, the gravitational interactions would be enormously suppressed by powers of

the Planck mass. However, in an extra-dimensional scenario, the gravitational interaction

is actually enhanced: on the IR–brane, in fact, the effective gravitational coupling is Λ =

M̄P exp (−kπrc), due to the rescaling factor
√
G(5)/

√
−g(4). It is easy to see that Λ� M̄P

even for moderate choices of σ. In particular, for σ = krc ∼ 10 the RS scenario can address

the hierarchy problem. In general, we will work with Λ = O(1 TeV) but not necessarily as

low as to solve the hierarchy problem.

Expanding the 4-dimensional component of the metric at first order about its static

solution, we have:

G(5)
µν = e−2σ(ηµν + κ5hµν) , (2.7)

with κ5 = 2M
−2/3
5 . The 5-dimensional field hµν can be written as a Kaluza-Klein tower of

4-dimensional fields as follows:

hµν(x, y) =
∑

hnµν(x)
χn(y)√
rc

. (2.8)

The hnµν(x) can be interpreted as the KK-excitations of the 4-dimensional graviton. The

χn(y) factors are the wavefunctions of the KK-gravitons along the extra-dimension. Notice

that in the 4-dimensional decomposition of a 5-dimensional metric, two other fields are

generally present: the graviphoton, G
(5)
µ5 , and the graviscalar G

(5)
55 . It has been shown else-

where [15] that graviphotons are massive due to the breaking of 5-dimensional translational

invariance induced by the presence of the branes. On the other hand, the graviscalar field

is relevant to stabilize the size of the extra-dimension and it will be discussed below when

introducing the radion.

The equation of motion for the n-th KK-mode is given by:

(ηµν∂µ∂ν +m2
n)hnµν(x) = 0 , (2.9)

where mn is its mass. Using the Einstein equations we obtain [26]:

−1

r2
c

d

dy

(
e−4σ dχ

n

dy

)
= m2

ne
−2σχn . (2.10)
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from which:

χn(y) =
e2σ(y)

Nn
[J2(zn) + αnY2(zn)] , (2.11)

being J2 and Y2 Bessel functions of order 2 and zn(y) = mn/ke
σ(y). The Nn factor is the

n-th KK-mode wavefunction normalization. In the limit mn/k � 1 and ekπrc � 1, the

coefficient αn becomes αn ∼ x2
n exp (−2kπrc), where xn are the are the roots of the Bessel

function J1, J1(xn) = 0, and the masses of the KK-graviton modes are given by:

mn = kxne
−kπrc . (2.12)

Notice that, for low n, the KK-graviton masses are not equally spaced, as they are pro-

portional to the roots of the Bessel function J1. This is very different from both the LED

and the CW/LD scenarios, however for large n the spacing between KK-graviton modes

become so small that all extra-dimensional scenarios eventually coincide, mn ∼ n/R (being

R some relevant length scale specific to each scenario).

The normalization factors can be computed imposing that:
∫
dye−2σ [χn]2 = 1 . (2.13)

In the same approximation as above, i.e. for mn/k � 1 and ekπrc � 1, we get:

N0 = − 1√
krc

; Nn =
1√
2krc

ekπrc J2(xn) . (2.14)

Notice the difference between the n = 0 mode and the n > 0 modes: for n = 0, the

wave-function at the IR-brane location y = π takes the form

χ0(y = π) =
√
krc

(
1− e−2kπrc

)
= −√rc

M
3/2
5

M̄P
, (2.15)

whereas for n > 0:

χn(y = π) =
√
krc e

kπrc =
√
rc e

kπrcM
3/2
5

M̄P
=
√
rc
M

3/2
5

Λ
(2.16)

The important difference can be easily understood by looking at the coupling between

the energy-momentum tensor and gravity at the location of the IR-brane:

L = − 1

M
3/2
5

Tµν(x)hµν(x, y = π) = − 1

M
3/2
5

Tµν(x)
∑

n=0

hnµν
χn√
rc
, (2.17)

where the only scale is the fundamental gravitational scale M5. However, if we separate

the n = 0 and the n > 0 modes we get:

L = − 1

M̄P
Tµν(x)h0

µν(x)− 1

Λ

∑

n=1

Tµν(x)hnµν(x) , (2.18)

from which is clear that the coupling between KK-graviton modes with n 6= 0 is suppressed

by the effective scale Λ and not by the Planck scale.
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It is useful to remind here the explicit form of the energy-momentum tensor:

Tµν = TSMµν + TDMµν , (2.19)

where

TSMµν =

[
i

4
ψ̄(γµDν + γνDµ)ψ − i

4
(γµDνψ̄γµ +Dµψ̄γν)ψ − ηµν(ψ̄γµDµψ −mψψ̄ψ)+

+
i

2
ηµν∂

ρψ̄γρψ

]
+

[
1

4
ηµνF

λρFλρ − FµλF λν
]

+
[
ηµνD

ρH†DρH + ηµνV (H)+

+DµH
†DνH +DνH

†DµH
]

and

TDMµν = (∂µS)(∂νS)− 1

2
ηµν(∂ρS)(∂ρS) +

1

2
ηµνm

2
SS

2 , (2.20)

where we have introduced the scalar singlet field S to represent the DM particle in our

scenario.

Notice that a scalar DM particle will also interact with the SM through the so-called

”Higgs portal”, namely

LDM ⊃ λhS(H†H)(S†S) , (2.21)

since this term is always allowed. However, such coupling is strongly constrained (see

Sect. 2.3), and we neglect its effect in our analysis.

2.2 Adding the radion

Stabilizing the size of the extra-dimension to be y = πrc is a complicated task. In general

(see, e.g., Refs. [27–29]) bosonic quantum loops have a net effect on the border of the extra-

dimension such that the extra-dimension itself should shrink to a point. This feature, in a

flat extra-dimension, can only be compensated by fermionic quantum loops and, usually,

some supersymmetric framework is invoked to stabilize the radius of the extra-dimension

(see, e.g., Ref. [30]). In Randall-Sundrum scenarios, on the other hand, a new mechanism

has been considered: if we add a bulk scalar field Φ with a scalar potential V (Φ) and some

ad hoc localized potential terms, δ(y = 0)VUV(Φ) and δ(y = πrc)VIR(Φ), it is possible to

generate an effective potential V (ϕ) for the four-dimensional field ϕ = f exp (−kπT ) (with

f =
√

24M3
5 /k and 〈T 〉 = rc). The minimum of this potential can yield the desired value

of krc without extreme fine-tuning of the parameters [25, 31].

As in the spectrum of the theory there is already a scalar field, the graviscalar G
(5)
55 ,

the Φ field will generically mix with it. The KK-tower of the graviscalar is absent from

the low-energy spectrum, as they are eaten by the KK-tower of graviphotons to get a mass

(due to the spontaneous breaking of translational invariance caused by the presence of one

or more branes). On the other hand, the KK-tower of the field Φ is present, but heavy (see

Ref. [32]). The only light field present in the spectrum is a combination of the graviscalar

zero-mode and the Φ zero-mode. This field is usually called the radion, r. Its mass can be

obtained from the effective potential V (ϕ) and is given by m2
ϕ = k2v2

v/3M
3
5 ε

2 exp(−2πkrc),
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where vv is the value of Φ at the visible brane and ε = m2/4k2 (with m the mass of the

field Φ). Quite generally ε� 1 and, therefore, the mass of the radion can be much smaller

than the first KK-graviton mass.

The radion, as for the KK-graviton case, interacts with both the DM and SM particles.

It couples with matter through the trace of the energy-momentum tensor T [18]. Massless

gauge fields do not contribute to the trace of the energy-momentum tensor, but effective

couplings are generated from two different sources: quarks and W boson loops and the

trace anomaly [33]. Thus the radion Lagrangian takes the following form [32, 34]:

Lr =
1

2
(∂µr)(∂

µr)−1

2
m2
rr

2+
1√
6Λ

rT+
αEM CEM

8π
√

6Λ
rFµνF

µν+
αSC3

8π
√

6Λ
r
∑

a

F aµνF
aµν , (2.22)

where Fµν , F
a
µν are the Maxwell and SUc(3) Yang-Mills tensors, respectively. The C3 and

CEM constants encode all information about the massless gauge boson contributions and

are given in App. B.

2.3 The DM Relic Abundance in the Freeze-Out scenario

Experimental data ranging from astrophysical to cosmological scales point out that a sig-

nificant fraction of the Universe energy appears in the form of a non-baryonic (i.e. electro-

magnetically inert) matter. This component of the Universe energy density is called Dark

Matter and, in the cosmological “standard model”, the ΛCDM, it is usually assumed to

be represented by stable (or long-lived) heavy particles (i.e. non-relativistic, or “cold”).

Within the thermal freeze-out scenario the DM component is supposed to be in thermal

equilibrium with the rest of particles in the Early Universe. The evolution of the dark

matter number density nDM in this paradigm is governed by the Boltzmann equation [35]:

dnDM

dt
= −3H(T )nDM − 〈σv〉

[
n2

DM − (neqDM)2
]
, (2.23)

where T is the temperature, H(T ) is the Hubble parameter as a function of the temperature,

and neqDM is the DM number density at equilibrium (see, e.g., Ref. [35]). The Boltzmann

equation is governed by two factors: one proportional to H(T ) and the second to the

thermally-averaged cross-section, 〈σv〉. In order for nDM(T ) to freeze-out, as the Universe

expanded and cooled down the thermally-averaged annihilation cross-section 〈σv〉 times

the number density should fall below H(T ). At that moment, DM decouples from the rest

of particles leaving an approximately constant number density in the co-moving frame,

called relic abundance.

The experimental value of the relic abundance can be computed starting from the DM

density in the ΛCDM model. From Ref. [36] we have ΩCDMh
2 = 0.1198 ± 0.0012, where

h parametrizes the present Hubble parameter. Solving eq. (2.23), it can be found the

thermally-averaged cross-section at freeze-out 〈σFO v〉 = 2.2×10−26 cm3/s [37]. Notice that

for mDM > 10 GeV, the relic abundance is insensitive to the value of mDM and therefore

the thermally-averaged annihilation cross section σFO needed to obtain the correct relic

abundance is not a function of the DM particle mass.
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When comparing the prediction of a given model to the expectation in the freeze-out

scenario, the key parameter to compute the relic abundance is, thus, 〈σv〉. In order to

obtain this quantity, we must first calculate the total annihilation cross-section of the DM

particles (represented in our case by the field S):

σth =
∑

SM

σve(S S → SM SM) +
∑

n=1

∑

m=1

σGG(S S → GnGm) + σrr(S S → r r) , (2.24)

where in the first term, σve (”ve” stands for ”virtual exchange”), we sum over all SM

particles. The second term, σGG, corresponds to DM annihilation into a pair of KK-

gravitons, GnGm. Eventually, the third term, σrr, corresponds to DM annihilation into

radions.

If the DM mass mS is smaller than the mass of the first KK-graviton and of the radion,

only the first channel exists. Since in the freeze-out paradigm the DM particles have small

relative velocity v when the freeze-out occurs, it is useful to approximate the c.o.m. energy

s as s ∼ 4m2
S , and keep only the leading order in the so-called velocity expansion. Formulæ

for the DM annihilation into SM particles within this approximation are given in App. D.

Notice that DM annihilation to SM particles can occur through three possible medi-

ators: the Higgs boson, the KK-tower of gravitons and the radion. The first option, that

depends on the coupling introduced in eq. (2.21), has been extensively studied. Current

bounds (see for instance [38, 39] for recent analyses) rule out DM masses mS . 500 GeV

(except for the Higgs-funnel region, mS ' mh/2) and future direct detection experiments

such as LZ [40] will either find DM or exclude larger masses, up to O(TeV). In the presence

of other annihilation channels, as in our case, if LZ does not get any positive signal of DM

it will lead to a stringent limit on the Higgs portal coupling λhS , so that the Higgs boson

contribution to DM annihilation into SM particles will be negligible for DM masses at the

TeV scale [39, 41]. In the rest of the paper, we will assume that λhS is small enough so as

to be irrelevant in our analysis, and we will not consider this channel any further.

On the other hand, depending on the particular values for the radion mass (determined

by the specific features of the bulk and localized scalar potentials) and the KK-graviton

masses (fixed by k,M5 and rc), radion or KK-graviton exchange can dominate the an-

nihilation amplitude. When computing the contribution of the radion and KK-graviton

exchange to the DM annihilation cross-section into SM particles, it is of the uttermost

importance to take into account properly the decay width of the radion and of the KK-

gravitons, respectively 1. Notice that the DM annihilation cross-section into SM particles

via virtual exchange of KK gravitons is velocity suppressed (d wave), due to the spin 2 of

the mediators, while the corresponding one through virtual radion is s wave.

Within the Goldberger-Wise stabilization mechanism, the radion is expected to be

lighter than the first KK-graviton mode, so the next channel to open is usually the DM

annihilation into radions. The analytic expression for σrr(S S → r r) in the approximation

s ∼ 4m2
S is given in App. D. It is also s wave.

1In the case of the KK-gravitons, due to the breaking of translational invariance in the extra-dimension,

the KK-number is not conserved and heavy KK-graviton modes can also decay into lighter KK-gravitons

when kinematically allowed. Formulæ for the radion and KK-graviton decays are given in App. C.
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Eventually, for DM masses larger than the mass of the first KK-graviton mode, an-

nihilation of DM particles into KK-gravitons becomes possible and the last channel in

eq. (2.24) opens. As the KK-number is not conserved due to the presence of the branes in

the extra-dimension (that breaks explicitly momentum conservation in the 5th-dimension),

any combination of KK-graviton modes is possible when kinematically allowed. Therefore,

we must sum over all the modes as long as the condition 2mS ≥ mGn + mGm is fulfilled.

The analytic expression for σGG(S S → GnGm) at leading order in the velocity expansion

is also given in App. D, and it turns out to be s wave as well. Notice that we will not take

into account annihilation into zero-modes gravitons, G0G0 or G0Gn, as these channels are

Planck-suppressed with respect to the production of a pair of massive KK-graviton modes,

GnGm.

As the velocity expansion approximation may fail in the neighbourghood of resonances

and, in the RS model, the virtual graviton exchange cross-section is indeed the result of

an infinite sum of KK-graviton modes, we computed the analytical value of 〈σv〉 using the

exact expression from Ref. [42]:

〈σv〉 =
1

8m4
STK

2
2 (x)

∫ ∞

4m2
S

ds(s− 4m2
S)
√
s σ(s)K1

(√
s

T

)
, (2.25)

where K1 and K2 are the modified Bessel functions and v is the relative (Møller) velocity

of the DM particles.

3 Scalar DM annihilation cross-section in RS

For relatively low DM mass the only open annihilation channel is into SM particles through

KK-graviton or radion exchange. Direct production of radions or KK-gravitons in the final

state becomes allowed for DM mass mS ≥ mG1 ,mr, where mS and mG1 are the DM and

the first KK-graviton masses, respectively.

3.1 Virtual KK-graviton exchange and on-shell KK-graviton production

We plot in Fig. 1 the different KK-graviton contributions to 〈σv〉 separately, so as to

understand clearly the main features.

We consider first the case of DM annihilation into SM particles through KK-graviton

exchange, summed over all virtual KK-gravitons, σve,G. This result is shown by the solid

(purple) line in Fig. 1 as a function of the DM mass mS , for the particular choice Λ = 100

TeV and mG1 = 1 TeV. When the DM particle mass is nearly half of one of the KK-

graviton masses, s = 4m2
S ∼ m2

Gn
, the resonant contribution dominates the cross-section,

which abruptly increases. At each of the resonances, 〈σv〉 depends only marginally on

the DM mass mS and, therefore, we have an approximately constant thermally-averaged

maximal cross-section (a small mS-dependence arises only at very large values of mS).

This contribution was studied in detail in Ref. [21], where it was shown that the resonant

enhancement of the cross-section for mS ∼ mGn/2 was not enough to achieve the value

of 〈σFOv〉 that gives the correct relic abundance, once values of Λ compatible with LHC

exclusion bounds were taken into account.
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Figure 1. Contributions to the scalar DM annihilation cross-section due to KK-gravitons, for

Λ = 100 TeV and mG1 = 1 TeV, as a function of the DM mass mS. The solid purple line

corresponds to the DM annihilation into SM particles through virtual KK-graviton exchange, σve,G.

The non-solid lines correspond to DM annihilation into two KK-gravitons, σGG: from left to right

SS → (G1, G1), (G1, G2), (G2, G2) and (G1, G3), respectively.

On the other hand, for mS ≥ mG1 DM annihilation into on-shell KK-gravitons be-

comes possible. Depending on the DM particle mass, production of several KK-graviton

modes is allowed. This is represented in Fig. 1 by dashed or dot-dashed lines, where

we show the contribution to the DM annihilation cross-section from the channels SS →
(G1G1), (G1G2), (G2G2) and (G1G3). More channels open for larger values of mS that

however have not been depicted in Fig. 1, where we have decided to show just the lowest-

lying ones for the sake of clarity of the plot. Recall that each of the two KK-gravitons

can have any KK-number: in particular, it is not forbidden by any symmetry to have

SS → GnGm with n 6= m, as translational invariance in the 5th-dimension is explicitly

broken due to the presence of the IR- and UV-branes and the KK-number is not conserved.

As it can be seen in the Figure, the contribution of each channel to the total cross-section

varies with the DM mass. For example, SS → G2G2 (orange, dot-dashed line) dominates

over SS → G1G3 (green, dashed line) in a very small range of mS , whereas the latter

takes over for large mS . Notice that, although KK-graviton production was considered in

Ref. [18], the possibility of producing different KK-graviton modes was overlooked there.

In Fig. 2 (left panel) we plot the different Feynman diagrams that contribute to DM

annihilation into on-shell KK-gravitons. Diagram (c) was not considered previously in the

literature (see, e.g., Ref. [18]). However, it must be taken into account when computing

the production of two real gravitons, as the corresponding amplitude is also proportional
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Figure 2. Left panel: Feynman diagrams corresponding to the different amplitudes that contribute

to scalar DM annihilation into two on-shell KK-gravitons at O(1/Λ2). Diagrams (a) and (b): t-

and u-channel DM exchange. Diagram (c): second order expansion of the metric in eq. (2.7). Right

panel: Relevance of overlooked contributions to the scalar DM annihilation cross-section for Λ = 10

TeV and mG1
= 8 TeV, as a function of the DM mass mS. The solid orange (blue dashed) line

corresponds to the DM annihilation cross-section through and into KK-gravitons with (without) the

contribution to the amplitude from diagram (c). The dot-dashed red (dotted green) line is the DM

annihilation cross-section into KK-gravitons, only, with (without) the contribution from diagram

(c).

to 1/Λ2, the same order as the two other diagrams2. The corresponding Feynman rule can

be obtained by expanding the metric up to second order about the Minkowski space-time:

L ⊃ − 1

2Λ2

∑

n=1

Tµν(x)
(
h(n)
µα (x)h

(n)
βν (x)ηαβ + h(n)

µν (x)h
(n)
αβ (x)ηαβ

)
. (3.1)

Notice that, if a diagram that should be considered at a given order in 1/Λ when com-

puting a given process is absent, then the gravitational gauge-invariance of the amplitude

is not guaranteed and the cross-section computation is built over slippery ground from

a theoretical point of view. The impact of diagram (c) is shown in Fig. 2 (right panel),

where we compare the total DM annihilation cross-section through and into KK-gravitons

including or not the contribution to the amplitude from this diagram, for a particular

choice of mG1 = 8 TeV and Λ = 10 TeV. The solid orange (blue dashed) line is the total

DM annihilation cross-section through and into KK-gravitons with (without) diagram (c),

whereas the dot-dashed red (dotted green) line is the DM annihilation cross-section into

KK-gravitons with (without) diagram (c). It can be seen that, for this particular choice

of mG1 and Λ, the difference between the two computations can be as large a one order of

magnitude for mS ∼ 10 TeV.

In Fig. 3 we eventually show the total contribution of KK-gravitons to 〈σv〉, summing

virtual KK-graviton exchange and KK-graviton direct production with contributions from

2Notice that on-shell KK-graviton production through KK-graviton exchange in s-channel only appears

when expanding the metric in eq. (2.7) up to third order and, therefore, the corresponding amplitude is

suppressed by 1/Λ4.
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Figure 3. The thermally-averaged scalar DM annihilation cross-section through virtual KK-

graviton exchange and direct production of two KK-gravitons, σG = σve,G + σGG, as a function

of the DM mass mS. In all panels, the solid orange (blue dashed) lines represent the total cross-

section including (not including) mixed KK-graviton production and diagram (c) contribution. The

latter case corresponds to Refs. [18] and [21]. In order to appreciate the difference, we have included

in all panels a zoomed plot in linear scale for the range of mS of interest. Left panel: Λ = 1000

TeV, mG1
= 400 GeV; middle panel: Λ = 100 TeV, mG1

= 1 TeV; right panel: Λ = 10 TeV,

mG1
= 4 TeV.

the three diagrams in Fig. 2, σG = σve,G + σGG. We consider three particular choices of

Λ and mG1 : Λ = 1000 TeV, mG1 = 400 GeV (left); Λ = 100 TeV, mG1 = 1 TeV (middle)

and Λ = 10 TeV, mG1 = 4 TeV (right). Our result for 〈σGv〉 is depicted by the solid

(orange) line, and it is compared with the results shown in the literature (in Refs. [18] and

[21]), represented by the dashed (blue) line. As it can be seen, our results and those in the

literature coincide, but for some small differences at large DM masses, mS ∈ [1, 6] TeV,

a range shown in the zoomed panel in linear scale. The net effect of mixed KK-gravitons

channels and of diagram (c) in Fig. 2 is an increase of the cross-section, that can be as

large as a factor two for some specific choices of Λ and mG1 . In all panels, the horizontal

red dashed line corresponds to the value of the thermally-averaged cross-section for which

the correct relic abundance is achieved, 〈σFOv〉 = 2.2 × 10−26 cm3/s. As it was reported

in Ref. [21], 〈σFOv〉 is not achievable through KK-graviton exchange since, even for values

of mS such that s ∼ m2
Gn

, the resonant cross-section is way smaller than the required one.

This result is general and can be found for any value of Λ and mGn , not only for the few

examples shown in Fig. 3. On the other hand, as reported in Ref. [18], for larger values of

mS , when the two on-shell KK-graviton production channels take over, a cross-section as

large as 〈σFOv〉 is achievable and the correct relic abundance can be then reproduced. With

respect to Ref. [18], the net effect of mixed KK-gravitons production and of diagram (c) is

to lower slightly the value of mS for which 〈σv〉 = 〈σFOv〉. In Fig. 3, the red-shaded area

represents the theoretical unitarity bound 〈σv〉 ≥ 1/s, where we can no longer trust the

theory outlined in Sec.2 and higher-order operators should be taken into account. Notice

that, even if in Fig. 3 the “untrustable” region seems to be very near to the value of mS

for which the correct relic abundance can be achieved, it is indeed at least one order of
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magnitude away, as plots are shown in bi-logarithmic scale.
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Figure 4. The thermally-averaged scalar DM annihilation cross-section through virtual radion

exchange and direct production of two radions, σr = σve,r + σrr (green, dashed line), as a function

of the DM mass mS, compared with the corresponding cross-section through KK-graviton exchange

and production, σG (orange, dot-dashed line). The sum of the two cross-sections, σr + σG, is

represented by the (blue) solid line. Left panel: Λ = 5 TeV, mG1
= 3 TeV and mr = 1 TeV; Right

panel: Λ = 8 TeV, mG1
= 3 TeV and mr = 1 TeV.

3.2 Virtual radion exchange and on-shell radion production

Consider now the case of DM annihilation into SM particles through radion exchange and

of direct production of two on-shell radions,

σr = σve,r(S S → SM SM) + σrr(S S → r r) . (3.2)

The analytic expressions for the two relevant radion channels contributing to σr can

be found in App. D.2, whereas in App. C.2 we give the radion partial decay widths. It

can be seen that radion decay to fermions is proportional to the fermion mass squared,

Γ(r → ψ ψ) ∝ mrm
2
ψ/Λ

2, whilst radion decay to bosons (either scalar or vector ones) is

Γ(r → BB) ∝ m3
r/Λ

2. Clearly, for radions with O(TeV) mass bosons decay channels

dominate over fermion ones. However, the decay to massive or massless bosons is rather

different: the radion decays to photons and gluons at the one-loop level and, therefore, these

decay channels are suppressed with respect to decays into massive bosons, which proceed

at tree level. In summary, the radion decay width is dominated by r →WW, r → ZZ and

r → HH (and r → SS if kinematically possible).

The two contributions to σr are shown in Fig. 4, where we plot σr (green, dashed

line) as a function of mS and compare it with σG (orange, dot-dashed line). The sum of

σr and σG is represented by the solid (blue) line. The input parameters for these plots

are: mG1 = 3 TeV and mr = 1 TeV; Λ = 5 TeV (left panel) and Λ = 8 TeV (right

panel). For these particular choices of mG1 , only a couple of KK-graviton resonances
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appear in σG before two KK-graviton production takes over. Again, the red-shaded area

represents the theoretical unitarity bound 〈σv〉 ≥ 1/s, where we can no longer trust the

theory outlined in Sec.2, whilst the red dashed horizontal line is 〈σFOv〉. We can see

that, generically and differently from the KK-graviton case, the correct relic abundance

can be achieved by the resonant virtual radion exchange channel for DM masses around

mS ∼ mr/2
[
1 +O

(
m2
r/Λ

2
)]

. Since the radion decay width is rather small, for allowed

values of Λ and radion masses in the TeV range or below, a significant amount of fine-tuning

is needed in order to get the resonant behaviour. In the absence of a theoretical framework

to explain the specific required relation between mS and mr, we consider difficult to defend

this possibility as an appealing scenario to achieve the observed DM relic abundance. On

the other hand, as it was the case for the KK-graviton exchange and production shown

in Fig. 3, the target value of 〈σv〉 can be achieved also in the range of DM masses for

which radion and/or KK-graviton production dominate the cross-section. For the specific

values of mG1 ,mr and Λ shown in Fig. 4 this occurs through KK-graviton production. We

have found that this channel dominates in most of the allowed parameter space, while the

contribution of radion production is dominant only near the untrustable region mG1 ∼ Λ.
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Figure 5. Values of Λ for which the correct DM relic abundance is obtained in the plane (mS ,mG1
).

Left panel: the extra-dimension length is stabilized without using the radion; Right panel: the extra-

dimension length is stabilized using the Goldberger-Wise mechanism, with a radion mass mr = 100

GeV. The required Λ ranges from 100 GeV to 105 TeV, as shown by the color legend.

In Fig. 5 we show the values of Λ for which the correct DM relic abundance is obtained

in the (mS ,mG1) plane. In the left panel we assume that the extra-dimension length is

stabilized without introducing the radion field. We can see that 〈σFOv〉 can be achieved

in a significant part of the parameter space through KK-graviton production. In order to

obtain the target relic abundance 〈σFOv〉 for mS < mG1 , small values of Λ are needed,

usually excluded by LHC data (as we will see in the next section). Eventually, resonant
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virtual KK-graviton exchange is not enough to achieve 〈σFOv〉 for mS � mG1 for any value

of Λ, as it is depicted by the grey region (in agreement with Ref. [21]).

In the right panel we consider, instead, that the extra-dimension length is stabilized

using the Goldberger-Wise mechanism and we introduce a radion with mass mr = 100 GeV.

In this case, it is always possible to achieve the correct relic abundance: either through

resonant radion exchange for mS ∼ 50 GeV (not shown in the plot), through radion

production in the region mS ≤ mG1 or, for mS > mG1 , through KK-graviton production.

4 Experimental bounds and theoretical constraints

As we have seen in Fig. 5, in principle the target relic abundance can be achieved in a

vast region of the (mS ,mG1) parameter space, for Λ ranging from 10−1 TeV to 105 TeV.

However, experimental searches for resonances strongly constrain mG1 and Λ. We will

summarize here the relevant experimental bounds and see how only a relatively small

region of the parameter space is indeed allowed.

4.1 LHC bounds

The strongest constraints are given by the resonance searches at LHC. In our model we

have considered two types of particles that could be resonantly produced at the LHC,

the KK-gravitons and the radion. In order to quantify the impact of LHC data in our

parameter space, first of all we need to compute their production cross-section at the LHC.

The n-th KK-graviton production cross-section at LHC is given by [43]:

σpp→Gn(mGn) =
π

48Λ2

[
3Lgg(m2

Gn
) + 4

∑

q

Lqq̄(m2
Gn

)

]
, (4.1)

with

Lij(ŝ) =
ŝ

s

∫ 1

ŝ/s

dx

x
fi(x)fj

(
ŝ

xs

)
. (4.2)

In our calculations we use the Parton Distribution Functions (PDF’s) fi(x) at Q2 = m2
Gn

obtained from MSTW2008 at leading-order [44].

Regarding the radion, since the q̄ q r vertex is proportional to the corresponding quark

mass, the production cross-section in p p collisions at the LHC is dominated by gluon

fusion. The gluon-radion interaction is similar to the gluon-Higgs interaction in the SM.

We therefore may use the well-known results obtained for the SM Higgs production [45]

rescaling the Lagrangian by a factor 3vC3/(2
√

6Λ), where v is the standard model VEV.

The final expression is given by:

σpp→r(mr) =
α2
sC

2
3

1536πΛ2
Lgg(m2

r) . (4.3)

In Fig. 6 we show the production cross-sections for Λ = 5 TeV at
√
s = 13 TeV, where

the solid (orange) line stands for p p → G1 and the dashed (purple) line for p p → r. It is

straightforward to obtain the production cross-sections for a different value of Λ by rescaling
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this plot. As we can see, the radion production is smaller than graviton production by some

orders of magnitude. For this reason, the LHC constraints on the Randall-Sundrum model

are dominated by (resonant) KK-graviton searches.

0 1 2 3 4 5
m [TeV]

10 3

10 1

101

103

105

107

(p
p

X)
 [f

b]

 = 5 TeV

X = G1
X = r

Figure 6. Theoretical KK-graviton and radion production cross-section at the LHC with
√
s = 13

TeV for Λ = 5 TeV.

The KK-graviton decay channels that provide the stringest bounds on mG1 and Λ are

G1 → γγ [46] and G1 → `` [47]. In Fig. 7 we plot the functional dependence over Λ and

mG1 of the cross-section p p → ` `, with σ × BR(G1 → ` `) ranging from 102 fb (bottom

line) to 10−3 fb (top line). Comparing the theoretical expectation with the experimental

bounds on σ(p p→ ` `) it is possible to draw exclusion regions in the (mG1 ,Λ) plane, given

by the darker (blue) shaded area. The same can be done using the channel p p → γ γ,

represented by the lighter (light red) shaded area. We can see that the stringest bounds

on Λ are set by p p → G1 → γγ. Notice that experimental exclusion bounds are given for

mG1 ≥ 200 GeV, approximately.

In Fig. 8 we show the statistical uncertainties on the experimental bound on σ(p p→
` `) (left panel) and σ(p p → γ γ) (right panel), where the yellow and green bands are

the bounds at 1σ and 2σ in the (mG1 ,Λ) plane, respectively. It can be seen that for low

KK-graviton mass the bounds on Λ suffer from a large indetermination: in this range

we can only say that Λ should be larger than some value ranging from 50 to 100 TeV,

approximately.
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Figure 7. The exclusion region in the (mG1 ,Λ) plane at the LHC Run II with
√
s = 13 TeV and 36

fb−1 through resonant production of KK-graviton eventually decaying into leptons (light blue) and

photons (light red), from Refs. [46] and [47]. The dashed lines correspond to the functional relation

between Λ and mG1 for values of σ(p p→ G1)×BR(G1 → ` `) ranging from 102 fb (bottom line) to

10−3 fb (top line) as in the legend.
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Figure 8. Bounds over Λ as a function of mG1 from the LHC with
√
s = 13 TeV and 36 fm−1, from

Refs. [46] and [47]. Red and blue lines represent the 1σ and 2σ error on the constraint, respectively.

The resonance (to be understood as the first KK-graviton mode) eventually decays into leptons (left

panel) or into photons (right panel).
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4.2 Direct and Indirect Dark Matter Detection

The total cross-section for spin-independent elastic scattering between dark matter and

nuclei reads [24]:

σSI
DM−p =

[
mpmS

Aπ(mS +mp)

]2 [
AfSp + (A− Z)fSn

]2
, (4.4)

where mp is the proton mass, while Z and A are the number of protons and the atomic

number. The nucleon form factors are given by




fDM
p =

mS mp

4m2
G1

Λ2

{∑
q=u,c,d,b,s 3 [q(2) + q̄(2)] +

∑
q=u,d,s

1
3f

p
Tq

}
,

fDM
n =

mS mp

4m2
G1

Λ2

{∑
q=u,c,d,b,s 3 [q(2) + q̄(2)] +

∑
q=u,d,s

1
3f

n
Tq

}
,

(4.5)

with q(2) the second moment of the quark distribution function

q(2) =

∫ 1

0
dx x fq(x) (4.6)

and fN=p,n
Tq the mass fraction of light quarks in a nucleon: fpTu = 0.023, fpTd = 0.032 and

fpTs = 0.020 for a proton and fnTu = 0.017, fnTd = 0.041 and fnTs = 0.020 for a neutron

[48]. The strongest bounds from Direct Detection (DD) Dark Matter searches are found

at XENON1T, which uses as target mass 129Xe, (Z = 54 and A − Z = 75). In order to

compute the second moment of the PDF’s we have used Ref. [44] and the exclusion curve

of XENON1T [49] to set constraints on the (mS ,mG1 ,Λ) parameter space. Our results are

shown in Fig. 9, where we depict the DD bounds in the (mS ,Λ) plane for two values of

mG1 , mG1 = 250 GeV (left panel) and mG1 = 400 GeV (right panel). Also shown is the

dependence of the value of Λ required to achieve the observed relic abundance, ΛFO, as a

function of the scalar DM mass mS . The resonant behaviour of ΛFO for different values of

mS shows that, for low values of mS and mG1 , the cross-section is dominated by virtual

KK-graviton exchange. For larger values of mS at fixed mG1 production of KK-gravitons

takes over and ΛFO grows smoothly with mS . The region of the parameter space excluded

by DD experiments is represented by the green-shaded area at the bottom of the two

plots. Due to the fact that in the excluded region the dominant channel to achieve 〈σFOv〉
is KK-graviton virtual exchange, the exclusion bounds will show a characteristic striped

pattern (as it will be shown in Fig. 10). We have found, however, that constraints from

DD experiments are always much weaker than those obtained at the LHC.

Regarding DM indirect searches, there are several experiments looking for astrophys-

ical signals: for instance, the Fermi-LAT collaboration has analyzed the gamma ray flux

arriving at the Earth from Dwarf spheroidal galaxies [50] and the galactic center [51, 52],

while AMS-02 has reported data about the positrons [53] and antiprotons [54] coming

from the center of the galaxy. These results are relevant for DM models that generate a

continuum spectra of different SM particles, such as the RS scenario we are considering.

Recall that DM annihilation into a pair of SM particles via KK-graviton exchange is d-

wave–suppressed and, therefore, only the annihilation channels into either KK-gravitons or
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Figure 9. The DD bounds in the (mS ,Λ) plane for two values of mG1
, represented by the green-

shaded area. Also shown is the dependence of ΛFO on the scalar DM mass mS for fixed mG1
, being

ΛFO the value of Λ for which the freeze-out thermally-averaged cross-section 〈σFOv〉 is achieved for

the chosen values of mS and mG1 . Left panel: mG1 = 250 GeV; Right panel: mG1 = 400 GeV.

radions lead to observable signals. Both of them will then decay into SM particles leading

to a continuum spectrum 3. However, current data from indirect detection experiments

allows to constrain DM masses below ∼ 100 GeV (provided the annihilation cross-section

is not velocity suppressed), while for our case of heavy DM (∼ 1 TeV) the limits on the

cross-section are well above the required value 〈σFOv〉. Thus, indirect searches have no

impact on the viable parameter space (see however Ref. [19] for other DM scenarios based

on RS).

4.3 Theoretical constraints

Besides the experimental limits, there are mainly two theoretical concerns about the validity

of our calculations which affect part of the (mS ,mG1 ,Λ) parameter space. The first one is

related to the fact that we are performing just a tree-level computation of the relevant DM

annihilation cross-sections, and we should worry about unitarity issues. In particular, the

t-channel annihilation cross-section into a pair of KK-gravitons, σ(SS → GnGm), diverges

as m8
S/(m

4
Gn
m4
Gm

) in the non-relativistic limit s ' m2
S , so it is important to check that

the effective theory is still unitary. We estimate the unitarity bound as σ < 1/s ' 1/m2
S ,

showing as a green-meshed area in Fig. 10 the region in which such bound is not satisfied

and therefore our calculation is not fully reliable.

The second theoretical issue refers to the consistency of the effective theory framework:

in the Randall-Sundrum scenario, at energies somewhat larger than Λ the KK-gravitons

are strongly coupled and the five-dimensional field theory from which we start is no longer

valid. We therefore impose that at least mG1 < Λ to trust our results4. Notice that this

3We disregard the fine-tuned possibility of achieving the target DM relic density via resonant radion

exchange, as discussed in SSec.ec. 5.
4We will see that, in the allowed region, also the relation mS < Λ is fulfilled.
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constraint is general for any effective field theory: since we are including the first KK-

gravitons in the low energy spectra, for the effective theory to make sense the cut-off scale

Λ should be larger than the masses of such states.

