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Abstract

The elusive neutrinos are among the most intriguing constituents of the particle zoo. The observation of neutrino flavour
oscillations, indicating that neutrinos are massive, provides the only direct evidence for physics beyond the Standard Model.
Neutrinos imprint peculiar signatures in the Cosmic Microwave Background (CMB) and in the distribution of Large-Scale
Structure (LSS) in the Universe, making cosmology a very promising arena for probing neutrino properties. A detection of
neutrino masses is avowedly among the key goals of several upcoming CMB and LSS surveys. For such a promise to be
robustly realized, a number of issues need to be addressed, particularly on the LSS side. In this thesis, I describe a number
of recent important developments in neutrino cosmology on three fronts.

Firstly, focusing on LSS data, I will show that current cosmological probes (and particularly galaxy power spectrum
data) contain a wealth of information on the sum of the neutrino masses. I will report on the analysis leading to the currently
best upper limit on the sum of the neutrino masses of 0.12 eV. I show how cosmological data exhibits a weak preference
for the normal neutrino mass ordering because of parameter space volume effects, and propose a simple method to quantify
this preference.

Secondly, I will discuss how galaxy bias represents a severe limitation towards fully capitalizing on the neutrino
information hidden in LSS data. I propose a method for calibrating the scale-dependent galaxy bias using CMB lensing-
galaxy cross-correlations. Another crucial issue in this direction is represented by how the bias is defined in first place. In
the presence of massive neutrinos, the usual definition of bias becomes inadequate, as it leads to a scale-dependence on
large scales which has never been accounted for. I show that failure to define the bias appropriately will be a problem for
future LSS surveys, leading to incorrectly estimated cosmological parameters. In doing so, I propose a simple recipe to
account for the effect of massive neutrinos on galaxy bias.

Finally, I take on a different angle and discuss implications of correlations between neutrino parameters and other
cosmological parameters. I show how, in non-phantom dynamical dark energy models (which include quintessence), the
upper limit on the sum of the neutrino masses becomes tighter than the ACDM limit. Therefore, such models exhibit an
even stronger preference for the normal ordering, and their viability could be jeopardized should near-future laboratory
experiments determine that the mass ordering is inverted. I then discuss correlations between neutrino and inflationary
parameters. | find that our determination of inflationary parameters is relatively stable against reasonable assumptions
about the neutrino sector, and thus that neutrino unknowns do not represent an important nuisance for our understanding
of inflation and the initial conditions of the Universe.

The findings reported in this thesis answer a number of important open questions whose addressing is necessary to
ensure a robust detection of neutrino masses (and possibly of the neutrino mass ordering) from future cosmological data,
opening the door towards physics beyond the Standard Model.
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The title of this thesis is inspired by the last words of King
Aerys Il Targaryen, known as the Mad King, as reported in the
Game of Thrones series. During the sack of King's Landing led
by Tywin Lannister, Aerys kept repeating to his piromancer:
"Burn them all", requesting that he burn the whole city rather
than losing it to the rebels; Aerys was eventually killed by Jaime
Lannister "The Kingslayer". The recurring theme in this thesis
is to weigh "all" the neutrinos, i.e. the sum of all three of them.
But "all" can also be interpreted as in ordering them from the
lightest to the heaviest one, i.e. determining the mass ordering,
which is another recurring theme in this thesis . Hopefully,
unlike the Mad King's last wish, my wish of seeing the neutrino
mass scale and mass ordering unveiled in the very near future
will come true.






Neutrinos, they are very small

They have no charge and have no mass
And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,
Like dustmaids down a drafty hall

Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,

And, scorning barriers of class,
Infiltrate you and me! Like tall

And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal

And pierce the lover and his lass

From underneath the bed—you call

It wonderful; I call it crass.

—Cosmic Gall, John Updike (1960)

Neutrinos...win the minimalist contest: zero charge, zero radius, and very possibly zero mass

—In The God Particle: If the Universe is the Answer, What is the Question?, Leon M.
Lederman and Dick Teresi (1993), p. xiii

Neutrinos have mass? I didn’t even know they were Catholic!

—Robert Langdon to Vittoria Vetra in Angels and Demons, Dan Brown (2000), p. 476






Abstract

The elusive neutrinos are among the most intriguing constituents of the particle zoo. The
observation of neutrino flavour oscillations, indicating that neutrinos are massive, provides
the only direct evidence for physics beyond the Standard Model. Neutrinos imprint pe-
culiar signatures in the Cosmic Microwave Background (CMB) and in the distribution of
Large-Scale Structure (LSS) in the Universe, making cosmology a very promising arena for
probing neutrino properties. A detection of neutrino masses is avowedly among the key goals
of several upcoming CMB and LSS surveys. For such a promise to be robustly realized, a
number of issues need to be addressed, particularly on the LSS side. In this thesis, I describe
a number of recent important developments in neutrino cosmology on three fronts.

Firstly, focusing on LSS data, I will show that current cosmological probes (and particularly
galaxy power spectrum data) contain a wealth of information on the sum of the neutrino
masses. 1 will report on the analysis leading to the currently best upper limit on the sum of
the neutrino masses of 0.12eV. I show how cosmological data exhibits a weak preference for
the normal neutrino mass ordering because of parameter space volume effects, and propose
a simple method to quantify this preference.

Secondly, I will discuss how galaxy bias represents a severe limitation towards fully capitaliz-
ing on the neutrino information hidden in LSS data. I propose a method for calibrating the
scale-dependent galaxy bias using CMB lensing-galaxy cross-correlations. Another crucial
issue in this direction is represented by how the bias is defined in first place. In the pres-
ence of massive neutrinos, the usual definition of bias becomes inadequate, as it leads to a
scale-dependence on large scales which has never been accounted for. I show that failure to
define the bias appropriately will be a problem for future LSS surveys, leading to incorrectly
estimated cosmological parameters. In doing so, I propose a simple recipe to account for
the effect of massive neutrinos on galaxy bias.

Finally, I take on a different angle and discuss implications of correlations between neutrino
parameters and other cosmological parameters. I show how, in non-phantom dynamical
dark energy models (which include quintessence), the upper limit on the sum of the neu-
trino masses becomes tighter than the ACDM limit. Therefore, such models exhibit an
even stronger preference for the normal ordering, and their viability could be jeopardized
should near-future laboratory experiments determine that the mass ordering is inverted.
I then discuss correlations between neutrino and inflationary parameters. I find that our
determination of inflationary parameters is relatively stable against reasonable assumptions
about the neutrino sector, and thus that neutrino unknowns do not represent an important
nuisance for our understanding of inflation and the initial conditions of the Universe.

The findings reported in this thesis answer a number of important open questions whose
addressing is necessary to ensure a robust detection of neutrino masses (and possibly of the
neutrino mass ordering) from future cosmological data, opening the door towards physics
beyond the Standard Model.
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Svensk sammanfattning

De svarfangade neutrinerna &r bland de mest fiangslande bestandsdelarna i partiklarnas
zoo. Observationen av neutrinooscillationer, som tyder pa att neutriner har massa, utgor
det enda direkta beviset for fysik utéver Standardmodellen. Neutriner ldmnar annorlunda
signaturer i den kosmiska bakgrundsstralningen (CMB) och i fordelningen av Universums
storskaliga struktur (LSS), vilka gor kosmologi till en mycket lovande arena for att undersoka
neutrinernas egenskaper. Att upptéicka neutrinomassorna ar ocksa bland de viktigaste malen
fér flera kommande CMB- och LSS-experiment. For att det hér 16ftet ska realiseras maste
ett antal fragor behandlas, sérskilt pa LSS-sidan. I denna avhandling beskriver jag ett antal
nya viktiga utvecklingar i neutrinokosmologi pa tre fronter.

For det forsta, med fokus pa LSS-data, kommer jag att visa att nuvarande kosmologiska
undersokningar innehaller en stor mangd information om summan av neutrinomassorna.
Jag kommer att beskriva analysen som leder till den fér nidrvarande bésta 6vre gransen for
summan av neutrinomassorna av 0.12eV. Jag visar hur kosmologiska data indikerar en svag
preferens for den normala neutrino massordningen (dir man har tva latta neutriner och en
tyngre neutrino, i motsats till den omvénda massordningen med en ldtt neutrino och tva
tunga neutriner) och ldgger fram en enkel metod for att kvantifiera denna preferens.
Dérefter kommer jag att diskutera hur galax-“bias” starkt begrédnsar mojligheten for att
fullt ut utnyttja all information om neutriner som &r dold i LSS-data. Jag ldgger fram en
metod for att kalibrera det skalaberoende galaxbiaset genom att anvéinda korskorrelationer
mellan CMB-linsning och galaxer. En annan viktig fraga i det hir sammanhanget &r hur
biaset fran borjan definieras. Nédrvaron av massiva neutriner gér den vanliga definitionen av
biaset bristfallig, eftersom det leder till att galaxbiaset blir skalaberoende pa stora skalor,
nagot som aldrig tidigare har beaktats. Jag visar att om galaxbiaset inte definieras pa ett
korrekt siatt kommer det att ge problem for framtida LSS-experiment, eftersom det leder till
felaktiga uppskattningar av de kosmologiska parametrarna. Jag presenterar ocksa ett enkelt
recept for att beakta massiva neutrinernas effekt pa galaxbiaset.

Slutligen tar jag en annan infallsvinkel och diskuterar konsekvenserna av korrelationer mellan
neutrinoparametrar och andra kosmologiska parametrar. Jag visar hur den évre gransen for
summan av neutrinomassorna blir strangare &n ACDMs 6vre grins i icke-fantom dynamiska
mork energi modeller (som inkluderar kvintessens). Dérfor uppvisar sidana modeller en
dnnu starkare preferens fér den normala massordningen och deras giltighet kan dventyras
om labexperiment i nira framtid skulle upptéicka att massordningen dr omvind. Till sist
diskuterar jag korrelationer mellan neutrino- och inflationsparametrar. Jag finner att vara
uppskattningar av inflationsparametrarna &r relativt stabilt mot rimliga antaganden om
neutrinosektorn, och salunda att neutrinerokénda inte utgor en stor kélla till osékerhet for
var forstaelse av inflationen och av Universums initiala férhallandena.

Denna avhandlings resultat svarar pa viktiga 6ppna fragor vars svar kravs for att sikerstélla
en robust detektion av neutrinomassorna (och mojligen av massordningen) fran framtida
kosmologiska data, vilket skulle kunna 6éppna dérren mot fysik utéver Standardmodellen.
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Preface

This thesis deals with recent developments in the quest towards using cosmological observa-
tions to determine properties of the elusive particles known as neutrinos, with a particular
focus on their mass and mass ordering. The fact that neutrinos are massive represents the
only direct evidence for physics beyond the Standard Model, while the three neutrinos remain
to date the only particles of the Standard Model of unknown mass. Disclosing the neutrino
mass scale would unlock the door for physics beyond the Standard Model, likely operating
at energy scales we can only ever dream of reaching on Earth.

Cosmological observations, particularly observations of the large-scale structure of the
Universe, have long been known to have the potential to measure the sum of the neutrino
masses. In a very simplified picture, reaching this tremendous achievement would consist of
at least two steps. The first step would be to make sure we address a number of difficulties
associated with the use of large-scale structure data, or at least keep them under control. The
second step would be to actually convince the cosmology and non-cosmology communities
that we have genuinely detected neutrino masses, and not something else which can mimic
their effect. The papers included in this thesis work towards achieving both the first (Paper I,
Paper 11, and Paper III) and, at least in part, the second goal (Paper IV, Paper V).

The main aim of this thesis is to put the included papers into the broader context for
non-experts. The physics required to fully understand the included papers span a very
broad range of topics within the field of cosmology, ranging from the complex statistical
mechanics (equilibrium and non-equilibrium) underlying the Cosmic Microwave Background
and more generally the early Universe, to galaxy bias (a topic of research still very much
under development and definitely not as well understood as we would like), dark energy,
cosmic inflation, as well as non-cosmology topics such as neutrino oscillation experiments.

With the above in mind, it is certainly not feasible to provide a pedagogical introduction
to all these topics, and in most cases the included papers contain introductory sections
(written mostly by myself) which are quite self-contained. Therefore, the first part of my
thesis will intentionally only provide an introductory review to the topics discussed in the
papers, going deeper into the technical details only whenever strictly necessary. Rather, my
aim is to focus on providing the context within which the work was done. On the other
hand, T aim to make up for this deficiency in depth by providing (or at least attempting to
provide) a very broad coverage in my bibliography, wherein the reader will find excellent
references for a more in-depth and pedagogical/technical coverage of the topics discussed.
The same holds for my results: Chapter 6 of the thesis itself will only summarize my results,
and the interested and expert reader is invited to read the included papers alongside the
thesis to get a deeper understanding of the results and their implications.
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Thesis plan

This thesis is divided into two parts: the first part provides an introduction to the field of
cosmology, with a focus on neutrino cosmology, in order to put my work in context. The first
part also provides summaries of my work. The second part provides the included papers.

In the first part, Chapter 1 provides a layman introduction to the current status of cos-
mology and the importance of neutrinos, setting the scene for the rest of the thesis: ideally,
it should be understandable to the general public. Chapter 2 provides a brief introduction
to the Standard Model of particle physics, and a more detailed introduction to the Standard
Model of cosmology (the ACDM model). Chapter 3 provides an overview of a number of
concepts in modern cosmology useful for understanding the subsequent Chapters, in particu-
lar the thermal history of the Universe. Chapter 4 presents a review of modern cosmological
observations, inevitably biased towards the observations this thesis will focus on: Cosmic Mi-
crowave Background (CMB) and Large-Scale Structure (LSS). The same Chapter is devoted
to an account of how massive neutrinos impact CMB and LSS observations, and therefore
of how one can use the latter to constrain neutrino properties. Chapter 5 then introduces
some basic data analysis and statistics tools widely used in cosmology and, in particular,
in deriving the results presented in Chapter 6. Finally, Chapter 7 provides a conclusive
summary and outlook on future directions.

The second part provides five included papers. I recommend reading them alongside
Chapter 6, as they effectively integrate the discussion therein. Paper I (Chapter 6.1) dis-
cusses cosmological limits on neutrino masses and the neutrino mass ordering using state-
of-the-art datasets, highlighting important issues which need to be addressed if progress is
to be made. A better understanding of galaxy bias, and its scale-dependence, is highlighted
as a particularly pressing concern. This problem is partially addressed in Paper II (Chap-
ter 6.2), where we propose a new method to calibrate the scale-dependent galaxy bias, based
on cross-correlations between CMB lensing and galaxy maps. A related issue is addressed
in Paper III (Chapter 6.3), where we highlight the importance of defining the galaxy bias
in the presence of massive neutrinos in a meaningful way, a subtlety which had not been
appreciated so far. The final two papers deal with the issue of degeneracies, i.e. the fact
that different cosmological parameters (among which neutrino masses) can have comparable
effects on cosmological observations and hence it is sometimes difficult to disentangle the
individual effects. As a result, our upper limits on neutrino masses usually degrade when
relaxing our assumptions on the underlying cosmological model, and hence our ignorance
on other parameters affects what we learn about neutrinos and vice-versa. In Paper IV
(Chapter 6.4) we argue that this is not always the case, highlighting an important example
where we relax the assumption that dark energy should consist of a simple cosmological
constant. Finally, in Paper V (Chapter 6.5) we tackle the reverse problem, namely whether
our ignorance of neutrino properties can affect what we learn about the rest of the Universe.
We focused on what we learn about cosmic inflation, which supposedly occurred in the very
early instants of the Universe and set the initial conditions for the hot Big Bang theory.
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Abbreviations

BAO
BBN
BE
BOSS
BSM
CDM
CKM
C.L.
CMB
CNB
CPL
COBE
DDE
DE
DES
DESI
DM
DR
DUNE
eBOSS
EISW
EoS
EW
FD
FIRAS
FKP
FLRW
GR
GW
HFI

I0
ISW

Baryon Acoustic Oscillations

Big Bang Nucleosynthesis

Bose-Einstein

Baryon Oscillation Spectroscopic Survey
Beyond the Standard Model

Cold Dark Matter
Cabibbo-Kobayashi-Maskawa
Confidence level

Cosmic Microwave Background

Cosmic Neutrino Background
Chevallier-Polarski-Linder

Cosmic Background Explorer
Dynamical dark energy

Dark Energy

Dark Energy Survey

Dark Energy Spectroscopic Instrument
Dark Matter

Data Release

Deep Underground Neutrino Experiment
Extended Baryon Oscillation Spectroscopic Survey
Early integrated Sachs-Wolfe

Equation of state

Electro-weak

Fermi-Dirac

Far Infrared Absolute Spectrophotometer
Feldman-Kaiser-Peacock
Friedmann-Lemaitre-Robertson-Walker
General Relativity

Gravitational wave

High Frequency Instrument

Inverted neutrino mass ordering
Integrated Sachs-Wolfe
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KamLAND
LFI
LISW
LSS
LSST
MCMC
MGS
MSW
NISDB
NO
NOvA
NPDDE
PCA
PMNS
QCD
RSD
SDSS
SM
SNela
SNO
SPHEREx

T2K

uv
WFIRST
WMAP
ACDM
2dfGRS
6dFGS

Abbreviations

Kamioka Liquid Scintillator Antineutrino Detector
Low Frequency Instrument

Late integrated Sachs-Wolfe

Large-scale structure

Large Synoptic Space Telescope

Markov Chain Monte Carlo

Main Galaxy Sample
Mikheyev-Smirnov-Wolfenstein

Neutrino-induced scale-dependent bias

Normal neutrino mass ordering

Neutrinos at the main injector off-axis v, appearance
Non-phantom dynamical dark energy

Principal component analysis
Pontecorvo-Maki-Nakagawa-Sakata

Quantum chromodynamics

Redshift-space distortions

Sloan Digital Sky Survey

Standard Model of Particle Physics

Type la Supernovae

Sudbury Neutrino Observatory
Spectro-Photometer for the History of the Universe, Epoch of Reionization,
and Ices Explorer

Tokai to Kamioka

Ultraviolet

Wide Field Infrared Survey Telescope

Wilkinson Microwave Anisotropy Probe

A-cold dark matter (standard model of cosmology)
2-degree field galaxy redshift survey

6-degree field galaxy survey



Notation

Certain symbols have more than one meaning, which depends on the context. These symbols
are marked by “(context)”

a Scale factor/scale-independent bias factor (context)

Qlm Coefficients of the decomposition of © in spherical harmonics

Anr Scale factor at z,,

ag Scale factor today (usually normalized to 1)

Ap Phenomenological parameter governing the amplitude of CMB lensing
A, Amplitude of primordial scalar power spectrum

b Galaxy bias

bauto Galaxy bias in auto-correlation

bep Galaxy bias defined with respect to the cold dark matter+baryons field
beross Galaxy bias in cross-correlation

B;; Bayes factor of model i with respect to model j

b Galaxy bias defined with respect to the total matter field

c Scale-dependent bias factor in cross-correlation

Cs Speed of sound

C’fB CMB B-mode polarization anisotropy angular power spectrum

CcFE CMB E-mode polarization anisotropy angular power spectrum

C’;‘FE CMB temperature-E-mode polarization anisotropy angular cross-power spectrum
o/ CMB temperature anisotropy angular power spectrum

cye CMB lensing convergence-galaxy angular cross-power spectrum

Céw CMB lensing potential power spectrum

cy Neutrino speed

C Collision operator

d Scale-dependent bias factor in auto-correlation

d Data

di Right-handed down quark singlet

dy Volume distance

dor/dQ  Thomson scattering differential cross section

Dy L+ 1)Cy
el Right-handed electron singlet
E(d) Bayesian evidence/marginal likelihood
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ksd

L£(d|6)
Lsm

l

e,

m;
Mlight

eff
S

M,

Ne

m

ng
nrun

Trunrun

Notation

Normalized expansion rate E(z) = H(z)/Hy

Distribution function

Growth rate of the cold dark matter+baryons power spectrum
Growth rate of the matter power spectrum

Fraction of the matter density parameter in neutrinos f, = Q,/Q,,
Internal degrees of freedom of species 4

Effective number of relativistic degrees of freedom

Effective number of entropy degrees of freedom

Fermi constant

Einstein tensor

Reduced Hubble constant

Hubble parameter at a given redshift/neutral Hydrogen (context)
Hubble constant

FLRW metric curvature/wavenumber (context)

Wavenumber of perturbation entering the horizon at zeq
Neutrino free-streaming wavenumber

Wavenumber of the n-th CMB acoustic peak

Wavenumber of perturbation entering the horizon at z,,
Wavenumber at which scale-dependent bias becomes important
Left-handed lepton doublet

Liouville operator

Likelihood

Standard Model Lagrangian

Multipole

Multipole of the n-th CMB acoustic peak

Mass of species i

Mass of lightest neutrino eigenstate

Effective sterile neutrino mass

Sum of the three active neutrino masses

Number density of free electrons

Number density of species 4

Running of the scalar spectral index dn,/dInk

Running of the running of the scalar spectral index dnyu,/dInk
Tilt of primordial scalar power spectrum (scalar spectral index)
Effective number of relativistic degrees of freedom

Number of e-folds of cosmic inflation

Momentum /probability (context)

Posterior distribution

Cold dark matter+baryons power spectrum

Pressure of species ¢

Matter power spectrum
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P, (k) Galaxy power spectrum
Pyr, (k) Non-linear power spectrum from Halofit calibrated to massive neutrinos

Ppg(k)  Matter-galaxy cross-power spectrum
Poim (k)  Primordial power spectrum of matter fluctuations
Pr(k) Primordial power spectrum of R
Pr Dimensionless primordial power spectrum of R
pshot Shot noise
P(0) Prior distribution
¢ Left-handed quark doublet
q(0*10)  Proposal distribution for Metropolis-Hastings algorithm
R Baryon-to-photon momentum density ratio
r Tensor-to-scalar ratio evaluated at the pivot scale k = 0.05 Mpc™*
rq Damping scale
Tts Neutrino free-streaming horizon
Ts Comoving sound horizon
S; Entropy density of species 4
t Time
T Temperature of the Universe (photon temperature)
TemB CMB temperature today
T(k) Transfer function
Ty Stress-energy tensor
T, Effective neutrino temperature
T, dec Neutrino decoupling temperature
u’}é Right-handed up quark singlet
Ui; PMNS matrix
w Dark energy equation of state
wo Dark energy EoS today (CPL parametrization)
W, Minus derivative of dark energy EoS with respect to scale factor (CPL parametrization)
we Kernel for CMB lensing
Yim Spherical harmonics
Y, Primordial Helium fraction
z Redshift
Zdec Redshift of decoupling
Zdrag Redshift of baryon drag
Zoff Effective redshift
Zeq Redshift of matter-radiation equality
Zar Redshift of neutrino non-relativistic transition
Zre Redshift of reionization
ZA Redshift of matter-A equality
o o= [1+7/8(4/11)*3Neg] ~ (1 + 0.2271 Negr)

r Reaction rate
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Notation

Dirac Delta

Overdensity of species @

Solar mass-squared splitting

Atmospheric mass-squared splitting
Baryon-to-photon ratio

Parameter vector

Angular size of the damping scale

Angular size of the n-th CMB acoustic peak
Angular size of the first CMB acoustic peak