5 Achieving the DM relic abundance in RS

We show in this section the allowed parameter space for which the target value of 〈σv〉
needed to achieve the correct DM relic abundance in the freeze-out scenario, (〈σFOv〉 =

2.2×10−26 cm3/s) can be obtained, taking into account both the experimental bounds and

the theoretical constraints outlined in Sec. 4.

Our final results are shown in Fig. 10, where we draw the allowed regions of the

(mS ,mG1) plane for which 〈σv〉 = 〈σFOv〉. In the left panel, we are agnostic about the

extra-dimension length stabilization mechanism, and assume that neither the unspecified

mechanism nor the radion have an impact on the DM phenomenology, as would be the case

for instance if all the new particles in this sector are heavier than the TeV scale; in the right

panel, we take into account the radion and consider the Goldberger-Wise mechanism to

stabilize the extra-dimension length. The radion mass in this case can be somewhat smaller

than the TeV scale (see Sec. 2.2), and therefore it can be relevant for DM annihilation, as

we will discuss below. We show our findings for mr = 100 GeV, but other values of mr

lead to similar results. As a guidance, the dashed lines taken from Fig. 5 represent the

values of Λ needed to achieve the relic abundance in a particular point of the (mS ,mG1)

plane. The color legend for the two plots is given in the Figure caption.

5.1 KK-graviton contributions

Let’s consider first the case in which the relic abundance is obtained through virtual KK-

graviton exchange and/or on-shell KK-graviton production (left panel). We can distinguish

two regions of the parameter space:

1. mG1 > mS

In this regime the DM annihilates via KK-graviton exchange to SM particles, only.

As we have seen in Fig. 1, the annihilation cross-section is rather small. The grey

shaded area in the plot represents the region of the (mS ,mG1) plane for which it is not

possible to get 〈σFOv〉. Below this region, in principle we could find a value of Λ low

enough to reach the target relic abundance via resonant KK-graviton exchange. This

is, however, in conflict with exclusion bounds in the (mG1 ,Λ) plane from LHC (see

Fig. 7), represented by the darkest (blue) shaded area In addition to the stringent

LHC Run II bounds, if the Λ needed to achieve 〈σFOv〉 for a given mS is smaller

than mG1 , we can no longer trust the RS model as a viable effective low-energy

formulation of gravity (diagonal red-meshed area). Therefore, due to the combination

of experimental bounds and theoretical constraints, for mG1 > mS is not possible to

obtain 〈σFOv〉, as it was indeed found in Ref. [21].

2. mG1 < mS

In this case, although the S S → SM SM channel is still open, the target cross-section

– 21 –

212 Part II: Scientific Research



Figure 10. Region of the (mS ,mG1
) plane for which 〈σv〉 = 〈σFOv〉. Left panel: the radion

and the extra-dimension stabilization mechanism play no role in DM phenomenology. Right panel:

the extra-dimension length is stabilized with the Goldberger-Wise mechanism, with radion mass

mr = 100 GeV. In both panels, the grey area represents the part of the parameter space where it is

impossible to achieve the correct relic abundance; the red-meshed area is the region for which the

low-energy RS effective theory is untrustable, as Λ < mG1 ; the wiggled red area in the lower left

corner is the region excluded by DD experiments; the blue area is excluded by resonant KK-graviton

searches at the LHC with 36 fb−1 at
√
s = 13 TeV; the dotted blue lines represent the expected LHC

exclusion bounds at the end of the Run III (with ∼ 300 fb−1) and at the HL-LHC (with ∼ 3000

fb−1); eventually, the green-meshed area on the right is the region where the theoretical unitarity

constraints are not fulfilled. In the left panel, the allowed region is represented by the white area, for

which 〈σFOv〉 is obtained through on-shell KK-graviton production. In the right panel, in addition to

the white area, within the tiny orange region 〈σFOv〉 is obtained through on-shell radion production

and virtual radion exchange. The dashed lines depicted in the white region represent the values of

Λ needed to obtain the correct relic abundance (as in Fig. 5 of Sec. 3).

is achievable through production of on-shell KK-gravitons, S S → GnGm. Due to the

LHC Run II bounds, the region of the (mG1 ,Λ) plane for which we can obtain 〈σFOv〉
corresponds mainly to the region for which (mG1/mS)2 � 1. In this region, the value

of Λ needed to reach the freeze-out relic abundance is in the range Λ ∈ [10, 104] GeV,

in agreement with the stringent LHC Run II bounds on Λ for relatively low mG1 . At

large values of mS the theoretical unitarity bound discussed in Sec. 4.3 is relevant

and, therefore, mS cannot be much larger than 10 TeV (vertical green-meshed area).

Eventually, the white area represents the region of the parameter space for which the

freeze-out scenario can produce the correct DM relic abundance. Notice that most of

this region could be tested either by the LHC Run III5 (with expected 300 fb−1) or

5This region could be already partially tested using the complete LHC Run II analysis, with 100 fb−1,
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by the High-Luminosity LHC (with nominal 3000 fb−1), as shown by the dotted lines

depicted in the Figure. Typical values for mS ,mG1 and Λ in the region that would

still be allowed after HL-LHC are mS ∈ [3, 15] TeV, mG1 < 1 TeV and Λ > 103 TeV

(although a tiny region around mS ∼ 10 TeV with mG1 as large as few TeV with

Λ ∈ [10, 100] TeV could also be viable).

The wiggled dark shaded (red) region in the lower left corner is the bound imposed

by XENON1T. The peculiar shape of the bound is a consequence of the resonances in the

DM annihilation channels via virtual graviton exchange (see Fig. 9). We can see that the

DD bounds are much weaker than those from the LHC.

5.2 Radion contribution

Let’s consider now the case in which, in addition to virtual KK-graviton exchange and/or

on-shell KK-gravitons production, DM could also produce virtual or real radions (right

panel). To make easy the comparison with the previous situation, we again consider two

regimes:

1. mG1 > mS

It is always possible to achieve the correct relic abundance through resonant virtual

radion exchange and on-shell radion production (see Fig. 4). In the right plot of

Fig. 10 the former would occur for mS = 50 GeV, outside the range depicted in the

Figure. Being the radion width extremely narrow, this is possible only in presence

of a significant fine-tuning of the DM mass mS and of the radion mass, 2mS ∼
mr. In the absence of a theoretical motivation for such a relation between two, in

principle, uncorrelated parameters, we consider this mechanism to achieve the target

relic abundance not natural. In the region considered in the plot, the relic abundance

can be also achieved through production of on-shell radions for very low values of Λ.

This region is represented by the orange (lightest) shaded area. Most of this region,

however, is excluded when asking Λ to be larger than mG1 , as one can see by the

diagonal red-meshed area in the plot, Λ < mG1 . After taking into account the LHC

Run II bounds and the limit of validity of the RS model as an effective low-energy

theory, a tiny orange-shaded region at mS ∼ 4 TeV, mG1 ∼ 5 TeV and Λ ∈ [5, 10]

TeV is still not excluded. Most of it will be tested with the LHC Run III.

2. mG1 < mS

Since the real KK-graviton production channel, once kinematically open grows very

fast as (mS/mG1)8 (see Fig. 4), it easily dominates the cross-section. Therefore, in

this region of the parameter space there are no significant differences with respect to

the case in which the radion is absent, discussed in Sec. 5.1.

5.3 Remarks about other setups

In this paper we have focused on the original RS model, in which all the SM particles

(and also the DM in our case) are localized on the IR-brane. In the absence of graviton

not included in this paper.
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brane localized kinetic terms (BLKT’s), within this setup all the SM and DM fields couple

to the full tower of KK-graviton excitations with universal strength, Λ−1. As we have

seen, the strong bounds from LHC Run II lead to quite large allowed values of Λ (& 10

TeV), which somehow reintroduce a little hierarchy problem. However many other different

configurations have been studied, allowing for some of (or all) the SM fields to propagate in

the bulk; for instance, placing gauge bosons and fermions in the bulk has the potential to

also explain the hierarchy of fermion masses. Moreover, these extra-dimensional scenarios

can be interpreted as strongly-coupled models in four dimensions (see Ref. [18] for details

of this duality).

Several of the above possibilities have been already analyzed in the context of gravity-

mediated DM that we are addressing, including DM candidates of various spins (0,1/2

and 1). The idea is that the propagation of SM fields in the bulk and the introduction of

BLKT’s can reduce suitably the coupling of the SM particles to the KK-gravitons, relaxing

the LHC bounds and allowing for lower values of Λ which would then satisfy the original

motivation of RS models for solving the hierarchy problem. Although to study in detail

these alternative RS scenarios is beyond the scope of this paper, we want to comment in

this section about the impact of our results on such other models.

In Ref. [21], besides the scenario considered here with all SM and DM fields localized

in the IR-brane, two additional benchmark models were studied: 1) SM gauge bosons in

the bulk with third generation quarks confined in the IR brane, and all other SM fermions

localized close to the UV-brane, so that their couplings to the KK-graviton modes are

negligible, and 2) SM fermions localized at various places in the bulk to explain the observed

fermion masses and SM gauge bosons propagating also in the bulk. In all scenarios, the

Higgs field should remain close to the IR-brane to solve the hierarchy problem, and the

DM is also assumed to be localized on the IR-brane. While in none of these setups it

was possible to obtain the correct relic density for scalar DM through virtual KK-graviton

exchange, the authors did not consider the annihilation channel SS → GnGm nor SS → rr.

Since these channels will occur with the same cross-section as in the IR-brane model we

analyzed in this paper, it is clear that also in the cases considered in Ref. [21] it would be

possible to get the target value 〈σFOv〉 when mS > mG1 . Actually, it would be easier than

in the case considered here, as the LHC bounds on Λ are weaker.

In Ref. [19] two additional setups where analyzed and also confronted with indirect

bounds from astrophysical data: model A, which addresses the hierarchy problem with the

Higgs and DM localized on the IR-brane and the SM matter on the UV-brane, and model

B (that gives up the hierarchy problem) where only DM is localized on the IR-brane while

the SM matter and Higgs fields are confined to the UV-brane. In both cases, SM gauge

bosons propagate in the bulk, so that there is a hierarchy of couplings of the KK-graviton

modes, being of order Λ−1 for DM (and the Higgs field in model A) but conveniently

suppressed for gauge bosons and negligible for SM matter fields (and the Higgs in model

B). As a consequence, the standard radion and KK-graviton searches at LHC do not apply

to these models and other searches should be re-interpreted to obtain bounds. Therefore,

much lower values of Λ and mG1 would still be allowed and it should be possible to achieve

the correct relic abundance for DM masses in a wider range, from few GeV to TeV, in
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agreement with our results in Fig. 5.

In the dual picture of the RS model, the radion is dual to the dilaton, the Goldstone

boson from dilatation symmetry in 4D. The dilaton couplings are fixed by scale invariance,

and turn out to have the same structure as the radion couplings at linear order. In Refs. [33,

55], the case in which DM couples to the SM only through a dilaton was studied The

authors found that the correct relic abundance can be achieved for light dilaton and DM,

since collider bounds from dilaton searches are weaker than for the KK-graviton modes

(the dilaton production cross-section is about two - three orders of magnitude smaller than

the KK-graviton one, as we can see in Fig. 6). However, as we are studying a consistent

gravitational theory and not only the SM plus a dilaton field, the much stringent bounds

from KK-gravitons searches do apply.

6 Conclusions

In this paper we have explored the possibility that the observed Dark Matter component

in the Universe is represented by some new scalar particle with a mass in the TeV range.

This particle interacts with the SM particles only gravitationally (in agreement with non-

observation of DM signals at both direct and indirect detection DM experiments). Although

this hypothesis would, in principle, mean that the interaction with SM particles is too feeble

to reproduce the observed DM relic abundance, we show that this is not the case once

this setup is embedded in a warped extra-dimensional space-time, along the ideas of the

Randall-Sundrum proposal of Ref. [15]. We consider, therefore, two 4-dimensional branes

in a 5-dimensional AdS5 space-time at a separation rc, very small compared with present

bounds on deviations from Newton’s law. On one of the branes, the so-called “IR-brane”,

both the SM particles and a scalar DM particle are confined, with no particle allowed to

escape from the branes to explore the bulk. In this particular extra-dimensional setup,

gravitational interaction between particles on the IR-brane, in our case between a scalar

DM particle and any of the SM particles, occurs with an amplitude proportional to 1/M2
P

when the two particles exchange a graviton zero-mode, but with a suppression factor 1/Λ2

when they do interact exchanging higher KK-graviton modes. Since Λ can be as low as a

few TeV (due to the warping effect induced by the curvature of the space-time along the

brane separation), clearly a huge enhancement of the cross-section is possible with respect

to standard linearized General Relativity.

Using this mechanism, it was studied in the literature if the observed relic abundance

in the Universe can be obtained through resonant KK-graviton exchange via σ(DM DM→
Gn → SM SM) (for any spin of the DM particle), showing that taking into account the

LHC bounds on Λ as a function of the mass of the first KK-graviton, mG1 , it is impossible

to achieve the target value of the thermally-averaged cross-section 〈σFO v〉 for any value of

mDM if the DM particle has spin 0 or 1/2 [21]. In Refs. [18–20, 24] it was however shown

that, for DM masses larger then the KK-graviton mass, another annihilation channel opens,

namely DM annihilation into two (identical) KK-gravitons, σ(DM DM→ GnGn). In this

paper, we have studied the possibility that this channel may give a cross-section large

enough to attain the observed relic abundance, for the particular case of a scalar DM
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particle with mass mS . We have indeed found that this is the case and that the region of

the parameter space for which 〈σ v〉 ∼ 〈σFO v〉 is typically at mS of the order of a few TeV,

compatible with present direct production searches at the LHC. In the references above

some effects were overlooked, though. In particular, a quadratic interaction of the DM

particles with KK-gravitons (i.e. the existence of a S S GnGm vertex when expanding the

metric up to second order about the Minkowski metric) was not considered. This amplitude

is of the same order in 1/Λ as the t- and u-channel contributions to σ(DM DM→ GnGn)

considered in the literature and, by increasing the cross-section at large value of the DM

mass, lowers the value of mS needed to achieve the relic abundance at fixed value of

mG1 . The same effect is also induced by the possibility of the DM particles annihilating

into different KK-gravitons, σ(DM DM → GmGn), something allowed since translational

invariance along the 5-th dimension is explicitly broken by the presence of the branes. This

was also overlooked in the existing literature. These effects and their impact have been

discussed extensively in Sec. 3 and App. D.

After having computed the relevant contributions to the cross-section, we have scanned

the parameter space of the model (represented by mS , mG1 and Λ), looking for regions

in which the observed relic abundance can be achieved. This region has been eventually

compared with experimental bounds from resonant searches at the LHC Run II and from

direct and indirect DM detection searches, finding which portion of the allowed parameter

space is excluded by data. Eventually, we have studied the theoretical unitarity bounds

on the mass of the DM particle and on the validity of the RS model as a consistent low-

energy effective theory. Our main result is that a significant portion of the (mS ,mG1) plane

where mS > mG1 can reproduce the observed relic abundance, for values of Λ ranging from

a few to thousands of TeV and mS ∈ [1, 10] TeV. Unitarity bounds put a (theoretical)

upper limit on the mass of the DM particle and, interestingly enough, most part of the

allowed parameter space could therefore be tested by the LHC Run III and by the proposed

High-Luminosity LHC.

In the presence of a Goldberger-Wise mechanism to stabilize the separation between

the two branes, the radion r is expected to be light, mr . O(TeV), and DM can also

annihilate into SM particles via the exchange of a virtual radion and, for mS > mr, two

DM particles can also produce directly two on-shell radions. This has been studied in detail

in Sec. 3.2 and App. D.2. Since, contrary to the KK-graviton mass (strongly related to Λ in

the RS setup), the radion mass is in practice a free parameter of the model (depending on

the unknown details of the scalar potential in the bulk and of some brane-localized terms),

it is possible to achieve 〈σFO v〉 for any value of mS and mG1 , even in the case mG1 > mS ,

through the resonant radion exchange channel (at the price of introducing a significant,

theoretically unappealing, fine-tuning of the DM mass with respect to the radion mass,

2mS ∼ mr) or through on-shell radion production. The region for mG1 > mS , however,

is mostly excluded due to the fact that the value of Λ needed to reach the target relic

abundance is Λ < mG1 , a condition that makes untrustable the RS model as a valid

effective low-energy theory. Apart from a tiny region for which the two radion on-shell

production channel dominates in the cross-section, the rest of the allowed parameter space

is similar to that found in the absence of a radion.

– 26 –

Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions 217



Acknowledgements

We thank, Hyun Min Lee, Myeonghun Park and Verónica Sanz for correspondence about

the DM annihilation cross-sections into KK-gravitons and radion interactio. This work has

been partially supported by the European Union projects H2020-MSCA-RISE-2015 and

H2020-MSCA- ITN-2015//674896-ELUSIVES and by the Spanish MINECO under grants

FPA2014-57816-P, FPA2017-85985-P and SEV-2014-0398.

A Spin 2 massive graviton

The propagator of the n-th KK-graviton mode, with mass mn, decay width Γn and 4-

momentum k in the unitary gauge is:

i∆G
µναβ(k) =

iPµναβ(k,mn)

k2 −m2
n + imnΓn

, (A.1)

where Pµναβ is the sum of the polarization tensors εsµν(k) (being s the spin):

Pµναβ(k,mg) =
∑

s

εsµν(k)εsαβ(k)

=
1

2
(GµαGνβ +GναGµβ −

2

3
GµνGαβ) (A.2)

and

Gµν ≡ ηµν −
kµkν
m2
n

. (A.3)

The tensor Pµναβ must satisfy several conditions for an on-shell graviton Gµν , in order to

reduce the number of degrees-of-freedom to the physical ones:

ηαβPµναβ(k,mg) = ηνµPµναβ(k,mn) = 0 , (A.4)

kαPµναβ(k,mg) = kβPµναβ(k,mg) = kµPµναβ(k,mg) = kνPµναβ(k,mg) = 0 . (A.5)

B Feynman rules

We summarize in this Appendix the different Feynman rules corresponding to the couplings

of scalar DM particles and of SM particles with KK-gravitons and radions.

B.1 Graviton Feynman rules

The vertex that involves one KK-graviton (with n 6= 0) and two scalars of mass mS is given

by:

�Gnµν(q)

S(k1)

S(k2)

2

= − i
Λ

(
m2
Sηµν − Cµνρσkρ1kσ2

)
, (B.1)
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where

Cµναβ ≡ ηµαηνβ + ηναηµβ − ηµνηαβ . (B.2)

This expression can be used for the coupling of both scalar DM and the SM Higgs boson

to KK-gravitons.

The Feynman rule corresponding to the interaction of two SM Dirac fermions of mass

mψ with one KK-graviton is given by:

�
ψ(k1) ψ(k2)

Gnµν(q)

6

=− i

4Λ
[γµ (k2ν + k1ν) + γν (k2µ + k1µ)

−2ηµν ( /k2 + /k1 − 2mψ)] ,
(B.3)

whereas

�Gnµν(q)

ψ̄(k1)

ψ(k2)

3

=− i

4Λ
[γµ (k2ν − k1ν) + γν (k2µ − k1µ)

−2ηµν ( /k2 − /k1 − 2mψ)] .
(B.4)

The interaction between two SM gauge bosons of mass mA and one KK-graviton is

given by:

�Gnµν(q)

Aα(k1)

Aβ(k2)

4

= − i
Λ

(
m2
ACµναβ +Wµναβ

)
, (B.5)

where

Wµναβ ≡ Bµναβ +Bνµαβ (B.6)

and

Bµναβ ≡ ηαβk1µk2ν+ηµν(k1·k2 ηαβ−k1βk2ν)−ηµβk1νk2α+
1

2
ηµν(k1βk2α−k1·k2 ηαβ) . (B.7)

Eventually, the interaction between two scalar DM particles and two KK-gravitons

(coming from a second order expansion of the metric gµν about the Minkowski metric ηµν)
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is given by:

�
S(k1)

S(k2)

Gnµν(k3)

Gmαβ(k4)

5

=− i

Λ2
ηνβ

(
m2
Sηµα − Cµαρσkρ1kσ2

)
. (B.8)

The Feynman rules for the n = 0 KK-graviton can be obtained by the previous ones

by replacing Λ with MP. We do not give here the triple KK-graviton vertex, as it is

irrelevant for the phenomenological applications of this paper. The same occurs for the

vertices between one KK-graviton and two radions and two KK-gravitons and one radion.

B.2 Radion Feynman rules

The radion field r couples with both the SM and the DM particles with the trace of the

energy-momentum tensor, T = gµνTµν . The only exception are photons and gluons that,

being massless, do not contribute to T at tree-level. However, effective couplings of these

fields to the radion are generated through quarks and W loops, and the trace anomaly.

The interaction between one radion and two scalar fields (either the DM or the SM

Higgs boson) is given by:

	r(q)
S(k1)

S(k2)

7

= − 2i

Λ
√

6

(
2m2

S + k1µk
µ
2

)
. (B.9)

The vertex that involves the radion and two SM Dirac fermions takes the form:

�
ψ(k1) ψ(k2)

r(q)

10

= − i

2Λ
√

6
[8mψ − 3 ( /k2 + /k1)] (B.10)

and, as in the case of the graviton-fermion-fermion vertex, we have:


r(q)
¯ψ(k1)

ψ(k2)

8

= − i

2Λ
√

6
[8mψ − 3 ( /k2 − /k1)] . (B.11)
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The interaction between two massive SM gauge bosons and one radion is given by:

�r(q)
Aα(k1)

Aβ(k2)

9

=
2i

Λ
√

6
m2
Aηαβ . (B.12)

The Feynman rule corresponding to the interaction between two massless SM gauge

bosons and one radion is:

�r(q)
Aα(k1)

Aβ(k2)

9

=
4iαiCi

8πΛ
√

6
[ηµν(k1 · k2)− k1νk2µ] , (B.13)

where αi = αEM , αs for the case of the photons or gluons, respectively, and




C3 = b
(3)
IR − b

(3)
UV + 1

2

∑
q F1/2(xq) ,

CEM = b
(EM)
IR − b(EM)

UV + F1(xW )−∑qNcQ
2
qF1/2(xq) ,

(B.14)

with xq = 4mq/mr and xW = 4mw/mr. The explicit form of F1/2 and the values of the

one-loop β-function coefficients b are given by [33]:




F1/2(x) = 2x[1 + (1− x)f(x)],

F1(x) = 2 + 3x+ 3x(2− x)f(x),

(B.15)

f(x) =





[arcsin(1/
√
x)]2 x > 1,

−1
4

[
log
(

1+
√
x−1

1−√x−1

)
− iπ

]2
x < 1,

(B.16)

while b
(EM)
IR − b(EM)

UV = 11/3 and b
(3)
IR− b

(3)
UV = −11 + 2n/3, where n is the number of quarks

whose mass is smaller than mr/2.

Eventually, the interaction Lagrangian between the DM and the radion up to second

order is given by 6 :

L =
1

Λ
√

6
rTDM − 1

12Λ2
r2(∂µS)(∂µS) +

1

2Λ2
r2S2 , (B.17)

6In the second order interaction terms for the radion, based on [32], we have found some numerical

factors that differ from Refs. [18, 34], however such difference will not modify our main results, since the

dominant DM annihilation channel in most of the allowed region is into KK-gravitons.
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being TDM the trace of the energy-momentum tensor of the DM eq. (2.20). As in the case

of the interactions with gravitons, exists a 4-legs interaction term:



S(k1)

S(k2)

r(k3)

r(k4)

11

= − i

3Λ2

(
6m2

S + k1µk
µ
2

)
. (B.18)

C Decay widths

In this appendix we compute the decay widths of KK-gravitons and of the radion, using

the Feynman rules given in App.B.

C.1 KK-graviton decay widths

The KK-graviton can decay into scalar particles (including the Higgs boson, the DM par-

ticle, if the mass of the considered KK-graviton is sufficiently large, and the radion), SM

fermions, SM gauge bosons and lighter KK-gravitons.

Decay widths of KK-gravitons into SM particles, Γ(Gn → SM SM), are all proportional

to 1/Λ2. In particular, the decay width into SM Higgs bosons is given by:

Γ(Gn → hh) =
m3
n

960πΛ2

(
1− 4m2

h

m2
n

)5/2

, (C.1)

where mn is the mass of the n-th KK-graviton (in the main text, this was called mGn , but

we prefer here a shorter notation to increase readability of the formulæ). If mn > 2mS ,

the n-th KK-graviton can decay into two DM particles:

Γ(G→ SS) =
m3
n

960πΛ2

(
1− 4m2

S

m2
n

)5/2

. (C.2)

The decay width of the n-th KK-graviton into SM Dirac fermions is given by:

Γ(Gn → ψ̄ψ) =
m3
n

160πΛ2

(
1−

4m2
ψ

m2
n

)3/2(
1 +

8m2
ψ

3m2
n

)
. (C.3)

The decay width of the n-th KK-graviton into two SM massive gauge bosons reads:





Γ(Gn →W+W−) = m3
n

480πΛ2

(
1− 4m2

W
m2

n

)1/2 (
13 +

56m2
W

m2
n

+
48m4

W
m4

n

)
,

Γ(Gn → ZZ) = m3
n

960πΛ2

(
1− 4m2

Z
m2

n

)1/2 (
13 +

56m2
Z

m2
n

+
48m4

Z
m4

n

)
,

(C.4)
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whereas the decay width into massless gauge bosons is:





Γ(Gn → γγ) = m3
n

80πΛ2 ,

Γ(Gn → gg) = m3
n

10πΛ2 .

(C.5)

On the other hand, the decay widths of KK-gravitons with KK-number n into lighter

KK-gravitons are proportional to 1/Λ6, as the triple graviton vertex comes from the third

order expansion of the metric about the Minskowski spacetime. For this reason, we have

not considered these decays when computing the total KK-graviton decay widths. The

same happens for the radion: the coupling of the radion with the gravitons arises from the

mixing of the radion with the graviscalar h55, that eventually couples with KK-gravitons

again with a triple graviton vertex, proportional to 1/Λ3. Also in this case the decay width

Γ(Gn → r r) is proportional to 1/Λ6 and, therefore, negligible.

C.2 Radion decay widths

The decay width of the radion into scalar particles, either the SM Higgs boson or the DM

particle if the radion is sufficiently heavy, is given by:

Γ(r → hh, SS) =
m3
r

192πΛ2

(
1− 4m2

X

m2
r

)1/2(
1 +

2m2
X

m2
r

)2

, (C.6)

where mX = mh,mS depending on the considered channel.

The radion decay width into SM Dirac fermions is given by:

Γ(r → ψ̄ψ) =
mrm

2
ψ

48πΛ2

(
1−

4m2
ψ

m2
r

)3/2

. (C.7)

The radion decay width into SM massive gauge bosons reads:




Γ(r →W+W−) = m3
r

96πΛ2

(
1− 4m2

W
m2

r

)1/2 (
12− 4m2

W
m2

r
+

m4
W
m4

r

)
,

Γ(r → ZZ) = m3
r

192πΛ2

(
1− 4m2

Z
m2

r

)1/2 (
12− 4m2

Z
m2

r
+

m4
Z

m4
r

)
,

(C.8)

whereas the decay width into SM massless gauge bosons is:





Γ(r → γγ) = αEMCEMm3
r

7680πΛ2 ,

Γ(r → gg) = α3C3m3
r

960πΛ2 .

(C.9)

D Annihilation DM Cross section

Since in the freeze-out scenario, DM annihilation occurs at small relative velocity of the

two DM particles, it is useful to approximate the Mandelstam variable s as:

s ≈ m2
dm(4 + v2

rel) . (D.1)
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Within this approximation, the different scalar products for processes in which two DM

particles S’s annihilate into two SM particles X’s, with incoming and outcoming momenta

S(k1)S(k2)→ X(k3)X(k4), become:





k1 · k4 = k2 · k3 ≈ m2
S + 1

2m
2
S

√
1− m2

X

m2
S

cos θ vrel + 1
4m

2
S v

2
rel ,

k1 · k3 = k2 · k4 ≈ m2
S − 1

2m
2
S

√
1− m2

X

m2
S

cos θ vrel + 1
4m

2
S v

2
rel ,

(D.2)

where 



k1 · k1 = k2 · k2 = m2
S ,

k3 · k3 = k4 · k4 = m2
X .

(D.3)

We will always write the annihilation cross-sections at leading order in this velocity expan-

sion.

D.1 Annihilation through and into Gravitons

The annihilation of DM particles into SM particles through virtual KK-graviton exchange

occurs in d-wave. In the following expressions, SKK stands for the sum over all KK states:

SKK =
1

Λ2

∞∑

n=1

1

s−m2
n + imnΓn

, (D.4)

where mn is the mass of the n-th KK-graviton.

The annihilation cross-section into two SM Higgs bosons reads:

σg(S S → hh) ≈ v3
rel · |SKK |2

m6
S

720π

(
1− m2

h

m2
S

)5/2

. (D.5)

The annihilation cross-section into two SM massive gauge bosons is given by:





σg(S S →W+W−) ≈ v3
rel · |SKK |2

m6
S

360π

(
1− m2

w

m2
S

)1/2 (
13 + 14m2

w

m2
S

+ 3m4
w

m4
S

)
,

σg(S S → Z Z) ≈ v3
rel · |SKK |2

m6
S

720π

(
1− m2

w

m2
S

)1/2 (
13 +

14m2
Z

m2
S

+
3m4

Z

m4
S

)
,

(D.6)

whereas for two massless gauge bosons we have:





σg(S S → γ γ) ≈ v3
rel · |SKK |2

m6
S

60π ,

σg(S S → g g) ≈ v3
rel · |SKK |2

2m6
S

15π .

(D.7)

Eventually, the annihilation cross-section into two SM fermions is:

σg(S S → ψ̄ ψ) ≈ v3
rel · |SKK |2

m6
s

360π

(
1−

m2
ψ

m2
s

)3/2(
3 +

2m2
ψ

m2
s

)
. (D.8)
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As it was shown in Ref. [18], for DM particle masses larger than the mass of a given KK-

graviton mode DM particles may annihilate into two KK-gravitons. In the small velocity

approximation, the corresponding cross-section is:

σg(S S → GnGm) ≈ v−1
rel

(
A+B + C/4

9216π

) (
1

Λ4m3
Sm

4
nm

4
m

) √(
4m2

S +m2
n −m2

m

)
2

16m2
S

−m2
n ,

(D.9)

where the three contributions to the cross-section come from the square of the t- and

u-channels amplitudes in diagrams (a) and (b) of Fig. 2 (A), the square of the 4-points

amplitude in diagram (c) of the same Figure (C) and from the interference between the

two classes of diagrams (B), respectively:





A =

[
−2m2

m (4m2
S+m2

n)+(m2
n−4m2

S)
2
+m4

m

]4

2(4m2
S−m2

n−m2
m)

2 ,

B =

[
−8m2

S (m2
n+m2

m)+16m4
S+(m2

n−m2
m)

2
]2

4m2
S−m2

n−m2
m

[
16m4

S

(
m2

n +m2
m

)

− 8m2
S

(
−m2

nm
2
m +m4

n +m4
m

)
+
(
m2

n −m2
m

)2 (
m2

n +m2
m

)]
,

C = 256m8
S

(
13m2

nm
2
m + 2m4

n + 2m4
m

)
− 512m6

S

(
m6

n +m6
m

)

+ 32m4
S

(
−17m6

nm
2
m + 98m4

nm
4
m − 17m2

nm
6
m + 6m8

n + 6m8
m

)

− 32m2
S

(
m2

n −m2
m

)2 (
m6

n +m6
m

)
+
(
m2

n −m2
m

)4 (
13m2

nm
2
m + 2m4

n + 2m4
m

)
.

(D.10)

When the two KK-gravitons have the same KK-number, m = n, eq. (D.9) simplifies:

σg(S S → GnGn) ≈ v−1
rel

m2
S

576πΛ4

(1− r)1/2

r4(2− r)2

(
256− 768 r + 968 r2 − 520 r3

+ 142 r4 − 52 r5 + 19 r6
)
, (D.11)

where r ≡ (mn/mS)2.

D.2 Annihilation through and into Radions

When the distance between the two branes is stabilized using the Goldberger-Wise mech-

anism, the DM particles can annihilate into SM particles also through virtual radion ex-

change. The processes involving the radion occur in S-wave and can be more efficient than

the exchange of a tower of virtual KK-gravitons, which is in d-wave.

The DM annihilation cross-section into the SM Higgs boson is:

σr(S S → hh) ≈ v−1
rel

m6
S

16πΛ4

1

(s−m2
r)

2 +m2
r Γ2

r

(
1− m2

h

m2
S

)1/2 (
2 +

m2
h

m2
S

)2

, (D.12)
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where mr is the mass of the radion.

The cross-section for DM annihilation into SM massive gauge bosons reads:





σr(S S →W+W−) ≈ v−1
rel

m6
S

8πΛ4
1

(s−m2
r)2+m2

r Γ2
r

(
1− m2

w

m2
S

)1/2 (
4− 4m2

w

m2
S

+ 3m4
w

m4
S

)
,

σr(S S → Z Z) ≈ v−1
rel

m6
S

16πΛ4
1

(s−m2
r)2+m2

r Γ2
r

(
1− m2

w

m2
S

)1/2 (
4− 4m2

Z

m2
S

+
3m4

Z

m4
S

)
.

(D.13)

The DM annihilation into photons and gluons is proportional to the vertex in eq. (B.13).

The corresponding expressions for the cross-sections are:





σr(S S → γ γ) ≈ v−1
rel

m6
S αEM CEM

32π3 Λ4
1

(s−m2
r)2+m2

r Γ2
r
,

σr(S S → g g) ≈ v−1
rel

m6
S α3 C3

4π3 Λ4
1

(s−m2
r)2+m2

r Γ2
r
.

(D.14)

Eventually, the DM annihilation cross-section into SM fermions is given by:

σr(S S → ψ̄ ψ) ≈ v−1
rel

m4
sm

2
ψ

4πΛ4

1

(s−m2
r)

2 +m2
r Γ2

r

(
1−

m2
ψ

m2
s

)3/2

. (D.15)

As in the case of the graviton, if the mass of the DM is larger than the mass of the

radion, then the DM particles can annihilate into two on-shell radions:

σr(S S → r r) ≈ v−1
rel

m5
S

√
m2
S −m2

r

576πΛ4
(
m2
r − 2m2

S

)2
(

2 + 7
m2
r

m2
S

)2

, (D.16)

where we have considered both the u- and t-channels amplitudes and the contribution

coming from the 4-legs vertex in eq. (B.18).
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1 Introduction

The Standard Model of Fundamental Interactions is in a wonderful shape, after the dis-

covery of the Higgs boson in 2012 [1], and it may very well be that a huge energy desert

above the TeV will be painstakingly explored till we could get in contact with even a single

new particle. However, a reasonable hope can alter this unappealing landscape: there it

must be something more than the Standard Model out there, as the Standard Model is

not able to explain what Dark Matter is. The Nature of Dark Matter (DM) is, indeed,

one of the longest long-standing puzzles to be explained in order to claim that we have a

“complete” picture of the Universe. On one side, both from astrophysical and cosmological

data (see, e.g., Ref. [2] and refs. therein), rather clear indications regarding the existence

of some kind of matter that gravitates but that does not interact with other particles by

any other detectable mean can be gathered. On the other hand, no candidate to fill the

rôle of DM has yet been observed in high-energy experiments at colliders, nor is present

in the Standard Model (SM) spectrum. Extensions of the Standard Model usually do in-

clude some DM candidate, a stable (or long-lived, with a lifetime as long as the age of

the Universe) particle, with very small or none interaction with Standard Model particles

and with particles of its own kind. These states are usually supposed to be rather heavy

and are called “WIMP’s”, or “weakly interacting massive particles”. Examples of these

are the neutralino in supersymmetric extensions of the SM [3] or the lightest Kaluza-Klein

particle in Universal Extra-Dimensions [4]. The typical range of masses for these particles

was expected to be mDM ∈ [100, 1000] GeV. However, searches for these heavy particles at

the LHC have pushed bounds on the masses of the candidates above the TeV scale, into

the multi-TeV region. Moreover, experiments searching for DM particles through their in-

teractions with a fixed target, or “Direct Detection” (DD) experiments (see, e.g., Ref. [5])

or through their annihilation into Standard Model particles, or “Indirect Detection” (ID)

experiments (see, e.g., Ref. [6]) have thoroughly explored the mDM ∈ [100, 1000] GeV re-

gion, pushing constraints on the interaction cross-section between DM and SM particles to

very small values. In addition to this, both DD and ID experiments have a rather limited

sensitivity above the TeV, as they have been mostly designed to look for O(100) GeV

particles. Other hypotheses have, however, been advanced: DM particles could indeed be

“feebly interacting massive particles” (FIMP’s) [7], “strongly interacting massive particles”

(SIMP’s) [8] or “axion-like” very light particles (ALP’s) [9]. All of these new proposals try

to explore the possibility that DM is made of particles lighter than the expected WIMP

range, a region where the exclusion bounds from DD and ID experiments are much weaker.

If we take seriously the possibility that DM is made of O(1) TeV particles other options

can be considered, though. One interesting option is that the interaction between DM and

SM particles be only gravitational. Being, however, the gravitational coupling enhanced

by the existence of more than 3 spatial dimensions. Several extra-dimensional models have

been proposed in the last twenty years to explain a troublesome feature of the Standard
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Model, nicknamed as the “Hierarchy Problem”, i.e. the large hierarchy between the electro-

weak scale, ΛEW ∼ 250 GeV, and the Planck scale, MP ∼ 1019 GeV. In short, the mass

of a scalar particle (the Higgs boson) should be sensitive (through loops) to the scale at

which the Standard Model may be replaced by a more fundamental theory. If there is no

new physics between the energy frontier reached by the LHC and the Planck scale, then

the mass of the Higgs boson should be as large as the latter. Being the experimentally

measured mass of the Higgs mH = O(ΛEW), either the SM is not an effective theory and

it is, after all, the ultimate theory (something not very convincing, as the SM does not

explain Dark Matter, Dark Energy, Baryogenesis, the source of neutrino masses and, of

course, gravity) or an incredible amount of fine-tuning between loop corrections stabilizes

mH at its value. Extra-dimensional models solve the hierarchy problem by either replacing

the Planck scale MP with a fundamental gravitational scale MD (being D the number of

dimensions) that could be as low as a few TeV (Large Extra-Dimensions models, or LED,

see Refs. [10–14]), or by “warping” the space-time such that the effective Planck scale Λ

felt by particles of the SM is indeed much smaller than the fundamental scale MD, similar

to MP (see Refs. [15, 16]), or by a mixture of the two options (see Refs. [17, 18]).

The possibility that Dark Matter particles, whatever they be, may have an enhanced

gravitational interaction with SM particles has been studied mainly in the context of warped

extra-dimensions. The idea was first advanced in Refs. [19, 20] and subsequently studied in

Refs. [21–29]. The generic conclusion of these papers was that when all the matter content

is localized in the so-called TeV (or infrared brane), after taking into account current LHC

bounds it was not possible to achieve the observed Dark Matter relic abundance in warped

models for scalar DM particles (whereas this was not the case for fermion and vector Dark

Matter). However, an important caveat was that these conclusions were drawn assuming

the DM particle being lighter than the first Kaluza-Klein graviton mode. In this case,

the only kinematically available channel to deplete the Dark Matter density in the Early

Universe is the annihilation of two DM particles into two SM particles through virtual

KK-graviton exchange. However, in Ref. [30], we performed a check of the literature for

the particular case of scalar DM in warped extra-dimensions, finding that as soon as the

DM particle is allowed to be heavier than the first KK-graviton, annihilation of two DM

particles into two KK-gravitons becomes kinematically possible and, through this channel,

the observed relic abundance can indeed be achieved in a significant region of the parameter

space within the freeze-out scenario. In the same paper, we included previously overlooked

contributions to the DM annihilation cross-section, such as the possibility that DM an-

nihilation into any pair of KK-gravitons can occur (regardless of the KK-number of the

gravitons), and additional contributions to the thermally-averaged cross-section arising at

second order in the expansion of the metric around a background Minkowski 5-dimensional

space-time (the correct order to reach, once considering production of two KK-gravitons).

Eventually, we also study the impact of a Goldberger-Wise radion [31], both in DM an-

nihilation through virtual radion exchange and through direct production of two radions.

The region of the parameter space for which the observed DM relic abundance is achieved

in the freeze-out framework corresponds to DM masses in the range mDM ∈ [1, 10] TeV,

with first KK-graviton mass ranging from hundreds of GeV to some TeV. The price to
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pay to achieve the freeze-out thermally-averaged cross-section is that the scale Λ for which

interactions between SM particles and KK-gravitons occur must be larger than 10 TeV,

approximately. Therefore, in this scenario, the hierarchy problem cannot be completeley

solved and some hierarchy between Λ and ΛEW is still present. This is something, however,

common to most proposals of new physics aiming at solving the hierarchy problem, as the

LHC has found no hint whatsoever of new physics to date. One of the most interesting

features of the scenario proposed in Ref. [30] is that a large part of the allowed parameter

space could be tested using either the LHC Run III or the HL-LHC data. By the end of the

next decade, therefore, only tiny patches of the allowed parameter space should survive in

case of no experimental signal, tipically corresponding to DM mass mDM ∼ 10 TeV, near

the theoretical unitarity bounds.

In this paper, we extend the study of DM in an extra-dimensional framework to the

case of a 5-dimensional ClockWork/Linear Dilaton (CW/LD) model. This model was

proposed in Ref. [17] and its phenomenology at the LHC has been studied in Ref. [18]. In

this scenario, a KK-graviton tower with spacing very similar to that of LED models starts

at a mass gap k with respect to the zero-mode graviton. The fundamental gravitational

scale M5 can be as low as the TeV, where k is typically chosen in the GeV to TeV range.

To our knowledge, this paper is the first attempt to use the CW/LD framework to explain

the observed Dark Matter abundance in the Universe. In order to study this possibility,

we very much follow the outline of our previous paper on DM in warped extra-dimensions

albeit in this case we will consider DM particles with spin 0, 1/2 and 1. Also in this

scenario we have found that the freeze-out thermal relic abundance can be achieved in a

significant region of the model parameter space, with the DM mass ranging from 1 TeV

to approximately 15 TeV, for DM of any spin. The fundamental gravitational scale M5

needed to achieve the target relic abundance goes from a few TeV to a few hundreds of

TeV, thus introducing a little hierarchy problem. Notice that the LHC Run III data and

those of the high-luminosity upgrade HL-LHC will be able to test most of this region.

The paper is organized as follows: in Sect. 2 we outline the theoretical framework,

reminding shortly the basic ingredients of the ClockWork/Linear Dilaton extra-dimensional

scenario and of how dark matter can be included within this hypothesis; in Sect. 3 we

show our results for the annihilation cross-sections of DM particles into SM particles, KK-

gravitons and radion/KK-dilatons; in Sect. 4 we review the present experimental bounds

on the parameters of the model (the fundamental Planck scale M5, the mass gap k and the

DM mass mDM) from the LHC and from direct and indirect searches of Dark Matter, and

recall the theoretical constraints (coming from unitarity violation and effective field theory

consistency); in Sect. 5 we explore the allowed parameter space such that the correct relic

abundance is achieved for DM particles; and, eventually, in Sect. 6 we conclude. In the

Appendices we give some of the mathematical expressions used in the paper: in App. A we

give the Feynman rules for the theory considered here; in App. B we give the expressions

for the decay amplitudes of the KK-graviton; in App. C we remind how the sum over

KK-modes is carried on; and, eventually, in App. D we give the formulæ relative to the

annihilation cross-sections of Dark Matter particles into Standard Model particles, KK-

gravitons and radion/KK-dilatons.
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2 Theoretical framework

In this Section, we first review the freeze-out mechanism that could produce the ob-

served DM relic abundance in the Universe. We then sketch the basic ingredients of the

ClockWork/Linear Dilaton Extra-Dimensions scenario (CW/LD) needed to compute the

thermally-averaged DM annihilation cross-section.

2.1 The DM Relic Abundance in the Freeze-Out scenario

The fact that a significant fraction of the Universe energy appears in the form of a non-

baryonic (i.e. electromagnetically inert) matter is the outcome of experimental data rang-

ing from astrophysical to cosmological scales. This component of the Universe energy

density is called Dark Matter and, in the cosmological “standard model”, the ΛCDM, it

is usually assumed to be represented by stable (or long-lived) heavy particles (i.e. non-

relativistic, or “cold”). Within the thermal DM production scenario, DM particles were in

thermal equilibrium with the rest of SM particles in the Early Universe. The DM density

is governed by the Boltzmann equation [32]:

dnDM

dt
= −3H(T )nDM − 〈σv〉

[
n2

DM − (neqDM)2
]
, (2.1)

with T the temperature and H(T ) the Hubble parameter as a function of the temperature.

The Boltzmann equation depends on a term proportional to the Hubble expansion rate at

temperature T and a term proportional to the thermally-averaged cross-section, 〈σv〉. To

obtain the correct population of DM particles within this scenario, the rate of decay and

annihilation of DM particles should be such that, below a certain temperature TFO, the

DM density nDM(T ) “freezes out” and thermal fluctuations cannot any longer modify it.

This occurs when 〈σv〉 × nDM falls below H(T ), DM decouples from the rest of particles

and leaves an approximately constant number density in the co-moving frame, called relic

abundance. The experimental value of the relic abundance can be derived starting from

the DM density in the ΛCDM model. From Ref. [33] we have ΩCDMh
2 = 0.1198± 0.0012,

being h the Hubble parameter. Solving eq. (2.1), it can be found for the thermally-averaged

cross-section at the freeze-out 〈σFO v〉 ' 2.2× 10−26 cm3/s [34].

It is very common to compute 〈σv〉 in a given model in the so-called velocity expan-

sion (i.e. assuming small relative velocity between the two DM particles). However, this

approximation may fail in the neighbourhood of resonances. In the CW/LD model, the vir-

tual graviton exchange cross-section is indeed the result of an infinite sum of KK-graviton

modes. For this reason, we computed the value of 〈σv〉 using the exact expression from

Ref. [35]:

〈σv〉 =
1

8m4
S T K

2
2 (x)

∫ ∞

4m2
S

ds(s− 4m2
S)
√
s σ(s)K1

(√
s

T

)
, (2.2)

being K1 and K2 the modified Bessel functions and v the relative velocity between DM

particles.
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2.2 A short summary on ClockWork/Linear Dilaton Extra-Dimensions

The metric considered in the CW/LD scenario (see Refs. [17, 18]) is:

ds2 = e4/3krc|y| (ηµνdxµdxν − r2
c dy

2
)
, (2.3)

where the signature of the metric is (+,−,−,−,−) and, as usual, we use capital latin indices

M,N to run over the 5 dimensions and greek indices µ, ν only over 4 dimensions. Notice

that we have rescaled the coordinate in the extra-dimension such that y is adimensional.

This particular metric was first proposed in the context of Linear Dilaton (LD) models and

Little String Theory (see, e.g. Refs. [36–38] and references therein). The metric in eq. (2.3)

implies that the space-time is non-factorizable, as the length scales on our 4-dimensional

space-time depending on the particular position in the extra-dimension due to the warping

factor exp(2/3 krc |y|). Notice, however, that in the limit k → 0 the standard, factorizable,

flat LED case [10–14] is immediately recovered. As for the case of the Randall-Sundrum

model, also in the CW/LD scenario the extra-dimension is compactified on a S1/Z2 orbifold

(with rc the compactification radius), and two branes are located at the fixed points of the

orbifold, y = 0 (“IR” brane) and at y = π (“UV” brane). Standard model fields are located

in one of the two branes (usually the IR-brane). The scale k, also called the “clockwork

spring” (a term inherited by its rôle in the discrete version of the Clockwork model [17]),

is the curvature along the 5th-dimension and it can be much smaller than the Planck

scale (indeed, it can be as light as a few GeV). Being the relation between MP and the

fundamental gravitational scale M5 in the CW/LD model:

M2
P =

M3
5

k

(
e2πkrc − 1

)
, (2.4)

it can be shown that, in order to solve or alleviate the hierarchy problem, k and rc must

satisfy the following relation:

k rc = 10 +
1

2π
ln

(
k

TeV

)
− 3

2π
ln

(
M5

10 TeV

)
. (2.5)

For M5 = 10 TeV and rc saturating the present experimental bound on deviations from

the Newton’s law, rc ∼ 100µm [39], this relation implies that k could be as small as k ∼ 2

eV, and KK-graviton modes would therefore be as light as the eV, also. This “extreme”

scenario does not differ much from the LED case, but for the important difference that

the hierarchy problem could be solved with just one extra-dimension (for LED models,

in order to bring M5 down to the TeV scale, an astronomical lenght rc is needed and,

thus, viable hierarchy-solving LED models start with at least 2 extra-dimensions). In the

phenomenological application of the CW/LD model in the literature, however, k is typically

chosen above the GeV-scale and, therefore, rc is accordingly diminished so as to escape

direct observation. Notice that, differently from the case of warped extra-dimensions,

where scales are all of the order of the Planck scale (M5, k ∼ MP) or within a few orders

of magnitude, in the CW/LD scenario, both the fundamental gravitational scale M5 and

the mass gap k are much nearer to the electro-weak scale ΛEW than to the Planck scale,

as in the LED model.
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The action in 5D is:

S = Sgravity + SIR + SUV (2.6)

where the gravitational part is, in the Jordan frame:

Sgravity =
M3

5

2

∫
d4x

∫ π

0
rcdy

√
G(5) eS

[
R(5) +GMN

(5) ∂MS∂NS + 4k2
]
, (2.7)

with G
(5)
MN and R(5) the 5-dimensional metric and Ricci scalar, respectively, and S the

(dimensionless) dilaton field, S = 2krc|y|. We consider for the two brane actions the

following expressions:

SIR =

∫
d4x

√
−g(4)

IR eS
{
−f4

IR + LSM + LDM

}
(2.8)

and

SUV =

∫
d4x

√
−g(4)

UV e
S
{
−f4

UV + . . .
}
, (2.9)

where fIR, fUV are the brane tensions for the two branes and g
(4)
IR,UV = −G(5)/G

(5)
55 is the

determinant of the induced metric on the IR- and UV-brane, respectively. Throughout

the paper, we consider all the SM and DM fields localized on the IR-brane, whereas on

the UV-brane we could have any other physics that is Planck-suppressed. We assume that

DM particles only interact with the SM particles gravitationally by considering only DM

singlets under the SM gauge group. More complicated DM spectra with several particles

will also not be studied here.

Notice that the gravitational action is not in its canonical form. Going to the Einstein

frame changing G
(5)
MN → exp(−2/3S)G

(5)
MN , we get :

Sgravity =

∫
d4x

∫ π

0
rcdy

√
−G(5)

{
M3

5

2

[
R(5) − 1

3
GMN

(5) ∂MS∂NS + 4e−
2
3
Sk2

]}

+

∫
d4x

∫ π

0
rcdy

√
−g(4) e−

S
3
{
δ(y − y0)

[
−f4

IR + LSM + LDM

]
− δ(y − π)f4

UV

}
,

(2.10)

where now the gravitational action is the Einstein action and from the kinetic term of the

dilaton field we can read out that the physical field must be rescaled as
(
M

3/2
5 /
√

3
)
S.

Eventually, it is important to stress that, in the Einstein frame, the brane action terms

still have an exponential dependence e−S/3 from the dilaton field. This action has a shift

symmetry S → S + const in the limit k → 0, that makes a small value of k with respect

to M5 “technically natural” in the ’t Hooft sense. Using the action above in the Einstein

frame, it can be shown that the metric in eq. (2.3) can be recovered as a classical background

if the brane tensions are chosen as:

f4
IR = −f4

UV = −4kM3
5 . (2.11)

Notice that, in a pure 4-dimensional scenario, the gravitational interactions would be

enormously suppressed by powers of the Planck mass, while in an extra-dimensional one
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the gravitational interaction is actually enhanced. Expanding the metric at first order

around its static solution, we have:

G
(5)
MN = e2/3S(ηMN +

2

M
2/3
5

hMN ) . (2.12)

The 4-dimensional component of the 5-dimensional field hMN can be expanded in a Kaluza-

Klein tower of 4-dimensional fields as follows:

hµν(x, y) =

∞∑

n=0

1√
πrc

hnµν(x)χn(y) . (2.13)

The hnµν(x) fields are the KK-modes of the 4-dimensional graviton and the χn(y) factors are

their wavefunctions. Notice that in the 4-dimensional decomposition of the 5-dimensional

metric, two other fields are generally present: the graviphoton, hµ5, and the graviscalar

h55. The KK-tower of the graviscalar is absent from the low-energy spectrum, as they are

eaten by the KK-tower of graviphotons to get a mass (due to the spontaneous breaking

of translational invariance caused by the presence of one or more branes). These are, in

turn, eaten by the KK-gravitons to get a mass (having, thus, five degrees of freedom). The

surviving graviphoton zero-mode does not couple with the energy-momentum tensor in the

weak gravitational field limit [40], whereas the graviscalar zero-mode will generically mix

with the radion needed to stabilize the extra-dimension size.

The eigenfunctions χn(y) can be computed by solving the equation of motion in the

extra-dimension of the fields:

[
∂2
y − k2r2

c +m2
nr

2
c

]
ekrc|y| χn(y) = 0 (2.14)

with Neumann boundary conditions ∂yχn(y) = 0 at y = 0 and π. Normalizing the eigen-

modes such that the KK-modes have canonical kinetic terms in 4-dimensions, we get:





χ0(y) =
√

πkrc
e2πkrc−1

,

χn(y) = n
mnrc

e−krc|y|
(
krc
n sinn|y|+ cosn|y|

)
,

(2.15)

with masses

m2
0 = 0 ; m2

n = k2 +
n2

r2
c

. (2.16)

At the IR-brane one gets:

L = − 1

M
3/2
5

Tµν(x)hµν(x, y = 0) = −
∑

n=0

1

Λn
hnµν(x)Tµν(x) , (2.17)

where




1
Λ0

= 1
MP

,

1
Λn

= 1√
M3

5πrc

(
1 + k2r2

c
n2

)−1/2
= 1√

M3
5πrc

(
1− k2

m2
n

)1/2
n 6= 0 ,

(2.18)
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from which it is clear that the coupling between KK-graviton modes with n 6= 0 is sup-

pressed by the effective scale Λn and not by the Planck scale, differently from the LED

case and similarly to the Randall-Sundrum one.

It is useful to remind here the explicit form of the energy-momentum tensor for a

scalar, fermion and vector field:





TΦ
µν = (∂µΦ)†(∂νΦ) + (∂νΦ)†(∂µΦ)− ηµν

{
(∂ρΦ)†(∂ρΦ)−m2

ΦΦΦ†
}
,

Tψµν = 4
[
−ηµν

{
ψ̄(iγρ∂

ρ −mψ)ψ − 1
2∂

ρ(f̄ iγνf)
}

+
{

1
2 ψ̄iγµ∂νψ − 1

4∂µ(ψ̄iγνψ)

+ 1
2 ψ̄iγν∂µψ − 1

4∂ν(ψ̄iγµψ)
}]
,

T Vµν =
[
ηµν

{
1
4Fρσ F

ρσ − m2
V

2 V ρVρ

}
− FρµFνρ +m2

V VµVν

]

where

Fµν = Fµν = ∂µVν − ∂νVµ (2.19)

for an abelian gauge field and

Fµν = F aµν = ∂µV
a
ν − ∂νV a

µ + gfabcV b
µV

c
ν (2.20)

for a non-abelian gauge field. In both cases, the expressions above refers to the unitary

gauge. For the case of the SM massless gauge fields the expression is T Vµν |mV =0 (whilst we

do not specify how the gauge field Vµ gets a mass).

2.3 Introducing the radion

Stabilization of the radius of the extra-dimension rc is an issue. In general (see, e.g.,

Refs. [41–43]), bosonic quantum loops have a net effect on the boundaries of the extra-

dimension such that the extra-dimension itself should shrink to a point. This feature, in a

flat extra-dimension, can only be compensated by fermionic quantum loops and, usually,

some supersymmetric framework is invoked to stabilize the radius of the extra-dimension

(see, e.g., Ref. [44]). An additional advantage of supersymmetry in the bulk is that the

CW/LD background metric may protect eq. (2.11) by fluctuations of the 5-dimensional

cosmological constant (see, however, Ref. [45] for a non-supersymmetric clockwork imple-

mentation).

In the CW/LD scenario we can use the already present bulk dilaton field S to stabilize

the compactification radius. If localized brane interactions generate a potential for S at

y = π, then we could fix the value of the field S at the UV-brane, SUV = S |π. This is

indeed an additional boundary condition that fixes the distance between the two branes to

be πk rc = SUV/2 [17]:




SIR =
∫
d4x

√
−g(4)

IR eS
{
−f4

IR + µIR
2 (S − SIR)2 + LSM + LDM

}
,

SUV =
∫
d4x

√
−g(4)

UV e
S
{
−f4

UV + µUV
2 (S − SUV)2 + . . .

}
,

(2.21)

– 9 –

240 Part II: Scientific Research



with µIR and µUV two parameters with the dimension of a mass. In order to compute

the scalar spectrum, we should introduce quantum fluctuations over the background values

of S(x, y) = S0(y) + ϕ(x, y) (where S0(y) = 2krc|y|) and of the metric, eq. (2.12). After

deriving the Einstein equations for the two scalar degrees of freedom, ϕ and1 Φ, and

imposing the junction conditions at the boundaries, it can be shown that both satify the

following equation of motion:

[
2 +

1

r2
c

d2

dy2
− k2

]
ekrcy

(
Φ(x, y)

ϕ(x, y)

)
= 0 . (2.22)

Notice that only the combination v(x, y) =
√

6ekrcyM
3/2
5 [Φ(x, y)− ϕ(x, y)/3] has a canon-

ical kinetic term.

Expanding Φ and ϕ over a 4-dimensional plane-waves basis,

Φ(x, y) =
∑

n

Φn(y)Qn(x) ; ϕ(x, y) =
∑

n

ϕn(y)Qn(x) ;
[
2−m2

Φn

]
Qn = 0 ,

(2.23)

we can eventually derive the scalar fluctuations wave-functions (for example, in Φ):

Φn(y) = Nne
−krcy [sin(βny) + ωn cos(βny)] , (2.24)

with Nn a normalization factor, βn = m2
Φn
− k2, and

ωn = − 3βnµT
2(k2 + β2

n) + kµT
. (2.25)

In the so-called rigid limit, µUV →∞, the scalar spectrum is given by:





m2
r ≡ m2

Φ0
= 8

9k
2 ,

m2
Φn

= k2 + n2

r2
c

(n ≥ 1) ,

(2.26)

first obtained in Ref. [46], where we have identified the radion as the lightest state. Out

of the rigid limit, the spectrum can be obtained expanding in inverse powers of µUV,

introducing the adimensional parameters εIR,UV = 2k/µIR,UV. At first order in the ε’s,





m2
r ≡ m2

Φ0
= 8

9k
2
(
1− 2εUV

9

)
+O(ε2) ,

m2
Φn

= k2 + n2

r2
c

[
1− 6(n2+k2r2

c )(εUV+εIR)
9n2πkrc+πk3r3

c

]
+O(ε2) .

(2.27)

There are no massless states for non-vanishing µ’s (i.e., when the extra-dimension is sta-

bilized). In the unstabilized regime (for µUV, µIR → 0), the graviscalar and lowest-lying

dilaton mode decouple and we expect two massless modes.

1Using the notation of Ref. [38], we call Φ the graviscalar h55. Remember, however, that after compact-

ification the KK-tower of h55 is eaten to give a longitudinal component to the KK-tower of gravitons.
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The interactions of the radion and of the dilaton KK-tower with SM fields arises [38]

from the term: ∫
d4x

√
−g(4) e−S/3 [LSM + LDM] . (2.28)

The main difference between the CW/LD case and the Randall-Sundrum case is that in the

former case a dilaton dependence e−S/3 is still present in the brane term action going from

the Jordan frame to the Einstein frame. On the other hand, the Randall-Sundrum action

is already in the Einstein frame (its gravitational action is in the canonical form) and the

brane action term couples to gravity minimally, i.e. through the
√
−g(4) coefficient, only.

Expanding the background metric and the dilaton field at first order in quantum

fluctuations, we get (after KK-decomposition):

Sint = −1

2

∑

n

Φn(0)

∫
d4x

√
−g(4)

0

[
g

(4)
0

]µν [
T SM
µν + TDM

µν

]
Qn

− 1

3

∑

n

ϕn(0)

∫
d4x

√
−g(4)

0 [LSM + LDM]Qn . (2.29)

Notice that the scalar fluctuations of metric AND dilaton couple with 4-dimensional fields

through the usual energy-momentum trace and with a direct coupling with the 4-dimensional

lagrangian. This is different from the case of the Randall-Sundrum model, where only the

first kind of coupling is present, being the radion of purely gravitational origin (see, for

example, Ref. [47]). In the CW/LD model, thus, there are two kinds of coupling between

the radion and the KK-dilaton fields and the 4-dimensional fields sitting on the IR-brane.

Again, at first order in εUV,IR, we get:





1
Λ0

Φ
≡ Φ0(0)

2 = 1
6

√
k
M3

5

(
1 + 4

9εUV

)
+O(ε2) ,

1
ΛnΦ
≡ Φn(0)

2 = 2krcn√
3πM3

5 rc

(
n2 + k2r2

c

)−1/2 (
9n2 + k2r2

c

)−1/2
(1− εUV) +O(ε2)

= 2√
27πM3

5 rc

k
mΦn

√√√√
1− k2

m2
Φn

1− 8
9

k2

m2
Φn

(1− εUV) +O(ε2)

(2.30)

and 



1
Λ0
ϕ
≡ ϕ0(0)

3 = 2
27

√
k
M3

5
εUV +O(ε2) ,

1
Λnϕ
≡ ϕn(0)

3 = n

k
√

3πM3
5 r

3
c

[
(n2+k2r2

c)
(9n2+k2r2

c )

]1/2

εUV +O(ε2)

(2.31)

In the rigid limit (µUV,IR → ∞) the coupling of dilaton modes with the SM lagrangian

vanishes (1/Λ0
ϕ, 1/Λ

n
ϕ → 0). In the rest of the paper, we will work in this limit in order to

get a sound insight of how the radion and dilaton KK-modes may affect the generation of

the freeze-out thermal abundance. A complete study of the impact of scalar perturbations

to the DM phenomenology would imply considering general values for εUV and εIR and it

is beyond the scope of this paper.
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A further simplification that we are going to consider is the following: in the presence

of a scalar field on the brane (such as the Higgs field), a non-minimal coupling of the scalar

with the Ricci scalar is not forbidden by any symmetry. This may arise as a new term in

the action:

∆SIR =

∫
d4x

√
−g(4)eϕ/3ξRH†H . (2.32)

Such term induces an additional kinetic mixing between the graviscalar Φ0, the lowest-lying

dilaton ϕ0 and the Higgs and, therefore, additional couplings with the SM fields. We will

neglect this non-minimal coupling in the rest of the paper, taking ξ = 0.

Summarizing, in the rigid limit and in the absence of a mixing between the Higgs and

the other scalar fields, the scalar perturbation interaction lagrangian with SM and DM

particles at first order is:

LSM
v =

∞∑

n=0

1

ΛnΦ

[
TSM +

αEM CEM
8π

FµνF
µν +

αSC3

8π

∑

a

F aµνF
aµν

]
vn , (2.33)

where r = v0 is the radion field and vn for n ≥ 1 is the dilaton KK-tower, and TSM is the

trace of the SM energy-momentum tensor. The coefficients of the coupling between scalar

perturbations and massless gauge fields are given in App. A.2. Notice that massless gauge

fields do not contribute to the trace of the energy-momentum tensor, but they generate

effective couplings from two different sources: quarks and W bosons loops contribution

and the trace anomaly [48].

2.4 Contributions to 〈σv〉 in the CW/LD scenario

We are not assuming any particular spin for the DM particle; our only assumptions are

that there is just one particle responsible for the whole DM relic abundance and that this

particle interacts with the SM only gravitationally. Therefore, in the following we label

such particles generically by DM’s. The total annihilation cross-section is:

σth =
∑

SM

σve(DM DM→ SM SM) +
∑

n=1

∑

m=1

σGG(DM DM→ GnGm)

+
∑

n=0

∑

m=0

σΦΦ(DM DM→ Φm Φn) +
∑

n=1

∑

m=0

σGΦ(DM DM→ Gn Φm)

, (2.34)

where in the first term, σve (“ve” stands for “virtual exchange”), we sum over all SM

particles. The second term, σGG, corresponds to DM annihilation into KK-gravitons Gn.

Notice that we do not consider DM annihilation into zero-mode gravitons G0, as it is

Planck-suppressed. The third term, σΦΦ, corresponds to DM annihilation into radions

and KK-dilaton modes. Eventually, the fourth term, σGΦ, is the production of one tower

of KK-gravitons in association with a tower of radion/KK-dilatons (a channel previously

overlooked in the literature on the subject). Notice that the KK-number is not conserved in

the second, third and fourth term of eq. (2.34) due to the explicit breaking of momentum

conservation in the 5th-dimension induced by the brane terms and, therefore, we must

sum over all values of (m,n) as long as the condition 2mDM ≥ mn + mm (being mn
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the mass of the n-th KK-graviton or radion/KK-dilaton) is fulfilled. If the DM mass

mDM is smaller than the mass of the first KK-graviton and of the radion, only the first

channel is open. Formulæ for the DM annihilation into SM particles through virtual KK-

graviton and radion/KK-dilaton exchange are given in App. D in the small relative velocity

approximation, expanding the centre-of-mass energy s around s ' 4m2
DM. Notice that,

when computing the contribution of the radion/KK-dilaton exchange and KK-graviton

exchange to the annihilation DM cross-section into SM particles, it is of the uttermost

importance to take into account properly the decay width of the radion/KK-dilaton and

of the KK-gravitons. Formulæ for the radion/KK-dilaton and KK-graviton decays2 are

given in App. B.

If the DM mass is larger than the radion or the first KK-graviton mass3, mDM ≤
(mr,mG1), the direct production of KK-graviton and/or radion/KK-dilaton towers be-

comes possible and the other three channels of eq. (2.34) open. The analytic expressions

for σGG(DM DM → GmGn), σGΦ(DM DM → Gm Φn) and σΦΦ(DM DM → Φm Φn) in the

small relative velocity approximation are given in App. D.

A DM singlet could have other interactions with the SM besides the gravitational one,

through several so-called “portals”. Such scenarios have been extensively studied in the

literature and are strongly constrained (see for instance [49, 50] for recent analyses), so we

will neglect those couplings and focus only on the gravitational mediators that have not

been previously considered.

3 DM annihilation cross-section in CW/LD model

In this section we study in detail the different contributions to the thermally-averaged

DM annihilation cross-section, comparing the results for scalar, fermion and vector DM

particles.

As we reminded in the previous section, for relatively low DM particles mass the first

annihilation channel to open is the annihilation into SM particles through KK-graviton

or radion/KK-dilaton exchange. Differently from the RS case (see Ref. [30]), both the

virtual KK-graviton and radion/KK-dilaton exchange cross-sections do not behave as the

sum of relatively independent channels with well-separated peaks, one per KK-mode. For

the typical values of M5 and k that may solve the hierarchy problem, in the CW/LD case

a huge number of KK-modes must be coherently summed in σve(DM DM→ SM SM).

In order to understand easily the difference between the cross-sections for scalar,

fermion and vector DM particles, we remind in Tab. 1 the dependence of the thermally-

averaged annihilation cross-section 〈σv〉 on the relative velocity v, from App. D. Recall

that v acts as a suppression factor and, therefore, the larger the power to which it appears,

the smaller the cross-section.

2Recall that, due to the breaking of translational invariance in the extra-dimension, the KK-number is

not conserved and heavy KK-graviton and KK-dilaton modes can also decay into lighter KK-modes when

kinematically allowed.
3Notice that, in the rigid limit, both the radion/KK-dilaton and KK-graviton masses only depend on

the parameter k and rc that are chosen to solve the hierarchy problem, differently from the RS scenario

where the radion mass is an additional free parameter of the model.
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Scalar Fermion Vector

Graviton Virtual Exchange v4 (d) v2 (p) v0 (s)

Radion/Dilatons Virtual Exchange v0 (s) v2 (p) v0 (s)

Annihilation into Gravitons v0 (s) v0 (s) v0 (s)

Annihilation into Radion/Dilatons v0 (s) v2 (p) v0 (s)

Annihilation into Dilaton + Graviton v0 (s) v0 (s) v0 (s)

Table 1. Velocity dependence of the different DM annihilation channels and the corresponding s-,

p- or d-wave.

The thermally-averaged virtual exchange cross-section, 〈σvev〉 = 〈(σve,G + σve,Φ)v〉, is

depicted in Fig. 1 for a scalar (left panel), a fermion (middle panel) and a vector (right

panel) DM particle, respectively, for the particular choice k = 1 TeV and M5 = 7 TeV 4.

Virtual radion/KK-dilaton exchange is shown with (green) dot-dashed lines, virtual KK-

graviton exchange with (blue) solid lines. In all cases, σve(DM DM→ SM SM) is extremely

small below mDM ∼ 500 GeV, whilst rapidly increasing when mDM approaches half the

mass of the lightest mode (the radion). From that point onward, for larger and larger DM

masses the cross-section starts to rapidly oscillate crossing threshold after threshold with

new KK-modes entering the game. This behaviour can be clearly seen in the dot-dashed

lines representing radion/KK-dilaton virtual exchange, where the difference between on-

peak and off-peak cross-section can be as large as one order of magnitude. The sum

over KK-dilaton modes does not increase the cross-section going to larger DM masses, as

interferences from the near-continuum of modes collectively result in a slow decrease of

σve,Φ going from mDM ∼ 1 TeV to mDM ∼ 10 TeV. The KK-graviton exchange cross-

section shows a different behaviour: the difference between on- and off-peak is extremely

small, and the sum over virtual KK-graviton modes gives a net (albeit slow) increase of

the cross-section going to larger DM masses. These results are common to scalar, fermion

and vector DM particles.

In the three panels, we also show the DM annihilation cross-section into real KK-

gravitons, represented by an (orange) dashed line, and the freeze-out thermally-averaged

cross-section 〈σFOv〉, represented by the horizontal red-dotted line . The DM annihilation

cross-section into two real radion/KK-dilaton towers and into one KK-graviton and one

radion/KK-dilaton tower are not shown, as both are much smaller and, therefore, irrelevant.

For a scalar or a vector DM particle the real KK-graviton production cross-sections are

very similar. This component of the total cross-section takes over both the radion/KK-

dilaton and KK-graviton virtual exchange and rapidly dominates the total cross-section for

mDM above a few TeVs. On the other hand, the fermion DM real KK-graviton production

cross-section is substantially smaller than those for scalar and vector DM particles in the

considered range of mDM and its growth with mDM is much slower (the corresponding

cross-sections can be found in App. D.1). We can see that, for the considered values of M5

4Although the observed DM relic density can be obtained for lower values of (k,M5), our choice is

motivated by the fact that these are currently allowed by LHC data, as we will see in the next section.
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and k, the total fermion DM annihilation cross-section is dominated by virtual KK-graviton

exchange up to mDM ∼ 10 TeV.

1 10
33
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25

Lo
g 1

0(
v

) [
cm

3 /s
]

1 10
mDM [TeV]

1 10

Figure 1. Comparison of the thermally-averaged DM annihilation cross-section into SM parti-

cles through virtual radion/KK-dilaton exchange 〈σve,rv〉 (green dot-dashed lines) and virtual KK-

graviton exchange 〈σve,Gv〉 (blue solid lines), as a function of the DM particle mass, mDM . Left

panel: scalar DM. Middle panel: fermion DM. Right panel: vector DM. In all panels, the orange

dashed line represents the thermally-averaged DM annihilation cross-section into KK-gravitons,

〈σGGv〉, summing over all kinematically allowed KK-gravitons in the final state. The horizontal

red-dotted line represents 〈σFOv〉. The results have been obtained for M5 = 7 TeV and k = 1 TeV.

Comparing the results for different spin of the DM particle, we see that the scalar DM

case is the only one where, for relatively low DM masses, the radion/KK-dilaton virtual

exchange cross-section actually dominates over the KK-graviton virtual exchange one. The

difference between the two contributions can be as large as two orders of magnitude for

mDM smaller than a few TeV, whereas the two become comparable for mDM ∼ 10 TeV (at

a scale where, however, the real KK-graviton production has already become the dominant

process). In this particular scenario, as it was the case for the RS model, the thermally-

averaged virtual KK-graviton exchange cross-section is much lower than 〈σFOv〉. On the

other hand, the virtual radion/KK-dilaton exchange cross-section can actually reach the

target value for m2
DM ∼ m2

r/4 (i.e. m2
DM = 2/9k2 in the rigid limit). For fermion and vector

DM particles, this is not the case: the virtual radion/KK-dilaton exchange cross-section

is of the same order or smaller than the virtual KK-graviton exchange cross-section5. In

summary, for the particular choice of k and M5 shown in Fig. 1, for a scalar DM particle

the target freeze-out value 〈σFOv〉 is achievable either through virtual radion/KK-dilaton

exchange for low mDM or via real KK-graviton production for mDM a few TeV; for a fermion

DM particle 〈σFOv〉 is not achieved for mDM < 10 TeV; and, for a vector DM particle, the

target relic abundance is achieved through virtual KK-graviton exchange for mDM ∼ 1 TeV

(as it was found in the RS scenario [19, 22]).