CMB temperature anisotropies/Heaviside step function (context)
CMB lensing convergence

Wavelength

Neutrino free-streaming scale

Cosmological constant

Neutrino mass eigenstates (i = 1,2, 3)

Neutrino flavour eigenstates (o = e, i, 7)

Galaxy 2-point correlation function

Critical energy density of the Universe today
Energy density of species @

Thomson scattering cross section

Amplitude of matter fluctuations averaged on a sphere of radius 8 h~!Mpc
Optical depth to reionization
Inflaton/gravitational potential/lensing potential/quintessence field (context)
Higgs doublet

Comoving distance to a given redshift

Comoving particle horizon at a given redshift
Comoving distance to zgec

Gravitational potential

Physical density parameter of baryons

Physical density parameter of cold dark matter
Physical density parameter associated to curvature
Physical density parameter of matter

Physical density parameter of radiation

Physical density parameter of photons

Physical density parameter of neutrinos

Physical density parameter of A

Density parameter of baryons

Density parameter of cold dark matter

Density parameter associated to curvature

Density parameter of matter

Density parameter of radiation
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Q, Density parameter of photons
Q, Density parameter of neutrinos

Qa Density parameter of A
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Evolution of the effective number of relativistic degrees of freedom g, (solid
line) and the effective number of entropy degrees of freedom ¢ (dashed line)
assuming the particle content of the Standard Model, as a function of the
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A visual representation of the two possible neutrino mass orderings/hierarchies.
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spheric mass-squared splitting is positive. On the right side, the inverted
ordering, where ms < my < mg and the atmospheric mass-squared splitting
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2.16 x 1079, and ny = 0.96. Derived parameters of particular interest are
h = 0.7, Qp = 0.713, 2¢q = 3345.55, and 10004 = 0.167. The spectra have
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Impact of increasing the sum of the neutrino masses M, on the CMB temper-
ature power spectrum. Upper panel: the black curve is the power spectrum
for the baseline model where M, = 0.06eV. In addition, we set h = 0.7,
we = 0.12, and Q5 = 0.713. The other three curves are obtained for M, =
1.8V, where the increase in M, is compensated by setting h = 74.48 (blue
curve), w, = 0.10144 (red curve), and 25 = 0.675 (green curve). Notice that,
as per standard convention in the field, the quantity plotted on the y axis is
T2\ sl + 1)Cy, with Tomp &~ 2.725K the CMB temperature today. Lower
panel: relative change in power with respect to the baseline model, with the
same color coding as above. The main changes are due to: an increase in 6
when varying h (blue curve); an increase in 8, and an enhanced EISW effect
when varying w,. (red curve); and an increase in 65 and a reduced LISW effect
when varying Qa (green curve). . . . . ... L

Impact of increasing the sum of the neutrino masses M, on the CMB tem-
perature power spectrum, adjusting h and Q4 to keep 05 and z.q fixed at the
expense of a small shift in zy. Upper panel: the black curve is the power spec-
trum for the baseline model where M, = 0.06eV, h = 0.7, and Q) = 0.713.
The green (red) curve is obtained for M, = 1.8eV (M, = 0.9€V), where
the increase in M, is compensated for by setting h = 0.569 (h = 0.628) and
Qp = 0.508 (24 = 0.621). Notice that, as per standard convention in the field,
the quantity plotted on the y axis is T@ypl(¢ + 1)Ce, with Tomp ~ 2.725K
the CMB temperature today. Lower panel: relative change in power with re-
spect to the baseline model, with the same color coding as above. The main
changes are due to a reduced LISW effect, a reduced EISW effect, a minuscule
change in the damping scale, and a reduction of the lensing effect. . . . . ..

Impact of increasing the effective number of neutrinos Neg on the CMB tem-
perature power spectrum. Upper panel: the black curve is the power spec-
trum for the baseline model where Neg = 0. In addition, we set w. = 0.12
and h = 0.7. The dashed blue curve is obtained for Nog = 3.046, keeping w,
and h fixed. The other three curves are obtained for Neg = 3.046 (solid blue
curve), Neg = 2 (solid green curve), and Neg = 4 (solid red curve), where the
increase in Neg is compensated by setting w. = 0.217, h = 0.9105 (solid blue
curve), we = 0.184, h = 0.8441 (solid red curve), and w, = 0.247, h = 0.9670
(solid blue curve). Notice that, as per standard convention in the field, the
quantity plotted on the y axis is T(%MBE(E + 1)Cy, with Temp =~ 2.725K the
CMB temperature today. Lower panel: relative change in power with respect
to the baseline model, with the same color coding as above. The main changes
are due to shifts in 6, zeq, and rq when keeping w, and h fixed (dashed blue
curve), and shifts in r4 as well as direct perturbation effects (reduced EISW
effect and phase shift) for the remaining three cases. . . . ... .. ... ...
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Illustrations

Impact of increasing the effective number of neutrinos Neg on the CMB tem-
perature power spectrum while adjusting the Helium fraction Y}, to keep the
damping scale r4 fixed. Upper panel: the black curve is the power spectrum
for a baseline model where Nog = 3.046. In addition, we set w. = 0.12,
h = 0.7, and Y, = 0.24. The blue curve is obtained by increasing Neg = 4
and compensating this increase by setting w. = 0.138 and h = 0.7435, in order
to keep 65 and zcq, but not 4 fixed. The red curve is obtained by further set-
ting Y, = 0.19 to keep r4 fixed. However, this is an unrealistically low value
for Y}, so this exercise is to be considered purely illustrative. Notice that,
as per standard convention in the field, the quantity plotted on the y axis is
T2upl(l + 1)Cy, with Toup =~ 2.725K the CMB temperature today. Lower
panel: relative change in power with respect to the baseline model, with the
same color coding as above. The main changes are due to the shift in r4 when
not varying Y, (blue curve), and direct perturbation effects (reduced EISW
effect and phase shift) when varying Y, (red curve). . . .. ... ... .. ..

Impact of increasing the sum of the neutrino masses M, on the linear matter
power spectrum, keeping wp, and w, (and hence zoq) fixed, and increasing h to
keep 2, fixed. Upper panel: the black curve is the power spectrum for the
baseline model where M, = 0.06eV, w, = 0.02, w. = 0.12, h = 0.7, and hence
Q, = 0.287. The blue (red) [green] curves are obtained for M, = 1.8eV
(M, =0.9¢V) [M, = 0.6¢eV], where the increase in M, is compensated for by
setting h = 0.7447 (h = 0.7218) [h = 0.7141]. Lower panel: relative change
in power with respect to the baseline model, with the same color coding
as above. The main changes are due to the small-scale power suppression
induced by neutrino free-streaming, which saturates on small scales at a value

AP(k)/P(E) ~ —8f,, With fu = Q0 /e o+ o o oo

Impact of increasing the effective number of neutrinos Neg on the linear mat-
ter power spectrum, keeping w, and w, (and hence zeq) fixed, and increasing
h to keep ,, fixed. Upper panel: the black curve is the power spectrum for
the baseline model where M, = 0.06eV, w, = 0.02, w, = 0.12, h = 0.7, and
hence Q,,, = 0.287. The blue (red) [green] curves are obtained for M, = 1.8eV
(M, =0.9¢eV) [M, = 0.6eV], where the increase in M, is compensated for by
setting h = 0.7447 (h = 0.7218) [h = 0.7141]. Lower panel: relative change
in power with respect to the baseline model, with the same color coding as
above. The main changes are due to the induced changes in wy/w. and wy
respectively. . . . . ..

Top panel: nonlinear galaxy power spectrum computed using CAMB+Halofit
(red curve), compared with the same quantity computed using the Coyote
emulator. Both quantities are plotted assuming the Planck 2015 best-fit pa-
rameters and M, = 0eV and a bias b =~ 2. The green triangles denote
the galaxy power spectrum measured from the BOSS DR12 CMASS sample,
whereas the purple circles denote the galaxy power spectrum measured from
the BOSS DR9 CMASS sample. Bottom panel: the blue line denotes the
fractional difference between the power spectrum computed using the Coyote
emulator vs using CAMB+Halofit. The orange line denotes the wavenumber
range we use in [10], which is safe both against systematics on large scales
and nonlinear corrections on small scales. Reproduced from [10] (Paper I)
with permission from APS. . . . ... ... .. o o
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6.6

Posteriors on M, (normalized to their maximum values) obtained using dif-
ferent dataset combinations. The figure should be read as follows: to make
the BAO vs P(k) comparison, choose a given color and compare the solid
curve [P(k)] against the dashed curve [BAO]. It is clear that BAO (dashed
curves) leads to tighter constraints. Notice that the black curves are obtained
including a prior on Hy based on the locally measured value, not discussed in
this Chapter (see Paper I for more details). Reproduced from [10] (Paper I)
with permission from APS. . . . . . ... ... .. o o

Measured CMB lensing convergence-galaxy overdensity cross-power spectrum
from cross-correlating Planck 2015 lensing maps with galaxies from the BOSS
DR11 CMASS sample (blue points), compared against the theory predictions
(green curve). Theory predictions are made assuming a scale-dependent bias
beross (k) with parameters a and c¢ fixed to their central values inferred from
the PlanckTT+lowP+C;9+P(k) dataset combination, a = 1.95 and ¢ =
0.48 h=2Mpc? (see Tab. Tin Paper IT). . . . . . . .. ...t

Posterior distributions for M,, (normalized to their maximum values) obtained
using different datasets and making different assumptions on the galaxy bias:
CMB (PlanckTT+lowP; black curve), CMB+P(k) (BOSS DR12 CMASS)
with constant bias (from Paper I [10]; red curve), CMB+C;? (BOSS DR11
CMASS x Planck 2015 lensing) using scale-dependent beyoss(k) (from Eq. (6.8);
green curve), CMB+P(k) using scale-dependent b,yuio(k) (from Eq. (6.8);
blue curve), and CMB+C}?+P(k) with scale-dependent beyoss (k) and baugo (k)
(purple curve). Reproduced from [11] (Paper II) with permission from APS. .

The impact of not correctly accounting for the NISDB effect when analyz-
ing mock galaxy clustering data from Fuclid. Left panel: one-dimensional
posterior distributions for M, normalized to their maximum values, when
the NISDB effect is correctly accounted for (blue solid), or not accounted for
(red dashed). The dot-dashed vertical line denotes the input fiducial value
M, = 0.06eV. Right panel: triangular plot showing joint and one-dimensional
marginalized posterior distributions for M,,, weam = we, and ng, when the
NISDB is correctly accounted for (blue contours/solid curves) and when it
is not accounted for (red contours/dashed curves). Reproduced from [12]
(Paper IIT) with permission from IoP. . . . ... ... ... .. .. .. ....

Left panel: one-dimensional posterior distributions for M, normalized to their
maximum values, assuming ACDM (black), the wow,CDM model (blue), and
the NPDDE model (red), and using the base (solid) or pol (dashed) dataset.
The dot-dashed vertical line denotes M,, = 0.1¢eV, the minimum value of the
sum of the neutrino masses allowed for the inverted ordering. Right panel:
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Reproduced from [13] (Paper IV) with permission from APS. . . ... .. ..
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confidence intervals limits obtained by the Planck collaboration for the base-
line ACDM model for the PlanckTT+lowP dataset (which of course basically
reproduce our topmost solid red interval). Reproduced from [14] (Paper V)
with permission from APS. . . . . . ... ... o

Marginalized 68% and 95% confidence intervals for ng for different choices of
cosmological models (ACDM+ Nog, ACDM+r+ Nog, ACDM+ Nog+M,,, and

ACDM+r+Ngg+M, ), cosmological datasets (combinations of PlanckTT+lowP,

BAO, and BK1/), and assumptions about the neutrino effective number
(“broad” 0 < Neg < 10 prior or “hard” Neg < 3.046 prior). Solid lines
are for the “broad” prior while dashed lines are for the “hard” prior. Vertical
grey bands as in Fig. 6.7. Reproduced from [14] (Paper V) with permission
from APS. . . . . e
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when M, is fixed (ACDM+r and ACDM+7r+Neg models), and the 3deg ap-
proximation when M, is varying (ACDM+r+ Neg+M, model). Reproduced
from [14] (Paper V) with permission from APS. . . . .. ... ... ... ...

List of Tables

5.1

6.1
6.2

Jeffreys scale for comparing the strength of the evidence for model My against
model M7, when the Bayes factor By; is known [15]. . . . . . ... ... ...

Content of datasets and/or dataset combinations used in Paper I. . . . . . . .

95% C.L. upper bounds on the sum of the three active neutrino masses M, (in
eV). The left column shows the combination of cosmological datasets adopted
(see Tab. 6.1 for further details on these datasets), while the right column
shows the 95% C.L. upper limits obtained for the specific combinations.

78



Illustrations Xxxiii

6.3 Marginalized 68% confidence intervals for ng for different choices of cosmo-
logical models, cosmological datasets, and approximations on the neutrino
mass spectrum (NO or approx). Rows labelled “approx” refer to the Imass
approximation (first column, ACDM model with M,, fixed to 0.06€V) or the
3deg approximation (second column, ACDM+M,,, M, marginalized over). . . 96

6.4 Marginalized 68% confidence intervals for ng for different choices of cosmo-
logical models, cosmological datasets, and approximations on the neutrino
effective number (“broad” or “hard” prior on Ngg, described in the table).

Note that we adopt the Imass approximation when M, is fixed (ACDM+ Neg
model) and the 3deg approximation when M, is varying (ACDM+Neg+M,
model), given our earlier findings that modelling the exact mass splittings
leads to negligible shifts inng. . . . . . . .. .. L o Lo 98






1

Introduction

“I have done a terrible thing, I have postulated a particle that cannot be detected.”
— Wolfgang Pauli (after having postulated the existence of the neutrino, 1930)

1.1 Cosmology, the dark Universe, and neutrinos

What are we made of? Where do we come from? Where are we going? These are probably
among the most fundamental questions one can come up with, and have tormented mankind
since the dawn of days. Remarkably, the field of cosmology is tasked with the responsibility
of providing answers to the modern versions of these three questions: What is the Universe
made of? What are the initial conditions of the Universe? How will the Universe evolve?

Even more remarkably, we have a semi-decent idea of how to answer these questions,
although several crucial gaps remain. We know that most of the Universe is not made up
of stuff we know and love (dubbed baryonic matter), but rather of invisible dark matter
and dark energy. The question of their composition and origin, however, remains well open.
As for the initial conditions of the Universe, we have good reason to believe that when the
Universe was just a fraction of a second old, it underwent a period of accelerated expansion
which goes under the name of inflation (what happened before, however, remains a mystery,
at least until we have a complete theory of quantum gravity). Presumably, inflation set up
the seeds which later grew under gravity to form the structure we observe today: galaxies,
clusters, and the whole cosmic web in its beauty. And finally, we believe that a mysterious
dark energy is driving the current accelerated expansion of the Universe, and the nature of
the dark energy will determine the fate of the Universe.

Besides cosmology, particle physics is also tasked with the responsibility of answering
the first question (and, to some extent, the other two). The Standard Model of particle
physics provides a remarkable description of most experimental results to date...with one
notable exception. Surely the reader will have heard about neutrinos, ghostly particles
permeating the world and constantly hurtling past us, and yet extremely elusive and hard
to detect. We know that neutrinos come in three “flavours” (v, v,, and v;), and that
as they propagate they can switch among different flavours. This is a phenomenon known
as neutrino oscillations, whose discovery was awarded the 2015 Nobel Prize in Physics.
Neutrino oscillations can only occur if neutrinos have mass. However, the Standard Model
of Particle Physics predicts that neutrinos are massless. Neutrino masses are therefore the
only direct evidence for physics beyond the Standard Model, the quest for which is extremely
hot in particle physics nowadays. Unraveling the neutrino mass scale would likely shed light
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on physics operating at energy scales we can only ever dream of reaching on Earth, and
would be a feat of indescribable impact. But it’s not easy...

Enter cosmology. Neutrinos are very peculiar particles, as we shall see in this thesis, and
their distinctive behaviour imprints equally unique signatures in cosmological observations.
Two types of observations, in particular, are crucial in this sense. One is the Cosmic Mi-
crowave Background (CMB), a left-over radiation from the Big Bang and the oldest light
reaching us from a time when the Universe was “only” 380000 years old (for comparison,
the Universe is now about 14 billion years old). Another important set of observations is
constituted by the large-scale structure (LSS), in particular how galaxies in the Universe are
distributed and cluster with each other. The physics of neutrinos creates subtle correlations
among the positions of various points in the CMB and among the positions of the millions
of galaxies in the sky.

Until a few decades ago, cosmology was not considered a “real” science, because obser-
vations were hard to come by and those few observations we had were of poor quality. The
situation has now drastically changed. We have immense amounts of data, of extraordinary
quality. Inside this data is a colossal treasure of information on the content of the Universe,
its origin, its fate, and the ghostly neutrinos. However, analysing the data is becoming
ever more challenging, and as the data grows in quantity, quality, and complexity, these
challenges only keep growing.

At the time I started my PhD, three things soon became clear to me. The first was that
understanding the properties of neutrinos, and in particular their masses, was an exciting
problem which would only have kept getting hotter. The second was that cosmology and in
particular data from the LSS provides an extraordinary route towards achieving this goal.
The third was that there were still several crucial open questions in the field and in particular
in the use of LSS data, questions which needed to be answered if we wanted to make real
progress. Getting a bit technical, some of these questions included: understanding if and how
cosmology can determine the neutrino mass ordering (normal or inverted); understanding
how to properly define galaxy bias, and hence analyse galaxy clustering data, in the presence
of massive neutrinos; devising wiser ways of calibrating galaxy bias; and so on. At this
point, there was really no questioning the fact that I was going to focus my thesis work
on understanding how to hunt neutrinos in cosmology, and how to make the most out of
current and future CMB and LSS data.

With this in mind, in my thesis I will describe a number of recent important develop-
ments in the field of neutrino cosmology, focusing on advances I either led or gave decisive
contributions to. Despite their elusive nature and their limited contribution to the energy
budget, neutrinos are an extremely important component of the Universe. A very limited
amount of neutrinos is sufficient to completely reshape the Universe, and hence revealing
their properties will partly address the “ What are we made of?” question. However, in my
thesis I have also tied the question of the neutrino unknowns to the “ Where do we come
from?” and “ Where are we going?” questions.

In my thesis I have addressed some of the open questions I outlined above. As always
in research, answering questions has led to more questions, which I have tried my best to
answer. Some of the questions I have addressed in my thesis are the following:

e What do the positions and subtle correlations between the positions of millions of
galaxies in the sky tell us about the neutrino masses? In Paper I, we looked at millions
of galaxies and found that neutrinos can weigh at most about 10737 kg. I always find
it impressive that by looking at such huge objects in the sky we can probe mass scales
that small. This is currently the best limit on the sum of the neutrino masses, and
resulted in our work being cited in the 2018 Review of Particle Physics [16].
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o Can cosmological data tell apart the two neutrino mass orderings (normal and inverted
ordering, i.e. whether we have two light neutrinos and one heavier neutrino, or one
light neutrino and two heavier neutrinos), and if so how? We answered this question
in Paper I.

e Can we find a wiser way of calibrating galaxy bias, perhaps using the lensing of the
CMB? We devised a simple way for doing so in Paper II.

e What is the proper way of defining galaxy bias itself, when massive neutrinos are
present? Have people been defining it incorrectly, and does this mistake have an
important effect? In Paper III we found that the answer is yes, and devised a simple
way for correcting this mistake.

¢ Can neutrinos tell us something about dark energy, and hence the fate of the Universe?
In Paper IV, quite unexpectedly we found that the answer is yes. We showed that if
future underground detectors find that the neutrino mass ordering is inverted, dark
energy would likely have to be of phantom nature, which could result in the final fate
of the Universe being a Big Rip.

e Can our ignorance about neutrino properties bias the conclusions we draw about in-
flation and hence the initial conditions of our Universe? Fortunately, in Paper V we
found that the answer is mostly no.

1.2 Outline of the thesis

My thesis is outlined as follows. I set the stage for the play in Chapter 2 by providing
an overview of the Standard Model of particle physics as well as the Standard Model of
cosmology, the ACDM model. Next, in Chapter 3, I provide an overview of the main
concepts and equations in physical cosmology, which will be useful in understanding the
role played by neutrinos during the evolution of the Universe. In Chapter 4, I first discuss
the physics of massive neutrinos, before explaining how their behaviour throughout the
evolution of the Universe is expected to leave peculiar signatures. I then describe the main
cosmological observations, focusing on CMB and LSS data, and discuss the signatures of
massive neutrinos in these observations. In Chapter 5, I discuss statistical tools which
will turn out to be useful when attempting to analyse cosmological data to study neutrino
properties. The heart of this thesis is Chapter 6, where I describe the results of the five
included papers, addressing the points I outlined previously at the end of Chapter 1.1.
Finally, in Chapter 7 I summarize my results and provide an outlook for future work.

Before starting, I need to warn the reader about one particular point. It has not been
feasible to provide a pedagogical introduction to all the involved topics. Therefore, Chap-
ters 2 through 5 will be rather introductory in nature, with my aim being more that of
providing the context within which my work was done. Often (especially in the context of
CMB and LSS observations), I will discuss the physics at a heuristic level. Anticipating that
most of my readers will not be experts on the subject, my aim has been that of endowing
the reader with the intuition necessary to grasp why cosmology works the way it works. I
often refer the reader to pedagogical/technical and seminal references wherein the topics in
question are covered in greater depth. I suggest that the reader interested in going deeper
into a particular topic consult these references.






2

Standard Models and what lies be-
yond

“There are more things in heaven and earth, Horatio, than are dreamt of in your
philosophy.”