In Fig. 2 we show the total cross-section involving KK-gravitons, only (summing virtual

KK-graviton exchange and KK-graviton production) as a function of the DM particle

5This is the combined effect of the different v-dependence according to the DM particle spin and of

numerical factors.
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Figure 2. The thermally-averaged DM annihilation cross-section through virtual KK-graviton ex-

change and direct production of two KK-gravitons, σG = σve,G + σGG, as a function of the DM

mass mDM for three choices of k: k = 10 GeV (left panel); k = 100 GeV (middle panel); k = 1000

GeV (right panel). In all panels, M5 = 7 TeV. The green dashed, orange dot-dashed and blue solid

lines represent 〈σGv〉 for a vector, fermion and scalar DM particle, respectively. The red-shaded

area represents the theoretical unitarity bound σ ≥ 1/s.

mass mDM for different choices of k: k = 10 GeV (left panel), k = 100 GeV (middle

panel) and k = 1 TeV (right panel). In all cases, M5 = 7 TeV. In all panels, we plot

〈σGv〉 = 〈(σve,G + σGG) v〉 for scalar (blue, solid lines), fermionic (orange, dot-dashed lines)

and vector (green, dashed lines) DM particles, thus making comparison easier. The red

dotted horizontal line shows 〈σFOv〉. For all choices of k, at very low values of mDM the

scalar DM scenario give a much lower thermally-averaged cross-section with respect to the

fermion and vector case. It rapidly catches up, though, eventually merging with the vector

case. We see that 〈σGv〉 = 〈σFOv〉 at approximately mDM ∼ 10 k for k below the TeV and

mDM = O(k) for k at the TeV in the scalar and vector case. On the other hand, a much

larger value of mDM is needed to achieve the freeze-out target value if the DM particle is a

fermion. The red-shaded area represents the theoretical unitarity bound 〈σv〉 ≥ 1/s, where

we can no longer trust the theory outlined in Sect. 2 and higher-order operators should be

taken into account.

We have seen that it is relatively easy to achieve the freeze-out relic abundance for DM

particles with a mass at the TeV scale or below for M5 = 7 TeV. However, it is important

to understand how this scales with M5 so as to see how much having a DM candidate is

compatible with solving the hierarchy problem. This is shown in Fig. 3, where we draw the

value of M5 needed to achieve the freeze-out DM annihilation cross-section 〈σFOv〉 for a

given choice of k andmDM. In the top-left panel we show our results for a scalar DM particle

using only virtual KK-graviton exchange and real KK-graviton production; in the top-right

panel we again show our results for a scalar DM particle, albeit adding the contribution

from virtual radion/KK-dilaton exchange and real radion/KK-dilaton production (since

we saw in Fig. 1 that for this particular case these contributions are quite relevant); in the

bottom-left and bottom-right panels, on the other hand, we show our results for a fermion

and a vector DM particle, respectively, taking into account virtual KK-graviton exchange
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and real KK-graviton production only, as it was previously shown that in both cases the

radion/KK-dilaton contribution is sub-dominant. The grey area represents the region of

the (mDM, k) plane for which it is not possible to achieve the freeze-out relic abundance.

The coloured area is the region for which 〈σv〉 can be as large as 〈σFOv〉 for some values

of mDM, k and M5. The colour palette represents the corresponding ranges in M5. The

lowest values of M5 for which we have 〈σv〉 = 〈σFOv〉 are in the hundreds of GeV range,

whereas in the lower-right corner of all panels we find values of M5 are of the order of tens

of TeV.

4 Experimental bounds and theoretical constraints

As we have seen in Fig. 3, the target relic abundance can be achieved in a vast region of the

(mDM, k) parameter space, if we allow M5 to vary from 10−1 TeV to 102 TeV. However,

experimental searches strongly constrain k and M5. We will summarize here the relevant

experimental bounds and see how only a relatively small region of the parameter space is

allowed, indeed.

4.1 LHC bounds

The strongest constraints are given by the non-resonant searches at LHC. Differently from

the results from resonance searches at the LHC [51, 52], data from non-resonant searches

are not easily turned into bounds in k and M5. We will therefore take advantage of the

analysis performed in Ref. [18] and of the dedicated analysis from the CMS Collaboration

described in Ref. [53]. The two bounds in the (k,M5) plane are shown in Fig. 4, where the

solid blue and dashed red lines represent results from Ref. [18] and Ref. [53], respectively.

The orange-shaded area is the region of the parameter space for which the mass of the

first KK-graviton mG1 (where mG1 = k) is larger than the scale of the theory, M5. In this

region of the parameter space the low-energy gravity effective theory is not trustable (see

Sect. 4.3). In the rest of the paper, we have applied the experimental LHC bounds from

Ref. [53] as a conservative choice.

4.2 Direct and Indirect Dark Matter Detection

In order to understand the bounds from Direct Detection Dark Matter searches (DD) we

need to compute the total cross-section for spin indepedent elastic scattering between Dark

Matter and the nuclei [26]:

σSI
DM−p =

[
mpmDM

Aπ(mDM +mp)

]2 [
AfDMp + (A− Z)fSn

]2
, (4.1)

where mp is the proton mass, while Z and A are the number of protons and the atomic

number. The nucleon form factors are given by the same formula for Dark Matter of any

spin (at zero momentum transfer):




fDM
p =

mDM mp
4m2

G1
Λ2

{∑
q=u,c,d,b,s 3 [q(2) + q̄(2)] +

∑
q=u,d,s

1
3f

p
Tq

}
,

fDM
n =

mDM mp
4m2

G1
Λ2

{∑
q=u,c,d,b,s 3 [q(2) + q̄(2)] +

∑
q=u,d,s

1
3f

n
Tq

}
,

(4.2)
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Figure 3. Values of M5 for which the correct DM relic abundance is obtained in the plane mDM , k.

Top-left panel: Scalar DM particle, virtual KK-graviton exchange and real KK-graviton production

only; Top-right panel: Scalar DM particle, virtual KK-graviton exchange and real KK-graviton pro-

duction together with virtual radion/KK-dilaton exchange and real radion/KK-dilaton production;

Bottom-left panel: Fermion DM particle, virtual KK-graviton exchange and real KK-graviton pro-

duction only; Bottom-right panel: Vector DM particle, virtual KK-graviton exchange and real KK-

graviton production only. The required M5 ranges are shown by the color legend. The grey-shaded

area represents the region of the parameter space for which is impossible to reach the freeze-out relic

abundance.
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Figure 4. Bounds in the (k,M5) plane from non-resonant searches at the LHC with
√
s = 13 TeV

and 36 fb−1, from an analysis of ATLAS data [18] (dashed red line) and from the CMS Collaboration

results [53] (solid blue line). The orange-shaded area is the region of the parameter space for which

mG1 ≥M5.

with q(2) the second moment of the quark distribution function

q(2) =

∫ 1

0
dx x fq(x) (4.3)

and fN=p,n
Tq the mass fraction of light quarks in a nucleon: fpTu = 0.023, fpTd = 0.032 and

fpTs = 0.020 for a proton and fnTu = 0.017, fnTd = 0.041 and fnTs = 0.020 for a neutron [54].

The strongest bounds come from the XENON1T experiment that uses 129Xe, (Z = 54

and A − Z = 75) as a target. In our analysis we compute the second moment of the

PDF’s using Ref. [55] and the exclusion curve of XENON1T [56] to set constraints in

the parameter space. In Fig. 5 we show the scale needed to achieve the freeze-out relic

abundance, MFO
5 , as a function of the DM mass mDM, for k = 250 GeV. The three lines

(solid orange, dot-dashed blue and dotted red) correspond to scalar, fermion and vector

DM, respectively. The green-shaded area is the experimental bound in the (mDM,M5)

plane from XENON1T. We can see that the bounds imposed by DD only constrain very

low values of mDM and they are irrelevant in the range of DM masses considered in the

rest of this paper (mDM ≥ 100 GeV). We have checked that this result is general also for

other values of k.

With respect to Indirect Detection Dark Matter searches (ID), several experiments are

analysing differents signals. For instance, the Fermi-LAT Collaboration studied the γ-ray

flux arriving at Earth from the galactic center [57, 58] and from different Dwarf Spheroidal

galaxies [59]. Other experiments detect charged particles instead of photons, as it is the

case of AMS-02 that presented data about the positron [60] and anti-proton fluxes coming

from the galactic center [61]. These results are relevant in various DM models that can
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Figure 5. The scale needed to achieve the freeze-out relic abundance, MFO
5 , as a function of the

DM mass mDM, for k = 250 GeV. Solid orange, dot-dashed blue and dotted red lines correspond

to scalar, fermion and vector DM, respectively. The green-shaded area, on the other hand, is the

experimental bound in the (mDM,M5) plane from XENON1T [56].

generate a continuum spectra of SM particles, such as our case. However, current data

from ID only allows to constrain DM masses below 100 GeV, a region which is already

excluded by LHC data.

4.3 Theoretical constraints

Besides the experimental limits, there are mainly two theoretical concerns about the validity

of our calculations which affect part of the (mDM, k,M5) parameter space. The first one is

related to the fact that we are performing just a tree-level computation of the relevant DM

annihilation cross-sections, and we should worry about unitarity issues. In particular, the

annihilation cross-section into a pair of real KK-gravitons, σ(DM DM→ GnGm), diverges

as m10
DM/(m

4
Gn
m4
Gm

) for scalar and vector DM and as m6
DM/(m

2
Gn
m2
Gm

) for fermion DM

(see eqs. (D.11,D.17) and (D.25) in App. D.1). When the DM mass becomes very large

with respect to the KK-graviton masses, it is important to check that the effective theory is

still unitary [62]. Asking for the cross-section to be bounded, σ < 1/s ' 1/m2
DM, we got the

red-shaded areas shown in Fig. 2. If we combine the unitarity requirement with the request

that the freeze-out thermally-averaged cross-section is achieved to get the correct DM relic

abundance, we have an upper bound on the DM mass: mDM . 1/
√
σFO, independently on

the parameters that determine the geometry of the space-time, (k and M5). This will be

shown by a vertical line in the (mDM, k) plane in Fig. 6.

The second theoretical issue refers to the consistency of the effective theory frame-

work: in the CW/LD scenario, at energies somewhat larger than M5 the KK-gravitons

are strongly coupled and the five-dimensional field theory from which we start is no longer

valid. We therefore impose that at least mG1 = k < M5 to trust our results. Notice
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that this constraint is general for any effective field theory: since we are including the

KK-graviton tower in the low-energy spectrum, for the effective theory to make sense the

cut-off scale M5 should be larger than the masses of such states. For the same reason, we

also ask for the Dark Matter mass mDM to be lighter than M5, mDM < M5, although we

will see that, in the allowed region, this requirement is almost always fulfilled.

5 Results

We show in Fig. 6 the allowed parameter space in the (mDM, k) plane for which the target

value of 〈σv〉 needed to achieve the correct DM relic abundance in the freeze-out scenario,

(〈σFOv〉 = 2.2× 10−26 cm3/s), can be obtained, taking into account both the experimental

bounds and the theoretical constraints outlined in Sec. 4.

In the upper left panel we show our results for a scalar DM particle, considering only

decays into SM particles through virtual KK-graviton exchange or into KK-gravitons. This

corresponds to the unstabilized regime, i.e. when the coefficients µIR, µUV of the localized

potential terms in eq. (2.21) vanish. In the upper right panel we show our results for

scalar DM when the extra-dimension is stabilized in the rigid limit, µIR, µUV →∞, and in

the absence of non-minimal coupling with gravity, ξ = 0 (see Sect. 2 for details). In this

case, the annihilation of DM particles occurs through virtual KK-graviton and radion/KK-

dilaton exchange into SM particles and through direct KK-graviton and radion/KK-dilaton

production. In the bottom left and right panels we show our results for a fermion and a

vector DM particle, respectively. In both cases, the radion/KK-dilaton contribution (in

the rigid limit with ξ = 0) is included but it is irrelevant.

As a guidance, dashed lines taken from Fig. 3 represent the values of M5 needed to

achieve the relic abundance in a particular point of the (mDM, k) plane. The legend for the

four plots is given in the Figure caption.

5.1 Scalar Dark Matter

In the case of scalar DM, depicted in the upper left and right panels, virtual KK-graviton

exchange is not enough to achieve the freeze-out relic abundance. For this reason, when

the extra-dimension is unstabilized (left panel), 〈σFOv〉 can be obtained only when the

KK-graviton production channel opens, as it was the case for the RS scenario [30]. As a

consequence, the DM particle mass has to be in a given relation with the mass of the KK-

graviton tower and, therefore, a grey region for which it is impossible to achieve 〈σFOv〉 can

be seen. The red diagonally-meshed area represents the region of the parameter space for

which the correct relic abundance is achieved with a value of M5 lower than the mass of the

first KK-graviton, mG1 = k. Above this line the low-energy effective theory we are using is

untrustable, as new dynamical particles in the spectrum are heavier than the scale of the

theory. The blue-shaded area represents the excluded region from searches of non-resonant

channels at LHC Run II with 36 pb−1 from Ref. [18]. The green vertically-meshed area is

the upper bound on the DM mass that must be fulfilled to comply with unitarity.

When the extra-dimension is stabilized (right panel), the virtual radion/KK-dilaton

exchange channel may reach the target value for the cross-section for some values of the
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Figure 6. Region of the (mDM, k) plane for which 〈σv〉 = 〈σFOv〉. Upper left panel: scalar DM

(unstabilized extra-dimension); Upper right panel: scalar DM (stabilized extra-dimension in the rigid

limit, εIR = εUV = 0, without non-minimal coupling with gravity, ξ = 0); Lower left panel: fermion

DM (stabilized extra-dimension in the rigid limit without non-minimal coupling with gravity); Lower

right panel: vector DM (stabilized extra-dimension in the rigid limit without non-minimal coupling

with gravity). In all panels, the grey-shaded area represents the part of the parameter space for

which it is impossible to achieve the correct relic abundance; the red diagonally-meshed area is

the region for which the low-energy CW/LD effective theory is untrustable, as M5 < k; the blue-

shaded area is excluded by non-resonant searches at the LHC with 36 fb−1 at
√
s = 13 TeV [18];

eventually, the green vertically-meshed area on the right is the region where the theoretical unitarity

constraints are not fulfilled, mDM & 1/
√
σFO. In all panels, the white area represents the region

of the parameter space for which the correct relic abundance is achieved (either through direct KK-

graviton and/or radion/KK-dilaton production, as in the case of scalar DM, or through virtual

KK-graviton exchange, as for fermion and vector DM) and not excluded by experimental bounds

and theoretical constraints. The dashed lines depicted in the white region represent the values of

M5 needed to obtain the correct relic abundance (from Fig. 3).
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DM mass for which the KK-graviton exchange channel may not (see Fig. 1). Therefore, a

grey area is present but it somewhat smaller than in the unstabilized case (differently from

the Randall-Sundrum case, where no grey area was found in this case [30]). Most of this

region is excluded because the value of M5 is lower than k and, thus, the effective theory

we are using is untrustable (red-meshed region). As a consequence, the allowed region

that complies with experimental bounds and theoretical constraints is very similar to the

unstabilized case and, roughly speaking, corresponds to mDM ∈ [1, 15] TeV and k < 6 TeV.

Within the allowed region, M5 may vary between 10 TeV’s and a few hundreds of TeV’s.

5.2 Fermion Dark Matter

The case of fermion DM is depicted in the lower left panel. The meaning of the coloured

areas is the same as for the upper panels: the grey area is the region of the parameter

space for which is impossible to achieve 〈σFOv〉; the blue-shaded area corresponds to the

LHC Run II exclusion bound [18]; the red diagonally-meshed and green vertically-meshed

areas represent theoretical unitarity bounds; and, the white area is the allowed region of the

parameter space, where dashed lines represent benchmark values ofM5 useful to understand

its scaling. The main difference with the scalar (and vector) DM case is that for fermion DM

a rather small region of the parameter space is compatible with all bounds and constraints.

This is a consequence of the slower dependence of the direct KK-graviton production cross-

section with mDM (see Figs. 1 and 2 and eq. (D.15) in App. D). Eventually, the allowed

region that complies with experimental bounds and theoretical constraints corresponds to

mDM ∈ [4, 15] TeV and k < 1 TeV. Within the allowed region, M5 may vary between 10

TeV’s and a few tens of TeV’s.

5.3 Vector Dark Matter

The case of vector DM is depicted in the lower right panel. The meaning of the coloured

areas is the same as for the upper panels: the grey area is the region of the parameter

space for which is impossible to achieve 〈σFOv〉; the blue-shaded area corresponds to the

LHC Run II exclusion bound [18]; the red diagonally-meshed and green vertically-meshed

areas represent theoretical unitarity bounds; and, the white area is the allowed region of the

parameter space, where dashed lines represent benchmark values ofM5 useful to understand

its scaling. The main difference with the scalar and fermion DM case is that for vector

DM it is possible to achieve the correct relic abundance through the virtual KK-graviton

exchange channel, and the requirements on M5 are less stringent. As a consequence, a

rather large region of the parameter space is compatible with all bounds and constraints.

The allowed region that complies with experimental bounds and theoretical constraints

corresponds to mDM ∈ [0.6, 15] TeV and k may be as large as ∼ 20 TeV. Within the

allowed region, M5 may vary between a 5 TeV’s and a few hundreds of TeV’s.

6 Conclusions

In this paper we have explored the possibility that the observed Dark Matter component

in the Universe is represented by some new particle with mass in the TeV range which
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interacts with the SM particles only gravitationally, in agreement with non-observation

of DM signals at both direct and indirect detection DM experiments. In standard 4-

dimensional gravity, the interaction between such DM particles and SM particles would be

too feeble to reproduce the observed DM relic abundance. However, we have found that this

is not the case once this setup is embedded in a Clockwork/Linear Dilaton scenario, along

the ideas of the CW/LD proposal of Refs. [17, 18]. We consider two 4-dimensional branes

in a 5-dimensional space-time with non-factorizable CW/LD metric [36] at a separation rc,

very small compared with present bounds on deviations from Newton’s law. On one of the

branes, the so-called “IR-brane”, both the SM particles and a DM particle (with spin 0, 1/2

or 1) are confined, with no particle allowed to escape from the branes to explore the bulk. It

can be shown that gravitational interaction between particles on the IR-brane (in our case

between a DM particle and any of the SM particles) occurs with an amplitude proportional

to 1/M2
P when the two particles exchange a graviton zero-mode, but with a suppression

factor 1/Λ2
n when they interact exchanging the n-th KK-graviton mode. As the effective

coupling Λn can be as low as a few TeV (depending on the particular choices of the two

parameters that determine the geometry of the space-time, k and M5), a huge enhancement

of the cross-section is then possible with respect to standard linearized General Relativity.

Once fixed the setup we have computed the relevant contributions to the thermally-

averaged DM annihilation cross-section 〈σ v〉, taking into accont both virtual KK-graviton

and radion/KK-dilaton exchange as well as the direct production of radion/KK-dilatons

and KK-gravitons. We have then scanned the parameter space of the model (represented

by mDM, k and M5), looking for regions in which the observed relic abundance can be

achieved, 〈σ v〉 ∼ 〈σFO v〉. This region has been compared with experimental bounds from

resonant searches at the LHC Run II and from direct and indirect DM detection searches,

finding which portion of the allowed parameter space is excluded by data. Eventually, we

have studied the theoretical unitarity bounds on the mass of the DM particle and on the

validity of the CW/LD model as a consistent low-energy effective theory. We have found

that the correct relic abundance may be achieved in a significant region of the parameter

space, corresponding typically to a DM mass of a few TeV’s.

Depending on the spin and the mass of the DM particle, 〈σFO v〉 is reached either

through virtual exchange or direct production of radion/KK-dilatons and/or KK-gravitons.

For scalar DM particles, we have found that 〈σFO v〉 can be obtained for DM masses in

the range mDM ∈ [1, 15] TeV and k . 6 TeV. In this case the radion/KK-dilaton virtual

exchange increases the cross-section for low DM masses (below 1 TeV), thus making possible

to achieve 〈σFO v〉 in a much larger portion of the parameter space with respect to the KK-

gravitons only case. However, most of this extra region corresponds to values of mG1

larger than M5 and, thus, in a part of the parameter space where the effective theory is

untrustable. As a consequence, we find no difference between the unstabilized case (no

radion/KK-dilatons) and the stabilized case in the rigid limit (with radion/KK-dilatons).

For fermion DM particles the allowed mass range is somewhat smaller, mDM ∈ [4, 15] TeV

and k . 4 TeV. Eventually, for vector DM particles, the allowed mass range is somewhat

larger, mDM ∈ [0.6, 15] TeV and k . 20 TeV. Notice that the upper limit on the DM mass

comes from theoretical unitarity bounds.
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Our results for DM in the CW/LD scenario are very similar to those we have found

with AdS5 metric (the so-called Randall-Sundrum model) in Ref. [30], where we studied

only the case of scalar DM. In the Randall-Sundrum scenario it was known that, for scalar

DM and SM particles localized in the IR brane, it is not possible to achieve 〈σFO v〉 through

the virtual KK-graviton or radion exchange channel (see also Refs. [19, 22]). However, we

showed that when the DM mass is large enough so that the direct production of KK-

gravitons or radions becomes possible, then the correct relic abundance can be achieved

for DM particle masses of a few TeV’s, much as in the case of the CW/LD model studied

here. Notice that the value of M5 needed to achieve the correct relic abundance in the

CW/LD model is M5 ∈ [10, 100] TeV, whereas in the Randall-Sundrum scenario the effec-

tive coupling Λ needed to achieve the freeze-out was in Λ ∈ [10, 1000] TeV range. In both

cases, some hierarchy between the fundamental gravitational scale (either M5 or Λ) and

the electro-weak scale ΛEW is needed.

It is worth to emphasize that in both extra-dimensional scenarios, Randall-Sundrum

and CW/LD, it is possible to obtain the correct relic abundance via thermal freeze-out with

DM masses in the TeV scale, so they are already quite constrained by LHC data. Moreover,

most part of the still allowed parameter space may be tested by the LHC Run III and by

the proposed High-Luminosity LHC. While the prospects for the Randall-Sundrum were

already analysed in Ref. [30], it would be very interesting to explore in detail the limits

that these next LHC phases could set on the CW/LD model.
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A Feynman rules

We remind in this Appendix the different Feynman rules corresponding to the couplings of

DM particles and of SM particles of any spin with KK-gravitons and radion/KK-dilatons.

A.1 Graviton Feynman rules

The vertex that involves one KK-graviton and two scalars S of mass mS is given by:

�Gnµν(q)

S(k1)

S(k2)

2

= − i

Λn

(
m2
Sηµν − Cµνρσkρ1kσ2

)
, (A.1)
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where

Cµναβ ≡ ηµαηνβ + ηναηµβ − ηµνηαβ . (A.2)

This expression can be used for the coupling of both scalar DM and the SM Higgs boson

to gravitons.

The vertex that involves one KK-graviton and two fermions ψ of mass mψ is given by:

�
ψ(k1) ψ(k2)

Gnµν(q)

6

=− i

4Λn
[γµ (k2ν + k1ν) + γν (k2µ + k1µ)

−2ηµν ( /k2 + /k1 − 2mψ)] ,

(A.3)

and

�Gnµν(q)

ψ̄(k1)

ψ(k2)

3

=− i

4Λn
[γµ (k2ν − k1ν) + γν (k2µ − k1µ)

−2ηµν ( /k2 − /k1 − 2mψ)] .

(A.4)

The interaction between two vector bosons V of mass mV and one KK-graviton is

given by:

	Gnµν(q)

Vα(k1)

Vβ(k2)

4

= − i

Λn

(
m2
V Cµναβ +Wµναβ

)
, (A.5)

where

Wµναβ ≡ Bµναβ +Bνµαβ (A.6)

and

Bµναβ ≡ ηαβk1µk2ν + ηµν(k1 · k2ηαβ − k1βk2ν)

− ηµβk1νk2α +
1

2
ηµν(k1βk2α − k1 · k2ηαβ) . (A.7)

Eventually, the interaction between two particles (S, ψ or Vµ depending on their spin)

and two KK-gravitons (coming from a second order expansion of the metric gµν around
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the Minkowski metric ηµν) is given by:



S(k1)

S(k2)

Gnµν(k3)

Gmαβ(k4)

5

=− i

ΛnΛm
ηνβ

(
m2
Sηµα − Cµαρσkρ1kσ2

)
, (A.8)

�
ψ(k1)

ψ̄(k2)

Gnµν(k3)

Gmαβ(k4)

12

=− i

ΛnΛm
ηνβ [γµ (k1α − k2α) + γα (k1µ − k2µ)

−2ηµα ( /k1 − /k2 − 2mψ)] ,

(A.9)

�
Vρ(k1)

Vσ(k2)

Gnµν(k3)

Gmαβ(k4)

13

=− i

ΛnΛm
ηνβ

(
m2
V Cµαρσ +Wµαρσ

)
. (A.10)

The Feynman rules for the n = 0 KK-graviton can be obtained by the previous ones by

replacing Λ with MP. We do not give here the triple KK-graviton vertex, as it is irrelevant

for the phenomenological applications of this paper.

A.2 Radion/KK-dilaton Feynman rules

The radion/KK-dilatons, φn, couple with particles localized in the IR-brane with the trace

of the energy-momentum tensor, T = gµνTµν (in the rigid limit with ξ = 0, see Sect. 2.3).

The only exception are photons and gluons that, being massless, do not contribute to T

at tree-level. However, effective couplings of these fields to the radion/KK-dilatons are

generated through quarks and W loops, and the trace anomaly.

The interaction between one radion/KK-dilaton and two scalar fields S of mass mS is

given by:

	φn(q)

S(k1)

S(k2)

7

= − 2i

Λn

(
2m2

S + k1µk
µ
2

)
. (A.11)
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The vertex that involves one radion/KK-dilaton and two Dirac fermions ψ of mass mψ

takes the form:

�
ψ(k1) ψ(k2)

φn(q)

10

= − i

2Λn
[8mψ − 3 ( /k2 + /k1)] (A.12)

and:


φn(q)

ψ̄(k1)

ψ(k2)

8

= − i

2Λn
[8mψ − 3 ( /k2 − /k1)] . (A.13)

The interaction between two massive vector bosons V of mass mV and one radion/KK-

dilaton is given by:

�φn(q)

Vα(k1)

Vβ(k2)

9

=
2i

Λn
m2
V ηαβ , (A.14)

whereas the vertex corresponding to the interaction between two massless SM gauge bosons

and one radion/KK-dilaton is:

�φn(q)

Vα(k1)

Vβ(k2)

9

=
4iαiCi
8πΛn

[ηµν(k1 · k2)− k1νk2µ] , (A.15)

where αi = αEM , αs for the case of the photons or gluons, respectively, and [48]:





C3 = b
(3)
IR − b

(3)
UV + 1

2

∑
q F1/2(xq) ,

CEM = b
(EM)
IR − b(EM)

UV + F1(xW )−∑qNcQ
2
qF1/2(xq) ,

(A.16)
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with xq = 4mq/mr and xW = 4mw/mr. The values of the one-loop β-function coefficients

b are b
(EM)
IR − b(EM)

UV = 11/3 and b
(3)
IR− b

(3)
UV = −11 + 2n/3, where n is the number of quarks

whose mass is smaller than mr/2. The explicit form of F1/2 and F1 is given by:





F1/2(x) = 2x[1 + (1− x)f(x)],

F1(x) = 2 + 3x+ 3x(2− x)f(x),

(A.17)

with

f(x) =





[arcsin(1/
√
x)]2 x > 1,

−1
4

[
log
(

1+
√
x−1

1−√x−1

)
− iπ

]2
x < 1.

(A.18)

Eventually, the 4-legs diagrams are given by:

�
S(k1)

S(k2)

φn(k3)

φm(k4)

11

= − i

3Λ2

(
6m2

S + k1µk
µ
2

)
, (A.19)

�
ψ(k1)

ψ̄(k2)

φn(k3)

φm(k4)

14

= − i

2Λ2
n

[8mψ − 3 ( /k2 − /k1)] (A.20)

and

�
Vρ(k1)

Vσ(k2)

φn(k3)

φm(k4)

15

= − 2i

Λ2
n

m2
V ηαβ . (A.21)

B Decay widths

In this Appendix we compute the decay widths of KK-gravitons and radion/KK-dilatons,

using the Feynman rules given in App. A.
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B.1 KK-gravitons decay widths

The KK-graviton can decay into scalar particles (including the Higgs boson, a scalar DM

particle and radion/KK-dilatons), fermions (either SM or a fermion DM particle), vector

bosons (either massive or massless SM gauge bosons or a vector DM particle) and lighter

KK-gravitons.

Decay widths of KK-gravitons into SM particles, Γ(Gn → SM SM), are all proportional

to 1/Λ2
n. In particular, the decay width into SM Higgs bosons is given by:

Γ(Gn → HH) =
m3
n

960πΛ2
n

(
1− 4m2

H

m2
n

)5/2

, (B.1)

where mn is the mass of the n-th KK-graviton (in the main text, this was called mGn , but

we prefer here a shorter notation to increase readability of the formulæ).

The decay width of the n-th KK-graviton into SM Dirac fermions is given by:

Γ(Gn → ψ̄ψ) =
m3
n

160πΛ2
n

(
1−

4m2
ψ

m2
n

)3/2(
1 +

8m2
ψ

3m2
n

)
. (B.2)

The decay width of the n-th KK-graviton into two SM massive gauge bosons reads:





Γ(Gn →W+W−) = 13m3
n

480πΛ2
n

(
1− 4m2

W
m2
n

)1/2 (
1 +

56m2
W

13m2
n

+
48m4

W
13m4

n

)
,

Γ(Gn → ZZ) = 13m3
n

960πΛ2
n

(
1− 4m2

Z
m2
n

)1/2 (
1 +

56m2
Z

13m2
n

+
48m4

Z
13m4

n

)
,

(B.3)

whereas the decay width into SM massless gauge bosons is:





Γ(Gn → γγ) = m3
n

80πΛ2
n
,

Γ(Gn → gg) = m3
n

10πΛ2
n
.

(B.4)

Finally, If mn > 2mDM , the n-th KK-graviton can decay into two DM particles:





Γ(Gn → SS) = m3
n

960πΛ2
n

(
1− 4m2

DM
m2
n

)5/2
,

Γ(Gn → ψ̄ψ) = m3
n

160πΛ2
n

(
1− 4m2

DM
m2
n

)3/2 (
1 +

8m2
DM

3m2
n

)
,

Γ(Gn → V V ) = 13m3
n

960πΛ2
n

(
1− 4m2

DM
m2
n

)1/2 (
1 +

56m2
DM

13m2
n

+
48m4

DM
13m4

n

)
.

(B.5)

For completeness, we computed the decay of KK-gravitons into KK-gravitons and

radion/KK-dilatons, finding that these contributions are totally negligible. For a thorough

description of these decays see Ref. [18].
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B.2 Radion/KK-dilatons decay widths

The decay width of the radion/KK-dilatons into SM Higgs boson, is given by:

Γ(φn → HH) =
m3
n

32πΛ2
n

(
1− 4m2

H

m2
n

)1/2(
1 +

2m2
H

m2
n

)2

. (B.6)

The radion/KK-dilaton decay width into SM Dirac fermions is given by:

Γ(φn → ψ̄ψ) =
mnm

2
ψ

8πΛ2
n

(
1−

4m2
ψ

m2
n

)3/2

. (B.7)

The radion/KK-dilaton decay width into SM massive gauge bosons is:




Γ(φn →W+W−) = 3m3
n

4πΛ2

(
1− 4m2

W
m2
n

)1/2 (
1− m2

W
3m2

n
+

m4
W

12m4
n

)
,

Γ(φn → ZZ) = 3m3
n

8πΛ2

(
1− 4m2

Z
m2
n

)1/2 (
1− m2

Z
3m2

n
+

m4
Z

12m4
n

)
,

(B.8)

whereas the decay width into SM massless gauge bosons is:




Γ(φn → γγ) = αEM CEM m3
n

1280πΛ2 ,

Γ(φn → gg) = α3 C3m3
n

160πΛ2 .

(B.9)

If mn > 2mDM , the n-th radion/KK-dilaton can decay into two DM particles:




Γ(φn → SS) = m3
n

32πΛ2
n

(
1− 4m2

DM
m2
n

)1/2 (
1 +

2m2
DM

m2
n

)2
,

Γ(φn → ψ̄ψ) =
mnm2

DM
8πΛ2

n

(
1− 4m2

DM
m2
n

)3/2
,

Γ(φn → V V ) = 3m3
n

8πΛ2

(
1− 4m2

DM
m2
n

)1/2 (
1− m2

DM
3m2

n
+

m4
DM

12m4
n

)
.

(B.10)

We computed the decay of KK-dilatons into KK-gravitons and radion/KK-dilatons,

finding that these contributions are totally negligible, as in the case of KK-gravitons.

C Sums over KK-gravitons and radion/KK-dilatons

In this Appendix we remind the procedure to derive approximated sums over virtual KK-

modes following Ref. [18]. In the main text we have mainly shown plots using this approxi-

mation. However, we show here the degree of accuracy of the approximated sum comparing

it with exact results.

Consider the sum over virtual KK-modes that arise both in virtual KK-graviton or

virtual radion/KK-dilaton exchange cross-sections:

SKK =

∞∑

n=1

1

Λ2
n

1

s−m2
n + imnΓn

, (C.1)
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where mn is the mass of the n-th KK-graviton or radion/KK-dilaton and Γn its corre-

sponding decay width. If s > k2, the modulus squared of the sum over KK-modes is very

well approximated by the sum over the KK-modes moduli squared, as the decay widths of

the KK-modes computed in App. B are very small:

|SKK |2 '
∞∑

n=1

1

Λ4
n

1

(s−m2
n)2 +m2

nΓ2
n

≡
∞∑

n=1

1

Λ(mn)4
F(mn) , (C.2)

with F(mn) a function that depends on the mass and the decay width of the virtual KK-

modes. We also show explicitly that the n-dependence of Λn in eqs. (2.18) and (2.30)

arises, indeed, through mn. The mass difference between two nearby KK-modes, for the

typical choices of k and M5 considered in the paper, is small enough to approximate the

sum by an integral in m starting from the mass of the first KK-mode, m1:

|SKK |2 ≈
∫ ∞

m1

dm
1

Λ(m)4
F(m) rc

(
1− k2

m2

)−1/2

. (C.3)

Using the narrow-width approximation for F(m)

F(m) ≈ π

m̄Γ(m̄)

1

2
√
s
δ(m̄−√s) , (C.4)

where m̄ corresponds to the mode for which mn ∼
√
s (as enforced by the δ-function),

eq. (C.2) can be further approximated as:

|SKK |2 ≈
πrc
2

1

Γ(
√
s)Λ(
√
s)4

[
1

s

(
1− k2

s

)−1/2
]
. (C.5)

Eq. (C.5) is valid for both, KK-gravitons and radion/KK-dilatons. In the case of

KK-gravitons, if we replace Λn with the expression in eq. (2.18), we get:

|SgKK |2 ≈
1

2M6
5 π rc

1

Γn|mn∼√s

[
1

s

(
1− k2

s

)3/2
]
. (C.6)

In the case of radion/KK-dilatons, Λn is given by eq. (2.30). Then:

|SrKK |2 ≈
8

729M6
5π rc

1

Γn|mn∼√s

[
1

s

(
k2

s

)2(
1− k2

s

)3/2(
1− 8k2

9s

)−2
]
, (C.7)

Notice that these expressions are equivalent to an average over the KK-modes.

In Fig. 7 we show the comparison between the results for |SgKK |2 using eqs. (C.2) and

(C.6) (left panel), as well as the exact thermally-averaged virtual KK-graviton exchange

annihilation cross-section 〈σv〉 versus the approximated one using eq. (C.6) (right panel),

for an illustrative choice of M5 and k, M5 = 7 TeV and k = 1 TeV. In the left panel

we can see how the sum has a very slow onset for
√
s ≤ k summing over the tails of the

Breit-Wigner function representing each KK-mode contribution, followed by a very rapidly

oscillating behaviour crossing the KK-mode resonances. The difference between being at
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Figure 7. Left panel: the sum |SKK |2 for KK-gravitons with M5 = 7 TeV and k = 1 TeV.

The green solid and orange dashed lines represent the result using eq. (C.2) and the approximation

described in eq. (C.6), respectively. Right panel: the thermally-averaged annihilation cross-section

through virtual KK-graviton exchange for scalar (blue), fermion (orange) an vector (green) DM,

with M5 = 7 TeV and k = 1 TeV. Solid lines stand for the exact result, whereas dashed lines

represent the approximated one using eq. (C.6).

the dip between two KK-modes or at the peak can be as large as a factor 104. However,

the width of each KK-mode resonance is extremely small and, thus, when summing over

many KK-modes the approximated sum reproduces correctly the collective behaviour of

the system. This is clearly shown in the right panel where we see, that for any spin of the

DM particle, the exact and approximated sum within the virtual KK-graviton exchange

thermally-averaged annihilation cross-section give the same result.

D Annihilation DM Cross section

In all the expressions of this Appendix we made use of the so-called velocity expansion for

the DM particles:

s ≈ m2
DM(4 + v2) , (D.1)

where v is the relative velocity of the two DM particles. Within this approximation,

the different scalar products for processes in which two DM particles annihilate into two

particles (either SM particles, KK-gravitons or radion/KK-dilatons), with incoming and

outcoming momenta DM(k1) DM(k2)→ Out(k3) Out(k4), become:




k1 · k4 = k2 · k3 ≈ m2
DM + 1

2m
2
DM

√
1− m2

Out

m2
DM

cos θ v + 1
4m

2
DM v2 ,

k1 · k3 = k2 · k4 ≈ m2
DM − 1

2m
2
DM

√
1− m2

Out

m2
DM

cos θ v + 1
4m

2
DM v2 ,

(D.2)

where 



k1 · k1 = k2 · k2 = m2
DM ,

k3 · k3 = k4 · k4 = m2
Out .

(D.3)
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D.1 Annihilation through and into KK-gravitons

In the following sections we show the DM annihilation cross-sections through and into

KK-gravitons. In all of this expressions SgKK is the sum over the KK-gravitons given in

App. C.

D.1.1 Scalar DM

First we start with the scalar Dark Matter. The annihilation cross-section into two SM

Higgs bosons is:

σg(S S → HH) ≈ v3 |SgKK |2
m6

DM

720π

(
1− m2

H

m2
DM

)5/2

(D.4)

The annihilation cross-section into two SM massive gauge bosons is:





σg(S S →W+W−) ≈ v3 |SgKK |2
13m6

DM
360π

(
1− m2

W

m2
DM

)1/2 (
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(S S → Z Z) ≈ v3 |SgKK |2
m6

13 DM
720π

(
1− m2

Z

m2
DM

)1/2 (
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.5)

whereas for two massless gauge bosons we have:





σg(S S → γ γ) ≈ v3 |SgKK |2
2m6

DM
15π ,

σg(S S → g g) ≈ v3 |SgKK |2
m6

DM
60π .

(D.6)

Eventually, the annihilation cross-section into two SM fermions is:

σg(S S → ψ̄ ψ) ≈ v3 |SgKK |2
m6

DM

120π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.7)

As it was shown in Ref. [19], for DM particle masses larger than the mass of a given KK-

graviton mode DM particles may annihilate into two KK-gravitons. In the small velocity

approximation, the related cross-section is:

σg(S S → GnGm) ≈ v−1

(
AgS +Bg

S + CgS/4

18432π

) (
1

Λ2
n Λ2

mm
2
DMm4

nm
4
m

)

×
√(

1 +
m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

, (D.8)

where the three contributions to the cross-section come from the square of the t- and u-

channels amplitudes, the square of the 4-points amplitude from the vertex A.8 and from
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the interference between the two classes of amplitudes, respectively:





AgS =

[
m4

m−2m2
m (4m2

DM+m2
n)+(m2

n−4m2
DM)

2
]4

2(4m2
DM−m2

n−m2
m)

2 ,

Bg
S =

[
16m4

DM−8m2
DM (m2

n+m2
m)+(m2

n−m2
m)

2
]2

4m2
DM−m2

n−m2
m

[
16m4

DM

(
m2

n +m2
m

)

− 8m2
DM

(
−m2

nm
2
m +m4

n +m4
m

)
+
(
m2

n −m2
m

)2 (
m2

n +m2
m

)]
,

CgS = 256m8
DM

(
13m2

nm
2
m + 2m4

n + 2m4
m

)
− 512m6

DM

(
m6

n +m6
m

)

+ 32m4
DM

(
−17m6

nm
2
m + 98m4

nm
4
m − 17m2

nm
6
m + 6m8

n + 6m8
m

)

− 32m2
DM

(
m2

n −m2
m

)2 (
m6

n +m6
m

)

+
(
m2

n −m2
m

)4 (
13m2

nm
2
m + 2m4

n + 2m4
m

)
.

(D.9)

In the particular case in which the two KK-gravitons have the same KK-number, m =

n, eq. (D.8) becomes:

σg(S S → GnGn) ≈ v−1 4m2
DM

9πΛ2
nΛ2

m

(1− r)1/2

r4(2− r)2
(D.10)

×
(

1− 3 r +
121

32
r2 − 65

32
r3 +

71

128
r4 − 13

64
r5 +

19

256
r6

)
,

where r ≡ (mn/mDM)2.

D.1.2 Fermionic case

If the dark matter is a Dirac fermion (χ) the annihilation into two SM Higgs bosons is:

σg(χ̄ χ→ HH) ≈ v |SgKK |2
m6

DM

144π

(
1− m2

H

m2
DM

)5/2

(D.11)

The annihilation cross-section into two SM massive gauge bosons is:





σg(χ̄ χ→W+W−) ≈ v |SgKK |2
13m6

DM
72π

(
1− m2

W

m2
DM

)1/2 (
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(χ̄ χ→ Z Z) ≈ v |SgKK |2
13m6

DM
144π

(
1− m2

Z

m2
DM

)1/2 (
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.12)

whereas for two massless gauge bosons we have:





σg(χ̄ χ→ γ γ) ≈ v |SgKK |2
m6

DM
12π ,

σg(χ̄ χ→ g g) ≈ v |SgKK |2
2m6

DM
3π .

(D.13)
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Eventually, the annihilation cross-section into two SM fermions is:

σg(χ̄ χ→ ψ̄ ψ) ≈ v |SgKK |2
m6

DM

24π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.14)

As in the case of scalar DM if the mDM > mG1 the ψ̄ ψ → GnGm channel is open:

σg(χ̄ χ→ GnGm) ≈ v−1

(
Agχ

16384π

)(
1

Λ2
nΛ2

mm
2
DMm

2
nm

2
m

)

×
√(

1 +
m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

. (D.15)

Notice that, differently from the scalar and vector case, the contribution of the 4-points

diagram from the vertex A.9 vanishes (Bg
χ = Cgχ = 0). The t- and u-channel contributions

give, instead:

Agχ =

(
(m2

n − 4m2
DM)2 − 2m2

m(4m2
DM +m2

n) +m4
m

)3

(m2
n +m2

m − 4m2
DM)2

(D.16)

In the particular case when two KK-gravitons have the same KK-number, m = n, eq. (D.15)

becomes:

σg(χ̄ χ→ GnGn) ≈ v−1 m2
DM

16πΛ4
n

(1− r)7/2

r2(2− r)2
, (D.17)

where6 r ≡ (mn/mDM)2.

D.1.3 Vectorial case

If the dark matter is a spin-1 particle (X) the annihilation into two Higgs bosons is:

σg(XX → HH) ≈ v−1 |SgKK |2
2m6

DM

27π

(
1− m2

H

m2
DM

)5/2

(D.18)

The annihilation cross-section into two SM massive gauge bosons is:




σg(XX →W+W−) ≈ v−1 |SgKK |2
52m6

DM
27π

(
1− m2

W

m2
DM

)1/2 (
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(XX → Z Z) ≈ v−1 |SgKK |2
26m6

DM
27π

(
1− m2

Z

m2
DM

)1/2 (
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.19)

whereas for two massless gauge bosons we have:




σg(XX → γ γ) ≈ v−1 |SgKK |2
8m6

DM
9π ,

σg(XX → g g) ≈ v−1 |SgKK |2
64m6

DM
9π .

(D.20)

6We have found a misprint in Ref. [19]: the cross-section of fermion DM annihilation into two KK-

gravitons scales with r−2 as in eq. (D.17), and not as r−4, as reported in Ref. [19]. This is relevant when

comparing results for scalar and vector DM with respect to those for fermion DM as a function of the DM

mass (see Sect. 3).
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The annihilation cross-section into two SM fermions is:

σg(XX → ψ̄ ψ) ≈ v−1 |SgKK |2
12m6

DM

27π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.21)

Eventually, the annihilation into gravitons will be given by:

σg(XX → GnGm) ≈ v−1

(
AgV +Bg

V + CgV /2

331776π

) (
1

Λ2
n Λ2

mm
2
DMm4

nm
4
m

)

×
√(

1 +
m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

, (D.22)

where:




AgV = 1

(−4m2
DM+m2

n+m2
m)2

[
m16

DM + 393216
(
m2
n +m2

m

)
m14

DM

− 16384
(
−353m2

nm
2
m +m4

n +m4
m

)
m12

DM

−
(
m2
n +m2

m

) (
19m2

nm
2
m +m4

n +m4
m

)
m10

DM

+ 512
(
2302m6

nm
2
m + 3826m4

nm
4
m + 2302m2

nm
6
m + 205m8

n + 205m8
m

)
m8

DM

−
(
m2
n +m2

m

) (
−430m6

nm
2
m − 602m4

nm
4
m − 430m2

nm
6
m + 7m8

n + 7m8
m

)
m6

DM

−
(
1025m10

n m
2
m + 647m8

nm
4
m − 5562m6

nm
6
m

+ 647m4
nm

8
m + 1025m2

nm
10
m + 21m12

n + 21m12
m

)
m4

DM

−
(
m2
n −m2

m

)
2
(
m2
n +m2

m

) (
−67m6

nm
2
m − 48m4

nm
4
m − 67m2

nm
6
m + 7m8

n + 7m8
m

)
m2

DM

+
(
m2
n −m2

m

)
4
(
208m6

nm
2
m + 906m4

nm
4
m + 208m2

nm
6
m + 51m8

n + 51m8
m

)]
,

Bg
V = 0 ,

CgV = 32768m12
DM − 256

(
−135m2

mm
2
n + 74m4

n + 74m4
m

)
m8

DM

+ 512
(
m2
n +m2

m

) (
−43m2

mm
2
n + 17m4

n + 17m4
m

)
m6

DM

− 32
(
−13m6

mm
2
n − 1166m4

mm
4
n − 13m2

mm
6
n + 42m8

n + 42m8
m

)
m4

DM

+ 32
(
m2
n −m2

m

)2 (
m2
n +m2

m

) (
5m2

mm
2
n +m4

n +m4
m

)
m2

DM

+ 3
(
m2
n −m2

m

)4 (
13m2

mm
2
n + 2m4

n + 2m4
m

)
.

(D.23)

In the particular case in which the two KK-gravitons have the same KK-number, m =

n, eq. (D.22) becomes:

σg(XX → GnGn) ≈ v−1 44m2
DM

81πΛ2
nΛ2

m

(1− r)1/2

r4(2− r)2
(D.24)

×
(

1 +
12

11
r +

351

44
r2 − 777

44
r3 +

1105

176
r4 +

181

88
r5 +

17

88
r6

)
,

where r ≡ (mn/mDM)2.

D.2 Annihilation through and into radion/KK-dilatons

In the following subsections we discuss the different DM annihilation cross sections through

and into radion/KK-dilatons, using the approximation for the sums over the radion/KK-

dilaton modes described in app.C. The sum over the dilaton states will be represented as

SrKK .
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D.2.1 Scalar case

The DM annihilation cross-section into two SM Higgs bosons is:

σr(S S → HH) ≈ v−1 |SrKK |2
9m6

DM

π

(
1− m2

H

m2
DM

)1/2 (
1 +

m2
h

2m2
DM

)2

, (D.25)

The cross-section for DM annihilation into SM massive gauge bosons is:





σr(S S →W+W−) ≈ v−1 |SrKK |2
18m6

DM
π

(
1− m2

W

m2
DM

)1/2 (
1− m2

W

m2
DM

+
3m4

W

4m4
DM

)
,

σr(S S → Z Z) ≈ v−1 |SrKK |2
9m6

DM
π

(
1− m2

Z

m2
DM

)1/2 (
1− m2

Z

m2
DM

+
3m4

Z

4m4
DM

)
.

(D.26)

The DM annihilation into photons and gluons is proportional to the vertex in eq. (A.15).

The corresponding expressions for the cross-sections are:





σr(S S → γ γ) ≈ v−1 |SrKK |2
9m6

DM αEM CEM
8π3 ,

σr(S S → g g) ≈ v−1 |SrKK |2
9m6

DM α3 C3

π3 .

(D.27)

The DM annihilation cross-section into SM fermions is given by:

σr(S S → ψ̄ ψ) ≈ v−1 |SrKK |2
9m4

DMm2
ψ

π

(
1−

m2
ψ

m2
DM

)3/2

. (D.28)

Eventually, the DM annihilation cross-section into two radion/KK-dilatons is given by:

σg(S S → φn φm) ≈ v−1 A
r
S +Br

S + CrS
64πΛ2

nΛ2
mm

2
DM

×
√(

1 +
m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.29)

where, as in the case of KK-gravitons, the three contributions to the cross-section come from

the square of the t- and u-channels amplitudes (ArS), the square of the 4-points amplitude

from vertex A.19 (CrS) and from the interference between the two classes of diagrams (Br
S),

respectively: 



ArS =
[64m2

DM+(m2
n−m2

m)2]
2

(−4m2
DM+m2

n+m2
m)2 ,

Br
S =

28[64mDM+(m2
n−m2

m)2]
(−4m2

DM+m2
n+m2

m)
,

CrS = 196m4
DM .

(D.30)

where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th andm-th radion/KK-

dilatons modes, respectively.
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D.2.2 Fermionic case

If the Dark Matter is a Dirac fermion (χ) the annihilation into two SM Higgs bosons is:

σr(χ̄ χ→ HH) ≈ v |SrKK |2
m6

DM

8π

(
1− m2

H

m2
DM

)1/2 (
1 +

m2
H

2m2
DM

)2

, (D.31)

The annihilation cross-section into two SM massive gauge bosons is:




σr(χ̄ χ→W+W−) ≈ v |SrKK |2
m6

DM
4π

(
1− m2

W

m2
DM

)1/2 (
1− m2

W

m2
DM

+
3m4

W

4m4
DM

)
,

σr(χ̄ χ→ Z Z) ≈ v |SrKK |2
m6

DM
8π

(
1− m2

Z

m2
DM

)1/2 (
1− m2

Z

m2
DM

+
3m4

Z

4m4
DM

)
.

(D.32)

whereas for two massless gauge bosons we have:




σr(χ̄ χ→ γ γ) ≈ v |SrKK |2
m6

DM αEM CEM
16π3 ,

σr(χ̄ χ→ g g) ≈ v |SrKK |2
m6

DM α3 C3

2π3 .

(D.33)

The DM annihilation cross-section into two SM fermions is:

σr(χ̄ χ→ ψ̄ ψ) ≈ v |SrKK |2
m4

DMm2
ψ

8π

(
1−

m2
ψ

m2
DM

)3/2

. (D.34)

Eventually, the annihilation directly into dilatons is given by:

σg(χ̄ χ→ φn φm) ≈ v
Arχ +Br

χ + Crχ
13824m2

DMπΛ2
nΛ2

m

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.35)

where:




Arχ =
m4
DM

(−4m2
DM+m2

n+m2
m)4

[
4m6

m

(
419m2

n − 1804m2
DM

)

+ 2m4
m

(
−10312m2

DMm
2
n + 21648m4

DM + 3273m4
n

)

− 4m2
m

(
1804m2

DM − 419m2
n

) (
m2

n − 4m2
DM

)
2 + 451

(
m2

n − 4m2
DM

)
4 + 451m8

m

]
,

Br
χ = 0 ,

Crχ = 3m4
DM .

(D.36)

and where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th and m-th

radion/KK-dilatons modes, respectively.

D.2.3 Vectorial case

If the Dark Matter is a spin-1 particle (X) the annihilation into two SM Higgs bosons is:

σr(XX → HH) ≈ v−1 |SrKK |2
m6

DM

3π

(
1− m2

H

m2
DM

)1/2 (
1 +

m2
H

2m2
DM

)2

, (D.37)

– 39 –

270 Part II: Scientific Research



The annihilation cross-section into two SM massive gauge bosons is:





σr(XX →W+W−) ≈ v−1 |SrKK |2
4m2

DMm4
W

3π

(
1− m2

W

m2
DM

)1/2 (
1− 3m2

W

4m2
DM

+
m4
W

8m4
DM

)
,

σr(XX → Z Z) ≈ v−1 |SrKK |2
2m2

DMm4
Z

3π

(
1− m2

Z

m2
DM

)1/2 (
1− 3m2

Z

4m2
DM

+
m4
Z

8m4
DM

)
.

(D.38)

whereas for two massless gauge bosons we have:





σr(XX → γ γ) ≈ v−1 |SrKK |2
3m6

DM αEM CEM
8π3 ,

σr(XX → g g) ≈ v−1 |SrKK |2
3m6

DM α3 C3

π3 .

(D.39)

The DM annihilation cross-section into two SM fermions is:

σr(XX → ψ̄ ψ) ≈ v−1 |SrKK |2
m4

DMm2
ψ

3π

(
1−

m2
ψ

m2
DM

)3/2

. (D.40)

Eventually, the annihilation cross-section into two radion/KK-dilatons is given by:

σg(XX → φn φm) ≈ v−1 ArV +Br
V + CrV

20736πΛ2
n Λ2

mm
2
DM

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.41)

where:





ArV = 1
(−4m2

DM+m2
n+m2

m)2

[
−512

(
m2
n +m2

m

)
m6

DM + 128
(
m4
n +m4

m

)
m4

DM

− 16
(
m2
n −m2

m

)2 (
m2
n +m2

m

)
m2

DM +
(
m2
n −m2

m

)4
+ 1536m8

DM

]
,

Br
V = 0 ,

CrV = 12m4
DM .

(D.42)

and where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th and m-th

radion/KK-dilatons modes, respectively.

D.3 Annihilation into one KK-graviton and one radion/KK-dilaton

It exists another channel that was not previously considered in the literature: DM annihi-

lation into one KK-graviton and one radion/KK-dilaton. The cross-section for this process
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is given by the following expressions:





σgr(S S → Gn rm) ≈ v−1
(

AgrS
9216π

)(
1

Λ2
g,n Λ2

r,mm
2
DMm

4
g,n

)
1

(−4m2
DM+m2

g,n+m2
r,m)

2

×
√(

1 +
m2
g,n−m2

r,m

4m2
DM

)2
− m2

g,n

m2
DM

,

σgr(χ̄ χ→ Gn rm) ≈ v−1
(
Agrχ
576π

)(
1

Λ2
g,n Λ2

r,mm
2
g,n

)
1

(−4m2
DM+m2

g,n+m2
r,m)

2

×
√(

1 +
m2
g,n−m2

r,m

4m2
DM

)2
− m2

g,n

m2
DM

,

σgr(V V → Gn rm) ≈ v−1
(

AgrV
82944π

)(
1

Λ2
g,nΛ2

r,mm
2
DMm

4
g,n

)
1

(−4m2
DM+m2

g,n+m2
r,m)

2

×
√(

1 +
m2
g,n−m2

r,m

4m2
DM

)2
− m2

g,n

m2
DM

,

where the value of Agr is given by:





AgrS =
(
m2
g,n −m2

r,m

)2 [−2m2
r,m

(
4m2

DM +m2
g,n

)
+
(
m2
g,n − 4m2

DM

)
2 +m4

r,m

]2
,

Agrχ = (2mDM −mg,n −mr,m) (2mDM +mg,n −mr,m)

× (2mDM −mg,n +mr,m) (2mDM +mg,n +mr,m)

×
[
8m2

DM

(
7m2

g,n − 3m2
r,m

)
+ 48m4

DM + 3
(
m2
g,n −m2

r,m

)2]
,

AgrV = 4096m10
DM

(
3m2

g,n − 7m2
r,m

)
+ 256m8

DM

(
−106m2

g,nm
2
r,m + 93m4

g,n + 53m4
r,m

)

+ 256m6
DM

(
−63m4

g,nm
2
r,m + 57m2

g,nm
4
r,m + 67m6

g,n − 13m6
r,m

)

+ 64m4
DM

(
m2
g,n −m2

r,m

)
2
(
−34m2

g,nm
2
r,m + 17m4

g,n + 7m4
r,m

)

+ 32m2
DM

(
m2
g,n −m2

r,m

)
4
(
4m2

g,n −m2
r,m

)
+ 24576m12

DM +
(
m2
g,n −m2

r,m

)
6 .

(D.43)

In all of these expressions we have used (mg,n,Λg,n) and (mr,m,Λr,m) for the mass and

coupling of the n-th KK-graviton and of the m-th radion/KK-dilaton, respectively. Notice

that for this particular channel it does not exists a four-legs vertex.
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1 Introduction

The nature of Dark Matter (DM) and its interactions remain an open question in our effort
to understand the Universe. Up to now, the only evidence about the existence of such
dark component is via its gravitational effects. It could well be that DM has no other
kind of interaction and, thus, it will be undetectable by current and future particle physics
experiments. Moreover, in such a case the reheating temperature needs to be quite high
(typically & 1016 GeV for DM mass of 10 TeV) in order to generate the observed DM relic
abundance via a purely gravitational interaction [1–4], given the value of the Planck mass,
mP ∼ 1019 GeV, which determines its strength.

This is true, however, only if we live in a four-dimensional space-time: in extra-
dimensional scenarios, the gravitational interaction may be enhanced, either because the
fundamental Planck scale in D dimensions is mD � mP (as in the case of Large Extra
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Dimensions (LED) [5–9]), or due to a warping of the space-time which induces an effective
Planck scale Λ in the four-dimensional brane such that Λ � mP (as in Randall-Sundrum
models (RS) [10, 11]), or by a mixture of the two mechanisms (as it occurs in the more
recent ClockWork/Linear Dilaton (CW/LD) model [12–15]). As it is well known, this fea-
ture of the extra-dimensional scenarios has been advocated as a solution to the so-called
hierarchy problem, i.e., the huge hierarchy between the electroweak scale, ΛEW ∼ 250 GeV,
and the Planck scale, which would generate corrections of order of the Planck scale to the
Higgs mass. These corrections would destabilize the electroweak scale unless either an enor-
mous amount of fine-tuning is present or the Standard Model (SM) is the ultimate theory,
which seems unlikely given the questions that are not explained within this framework (for
instance, neutrino masses and baryogenesis, besides DM itself). In the extra-dimensional
models mentioned above, the large hierarchy between the electroweak scale and the funda-
mental (or effective) Planck scale is eliminated, since the latter can be as low as O(TeV).

As a consequence of such lower Planck scale in extra-dimensional models (either funda-
mental or effective), the gravitational interaction is enhanced, and a DM particle with just
such interaction could become a WIMP, that is, a stable or cosmologically long-lived weakly
interactive massive particle, with mass typically in the range 100 - 1000 GeV, and whose
relic abundance is set via the freeze-out mechanism. This possibility has been thoroughly
studied in the framework of the RS scenario [16–25] and in a series of recent papers that
study generic spin-2 mediators [26–29]. It has also been considered in the context of the
CW/LD model [30].

In this work we again explore the RS framework for DM, yet analyzing a different
scenario in which the relic abundance of DM is set via the so-called DM freeze-in production
mechanism [31–35] (for a recent review see Ref. [36]). In this case DM is a feebly interacting
massive particle (FIMP), so that it never reaches thermal equilibrium with the SM thermal
bath, and as a consequence its abundance remains smaller than the equilibrium one along
the history of the Universe. More specifically, here we focus on the sub-case of ultraviolet
(UV) freeze-in [37] for which the temperature of the thermal bath is always lower than the
scale of new physics, which in our model is the effective Planck scale in the 4-dimensional
brane, Λ, at which the gravitons become strongly interacting.

In our setup we assume that both the SM and the DM particles are localized in the same
4-dimensional brane, and by definiteness we consider real scalar DM, only. We relax the
request for the RS model to solve the hierarchy problem, and allow Λ to vary in a wide range
(Λ ∈ [102, 1016] GeV) to fully explore the parameter space that could lead to the correct DM
relic abundance via freeze-in from a purely phenomenological perspective. In order to have
a consistent model, we stabilize the size of the extra-dimension by using the Goldberger-
Wise mechanism [38], which generates the required potential for the four-dimensional radion
field. Then, besides the interaction through Kaluza-Klein (KK) gravitons, we also take into
account that the SM and DM species can interact with the radion. We consider both SM
particle annihilation into DM through KK-gravitons and the radion (direct freeze-in), as
well as production of DM from out-of-equilibrium KK-gravitons and the radion (sequential
freeze-in). We solve numerically the relevant Boltzmann equations in all cases and also
provide analytical approximations for the final DM relic abundance in different ranges of
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the temperature, useful to understand our main results. We always work within the sudden
decay approximation for the inflaton, and shortly comment on how our findings would be
affected by a non-instantaneous inflaton decay.

We vary the DM mass, radion and KK-graviton masses and the scale Λ, determining
the reheating temperature Trh which leads to the correct DM relic abundance in each case,
within the validity range of our effective four-dimensional theory. We find that in this
scenario the observed DM density can be generated even with a reheating temperature
lower than the electroweak scale. Recall that the only constraint on Trh is that it has to be
higher than the Big Bang Nucleosynthesis temperature of around a few MeV [39–44].

The outline of the paper is as follows: in Sec. 2 we briefly remind the main features of
the RS scenario; Sec. 3 is devoted to the analysis of DM production via freeze-in within our
model, both via direct and sequential freeze-in; finally, in Sec. 4 we present our conclusions.
Some details on the RS scenario are given in Apps. A and B, whereas the relevant interaction
rates used in our calculations are collected in App. C.

2 Theoretical Framework

In this Section, we shortly remind some aspects of the Warped Extra-Dimension scenario
(also called Randall-Sundrum model [10]) relevant in the rest of the paper. Some further
details on RS scenarios are given in Apps. A and B.

The popular Randall-Sundrum scenario (from now on RS or RS1 [10], to be distin-
guished from the scenario called RS2 [11]) consider a non-factorizable 5-dimensional metric
in the form:

ds2 = e−2σ ηµν dx
µdxν − r2

c dy
2 , (2.1)

where σ = k rc |y| and the signature of the metric is (+,−,−,−,−). In this scenario, k
is the curvature along the 5th-dimension and it is O (MP ). The length-scale rc, on the
other hand, is related to the size of the extra-dimension: we only consider a slice of the
space-time between two branes located conventionally at the two fixed-points of an orbifold,
y = 0 (the so-called UV-brane) and y = π (the IR-brane). The 5-dimensional space-time is
a slice of AdS5 and the exponential factor that multiplies theM4 Minkowski 4-dimensional
space-time is called the “warp factor”.

The action in 5D is:
S = Sgravity + SIR + SUV (2.2)

where
Sgravity =

16π

M3
5

∫
d4x

∫ π

0
rc dy

√
G(5)

[
R(5) − 2Λ5

]
, (2.3)

with M5 the fundamental gravitational scale, G(5) and R(5) the 5-dimensional metric and
Ricci scalar, respectively, and Λ5 the 5-dimensional cosmological constant. As usual, we
consider capital Latin indices M , N to run over the 5 dimensions and Greek indices µ, ν
only over 4 dimensions. The reduced Planck mass is related to the fundamental scale M5

as:

M2
P =

M3
5

k

(
1− e−2k π rc

)
, (2.4)
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where MP = mP /
√

8π ' 2.435× 1018 GeV, being mP the Planck mass.
We consider for the two brane actions the following expressions:

SIR =

∫
d4x

√
−g(4)

[
−f4

IR + LSM + LDM

]
(2.5)

and
SUV =

∫
d4x

√
−g(4)

[
−f4

UV + . . .
]
, (2.6)

where fIR, fUV are the brane tensions for the two branes, LSM and LDM the SM and DM
Lagrangians densities, respectively. Notice that in 4-dimensions in general ηµν is replaced
by g

(4)
µν , the 4-dimensional induced metric on the brane. Dots in eq. (2.6) stand for any

possible new physics on the UV brane and, thus, decoupled from us.
In RS scenarios, in order to achieve the metric in eq. (2.1) as a classical solution of the

Einstein equations, the brane-tension terms in SUV and SIR are chosen such as to cancel the
5-dimensional cosmological constant, f4

IR = −f4
UV =

√
−24M3

5 Λ5. Throughout this paper,
we consider all the SM and DM fields localized on the IR-brane, whereas on the UV-brane
we could have any other physics that is Planck-suppressed. We assume that DM particles
only interact with the SM particles gravitationally.1

Alternative DM spectra (with particles of spin higher than zero or with several parti-
cles) will not be studied here. Notice that, in 4-dimensions, the gravitational interactions
would be enormously suppressed by powers of the Planck mass. However, in an extra-
dimensional scenario, the gravitational interaction is actually enhanced: on the IR–brane,
in fact, the effective gravitational coupling is Λ = MP exp (−k π rc), due to the rescaling
factor

√
G(5)/

√
−g(4). It is easy to see that Λ � MP even for moderate choices of σ. In

particular, for σ = k rc ' 10 the RS scenario can address the hierarchy problem. From a
purely phenomenological perspective, here we will work with Λ = [102, 1016] GeV, relaxing
the requirement that the RS model should provide a solution to the hierarchy problem.

The Kaluza-Klein decomposition of 5-dimensional fields in a RS scenario is shortly
reviewed in App. A. The coupling between KK-gravitons and brane matter (being hMN the
5D graviton field and hµν its 4D component) is:

L = − 1

M
3/2
5

Tµν(x)hµν(x, y = π) = − 1

M
3/2
5

Tµν(x)
∑

n=0

hnµν
χn√
rc
,

= − 1

MP
Tµν(x)h0

µν(x)− 1

Λ

∑

n=1

Tµν(x)hnµν(x) , (2.7)

from which is clear that the coupling between KK-graviton modes with n 6= 0 is suppressed
by the effective scale Λ and not by the Planck scale.

Stabilizing the size of the extra-dimension to be y = π rc is not easy. Long ago it was
shown that bosonic quantum loops have a net effect on the border of the extra-dimension
such that the extra-dimension itself should shrink to a point [45–47]. This feature, in a flat
extra-dimension, can only be compensated by fermionic quantum loops and, usually, some

1If the DM particle is a scalar singlet under the SM gauge group, it will also interact with the SM
through its mixing with the Higgs boson.

– 4 –

Kaluza-Klein FIMP Dark Matter in Warped Extra-Dimensions 281



supersymmetric framework is invoked to stabilize the radius of the extra-dimension (see,
e.g., Ref. [48]). A popular mechanism implemented in RS models to stabilize the size of the
extra-dimension was proposed in Refs. [38, 49] and can be summarized as follows: if we add
a bulk scalar field S with a scalar potential V (S) and some ad hoc localized potential terms,
δ(y = 0)VUV(S) and δ(y = π rc)VIR(S), it is possible to generate an effective potential V (ϕ)

for the four-dimensional field ϕ = f exp (−k π T ) (with f =
√

24M3
5 /k and 〈T 〉 = rc). The

minimum of this potential can yield the desired value of krc without extreme fine-tuning of
the parameters.

The S field will generically mix with the graviscalar G(5)
55 (notice that the KK-tower of

the graviscalar is absent from the low-energy spectrum, as they are eaten by the KK-tower
of graviphotons to get a mass due to the spontaneous breaking of translational invariance
caused by the presence of one or more branes). On the other hand, the KK-tower of the
field S is present, but heavy (see Ref. [50]). The only light field present in the spectrum is,
then, a combination of the graviscalar zero-mode and the S zero-mode. This field is usually
called the radion, r. Its mass can be obtained from the effective potential V (ϕ) and is given
by m2

ϕ = k2v2
v/3M

3
5 ε

2 exp(−2π k rc), where vv is the value of S at the visible brane and
ε = m2/4k2 (with m the mass of the field S). Quite generally ε � 1 and, therefore, the
mass of the radion can be much smaller than the first KK-graviton mass.

The radion, as for the KK-graviton case, interacts with both the DM and SM particles.
It couples with matter through the trace of the energy-momentum tensor T [16]. Massless
gauge fields do not contribute to the trace of the energy-momentum tensor, but effective
couplings are generated from two different sources: quarks and W boson loops and the
trace anomaly [51]. Thus the radion Lagrangian takes the following form [50, 52]:

Lr =
1

2
(∂µr)(∂

µr)− 1

2
m2
rr

2 +
1√
6Λ

rT +
αEMCEM

8π
√

6Λ
rFµνF

µν +
αSC3

8π
√

6Λ
r
∑

a

F aµνF
aµν , (2.8)

where Fµν , F aµν are the Maxwell and SU(3)c Yang-Mills tensors, respectively. Further
details on the radion lagrangian can be found in App. B.

Possible couplings between KK-modes of the bulk scalar field S, the DM and SM fields
are usually allowed, in the absence of some ad hoc bulk symmetry to forbid them. In the
rest of the paper we will not include them, since we want to focus on just gravitational
mediators (radion and KK-gravitons) between the SM and the dark particles.

Finally, we want to comment about the AdS/CFT correspondence, which suggests a
duality between strongly coupled conformal field theories in 4D and weakly coupled gravity
in 5D (see, for example, Ref. [53] and refs. therein), also called holography. Within this
framework, the extra-dimensional model described above can be interpreted as a strongly
interacting theory in which the particles localized at the IR-brane are bound states, while the
presence of gravity mediators (KK-gravitons and radion) is a consequence of the conformal
symmetry of the composite sector, spontaneously broken by the strong dynamics. The
radion is thought to be the Goldstone boson of dilatation symmetry in 4D, i.e., the dilaton,
although the dual interpretation of the massive gravitons is not so well understood [16]. The
scale Λ in the holographic dual corresponds to the scale of conformal symmetry breaking
in 4D.
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3 Dark Matter Production in the Early Universe

In Refs. [24, 30] some of us have studied how to reach the observed DM relic abundance in
the freeze-out scenario. Freeze-out occurs if the interactions between DM and SM particles
are strong enough to bring them into chemical equilibrium. However, if the interaction rates
between the visible and the dark sectors were never strong enough, the observed DM relic
abundance could still have been produced in the early Universe by non-thermal processes.
This is what occurs in the so-called freeze-in mechanism.

The evolution of the DM, radion and KK-gravitons number densities (n, nr and nK
respectively) is given by a system of coupled Boltzmann equations:

dn

dt
+ 3H n = −γDM→SM

[( n

neq

)2
− 1

]
+ γdKK→DM

[
nK
neq
K

−
( n

neq

)2
]
, (3.1)

dnr
dt

+ 3H nr = −γr→SM

[(
nr
neq
r

)2

− 1

]
− γdr→DM

[
nr
neq
r
−
( n

neq

)2
]

−γdr→SM

[
nr
neq
r
− 1

]
, (3.2)

dnK
dt

+ 3H nK = −γKK→SM

[(
nK
neq
K

)2

− 1

]
− γdKK→DM

[
nK
neq
K

−
( n

neq

)2
]

−γdKK→SM

[
nK
neq
K

− 1

]
, (3.3)

where H corresponds to the Hubble expansion rate, and neq
i are the number densities at

equilibrium of the species i. Interactions that only involve bulk particles, namely KK-
gravitons and radions, both in the initial and final states are subdominant due to a strong
suppression of 1/Λ8. The quantity γΦ→SM is the interaction rate density for the 2-to-2
annihilations of a field Φ (either DM, KK-graviton or radion) into SM particles. Similarly,
γdΦ→DM and γdΦ→SM are the interaction rate densities for the 2-body decay of a field Φ into
DM and SM particles, respectively. Let us notice that in this extra-dimensional picture we
need a Boltzmann equation like eq. (3.6) for every KK-mode.

A standard way to rewrite the Boltzmann equations is using the dimensionless yield Y ≡
n/s, with s the SM entropy density (not to be confused with the Mandelstam variable s).
The SM entropy density is defined, as a function of the temperature, as s(T ) = 2π2

45 g?s(T )T 3

(where g?s(T ) is the effective number of relativistic degrees of freedom [54]). Equations (3.1)
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to (3.3) can therefore be rewritten as

dY

dT
= −γDM→SM

H sT

[(
Y

Y eq

)2

− 1

]
+
γdKK→DM
H sT

[
YK
Y eq
K

−
(
Y

Y eq

)2
]
, (3.4)

dYr
dT

= −γr→SM

H sT

[(
Yr
Y eq
r

)2

− 1

]
− γdr→DM

H sT

[
Yr
Y eq
r
−
(
Y

Y eq

)2
]
− γdr→SM
H sT

[
Yr
Y eq
r
− 1

]
,(3.5)

dYK
dT

= −γKK→SM

H sT

[(
YK
Y eq
K

)2

− 1

]
− γdKK→DM

H sT

[
YK
Y eq
K

−
(
Y

Y eq

)2
]

−γ
d
KK→SM
H sT

[
YK
Y eq
K

− 1

]
. (3.6)

In the freeze-in paradigm DM never gets in thermal equilibrium with the rest of the SM
particles of the primordial plasma. It is usually assumed that after inflation the abundance
of DM was negligible, and slowly produced via interaction between the SM particles. Along
the evolution of the Universe, the DM abundance was generated via two main processes:

1. Direct freeze-in. The DM abundance is generated directly by the annihilation of SM
particles via an s-channel exchange of KK-gravitons or a radion.

2. Sequential freeze-in or freeze-in from the dark sector. The DM abundance is gener-
ated by decays of KK-gravitons or radions, previously produced by annihilations or
inverse decays of SM particles via direct freeze-in. This scenario has been doubted
“sequential freeze-in” [55].