— Hamlet to Horatio in Hamlet, William Shakespeare (1603), 1.5.167-8

The backbone of particle physics and cosmology consists of two Standard Models, pro-
viding the mathematical description of these two fields. In the case of particle physics,
the Standard Model is usually referred to as the Standard Model of Particle Physics (SM),
whereas the standard model of cosmology is usually referred to as the concordance ACDM
model. While the two have provided an astonishingly accurate description of almost all
physical phenomena to date, both in the laboratory and in the Universe, indications persist
that physics beyond the Standard Model(s) is needed for a more complete description of
Nature. In this sense neutrinos, the protagonists of this thesis, represent a key example:
the SM predicts neutrinos to be massless (or rather, was constructed in such a way that
neutrinos are massless), whereas the observation of flavour oscillations has convincingly de-
termined that neutrinos are massive, with the sum of the masses of the three neutrinos M,
being at least 0.06 €V [17-22]. Similarly, in the concordance ACDM model the value of M, is
fixed to 0.06 eV by hand: the truth is that we don’t know what the value of M, is, and near-
future cosmological observations hold the promise of a first convincing detection of neutrino
masses [23-37]. Beyond neutrino masses, a host of other measurements/observations hint
at the existence of physics beyond the Standard Model(s), albeit at a statistical significance
which is in most cases mild at best (see e.g. [38—42] for the SM and e.g. [43-47] for the
ACDM model). Still, it is hard to believe that the SM and the ACDM model are the end
of the story, and many (including me) are of the opinion that the in the coming years we
might finally get a convincing glimpse of physics beyond the Standard Model(s).

In this Chapter, I will provide a very brief review of the Standard Models of particle
physics and cosmology. Notice that the literature is full of well-written, extensive, up-to-
date introductions to particle physics and cosmology which do justice to the two subjects
way more than this Chapter. I will avoid being technical, with the aim of simply setting the
stage for the rest of the thesis, and providing an useful introduction to the main concepts
and tools necessary to understand the rest of the thesis at a high level.
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2.1 The Standard Model of Particle Physics

The mathematical description of the SM, whose current formulation was finalized in the
1970s, is based on a special type of quantum field theories known as gauge theories: such
theories are described by a Lagrangian invariant under local transformations generated by
the elements of a symmetry group (or product of symmetry groups). To ensure gauge invari-
ance, it is necessary to include vector fields known as gauge fields into the Lagrangian (more
precisely, derivatives are upgraded to covariant derivatives involving these gauge fields).
Each symmetry group of the Lagrangian can then be interpreted as describing a force be-
tween particles, whose force carriers are the gauge fields. For pedagogical introductions to
the SM, I refer the reader to classic textbooks such as [48-57].

The SM is a chiral gauge theory, formulated in terms of separate left- and right-handed
chiral components of the fermion matter fields. The mathematical description of the SM is
based on the gauge group SU(3). x SU(2), x U(1)y, where the SU(3). part describes the
strong force (and correspondingly the theory of quantum chromodynamics - QCD), whereas
the SU(2) x U(1)y part describes the electroweak (EW) interactions. In a rather symbolic
form which hides a lot of dust under the carpet, the SM Lagrangian is given by:

1 _ .
Lt = = Fu P + i7" D,V + D, @D"® — V(@) = YT, 9V, (2.1)

The first term includes the kinetic terms for the gauge fields (through their field-strengths
F,..), the second term includes the kinetic terms for the matter fields (symbolically denoted
by ¥) and their couplings to the gauge fields. The third term is the kinetic term for the
Higgs field ® (and specifies its interactions with gauge bosons), whereas the fourth term is
the Higgs potential which gives rise to the Higgs mechanism and hence to EW symmetry
breaking, wherein the SU(2);, x U(1)y symmetry is broken down to the U(1)ey subgroup
(with o standing for “electromagnetism”).

The matter content of the SM is arranged into left-handed SU(2) quark doublets [Q} =
(uf,di), with 1 for left-handed and i = 1,2,3 running over the three generations] and
lepton doublets [Li = (€%, v} )], and right-handed singlets u,, d%, and e%. The last term
in Eq. (2.1) is the Yukawa interaction term, which couples the left-handed fermion doublets
with the right-handed fermion singlets through the Higgs doublet. Upon EW symmetry
breaking, the Yukawa interaction term gives mass to the charged leptons and quarks.

Importantly, the SM matter content does not include right-handed neutrino fields v,
Therefore, the Yukawa interaction term cannot generate masses for the neutrinos. This is
no coincidence, rather occurs by construction. At the time the SM was formulated, there
only existed upper limits on v, of about 200 eV, much smaller than the next lightest known
fermion, the electron whose mass is about 0.5MeV. Therefore, the SM was constructed
to accommodate massless neutrinos. However, when in 1998 the SuperKamiokande atmo-
spheric neutrino experiment detected neutrino oscillations (possible only if two out of the
three neutrino mass eigenstates are massive, as we will discuss later in Chapter 4.1.1) [58],
it became clear that the picture had to be enlarged to allow for neutrino masses. Several
approaches to give mass to neutrinos in Beyond the Standard Model (BSM) scenarios exist:
for a very incomplete list of seminal papers and reviews, which does not do justice to the
wide literature of well-motivated models, see e.g. [59-83]. See also [84] for a recent review
of unknowns in the neutrino sector.

At any rate, it is clear that the absence of a mechanism for providing mass to the
neutrinos is among the most important shortcomings of the SM. Conversely, the observation
that neutrinos have mass is the only direct evidence for physics beyond the Standard Model,
presumably operating at extremely high energy scales (which could explain the smallness of
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neutrino masses). As such, there is no doubt that shedding light on the neutrino mass scale
would open the door towards new physics, and the impact such a feat would have cannot
be understated. In fact, unveiling the neutrino mass scale (as well as the mass ordering, an
aspect of the neutrino mass spectrum which we will return to in Chapter 4.1.1) is avowedly
among the key goals of several experimental efforts, both in the lab and in cosmology.

Cosmological observations appear to be a very promising avenue towards unraveling the
neutrino mass scale and possibly the mass ordering. This possibility constitutes the main
topic and thread of this thesis. I therefore now continue by providing a brief overview of the
Standard Model of Cosmology, the ACDM model.

2.2 The Standard Model of Cosmology

2.2.1 A brief history of cosmology

Physical cosmology is a relatively new branch of science, born less than a hundred years
prior to the time of writing. In 1929, while working at Mount Wilson Observatory, a
young astronomer named Edwin Hubble was measuring the relation between the recession
velocities of galaxies and their distances from Earth: surprisingly, he found a linear relation
between these quantities, implying that farther galaxies move away from us faster [85]. This
relation became known as Hubble’s law, and was consistent with a solution to Einstein’s
equations found earlier in 1927 by the astronomer and priest Georges Lemaitre, describing
an expanding Universe [86]. When winding back the tape of the expanding Universe, we
see that in the past the Universe must have been in a much hotter and denser state. At
the time, most astronomers were strong supporters of the steady state Universe, and the
idea of an expanding Universe was greeted with much skepticism: during a 1949 BBC radio
broadcast, astronomer Fred Hoyle referred to Lemaitre’s theory as the “Big Bang theory”,
a name which was meant to be sarcastic. Meanwhile, already as early as in 1933, Fritz
Zwicky realized that a substantial amount of dark matter (DM) was needed to reconcile the
observed motions of galaxies within the Coma Cluster with the inferred amount of luminous
matter [87].

As time went by, the Big Bang theory started gradually gaining support, especially in
light of two definite predictions it made. The first was the prediction for the abundance of
light elements in an expanding Universe, carried out in the famous 1948 af~ paper [88],
which correctly predicted the relative abundance of Hydrogen and Helium in the Universe.
The second was the prediction of the existence of the Cosmic Microwave Background (CMB),
a bath of left-over photons from the Big Bang [89]. The CMB was eventually discovered,
rather serendipitously, by Penzias and Wilson in 1965 [90], whereas in the same issue of
ApJ another paper correctly interpreted their observation as being the first detection of the
CMB [91]. Observations of the CMB continued over the coming years, culminating with
the first precise measurement of its black-body spectrum from the Far Infrared Absolute
Spectrophotometer (FIRAS) instrument on board the Cosmic Background Explorer (COBE)
satellite [92]. In 1992, COBE was also the first experiment to detect anisotropies in the
CMB [93]. !

Meanwhile, evidence for the existence of dark components in our Universe kept growing.

LA number of other CMB experiments were launched during those and subsequent years, but it is fair to
say that two stand out particularly among the others: the Wilkinson Microwave Anisotropy Probe (WMAP),
operating between 2001 and 2010, played a crucial role in definitely establishing the current concordance
ACDM model [94-96]. The Planck satellite has instead mapped the CMB sky to exquisite accuracy and is
currently providing the tightest constraints on cosmological parameters from a single experiment [5,7,97-103].
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In the 1970s, seminal works by Vera Rubin [104-108], along with upper limits on the ampli-
tude of temperature anisotropies in the CMB, provided strong support for the existence of
the DM already theorized by Zwicky in the 1930s. By the end of the 1990s, two indepen-
dent groups led by Riess and Perlmutter used Type Ia Supernovae (SNela) to demonstrate
that the Universe is accelerating [109,110], thus requiring some form of dark energy (DE),
possibly in the form of a cosmological constant A [111,112], or requiring modifications of
gravity [113-117].

Besides CMB and SNela, a number of other observational probes began flourishing espe-
cially in the early 2000s. A special mention goes to probes of the large-scale structure (LSS),
particularly galaxy redshift surveys. A crucial role in the development of galaxy redshift
surveys was played by the Sloan Digital Sky Survey (SDSS) [118]: in 2005, SDSS was the
first survey to detect baryon acoustic oscillations (BAOs) in the LSS [119], a signature of
primordial sound waves ringing in the early Universe, from an epoch prior to the formation
of the CMB.

Recently, the first detection of gravitational waves (GWs) [120,121] by the LIGO collab-
oration [122-124] has opened an unprecedented window onto the Universe, and has inaugu-
rated the era of multi-messenger astronomy thanks to the first coincident detection of GW
and electromagnetic signal with the GW170817 and GRB170817A events [125-127]. The
GW events detected so far have already been used to place extremely important constraints
on cosmological theories (see e.g. [128-152]). 2 The prospect of using future GW events to
constrain cosmology appear extremely promising, see e.g. [158-172]. Another cosmological
probe expected to be particularly important in the coming years is the 21-cm line [173-187].

2.2.2 Basics of physical cosmology

The standard model of cosmology is the mathematical framework describing the Universe
on the largest observable scales. Its lies on two cornerstones: the first is Einstein’s theory of
General Relativity (GR) [188]. The second is an assumption known as cosmological principle,
stating that the Universe is homogeneous and isotropic on large scales. For pedagogical
references on cosmology, see e.g. [189-194]. The essence of GR is encapsulated in the Einstein
field equations [188] (see [195] for one of the best pedagogical resources on GR):

Gy = 87GT,, . (2.2)

The left-hand side of Eq. (2.2) contains the Einstein tensor G,,,, and describes the geomet-
rical properties of spacetime, whereas the right-hand side contains the stress-energy tensor
T,,, which includes contributions from the various sources of matter and energy residing
in the spacetime. The general form of a metric respecting the cosmological principle is
known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and is described by
the following line-element [196-199]:

dr?

2 _ g2 _ 2
ds® = dt* —a“(t) Ty

+ r2(d6? + sin? 9dp?) | | (2.3)

where t is time, r, 6, and ¢ are the usual spherical coordinates, and k is the curvature
parameter which determines the overall geometry of the Universe. The function a(t) is known
as the scale factor, and describes the expansion (or contraction) of the Universe. Taking djn;
to be the distance between two objects at some reference time t;,;, then assuming the objects
have no peculiar velocity, at a later time ¢ their distance will be given by d(t) = a(t)din;/@in;-

2See also e.g. [153-157] for important early works in this direction.
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Figure 2.1: Pie chart representing the energy budget of the Universe today, as we
believe we understand it: less than 5% is in the form of matter we are familiar with,
dubbed baryonic matter. Credits: The Conversation [1].

It is common practice to normalize the scale factor to take the value 1 today: ag = 1 (the
subscript ¢ usually refers to quantities evaluated today).

The time evolution of the scale factor can be determined by solving the Einstein equa-
tions, and consequently will depend on the matter/energy content of the Universe. One can
make progress assuming that 7}, in Eq. (2.2) takes the form T}, = diag(p, p, p, p) describing
a perfect fluid with energy density p and pressure p. Inserting this into Eq. (2.2), with G,
computed from the FLRW metric with line element given by Eq. (2.3), one arrives (through
what is a very lengthy but classic exercise done in basically any graduate-level cosmology
course [195]!) at the following equations for the scale factor known as Friedmann equations:

LN 2
a k 871G

(a) 2= 3" 24)
a 4G
- == 2.
" 5 (p+3p), (2.5)

with the dot (double dot) denoting a time derivative (second time derivative). Another
useful but not independent equation, known as the continuity equation, follows from energy-
momentum conservation V,T"” = 0 and reads:

p+3H(p+p) =0, (2.6)

where the quantity H = a/a describes the expansion rate of the Universe, and is usually
referred to as Hubble parameter H(t). The value of the Hubble parameter today, Hy, is
instead typically called Hubble constant. The reduced Hubble constant h is given by the
Hubble constant expressed in units of 100kms~—' Mpc™': h = Hy/100kms~ Mpc™'. The
bulk of the game reduces to specifying the matter/energy content of the Universe, i.e. the
p and p on the right-hand sides of the two Friedmann equations (and we will return in more
detail to this in Chapter 3.1).

Here’s where things start to get interesting though. It turns out that, in order to match
observations, much of what we need to introduce on the right-hand sides of Eqs. (2.4,2.5)
is “dark”: in terms of energy budget, about 23% of the budget resides in a mysterious form
of dark matter responsible for the formation of structure in the Universe and for explaining
the motion of galaxies and clusters, whereas about 73% of the budget is in an even more
mysterious form of dark energy (DE) responsible for the late-time accelerated expansion of
the Universe, first discovered in 1998. Only = 4% of the energy budget of the Universe is in
the form of matter we know and love, usually referred to as “baryonic matter”. See Fig. 2.1
for a pie chart representation of the Universe’s energy budget.
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The dark energy component appears to be well described by a cosmological constant A,
which can be accounted for by adding a term Ag,,,, to the left-hand side of Eq. (2.2). Einstein
originally introduced this term in his equations to obtain a static solution [200], before later
calling it his “biggest blunder” following the discovery that the Universe is expanding. The
discovery of the Universe’s acceleration in 1998 resuscitated the idea of the cosmological
constant. While providing an excellent fit to observations, a cosmological constant appears
to be very problematic from a fundamental physics point of view, an issue which is reflected
in the cosmological constant problem (see e.g. [111,201-208] for reviews). Dark matter, on
the other hand, appears to be well described by “cold” (i.e. non-relativistic) particles. The
combination of the cosmological constant A, and cold dark matter (CDM), is at the origin
of the standard model of cosmology being dubbed the ACDM model.

At present, we do not know what the correct underlying models for DM and DE are,
and a wide variety of models have been proposed in the literature. It is fair to say that
the general consensus in the field is that DM should consist of a cold particle. Various
models of particle DM have been proposed, see e.g. [209-258] for a very incomplete list of
references examining particle DM models and their phenomenology, and e.g. [259-308] for
ideas and developments concerning experimental and observational tests of these models.
However, in principle DM could be the manifestation of a breakdown of GR, and a wide
variety of modified gravity models accounting for DM have been proposed in the literature,
see e.g. [309-358] for an incomplete list of such models and their observational tests. As for
dark energy, the situation is even more uncertain, and a broad array of models have been
proposed, involving either new fields or modifications to gravity. See e.g. [359-408] for a very
incomplete list of proposed models of dark energy, and e.g. [409-458] for works examining
observational constraints on dark energy models and/or modifications to gravity.

2.2.3 A sneak peek at the concordance ACDM model

The set of theoretical equations governing the evolution of the Universe (including those we
saw so far, and others to be discussed in more detail in Chapter 3), in combination with
a set of six parameters allowing for a simple and physically motivated comparison between
observations and theory, forms the backbone of the concordance ACDM model. We usually
refer to this model as concordance model because different observational probes of appear
to point to consistent values for these six fundamental parameters (alongside other derived
parameters). 3

The six parameters of the ACDM model include two parameters quantifying the amount
of baryons and the amount of cold dark matter, two parameters describing the power spec-
trum of primordial scalar fluctuations, one parameter describing the overall geometry of the
Universe (more precisely, the angular scale under which BAOs appear in the CMB, which
is related to the geometry of the Universe), and one parameter describing the amount of
reionization the Universe experienced due to the formation of the first stars. These parame-
ters will be described in more detail in Chapter 3.3. In the following Chapter, I will provide
a more detailed (but still brief) overview of physical cosmology, including a brief history of
the Universe.

3This overall concordance holds modulo a number of mild tensions which overall do not (yet) undermine
the consistency of the model itself. See e.g. [459-508] for an incomplete list of recent papers discussing these
tensions and possible solutions.
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Overview of physical cosmology

“Cosmology brings us face to face with the deepest mysteries, questions that were
once treated only in religion and myth.”
— Carl Sagan in Cosmos: A Personal Voyage, Episode 10: “The Edge of Forever”
(1980)

In Chapter 2.2, we have seen how the Universe on the largest observable scales is described
by Einstein’s equations of General Relativity, the FLRW metric, and correspondingly the
Friedmann equations, Eqgs. (2.4,2.5). In this Chapter, I will provide a more detailed (but still
rather brief) picture of physical cosmology and the (thermal) history of the Universe, starting
from the equations we have seen in Chapter 2.2 and elementary notions of thermodynamics
and statistical mechanics. More pedagogical and in-depth treatments of the topics covered
here can be found in classical cosmology texbooks, including e.g. [189-194].

3.1 Elementary notions of cosmology

To make progress, we have to specify the matter/energy content of the Universe, i.e. the
right-hand sides of Eqs. (2.4,2.5). We will assume that the Universe is filled with fluid(s)
whose relation between pressure p and energy density p takes the form:

p=uwp, (3.1)

where the constant w is called equation of state (EoS). It is trivial to solve the continuity
equation Eq. (2.6) and show that, for a Universe filled with a single fluid with EoS w, the
energy density evolves as a function of scale factor as:

pla) oc a3+ (3.2)

Similarly, the scale factor in the same Universe evolves as follows [which can be easily shown
by solving either one of Egs. (2.4,2.5)]:

alt) o {“”) w# -l (3.3)

eHot w=—1
where Hy denotes the Hubble parameter today (Hubble constant).
It is then useful to classify the components making up the cosmic inventory according

to their EoS:

11
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o Radiation: radiation has w = 1/3, therefore from Eq. (3.2) and Eq. (3.3) we find
that p(a) < a=* and a(t) o v/t. Photons contribute to the radiation energy density,
and so do neutrinos at early times. The radiation energy density decreases with the
scale factor as a~* since three powers of a account for the expansion of the Universe,
whereas one power of a accounts for the fact that the radiation loses energy (it is
redshifted) due to its wavelength stretching as the Universe expands.

o Matter: matter has w = 0, therefore from Eq. (3.2) and Eq. (3.3) we find that
p(a) o< a3 and a(t) o« t*/3. Baryons and cold dark matter contribute to the matter
energy density, and so do neutrinos at late times.

e Dark energy: the cosmological constant in the Friedmann equations is equivalent to
a fluid with w = —1. Therefore, its energy density stays constant even as the Universe
expands, and its presence leads to an exponential expansion. Beyond the cosmological
constant, a simple phenomenological parametrization of the physics underlying cosmic
acceleration is that of a more general dark energy component with constant EoS w #
—1. Aslong as w < —1/3, such a fluid can drive cosmic acceleration. In this case, one
finds that p(a) oc a=31+%), Finally, for a more generic dark energy component with
time-varying EoS w(a), one finds that p(a) o< a3 exp [-3 [, da’ w(a’)/a'].

Given the way the energy densities of these three different components scale as a function
of scale factor or time, we can expect that radiation dominated the energy budget of the
Universe early on. At some point (known as matter-radiation equality), the energy density
of matter was equal to that of radiation, and from that point on matter took on the scene.
Finally, at very late times, the energy density in dark energy became larger than that
of matter, leading to the accelerated expansion we see today. A visual representation of
how the different components of the Universe take over at different times can be seen in
the upper panel of Fig. 3.1, where I plot the evolution of the energy densities p, for each
species = (photons, dark matter, baryons, cosmological constant, neutrinos). As we shall
see later, massive neutrinos, the protagonists of this thesis, behave distinctly to the point
that they escape the cosmic inventory classification given above. At early times, when the
Universe was very hot and dense, neutrinos were relativistic and behaved as radiation. At
late times, neutrinos instead become non-relativistic and contribute to the matter budget of
the Universe. We will return to this important point later, as it underlies one of the most
peculiar signatures of massive neutrinos in cosmological observations.

It it convenient to define the critical energy density pcit as the current energy density
required for the Universe to be flat [k = 0 in of Eq. (2.4)]:

3H?

Perit = FYve. . (34)

Following this definition, for any given species = with energy density today ps o, we can
define the density parameter Q, as Q; = py,0/perit- For the cosmological constant A we
define Qn = A/(3HZ), while the curvature component can be seen as having an effective
density parameter Q) = —k/(agHZ). A visual representation of the evolution with time of
the density parameters €2, for each species z (photons, dark matter, baryons, cosmological
constant, neutrinos) is shown in the lower panel of Fig. 3.1. ! Then, the first Friedmann

INotice that the density parameters are defined at the present time, but can naturally be extended to
be time-dependent, as long as one considers the time dependence of the density of each species and of the
critical density. This time-dependence is naturally taken into account when plotting Fig. 3.1.
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Figure 3.1: Evolution of energy density and density parameters of the various com-
ponents of the Universe. Upper panel: evolution of the energy densities p;, in GeV*, of
photons (red solid curve), baryons (blue dashed curve), dark matter (green dashed
curve), the cosmological constant (black solid curve), and massive neutrinos (with
M, = 0.06¢eV, purple dashed curve) as a function of scale factor a. The three ver-
tical lines denote the redshift of matter-radiation equality (black dot-dashed line), the
redshift of non-relativistic transition of massive neutrinos (red dot-dashed line), and
the redshift of matter-A equality (blue dot-dashed line). Lower panel: evolution of the
density parameters €); for the various species, with the same color coding as the upper
panel. In addition, the red, blue, and green shaded regions denote the eras of radiation,

matter, and A dominatio
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equation [Eq. (2.4)] can be written in the following form (which sometimes goes under the

name of sum rule):

follows:

() ~ 1] =

291:1,

where the sum runs over all the components of the Universe (radiation, matter, cosmological
constant, curvature). For reasons which will become obvious later (highlighting the problems
which led to the need for an epoch of inflation), it is also convenient to express Eq. (3.5) as

||
a2H?’

(3.

5)

(3.6)
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where (a) denotes the total energy density of the Universe without including the contribu-

tion from curvature. So far we have discussed the evolution of energy densities as a function

of time t or scale factor a. For several cosmological discussions, it is more convenient to

describe the flow of time in terms of redshift z, defined as a function of scale factor as:
a 1

ay 142z~

(3.7)

With this definition, z = 0 today, while z — oo in the very far past. The concept of redshift
has a simple physical interpretation. Consider a wave emitted with a wavelength Aey, at
redshift zq, and observed at redshift zg,s. Due to the expansion of the Universe the wave
is redshifted, i.e. its wavelength is stretched, and as a result the observed wavelength Agps
is given by )\obs = )\em(l + Zem)/(l + Zobs) = /\emaobs/aem~

Introducing the concept of redshift we can rewrite the evolution of the Hubble parameter
as follows:

H(z) = Hov/Qr (14 2)4 + Qn (1 + 2)3 + Qp + Qi(1 + 2)2. (3.8)

When introducing massive neutrinos into the picture (and allowing for a more general DE
component with constant EoS w, with density parameter Qpg), Eq. (3.8) becomes:

H(z) = Ho\/ﬂr(l +2)4 + Qo (1 + 2)3 + Qpr(1 + 2)30+w) 4 Qp (14 2)2 + pu(z) , (3.9

Perit

where p,(z) denotes the neutrino energy density as a function of redshift: we have not
specified a functional form for p, (z) since neutrinos behave as radiation in the early Universe
and matter at late times, implying that the scaling of their energy density with z is non-
trivial. Nonetheless, as anticipated earlier we know that in the very early Universe (when
neutrinos behave as radiation), p, (z) oc (1+ 2)*, whereas at very late times (when neutrinos
behave as matter), p,(z) o< (14 2)3. 2 In addition, we define the physical density parameter
of species 4, w;, as w; = Q;h%, where h is the reduced Hubble parameter, defined by h =
Ho /(100 kms~ Mpc ™).

Later, we shall see that cosmological observables very often carry the imprint of particular
length scales, in relation to specific physical effects responsible for shaping the observables
themselves. 2 For this reason, it is convenient to briefly recall basic concepts pertaining to
distances in cosmology. In an expanding Universe, the notion of distance can be a bit tricker
than in our everyday life. Let us first define the comoving distance to an object located at
redshift z. (i.e. the distance travelled to reach us by a photon emitted by the object at time
t., such a distance remaining fixed as the Universe expands), x(z.):

bt o dz
X(Ze):/te @: ) %7 (3~10)

with H(z) given by Eq. (3.8), or Eq. (3.9) in the presence of massive neutrinos and a generic

2 Anticipating a bit, cosmological observations tell us that Hy ~ 70kms~'Mpc™!, Q, ~ 5 x 1079,
Qm ~ 0.3, Qpg ~ 0.7, and Qj, ~ 0 (i.e. the energy density of the Universe is very close to the critical energy
density perit, and thus the Universe is very close to being flat) [5,7].

3For instance, as we will discuss in more detail later, the typical angular separation between hot and cold
spots in the CMB is sensitive to the sound horizon at photon decoupling, as well as the angular diameter
distance to the CMB itself. On the other hand, BAO distance measurements are sensitive to the sound
horizon at the baryon drag epoch.
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dark energy component with constant equation of state w. ¢ Another important distance
notion is the concept of comoving particle horizon yj, the maximum distance a photon could
travel from a very early time (¢t = 0, z = co) until time ¢ (redshift z):

Xh(z):/o ac(lz:) _ :O Ifé/)' (3.11)

With H(z) given by Eq. (3.8), it is easy to show that the comoving particle horizon grows
as xn(2) o< (14 2)~! o a during radiation domination, and as xp(2) o< (14 2)~%/2 x a'/?
during matter domination. As we shall see later, in the early Universe the interplay between
photon pressure and gravity (mostly provided by baryons and dark matter) set up sound
waves which propagated in the tightly coupled baryon-photon plasma: these sound waves left
imprints which we see today in the statistics of fluctuations in the temperature of the Cosmic
Microwave Background, as well as in the large-scale distribution of galaxies. Therefore, it is
convenient to define a comoving sound horizon rs as the maximum distance a sound wave
could travel from the Big Bang until time ¢/redshift z:

rs(2) :/0 at’ (;S((:)) =/Z.OO ' ZE?; (3.12)

where the sound speed c; is given by:

cs =1/y/30+R), (3.13)

with the baryon-to-photon momentum density ratio R given by:

R= Do+ Po

= : 3.14
P (3.14)

In the early Universe, when photons dominate over baryons, cs ~ 1/4/3 and hence r, ~
Xn/ V3.

In its form given by Eq. (3.8), or Eq. (3.9), the first Friedmann equation is one of the
most important equations of physical cosmology. It allows us to describe the background
expansion of the Universe as a function of the energy content of the Universe itself. However,
this equation does not tell us how the Universe’s content came to be, nor does it take into
account the role of temperature in determining the content of the Universe. In fact, as the
Universe expands its temperature drops and certain reactions between particles, previously
maintained in equilibrium by frequent interactions, freeze-out and lead to decoupling of
particles from each other. Moreover, temperature also determines how particles behave,
depending on whether they are relativistic or not: this, as we shall see, plays a crucial role
in the case of massive neutrinos. To address these issues, I will briefly review the theory of
the Hot Big Bang and describe the thermal history of the Universe.

3.2 The Hot Big Bang theory

If we wind the tape of the Universe back in time, the scale factor decreases and the Universe
becomes denser and denser. In such a dense Universe, reactions are generally fast enough to

4Other two important distances often being discussed in physical cosmology are the angular diameter
distance d4(z) and luminosity distance dr(z). We will not discuss them further here, but simply note
that they are related to the comoving distance x given in Eq. (3.10) through da(z) = x(2)/(1 + z) and
dr,(z) = (1+ 2z)x(2). The angular diameter distance relates the the physical size of an object to the angle it
subtends on the sky. The luminosity distance instead relates the observed flux of an object to its intrinsic
luminosity.
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maintain thermodynamic equilibrium, and the Universe consisted of a hot and dense soup
of particles in equilibrium at a common temperature 7' (from now on, we will use 7' = T, to
denote the temperature of the photons). More generally, given a specific reaction with rate
I, to determine whether the reaction is in equilibrium at any given time we need to compare
I" to the expansion rate of the Universe H: if I' > H, the reaction is in equilibrium, whereas
the contrary holds if I' < H.

As long as a given particle is in equilibrium, its phase space distribution f(p,T), with
p = |p| the norm of the momentum and 7" temperature, ° is given by:

1
fp,T) = #ma (3.15)

where g is the number of internal degrees of freedom, E(p) = 1/p? + m?2, and the +(—) sign
holds for Fermi-Dirac (Bose-Einstein) distributions respectively. From Eq. (3.15), we can
compute the number density n(T), energy density p(T"), and pressure P(T) of the species
in question, which are given by the following [189-194]:

n(T) = /d3pf(p,T)7 (3.16)
oT) = / &p f(p. T)E(p), (3.17)
2
P(T) = /dgpf(p,T)g%@. (3.18)

Two limiting cases of Eqgs. (3.16,3.17,3.18) are of particular interest. The first is the rela-
tivistic limit, where T' > m and the particle behaves as radiation. In this case, one finds:

3¢(3) 73 7r2  pd
59T (FD) gT* (FD) p

(1) =135 7 L p(T) =T . P=g, (3.19)
9T (BE) 3097 (BE)

where ((3) &~ 1.202 is the Riemann zeta function of 3, and FD/BE stand for Fermi-
Dirac/Bose-Einstein respectively. From Eq. (3.19), it is clear that for radiation w = 1/3.
Summing over the energy densities of all relativistic species we obtain the total relativistic
energy density p, (dominating the energy budget in the early Universe), which at any given
temperature 7" can be expressed in terms of an effective number of relativistic degrees of
freedom g,:

77'2 4
= o mT, (3.20)

pr=>pi
i

where g, is given by [189-194]:
TN\ 7 \*
g(T) = Y O —my) ) *t3 > e —my) 7 (3.21)
i=bosons j=fermions

In Eq. (3.21), the Heaviside step function highlights the fact that only for T' 2 m; or T' 2 m;
do bosons i or fermions j contribute to the relativistic energy density. The evolution of g,

5Because of isotropy we assume that the phase space distribution is independent of the spatial coordinate
x, and only depends on p and not p. For simplicity we also neglect the chemical potential of particles, i.e.
we set 4 = 0. Allowing for a non-vanishing chemical potential does not change our subsequent discussion
significantly.
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as a function of temperature is shown in Fig. 3.2 (solid line). As shown in Fig. 3.2, g,
remains roughly constant except for noticeable drops during the EW phase transition, the
QCD phase transition, and eTe™ annihilation, reflecting the abrupt decrease in the number
of degrees of freedom in the early Universe following these events.

On the other hand, in the non-relativistic limit where 7' < m, the particle behaves as
matter and one finds that the following holds [189-194]:

S

n(T)=g (n;—:) ’ e T, p(T)=mn(T)+ gnT ~mn(T), P(T)=nT < p(T).(3.22)

In this limit, the number density of particles is Boltzmann suppressed [due to the exponential
appearing in the expression for n(T) in Eq. (3.22)]: particles and antiparticles annihilate
into photons, but the bath of photons does not possess enough energy to pair-create the
particle-antiparticle pairs again, leading to an overall decrease in their number density.
From Eq. (3.22), it is clear that for matter w ~ 0.

Another important concept in the Hot Big Bang theory is that of entropy density of
particle species. Neglecting chemical potentials, we can define the entropy density of species
i, Si, as [189-194]:

pit+ D

= . 3.23
s T (3.23)

As for the total relativistic energy density, we can write the total entropy density (which is
dominated by relativistic species, due to Boltzmann suppression of non-relativistic ones) as
follows:

27['2 s 3
s=) si= e, (3.24)

where the effective number of entropy degrees of freedom g¢; is defined analogously to g,
as [189-194]:

gT= Y e<T—m,;>gi(§f)3+; ) e@_mj)gj(?f. (3:25)

i=bosons j=fermions

As g,, also g¢ remains roughly constant except for noticeable drops during the EW phase
transition, the QCD phase transition, and eTe™ annihilation, reflecting the evolution of the
particle content of the primordial plasma. The evolution of g as a function of temperature is
plotted in Fig. 3.2 (dashed line). For adiabatic expansion, the total entropy of the Universe
is conserved, i.e. d(sa®) = 0, from which s o< a=3. This implies that the temperature of

Universe scales as [189-194]:
1

3/0Sq
gia

T x

(3.26)

Therefore, the temperature of the primordial plasma usually scales as 1/a, decreasing as
the Universe expands adiabatically. When particle/antiparticle pairs annihilate (or phase
transition occurs), entropy is released to the thermal bath (and hence to any particle coupled
to photons): this results in a small sudden temperature jump, and the temperature of the
plasma decreases less slowly as 1//g%a, until the annihilation process/phase transition is
over, at which point the cooling reverts to the previous T < 1/a behaviour. On the other
hand, decoupled particles do not enjoy the entropy injection and hence keep cooling as
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Figure 3.2: Evolution of the effective number of relativistic degrees of freedom g, (solid
line) and the effective number of entropy degrees of freedom g¢ (dashed line) assuming
the particle content of the Standard Model, as a function of the temperature of the
Universe. It is clear that both g, and g{ decrease when particles annihilate or become
non-relativistic. However, two events during which ¢, and g; decrease abruptly stand
out in particular: the QCD phase transition at 7' ~ 100 MeV, and ete™ annihilation at
T ~ 1MeV. Figure taken from [2].

T « 1/a, remaining cooler than photons. As we shall see in Chapter 4, this is particularly
important for neutrinos, as they decouple around the time of eTe™ annihilation and hence
do not enjoy the injection of entropy from this process: as a result, today T, = (4/11)1/3T7.

So far we have discussed equilibrium thermodynamics. Equilibrium holds as long as the
rate of a given reaction, I, is larger than the Hubble rate, H. When I' ~ H, the reaction
is said to freeze-out. When all the reactions keeping a given particle in equilibrium freeze-
out, the particle decouples from the primordial plasma, is no longer in thermodynamic
equilibrium, and free-streams. In this regime, the evolution of the particle’s phase space
distribution f obeys the Boltzmann equation:

L[] =Clf], (3.27)

where the Liouville operator L is a total derivative with respect to time and C is the collision
operator. There are many excellent texts which do justice to the wonderful subject which
is the Boltzmann equation and its applications to cosmology. The interested reader might
want to consult e.g. [189-194]. I will not discuss this topic further here, as even a sensible
discussion would basically require at least a hundred pages. Here, I just want to point out
that Eq. (3.27) is used to track the evolution of the phase space distributions of all particles
throughout the expansion history of the Universe. For each particle species (baryons, dark
matter, dark energy, photons, neutrinos) it results in a set of coupled differential equations
for the evolution of their density and velocity perturbations.

Solving the Boltzmann equations efficiently has become much an art as it is science, and
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is commonly done through so-called Boltzmann solvers. Two state-of-the-art examples of
Boltzmann solvers, widely used in the community, are CAMB [8] and CLASS [509]. The former
is written in Fortran, whereas the latter is written in C (and both can be run through
Python wrappers), and both are based on the line-of-sight approach developed in [510]
and for the first time applied in the CMBFAST code. Other Boltzmann solvers, no longer
maintained or in use, are DASh [511] and CMBEASY [512]. There are several other important
examples of Boltzmann codes, most of which are based on CAMB or CLASS: some of these are
appropriately targeted for testing models of modified gravity, are MGCAMB [421], ISITGR [513],
EFTCAMB [514-518], hi_class [519], whereas others are targeted for specific observables or
theories [520-529] (see [530] for a recent comparison of Boltzmann solvers for theories beyond
General Relativity and a more general overview of these codes).

3.2.1 Brief thermal history of the Universe

We now have the theoretical tools to understand the thermal history of the Universe. We
know the phase space distribution of particles in thermal equilibrium, whereas we can track
the distribution of decoupled particles through the Boltzmann equation. I will now describe
the main events which occurred during the history of the Universe. Recall that early on the
Universe was radiation dominated.

« Baryogenesis. Presumably at very early times baryogenesis occurred, resulting in
our having significantly more matter than antimatter today. There are several vi-
able baryogenesis models [531-533], although none of them have been experimentally
verified to date, so it is unclear at what point baryogenesis took place (assuming it
did). However, it is likely to have occurred above the electroweak phase transition,
T 2 125GeV.

¢ Electroweak phase transition. At a temperature of T' ~ 125 GeV, corresponding
to a redshift z ~ 10!, the Higgs field acquired a non-zero vacuum expectation value,
breaking EW symmetry and providing masses to most particles [534-540]. At this
point the Universe is about 107! s old.

¢« QCD phase transition. At a temperature of T ~ 100 MeV, corresponding to a
redshift z ~ 102, the QCD phase transition occurred [541]. During this phase, quarks
confine and form hadrons and mesons, thus substantially reducing g, and g3. At this
point the Universe is about 107°s old.

e Neutrino decoupling. At a temperature of T'~ 1 MeV, corresponding to a redshift
z 2 5 x 10°, the typical rate for weak interactions drops below the Hubble rate [542-
545]. As a result, weak interactions freeze out and neutrinos, previously in equilibrium
with the primordial plasma, decouple and start free-streaming. At this point the
Universe is about 1s old.

e Electron-positron annihilation. When the temperature of the Universe drops be-
low the electron mass, T ~ 0.5 MeV, corresponding to a redshift z ~ 3 x 107, the
annihilation /pair-production process et + e~ — 47 can only proceed in the forward
direction, as the reverse direction becomes energetically unfavourable. As a result, the
electron/positron entropy is transferred to the photons (which thus cool a bit slower
than a~!, as we have seen earlier), but not to the neutrinos, since they are decoupled.
As we will show in Chapter 4, this results in the neutrino temperature being lower

61n reality, as we shall see in Chapter 4, neutrino decoupling is not instantaneous and neutrinos were not
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than the photon temperature by a factor of (4/ 11)1/ 3, which can be derived by entropy

conservation considerations. At this point the Universe is about 6s old.

Big Bang Nucleosynthesis. At a temperature of T ~ 100keV, corresponding to
a redshift z ~ 4 x 108, the synthesis of light elements (mostly “He) begins thanks to
nuclear reactions binding nucleons into light nuclei, in a process known as Big Bang
Nucleosynthesis (BBN) [555-558]. At this point the Universe is about 3 min old. The
yields of the light elements depend strongly on the energy density of baryons and
radiation, and are in excellent agreement with observations. 7

Matter-radiation equality. Matter-radiation equality is defined as the time when
the contributions of matter and radiation to the right-hand side of the first Friedmann
equation, Eq. (3.8), are equal. Ignoring neutrinos (we will reinsert them into the
picture in Chapter 4), we see that this occurs at a redshift zeq = /2 — 1 &~ 3400,
at a temperature of T~ 0.75eV. At this point the Universe is about 60000 yrs old.

Recombination. At a temperature of T' ~ 0.3 €V, corresponding to a redshift z ~
1100, the reaction e~ + p™ — H + v (with H neutral Hydrogen) ceases to be in
equilibrium, and becomes energetically favourable only in the forward direction. The
net effect is that nuclei capture free electrons and form Hydrogen and Helium atoms.
From this point on the Universe ceases to be ionized and opaque to radiation. At this
point the Universe is about 370000 yrs old.

Photon decoupling. At a temperature of T' ~ 0.25¢eV, corresponding to a redshift
Zdec =~ 1090, the rate for the process of Thomson scattering e~ + v — e~ + v drops
below the Hubble rate, mostly due to the density of free electrons dropping signifi-
cantly as most of them recombine with protons to form neutral Hydrogen (see above).
As a result, photons decouple and start free-streaming. They travel (almost) unim-
peded until us, forming what we usually refer to as the Cosmic Microwave Background
(CMB): a snapshot of the infant Universe and an incredible mine of information both
on cosmology and fundamental physics. At this point the Universe is about 380000 yrs
old.

Drag epoch. Even though photons have already decoupled, the small baryon-to-
photon-ratio n ~ 10™° keeps the baryons coupled to the photons for a small amount
of time after decoupling. The drag epoch is defined as the time when baryons stop
feeling the photon drag and hence are released from the photons. This occurs at a
temperature of T' = 0.20eV, corresponding to a redshift zqrag ~ 1060. At this point
the Universe is about 400000 yrs old.

Dark ages. From the drag epoch until the subsequent reionization, the Universe is
transparent to radiation: this period is referred to as the “dark ages” [562-564].

Reionization. When the first stars form, the ensuing UV radiation reionizes neutral
Hydrogen in the intergalactic medium. As a result the Universe returns to being
(partially) opaque to radiation. About 5% of the CMB photons are rescattered by

completely decoupled by the time electron-positron annihilation occurred [542,546-553], meaning that they
still gained some of the entropy resulting from electron-positron annihilation [510,543,554].

"There is one notable exception to this statement, and it is the fact that the observed abundance of 7Li

lies below the theoretical predictions of BBN. This is known as the Lithium problem (see e.g. [559] for a
review and e.g. [560,561] for proposed solutions).
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the ionized electrons. When exactly reionization occurred is not yet known to high
accuracy, but we believe it occurred when the temperature of the Universe was about
5meV, corresponding to a redshift z ~ 15 [565,566]. At this point the Universe is
about 200 Myrs old.

e Matter-dark energy equality. Analogously to how we defined matter-radiation
equality, we can define matter-dark energy equality as the time when the contributions
of matter and dark energy to the right-hand side of the first Friedmann equation,
Eq. (3.8), are equal. At this point dark energy takes over and the Universe starts
accelerating. For a cosmological constant, we see that this occurs at a redshift zy =
Qp/Qm — 1 = 0.3, at a temperature of T = 0.75eV. At this point the Universe is
about 9 Gyrs old.

e Today. Today, the temperature of the Universe is of T' &~ 0.24 meV, redshift is z = 0
by definition, and the Universe is about 13.8 Gyrs old. As we saw in Chapter 2, the
Universe today is made up for about 73% by dark energy, for about 23% by dark
matter, and for less than 4% by baryons [5,7].

3.2.2 Inflation

Before closing this Chapter and discussing how neutrinos fit within the picture discussed,
I want to perform a brief qualitative digression to introduce the concept of inflation, a
hypothetical period of early accelerated expansion postulated to address a series of difficulties
faced by the hot Big Bang model described thus far and which might have seeded the initial
density fluctuations which later grow under the effect of gravity to form the structure we
observe today. In some sense, inflation provides the initial conditions for the hot Big Bang,
and in cosmology when we refer to Big Bang we usually really refer to inflation. Despite
not being directly connected to neutrino cosmology, a qualitative understanding of inflation
will be necessary to understand Paper V, where we have studied whether our ignorance of
neutrino properties affects the conclusions we draw about inflation, and hence the initial
conditions of the Universe.

Notwithstanding the cosmological principle, observationally we know that the Universe
is far from homogeneous. The density of the Universe features fluctuations around the mean
density. We can imagine decomposing these fluctuations in terms of their (comoving) scale
A (or equivalently Fourier modes k), which stays fixed as the Universe expands. As long as
A > xp, with xp, the comoving particle horizon given in Eq. (3.11), the mode is said to be
super-horizon. It remains frozen, since causal physics cannot act on it. On the other hand, as
the horizon increases, more and more modes enter the horizon, and become sub-horizon. At
this point, they are no longer frozen and can be acted upon by causal physics (for instance,
the effects of gravity and pressure).

We have already seen earlier that xx(z) o« (14 z)~! during radiation domination and
x(2)  (142)~/? during matter domination. More generally, consider a Universe dominated
by a single fluid with equation of state w. Then, it is trivial to show that as long as
1+ 3w > 0, xu(2) grows as (1 + z)~(1439)/2 Notice that, from Eq. (2.5), 1 + 3w > 0
ensures that ¢ < 0 and hence the Universe is decelerating. This implies that as long as
the Universe is decelerating (which is the case for the conventional eras of radiation and
matter domination), the comoving horizon is a monotonically increasing function of time
(on the other hand, for dark energy domination, x,(z) decreases, and hence in the future we
will be able to see increasingly less of the Universe). A consequence is that photons which
are causally disconnected at a given redshift could never have been in causal contact before.
The previous observation is particularly problematic in the case of CMB. Indeed, we observe
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the CMB to be remarkably uniform, to the level of 107!, across the whole sky. However,
the particle horizon at the time of decoupling would only subtend an angle of about 1° on
the sky if the previous expansion history were only due to the conventional radiation and
matter-dominated eras. Patches separated by more than 1° on the sky have not had time to
causally interact until then, thus making it surprising that they share the same temperature
to such an accuracy. This is known as the horizon problem [567-576).

It is also worth taking a closer look at Eq. (3.6). In a Universe filled with a single
fluid with equation of state w, it is trivial to show that | — 1| oc Qp o |k|(1 + 2) 713w,
Considering again the conventional radiation and matter dominated eras, where 143w > 0,
we see that dQ0;/da > 0. Therefore, as we go back in time Q = 1 is a past attractor, and the
Universe gets closer and closer to flat. On the other hand, even a small amount of curvature
in the early Universe gets disproportionately blown up as time increases. Observations have
indicated that our Universe is remarkably close to flat. To explain this observation, it is
necessary that the early Universe was flat to |1 — €| < 107°°! While it could well be that
the initial conditions of the Universe were such that it was flat to such a degree, most people
would agree that this looks like an unnatural fine-tuning, leading to what is known as the
flatness problem [567-576].