Another production channel corresponds to the case in which the DM abundance is set
entirely in the hidden sector by 4-to-2 interactions [56–58]. However, such a possibility is
sub-dominant due to a strong suppression by higher orders of the scale Λ. It has been
also shown that, independently of the nature of DM, it is possible to populate the relic
abundance through a freeze-in mechanism via the exchange of a massless spin-2 graviton [1–
4]. However, for this mechanism to be dominant, reheating temperatures Trh of the order
of 1013 GeV for a DM mass of 1 MeV are required. We will see in the following that, in
this warped extra-dimensional setup (with KK-gravitons and the radion as additional fields
playing the freeze-in mechanism) a much wider range of Trh is indeed possible.

These two main mechanisms previously mentioned, i.e. the direct and the sequential
freeze-in, will be described in detail in the following subsections.

3.1 Direct Freeze-in

As it was briefly sketched above, in the case of direct freeze-in the DM abundance n is
generated by the annihilation of SM particles via an s-channel exchange of KK-gravitons
or a radion.2 If the production cross-section is small enough to keep DM out of chemical

2Another possibility corresponds to the interactions mediated by Higgs bosons. However, we focus here
on the extra-dimensional portal ignoring the Higgs one. This can be reached by assuming a quartic coupling
λhχ between the Higgs and the DM such as λhχ � 10−10 [59, 60].
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Figure 1. Black solid lines represent the DM annihilation cross section (left panel) and interaction
rate density (right panel) for mr = 103 GeV, m1 = 107 GeV and Λ = 109 GeV. Colored lines depict
the analytical approximations of eq. (3.13), where red and blue stand for interactions dominated
by the exchange of a radion or a KK-gravitons, respectively. The red-shaded regions on the right
of both panels are beyond our EFT approach.

equilibrium with the SM bath, and the evolution of the DM abundance n (or of the yield
Y ) is largely dominated by the interaction rate density γDM→SM, eqs. (3.4) to (3.6) can be
simplified to:

dY

dT
' γDM→SM

H sT

[(
Y

Y eq

)2

− 1

]
' −γDM→SM

H sT
. (3.7)

In a Universe dominated by SM radiation the Hubble expansion rate is H2 = ρSM
3M2

P
, where

the SM energy density is ρSM(T ) = π2

30 g?(T )T 4 and g?(T ) is the effective numbers of
relativistic degrees of freedom for the SM radiation [54]. Then, eq. (3.7) becomes:

Y (T ) ' 135

2π3 g?s

√
10

g?
MP

∫ T

Trh

γDM→SM(T )

T 6
dT , (3.8)

where Trh is the reheating temperature which, in the approximation of a sudden decay of
the inflaton, corresponds to the maximal temperature reached by the SM thermal bath. In
order to get eq. (3.8) a vanishing initial DM abundance at T = Trh was assumed and the
temperature dependence of g?(T ) and g?s(T ) has been neglected. The asymptotic values
g? and g?s correspond to the SM values for T � mt, g? = g?s = 106.75 (which take into
account all SM degrees of freedom). Since this approximation is reliable for temperatures
above the QCD phase transition, we explore the range Trh & 1 GeV.

The interaction rate density γDM→SM can be computed from the total DM annihilation
cross-section into SM states σDM→SM which, in the limit where the DM and SM particle
masses are negligible, can be expressed as:3

σDM→SM(s) ' 49

1440π

s3

Λ4

∣∣∣∣∣
∞∑

n=1

1

s−m2
n + imn Γn

∣∣∣∣∣

2

+
s3

288πΛ4

1

(s−m2
r)

2 +m2
r Γ2

r

, (3.9)

3The details of the individual cross-sections are reported in Appendix C.1.
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where the two terms correspond to the exchange of KK-gravitons and the radion, respec-
tively. Left panel of Fig. 1 shows with a solid black line an example of the DM annihila-
tion cross section σDM→SM for a particular point in the parameter space, mr = 103 GeV,
m1 = 107 GeV and Λ = 109 GeV. Notice that this cross-section is largely independent of
the DM mass, mχ, as long as m2

χ � s. Then, also the interaction rate density becomes
independent of mχ provided mχ � T . Therefore, in the following we will consider as a
benchmark point mχ = 1 MeV to illustrate our results, but keeping in mind that they can
be extended to a wide range of DM masses, typically between the keV and PeV scale. The
first peak at s = m2

r corresponds to the resonant exchange of a radion, whereas the follow-
ing well-separated peaks correspond to the lightest KK-graviton modes. The non-trivial
behavior for s � m2

1 is due to the sum over poles and interferences of many different KK
mediators. For very large values of the KK-number n, the widths of the KK-graviton reso-
nances become comparable to their mass gap, Γn(

√
s) ' ∆m. This happens approximately

for:

s & Λ4/3

(
240π2m1

73x1

)2/3

, (3.10)

as at large n the KK-modes separation is a constant, ∆m ' m1/x1, see eq. (A.6). In this
regime the resonances overlap and become individually indistinguishable. They eventually
merge into one single contribution to the cross-section, as it can be seen in the rightmost
region of Fig. 1 (left). Finally, the red-shaded region corresponding to s > Λ2 is beyond
our EFT approach, being the center-of-mass energy of the process larger than the effective
scale of the theory.

In order to solve eq. (3.8), we need to compute the interaction rate density γDM→SM

as a function of the temperature. In general, for the process where two particles (i, j)
annihilate into two states (k, l), the interaction rate density i+ j → k + l is defined as:

γ(T ) =
T

64π4

∫ ∞

smin

ds
√
s σR(s)K1

(√
s

T

)
, (3.11)

where smin ≡ max
[
(mi +mj)

2, (mk +ml)
2
]
, σR is the reduced cross-section summed over

all the degrees of freedom of the initial and final states, and K1 is the modified Bessel
function. σR corresponds to the total cross-section σ(s) without the flux factor, and can be
written as:

σR(s) = 2

[
s− (mi +mj)

2
] [
s− (mi −mj)

2
]

s
σ(s) . (3.12)

Several useful approximations can be implemented for different ranges of T , such that
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the interaction rate density γDM→SM for the DM annihilation into SM states becomes:

γDM→SM(T ) '





(
1

Λ4m4
r

)
T 12 for T � mr

2 ,

10−6
(

m8
r

Λ4 Γr

)
T K1(mrT ) for T ' mr

2 ,

3× 10−4
(

1
Λ4

)
T 8 for mr

2 � T � m1
2 ,

10−5
(

m8
1

Λ4 Γ1

)
T K1

(
m1
T

)
for T ' m1

2 ,

7× 10−4
(

m2
1

Λ4 Γ1

)
T 7 for T � m1

2 .

(3.13)

The right panel of Fig. 1 shows the DM interaction rate density for mr = 103 GeV, m1 =

107 GeV and Λ = 109 GeV with a black solid line, whose behavior as a function of the
temperature can be easily understood using the approximations in eq. (3.13):

• At low temperatures (T � mr/2) all the mediators are very heavy and decouple from
the low-energy theory; the rate presents a strong temperature dependence, γ ∝ T 12,
represented by a red-dotted straight line in the plot.

• When T ' mr/2, the resonant exchange of a radion dominates and γ ∝ T K1(mr/T ).
This corresponds to the first bump in the plot, again coinciding with a red-dotted
(curved) line.

• In the intermediate regime, mr/2 � T � m1/2, the temperature is higher than the
radion mass but still smaller than all KK states. The interaction is, thus, driven by
the exchange of the light radion, with γ ∝ T 8. This is shown by the second straight
red-dotted line in the plot, with a slope smaller than the first one (as it is proportional
to T 8, compared to T 12 in the first region).

• We reach then the region in which the KK-gravitons dominance takes over: first, at
the peak of the first KK-graviton mode (T ' m1/2) for which γ ∝ T K1(m1/T ),
corresponding to the second bump in the plot.

• Eventually, when the increase of the temperature makes heavier KK-graviton states
to have a sizable contributions to the rate, with a constructive interference giving a
γ ∝ T 7 behavior.

We can see that all the different regimes in T follow extremely well the curved and straight
blue- and red-dotted lines, corresponding to the approximate behaviors depicted in eq. (3.13).
As for the left panel, the red-shaded region corresponding to T > Λ is beyond our EFT
approach.

Notice that a big hierarchy between mr and m1 was chosen in order to avoid an overlap
between the two bumps, such that the five regimes in eq. (3.13) can be clearly seen in the
plot. For generic choices in the parameter space, overlap between regions may occur.
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Using the approximated expressions of γDM→SM from eq. (3.13), the Boltzmann equa-
tion (3.8) can be analytically solved, finding for the different regions in T :

Y0 '





3×10−1

g?s

√
10
g?

(
MP
m4
r Λ4

)
T 7

rh for Trh � mr/2 ,

6.7×10−7

g?s

√
10
g?

(
MP m

9/2
r

Λ4Γr

) (
4m2

r+10mr Trh+15T 2
rh

T
5/2
rh

)
e
−mr
Trh for Trh ' mr/2 ,

2×10−4

g?s

√
10
g?

(
MP
Λ4

)
T 3

rh for mr/2� Trh � m1/2 ,

6.7×10−6

g?s

√
10
g?

(
MP m

9/2
1

Λ4Γ1

) (
4m2

1+10m1 Trh+15T 2
rh

T
5/2
rh

)
e
−m1
Trh for Trh ' m1/2 ,

8×10−4

g?s

√
10
g?

(
MP m

2
1

Λ4 Γ1

)
T 2

rh for Trh � m1/2 ,

(3.14)
where Y0 corresponds to the asymptotic value of Y (T ) for T � Trh. The final DM yield
in eq. (3.14) has a strong dependence on Trh, characteristic of the UV freeze-in production
mechanism.

Finally, let us emphasize that for the previous analysis to be valid, the DM has to be
out of chemical equilibrium with the SM bath. One needs to guarantee, therefore, that the
interaction rate density be γDM→SM � neqH, which translates into:

Trh �





0.7
( g?

10

)1/14
(

Λ4m4
r

MP

)1/7
for Trh � mr/2 ,

−2
7m1/W−1

[
−7.8

(√
g?
10

Λ4 Γr
m4
rMP

)2/7
]

for Trh ' mr/2 ,

7.5
( g?

10

)1/6 ( Λ4

MP

)1/3
for mr/2� Trh � m1/2 ,

−2
7m1/W−1

[
−4.3

(√
g?
10

Λ4 Γ1

m4
1MP

)2/7
]

for Trh ' m1/2 ,

13.5
( g?

10

)1/4√ Γ1
MP

Λ2

m1
for Trh � m1/2 ,

(3.15)

where W−1[x] corresponds to the −1 branch of the Lambert W function computed at x.
Fig. 2 shows the reheating temperature Trh required to reproduce the experimentally

observed DM abundance, Ωχh
2, for a fixed value of the DM mass, mχ = 1 MeV. In the left

panel, we show Trh as a function of the first KK-graviton mass, m1, for fixed Λ = 1011 GeV;
in the right panel, we show Trh as a function of Λ for fixed m1 = 105 GeV. The radion
mass has been chosen as mr = m1/103 (therefore, it is a variable parameter in the left
panel, whereas it is a fixed one in the right panel). In order to compute Trh, the DM
yield has been held fixed so that mχ Y0 = Ωχh

2 1
s0

ρc
h2
' 4.3 × 10−10 GeV, where ρc '

1.1 × 10−5 h2 GeV/cm3 is the critical energy density, s0 ' 2.9 × 103 cm−3 is the entropy
density at present and Ωχh

2 ' 0.12 [61]. The gray-shaded areas are the regions where
chemical equilibrium with the SM is reached and, therefore, where the freeze-in cannot
occur and the analysis performed here is not valid. The black-dotted lines, representing
Trh = m1/2 and Trh = mr/2, have been added for reference. Eventually, the red-shaded
areas (m1 > Λ) represent the regions for which the EFT approach breaks down.
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Figure 2. Direct freeze-in: Reheating temperature required to reproduce the experimentally ob-
served DM abundance, Ωχh

2, formχ = 1 MeV. Left panel: Trh as a function ofm1 for Λ = 1011 GeV;
right panel: Trh as a function of Λ for m1 = 105 GeV. In both panels, the radion mass is
mr = m1/103. The gray-shaded areas are the regions where chemical equilibrium with the SM
is reached (and freeze-in does not occur), whereas the red-shaded areas are the regions where
m1 > Λ and the EFT approach breaks down. Eventually, the two black-dotted lines give a visual
understanding of the different regions in eq. (3.14).

For the sake of completeness, notice that the s-channel exchange of a (massless) graviton
gives an irreducible contribution to the total DM relic abundance [1–4]. However, due to the
large hierarchy Λ�MP , the contribution of the massless graviton is typically subdominant
and can be disregarded. The corresponding interaction rate density is given by:

γDM→SM ' 1.9× 10−4 T
8

M4
P

, (3.16)

and, therefore, its contribution to the DM yield is:

Y0 '
1.4× 10−4

g?s

√
10

g?

(
Trh

MP

)3

. (3.17)

We stress that this expression is a function of Trh, only, being naturally independent from
Λ and the masses of the KK-gravitons and the radion. This contribution, indeed, comes
from 4-dimensional gravitons or, in the case considered here, from the long distance (low-
energy) limit of 5-dimensional gravitons (corresponding to the KK-graviton zero-mode). For
example, for a DM mass mχ = 10 TeV it would only be relevant for reheating temperatures
Trh ≥ 1016 GeV, i.e. well above the range of Trh depicted in Fig. 2.

3.2 Sequential Freeze-in

In this case the DM abundance comes from decays of KK-gravitons or radions, previously
produced via the freeze-in mechanism. Such states are mainly generated by 2-to-2 annihi-
lations or inverse decays (2-to-1) of SM particles. We will now review one by one the two
possibilities.
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3.2.1 Via Annihilations

KK-gravitons and radions with masses below the reheating temperature can be created on-
shell in the early Universe via annihilations of two SM particles by the freeze-in mechanism.
Once created, their decay products may contribute to the total DM relic abundance. In
fact, if the production cross-section is small enough to keep KK-gravitons and radions out
of chemical equilibrium with the SM bath, and the evolution of the DM yield is largely
dominated by their decays, eqs. (3.4) to (3.6) can be simplified to:

dY

dT
' γKK→SM

H sT

[(
YK
Y eq
K

)2

− 1

]
BR(KK→DM) +

γr→SM

H sT

[(
Yr
Y eq
r

)2

− 1

]
BR(r→DM)

' − 1

H sT
[γKK→SM BR(KK→DM) + γr→SM BR(r→DM)] , (3.18)

where the rates are:

γKK→SM(T ) ' 4.8× 104 T 16

Λ4m8
n

(for the nth KK-graviton) , (3.19)

γr→SM(T ) ' 2.2× 10−4T
8

Λ4
. (3.20)

Notice that the m−8
n factor in γKK → SM (and, hence, the strong temperature dependence)

comes from the polarization tensor of the KK-gravitons (as it was shown in Refs. [16, 24]
for spin-2 massive particles). Such a suppression is not present in the case of radions (that
have spin 0). The branching ratios into DM particles are:

BR(KK→DM) ' zn
zn + 256

, (3.21)

BR(r→DM) ' z

z + 37
, (3.22)

where

zn ≡
(

1− 4
m2
χ

m2
n

)5/2

, (3.23)

z ≡
√

1− 4
m2
χ

m2
r

(
1 + 2

m2
χ

m2
r

)2

. (3.24)

The explicit expressions for annihilation rates and decay widths for KK-gravitons and the
radion can be found in Appendix C.

Using a similar procedure to the one used in eq. (3.8) and (3.18), it is possible to find
the following analytical solution:

Y0 '
9.5× 103

g?s

√
10

g?

MP

Λ4m8
1

(
z1

z1 + 256

)
T 11

rh +
1.6× 10−4

g?s

√
10

g?

MP

Λ4

(
z

z + 37

)
T 3

rh . (3.25)

Notice that in eq. (3.25) only the lightest KK-graviton is taken into account. This is a
consequence of the strong suppression with the KK-graviton mass mn in eq. (3.19). Even if
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Figure 3. Sequential freeze-in via annihilations: Reheating temperature required to reproduce the
experimentally observed DM abundance, Ωχh

2, for mχ = 1 MeV. Left panel: Trh as a function of
m1 for Λ = 1011 GeV; right panel: Trh as a function of Λ for m1 = 105 GeV. In both panels, the
radion mass is mr = m1/103. The gray-shaded areas are the regions where chemical equilibrium
with the SM is reached (and freeze-in does not occur), whereas the red-shaded areas are the regions
where m1 > Λ and the EFT approach breaks down. Eventually, the two black-dotted lines give a
visual understanding of the different regions in eq. (3.25).

all of the KK-gravitons do contribute to the total DM density, the only relevant contribution
is given by the lightest state. For the previous analysis to be valid, the KK-gravitons and
the radion must be out of chemical equilibrium with the SM bath, which corresponds to
the conditions γKK→SM � neq

K H and γr→SM � neq
r H. The reheating temperature in this

limit satisfies the tightest of the following conditions (depending on the mass of the lightest
KK-graviton, m1):

Trh � min

(
0.3

[√
g?
10

Λ4m8
1

MP

]1/11

; 8.3

[√
g?
10

Λ4

MP

]1/3
)
. (3.26)

Fig. 3 shows the reheating temperature Trh required to reproduce the observed DM
abundance for a fixed value of the DM mass, mχ = 1 MeV. As in Fig. 2, in the left panel
we show Trh as a function of the first KK-graviton mass, m1, for fixed Λ = 1011 GeV; in the
right panel, we show Trh as a function of Λ for fixed m1 = 105 GeV. The relation between
the radion mass mr and the lightest KK-graviton mass, m1 is, again, mr = m1/103. The
black-dotted lines indicate Trh = m1 and Trh = mr. Eventually, the gray- and red-shaded
areas are the regions where chemical equilibrium with the SM is reached, and where the
EFT approach breaks down (as m1 > Λ), respectively.

For Trh < mr, on-shell KK gravitons and radions are not produced in the early Universe,
and therefore this mechanism can not account for the DM relic abundance. If mr < Trh <

m1, only radions are created. In this region Trh is independent on m1 (and therefore on mr)
due to the fact that the interaction rate in eq. (3.20) does not depend on mr, as it can be
seen in the left panel of Fig. 3. Now, if Trh > m1 the KK-gravitons are also produced and
their decay dominate the DM production. The reheating temperature needed to reproduce
the observed value of Ωχh

2 in this region is very near to the border of the gray-shaded
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area for which the DM is in equilibrium with SM particles and freeze-in does not occurs
(remember, though, the log-log scale of the plots).

3.2.2 Via Inverse Decays

Alternatively , frozen-in KK-gravitons and radions are also created on-shell via inverse
decays of SM particles (a 2-to-1 process), and subsequently they can decay into DM par-
ticles. Within the same approximations as in the previous subsection, i.e., assuming that
KK-gravitons and radions are produced out of chemical equilibrium from the SM bath via
inverse-decays, and the evolution of the DM yield is largely dominated by their decays,
eqs. (3.4) to (3.6) can be simplified to:

dY

dT
' γdKK→SM

H sT

[
YK
Y eq
K

− 1

]
BR(KK→DM) +

γdr→SM
H sT

[
Yr
Y eq
r
− 1

]
BR(r→DM)

' − 1

H sT

[
γdKK→SM BR(KK→DM) + γdr→SM BR(r→DM)

]
, (3.27)

where the interaction rate densities for decays are defined by:

γd(T ) =
m2 T

2π2
K1

(m
T

)
Γ , (3.28)

with Γ the decay width obtained by summing (rather than averaging) over the degrees of
freedom of the decaying particle. Using eqs. (C.19) and (C.21) we get, then:

γdKK→SM '
73

480π3

m5
n T

Λ2
K1

(mn

T

)
, (3.29)

γdr→SM '
37

384π3

m5
r T

Λ2
K1

(mr

T

)
. (3.30)

Eq. (3.27) admits the following approximate analytical solution:

Y0 '
∑

n

5.6× 10−2

g?s

√
10

g?

MP mn

Λ2

(
zn

zn + 256

)
+

3.5× 10−2

g?s

√
10

g?

MP mr

Λ2

(
z

z + 37

)
.

(3.31)
In this case, most of the DM production happens at T ' mn/2.5 and T ' mr/2.5 for KK-
gravitons and radions, respectively. However, the sum over KK-modes should be performed
up to KK-graviton states with mass below the reheating temperature, mn < Trh. For this
reason, the total contribution due to the decay of KK-gravitons explicitly depends on Trh

(whereas the second term in eq. (3.31) does not depend on it):

Y0 '
2.2× 10−4

g?s

√
10

g?

MP T
2
rh

m1 Λ2
+

3.5× 10−2

g?s

√
10

g?

MP mr

Λ2

(
z

z + 37

)
. (3.32)

Again, for the KK-gravitons and the radions to be out of chemical equilibrium with the
SM bath one needs to guarantee that γdKK→SM � neq

K H and γdr→SM � neq
r H. The reheating

temperature in this limit satisfies the tightest of the following conditions (depending on the
mass of the lightest KK-graviton, m1):

Trh � min

(
0.34

[√
10

g?

MP m
4
1

Λ2

]1/3

; 0.29

[√
10

g?

MP m
4
r

Λ2

]1/3
)
. (3.33)
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Figure 4. Sequential freeze-in via inverse decays: Reheating temperature required to reproduce
the experimentally observed DM abundance, Ωχh

2, for mχ = 1 MeV. Left panel: Trh as a function
of m1 for Λ = 1011 GeV; right panel: Trh as a function of Λ for m1 = 105 GeV. In both panels, the
radion mass is mr = m1/103. The gray-shaded areas are the regions where chemical equilibrium
with the SM is reached (and freeze-in does not occur), whereas the red-shaded areas are the regions
where m1 > Λ and the EFT approach breaks down. Eventually, the two black-dotted lines give a
visual understanding of the different regions in eq. (3.14).

Fig. 4 shows the reheating temperature Trh required to reproduce the observed DM
abundance, Ωχh

2, for a fixed value of the DM mass, mχ = 1 MeV. Again, in the left panel
we show Trh as a function of the first KK-graviton mass, m1, for fixed Λ = 1011 GeV; in
the right panel, we show Trh as a function of Λ for fixed m1 = 105 GeV. The radion mass
has been chosen as mr = m1/103. The black-dotted lines indicate Trh = m1 and Trh = mr.
The gray- and red-shaded areas are the regions where chemical equilibrium with the SM is
reached,4 and where the EFT approach breaks down (as m1 > Λ), respectively.

As in the case of sequential freeze-in via annihilation, for Trh < mr on-shell KK-
gravitons and radions are not produced in the early Universe and, therefore, this mechanism
can not account for the DM relic abundance below the Trh = mr black-dotted line. In
the region mr < Trh < m1, only radions are created and, in this case, the DM yield is
independent on Trh (as the second term in eq. (3.32) does not depend on Trh). This can be
clearly seen in Fig. 4. For Trh > m1, the KK-graviton states are also produced. Their decay
eventually dominate the DM production and the reheating temperature is proportional to√
m1 (left panel) or Λ (right panel).

So far, each individual production channel has been studied separately. Fig. 5 depicts
the parameter space favored by the observed DM abundance for mχ = 1 MeV and Λ =

1014 GeV as a function of m1 (upper left panel), or m1 = 103 GeV as a function of Λ (upper
right panel), taking into account all of the three DM production mechanisms described
previously (i.e. direct production, sequential production via annihilation and sequential
production via inverse decay). The thin blue lines correspond to the partial contributions
of each of the mechanisms, whereas the black thick line to the total abundance. Eventually,

4Notice that in the left panel the gray-shaded area is absent as the region for which the DM is in
equilibrium with SM particles is outside of the considered range.
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Figure 5. Reheating temperature required to reproduce the experimentally observed DM abun-
dance, Ωχh

2, for mχ = 1 MeV, taking into account all possible DM production mechanisms (thick
black lines). Upper left panel: Trh as a function of m1 for Λ = 1014 GeV; Upper right panel: Trh as
a function of Λ for m1 = 103 GeV; Lower panel: correlation between Λ and m1 for Trh = 105 GeV.
In all panels, mr = m1/103, whereas as always the gray- and red-shaded areas are the regions
where chemical equilibrium with the SM is reached and where the EFT approach breaks down,
respectively. The two black-dotted lines represent the conditions Trh = m1 and Trh = mr. The
light blue solid, dashed and dotted lines represent the contributions from direct freeze-in, sequential
freeze-in via annihilation and sequential freeze-in via inverse decay, respectively (as explained in
the legend).

in the lower panel we show the correlation between Λ andm1 at a fixed value of the reheating
temperature required to achieve the observed DM abundance, Trh = 105 GeV. In all panels,
the radion mass is related to the first KK-graviton mass as mr = m1/103. As always, the
gray- and red-shaded areas represent the regions where chemical equilibrium between DM
and the SM particles is reached and where the EFT breaks down sincem1 > Λ, respectively.

Finally, in Fig. 6 we show the correlation between Λ and m1 required to reproduce the
observed DM abundance formχ = 1 MeV andmr = m1/103 for several representative values
of the reheating temperature, Trh = 1, 10, 105, 108 and 1010 GeV (notice that the range of
Λ plotted in Fig. 6 differs from that in the lower panel of Fig. 5). Let us note that the lines
corresponding to Trh = 1 and 10 GeV overlap when m1 ' 103 GeV and Λ ' 109 GeV. This
can be understood seeing that in that region, the DM relic abundance is mainly generated
by sequential freeze-in via inverse decays of the radion and is therefore independent of
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Figure 6. Parameter space required to reproduce the observed DM abundance formχ = 1 MeV and
mr = m1/103, for several values of Trh. The blue areas are excluded by resonant searches at LHC
and represent the current bound and our prospects for the LHC Run-3 and the High-Luminosity
LHC in the γ γ channel [62, 63], see text. The green corner corresponds to radion lifetimes longer
than 1 s. In the red area (m1 > Λ) the EFT approach breaks down.

Trh, see eq. (3.31). The red-shaded area, as always, represents the region where the EFT
approach breaks down. On the other hand, the upper left green corner corresponds to radion
lifetimes higher than 1 s, potentially problematic for BBN (all the KK-graviton states are
heavier than the radion and therefore will naturally have shorter lifetimes). Eventually, the
blue-shaded regions depict present and future experimental bound coming from resonance
searches at the LHC. The proton-proton collision can generate resonant KK-gravitons that
later decay into SM particles. ATLAS and CMS put bounds over these processes in γγ

and lepton-lepton channels as a function of the mass of the resonance (the lightest KK-
graviton). These bounds can be translated into limits over Λ as a function of the mass of
the first graviton m1. The present bounds (dark blue) come from the resonant searches at
LHC with 36 fb−1 [62] and [63], whereas future bounds are estimated assuming 300 fb−1

(medium blue) and 3000 fb−1 (light blue) for the LHC Run-III and High-Luminosity LHC,
respectively. Notice that in this plot we do not show the gray-shaded region for which DM
is in equilibrium with SM particles (where freeze-in does not occur), as we should draw a
different region for each value of Trh.

3.3 Beyond the Sudden Decay Approximation of the Inflaton

While reheating is commonly approximated as an instantaneous event, the decay of the
inflaton into SM radiation is a continuous process [64]. Away from this approximation
for reheating, the bath temperature may rise to a value Tmax which exceeds Trh [65]. It
is plausible that the DM relic density may be established during this reheating period,
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in which case its abundance will significantly differ from freeze-in calculations assuming
radiation domination. In particular, it has been observed that if the DM is produced dur-
ing the transition from matter to radiation domination via an interaction rate that scales
like γ(T ) ∝ Tn, for n > 12 the DM abundance is enhanced by a boost factor propor-
tional to (Tmax/Trh)n−12 [66], whereas for n ≤ 12 the difference between the standard UV
freeze-in calculation differ only by an O(1) factor from calculations taking into account
non-instantaneous reheating. More recently, it has been highlighted that the critical mass
dimension of the operator at which the instantaneous decay approximation breaks down
depend on the equation of state ω, or equivalently, to the shape of the inflationary poten-
tial at the reheating epoch [67–69]. Therefore, the exponent of the boost factor becomes
(Tmax/Trh)n−nc with nc ≡ 6 + 2

(
3−ω
1+ω

)
, showing a strong dependence on the equation of

state [67]. Subsequent papers have explored the impact of this boost factor in specific mod-
els [4, 70–80]. Finally, another way for enhancing the DM abundance occurs in cosmologies
where inflation is followed by an epoch dominated by a fluid stiffer than radiation. In such
scenarios, even a small radiation abundance, produced for instance by instantaneous pre-
heating effects, will eventually dominate the total energy density of the Universe without the
need for a complete inflaton decay. In particular, a strong enhancement if DM production
happens via interaction rates with temperature dependence higher that nc = 6 [81].

The present model of KK FIMP DM in warped extra-dimensions features processes
where the interaction rate has a particularly strong temperature dependence, the most
relevant ones being: i) the DM annihilation into SM states for reheating temperatures much
lower than the radion mass γDM → SM(T ) ∝ T 12; ii) the same process near the resonances
Trh ' mr/2 and Trh ' m1/2, where γDM → SM(T ) ∝ T K1(mi/T ) (withmi being the radion
or the lightest KK-graviton mass, respectively); and iii) the KK-graviton annihilation into
SM particles γKK → SM(T ) ∝ T 16. In these regimes, the non-instantaneous decay of the
inflaton is expected to generate a strong boost factor to the DM yield, which translates
into a reduction of the reheating temperature required to match the observed DM relic
abundance. As the precise determination of such boost factors depends on the details of
the inflationary model (in particular on the energy density carried by the inflaton and its
equation of state parameter previous to its decay), it is beyond the scope of this study.

4 Conclusions

Dark Matter (DM) is typically assumed to be made of weakly interacting massive particles
(WIMPs), produced in the early Universe via the freeze-out mechanism. Freeze-out occurs
if the interactions between DM and SM particles are strong enough to bring them into
chemical equilibrium. However, if these interaction rates were never strong enough, the
observed DM relic abundance could still have been produced by non-thermal processes, like
the freeze-in mechanism. In that case, DM is called a feebly interacting massive particle
(FIMP).

In a warped extra-dimensional scenario, DM could naturally be a FIMP, if the effective
gravitational scale Λ is much higher than the electroweak scale. In this case, DM is produced
in two main ways: i) promptly by annihilations of SM states via the s-channel exchange
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of KK-gravitons and radions, i.e. the so called direct freeze-in, and ii) by decays of KK-
gravitons or radions, previously produced by annihilations or inverse decays of SM particles
via direct freeze-in. This scenario has been doubted sequential freeze-in.

In this paper we have systematically studied the different regions of the parameter
space that generate the observed DM abundance in the early Universe, within a warped
extra-dimensional model . We assume that both the SM and the DM particles are localized
in the IR-brane, where the effective four-dimensional Planck scale is given by Λ, which is
allowed to vary in a wide phenomenological range, [102, 1016] GeV, relaxing the requirement
for the RS model to solve the hierarchy problem. We also include the radion, using the
Goldberger-Wise mechanism [38] to generate the required potential to stabilize the size of
the extra dimension. For definiteness, we consider scalar DM and focus on its interactions
with gravitational mediators, i.e., the radion, the graviton and the KK-gravitons.

As the interaction rates between the visible and the dark sectors have a strong tem-
perature dependence, the bulk of the DM density is typically produced at the highest
temperatures reached by the SM thermal bath, which in the approximation of a sudden de-
cay of the inflaton corresponds to the reheating temperature, Trh. This is a characteristic of
the so-called UV freeze-in. We found however a case where the DM abundance was mainly
produced at much lower temperatures, corresponding to the sequential freeze-in where the
radion was generated via inverse decays. In that case the peak of the production happens
when the temperature approaches the radion mass, T ' mr/2.5.

The possibility of generating the DM relic density within the RS scenario via the usual
freeze-out mechanism was analyzed in Refs. [16–22, 25]. After including the DM annihilation
channel into KK-gravitons previously disregarded, it was found that even when both SM
and DM particles live in the IR-brane there is a region compatible with the experimental
and theoretical constraints where it is possible to reach the correct DM relic abundance [24].
The allowed region corresponds to mχ ∈ [1, 15] TeV and Λ ∈ [10, 104] TeV. The upper limit
on the DM mass comes from unitarity, while the lower limit is an indirect one, derived from
searches at LHC of KK-graviton resonant production, which constrains the scale Λ as a
function of the first KK-graviton mass. This bound is very relevant, since it determines
the minimum value of the DM mass for which the annihilation channel into the first KK-
graviton mode is kinematically open, leading to the observed DM relic density. In the
freeze-out scenario, the LHC prospects for the near future exclude most part of the allowed
region.

In the present work we find that it is also possible to obtain the correct DM relic
abundance in the same RS model via the freeze-in mechanism, for DM masses in a much
wider range spanning typically from the keV to the PeV scale, and larger values of the scale
Λ than in the freeze-out scenario. This implies that the LHC bounds on the parameter
space of the model are weaker than in the freeze-out case. This can be seen in Fig. 6, where
we summarize our results in the (m1, Λ) plane for the benchmark DM mass mχ = 1 MeV,
finding that only the lower-left corner will be probed by HL-LHC. On the other hand,
other constraints are relevant, such as the life-time of the radion, which we require to be
larger than 1 s to avoid problems with BBN, and excludes the upper-left corner. The
results are not strongly dependent of the radion mass: for this reason we fix mr = m1/103,
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in agreement with the expectation within the Goldberger-Wise mechanism. We find that
the observed DM relic density can be obtained in a wide range of reheating temperatures,
Trh ∈ [1, 1010] GeV. Notice that we find some region of the parameter space for which the
observed DM relic abundance is achieved with Λ as low as a few TeV (with lower values
excluded by LHC data). In this region, the hierarchy problem is mostly solved, leaving only
a remnant little hierarchy to be explained.

Finally, we argued that a more detailed analysis of the present model will require to go
beyond the usual approximation where the inflaton decays instantaneously, and therefore
the reheat temperature is the maximal temperature reached by the SM thermal bath. This
is due to the strong temperature dependence of some interaction rate densities that enter in
the determination of the DM relic abundance. A complete analysis must take into account
the details of the inflationary model (in particular on the energy density carried by the
inflaton and its equation of state parameter previous to its decay), and is therefore beyond
the scope of this study.
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A Kaluza-Klein decomposition in the Randall-Sundrum scenario

Any 5-dimensional field φµν can be written as a KK tower of 4-dimensional fields as follows:

φµν(x, y) =
∑

φnµν(x)
χn(y)√
rc

, (A.1)

being χn(y) the wave-functions of the KK-modes along the extra-dimension.
The equation of motion for the nth KK-mode is given by:

(
ηµν∂µ∂ν +m2

n

)
φnµν(x) = 0 , (A.2)

where mn is its mass. Using the Einstein equations we obtain [85]:

− 1

r2
c

d

dy

(
e−4σ dχ

n

dy

)
= m2

n e
−2σχn , (A.3)

from which:

χn(y) =
e2σ(y)

Nn
[J2(zn) + αnY2(zn)] , (A.4)
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being J2 and Y2 Bessel functions of order 2 and zn(y) = mn/ke
σ(y). The Nn factor is the

nth KK-mode wave-function normalization. In the limit mn/k � 1 and ekπrc � 1, the
coefficient αn becomes αn ' x2

n exp (−2k π rc), where xn are the are the roots of the Bessel
function, J1(xn) = 0, and the masses of the KK-modes are given by:

mn = k xn e
−k π rc . (A.5)

Notice that, for low n, the KK-modes masses are not equally spaced, as they are proportional
to the roots of the Bessel function J1. At large values of n, on the other hand, the roots
of the Bessel function become approximately xn = π

(
n+ 1

4

)
+O

(
n−1

)
. In this limit, the

KK-modes masses are approximately equally spaced (as in LED and the CW/LD scenarios)
and proportional to a characteristic length scale R such that:

mn '
(
k π e−k π rc

)
n =

n

R
, (n� 1) (A.6)

where R = x1/m1 = 1/(kπ)ek π rc (with x1 = 3.81) is O (TeV−1).
The normalization factors can be computed imposing that:

∫
dy e−2σ [χn]2 = 1 . (A.7)

In the same approximation as above, i.e. for mn/k � 1 and ek π rc � 1, we get:

N0 = − 1√
krc

and Nn =
1√

2k rc
ek π rc J2(xn) . (A.8)

Notice the difference between the n = 0 mode and the n > 0 modes: for n = 0, the
wave-function at the IR-brane location y = π takes the form

χ0(y = π) =
√
k rc

(
1− e−2k π rc

)
= −√rc

M
3/2
5

MP
, (A.9)

whereas for n > 0:

χn(y = π) =
√
k rc e

k π rc =
√
rc e

k π rcM
3/2
5

MP
=
√
rc
M

3/2
5

Λ
. (A.10)

B Radion Lagrangian

As it was already reported in the main text, the radion lagrangian is [50, 52]:

Lr =
1

2
(∂µr)(∂

µr)− 1

2
m2
rr

2 +
1√
6Λ

rT +
αEMCEM

8π
√

6Λ
rFµνF

µν +
αSC3

8π
√

6Λ
r
∑

a

F aµνF
aµν , (B.1)

where Fµν , F aµν are the Maxwell and SU(3)c Yang-Mills tensors, respectively. On the other
hand, C3 and CEM encode all information about the massless gauge boson contributions
and are given by:

C3 = b
(3)
IR − b

(3)
UV +

1

2

∑

q

F1/2(xq) , (B.2)

CEM = b
(EM)
IR − b(EM)

UV + F1(xW )−
∑

q

NcQ
2
qF1/2(xq) , (B.3)
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with xq = 4mq/mr and xW = 4mw/mr. The explicit form of F1/2 and the values of the
one-loop β-function coefficients b are given by [51]:

F1/2(x) = 2x[1 + (1− x)f(x)], (B.4)

F1(x) = 2 + 3x+ 3x(2− x)f(x), (B.5)

f(x) =





[arcsin(1/
√
x)]2 for x > 1,

−1
4

[
log
(

1+
√
x−1

1−√x−1

)
− iπ

]2
for x < 1,

(B.6)

while b(EM)
IR − b(EM)

UV = 11/3 and b(3)
IR − b

(3)
UV = −11 + 2n/3, where n is the number of quarks

whose mass is smaller than mr/2.