Remarkably, both the horizon and flatness problem can be solved if we introduce an
early era of accelerated expansion, i.e. a period where the Universe was dominated by a
fluid with w < —1/3, known as inflation. The first inflationary models were proposed in
a series of seminal papers in the early 1980s [577-583]. For a quasi-de Sitter expansion
where w ~ —1, the Hubble rate is approximately constant, whereas the scale factor grows
exponentially, implying that the physical particle horizon blows up exponentially. Therefore,
we can imagine starting with a tiny patch wherein causality has been established by physical
processes. Then this patch is exponentially blown and can constitute our whole observable
Universe. Thinking in terms of comoving scales instead of physical scales, the comoving
horizon given in Eq. (3.11) decreases during an era of exponential expansion. Therefore, as
time goes on, comoving scales previously in causal contact progressively exit the horizon.
They subsequently re-enter the horizon as the latter grows during the conventional radiation
and matter dominated eras. Provided inflation lasted sufficiently long, scales corresponding
to the particle horizon at the time of recombination were once in causal contact before they
exited the horizon, explaining the remarkably uniform temperature of the CMB. In fact, if
inflation lasted sufficiently long, even the largest scales we observe today (and scales which
are still super-horizon today) might have been in causal contact early on. As for the flatness
problem, we see that for w < —1/3, dQ/da < 0 and © = 1 becomes an attractor. In other
words, by exponentially blowing up physical scales, inflation “flattens” our Universe or can
at least trick us into believing it is flat, given the very large curvature radius. ® The duration
of inflation is typically quantified in terms of e-folds N, where N = log(dend/ain), With @enq
and a;, the scale factor at the end and at the beginning of inflation. To solve the horizon
problem, at least 45 e-folds of inflation are required. On the other hand, the contribution of
curvature to the expansion rate is reduced by e=2V.

Models for inflation abound in the literature, including both particle physics models
and models based on modifications of gravity. For an incomplete list of works dealing with
inflationary model-building (which goes far from doing justice to the wide variety of well-
motivated existing inflationary models, both particle models and modified gravity ones, but
which should give the reader an idea of how wide the arena of inflationary models is), see

8This is the same principle which brings flat-Earthers think the Earth is flat! An increasingly large
curvature radius makes it increasingly harder to detect curvature.
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for example [577-666] and pedagogical reviews [567-576]. Most models, however, typically
posit the existence of a scalar field (the inflaton field ¢) rolling down along a potential.
If the field moves sufficiently slowly (i.e. its kinetic energy is sub-dominant with respect
to its potential energy), its effective equation of state is close to —1, leading to a quasi-de
Sitter expansion. However, inflation must end at some point. This typically occurs when the
potential steepens and the kinetic energy of the inflaton starts to dominate. In most models,
eventually the inflaton reaches the bottom of the potential, and transfers its energy to SM
particles through a process known as reheating. Presumably reheating occurred at very
high temperature (i.e. well above the electro-weak scale), but cosmological observations
actually only tell us that reheating should have occurred at least 5MeV, in order not to
disrupt successful BBN [667, 668] (see [669-673] for other important works dealing with
cosmological constraints on reheating).

Finally, besides solving the horizon and flatness problems, inflation might also be respon-
sible for the generation of primordial density perturbations which we observe as temperature
anisotropies in the CMB, and which later grow under the effect of gravity to form the large-
scale structure we observe today: galaxies, clusters, super-clusters, voids, walls, sheets, and
filaments [190]. This idea was first developed by Mukhanov and Chibisov in [581], and later
in [674-678] during the course of the 3-week Nuffield Workshop at the University of Cam-
bridge (see also [679-681] for later important work, and [569,682] for reviews). Heuristically,
quantum fluctuations §¢ naturally lead to inflation lasting slightly different amounts of time
in different regions of the Universe. This leads to fluctuations in curvature perturbations
R, which in turn can be related to fluctuations in the density field . One can then take
the Fourier transform of these fluctuations, which are Gaussian distributed with mean zero,
and uncorrelated among modes with different wavelengths. The variance of each Fourier
mode can be obtained by computing their power spectrum, which quantifies the amount of
fluctuations on any given scale.

It has been shown in classical papers [581,674-678] that inflation generically predicts
a nearly scale-invariant primordial power spectrum of curvature perturbations. This is
typically parametrized through a dimensionless primordial power spectrum of curvature
perturbations, Pr(k), as follows:

Pr(k) = A, ()1 , (3.28)

where A, quantifies the amplitude of the primordial power spectrum, ns quantifies its tilt,
and k, is a pivot scale (typically &k, = 0.05 Mpcfl). A nearly scale-invariant power spectrum
has ns =~ 1, and most inflation models in fact predict a slightly “red” spectrum, with ns < 1.
Observations indicate that ng ~ 0.96, thus strengthening the case for inflation [628,665,683—
685). 9

9Notice that the notation P really refers to the dimensionless power spectrum, which quantifies the excess
of power in a bin of width dk centered in k. The dimensionless power spectrum is related to the actual power
spectrum P by P o k3 P. Therefore, a scale-invariant curvature power spectrum scales as P(k) x k=3, This
reflects the fact that we are taking a 3D Fourier transform, and therefore that the variance of a mode should
scale as k2 to compensate for the fact the number of modes within a given volume scales as k3. Curvature
perturbations are directly related (and in fact proportional) to gravitational potential ®. From the Poisson
equation (see e.g. [190-194]) we know that matter perturbations § are related to gravitational potentials
(in Fourier space) through ¢ o k2®. Therefore, we expect a scale-invariant curvature perturbation power
spectrum to lead to a primordial power spectrum of density fluctuations Ps(k) o k* x k=3 « k. From
now on, unless otherwise specified, when we say “power spectrum” and use the notation P(k), we shall be
referring to the power spectrum of density fluctuations Ps(k).
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3.3 The concordance ACDM model

We now have all the ingredients in place to discuss the concordance ACDM model we
had already anticipated in Chapter 2. That is, the mathematical framework describing the
evolution of the Universe to the best of our understanding. We have basically covered all the
equations describing the ACDM model, so all that remains to discuss are the free parameters
of the model itself. In its minimal incarnation, the ACDM model has six free parameters.
These are:

o The physical baryon density w, = Qyh%, where baryons consist mostly of Hydrogen
and Helium.

o The physical cold dark matter density w, = Q.h?, where dark matter is assumed to
be pressureless, stable, and non-interacting.

e The amplitude of the primordial power spectrum, Ay, evaluated at the pivot scale
k., = 0.05 Mpc~!. Note that in practice, usually one works with In(10%°A,), since A,
takes values of order =~ 107°.

e The tilt of the primordial power spectrum ng, evaluated at the same pivot scale.

o The angular size of the sound horizon at decoupling s = r4(2dec)/ X, With zgec the
redshift of decoupling and x, the comoving distance to the CMB.

o The optical depth to reionization 7, quantifying the amount of reionization which the
Universe underwent.

In the spirit of Occam’s razor, these 6 parameters constitute the minimal set of parameters
required to describe current cosmological observations to high precision (or at least, no one
has come up with either a more satisfying model with less parameters, or a model featuring
additional parameters which provides a significantly better fit to warrant the presence of
these extra parameters) [686]. The latest measurements from the 2018 reanalysis of data
from the Planck satellite has determined these six parameters to exquisite precision, with
68% confidence regions given by wp = 0.0224 & 0.0001, w. = 0.120 4 0.001, In(10'°A,),
ns = 0.965 £ 0.004, 1006, = 1.0411 £ 0.0003, and 7 = 0.054 & 0.007 [5]. ! This model is
referred to as concordance model since different observational probes of varying nature seem
to point to the same values for the fundamental parameters, modulo mild tensions between
high- and low-redshift probes which overall do not yet appear to undermine the consistency
of the ACDM model.

However, this successful minimal model can be extended to include additional free pa-
rameters which are otherwise kept fixed. This approach has in fact been advocated by some,
arguing that the minimal ACDM model does not do justice to the extremely high quality
of the most recent data [687] (see also [688-702] for important work on extended models).

10These 6 parameters are treated as “fundamental”: in practice, these are the parameters that are varied
when analysing the data through standard by using standard Markov Chain Monte Carlo methods (see
Chapter 5.3 for more details). Any other parameter one can think of is either fixed (and varied only in
the context of extended models), or “derived” from these fundamental parameters. Examples of derived
parameters of common use are the Hubble constant Hyg = 67.36 £ 0.54, the physical matter density wn, =
0.1430 4+ 0.0011, the matter density parameter ., = 0.3153 £ 0.0073, the age of the Universe t = (13.797 £
0.023) Gyr, the amplitude of matter fluctuations when smoothed on a scale of 8 h~! Mpc g = 0.81114-0.0060,
the redshift of reionization in the limit of instantaneous reionization zye = 7.6710.73, and the sound horizon
at the time of baryon drag rqrag = (147.09 & 0.26) Mpc.
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In fact, the minimal ACDM model was already used when analysing the 1998 data from
BOOMERanG [703]. Rejecting extensions of the minimal ACDM model solely in the name
of Occam’s razor is not a healthy approach. For instance, fixing the sum of the neutrino
masses to 0eV or a small value is completely arbitrary and unnecessary, since cosmological
data is sensitive to variations in M, of about 0.1eV. Moreover a number of well-motivated
particle physics models predict a sizeable contribution of primordial gravitational waves.
And finally, accepting that dark energy is a simple cosmological constant leads us to accept
theoretical issues due to fine-tuning [111,201-208] and the coincidence problem [704-706].

Some of the parameters one could consider varying in addition to the 6 base parameters
include (just to mention a few) the sum of the neutrino masses M, (otherwise fixed to
M, = 0.06eV), the effective number of neutrinos Neg (otherwise fixed to Nog = 3.046;
this is a parameter we will discuss in Chapter 4.1.2), the dark energy equation of state
w (otherwise fixed to w = —1), the tensor-to-scalar ratio r (otherwise fixed to r = 0),
the running of the spectral index dng/dInk (otherwise fixed to dng/dlnk = 0), or the
curvature density parameter Q (otherwise fixed to Q; = 0). In this thesis, we will mostly
be interested in M, as an additional free parameter, and hence we will mostly focus on
the 7-parameter ACDM+M, model. Occasionally, we will consider additional extensions
featuring for instance a free w (Paper 1), a free Qi (Paper I), a free time-varying dark
energy w(z) (Paper IV), a free r (Paper V), and a free Neg (Paper V).

This concludes our discussion of the thermal history of the Hot Big Bang model, its
problems (and how inflation solves them), and the concordance ACDM model. At this
point, in Chapter 4 we are ready to examine how neutrinos fit into the whole picture. As we
shall see, the peculiar behaviour of neutrinos, a combination of their free-streaming nature
and the fact that they first behave as radiation and then as matter, imprints very distinctive
signatures in a set of cosmogical observables, which in turn we can use to go after neutrino
properties. We will briefly review what the main observables are, and how to use them to
constrain neutrino properties, especially their mass. After that, modulo a brief digression
into statistical methods which we will carry out in Chapter 5, we will have all the tools in
place to understand the results of this thesis.






4

Massive neutrinos and how to search
for them with cosmological obser-
vations

“We know of an ancient radiation
That haunts dismembered constellations
A faintly glimmering radio station”
— Frank Sinatra by CAKE in Fashion Nugget (1995)

In Chapter 3, I have provided an overview of physical cosmology, in particular of the main
events shaping the Universe over the course of the expansion history. If by now we are fairly
confident most of these events occurred the way we imagine they occurred, we owe it to a rich
suite of cosmological observations, whose precision is ever-increasing. On the other hand,
there remain several open questions which near-future cosmological observations might be
able to address. Some of these questions pertain to neutrinos and their unknown properties:
their mass, mass ordering (also referred to as mass hierarchy), and effective number, just to
mention a few. In this Chapter, I will begin by describing more in detail massive neutrinos.
I will then proceed to present a selection of cosmological observations which we can use
to study the Universe, focusing especially on Cosmic Microwave Background (CMB) and
Large-Scale Structure (LSS) probes. Finally, I will tie everything together discussing the
evolution of neutrinos during the expansion history of the Universe, how their peculiar
behaviour imprints characteristic signatures in cosmological observations, and how we can
use cosmological observations to learn about neutrino properties.

4.1 Neutrinos and the quest for their mass

For several years, it was widely believed throughout the community that neutrinos were
massless particles. In fact, as we have seen in Chapter 2.1, the Standard Model was precisely
constructed in such a way as to have massless neutrinos. However, since the late 1990s, it
has been widely established that neutrinos are, in fact, massive particles. We know this
because of the observation of neutrino oscillations, which can only occur if at least two out
of the three mass eigenstates are massive. I will now briefly sketch the standard theory of
neutrino oscillations. The interested reader who wants to learn more is invited to consult
more pedagogical references, e.g. [20,194,707-713]. Following that, I will provide an overview

27
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of the evolution of neutrinos across the expansion history of the Universe. This picture will
therefore complement the thermal history of the Universe provided in Chapter 3.2.1, by
zooming in a little more detail into the role played by neutrinos.

4.1.1 Neutrino oscillations

Neutrinos are produced by charged-current weak interactions in a definite flavour eigenstate
Vo (@ = e,pu,7), with the flavour determined by the charged lepton participating in the
interaction. A flavour eigenstate |v,) is a quantum superposition of three mass eigenstates
lv;), with i =1,2,3:

va) = Z Usilvi) (4.1)

where U is known as the Pontecorvo-Maki-Nakagawa-Sasaka (PMNS) matrix [714,715] and
is the neutrino analogous of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the quarks
(see e.g. [716,717] for reviews). Let us denote the masses of the three eigenstates as m;.
After being produced by a source in a definite flavour eigenstate, a neutrino propagates
and the different mass eigenstates pick up different phases (essentially because their phase
velocities are different). The result is that at some distance away from the source there is a
non-zero probability that the flavour of the arriving neutrino is different from the original
one. This phenomenon is known neutrino oscillations, and was first proposed by Bruno
Pontecorvo in the late 1950s [718,719], albeit through the introduction of a sterile neutrino
(because only the electron neutrino was known).

The probability of a neutrino of flavour a turning into a neutrino of flavour g after trav-
elling across a distance L is given by the following master formula (for a detailed derivation
see e.g. [712,720-723)):

Am2. L
P(vo = vg) = Y UnUpilUajUfe” 700, (4.2)
ij

where AmZ; = m7? —m? is the i — j mass-squared splitting and p is the neutrino momentum.
In practice, although we have three flavours and mass eigenstates, the measured values of
the mixing matrix are such that for physically interesting situations it is usually only two
of these eigenstates which matter at any given time. It is then instructive to consider the
simplified two-family mixing case. In this case, we can parametrize the mixing matrix U in
terms of one mixing angle 6:

cosf  sinf
U= (f sinf cos 6) ’ (4.3)

In this case, the probability appearing in Eq. (4.2) takes a particularly simple form. Intro-
ducing convenient physical units, one finds:

P(va —vg) = sin?(20)sin? [1.27 (i\f) (%) (56;/)1 (a# )

Plvg »ve) = 1—=Pwg —vg), (4.4)

where E, is the neutrino energy and Am? is the mass-squared splitting between the two
mass eigenstates. It is clear from Eqs. (4.2,4.4) that the observation of neutrino oscillations
requires non-zero mass-squared splittings: in the simplified two-family case, this requires at
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Figure 4.1: A visual representation of the two possible neutrino mass order-
ings/hierarchies. On the left side, the normal ordering, where m; < mg < mg, and
the atmospheric mass-squared splitting is positive. On the right side, the inverted or-
dering, where ms < m; < mg and the atmospheric mass-squared splitting is negative.
The relative proportion of red (v.), blue (v,), and green (v;) in the box correspond-
ing to the mass eigenstates quantifies the relative probability of finding the « flavour
eigenstate in the corresponding mass eigenstate. Credits: JUNO collaboration [3].

least one neutrino mass eigenstate to be massive. Notice that neutrino oscillation experi-
ments are not sensitive to the absolute neutrino mass scale, i.e. to the mass of the lightest
eigenstate, but only to mass-squared differences. Cosmology can come to the rescue by being
sensitive to the sum of the three neutrino masses M, = ", m;, as we shall see later.

Until recently, the only evidence of neutrino oscillations has come from solar and at-
mospheric neutrino oscillation experiments, which have measured to exquisite precision two
non-zero mass-squared splittings: Am32, and |Am3,|, also known respectively as the solar
and atmospheric mass splittings. Through thermonuclear reactions burning hydrogen into
Helium, the Sun is a powerful source of MeV v, [724-726]. Since the time of the Home-
stake experiment [727,728], solar neutrinos have been detected, and already then it was
clear that the detected flux was lower compared to expectations (in the absence of oscilla-
tions) by about a factor of 3 [729]. This was known as the solar neutrino problem [730],
and it was later understood to be caused by v, — v, oscillations thanks to SNO [731]. !
From global fits to oscillation experiments we now know that the solar mass splitting is
Am3, ~ 7.55 x 1079eV? (see e.g. [17-22]). Atmospheric neutrinos are instead produced
when cosmic rays interact with the atoms of the atmosphere [738,739]. As solar neutri-
nos did, atmospheric neutrinos presented clear signs of oscillations, first observed by Su-
perKamiokande [58,740]. The three experiments combining together to clarify this picture
beyond any doubt were SuperKamiokande (in 1998 [58,740]), SNO (in 2001 [731,741]), and
KamLAND (in 2002 [742]). From global fits to oscillation experiments we know that the
atmospheric mass splitting is larger than the solar one by about two orders of magnitude,
|Am3,]2.5 ~ x1073eV? (see e.g. [17-22]).

Notice that the sign of the atmospheric mass splittings is currently unknown. This
leaves open two possibilities for the neutrino mass spectrum, known as mass orderings or

nterestingly, a few years later another currently unresolved problem emerged, known as the solar abun-
dance problem [732-735]. This is a problem which I have worked on during my PhD [736,737].
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mass hierarchies. The first possibility, known as normal ordering (NO) or normal hierarchy,
occurs when Am%l > 0, and hence m3 > m. In this case, we have that m; < mo < mg, and
the sum of the three neutrino masses MY (the quantity to which cosmology is sensitive) is
given by:

M =m; + \/m% + Am3, + \/m% + Am, . (4.5)

The situation where Am3; < 0 and therefore ms < m; is instead known as the inverted
ordering (I0) or inverted hierarchy. In this case m3 < mj; < mg, and the sum of the three
neutrino masses M} is given by:

M =ms3+ \/m§ —Am3; + \/mg — Am3, + Am3; . (4.6)

A visual representation of the two mass orderings/mass hierarchies is given in Fig. 4.1.

Let us also define myjgne to be the mass of the lightest eigenstate, i.e. myjgny = my for
NO and mujght = ms for NO. Then, it is clear that for each of the two possible mass orderings
there exists a minimal value of M,, obtained by setting mjjgny = 0eV. For NO, this minimal
value is given by M}9,;, ~ 0.06eV, while for 10 it is M9 ;, ~ 0.1eV. I suggest the reader
keep the value 0.1eV in mind as it will be a very important number in the continuation
of this thesis (especially for Paper I). In fact, since M, > 0.1€V for I0, it is clear that if
cosmology tells us that M, < 0.1eV (a constraint which, as we shall see in Paper I, is not
at all far from current limits and well within the reach of cosmology in the next few years if
not months!), I0 will be to some extent excluded.

Excluding I0 would be a very important discovery, given that the mass ordering is
currently unknown. Moreover, determining the mass ordering would provide more insight
into the physics responsible for generating neutrino masses, and would have profound con-
sequences in relation to the question of whether neutrinos are Dirac or Majorana [743].
Plans are underway to determine the mass ordering in long-baseline experiments such as
DUNE [744-748], by exploiting matter effects such as the Mikheyev-Smirnov-Wolfenstein
(MSW) effect [749-751], whose result is an oscillation pattern which depends on the sign
of Am3;. Notice that these same matter effects, affecting neutrino propagation in the Sun,
have allowed us to determine the sign of Am2,. In Fig. 4.2 I show M, as a function of
Miigne for the two mass orderings: NO (blue) and IO (green). From the figure it is clear
that M, > 0.10eV for I0 and M, > 0.06eV for NO, and that current cosmological data
(red) is putting I0 under pressure. See [22] for a comprehensive overview on prospects for
the determination of the mass ordering from a number of observational probes including
cosmology (the discussion therein on the potential of cosmology to probe the mass ordering
is partly based on our results in Paper I).

4.1.2 The history of cosmic neutrinos

I will now describe in a bit more detail the evolution and peculiar behaviour of neutrinos
across the expansion history of the Universe. This picture will be necessary to understand
the signatures neutrinos imprint in cosmological observations (which in turn we can use to
hunt these ghostly particles), which will be discussed in Chapter 4.3.

In the very early Universe, neutrinos are kept in equilibrium with the primeval plasma at
a temperature which is the same as that of the photons, T, by frequent weak interactions,
with typical interaction rate I ~ G%T,? , where G is Fermi’s constant. While in equilibrium,
the phase-space distribution of neutrinos is given by the Fermi-Dirac distribution already
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Figure 4.2: Sum of the neutrino masses M, as a function of the mass of the lightest
eigenstate myighe for NO (blue line) and IO (green line). The nearly indistinguishable
width of the two lines is representative of the current 3o uncertainties on the two mass-
squared splittings. The horizontal red dashed line represents the current cosmological
upper limit on the sum of the neutrino masses M, < 0.12€eV obtained in Paper I, [4],
and [5].

seen in Eq. (3.15):

g 1

f(pyz)zwm7

(4.7)

where g = 2 for a single neutrino species, and knowing in hindsight that neutrinos decouple
when T' ~ 1MeV, we have approximated E(p) =~ p. The distribution depends neither
on spatial coordinates, nor on the direction of the momentum, because of the assumption
of homogeneity and isotropy. When the temperature of the Universe drops sufficiently,
I' < H and weak interactions become too infrequent to keep neutrinos in equilibrium. It
can be easily shown that this occurs at a temperature 7T}, gec = 1 MeV. Since we know from
cosmology that M, is sub-eV, neutrinos decouple while ultra-relativistic. At this point,
neutrinos start propagating freely. The shape of their distribution is preserved, albeit with
an effective temperature T, (2) o« (1+2). Notice that referring to 7, (z) post-decoupling as a
temperature is technically speaking a misnomer, since neutrinos are no longer in equilibrium.
It is important to note that, because the form of the distribution is preserved, even at
late times when neutrinos are non-relativistic we can neglect their mass in the distribution
function.

Shortly after neutrinos decouple, electrons and positrons annihilate and release their
entropy to the photon bath. However, as decoupled particles, neutrinos do not enjoy this
entropy release. As a consequence, the photon temperature decreases slightly more slowly
than T o (1 + z) for a reduced period of time [whereas T, continues to decrease as (1 + z)],
resulting in the photon temperature today being slightly higher than the neutrino tempera-
ture. It is a classic exercise (which I will not show here, see e.g. [189-194] for a full derivation)
to use conservation of entropy as discussed in Chapter 3.2, implying that 7" o< 1/( {‘/@a),
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to show that after electron-positron annihilation the ratio between the neutrino and photon
temperatures is given by T, /T = (4/11)1/3 ~ 0.71. The current photon temperature is
known to high accuracy by measuring the measurements of the CMB blackbody spectrum,
and is given by T’y o ~ 2.725 K. Therefore the current neutrino temperature is 7,,o ~ 1.95K.

At late times, when the temperature of the Universe, has dropped significantly, neutrinos
become non-relativistic and start contributing to the matter budget of the Universe alongside
baryons and cold dark matter. For a neutrino at temperature 7}, the average momentum
is (p) ~ 3.15T,. Defining the non-relativistic transition redshift z,, as the redshift when
(p)(z) = M, and using the fact that (p)(2) = 3.15x (4/11)V/3IT 5(1+2), we find that [752]:

M,
e 1900 [ — ) — 1. 4.8
. (V) (4.8)

Therefore, neutrinos with mass M, < 0.6eV become non-relativistic after recombination.
Moreover, given the mass-squared splittings measured from solar and atmospheric transi-
tions, at least two out of three neutrino mass eigenstates are non-relativistic today (whereas
the lightest eigenstate could be massless and hence always relativistic).

We have already seen in Eq. (3.19) that the energy density of neutrinos as a function of
temperature (or effective temperature) is given by:

n (1) = 20 (49)

where for a single neutrino species g = 2 to account for particle and antiparticle. Summing
over all three flavour and knowing 7, today, the relic density of cosmic neutrinos is about
340 particles/cm?®. On the other hand, the energy density of neutrinos depends on whether
or not they are relativistic. As a function of the effective neutrino temperature T, [see
Egs. (3.20,3.22)], the neutrino energy density p,, is given by:

T (T, > M,)

w(Ty) = 120 )
pu(Ty) {Myn,, (T, < M,)

(4.10)
consistent with the expectation that p, o< (14 2)* in the early Universe and p, (1 + 2)3
in the late Universe.

It is worth taking a closer look at the neutrino energy density at early- and late-times
appearing in Eq. (4.10). Given that the present-day neutrino number density is entirely de-
termined by the neutrino temperature 7}, [see Eq. (4.9)], which in turn is entirely determined
by the CMB temperature today (exquisitely measured), the energy density of neutrinos to-
day depends only on one free parameter, M,,. Inserting numbers, we find that the neutrino
density parameter €, is given by:

M,

& = e Trevie

(4.11)
While neutrinos are still relativistic (i.e. in the early Universe), it is useful to relate their
energy density to the photon energy density. Recall from Eq. (3.19) that the photon energy
density is given by p, = (72/15)T* (since g = 2 for photons). Given the relation between T,
and T, we can express the total energy density in relativistic species (photons+neutrinos)
in the early Universe, p,., as:

Pr=>prt e \an

4
74\
142+ (7) Ncﬁ} ~ py (1 +0.2271Neg) (4.12)
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The new parameter Neg we introduced, known as the effective number of relativistic species
or effective number of neutrinos, deserves a few clarifications. We would expect Neg = 3,
reflecting the fact that we have three neutrino species, each with g = 2 just as the photon.
In reality, Neg = 3 slightly underestimates the neutrino contribution to the radiation energy
density. The reason is that neutrino decoupling is not an instantaneous process, and during
electron-positron annihilation neutrinos are still weakly coupled to the primeval plasma and
hence receive a small part of the entropy resulting from the annihilation process [510, 543,
554]. The net effect is to increase the total energy density of the three neutrino species, which
is no longer given by 3p,, [with p, given by Eq. (4.10)], but by Negp,, with Neg =~ 3.046 [543]
(a recent calculation revised this to Neg = 3.045 [544], but we will stick to Neg = 3.046
to conform with existing literature, because near-future cosmological probes will not be
sensitive to Neg to the level where the third digit matters).

In general, many extensions of the Standard Model of Particle Physics predict the ex-
istence of additional light species in the light Universe, generically referred to ask dark
radiation, which would contribute to the relativistic energy density at early times (see
e.g. [182,753-781] for various examples of models featuring dark radiation). It is then
customary to use Eq. (4.12) as a definition for Neg, which provides a convenient way to ex-
press the total radiation energy density. In fact, one of the simplest extensions of the ACDM
model is the ACDM+ Ngg model, where N.g is a free parameter. In principle, Neg might
also be lower than the canonical value of N.g = 3.046. This can occur if neutrinos have
not had time to fully thermalize by decoupling, for instance if reheating occurs at very low
temperature [657,782-785]. Note that cosmological data, in principle, allow for a reheating
temperature as low as 5 MeV [667,668]. These low-reheating models are, admittedly, more
exotic. However, we will consider them in Paper V, which is why I have considered them
worth mentioning here.

I will now cover one last important point in the history of cosmic neutrinos, related to
the neutrino free-streaming scale. After decoupling, neutrinos start free-streaming at a high
velocity: in other words, they move along geodesics like freely falling particles. Qualitatively,
we can expect free-streaming to be extremely important, especially for structure formation.
The reason is that due to their large velocities, below some scale set by the typical distance
covered by a free-streaming neutrino over a Hubble time, neutrinos cannot remain confined
within potential wells: this should reflect in an increased difficulty in forming structure on
small scales. It is then useful to introduce a free-streaming scale Ags (or correspondingly
a free-streaming wavenumber kg). At any given time, Ag sets the scale above which free-
streaming can be neglected. 2 Following [194], A¢ is defined as follows:

2r 2¢,(2)

Ais(2) = 1+ 2k V3HG)

(4.13)

where ¢, (z) is the neutrino speed as a function of redshift. 3
To make progress, we need to find a convenient form for ¢,(z). While neutrinos are

2Qualitatively, this is similar to the concept of Jeans length, which gives the scale below which pressure
inhibits gravitational collapse in a fluid [786].

3In [194], another quantity known as the comoving free-streaming horizon r¢ is defined as rg(z) =
f:c dz' ¢y, (2')/H(7'), in analogy to the particle horizon we have already seen in Eq. (3.11). It turns out
that for the range of neutrino masses allowed by cosmology and oscillation experiments, i.e. 0.06eV <
M, < 0.3eV, leading to neutrinos which turned non-relativistic during matter domination, Ags and rgs differ
very little [194]. Their physical interpretation is slightly different though: whereas Ag sets the scale above
which free-streaming can be neglected at any given time, rg sets the scale above which there is no way
free-streaming could have any effect from causality arguments.
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relativistic, ¢,(z) = 1, while after the non-relativistic transition, introducing convenient
units, ¢, (z) can be expressed as [194]:

(p)  3.15T,(2)
e (z) = A ~ L

M,\ " km

~ 158(1 — — 4.14

a+a () = (114)

As expected, c,(z) decreases as (1 + z) since all its redshift-dependence is encoded in the

redshifting of the temperature. Inserting numbers, we see that g and kg are given by [194]:

Hy (M,

H(z) \ eV

o H(z) (M,

ks =~ 0.776(1 22

fs L+ ( Y

For the range of neutrino masses allowed by cosmology and oscillation experiments, i.e.

0.06eV < M, < 0.3eV, at least two out of three neutrinos turned non-relativistic during
matter domination, when H(z) o (1 4 2)3/2.

While during matter domination but prior to the non-relativistic transition ke (z) de-
creases as (1 + 2)Y/? [see Eq. (4.13) with ¢ = 1 and H(z) « (1 + 2)*/?], after the non-
relativistic transition kg (z) starts increasing (1 + z)~*/2. During the non-relativistic tran-
sition, kg passes through a minimum (corresponding to a mazimum free-streaming scale!).
This minimum, usually denoted by ky,, sets the wavenumber above which free-streaming
cannot be neglected (equivalently, the scale below which free-streaming cannot be neglected),
and is found by evaluating k¢ [given by Eq. (4.15)] at zy, [given by Eq. (4.8)]:

M\ ? _
e & 0.024/Q, <W) hMpc ™t . (4.16)

It is worth noting that ky, is numerically very similar (up to a factor of 1/3/2) to the
wavenumber k satisfying k = an,H (apn,), i.e. the wavenumber of a perturbation entering
the horizon at the non-relativistic transition. In terms of physical interpretation, small-scale
neutrino density fluctuations for k > ky, are damped (and metric perturbations, i.e. gravi-
tational potentials, are also damped from gravitational back-reaction) and hence structure
grows more slowly, because it is not possible to confine free-streaming neutrinos on small
scales [194]. Modes with k < ky, are instead never affected by free-streaming: on such scales,
neutrinos behave as cold dark matter.

In summary, neutrinos exhibit a very peculiar behaviour across the expansion history
of the Universe. Initially coupled to the primordial plasma through weak interactions, at
T ~ 1MeV these interactions become too infrequent, hence neutrinos decouple and start
free-streaming. At late times, at least two out of three neutrinos turn non-relativistic during
matter domination, and start contributing to the matter budget of the Universe. Their free-
streaming nature imprints a scale, A\, (or equivalently a wavenumber k), below which
neutrinos cannot be kept within gravitational potentials due to their large velocities. As
we shall see later, this is reflected in a suppression of structure formation on small scales,
an effect increasing as we increase M, and providing one of the cleanest observational
signatures of neutrino masses.

s = 8.1(1 4 2) ) h™ ' Mpc,

> hMpc™!. (4.15)

4.2 Cosmological observations

In the following section, I will briefly describe the main cosmological observations currently
being used to study the Universe. There is an extremely wide class of cosmological observa-
tions, and I cannot describe all of them in detail. For this reason, I have chosen to focus on
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CMB and LSS probes. Even then, my discussion will inevitably be quite limited. My aim
will mostly be to endow the reader with a qualitative (and at times heuristic) understanding
of the physics at play in shaping these observations, and how these observations respond
to changes in the cosmological parameters. The interested reader who wants to learn more
should refer to classic textbooks and reviews where such topics are covered pedagogically
(e.g. [190-194,787-794].) For the CMB, particularly useful dedicated reviews can be found
in [795-799].

4.2.1 Cosmic Microwave Background

As we have seen in Chapter 3.2.1, at zgec =~ 1090, photons decouple from electrons, mostly
thanks to the significantly reduced number of free electrons after recombination. From that
point on, these photons (mostly) free-stream until the present time, forming what is known
as the Cosmic Microwave Background (CMB). The Universe at the time of decoupling was
incredibly isotropic, to about 1 part in 10°. However, small anisotropies in both temper-
ature and polarization were present: these anisotropies carry an extraordinary amount of
information on the physics at z = zgec &~ 1090, and to some extent on the earlier evolution
of the Universe. But there is more: since to reach us the CMB photons have had to traverse
the z < zgec Universe, they carry some (integrated) information about the post-decoupling
Universe, in particular with regards to the effect of lensing from the intervening LSS, and
reionization.

Let us consider the CMB temperature field as a function of angle on the sky, T'(72), whose
average is Tomp = 2.725 Kelvin. Let us also denote the fractional difference with respect
to the mean temperature across the sky as O(f) = (T'(R) — Tems)/Toms. Since we are
considering a function defined on the surface of a sphere, it makes sense to expand O(7) in
spherical harmonics Yy, (7), as follows:

O(R) = amYim(f), (4.17)
Im

where the a;,,s are the expansion coefficients. For each multipole ¢, one has that m =
—/, ...,£. Then, assuming isotropy, we define the power spectrum of the temperature anisotropies
Cy (or temperature power spectrum in short) as being;:

Cy = (aimaj,,) , (4.18)

where () denotes an ensemble average. The power spectrum Cy is of particular interest
since it is the quantity which can be predicted by cosmological models. In other words, a
given model cannot predict whether a point in the sky will be hotter and colder than the
average, but it can predict the statistics of these anisotropies. The power spectrum at a
given multiple ¢ provides information about the typical variance in temperature fluctuations
at an angular scale § ~ 7 /{: therefore, small multipoles correspond to large angular scales,
and large multipoles correspond to small angular scales.

The statistics of anisotropies in the CMB sky provide information about the physical
conditions at the time the CMB was released. However, they also provide information about
physical processes acting prior to decoupling (provided such processes leave a signature in
the CMB - we shall see that this is the case for baryon acoustic oscillations), as well as
information on the content of the Universe between decoupling and us, which can affect
the propagation of CMB photons. The complete formula for the observed temperature
anisotropy O(7)|obs in the linear regime includes three main contributions, and was derived
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in a seminal paper by Sachs and Wolfe in 1967 [800]:

today , ,
9m%=@o+ﬂhm+ﬁ4m+/m (¢+w). (4.19)

decoupling

Sachs-Wolfe Doppler
Integrated Sachs-Wolfe

In the above, the Sachs-Wolfe contribution (first two terms) includes a contribution from the
intrinsic temperature fluctuation at decoupling ©¢, and the gravitational Doppler shift due
to the gravitational potential ¢ at the time of decoupling (in other words, photons sitting
in a gravitational potential at decoupling need to climb out of it to reach us, losing energy
in the process, and viceversa for photons sitting in an underdensity). * The Sachs-Wolfe
contribution is dominant on large scales, where knowledge of the microphysics involved is
irrelevant. The second contribution (third term) is a standard Doppler shift, where vy
denotes the peculiar velocity of the photon-baryon fluid from which photons are emitted
when they decouple. The third contribution is the integrated Sachs-Wolfe (ISW) effect,
and is driven by the time variation of the gravitational potentials ¢ and 1 between us
and decoupling. In a purely matter-dominated Universe, the gravitational potentials ¢ and
¢ are constant and there is no ISW term [189-194]. Therefore, the ISW effect receives
contributions from two epochs: just before decoupling, because the Universe was not yet
completely matter-dominated (in a radiation dominated Universe potentials decay); and at
late times, when dark energy comes to dominate, again causing potentials to decay. I will now
discuss more in detail the physics determining the shape of the temperature power spectrum,
discussing first primary anisotropies, generated by processes operating at recombination or
earlier [in other words, the physics behind ©g in Eq. (4.19)].

4.2.1.1 Primary anisotropies

The shape of the temperature power spectrum reflects a host of physical processes taking
place before, during, and after recombination and decoupling. One process of particular
importance is that of Baryon Acoustic Oscillations (BAO). Before decoupling, baryons and
photons were tightly coupled in the so-called baryon-photon fluid. Inhomogeneities in this
fluid were acted upon by two contrasting forces: gravity tended to make such inhomogeneities
grow (making overdensities even more overdense), but such growth was hindered by the large
radiation pressure of photons. Considering the overdensity field §, a cartoon version of the
equation governing its evolution in Fourier space looks like:

S+ K2 =F), (4.21)

where c¢; is the baryon-photon sound speed already seen in Eq. (3.13), whereas F is a driving
force which depends on the gravitational potential. The equation governing the evolution
of overdensities in the Universe looks like that of a forced harmonic oscillator. As a result,
acoustic waves were set in the tightly coupled baryon-photon fluid. The moment photons
decouple from the plasma, the waves freeze. This leads to two important effects. Firstly,

4In Eq. (4.19), ¢ and v denote the two gravitational potentials, commonly utilized to describe scalar
perturbations to the FLRW metric in the Newtonian gauge. In the presence of scalar perturbations and in
the Newtonian gauge, the FLRW line element Eq. (2.3) is modified to:

ds? = (1 — 2¢)dt? — (1 — 2¢)a’(t) + 72(d6? 4 sin? 0dp?) | . (4.20)

dr?
1— kr2

In the absence of anisotropic stress, ¢ = —1.
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we can expect these waves to carry a typical scale, namely the sound horizon at decoupling,
given by Eq. (3.12) with z = zgec. Second, we expect BAOs to imprint their signature on
CFT as a sequence of peaks and troughs. Why? There is a particular oscillation mode with
frequency such that at decoupling it had the time to exactly compress once (thus complete a
quarter of an oscillation), so it freezes when its amplitude is maximal. We expect to observe
large fluctuations/temperature anisotropies on angular scales corresponding to this mode,
and thus a peak in the temperature power spectrum. A mode with an oscillation frequency
twice as large instead had the time to complete half an oscillation cycle: at decoupling it is
caught in phase with the background, thus with an amplitude close to zero. We expect to
observe very tiny fluctuations/temperature anisotropies on angular scales corresponding to
this mode, and thus a trough in the temperature power spectrum. Similarly, a mode with
oscillation frequency three times that of the first peak will have gone through a compression
and a rarefaction, wherein it is caught at the time of decoupling: therefore, it corresponds
to a peak.

Denoting by n = 1,2, 3, ... the number of the peak, we expect the peaks to correspond
to wavenumbers k,, given by the following:

kn = nm/rs(2dec) (4.22)

where 7 (zgec) is the sound horizon at decoupling. Inhomogeneities corresponding to a per-
turbation with wavenumber k contribute mostly to anisotropies at multipoles ¢ ~ ky,, with
X+ = X(Zdec) the comoving distance to the redshift of decoupling, sometimes also referred
to as last-scattering. Therefore we expect the nth peak to appear roughly at multipoles £,,:

NI X«

0, ~ TXx 4.23
" Ts(zdec) ( )
corresponding to angular scales 6,, given by:
6, ~ o) (4.24)
n & . .

NXx

For parameters around the best-fit cosmological parameters from Planck 2015, the first peak
appears at multipoles £pcak ~ 220, corresponding to an angular scale of approximately one
degree.

Historically, the first peak of the CMB has always been regarded with great importance,
and the angular scale of the first peak is usually denoted by 6. In fact, 65 is one of the six
fundamental parameters of the ACDM model. It is given by the ratio between the sound
horizon at decoupling and the comoving distance to decoupling:

Trs (Zdec)
Xxo

0s = (4.25)
It is clear that the position of the first peak provides valuable information about the geom-
etry and energy content of the Universe, since these typically result in the first peak being
projected on different angular scales 05 (as they change the distance scales involved). Typ-
ically, modifying the late-time expansion rate affects x., whereas modifying the early-time
expansion rate affects r4: in both cases, 6, is modified. Besides its position, the amplitude of
the first peak also provides valuable information on the content of the Universe. In fact, the
height of the first peak is very sensitive to the integrated Sachs-Wolfe contribution to the
temperature anisotropies, given by the rightmost term in Eq. (4.19). An incomplete matter
domination at the time of decoupling leads to residual time variations in the potentials ¢
and v, which boost the temperature anisotropies and hence the height of all peaks (but
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especially of the first peak). This contribution is commonly referred to as early integrated
Sachs-Wolfe (EISW) effect, to distinguish it from the late integrated Sachs-Wolfe (LISW)
effect due to dark energy domination at late times. The height of the first peak is therefore
very sensitive to the redshift of matter-radiation equality z.q, since an earlier onset of matter
domination leads to less decay of the potentials at decoupling, and hence a smaller EISW
effect and a lower first peak. Conversely, a later onset of matter domination leads to a higher
first peak. See [801] for a recent work constraining the amplitude of the EISW effect.

In summary, we expect a series of peaks and troughs in the CMB temperature power
spectrum CZT T corresponding to oscillation modes caught at extrema of compression or
rarefaction (peaks), or in phase with the background (troughs). At scales much larger
than the sound horizon at decoupling, and correspondingly multipoles ¢ < ¢; (with ¢ the
multiple of the first CMB acoustic peak), perturbations are frozen to the initial conditions
presumably provided by inflation. This simple picture, wherein we would expect an unending
sequence of peaks of equal height, is slightly complicated by the presence of baryons. As we
have already seen [Eqs. (3.13,3.14)], the amount of baryons affects the sound speed of the
baryon-photon fluid, but also the amount of gravitational force felt by overdensities in the
baryon-photon fluid: both quantities appear in the cartoon equation Eq. (4.21). It turns
out the net effect of baryons is to enhance the compression (odd) peaks over the rarefaction
(even) ones. Heuristically, this is simple to understand: increasing the amount of baryons,
we are increasing the amount of gravitational pull (which drives the compression peaks),
while not changing the amount of radiation pressure (which drives the rarefaction peaks).
Therefore, we are enhancing the odd peaks, leading to an asymmetry between odd and even
peaks.

If this were the end of the story, all odd peaks would have the same height, and so would
all the even peaks. In reality, the whole peak structure is further modulated by an exponen-
tial damping envelope. This damping reflects an effect known as Silk damping [802]. Silk
damping is a diffusion damping effect, due to the fact that decoupling is not an instantaneous
process, but occurs over a finite but small range of redshift: CMB photons are therefore
last-scattered over a shell of finite thickness (see e.g. [803-805] for papers where limits on
the duration of last-scattering are obtained). During this time, CMB photons perform a
random walk through baryons, effectively erasing anisotropies on scales below their typical
mean free path rq, given by [190,194]

2 [ da R? 4+ 18(1 4 R)
rd = \/7r /0 adorne(a)H (a) [ 6(1+ R?) } ) (4.26)

where aqec is the scale factor at decoupling, n. is the number density of free electrons,
and or is the Thomson cross-section. Silk damping results in a damping envelope which
is particularly evident for ¢ = 1000, from the third peak on. In the same way the first
peak contains the imprint of the angular size of the sound horizon at decoupling 65, the
damped high-multipole peaks contain the imprint of the angular size of the damping scale,
04 =1q/Xx-

4.2.1.2 Secondary anisotropies

The features of the temperature power spectrum we have discussed so far have been gener-
ated at decoupling or earlier, and are referred to as primary anisotropies. However, as CMB
photons travel along the line of sight to us, new anisotropies are generated due to late-time
effects. These are referred to as secondary anisotropies. See [806] for a comprehensive review
on secondary anisotropies in the CMB.
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One of the most important sources of secondary anisotropies is CMB lensing: that is,
the lensing of CMB photons due to the intervening matter distribution [807-809]. Lensing
is mainly sensitive to low-redshift inhomogeneities, at redshifts z < 5. The angular scale
associated to lensing is & 2/, so that lensing becomes important at multipoles £ = 1000. The
effect of lensing is that of blurring the primary anisotropies, smoothing the high-multipole
peaks.