C Relevant Interaction Rates

In this appendix we report the different cross sections and decay widths used in this analysis,
for the case of real scalar DM. All relevant Feynman rules can be found in Ref. [24].

C.1 Dark Matter Annihilation

In order to analyze the phenomenology of the FIMP DM in the RS model it is necessary to
obtain the interaction rates of DM annihilating into SM particles via the s-channel exchange
of KK-gravitons or a radion.

C.1.1 Through KK-gravitons

Here we show the different annihilation cross sections of DM χ into SM particles, mediated
by the exchange of KK-gravitons. In the following expressions we use the notation S, ψ, V
and v for SM scalars, fermions, massive vectors and massless vectors, respectively:

σ(χχ→ SS) = |SKK|2
s3

5760πΛ4

(
1− 4

m2
χ

s

) 3
2 (

1− 4
m2
S

s

) 5
2

, (C.1)

σ(χχ→ ψ̄ψ) = |SKK|2
s3

2880πΛ4

(
1− 4

m2
ψ

s

) 3
2
(

1− 4
m2
χ

s

) 3
2
(

3 + 8
m2
ψ

s

)
, (C.2)

σ(χχ→ V V ) = |SKK|2
s3

5760πΛ4

(
1− 4

m2
χ

s

) 3
2 (

1− 4
m2
V

s

) 1
2
(

13 +
56m2

V

s
+

48m4
V

s2

)
,(C.3)

σ(χχ→ vv) = |SKK|2
s3

480πΛ4

(
1− 4

m2
χ

s

) 3
2

, (C.4)

where SKK corresponds to the sum over all KK-graviton propagators:

SKK ≡
∞∑

n=1

1

s−m2
n + imn Γn

. (C.5)
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C.1.2 Through a Radion

The KK-gravitons are not the only 5-dimensional fields in the bulk. In fact, in order to
stabilize the size of the extra-dimension it is necessary to introduce a new scalar field that
mixes with the graviscalar. The zero-mode of the KK-tower of this new field receives the
name of radion and can mediate the DM annihilations into SM states. The corresponding
cross sections are given by:

σ(χχ→ SS) = P s3

1152πΛ4

√
s− 4m2

S

s− 4m2
χ

(
1 + 2

m2
χ

s

)2(
1 + 2

m2
S

s

)2

, (C.6)

σ(χχ→ ψ̄ψ) = P
s2m2

ψ

288πΛ4

(
1− 4

m2
ψ

s

) 3
2
(

1 + 2
m2
χ

s

)2(
1− 4

m2
χ

s

)− 1
2

, (C.7)

σ(χχ→ V V ) = P s3

1152πΛ4

√
s− 4m2

V

s− 4m2
χ

(
1− 4

m2
V

s
+ 12

m4
V

s2

)
, (C.8)

σ(χχ→ vv) = P s3 α2
i C

2
i

9216π3Λ4

(
1 + 2

m2
χ

s

)2(
1− 4

m2
χ

s

)− 1
2

, (C.9)

where P ≡
[
(s−m2

r)
2 +m2

r Γ2
r

]−1 is the radion propagator. For the SMmassless vectors the
vertex is generated by the trace anomaly and, therefore, the cross sections are proportional
to αEM and CEM for the photon case, and to α3 and C3 for the gluon case, as given in
eqs. (B.2) and (B.3).

C.2 KK-graviton Annihilation

For the sequential freeze-in we are interested in processes that involve KK-graviton Gn
annihilations into SM particles. The corresponding cross-sections can be approximated by:

σ(GnGn → SS) ' 1

96000π

s5

Λ4m8
n

, (C.10)

σ(GnGn → ψ̄ψ) ' 1

604800π

s5

Λ4m8
n

, (C.11)

σ(GnGn → V V ) ' σ(GnGn → vv) ' 19

28800π

s5

Λ4m8
n

. (C.12)

Therefore, the total annihilation cross section for the nth KK-graviton into SM states be-
comes:

σKK→SM(s) ' 8× 10−3

π

s5

Λ4m8
n

. (C.13)
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C.3 Radion Annihilation

A second contribution to sequential freeze in comes from the annihilation of a pair of radions
into SM particles, and is given by:

σ(rr → SS) ' 1

540π

s

Λ4
, (C.14)

σ(rr → ψ̄ψ) ' 25

64π

m2
ψ

Λ4
, (C.15)

σ(rr → V V ) ' 1

1152π

s

Λ4
, (C.16)

σ(rr → vv) = 0 . (C.17)

The total annihilation cross section of radions into SM states becomes:

σr→SM(s) ' 9× 10−3

π

s

Λ4
, (C.18)

where the contribution of SM fermions is highly suppressed by their masses and was there-
fore neglected. Notice that eqs. (C.13) and (C.18) do not scale in the same way with the
center-of-mass energy s, due to their different dependence on the masses. In particular, the
m−8 factor in eq. (C.13) comes from the polarization tensor of the KK-gravitons (spin-2
massive particles) and is not present in the case of radions (spin-0).

C.4 KK-graviton Decays

KK-gravitons can decay into both SM and DM particles. The corresponding decay widths
are:

ΓKK→SM '
73

240π

m3
n

Λ2
, (C.19)

ΓKK→DM =
m3
n

960πΛ2

(
1− 4

m2
χ

m2
n

)5/2

, (C.20)

where all SM masses were neglected for simplicity.

C.5 Radion Decays

Eventually, the decay widths of radions into SM and DM particles are:

Γr→SM '
37m3

r

192πΛ2
, (C.21)

Γr→DM =
m3
r

192πΛ2

(
1− 4

m2
χ

m2
r

) 1
2
(

1 + 2
m2
χ

m2
r

)2

, (C.22)

where again all SM masses were neglected for simplicity.
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Capítulo 8

Resumen de la Tesis

8.1. Motivación Histórica

Desde tiempos inmemoriales, uno de los más profundos deseos del ser
humano ha sido descubrir la composición última de la materia que nos
rodea. Ya los primeros escritos griegos hablan sobre la modelización de
la naturaleza en base a cuatro elementos fundamentales; a saber, agua,
tierra, fuego y viento. El paso de los siglos afinó mucho más esta prematura
descripción. En el siglo XVII, se sintetizó por primera vez un elemento
químico1, y tan solo dos siglos después (1869), ya existía una tabla periódica
de los elementos, un claro reflejo de nuestro anhelo por encontrar orden en
el caos.

El elevado número de elementos descubiertos en el siglo XX motivó la
búsqueda de una estructura mucho más fundamental, aún totalmente des-
conocida. Fue Niels Bohr quien dió forma a esta idea, al sentar las bases
de la teoría atómica actual [12–14], apoyándose en los modelos atómicos
propuestos previamente por Joseph John Thomson y Ernest Rutherford.
Su elegante modelo explicaba toda forma de materia utilizando únicamente
tres tipos de partículas: neutrones y protones, que componían el núcleo de los
diferentes elementos atómicos, y electrones, los cuales orbitaban alrededor
de dichos núcleos con energías cuantizadas. Los átomos quedaban descritos
1En 1669 el alquimista Hennig Brand sintetizó por accidente fósforo, bautizándolo con
este nombre por el brillo que desprendía.
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pues como pequeños sistemas planetarios, solo que las fuerzas implicadas
en su estabilidad eran totalmente diferentes a la gravitatoria.

Standard Model of Elementary Particles
three generations of matter
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Figura 8.1: Modelo Estándar de las interacciones fundamentales: las partículas moradas,
verdes y rojas representan, respectivamente, los quarks, leptones y bosones de gauge. Por
otro lado, la amarilla representa el Bosón de Higgs. Imagen tomada de Ref. [11].

A lo largo del siglo XX el desarrollo de la mecánica cuántica cambió
totalmente la forma de entender el mundo microscópico. A la fuerza gravi-
tatoria y electromagnetica se le sumaron dos nuevas interacciones: débil y
fuerte. Por otro lado, los protones y neutrones, que en el modelo de Bohr
eran constituyentes fundamentales de la materia, pasaron a ser partícu-
las compuestas por quarks, mientras una nueva plétora de partículas eran
descubiertas gracias a los rayos cósmicos y a la construcción de nuevos ex-
perimentos y detectores. El resultado último de toda la revolución cuántica
fue el Modelo Estándar de la física de partículas [15–25], esquematizado en
la Fig. 8.1. El modelo describe la naturaleza a nivel microscópico utilizando
un total de doce partículas elementales, o campos, y cuatro tipos de interac-
ción. Los éxitos del Modelo Estándar fueron totalmente rotundos, con él se
han realizado las predicciones más precisas de la historia de la ciencia. No
obstante, tiene ciertas limitaciones, como el hecho de que es incapaz de des-
cribir la gravedad cuántica. En el Capitulo 1 se ha realizado una exposición
detallada del modelo, profundizando en sus predicciones y fallos.

Hoy, casi medio siglo después de que fuese propuesto, sabemos que el
Modelo Estandar únicamente es capaz de explicar el 5 % del contenido del
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Universo, el 95 % restante continua envuelto en un halo de misterio. Obser-
vaciones astrofísicas y cosmológicas indican que el 26 % del Universo está
compuesto por un nuevo tipo de materia cosmológicamente estable que no
emite luz, y que no puede identificarse con ninguna de las partículas del
Modelo Estándar. Esta curiosa característica inspiró su nombre, Materia
Oscura. El resto del Universo es aún más enigmático si cabe. Actualmen-
te se cree que está compuesto por algún tipo de energía que explicaría la
expansión acelerada del Universo, pero esto es otra historia muy diferente
a la de la Materia Oscura y queda lejos de los objetivos del trabajo aquí
realizado.

La motivación de esta Tesis es intentar arrojar algo de luz sobre ese
gran porcentaje de materia que nuestra ciencia actual no ha sido capaz de
explicar, haciéndola un poco menos oscura de lo que su nombre indica.

8.2. El Modelo Estándar de las Interacciones
Fundamentales: La Piedra Angular de la
Física de Altas Energías

En esta sección vamos a realizar un breve resumen de los conceptos más
importantes del Modelo Estándar (en el Capitulo 1 se han explicado todos
los detalles técnicos del mismo). El Modelo Estándar de la física de partí-
culas2 es una teoría cuántica de campos con simetría gauge de los grupos
unitarios SU(3)C ×SU(2)L×U(1)Y . El modelo describe con gran precisión
tres de las cuatro interacciones fundamentales que existen en la naturale-
za: débil, electromagnética y fuerte. La complejidad de la estructura de la
interacción gravitatoria hace que sea muy complicado describirla como una
teoría de campos gauge, actualmente se trabaja activamente en el tema3. El
resto de las interacciones fundamentales quedan descritas con gran preci-
2Típicamente abreviado como SM, del inglés Standard Model.
3Algunos autores defienden que quizá el origen de la interacción gravitatoria sea totalmen-
te diferente al resto de fuerzas fundamentales. La gravedad emergente (propuesta por
Andrei Sakharov en 1967, el artículo original en inglés puede encontrarse en Ref. [473]),
por ejemplo, sugiere que dicha interacción no es más que el residuo de una serie de
grados de libertad aún desconocidos, tal como la mecánica de fluidos, que deriva de la
mecánica estadística.
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sión por el modelo mediante el intercambio de diferentes campos de spin 1,
que constituyen el sector gauge de la teoría. Mientras que el grupo SU(3)C
se asocia a la interacción fuerte, los grupos SU(2)L × U(1)Y describen la
interacción electrodébil4

Las partículas de spin 1, o bosones, describen las interacciones del mo-
delo, en tanto que los constituyentes fundamentales de la materia son los
fermiones, partículas de spin 1/2: quarks y leptones. Curiosamente, la na-
turaleza replica los fermiones en 3 familias casi idénticas, únicamente dife-
renciadas por las masas de sus constituyentes:

1st Family : L1 ≡

 νe

e−


L

; e1 ≡ e−
R

; Q1 ≡

 u

d


L

; U1 ≡ uR ; D1 ≡ dR ,

2nd Family : L2 ≡

 νµ

µ−


L

; e2 ≡ µ−
R

; Q2 ≡

 c

s


L

; U2 ≡ cR ; D2 ≡ sR ,

3rd Family : L3 ≡

 ντ

τ−


L

; e3 ≡ τ−
R

; Q3 ≡

 t

b


L

; U3 ≡ tR ; D3 ≡ bR .

Por otro lado, el modelo trata de forma diferente a partículas con quiralidad
dextrógira y levógira, agrupando las primeras en singletes y las segundas en
dobletes de SU(2)L. De este modo, los quarks y leptones levógiros vienen
representados por Qi (compuesto por los quarks tipo up y tipo down, con
cargas eléctricas +2/3 y −1/3 de la carga fundamental del electrón, res-
pectivamente) y Li (compuesto por los leptones cargados y los neutrinos,
con cargas eléctricas −1 y 0, respectivamente). Por otro lado, los quarks
dextrógiros están representados por los singletes Ui y Di, mientras que los
leptones cargados dextrógiros vienen dados por ei. Los neutrinos dextrógi-
ros no están incluidos en el modelo original, aunque hay muchas líneas de
investigación abiertas en la actualidad sobre la posibilidad de su existencia.

Aparte de todo lo comentado, el modelo incluye un campo de spin 0, el
campo de Higgs. Los bosones gauge de la teoría débil, es decir Z y W±, tie-
4Las interacciones electromagnéticas y débiles fueron unificadas en los años 70 por Shel-
don Lee Glashow, Abdus Salam y Steven Weinberg.
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nen masa. Este hecho parecía incompatible con la construcción de un modelo
basado en simetrías ya que la invariancia gauge prohíbe términos de masa
para los bosones gauge. Por ello, fue necesario desarrollar un mecanismo
que dotase de masa a estas partículas. La solución a este problema llegó de
la mano de Robert Brout, Francois Englert, Gerald Guralnik, Carl Richard
Hagen, Peter Higgs y Tom Kibble (en estricto orden alfabético), constitu-
yendo lo que popularmente se conoce como mecanismo de Higgs [18–21].

La idea del mecanismo de Higgs se basa en la ruptura espontánea de la
simetría5 (SSB) y consiste en agregar a la teoría un campo complejo escalar
doblete de SU(2)L:

Φ =

 Φ+

Φ0

 =


Φ+

1√
2

(v + φ1 + iφ2)

 . (8.1)

Este peculiar campo presenta lo que se conoce como valor esperado de vacío6

(VEV) no nulo en su componente neutra, produciendo de este modo una
ruptura de la simetría electrodébil (que no es una simetría exacta del vacío)
y dando como resultado la simetría electromagnética7,

SU(2)L × U(1)Y −→ U(1)QED. (8.2)

Durante la SSB, tanto la parte cargada del doblete como la parte ima-
ginaria de la componente neutra son absorbidos como grados de libertad
longitudinales por los bosones gauge de la teoría, los cuales pasan a compor-
tarse como bosones masivos. Por otro lado, la parte real del campo cargado,
φ1, se queda presente en el espectro de partículas del Modelo Estándar co-
mo una partícula de spin 0, el popular bosón de Higgs, que fue detectado en
2012 por los experimentos ATLAS [44] y CMS del LHC [45], confirmando
el modelo.

Las representaciones de los fermiones del Modelo Estándar bajo el grupo
SU(2)L×U(1)Y no presentan simetría quiral, necesaria para que los corres-
5Del inglés Spontaneous Symmetry Breaking.
6Del inglés de Vacuum Expectation Value.
7La abreviación QED viene de Quantum Electrodynamics [48–54], nombre que recibe la
teoría gauge que describe la interacción electromagnética.
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pondientes términos de masa puedan aparecer en el lagrangiano del modelo.
No obstante, el mecanismo de Higgs soluciona este problema ya que bajo el
grupo U(1)QED si que presentan dicha simetría. En consecuencia, después
de la SSB, el VEV del campo de Higgs permite la formación de los términos
de masa para estas partículas.

Para una exposición detallada y completa del Modelo Estándar en es-
pañol ver Ref. [474].

8.3. La Necesidad de la Materia Oscura

Como ya hemos comentado, el Modelo Estandar de partículas solo puede
explicar un porcentaje pequeño de la materia que nos rodea, conocida como
bariónica8. El resto de materia que puebla el Universo recibe el nombre de
Materia Oscura. A pesar de que este exótico tipo de materia es un activo
campo de estudio en la actualidad, los primeros indicadores de su existencia
son ya casi centenarios [139]. No obstante, las primeras pruebas sólidas se las
debemos a los trabajos de Vera Cooper Rubin, Kent Ford y Ken Freeman,
llevados a cabo allá por los años 60 [144,145].

8.3.1. Evidencias de la Existencia de Materia Oscura

La evidencia más clara que tenemos a día de hoy de la existencia de la
Materia Oscura son las curvas de rotación de las galaxias. El contenido en
masa de una galaxia puede medirse en base a su luminosidad, mediante téc-
nicas astrofísicas. De este modo, tenemos una clara idea de cuanta materia
bariónica hay en una determinada galaxia y como está distribuida dentro
de ella. Conocida la masa de la galaxia, la velocidad de rotación de un ob-
jeto situado a una distancia R del centro de la misma puede determinarse
a partir de las leyes de Kepler9. De acuerdo con esto, la distribución de
materia bariónica observada nos indica que la velocidad de rotación debería
disminuir conforme nos acercamos al borde galáctico. Sin embargo, medidas
8Nombre que recibe la materia descrita por el Modelo Estándar.
9v =

√
MG/R, donde M es la masa contenida en la esfera de radio R y G la constante

de gravitación universal.
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directas sobre la velocidad de rotación indican lo contrario: en la mayoría
de los casos esta velocidad de rotación permanece constante.

Las curvas de rotación de las galaxias son la evidencia más famosa de
la existencia de este exótico tipo de materia, pero no la única. La teoría de
la Relatividad General predice que el campo gravitatorio producido por un
gran cúmulo de materia es capaz de desviar los rayos de luz, el conocido como
efecto lente gravitatoria. De este modo, puede utilizarse la luz procedente
de galaxias lejanas para, mediante ciertos estudios sobre la trayectoria de
los haces de luz, determinar la cantidad de materia que hay en los cúmulos
de galaxias situados en su trayectoria. Este análisis confirma la presencia
de Materia Oscura en la mayoría de cúmulos de galaxias estudiados.

Aparte de las evidencias astrofísicas, hay también evidencias cosmológi-
cas que confirman la existencia de la Materia Oscura. En la Sec. 3.1 se ha
realizado una breve descripción de todas ellas.

8.3.2. Características Fundamentales

A pesar de las evidencias de su existencia, a día de hoy aún no se ha
realizado ninguna observación directa de la Materia Oscura. No obstante,
podemos inferir mucho acerca de su naturaleza:

La Materia Oscura debe ser no bariónica: algunos candidatos barióni-
cos han sido propuestos a lo largo de los años, como es el caso de los
MACHOs10 [221]. No obstante, los límites sobre esta clase de modelos
son tan fuertes en la actualidad que están prácticamente descartados
en su totalidad.

Debe ser fría o cálida: según la distancia recorrida, como consecuencia
de movimientos aleatorios, por las partículas de Materia Oscura en
el Universo primigenio, podemos catalogarla en tres grandes grupos:
calinte, cálida y fría. Si la distancia recorrida es mayor, igual o menor
que el tamaño de una protogalaxia (unos 100 años luz), la Materia
Oscura será caliente, cálida o fría, respectivamente. En la actualidad
se han realizado numerosas simulaciones numéricas de la evolución del

10Del inglés Massive Compact Halo Objects.
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Universo con diferentes tipos de materia. Si la Materia Oscura fuese
caliente, de acuerdo con estas simulaciones, el Universo tendría un
aspecto muy diferente al que conocemos hoy en día [187].

Debe colisionar muy débilmente consigo misma: el motivo de esto es
que recientes observaciones astrofísicas, tales como las realizadas sobre
el conocido como cúmulo bala11, imponen restricciones a la autointe-
racción de la Materia Oscura [177–181]:

σ/m . 10−24 cm2/GeV. (8.3)

Débilmente interactiva con la materia bariónica: aparte de la inter-
acción gravitatoria, la única interacción posible que podría llegar a
tener la Materia Oscura es la débil. Respecto a lo que al electromag-
netismo se refiere, las diversas implicaciones que supone la existencia
de Materia Oscura cargada han sido profundamente estudiadas en la
literatura [162], descartando prácticamente esta opción por motivos
experimentales12 [163]. Por otro lado, de existir la Materia Oscura
fuertemente interactiva13, ésta dejaría huella incluso en el flujo de ca-
lor terrestre [161]. Las fuertes implicaciones de este tipo de candidatos
hacen que esten excluidos casi en su totalidad.

Debe ser estable: la Materia Oscura que observamos hoy en día en
el Universo es prácticamente un fósil térmico: es el remanente de la
que la que componía el Universo primigenio. La única forma de que
ese remanente haya sobrevivido hasta nuestros días es que la Materia
Oscura sea estable o, en su defecto, que su vida media sea mayor que
la edad del Universo.

En la Sec. 3.2 se ha realizado un estudio mucho más profundo de todas
estas propiedades.
11Este curioso cúmulo es el resultado de dos cúmulos actualmente en colisión. En él se
observa un efecto muy exótico, el centro de masas del cúmulo resultante se encuen-
tra desplazado. Esta característica solo puede ser explicada mediante la existencia de
grandes cantidades de Materia Oscura en su composición. La alternativa requeriría una
modificación de las leyes más fundamentales de la dinámica relativista.

12En la actualidad las técnicas de detección de partículas cargadas son tan avanzadas
que de existir la Materia Oscura eléctricamente cargada, esta ya debería haber sido
observada.

13Fuertemente en el sentido de interacción a través de la interacción fuerte.
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8.3.3. Candidatos Estudiados

Hasta el momento hemos hablado de las diferentes evidencias y caracte-
rísticas de la Materia Oscura. Pero ¿cuál es su naturaleza? En el escenario
científico actual se han propuesto muchos candidatos a Materia Oscura,
desde todo tipo de partículas con interacciones parecidas a las que ya cono-
cemos, hasta candidatos altamente exóticos como agujeros negros primige-
nios [268–270]. Todo esto ha sido detallado en la Sec. 3.5. En este resumen
únicamente hablaremos sobre los dos candidatos estudiados en esta Tesis:
las partículas WIMP [225] y las FIMP [252].

8.3.3.1. Materia Oscura tipo WIMP

Las partículas WIMP14 son partículas con masas típicamente desde el
GeV hasta varios TeV. Este candidato se basa en la suposición de que las
partículas de Materia Oscura se encontraban en equilibrio térmico con el
resto de partículas del Modelo Estándar en el Universo primigenio. La abun-
dancia que observamos en la actualidad sería pues el resultado de un proceso
denominado freeze-out.

Para entender bien el concepto de freeze-out, debemos remontarnos a
los primeros instantes del Universo, justo después del Big Bang. En aquella
época, los átomos no existían, las diferentes partículas que poblaban el Uni-
verso se encontraban en un equilibrio continuo de aniquilación/producción,
formando un plasma de altísima temperatura. Poco a poco, el Universo fue
expandiéndose, enfriando dicho plasma. El enfriamiento del Universo pro-
vocó que algunos de los procesos que mantenían este equilibrio dejasen de
tener lugar, desacoplando de este modo las diferentes especies de partículas
de este caldo primigenio.

Cuando la temperatura del Universo fue demasiado baja como para que
la creación de partículas de Materia Oscura fuese posible, está se desacopló
del caldo primigenio. Como consecuencia, la abundancia de estas partículas
comenzó a disminuir, hasta que fue tan pequeña que la probabilidad de que
dos partículas de Materia Oscura se encontrasen y se aniquilasen se volvió
14Su nombre deriva del inglés Weakly Interactive Massive Particles, es decir, partículas
masivas débilmente interactivas.
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prácticamente nula. A dicha temperatura, conocida como temperatura de
freeze-out, la abundancia de Materia Oscura superviviente se convirtió en
un leve remanente, un mero fósil térmico, que ha llegado hasta nuestros
días.

Este candidato a Materia Oscura ha gozado de gran acogida por los
físicos teóricos desde que fuese propuesto alla por los años 70. El motivo
de tal popularidad es que en el rango de masas mencionado, curiosamente,
para reproducir la abundancia de Materia Oscura actual, se necesita que
la interacción entre ésta y las partículas del Modelo Estándar sea justo del
orden de la interacción electrodébil. Hecho, cuanto menos sorprendente, que
se conoce como Milagro WIMP. En este rango de masas la sección eficaz
necesaria para conseguir dicha abundancia es prácticamente independiente
del valor de la masa de la partícula WIMP,

〈σv〉 w 2× 10−26 cm3/s v 1 pb . (8.4)

Los detalles matemáticos y técnicos de este candidato a Materia Oscura se
encuentran explicados en la Sec. 4.4.

8.3.3.2. Materia Oscura tipo FIMP

Complementariamente al caso WIMP, existe la Materia Oscura tipo
FIMP15 la cual jamás llegó al equilibrio térmico con el resto de partículas del
Modelo Estándar. En este escenario la Materia Oscura fue producida por
diversos procesos durante la época de enfriamiento del Universo, después
del Big Bang, siendo nula en el origen de los tiempos. Cuando la tempe-
ratura del Universo fue suficientemente baja, esta producción se congeló,
dejando un remanente que ha llegado hasta nuestros días. Este mecanismo
de producción recibe el nombre de freeze-in16 y está detallado en la Sec. 4.5.

La Materia Oscura FIMP no ha llegado a alcanzar la popularidad de la
Materia Oscura tipo WIMP. Hay varios motivos para ello pero el principal es
que debido a su baja intensidad de interacción es muy dificil buscar pruebas
experimentales de su existencia.
15Nombre que deriva del ingles Feebly Interactive Massive Particle.
16El mecanismo de producción fue propuesto en Ref. [291]. Aunque en aquella época ni
el mecanismo se conocía por dicho nombre, ni el candidato como FIMP.



Detección de Materia Oscura 321

8.4. Detección de Materia Oscura

Como hemos comentado en la Sec. 3.1, y resumido en Sec. 8.3.1, tene-
mos muchas evidencias de la existencia de a Materia Oscura. No obstante,
no se ha conseguido realizar ninguna observación directa de estas elusivas
partículas17. A pesar de esto, las técnicas de detección de Materia Oscura
han avanzado mucho en los últimos años, poniendo cotas cada vez más res-
trictivas a la existencia de estas partículas aparentemente invisibles. Dentro
del gran abanico de experimentos de detección, estos pueden clasificarse en
dos grandes grupos: la Detección Directa18 DD y la Deteccion Indirecta19

ID.

8.4.1. Detección Directa

La idea de la Detección Directa (cuyos detalles técnicos se discuten en
profundidad en la Sec. 5.1) fue propuesta por primera vez por Mark Good-
man y Edward Witten [297]. Como la Materia Oscura no presenta cargas
eléctricas, es imposible detectarla mediante técnicas electromagnéticas. No
obstante, la existencia de colisiones entre la DM y los núcleos atómicos abre
una puerta para su observación directa.

En general, esta clase de detecciones se realizan en experimentos ubi-
cados bajo tierra. Ejemplos notables son Xenon1T [238] o LUX [330], los
cuales están compuestos por grandes cantidades de Xenón. La colisión de
la Materia Oscura con los átomos de Xenón produciría una excitación de
estos últimos, que finalmente se traduciría en la emisión de un fotón. Hasta
el momento, no se ha realizado ninguna detección en dichos experimentos,
lo cual pone fuertes límites sobre los modelos de Materia Oscura, haciendo
que los escenarios más simples y naturales estén prácticamente descartados.
17Existe una llamativa excepción: el experimento DAMA/Libra ha medido variaciones
en la modulación solar que pueden ser interpretadas como Materia Oscura [317, 318].
No obstante, esta señal no está libre de controversia entre la comunidad científica ya
que ningún otro experimento ha reportado absolutamente nada en el rango de masas
en el que DAMA/Libra mide dicha señal.

18Del ingles Direct Detection.
19Del ingles Indirect Detection.
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Figure 12. The current experimental parameter space for spin-independent WIMP-

nucleon cross sections. Not all published results are shown. The space above the

lines is excluded at a 90% confidence level. The two contours for DAMA interpret

the observed annual modulation in terms of scattering of iodine (I) and sodium (Na),

respectively [125]. The dashed line limiting the parameter space from below represents

the “neutrino floor” [117] from the irreducible background from coherent neutrino-

nucleus scattering (CNNS), see Sect. 3.4.

target) are weaker due to their higher threshold and lower exposure.

In a mass range from 1.8 GeV/c2 . m� . 5 GeV/c2, the most stringent exclusion

limit was placed by DarkSide-50 using a LAr target depleted in 39Ar [126]. The

result from a 0.019 t⇥ y run is a based on using the ionization signal only, which

allowed reducing the analysis threshold to 0.1 keVee. The observed background of

1.5 events/(kg⇥ d⇥ keVee), corresponding to 5.5 ⇥ 105 events/(t⇥ y⇥ keVee), can be

attributed to known background sources above ⇠1.4 keVnr (corresponding to 8 e�).

Due to their much smaller total target mass and higher backgrounds, the cryogenic

experiments using Ge-crystals with ionization and phonon readout (EDELWEISS,

(Super)CDMS) or scintillating CaWO4-crystals with light and phonon readout

(CRESST) cannot compete in the search for medium to high-mass WIMPs. However,

due to their ability to reach extremely low thresholds well below 1 keVnr, they are very

sensitive to low-mass WIMPs with masses .5 GeV/c2. The Germanium-based detectors

SuperCDMS and EDELWEISS could improve their low-mass sensitivity by operating

the detectors with a high bias voltage, converting the ionization signals into Neganov-

Figura 8.2: Límites actuales a la sección eficaz de interacción de Materia Oscura con
nucleones. La región verde está excluida por los experimentos de Detección Directa con
un 90% de intervalo de confianza. Las dos zonas rojas muestran las regiones en las que
DAMA/LIBRA afirma haber observado Materia Oscura. La zona amarilla representa el
suelo de neutrinos [339].

Uno puede hacerse una idea del panorama actual de estos experimentos
mirando la Fig. 8.2. En ella, la zona verde muestra los valores de la sección
eficaz de Detección Directa, como función de la masa de la Materia Oscu-
ra, que ya han sido descartados por los experimentos. Por otro lado, para
hacernos una idea de magnitud de la zona ya eliminada, podemos mirar lo
cerca que se encuentra de ella la región amarilla. Esta región muestra lo
que se conoce como suelo de neutrinos20 [339] y representa la sección eficaz
para la que los experimentos de detección comenzarán a observar colisiones
producidas por los neutrinos. Realizar exclusiones mediante experimentos
de Detección Directa en esta región es complicado, puesto que la señal de
ambos tipos de colisión es indistinta. Las dos regiones rojas muestran las
observaciones de DAMA/LIBRA en zonas totalmente excluidas por el resto
de experimentos.
20En ingles conocido como neutrino floor.



Detección de Materia Oscura 323

8.4.2. Detección Indirecta

La observación directa de las colisiones de las partículas de Materia
Oscura con los núcleos atómicos no es la única técnica para detectarla.
Diferentes experimentos astronómicos llevan años intentando observar los
posibles productos de las aniquilaciones de las partículas de Materia Oscura
en los rayos cósmicos que nos llegan a la Tierra. Es posible distinguir entre
tres tipos de flujos de partículas: fotones, neutrinos y partículas cargadas
(como electrones, positrones, etc).

En general, de los diferentes flujos de partículas que llegan a la Tierra,
los resultados más prometedores (en lo que a Materia Oscura se refiere)
vienen de los fotones. Desde 2008 la colaboración Fermi-LAT analiza el
flujo de fotones procedente de diferentes galaxias enanas [240, 241]. Hasta
el momento el estudio se restringe a 15 ejemplares y por el momento los
resultados no muestran ningún exceso en el flujo analizado que no pueda ser
explicado por el Modelo Estándar de partículas. Esto pone cotas a modelos
de nueva física en los cuales la Materia Oscura pueda aniquilarse a partículas
que finalmente se desintegren en fotones, generalmente en el rango de masas
mDM ∈ (0,5, 500) GeV. No obstante, desde 2009 el mismo experimento ha
estado reportando un exceso inexplicable de fotones procedente del centro
galáctico21. Aunque su origen aún es desconocido, este exceso, que se observa
a una energía ∼ 3 GeV, puede ser explicado por diferentes modelos de
Materia Oscura.

Por otro lado, las señales procedentes de flujos de antipartículas cargadas
acotan de una forma mucho menos restrictiva los modelos de Materia Os-
cura. El problema con esta clase de flujos es su propagación desde el punto
en el que son generados hasta la Tierra (donde finalmente los detectamos).
Hoy en día existen diversos modelos para ello, pero su precisión aún tiene
que ser perfeccionada para que los límites impuestos por esta clase de flujos
sean realmente restrictivos.

En la Sec. 5.2 se ha realizado un análisis exhaustivo de la Detección
Indirecta de Materia Oscura.
21Popularmente conocido como Galactic Center γ-ray excess (GCE) [386–395].



324 Capítulo 8. Resumen de la Tesis

8.5. Dimensiones Extra

De entre las cuatro fuerzas fundamentales de la naturaleza, no cabe nin-
guna duda de que la gravedad es la más complicada de entender a nivel
cuántico. A pesar de los muchos esfuerzos por parte de la comunidad cien-
tífica, aún no tenemos una teoría cuántica para describirla. Por otro lado,
la gravedad es la más débil de las interacciones fundamentales. Tal es el
caso, que de existir nueva física a la escala gravitatoria, el Modelo Estándar
se enfrentaría a un serio problema: las correcciones a la masa del bosón de
Higgs son muy sensibles a la escala de la nueva física. Teniendo en cuenta
la diferencia entre la escala de Planck22 y la escala electrodébil, de aparecer
nueva física a la escala gravitatoria las correcciones a la masa del Higgs
serían enormes, requiriendo cancelaciones ajustadas entre distintos órdenes
de teoría de perturbaciones para explicar el valor medido. A este fenómeno
se le conoce como problema de la jerarquía (para un analisis más detallado
del problema mirar la Sec. 1.6.1). Entre las diversas propuestas que se han
realizado para intentar resolver este problema se encuentran las dimensiones
extra.

8.5.1. Dimensiones Extra Grandes (LED)

El primer modelo de dimensiones extra que se propuso para dar solución
al problema de la jerarquía fue Large Extra-Dimensions (LED) [427]. En es-
te escenario se asume que las nuevas dimensiones tienen una forma similar a
las tres espaciales ya conocidas, es decir, presentarían un aspecto plano. De
acuerdo con el modelo LED, el tamaño de estas nuevas dimensiones sería
finito o, en otras palabras, estarían compactificadas. Por otro lado, mien-
tras que la gravedad se propaga libremente por el espacio 5-dimensional,
el resto de campos del Modelo Estándar se encuentran confinados en unas
hipersuperficies 4-dimensionales denominadas branas. Este hecho hace que
la gravedad se diluya a través de las dimensiones extra, haciendo que en la
brana (donde nosotros vivimos confinados) su intensidad parezca anómala-
mente débil. De este modo, la escala de la gravitación, que para nosotros es
MP = 1,22× 1019 GeV, en el espacio extra-dimensional completo sería MD.
22La escala de la interacción gravitatoria.
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Ambas escalas están relacionadas a través del radio de compactificación de
las dimensiones extra (rc):

M2
P = MD−2

D (2πrc)D. (8.5)

Para el caso particular de 5 dimensiones, el espacio-tiempo queda defi-
nido en este modelo por la métrica:

ds2 = ηµνdx
µdxν + r2

cdy
2, (8.6)

Donde la dimensión extra está representada por y. Este parámetro pue-
de escogerse de manera que M5 v TeV, resolviendo así el problema de
la jerarquía. No obstante, si imponemos esta condición, el modelo LED
5-dimensional está excluido totalmente a día de hoy: agregar una única
dimensión extra en LED predice correcciones de la ley de la gravitación
universal que podrían observarse en distancias parecidas al tamaño del Sis-
tema Solar. No obstante, aunque el modelo esté excluido para una única
dimensión extra, con dos o más dimensiones es posible resolver el problema
de la jerarquía sin entrar en contradicciones con la ley de la gravitación
universal.