The effect of lensing can be quantified through the lensing potential ¢(#), which is re-
lated to the deflection angle experienced by a CMB photon, a(#i), through a(fv) = V().
Because lensing is a non-linear effect, it creates a small amount of non-Gaussianity in the
pattern of temperature anisotropies, leading to subtle correlations between temperature
anisotropies on different angular scales. By using these subtle correlations, one can recon-
struct the lensing potential on the sky, and from that compute the lensing potential angular
power spectrum Cf ¢ (a closely related quantity, as we shall see in Chapter 6.2, is the lensing
convergence k). See e.g. [810-824] for a number of important works concerning CMB lens-
ing reconstruction. CMB lensing is an integrated effect, sensitive to the matter distribution
along the line of sight, appropriately projected. To extract the lensing signal from a spe-
cific redshift range, one can instead cross-correlate the CMB lensing effect with appropriate
tracers of the LSS at that redshift [825-829].

Another important source of secondary anisotropies is reionization. Reionization drasti-
cally increases the fraction of free electrons in the late Universe, providing an extra channel
for additional scattering of CMB photons which would otherwise free-stream to us. The
net result is that, on scales below the horizon at reionization (¢ 2 40), the temperature
anisotropies are exponentially suppressed by e~2", where the parameter 7 is known as op-
tical depth to reionization and quantifies the line-of-sight free-electron opacity to CMB
photons. The value of 7 is related to the probability that a CMB photon is rescattered due
to reionization. Under the (unrealistic but nevertheless useful) assumption of instantaneous
reionization, the value of 7 can be related to the redshift of reionization. °. Details of reion-
ization aside, a larger value of 7 indicates an earlier onset of galaxy/star formation, whereas
7 = 0 would indicate the absence of reionization.

A last important source of secondary anisotropies is known as the late integrated Sachs-
Wolfe (LISW) effect, sometimes also referred to as Rees-Sciama effect [840]. It is analogous
to the EISW effect we discussed earlier affecting the first peak, but driven in this case by
the decay of gravitational potentials as dark energy comes to dominate the late Universe.
The LISW signal results in a boost of power on large scales (¢ < 20), corresponding to
scales entering the horizon after matter-dark energy equality. However, on such scales mea-
surements of the CMB temperature power spectrum are plagued by cosmic variance and
hence not much can be said about the LISW effect from CMB measurements alone. The
LISW signal can instead be extracted at a higher statistical significance by cross-correlating
the CMB temperature anisotropies with tracers of the LSS such as galaxies or quasars (see
e.g. [801,841-854] for important works in this direction).

4.2.1.3 A brief discussion on polarization

Before going on to discuss how we can extract the 6 base cosmological parameters of ACDM
from CMB measurements, I will briefly discuss polarization anisotropies. In fact, CMB pho-
tons are polarized, and polarization anisotropies carry valuable information on the physics
of the tightly coupled baryon-photon plasma, CMB lensing, reionization, and possibly on

5Observational signatures and strategies for probing more complex reionization models have been con-
sidered in a number of paper, see e.g. [830-839]
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Figure 4.3: A schematic representation of how Thomson scattering of radiation with
quadrupole anisotropy generates linear polarization. Reproduced from [6] with permis-
sion from Elsevier.

primordial gravitational waves from inflation. Polarization of the CMB is an incredibly com-
plex topic, especially from the mathematical point of view. My goal here will be to provide
the reader a heuristic level of understanding, sufficient to understand why measuring polar-
ization of the CMB is useful for extracting cosmological parameters, including parameters
related to neutrinos. For a pedagogical and more complete coverage of the physics of CMB
polarization I refer the reader to seminal reviews, e.g. [6,855,856].

Polarization is generated by Thomson scattering, the scattering of electromagnetic radi-
ation off a non-relativistic electron. The differential cross-section for this scattering process
dor/dQ is not isotropic but goes like dop/d) o |€& - €|, with € and € the outgoing and
incoming polarization vectors (see e.g. [857,858]). From a heuristic perspective, incoming
radiation shakes an electron in the direction € and causes it to radiate with intensity peaking
in the direction of the incoming polarization. However, the outgoing polarization direction
& must also be orthogonal to the direction of propagation. Therefore, incoming radiation
polarized parallel to the outgoing direction does not scatter. See for instance Fig. 4.3, a
cartoon version of Thomson scattering of an electron by an incoming quadrupole source,
generating a net linear polarization. In fact, it is easy to convince oneself that, in order
to generate a net polarization from Thomson scattering, the incoming radiation should be
anisotropic. More specifically, at least a quadrupole anisotropy is required (intensity varying
at a 7/2 angle), since a dipole anisotropy would lead to no net polarization.

The early pre-recombination Universe, during which the baryon-photon fluid underwent
BAOs, was highly isotropic precisely due to the tight coupling between baryons and photons.
For this reason, no net polarization could be generated during the time. However, towards
the end of recombination, photons can start to diffuse between hot and cold regions (recall
this is the process that generates Silk damping). At this point, a quadrupole moment can
form, leading to net linear polarization [859-861]. From these simple considerations, we
can expect the size of the quadrupole to depend on the typical photon velocity (given by
the dipole moment instead). It has been shown [862] that the strength of the quadrupole
anisotropy is suppressed with respect to the main temperature fluctuations, which is ex-
pected since the scattering generating polarization is also responsible for destroying the
same information (much the same way Silk damping does), and thus we expect the polar-



4.2 Cosmological observations 41

ization power spectrum to be significantly lower than the temperature one. On the other
hand, we can expect the oscillating velocity field to be out of phase by 7/2 with respect
to the oscillating (over)density field: when the amplitude of a density mode is maximal
(i.e. it is either maximally overdense or underdense), the velocity is zero (as the oscillation
is turning around), whereas when the density mode is in phase with the background, the
velocity is maximal. ¢ Therefore, we expect the polarization power spectrum to carry the
imprint of BAOs, although maximally out of phase with respect to the signature of BAOs
in the temperature power spectrum: in other words, at multipoles where in temperature we
have a peak, in polarization we should see a trough.

This simple picture is slightly complicated by the fact that polarization has both a
strength and an orientation. A thorough description of the underlying mathematics would
require us to delve into the (fascinating) realm of spin-2 fields, way beyond the scope of this
thesis. For the purpose of understanding the broad features of the polarization spectra, it
suffices to say that the orientation can be described by decomposing the polarization field
into a curl-free E and a divergence-free B components [859,861,863]. In the small-scale
limit, the wavevector of a scalar perturbation k picks up a preferred direction along which
to measure polarization: then, the E component measures polarization aligned or orthog-
onal with respect to k, whereas the B component measures polarization crossed at £ /4
with respect to k. Going beyond the small-scale limit does not change these qualitative fea-
tures [190]. Moreover, scalar (density) perturbations can only generate E-type polarization,
whereas gravitational wave (tensor) perturbations generate both E- and B-type polarization
(at least at the level of primary polarization anisotropies) [860,864-867].

The signature of BAOs, being generate from density fluctuations, is thus only imprinted
in the E-mode power spectrum, CZEE . As discussed previously, the acoustic peaks are
maximally out of phase with respect to those in C7T. In particular, the first peak in E
polarization should appear around ¢ =~ 100. Moreover, the overall amplitude of CfE is
significantly lower than that of C/'7, and we expect CF¥ to drop sharply both at large
scales (small £, because polarization cannot be generated at scales which are super-horizon
at recombination) and small scales (large ¢, because scattering erases information on small-
scale anisotropies). Moreover, given the phase relation between C’ZT and C'f E we expect a
non-zero cross-correlation between temperature and E polarization, with a spectrum C’gE
featuring oscillations at twice the frequency of the oscillations in CL,TT or C’f £ Hence, once
CZT T is measured, the shape of both C’ZEE and CZTE is (mostly) already determined, and
can thus be used as a powerful cross-check. The primary B-mode power spectrum, CfB,
is instead generated in the presence of primordial gravitational waves, whose amplitude is
quantified by the tensor-to-scalar ratio r. In this case, the relevant scale is the horizon at
decoupling, thus we expect CfB to peak around ¢ ~ 100 (corresponding to angular scales
of about a degree), and to drop rapidly at both ends.

Secondary anisotropies, discussed earlier in Chapter 4.2.1.2 in the context of temperature
anisotropies, affect polarization anisotropies as well. The two main sources of secondary
anisotropies are lensing and reionization. As in temperature, lensing acts on small scales
(¢ 2 1000), and results in the generation of B modes from E modes: heuristically, this occurs
because lensing warps F modes in a way that is not related to the direction of polarization,
effectively generating B modes, referred to as lensing B modes [868-872]. With regards
to reionization, on small scales the physical picture is the same as it is in temperature,
leading to an e =27 suppression of the polarization power spectra. However, reionization also

SMathematically, if the density field oscillates as § o cos(krs), the velocity field oscillates as v o sin(krs).
This is what one usually expects for the position and velocity of a harmonic oscillator, which are maximally
out of phase.
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provides an additional source of scattering by increasing the fraction of free electrons. This
leads to an enhancement of power on scales corresponding to the horizon at reionization
(¢ = 10), usually referred to as the “reionization bump”.

4.2.1.4 Cosmological parameters from CMB measurements

So far we have provided a mostly qualitative picture of the physics underlying the CMB
temperature and polarization anisotropies spectra and cross-spectra. Various actors have
come into play at different times and scales: prior to decoupling the interplay of gravity and
pressure in the tightly coupled baryon-photon fluid set up acoustic oscillations showing up on
intermediate scales in the temperature and E-mode polarization (albeit out of phase) power
spectra, as well as in their cross-correlation. On small scales, these spectra are suppressed
from Silk damping due to photons random-walking around the time of decoupling, as well
as from scattering on free electrons during and after reionization. However, reionization also
provides an extra source of E- polarization on very large scales. On intermediate scales,
primordial B-mode polarization is generated if primordial gravitational waves (presumably
from inflation) were set up in the very early Universe. On very large scales, the temperature
power spectrum reflects the initial conditions presumably set by inflation, modulo additional
anisotropies generated at late times when dark energy takes over, through the LISW effect.
Finally, on small scales, gravitational lensing becomes important and blurs the temperature
anisotropies, while generating B-mode polarization from E-mode polarization. The CMB
temperature power spectrum as measured by 2015 data release of the Planck satellite [7] is
shown in Fig. 4.4: from the figure, we can clearly see the imprints of all effects discussed so
far.

The question then is: can we use the measured spectra to pin down cosmological parame-
ters? The answer, of course, is yes! As we anticipated in Chapter 3.3, 6 parameters appear to
be sufficient in describing the CMB spectra, within the so-called concordance ACDM model.
The parameters are: 0, w., wp, As, ns, and 7. Given a set of cosmological parameters, we
can compute theoretical predictions for the CMB temperature, polarization, and lensing
spectra, using state-of-the-art Boltzmann solvers such as CAMB [8] or CLASS [873]. In the
rest of this thesis, we will be concerned with a 1-parameter extension of this very successful
model, the ACDM+M,, model, where the sum of the neutrino masses M, is treated as a
free parameter. For the moment, let me sketch how the 6 base parameters can be extracted
from measurements of the CMB spectra. I will return in more detail to the effect of M, on
the CMB spectra in Chapter 4.3.1.

The following discussion will closely follow [194], and I recommend that the interested
reader read the end of Section 5.1.6 thereof. In a simplified but overall rather complete
picture, we can envisage the CMB temperature power spectrum as mostly being governed
by 8 effects (referred to as C1 through to C8 in [194]):

1. The position of the first peak depends on 65 = ry/x4. rs depends on the expansion
history prior to decoupling, and is affected by changes in the photon-baryon sound
speed. Hence, it is sensitive to w; (which controls the sound speeed) and wy, (which
controls zeq). On the other hand, x, depends on the expansion between decoupling
and us, and is affected by quantities such as 25 or h.

2. The relative height between odd and even peaks depends on wy,/w, (but recall that w.,
is basically fixed), i.e. on the relative pressure-gravity balance.

3. The height of all peaks is controlled by the amount of expansion between equality and
decoupling, during which acoustic oscillations are damped. Hence, this effect is mostly
controlled by wy, (and thus by w,, once wy is known).
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Figure 4.4: Temperature power spectrum from the Planck 2015 data release. Upper
panel: the blue points are the actual measurements with error bars (nearly invisible for
£ > 30), whereas the red curve is the theoretical power spectrum computed using the
best-fit parameters obtained analysing temperature and large-scale polarization data.
Notice that, as per standard convention in the field, the quantity plotted on the y axis
is T2ypl(l + 1)C,, with Toyp ~ 2.725K the CMB temperature today. Lower panel:
residuals with respect to the best-fit model. Reproduced from [7] with permission from
EDP Sciences.

4. The amplitude of the high-multipole peaks is controlled by 04 = 74/xx, with r4 de-
pending on the expansion history prior to decoupling and hence on wy, and wy, (for y.
see Point 1 above).

5. The overall amplitude of the power spectrum is controlled by As.
6. The overall tilt of the power spectrum is controlled by ns.

7. The slope of the power spectrum at low-multipoles is controlled by the LISW effect
and hence by 2, and h.

8. The amplitude at £ > 40 versus the amplitude at ¢ < 40 is controlled by 7.

Therefore, simplifying a bit, the route towards determining cosmological parameters
from the CMB power spectrum proceeds as follows: the position of the first peak directly
determines 65, which in turn depends on a certain combination of w. + wp and h (the latter
a derived parameter). The height of the first peak determines zeq and hence w, +wy, and in
combination with the position of the first peak determine h. Comparing the amplitude of
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Figure 4.5: Impact of varying the six fundamental ACDM parameters on the CMB
temperature power spectrum. The chosen baseline model has wp = 0.02, w, = 0.12,
1000, = 1.054, 7 = 0.072, A, = 2.16 x 107°, and ny = 0.96. Derived parameters
of particular interest are h = 0.7, Qx = 0.713, z.q = 3345.55, and 1006, = 0.167.
The spectra have been produced through the Boltzmann solver CAMB [8], which takes
h as input and not ;. When w;, and w. are varied, I manually adjust h to keep 0,
fixed. Varying 6, is accomplished by manually varying h. Notice that, as per standard
convention in the field, the quantity plotted on the y axis is TZ2ypl(¢ + 1)Cp, with
Temp =~ 2.725 K the CMB temperature today.

the even and odd peaks allows us to determine w;, (and from that w.), whose determination
is improved by measuring the damping tail. The overall amplitude of the temperature
power spectrum depends on the combination A e~2", while the overall slope determines
ns. Measuring polarization at large scales allows one to measure 7, and hence disentangle
As. More generally, the acoustic peaks in polarization are sharper [874], thus allowing for
a better determination of w, and wy, as well as h. It is worth noting that the position and
height of the first peak in temperature are extremely well measured, and thus 6, and z.q
are basically fixed. In Fig. 4.5, T show the effect of varying the six fundamental ACDM
parameters on the CMB temperature power spectrum.

As we anticipated in Chapter 3.3, the base 6-parameter model can be extended by allow-
ing other parameters, more or less physically motivated, to vary. 7 From a purely statistical

"Notable examples considered in the literature include the sum of the neutrino masses M, the dark
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point of view (to be quantified more thoroughly in Chapter 5), it is worth noting that data
does not “favour” any of these extensions, in the sense that the added layer of complica-
tion brought upon by introducing new parameters does not lead to an improvement in fit
sufficient to justify the introduction of these parameters [686]. Still, it is worth considering
simple extensions of the ACDM model, since some of these extensions are particularly jus-
tified (this is particularly true in the case of the ACDM+M, model). The important thing
to note is that freeing up additional parameters opens up degeneracies/correlations between
parameters which data might not be able to resolve. In other words, different combinations
of parameters might lead to the same physical effects, and hence data might not be able to
disentangle them, while instead only being sensitive to a particular combination of cosmolog-
ical parameters [28,875-878]. Effectively, we can think about this problem mathematically
as that of an underdetermined system: we have more variables than constraints. Usually
degeneracies can be broken by considering additional cosmological data (e.g. large-scale
structure probes) which are sensitive to “orthogonal” combinations of parameters. It is also
worth noting that most of the degeneracies opening up in the presence of additional free
parameters are related to the so-called geometrical degeneracy: this refers to the possibility
of adjusting parameters governing the background expansion in such a way as to keep the
angular size of the first peak, 6, fixed. As we shall see later, this degeneracy is particularly
important when treating M, as a free parameter.

4.2.2 Large-scale structure

Besides the CMB, the clustering of the large-scale structure (LSS) is another extremely
powerful probe of cosmological parameters. Under the effect of gravity, the ©(107%) inho-
mogeneities present at decoupling and reflected in the anisotropies of the CMB grow and
collapse to form the structures we see in the Universe today. One can therefore expect
statistical probes of inhomogeneities in the matter density field to probe cosmological pa-
rameters, much as the anisotropies in the CMB do. Moreover, unlike the CMB (which is at a
fixed redshift), we can observe the LSS at various redshifts and thus perform a tomographic
analysis.

An interesting way of studying any given field is to examine its distribution of fluctuations
over various scales/frequencies by taking its Fourier transform. Taking the inner product
with its complex conjugate then gives us the field’s power spectrum, which quantifies the
variance of the field at any given scale. In the case of the matter overdensity field d,,(k, z),
we define its power spectrum Py, (k, z) as:

(6l 2)0m (K, 2)) = Pk, 2)5(k — k), (4.27)

where 0 denotes the Dirac delta. The power spectrum of matter density fluctuations P,
contains a substantial amount of information on cosmological parameters, and is the LSS
counterpart of the Cys for the CMB. In fact, given a set of cosmological parameters, Boltz-
mann solvers can be used to make a theoretical prediction for P,,. The real-space counterpart
of the matter power spectrum, instead, is known as the correlation function and is usually
denoted by &(r).

energy equation of state w and possibly its time derivative wq, the running of the scalar spectral index
Nrun = dns/dInk, the running of the running nNrunrun = dnrun/dInk, the tensor-to-scalar ratio r, the
primordial Helium fraction Y, the effective number of relativistic degrees of freedom Neg (which we will
discuss shortly in Chapter 4.3), the curvature density parameter Qy, the effective mass of a sterile neutrino
mgﬂ, as well as a phenomenological parameter controlling the amplitude of lensing, Ay . See, for instance,
the important work [687], where up to 12 parameters at the same time were treated as being free.
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Mathematically speaking, the same amount of information is contained in P(k) and &(r).
Historically, though, the two have always been analysed separately and used to obtain dif-
ferent cosmological measurements. In particular, real-space analyses are typically performed
with the goal of providing a BAO distance measurement (which is essentially a background
probe), while Fourier-space analyses typically measure the galaxy power spectrum Py, (which
depends on both the background and perturbation evolution). In the following, I will discuss
the physics shaping these types of measurements: as done earlier with the CMB, my goal
will be to endow the reader with an intuitive understanding of the physical processes at play
and how the observables are shaped by these physical processes and respond to changes
in the cosmological parameters. For more in-depth and technical treatments, I invite the
reader to consult e.g. [190,191,193,194, 787,793, 794].

4.2.2.1 Galaxy power spectrum

A large number of galaxy surveys are currently underway, measuring the clustering of matter
on large scales and late times. ® Typically, these surveys provide catalogues containing a
large number (usually between 100000 and 1000000) of galaxies. More specifically, each
galaxy in these catalogues is associated to two angles and a redshift: the former two specify
its position on the sky, whereas the latter can be used to determine its distance from us,
assuming a fiducial cosmology. Assuming a fiducial cosmology, it is possible to convert
these angles-redshift triples into a set of comoving coordinates, effectively constructing a
3D galaxy map. From such a map, one can construct a map of the corresponding galaxy
overdensity 04, where 6, = (pg — pg)/pg, With p, the galaxy density field and py the mean
galaxy density. Finally, taking the square of the Fourier transform of d, (let us denote the
Fourier transform of d, as d4(k), where the k argument makes it clear that we are working
in Fourier space), one can estimate the galaxy power spectrum Py(k, z): a practical method
for doing this, used by most collaborations, is outlined in the seminal paper by Feldman,
Kaiser, and Peacock [890] (such method is often referred to as FKP method from the initials
of the authors). Typically, a galaxy sample from a given redshift survey lives in a narrow
redshift range and can be thought of as being at a single effective redshift z.g. The galaxy
power spectrum one computes then is effectively Py(k, zeg). At this point, note a subtlety:
I have been talking about galazy power spectrum P, whereas earlier I talked about matter
power spectrum P, (it is the latter which can be directly computed from first principles).
I will return to this subtlety and its implications later.

We saw earlier in Chapter 3.2.2 that inflation predicts a primordial power spectrum of
metric fluctuations/gravitational potentials Py oc k™% (with ng = 1), and this translates
to a primordial power spectrum of matter fluctuations Ppim o< k™. The late-time power
spectrum we observe from galaxy surveys is a “processed” version of the primordial power
spectrum, accounting for all the physical processes occurring between inflation and today.
To understand the shape of the late-time matter power spectrum, we have to understand
how such processes affect perturbations in the matter field.

It is useful to make a distinction between scales which entered the horizon during ra-

8 A few important names among current and past galaxy surveys include (but are certainly not limited to)
the Sloan Digital Sky Survey (SDSS; [118]), the Baryon Oscillation Spectroscopic Survey (BOSS; [879]), the
Dark Energy Survey (DES; [880]), the extended Baryon Oscillation Spectroscopic Survey (eBOSS; [881]), the
WiggleZ Dark Energy Survey (WiggleZ; [882]), the 6dF Galaxy Survey (6dFGS; [883]), and the 2dF Galaxy
Redshift Survey (2dFGRS [884]). A few important names among upcoming surveys includes Euclid [885],
the Dark Energy Spectroscopic Instrument (DESI; [886]), the Large Synoptic Space Telescope (LSST; [887]),
the Wide Field Infrared Survey Telescope (WFIRST; [888]), and the Spectro-Photometer for the History of
the Universe, Epoch of Reionization, and Ices Explorer (SPHEREXx; [889]).
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diation domination (small scales, large k), and scales which entered the horizon during
matter domination (large scales, small k). The reason is that the growth of subhorizon
matter perturbations is expected to be significantly different depending on whether the per-
turbation entered during radiation or matter domination (on the other hand, superhorizon
perturbations are frozen to their initial conditions at the end of inflation). During radiation
domination, the significant pressure provided by radiation prevents the growth of matter
overdensities, which only grow logarithmically with the scale factor:  « Ina [189-194]. On
the other hand, during matter domination perturbations grow linearly with the scale factor:
0 o< a [189-194]. Thus, we expect a turn-around in the late-time power spectrum, at a
wavenumber keq = aH|eq corresponding to a scale entering the horizon at matter-radiation
equality. The relation between the primordial power spectrum Ppyim (k) and the late-time
one P(k) is quantified through the transfer function, T (k), such that P(k) o Ppyim(k)T? (k).