8.5.2. Dimensiones Extra Deformadas: Modelo de
Randall-Sundrum

A pesar de que los modelos LED presentan diversos problemas, pusieron
la semilla para modelos futuros muy interesantes. El caso más popular es
el modelo propuesto por Lisa Randall y Raman Sundrum a finales de los
años 90, conocido como dimensiones extra deformadas o modelo de Randall-
Sundrum (RS) [76]. En dicho modelo, las nuevas dimensiones presentan
curvatura, a diferencia de LED, donde eran planas. En el modelo original
de RS el espacio extra-dimensional está delimitado por dos branas. Todos los
campos de materia viven atrapados en una de ellas (brana infrarroja (IR),
también llamada brana del TeV), mientras que la otra brana se encuentra
vacía (brana ultravioleta (UV) o de Planck). Por otro lado, la gravedad se
propaga libremente por el espacio extra-dimensional (comúnmente conocido
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como bulk). La geometría del modelo hace que los diferentes parámetros
fundamentales con dimensión de masa sufran un proceso de deformación
exponencial a lo largo del bulk, resolviendo así el problema de la jerarquía.

Concretamente, para el caso 5-dimensional (una única dimensión extra),
la métrica que definiría este espacio tiempo vendría dada por

ds2 = e−2kR|y|ηµνdx
µdxν − r2

cdy , (8.7)

Donde k es la curvatura a lo largo de la dimensión extra y rc su radio de com-
pactificación. El factor exponencial que multiplica la parte 4-dimensional de
la métrica recibe el nombre de factor de deformación. M5 y MP quedarían
entonces relacionados mediante los dos parámetros libres de la teoría:

M̄P
2 = M5

k

(
1− e−2kπrc

)
. (8.8)

Vemos que hay una clara diferencia con el modelo LED: en RS M5 w MP.
Sin embargo, la modificación que sufren los parámetros medidos en la brana
IR, debido a la presencia del factor de deformación, resuelve el problema de
la jerarquía para k rc v 10.

En RS la gravedad puede describirse a través del intercambio de gravi-
tones no masivos 5-dimensionales, los cuales surgen de perturbaciones sobre
la componente 4-dimensional de la métrica

G(4)
µν = e−2krc|y|(ηµν + 2M−2/3

5 hµν) . (8.9)

La proyección de este campo 5-dimensional sobre las branas es equivalente
a una torre de gravitones 4-dimensionales masivos, comúnmente conocidos
como modos de Kaluza-Klein (KK). La escala efectiva de la interacción de
estos gravitones 4-dimensionales con los campos confinados en la brana IR
viene dada por

Λ ≡ M̄Pe
−kπrc . (8.10)

Por otro lado, cada gravitón de esta torre de partículas tiene una masa
diferente que dependerá de los parámetros libres (k, rc) del modelo y de
su respectivo orden dentro de la torre. No obstante, establecida la masa
del primer gravitón m1, la masa del resto de gravitones queda totalmente
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fijada. La fenomenología de los modelos de RS puede ser descrita mediante
los parámetros (Λ,m1), en lugar de (k, rc). Este hecho puede ser muy útil
debido a su relación con observables fenomenológicos.

El modelo asume que la distancia entre las branas está fijada, pero no
aporta ningún mecanismo para estabilizar este parámetro dinámicamente.
La solución a este problema fue propuesta por Walter D. Goldberger y Mark
B. Wise [444, 445]. Este mecanismo utiliza un nuevo campo escalar que se
propaga libremente por el bulk, sometido a unos potenciales localizados en
las branas. Por otro lado, el nuevo campo escalar se mezcla con el ya presente
en el bulk, el graviescalar G(5)

55 (el cual emerge de las perturbaciones sobre
la parte 5-dimensional de la métrica). Al campo resultante de esta mezcla
se le conoce como radión. Los mínimos de los potenciales en la brana IR y
UV son diferentes, lo que genera un valor esperado de vacío para el radión.
El tamaño de la quinta dimensión (rc) está entonces relacionado con este
valor esperado de vacio. La masa del radión no está determianda por los
parámetros del modelo original, y representa un nuevo grado de libertad.

El modelo de RS ha gozado de gran popularidad desde que fue propuesto
a finales de los 90’s. La literatura sobre modelos de física más allá del Modelo
Estándar desarrollados en este escenario es inmensa. En la Sec. 6.4 se ha
realizado un análisis de los detalles técnicos del modelo.

8.5.3. Dimensiones extra tipo Clockwork/Linear Di-
laton

Durante casi dos décadas lo modelos de RS fueron los únicos que resol-
vían el problema de la jerarquía mediante la introducción de dimensiones
con curvatura. No obstante, en 2016 Gian Giudice y Matthew McCullough
propusieron un nuevo modelo de dimensiones extra curvadas. Este nue-
vo modelo, propuesto en Ref. [430] y cuya fenomenología fue estudiada en
Ref. [431], se conoce con el nombre de Clockwork/Linear Dilaton (CW/LD).

Dicho modelo, que fue encontrado como límite continuo de los modelos
Clockwork discretos, puede caracterizarse a traves de la métrica:

ds2 = e4/3krc|y|
(
ηµνdx

µdxν − r2
c dy

2
)
, (8.11)
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donde k y rc representan la curvatura y el radio de compactificación de la
quinta dimensión, respectivamente. Para determinados valores de los pará-
metros libres, el modelo es capaz de resolver el problema de la jerarquía.

El modelo CW/LD guarda ciertas similitudes con RS. En ambos casos
el espacio 5-dimensional está delimitado por las branas IR y UV. El caso
mínimo implica tener todo el Modelos Estándar confinado en la brana IR,
mientras que la gravedad se propaga libremente por el bulk 5-dimensional.
Sin embargo, hay diferencias notables con RS. En primer lugar, la relación
entre M5 y MP en CW/LD viene dada por

M2
P = M3

5
k

(
e2πrc − 1

)
, (8.12)

pudiendo ser esta del orden del TeV (al igual que en el caso LED). Por otro
lado, el acoplamiento de los modos de Kaluza-Klein de los gravitones a las
partículas localizadas en la brana es diferente para cada gravitón:

1
Λn

= 1√
M3

5πrc

(
1 + k2r2

c

n2

)−1/2

= 1√
M3

5πrc

(
1− k2

m2
n

)1/2

. (8.13)

Este hecho hace que describir la fenomenología en base a Λn no sea tan útil
como en RS. Otra diferencia notable es que hay una relación muy interesante
entre el valor de la curvatura k y la masa del primer gravitón m1, haciendo
que ambos parámetros sean prácticamente idénticos.

En el caso CW/LD, el modelo original ya incluye un campo escalar que
estabiliza el tamaño de la quinta dimension, el campo de dilatación (dilaton),
S = 2krc|y|, de la métrica. La existencia de unos potenciales en las branas
IR y UV permite fijar la posición de las branas de un modo similar a como
se hacía en RS.

8.6. Metodología Utilizada

Antes de ponernos a hablar sobre los cuatro proyectos que conforman la
presente Tesis, es necesario comentar las diferentes técnicas (tanto a nivel
analítico como numérico) utilizadas en el desarrollo de los mismos.
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A nivel analítico, la complejidad de los problemas estudiados ha reque-
rido un profundo conocimiento de la teoría cuántica de campos. Se han
utilizado los desarrollos perturbativos de dicha teoría para obtener las dife-
rentes probabilidades de interacción utilizadas posteriormente en los estu-
dios fenomenológicos. Los modelos aquí estudiados asumen Materia Oscura
tipo WIMP y FIMP. En ambos casos, la evolución de la abundancia de
Materia Oscura a lo largo de la historia térmica del Universo requiere re-
solver la Ecuación de Boltzman, que determina la evolución de sistemas
fuera del equilibrio térmico. Por otro lado, se ha trabajado con dos mode-
los de dimensiones extra: Randall-Sundrum y Clockwork/Linear Dilatón.
La fenomenología estudiada sobre estos modelos ha requerido un análisis
exhaustivo de ambos escenarios.

Desde un punto de vista numérico, toda la fenomenología ha sido estu-
diada mediante lenguaje C++, mientras que su representación a nivel gráfico
ha sido obtenida utilizando python. El análisis de la Detección Indirecta de
Materia Oscura realizado en uno de los modelos estudiados ha requerido el
uso de software más específico: micrOMEGAs, SARAH, gamlike, pythia y
MadGraph. Por otro lado, todo el estudio de la Ecuación de Boltzman en los
cuatro modelos se ha realizado mediante métodos numéricos implementados
en lenguaje C++.

Finalmente, el enfoque fenomenológico que presenta esta Tesis ha im-
plicado un contacto continuo con datos experimentales. El tratamiento de
estos datos, así como las diferentes cotas de exclusión que han puesto sobre
los diferentes modelos estudiados, ha requerido un uso de diversas técnicas
estadísticas. Se han utilizado diferentes distribuciones de probabilidad (tales
como la conocida χ2), técnicas de Monte Carlo, etc.

8.7. Resultados y conclusiones de la Tesis

En está sección, vamos a realizar un breve resumen de los proyectos que
conforman esta Tesis. Todos ellos pueden encontrarse completos en la Parte
II.
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8.7.1. Estudio de la Detección Indirecta del Modelo
de Portal de Neutrinos Estériles

Uno de los grandes problemas abiertos en física de altas energías es la
Materia Oscura, pero desde luego no es el único. Entre los diversos pro-
blemas que existen actualmente en el Modelo Estándar de partículas, uno
de los más importantes es la masa de los neutrinos. El modelo predice una
masa nula para ellos, no obstante, hace ya más de medio siglo se predijo un
efecto denominado oscilaciones de neutrinos [89]. Este curioso fenómeno,
que fue confirmado experimentalmente en 1999 [92], consiste en una oscila-
ción en el sabor leptónico de los neutrinos. Las implicaciones de este hecho
son muy profundas ya que únicamente puede suceder si al menos uno de
los tres sabores de neutrinos es masivo23. No obstante, las cotas experi-
mentales impuestas a la masa de estas partículas prácticamente invisibles
son tan fuertes que su masa debe ser muy pequeña24. Este hecho potenció
el desarrollo de modelos en los que la masa de los neutrinos era generada
por mecanismos de tipo balancín25 [112–116]. Hay diferentes versiones de
estos modelos, en el tipo I, por ejemplo, se asume la existencia de neutrinos
dextrógiros muy masivos que justifican la pequeña masa de los neutrinos
del Modelo Estándar. La mezcla de los neutrinos levógiros con los dextrogi-
ros da como resultado los autoestados de masa, prediciendo neutrinos con
masas muy grandes y muy pequeñas.

La posibilidad de que el problema de la Materia Oscura y de la masa
de los neutrinos estén relacionados motivó el desarrollo del conocido como26

portal de neutrinos estériles a Materia Oscura [466–468]. Este modelo se ha
estudiado por diversos autores, acotándolo utilizando la Detección Directa
de Materia Oscura. No obstante, es un modelo muy interesante desde el
punto de vista de la Detección Indirecta por varios motivos. Por un lado, la
Detección Directa en este escenario no sucede al orden más bajo en teoría
23A pesar de que el fenómeno podría explicarse con un solo neutrino masivo, la observa-
ción del fenomeno tanto en neutrinos atmosfericos como solares requiere que al menos
dos de los tres sabores de neutrinos sean masivos.

24El límite actual más fuerte viene dado por el experimento Karlsruhe Tritio Neutrino
(KATRIN) [110].

25Modelo seesaw en inglés.
26El escenario más económico, la posibilidad de que los neutrinos estériles sean la Materia
Oscura, fue propuesto en Ref. [465]. A día de hoy, esta posibilidad ha sido fuertemente
estudiada y prácticamente descartada [244].
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de perturbaciones de la teoría cuántica de campos. Este hecho hace que sus
señales de Detección Directa sean bajas que en otros modelos, empeorando
así los límites impuestos. Por otro lado, la conexión de los neutrinos estériles
con los neutrinos activos hace que las aniquilaciones de Materia Oscura
produzcan, como resultado de diversas desintegraciones, excesos de fotones
y partículas cargadas. Todo esto lo convierte en el candidato perfecto para
ser estudiado desde el punto de vista de la Detección Indirecta, tal como se
ha llevado a cabo en la Ref. [1].

En este trabajo hemos analizado un modelo particular en el que, además
de los neutrinos estériles, se asume la existencia de dos nuevos campos:
uno escalar φ y otro fermionico Ψ. Estos campos son ambos singletes del
Modelo Estándar, no obstante, están cargados respecto a un nuevo grupo
de simetría, Gdark, de tal forma que la combinación Ψφ es singlete de este
nuevo grupo de simetría.

Allowed	Region	
(Testable	in	15	

years)

Best	fit

Figura 8.3: Límites sobre el portal de neutrinos estériles en el espacio de masas. La
región amarilla muestra los límites impuestos por los antiprotones mientras que la región
azul son los límites impuestos por los fotones procedentes de las galaxias enanas. Los
diferentes contornos muestran la zona en la que el modelo es capaz de reproducir el
GCE. La línea discontinua azul muestra nuestra predicción sobre el límite de las galaxias
enanas para los próximos 15 años.

La más ligera de estas nuevas partículas oscuras (φ y Ψ) es estable si
todas las particulas del Modelo Estándar, así como los neutrinos esteriles,
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son singletes de Gdark, independientemente de la naturaleza de este grupo
de simetría. Como consecuencia, debido a su estabilidad esta partícula es un
buen candidato a Materia Oscura. Por simplicidad, asumimos que Gdark es
una simetría global a baja enería, en cualquier caso no esperamos cambios
significantes en nuestro analisis fenomenológico si esta fuese local.

Los terminos más relevantes en el lagrangiano vienen dados por:

L = µ2
HH

†H − λH(H†H)2 − µ2
φφ
†φ− λφ(φ†φ)2 − λHφ(H†H) (φ†φ)

−
(
φΨ(λa + λpγ5)N + Y LLHNR + h.c.

)
.

(8.14)

Los acoplamientos de Yukawa Y entre los neutrinos dextrógiros NR y
el doblete leptónico del Modelo Estándar genera las masas para los neutri-
nos activos después de la ruptura espontanea de la simetría, a traves del
mecanismo balancín de tipo I. Si bien se requieren al menos dos neutrinos
estériles para generar las masas de neutrinos observadas en las oscilaciones,
en nuestro análisis consideramos que solo una especie es más ligera que la
Materia Oscura y, por lo tanto, relevante para la determinación de su abun-
dancia y búsquedas indirectas. No obstante, los resultados son fáclmtente
extendibles al caso en el que tenemos dos o más neutrinos estériles más li-
geros que la Materia Oscura. Bajo el supuesto de que la Materia Oscura es
descrita por Ψ (el análisis es igualmente valido en el caso de que la Materia
Oscura sea φ) las masas del modelo cumplen la relación mN < mΨ < mφ.

La Fig. 8.3 muestra los resultados finales de nuestro análisis. Fijando la
masa del mediador escalar para obtener la abundancia de Materia Oscura
mediante el mecanismo freeze-out (es decir 〈σ v〉 ∼ 2×10−26cm3/s), la figura
muestra los diferentes limites impuestos por las búsquedas de fotones y
antiprotones en el espacio de masas (MN ,MΨ). Como ya hemos comentado,
el experimento Fermi-LAT ha reportado un exceso de fotones inexplicable
procedente del centro galáctico (GCE). El modelo estudiado predice un
pequeño exceso de fotones que podría ser compatible con el GCE en ciertas
zonas del espacio de parámetros. En nuestro analisis hemos asumidoque
existen dos fuentes diferentes para el GCE: una astrofísica, responsable de
la zona de alta energía del espectro de fotones, y otra procedente de las
aniquilaciones de Materia Oscura, la cual explicaría la zona de baja energía
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del exceso,
Φ = Φastro + ΦDM . (8.15)

Esta contribución astrofísica al flujo de fotones es siempre necesaria para
reproducir el GCE, independientemente del modelo de Materia Oscura con-
siderado. La zona en la que puede realizarse el ajuste del exceso de fotones
del centro galactico está delimitada por los diferentes contornos que se ob-
servan en la figura (en la leyenda está indicado el p-valor asociado a cada
contorno). No obstante, este aumento de fotones predicho por el modelo
tiene que ser compatible también con el resto de medidas realizadas sobre
los diferentes flujos de fotones. En concreto, el mismo experimento realiza
medidas sobre los fotones procedentes de 15 galaxias enanas27, la región
sombreada en azul muestra la zona del espacio de parámetros de la teoría
en la cual los resultados obtenidos no son compatibles con dichas mediciones
al 90% de intervalo de confianza.

Por otro lado, el modelo también predice un aumento del flujo de antipro-
tones. Este aumento se ha comparado con el flujo de antiprotones procedente
del centro galáctico, el cual es medido en la actualidad por el experimento
AMS-02.Los resultados obtenidos muestran que existen zonas en las cuales
las predicciones del modelo no serían compatibles al 95% de intervalo de
confianza con lo observado experimentalmente (zona sombreada en amari-
llo en la figura). Por último, también se ha realizado un análisis del posible
impacto de los resultados futuros el experimento Fermi-LAT. Basandonos
en la mejora experimentada por la colaboración, hemos estimado que en
15 años se habrán detectado 45 galaxias enanas nuevas. Este hecho po-
dría poner fuertes cotas al modelo estudiado (línea azul discontinua). Como
comentario final, podemos decir que algunos modelos de Materia Oscura
son capaces de explicar el exceso de fotones del centro galactico parcial-
mente28. En concreto, el modelo aquí estudiado consigue reproducirlo con
una precisión muy alta. No obstante, los resultados futuros del experimen-
to Fermi-LAT podrían excluir casi por completo la región del espacio de
parámetros en la cual el GCE puede ser explicado por el modelo.
27Galaxias compuesta por varios millones de estrellas. En contraposición tenemos las
galaxias normales, compuestas por varios miles de millones.

28Hasta el momento todos los modelos necesitan asumir que parte del exceso es conse-
cuencia a fenomenos astrofísicos.
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8.7.2. Materia Oscura Escalar Mediada por Gravedad
en Dimensiones Extra Deformadas

Todas las evidencias que tenemos hoy en día acerca de la existencia de
la Materia Oscura están relacionadas con la interacción gravitatoria. Este
hecho induce a pensar en la posibilidad de que las partículas de Materia
Oscura únicamente interactúen gravitatoriamente. Esta idea tan natural ha
sido explorada ya para los candidatos de tipo WIMP sin demasiado exito:
la intensidad de la interacción gravitatoria es muy débil y hace imposible
obtener la cantidad de abundancia de Materia Oscura que se observa en la
actualidad (al menos en el escenario WIMP). No obstante, ¿que ocurre si
pensamos en más de 4 dimensiones? Esta es la idea que inspiró la Ref. [2].

En dicho artículo tratamos de explorar si es posible obtener la abun-
dancia de Materia Oscura actual, asumiendo que es de tipo WIMP escalar,
únicamente mediante interacción gravitatoria y bajo el supuesto de un Uni-
verso 5-dimensional de tipo Randall-Sundrum. En el escenario descrito, la
Materia Oscura y el Modelo Estándar viven confinados en la brana infrarro-
ja. Ambos tipos de materia interactúan únicamente a través de la gravedad,
cuya proyección sobre la brana IR es equivalente a una torre de gravitones
4-dimensionales masivos (torre de Kaluza-Klein).

El modelo queda descrito en base a cuatro parámetros físicos: la escala de
la interacción de los gravitones 4-dimensionales con la materia, Λ; la masa
del primer gravitón de la torre de KK, m1; la masa del candidato a Materia
Oscura, mDM y la masa del radión, mr. Nuestro estudio muestra que cuando
mr < mDM y, en consecuencia, el canal de aniquilación a radiones esta
abierto, el valor de mr es prácticamente irrelevante para la fenomenología.
Respecto a la aniquilación de la Materia Oscura a partículas del Modelo
Estandar a traves del intercambio de radiones virtuales, esta sección eficaz
únicamente es relevante cerca de la resonancia mDM v mr/2. Por lo tanto,
en el estudio fenomenológico realizado hemos fijado la masa del radion y
nos hemos centrado en el resto de parámetros libres del modelo.

El método seguido para el análisis del modelo ha sido la construc-
ción de una malla bidimensional con diferentes valores de los parámetros
(mG1 ,mDM). Para cada uno de los puntos de este mallado hemos buscado
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Figura 8.4: Región en el plano (mDM,m1) para la cual 〈σv〉 = 〈σfov〉. La gráfica de la
izquierda muestra el caso sin radión, mientras que en la de la derecha se ha considerado
mr = 100 GeV. Las líneas discontinuas muestran los diferentes valores de Λ en el plano
(mDM,m1) para los cuales se consigue la abundancia actual de Materia Oscura. La zona
gris muestra la región en la cual es imposible conseguir la abundancia de Materia Oscura,
independientemente del valor de Λ. Por otro lado, la región naranja nos indica los puntos
en los que la abundancia se consigue gracias a los canales de interacción en los que
interviene el radión. Respecto a los límites sobre el modelo: la zona de cuadraditos verde
representa el límite de unitariedad; la zona de cuadraditos rosa representa la zona en
la que la teoría efectiva deja de tener validez, es decir Λ < m1; la zona roja representa
los límites impuestos por el experimento Xenon1T sobre la sección eficaz de Detección
Directa; la región azul es la zona eliminada por las búsquedas de resonancias en el LHC
usando los datos de 36 fb−1 at

√
s = 13 TeV. Finalmente, las líneas punteadas son las

predicciones de exclusión para las fases Run-III (con ∼ 300 fb−1) y High Luminosity (con
∼ 3000 fb−1) del LHC.

si existe algún valor de Λ para el cual se obtiene la abundancia de Materia
Oscura actual (es decir, para 〈σv〉 w 〈σv〉fo = 2 × 10−26 cm3/s). De este
modo, para cada punto del mallado los tres parámetros libres (m1, mDM, Λ)
quedan totalmente definidos. Este análisis nos permite establecer diferentes
límites teóricos y experimentales en el espacio de masas del modelo.

En la Fig. 8.4 pueden verse los resultados finales del análisis fenome-
nológico sobre el modelo. En la parte izquierda se ha explorado el caso sin
radión, asumiendo que podría encontrarse algún método alternativo para es-
tabilizar el radio de la quinta dimensión. Por otro lado, en la parte derecha
se ha considerado que la masa del radión es mr = 100 GeV (es importante
recordar que la fenomenología no se ve afectada por el valor de esta masa).
La zona sombreada en gris es la región en la que no es posible obtener la
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abundancia actual de Materia Oscura para ningún valor de Λ, mientras que
la zona naranja representa la región del espacio de parámetros en la que la
abundancia se consigue gracias a las contribuciones de los canales de interac-
ción radiónicos. La zona sombreada con cuadraditos verdes se conoce como
límite de unitariedad y representa el punto a partir del cual la sección eficaz
de interacción es tan alta que la teoría de campos deja de tener sentido, esto
sucede para29 σ > 1/s. Además de este límite, existe otra restriccion teó-
rica: si Λ < mDM,m1 la teoría efectiva que describe la interacción de estos
campos cuánticos deja de tener sentido (ya que deberían estar integrados).
Esto ocurre en la región de cuadraditos rosa.

Hasta el momento, hemos hablado de las diferentes restricciones al mo-
delo por motivos teóricos, pero estos no son los únicos límites que pueden
establecerse: los actuales experimentos de Detección Directa y las búsquedas
de resonancias en los experimentos ATLAS y CMS del LHC pueden aportar
mucha información a nuestro análisis. De este modo, las zonas sombreadas
en rojo representan los puntos en los que la sección eficaz de Detección Direc-
ta está ya excluida por los actuales experimentos. Por otro lado, la zona azul
es la excluida por las búsquedas de resonancias (gravitones 4-dimensionales
en nuestro caso) en el LHC, se han utilizado los datos tomados a

√
s = 13

TeV con 36 fb−1 en el canal γγ. Las dos líneas punteadas muestran nuestra
predicción sobre los límites futuros que serán impuestos por el LHC después
de las futuras fases Run-3 (con ∼ 300 fb−1) y High Luminosity (con ∼ 3000
fb−1), en el caso de que no se detecte ninguna resonancia.

El estudio realizado muestra que, en las regiones no excluidas del es-
pacio de parámetros, la fenomenología está dominada por los canales de
interacción relacionados con los gravitones. En dichas regiones, de acuerdo
con nuestro análisis, los canales de interacción radiónicos siempre son sub-
dominantes. Para ser más exactos, la abundancia se consigue gracias a la
aniquilación de Materia Oscura directamente en gravitones.
29En el escenario WIMP las partículas de Materia Oscura tienen una velocidad relativa
muy pequeña. Este hecho implica que s w m2

DM(4+v2
rel), donde vrel � 1 es la velocidad

relativa de las partículas de Materia Oscura. Además, para conseguir la abundancia de
Materia Oscura observada en la actualidad debe cumplirse σ = σfo. Como consecuencia,
este límite se convierte en un límite sobre la masa de la Materia Oscura m2

DM . 1/σfo.
Por lo tanto, enel plano de masas (mDM, m1) la zona excluida por unitariedad aparece
como una linea vertical.
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Aunque ya se habían realizado análisis similares en Randall-Sundrum,
este trabajo es el primero que tiene en cuenta los canales de aniquilación de
Materia Oscura directamente a gravitones en regiones tan altas del espacio
de masas (varios TeV). Así mismo, se ha estudiado un diagrama totalmen-
te olvidado en la literatura hasta el momento: la aniquilación a gravitones
sin mediador, procedente del desarrollo a segundo orden del lagrangiano de
interacción. Aunque el impacto de este diagrama sobre la fenomenología no
cambia drásticamente los resultados, debe ser añadido por consistencia ya
que es del mismo orden que el resto de diagramas estudiados. Por otro la-
do, cabe destacar que este análisis únicamente se ha realizado para Materia
Oscura escalar. No obstante, en la Ref. [5] que está actualmente en trámites
de publicación, se analizan los casos de Materia Oscura fermiónica y vec-
torial. En este estudio se ve que la Materia Oscura de tipo fermionico está
claramente desfavorecida respecto a la escalar y vectorial ya que el canal
dominante (la aniquilación directamente a gravitones) está más suprimido
que en el resto de casos.

8.7.3. Materia Oscura Mediada por Gravedad en Di-
mensiones Extra Tipo Clockwork/Linear Dila-
ton

Analizadas las implicaciones de la existencia de Materia Oscura tipo
WIMP con interacciones puramente gravitatoria en el escenario de Randall-
Sundrum, la pregunta de que ocurriría en el novedoso Clockwork/Linear
Dilatón casi surge de forma natural. Esta idea inspiró la Ref. [3]. La es-
tructura de este escenario es diferente a la que teníamos en RS: la torre de
KK de gravitones masivos en este caso tiene una separación muy pequeña
y variable. Este hecho dificulta en gran medida el análisis numérico de su
fenomenología.

A nivel conceptual, la estrategia para abordar el modelo es idéntica a la
empleada en el caso RS. La gran diferencia con el modelo anterior son los
parámetros elegidos para estudiar la fenomenología. En CW/LD los aco-
plamientos de los gravitones 4-dimensionales masivos al resto de partículas
dependen del orden del gravitón dentro de la torre. Por ello, es más útil
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caracterizar el modelo en función de M5 directamente, en lugar de usar los
acoplamientos efectivos Λn de los gravitones 4-dimensionales. Por otro lado,
la masa del primer gravitón coincide prácticamente con el valor de la curva-
tura a lo largo de la quinta dimensión m1 = k. Otra diferencia notable entre
ambos escenarios es la estabilización del tamaño de la dimensión extra. En
RS es necesario introducir un nuevo campos escalar en el bulk con el fin
de estabilizar dinamicamente rc. En cambio, en CW/LD el dilatón presente
en la métrica puede utilizarse para escribir los potenciales en la brana y
estabilizar así el tamaño de la quinta dimensión. En este caso, la masa del
radión (modo cero de la torre de dilatones 4-dimensionales) está fijada por
los parámetros fundamentales del modelo (ya que deriva directamente de
la métrica). No obstante, hay diferentes formas de realizar la estabilización
usando el dilatón, el caso más simple es asumir que la tensión de las branas
es infinita. Este escenario, recibe el nombre de límite rigido.

La Fig. 8.5 muestra los diferentes límites obtenidos para este escena-
rio. Análogamente al caso RS, M5 se ha utilizado para fijar la abundancia
actual de Materia Oscura para cada punto del espacio (mDM, k). Los dife-
rentes límites estudiados son los mismos que en el caso anterior: la región
de cuadraditos rosa muestra los límites de la teoría efectiva (M5 < k,mDM),
la región de cuadraditos verdes el límite de unitariedad (mDM & 1/√σfo)
y, finalmente, la zona sombreada en azul los límites impuestos por el LHC.
En el caso de los límites experimentales, debido a la proximidad de las re-
sonancias en la torre de gravitones, el límite más estricto impuesto por el
LHC viene de las búsquedas en el espectro continuo de energías, en lugar
de las búsquedas de resonancias. Estos límites han sido calculados usando
los datos de 36 fb−1 a

√
s = 13 TeV para el canal γγ [431]. Finalmente,

cabe destacar que, en este caso, los límites impuestos por las búsquedas de
Detección Directa de Materia Oscura corresponden a valores de (mDM, k)
menores que los mostrados en la Figura.

Otra diferencia notable con el caso RS es que aquí no solo hay que con-
siderar el radión en la fenomenología, si no también toda la torre de KK de
los dilatones. No obstante, en CW/LD el radión y los dilatones derivan di-
rectamente de la métrica del modelo, no es necesario un mecanismo externo
para estabilizar el tamaño de la quinta dimensión. Este hecho hace que la
masa de los mismos este intrínsecamente ligada a los parámetros fundamen-
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Figura 8.5: Región en el plano (mDM, k) para la cual 〈σv〉 = 〈σfov〉. Las gráficas superio-
res muestran los resultados para el caso de Materia Oscura escalar, la inferior izquierda
el caso fermiónico y la inferior derecha el vectorial. La gráfica superior izquierda mues-
tra las diferentes zonas de exclusión teniendo en cuenta únicamente la interacción con
gravitones. Por otro lado, en la gráfica superior derecha se han considerado ambas, la
interacción mediante gravitones y mediante dilatones, para el caso de Materia Oscura
escalar. En los casos fermiónico y vectorial no se muestra el caso sin dilatones ya que
la contribución de los mismos es despreciable y no varía los resultados. Las líneas dis-
contínuas muestran los diferentes valores de M5 en el plano (mDM, k) para los cuales se
consigue la abundancia actual de Materia Oscura, mientras que la zona gris muestra la
región en la cual es imposible conseguir dicha abundancia, independientemente del valor
de M5. Respecto a los límites sobre el modelo: la zona de cuadraditos verde representa el
límite de unitariedad (mDM & 1/√σfo); la región de cuadraditos rosa representa el área
en la que la teoría efectiva deja de tener validez (M5 < k,mDM) y, finalmente, la región
azul representa los límites impuestos por las búsquedas no-resonantes en el LHC usando
los datos de 36 fb−1 a

√
s = 13 TeV para el canal γγ [431].
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tales del modelo, sin agregar de este modo ningún grado nuevo de libertad
al espacio de parámetros de la teoría.

En este trabajo se han analizado los tres posibles tipos de Materia Oscu-
ra: escalar, fermiónica y vectorial. Las dos figuras superiores corresponden al
caso escalar sin tener en cuenta la torre de radión y dilatones (izquierda) y
teniéndola en cuenta (derecha), respectivamente. Este es el único caso en el
que los dilatones juegan un papel importante en la fenomenología del mode-
lo y por ello merece la pena mostrar cuál es su impacto sobre los resultados
finales. Las gráficas inferiores corresponden al caso fermiónico (izquierda) y
al caso vectorial (derecha). Se puede ver claramente que el caso fermiónico
está desfavorecido respecto a los otros dos. Este hecho se debe a que en
el caso fermiónico el canal dominante, la aniquilación de Materia Oscura
directamente a gravitones, sufre una supresión debido al momento angular
total.

El análisis llevado a cabo en este trabajo representa el primer estudio
fenomenológico del modelo CW/LD con presencia de Materia Oscura. Los
resultados anteriores, al igual que en RS, son prometedores en el sentido
de que toda la región no excluida podrá ser analizada en los próximos años
por el LHC. Como comentario final sobre la Materia Oscura tipo WIMP
púramente gravitatoria, podemos decir que en ambos escenarios es posible
reproducir la abundancia actual en el rangomDM ∈ [1, 10] TeV. No obstante,
los valores necesarios, tanto de Λ en RS como de M5 en CW/LD, para ello
son excesivamente grandes como para resolver el problema de la jerarquía.

8.7.4. Materia Oscura FIMP en Dimensiones Extra
Deformadas

Hasta el momento, todos los modelos analizados consideran partículas
tipo WIMP. No obstante, la Materia Oscura tipo FIMP es muy interesante
para el caso en el que la interacción es puramente gravitatoria. En el último
proyecto incluido en esta Tesis hemos explorado la posibilidad de reprodu-
cir la abundancia de Materia Oscura actual utilizando partículas FIMP en
un escenario tipo RS [4]. Este caso plantea complicaciones matemáticas y
numéricas muy diferentes al caso WIMP. Entre estos problemas, el más im-
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portante es que la abundancia final predicha por el modelo depende en gran
medida de las condiciones iniciales. Este hecho hace que, mientras que en
el caso WIMP30 la abundancia actual se reproduce para un valor constante
de la sección eficaz de interacción (〈σv〉 = 〈σfov〉), en el caso FIMP es ne-
cesario resolver siempre la ecuación diferencial que determina su evolución,
la conocida como ecuación de Boltzmann.
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Figura 8.6: Valores de la temperatura de reheating (lineas negras) para los cuales un
determinado valor de la escala de interacción en la brana y la masa del primer graviton
reproducen la abundancia de Materia Oscura actual para mDM = 1 MeV y mr = m1/103.
La zona azul representa la región excluida por las búsquedas de resonancias del LHC. La
región roja muestra el límite de la teoría efectiva m1 > Λ. Finalmente, la región verde
muestra la zona en la que el valor de la vida media del radión entra en conflicto con las
observaciones de la Nucleosíntesis del Big Bang.

Por otro lado, aquí la abundancia también tiene una fuerte dependencia
con un nuevo parámetro: la temperatura máxima del Universo, conocida
como temperatura de reheating (Trh). Debido a la complejidad del espa-
cio de parámetros, el analisis en este escenario se ha llevado a cabo para
un valor determinado de la masa de la Materia Oscura: mDM = 1 MeV,
no obstante, los resultados son similares para otros valores mDM. En la
Fig. 8.6 se muestran los valores necesarios de la temperatura de reheating
para obtener la abundancia observada. La región azul sombreada muestra
los límites experimentales impuestos por las búsquedas de resonancias en el
30Como consecuencia del milagro WIMP.
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canal pp → G1 → γ γ en el LHC (y las dos predicciones para las futuras
etapas del experimento). Por otro lado, los límites teóricos en este escenario
vienen determinados por la validez de la teoría efectiva (región roja) y la
Nucleosíntesis del Big Bang. Este último límite se traduce en una restricción
sobre la vida media de los gravitones y del radión: si la τ > 1 s se podrían
producir modificaciones en las observaciones sobre la Nucleosíntesis del Big
Bang que deberían estar reflejadas en los datos experimentales actuales.
En los modelos analizados anteriormente, este límte no aparecia ya que la
vida media de los gravitones y radion/dilatones siempre era mayor que 1
segundo.

A la vista de los resultados obtenidos, vemos que el caso FIMP está
mucho menos excluido que el caso WIMP en el escenarios de RS y que la
abundancia de Materia Oscura actual se consigue en una gran región muy
amplia del espacio de parámetros. A pesar de ello, los valores obtenidos para
los parámetros libres de la teoría están lejos de resolver el problema de la
jerarquía. Por otro lado, los experimentos actuales aún no son capaces de
explorar los parámetros típicos de los modelos FIMP. No obstante, el hecho
de que los modelos de Materia Oscura tipo FIMP sean capaces de explicar
la abundancia actual en un rango del espacio de parámetros tan amplio es
una gran motivación para el futuro desarrollo de experimentos. Actualmente
estamos trabajando en el estudio análogo para el caso CW/LD.

8.7.5. Conclusión

Nuestro escaso conocimiento acerca de la naturaleza de la Materia Os-
cura hace que el conjunto de modelos que pueden explicar las evidencias
actuales sea enorme. Esta Tesis ha contribuido a explorar parte de estos
modelos y acotar un poco más lo que sabemos de ella, estudiando la fe-
nomenología de diferentes candidatos. En general, los resultados obtenidos
hacen que esperemos con ansia los resultados de los experimentos futuros,
tanto en materia de Detección Indirecta, como en búsquedas del LHC. La
relevancia de estos futuros datos es tal que en los próximos años la existen-
cia de los candidatos de tipo WIMP puede verse corroborada o seriamente
comprometida. Por otro lado, la débil interacción de los candidatos de tipo
FIMP hace que su futuro experimental sea bastante más incierto. Como
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comentario final, es cierto que los modelos aquí estudiados representan una
ínfima parte de todo el abanico de posibilidades existentes en la actuali-
dad para explicar este escurridizo tipo de materia. No obstante, espero que
hayan arrojado algo de luz sobre tan oscuro misterio.
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