We expect the small-k (K < keq) part of the galaxy power spectrum to directly trace
the primordial power spectrum of scalar perturbations generated by inflation: in other
words, T(k) ~ 1 for k < keq, and P(k) o< k™ (thus scaling roughly as k'). On small
scales, fits to numerical solutions show that 7'(k) o %—2 In(k/keq), and we therefore expect
P(k) o k™~ *1In?(k) (thus scaling roughly as k=31n?(k)). Moreover, on small scales, the
effect of BAOs is imprinted as a series of wiggles in the matter power spectrum. For a full
numerical fit to the matter power spectrum on small scales, see Eq. (6.51) of [194].

As we did earlier with the CMB, it is useful to identify a number of physical effects
governing the shape of the matter power spectrum (in [194], these effects are referred to as
P1 through to P5):

1. The matter power spectrum P(k) exhibits a turn-around at keq = /22, (1 + 2eq). On
larger scales (smaller k) P(k) traces the primordial power spectrum set up by inflation,
whereas on smaller scales (larger k) it is suppressed by k~*In?(k).

2. The amplitude of the small-scale part of the power spectrum is suppressed as wp/w,
increases, accounting for the fact that CDM perturbations grow more slowly in the
presence of baryons.

3. On small scales, the power spectrum contains the imprint of BAOs in the form of
wiggles, whose amplitude and phase depends on 74, and hence on wy.

4. The overall amplitude of P(k) depends on €, and As.
5. The overall tilt of P(k) depends on n.

In Fig. 4.6, I show the impact on the matter power spectrum of varying selected cosmological
parameters. Clearly, of the six fundamental parameters of ACDM, 6, and 7 have no impact
on P(k) whatsoever. Instead, by looking at the five effects above, it is clear that w,/w. and
Q,, play important roles, and therefore I consider the effect of varying these parameters as
well.

Boltzmann solvers such as CAMB [8] or CLASS [873] are used to compute the linear power
spectrum. In practice, above a certain redshift-dependent wavenumber ki, typical pertur-
bations in the matter overdensity field have grown non-linear today, and hence linear theory
is no longer reliable. As a rule of thumb, ky =~ 0.2 hMpc~! today. In the non-linear regime,
it is only possible to reliable study the power spectrum using N-body simulations. A dis-
cussion of N-body simulations is well beyond the scope of this thesis, and I refer the reader
to dedicated articles discussing this issue, e.g. [891-906].

There is one final subtle issue related to comparing the theoretical power spectrum with
the observed one. Most of the matter field is made up of invisible dark matter, which we
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Figure 4.6: Impact of varying the six fundamental ACDM parameters on the matter
power spectrum. The chosen baseline model has wy, = 0.02, w, = 0.12, A, = 2.16x 1077,
and ny = 0.96. Derived parameters of particular interest are h = 0.7, Q5 = 0.713,
Zeq = 3345.55, and 1000; = 0.167. The spectra have been produced through the
Boltzmann solver CAMB [8]. When wj, and w,, and wp/w, are varied, I manually adjust
h to keep ), and zeq fixed. Varying €, is accomplished by manually varying h.

cannot observe directly (only indirectly through its effect on gravitational lensing). The
only direct way to observe the matter field is through luminous tracers, such as galaxies.
Therefore, what we really are observing is the galaxy power spectrum Py (k), not the matter
power spectrum P(k). The two quantities are only equal if the galaxy overdensity field
faithfully traces the matter overdensity field. However, this is not the case, as galaxies are
biased tracers of the underlying matter overdensity field. Because galaxies form from peaks
in the matter overdensity field which collapse under the effect of gravity, they preferentially
trace more overdense regions and will in general be more clustered than the underlying
matter field from which they originated [907-912]. It can be shown that the emergence of
galaxy bias is a consequence of galaxy formation being a threshold process, i.e. galaxies can
only form once the matter overdensity has reached a threshold level.

The statistical relation between the galaxy overdensity field and the matter overden-
sity field is commonly referred to as galaxy bias, see [913] for a recent complete review on
the subject. On large, linear scales, analytical approaches to study galaxy formation (such
as Press-Schechter theory [914,915]) suggest that the galaxy bias is a redshift-dependent
constant [911,916-926], and the galaxy and matter overdensities d, and ¢ are simply pro-
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portional to each other:
dg(k,z) = b(2)0(k, 2) . (4.28)

The actual value of the bias depends on the LSS tracer in question (i.e. different tracers
will have a different bias), reflecting how “difficult” it is to create the tracer in first place:
tracers which require a higher overdensity to form in first place, such as quasars [927-929],
are more strongly biased [930,931]. For the same reason, the bias of a given tracer typically
increases with redshift, as typical overdensities are lower as we go back in time and it is thus
harder to form the tracer in question.

At the level of power spectrum, Eq. (4.28) translates to:

Py(k,z)  =b*(z) x Pk, z) , (4.29)
~——
what we measure what we would like to measure

where I have highlighted the fact that the true source of information on cosmological param-
eters is P(k), but we only have access to P,(k). In practice, analyses of galaxy clustering
are usually restricted to large, linear scales, where the galaxy bias can be treated as a
constant nuisance parameter to be marginalized over (see Chapter 5 for more details on
the process of marginalization). If one wishes to move to more non-linear scales, a more
careful treatment of the galaxy bias is necessary. On mildly non-linear scales, non-locality
effects in galaxy formation start showing up, and complicate the simple picture wherein the
galaxy bias is constant (see e.g. [923,924] where heuristic examples of how different models
of galaxy formation lead to a scale-dependent bias are presented). Several independent ap-
proaches to galaxy biasing have argued that the leading order correction to a constant bias in
Fourier space, relevant on mildly non-linear scales, is a k2 correction, i.e. b(k) oc const + k2
(see [907-912] for important early work, see [925,926,932-940] for later developments, and
see [913] for a pedagogical explanation of why the lowest order correction scales as k2). This
will be relevant in Paper II, where we study the impact of moving beyond the constant bias
approximation in galaxy survey analyses.

On top of the difficulties brought upon by galaxy bias, another complication is that we
do not observe galaxies in real space but in redshift space. In other words, galaxy surveys
provide two angles and a redshift, and not three comoving coordinates. In order to obtain
the latter, we need to assume a fiducial cosmology (which essentially is used to convert the
redshift information into a z coordinate), but this conversion only accounts for the Hubble
flow and not for peculiar velocities. This mismatch between real and redshift space due
to peculiar velocities is responsible for a phenomenon known as redshift-space distortions
(RSD). RSDs manifests as elongation or flattening of structures, either due to random
peculiar velocities in bound structures (Fingers of God effect) [941] or coherent motions of
galaxies (Kaiser effect) [942]. Fortunately, we have a rather good idea as for how to model
these effects at the level of galaxy power spectrum in the linear regime (see e.g. [943,944]
for reviews), although the question of how to model non-linear RSD is well and truly open
(see for instance [945-956] for important work in this direction).

4.2.2.2 Baryon Acoustic Oscillation distance measurements

As we anticipated earlier, galaxy surveys can be analysed in real space or Fourier space.
In the latter case, one measures the galaxy power spectrum Pg(k) which we discussed in
Chapter 4.2.2.1. In real space, one measures the 2-point correlation function £(r), whose
Fourier transform is Py(k). To get a physical understanding for the correlation function,
consider a galaxy survey with mean number density 7, and two small regions of volume dV;
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Figure 4.7: Two point-correlation function measured from the CMASS sample of the
BOSS DRI10 galaxies. The “bump” at comoving separations of ~ 150 Mpc is clearly
visible. Credits: BOSS collaboration [9].

and dVs, separated by a distance r. Then, the expected number of pairs of galaxies with
one galaxy in dV; and the other galaxy in dVa, (npair), is given by:

<npair> = 'ﬁz [1 + £(T)] dVldVQ . (430)

Therefore, £(r) measures the excess clustering of galaxies at any given separation r. If
&(r) = 0, galaxies are unclustered, 7.e. randomly distributed. Conversely, () > 0 (£(r) < 0)
corresponds to stronger clustering (anti-clustering).

As a function of separation r, the 2-point correlation function £(r) drops roughly as
a power-law, £(r) o« r=7 with v ~ —2 (see e.g. [957-962]). On top of the power-law,
&(r) exhibits a “bump” at comoving separations of about 150 Mpc. This is a signature
of the BAOs which were set up in the photon-baryon fluid. Heuristically, we can imagine
several superimposed acoustic waves propagating simultaneously, and freezing at the time of
decoupling (more precisely, at the drag epoch when baryons were released from the photon
drag, see Chapter 3.2.1). An exaggerated cartoon version of this situation is shown in
Fig. 4.8. The result is a slight preference for perturbations (which later grow into galaxies)
separated by a distance rs(2drag), since that is the distance travelled by sound waves at the
time baryons were released from the photon drag and the waves froze.

The BAO bump in the two-point correlation function is the real-space counterpart of the
BAO wiggles in the power spectrum (see e.g. [963] for a comprehensive review). The sound
horizon at baryon drag 7s(zdrag) is a quantity of known and fixed length. Thus, comparing
its apparent size to its known size allows us to determine the distance to the galaxy survey
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Figure 4.8: Cartoon version of BAOs, showing spheres of baryons around initial dark
matter clumps, with an excess clustering at a scale corresponding to the sound horizon
at decoupling. Credits: BOSS collaboration [9].

in question, and indirectly measure the low-redshift expansion rate of the Universe. If one
has sufficient sensitivity as to separate line-of-sight and transverse separations, the two can
be used to constrain the combinations 7(Zarag) H () and x(z)/rs(zdrag) respectively, where
Xx(z) is the comoving distance to the redshift of the galaxy sample. Until recently, most
galaxy surveys did not have sufficient sensitivity to do so, and instead performed an isotropic
analysis, sensitive to the quantity dy (z) known as volume distance [119,794,963,964]:

273
dy(2) = {Z;f[((?) } . (4.31)

Most BAO distance measurements are reported in terms of constraints on dy (z)/rs(2drag);
which tightly limit parameters determining the late-time expansion of the Universe. In
particular, it can be shown that BAO distance measurements mostly constrain £2,, and
Hy [965,966], and are thus highly complementary to CMB measurements. In fact, BAO
distance measurements are typically used in combination with CMB measurements to break
degeneracies among cosmological parameters which would otherwise be present when only
using the latter.

4.3 Neutrino signatures in cosmological observations

So far, we have provided a qualitative but rather complete picture of CMB and LSS probes.
In particular, we have seen how these probes are sensitive to various cosmological parameters.
Of course, these probes are also sensitive to neutrino properties, otherwise we wouldn’t be
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here to talk about it. The natural question, then, is what are the signatures of neutrinos in
CMB and LSS probes? In answering this question, I will follow closely [752], as well as the
classic textbook [194], but keeping the discussion as brief as possible: I invite the interested
reader who wants to dig deeper into this interesting question to read Chapter 5.1.3, 6.1.3,
and 6.1.4 of [194]. In the literature there are a number of excellent resources covering
the effects of neutrinos on cosmological observations discussed here, with varying level of
technicality and details: an incomplete list is given by [553,967-980]. I will first discuss
neutrino signatures in the CMB anisotropies, and then in the matter power spectrum.

4.3.1 Signatures of neutrinos in the CMB anisotropies

As we have seen in Chapter 4.2.1, several effects depending on various parameters or com-
binations of parameters mix between each other when determining the shape of the CMB
temperature power spectrum. As a result, it is not simple to discuss the direct impact of
neutrinos (or of any given species, for that matter), as this would require to some extent
separating these effects. To make progress, it is useful to classify effects of neutrinos on
the CMB anisotropies in two categories: background effects and perturbation effects. The
former are generally considered more “indirect”; and can usually be reabsorbed by suitably
tuning the other cosmological parameters when varying neutrino parameters, whereas the
latter are generally considered more “direct”, a tell-tale of neutrinos. Background effects are
related to changes in the evolution of the scale-factor and consequently to the background
evolution of H(z). As we have seen earlier, the CMB anisotropy spectra are sensitive to
a number of characteristic scales (such as zeq, 75, and x,). Varying neutrino parameters
while naively keeping other cosmological parameters fixed will generally change these scales:
however, since these are very well fixed by observations, it would be wise to instead vary
other cosmological parameters at the same time to keep these scales fixed. We will later
show that such a choice makes a significant difference, and allows to isolate the “direct”
signature of neutrinos more cleanly. On the other hand, perturbation effects are related to
the impact of neutrinos on metric fluctuations (gravitational potentials), which back-react
on perturbations to the photon-baryon fluid. Such effects are mostly related to changes in
the EISW and LISW effects, as well as in the gravitational lensing of CMB photons.

I first begin by discussing signatures of neutrino masses, in other words the impact
of M, on the CMB anisotropy spectra. I will focus exclusively on the CMB temperature
power spectrum, although very similar considerations apply to polarization and temperature-
polarization spectra. As we have seen in Chapter 4.2.2, neutrinos with total mass M, <
1.8 eV turn non-relativistic after matter-radiation equality. Since cosmological data strongly
favour M, < 1€V, in the following we will always count neutrinos as radiation at matter-
radiation equality, recombination, and decoupling. In other words, zeq is given by:

wp + We Wp + We
q = = , (4.32)

4
or [T E ()" Nea|

where a = [1 + 7/8(4/11)*/3Nog] =~ (1 4 0.2271Neg). 1 first follow the approach of [752],
wherein M, is varied without attempting to keep the characteristic times and scales govern-
ing the CMB power spectrum fixed. At a later moment, I will follow the approach of [194],
where M, is varied while keeping these times and scales fixed. The approach of [752] is
more simple to follow especially for non-expert readers, albeit it obscures the direct neu-
trino signature. We have seen in Eq. (3.5) that the sum of all the density parameters §2; at
present time should be equal to 1. Defining the physical density parameters w; = €;h? and
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Figure 4.9: Impact of increasing the sum of the neutrino masses M, on the CMB
temperature power spectrum. Upper panel: the black curve is the power spectrum for
the baseline model where M, = 0.06eV. In addition, we set h = 0.7, w. = 0.12, and
Qp = 0.713. The other three curves are obtained for M, = 1.8eV, where the increase
in M, is compensated by setting h = 74.48 (blue curve), w, = 0.10144 (red curve),
and Qp = 0.675 (green curve). Notice that, as per standard convention in the field,
the quantity plotted on the y axis is Tgypl(f + 1)Ce, with Tomp ~ 2.725K the CMB
temperature today. Lower panel: relative change in power with respect to the baseline
model, with the same color coding as above. The main changes are due to: an increase
in f5 when varying h (blue curve); an increase in 6 and an enhanced EISW effect when
varying w. (red curve); and an increase in 65 and a reduced LISW effect when varying
Qa (green curve).

restricting ourselves to a minimal ACDM+M,, model, the sum rule can be rewritten as:
w7+wb+wc+w/\+wy:h2, (4.33)

Recall that w, is accurately determined by measuring the CMB temperature, so it is for all
intents and purposes fixed. On the other hand, w, o< M,,, so increasing M,, directly increases
w,. However, Eq. (4.33) must always be satisfied as M,, is increased, so an increase in M,
must be compensated for by varying one or more among h, wy, w., and wy. As we have seen
in Chapter 4.2.1, the relative height between odd and even peaks accurately fixes w;, (and
wp also strongly influences the abundances of light elements produced by BBN), so directly
varying wj is not a wise choice. Following the pedagogical approach of [752], I choose h, w,
and Q, as the parameters to be varied (one at a time) to compensate for the increase in M,
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and ensure that the sum rule remains satisfied. Notice that in all of this, Ag, ng, 7, and wy
remain fixed. It is useful to rewrite Eq. (3.9):

H(z) :HO\/(Qb+QC)(1+z)3+QW(1+Z)4+QA+py(z). (4.34)

Perit

When considering the impact of varying M,,, we make comparisons with respect to a baseline
model where M,, = 0.06 eV (distributed across 3 degenerate neutrinos of equal mass 0.02 V).
The CMB temperature power spectrum for this baseline model is given by the black curve
in the upper panel of Fig. 4.9.

Let us consider a first case where we compensate for the increase in M, (and hence
w,) by increasing h while keeping w. and Q4 fixed. By inspecting Eq. (4.34), it is easy to
show that well before the neutrino non-relativistic transition (z > zp,), M, does not affect
the expansion history, while for z < z,, increasing M, increases the expansion rate. This
implies that 75 is left unchanged, but x, decreases: therefore , increases, and all peaks
are projected to smaller multipoles. On the other hand, the height of the first peak should
remain approximately unchanged, since zeq remains unchanged [see Eq. (4.32)] and therefore
so does the EISW effect.

We now consider a second case where we compensate for the increase in M, by decreasing
w. while keeping h and Q4 fixed. In this case, by inspecting Eq. (4.34), we see that the
expansion rate is unchanged for z > z.q and for z < z,y, while for z, S 2z S 2zeq the
expansion rate is decreased. This increases both 7, (due to the decrease in H between zoq
and zgec) and X, (due to the decrease in H between zgec and zy,,): numerically, we find that
the former effect dominates over the latter, the net effect being again an increase in 6, and
a shift of all peaks to smaller multipoles. Moreover, from Eq. (4.32) we see that decreasing
w, delays equality, the net result being an enhanced EISW effect and hence a higher first
peak.

Finally, we consider the third case where we compensate for the increase in M, by
decreasing Q2 while keeping h and w, fixed. Inspecting Eq. (4.34) leads us to conclude that
the expansion rate is unchanged for z > zy,,, whereas numerically we find that for z < z,,
H increases. As a result r, is unchanged, whereas x, decreases, and the net effect is again
that 6, increases and all peaks are shifted to smaller multipoles. Moreover, since zqq is
unchanged, the height of the first peak remains the same. However, since decreasing j
decreases the period of dark energy domination, we expect the LISW effect to be reduced
and hence a decrease in power at very low ¢ (which however would be very hard to detect
because of the large error bars due to cosmic variance).

The temperature power spectra in the three cases discussed above are shown in the upper
panel of Fig. 4.9, and confirm all our expectations: a shift in the peaks towards smaller /s
for the case where h is increased (blue curve), a similar shift with in addition an enhanced
first peak for the case where w,. is decreased (red curve), and again a similar shift with in
addition a reduction in power at low fs when 2, is decreased (green curve). The lower
panel of Fig. 4.9 instead shows the relative change in the power spectra with respect to the
baseline case, and is helpful in making these shifts more evident.

In the three cases we just discussed, we have seen that increasing M, led to changes in
the CMB power spectrum due to shifts in the background quantities 75, X, Zeq, and zx. This
has the effect of concealing the “direct” effect of M, behind larger effects due to shifting
background quantities. The more meaningful comparison between models with different
M, should therefore be performed trying to keep the previous scales constant whenever
possible. This is the approach advocated in [194]. It is easy to convince oneself that within
the framework of the minimal ACDM+ M, model, there isn’t sufficient freedom to vary M,
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Figure 4.10: Impact of increasing the sum of the neutrino masses M, on the CMB
temperature power spectrum, adjusting h and Q4 to keep 6, and z.q fixed at the expense
of a small shift in z5. Upper panel: the black curve is the power spectrum for the
baseline model where M, = 0.06eV, h = 0.7, and Q5 = 0.713. The green (red) curve
is obtained for M, = 1.8e¢V (M, = 0.9¢V), where the increase in M, is compensated
for by setting h = 0.569 (h = 0.628) and Q4 = 0.508 (25 = 0.621). Notice that, as per
standard convention in the field, the quantity plotted on the y axis is T@ygl(¢ + 1)C,
with Tomp ~ 2.725 K the CMB temperature today. Lower panel: relative change in
power with respect to the baseline model, with the same color coding as above. The
main changes are due to a reduced LISW effect, a reduced EISW effect, a minuscule
change in the damping scale, and a reduction of the lensing effect.

and keep all four the previous scales fixed. However, since the physical effects controlled by
the first three are much more constrained than the LISW effect controlled by z,, the most
meaningful comparison between models with different M,,, at least as far as CMB data is
concerned, should be performed keeping 7, X, and zeq, while allowing zx to vary. This can
be achieved keeping wy, and w,. fixed, while decreasing h and Q,.

The effect on the CMB power spectrum of increasing M,, while keeping 0 and z.q fixed
is shown in Fig. 4.10. The large changes due to the shift of 6 and the enhanced EISW effect,
previously visible in Fig. 4.9, have now basically been removed, and it is clear that the direct
effect of neutrino masses turns out to be quite subtle. The largest change is the reduction
in power at low-¢ due to a reduced LISW effect, expected given that we chose to vary zx by
decreasing Q5 (decreasing the duration of dark energy domination). Tiny shifts at high-¢
(¢ Z 500) are instead due to minuscule shifts in the damping scale. Moreover, at high-¢,
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neutrinos suppress the lensing power spectrum. Because of their free-streaming nature we
have discussed in Chapter 4.1.2, and for reasons that will become clearer in Chapter 4.3.2,
at late times neutrinos suppress the growth of structure, resulting in less structure which
lenses the CMB. The effect of lensing is to smear the high-¢ peaks, and as such increasing
M, sharpens the peaks. This effect, however, is small and hardly visible in Fig. 4.10. We
also expect the shift in the damping scale to show up on the high-¢ part of the EE, TE, and
BB spectra, whereas the reduction of the lensing potential will reduce the amount of lensing
B-modes (showing up as a reduction in power in the high-¢ part of the BB spectrum).

The direct perturbation effects due to massive neutrinos instead show up on scales 50 <
¢ < 200, where we see that increasing M,, reduces power by ADIT /DIT ~ — (M, /10€V) [194].
The reason is to be found in a reduced EISW effect. In fact, on large scales, neutrinos behave
as a clustering component, 7.e. more like matter than radiation: this leads to less decay of the
gravitational potential (recall that gravitational potentials decay in a radiation-dominated
Universe and are constant in a pure-matter Universe), and hence a reduced EISW effect,
since the latter is driven by time variations of the gravitational potential. °

So far we have looked at the effect of neutrino masses on the CMB power spectrum,
parametrized through M,,, a parameter which will interest us a lot in this Thesis (see Chap-
ter 6). We will also be interested, albeit to a significantly lesser extent, in the effective
number of relativistic species or effective number of neutrino species Neg, a parameter con-
trolling the energy density of neutrinos while in the relativistic regime (or of any extra
relativistic species for that matter). For this reason, I will now discuss the effect of Nog on
the CMB power spectrum, albeit more briefly than I did previously for M,,. Despite being
unphysical, let me for purely instructive purposes consider a baseline model Nog = 0. The
power spectrum of such model is given by the black curve in Fig. 4.11.

The considerations made earlier for M, hold here as well: when varying Neg it is impor-
tant to try and isolate effects due to shifts in background quantities from “direct” perturba-
tion effects due to Neg. When Neg increases, naively z.q decreases according to Eq. (4.32),
leading to an enhanced EISW effect and hence an increase in the height of the first peak.
In addition, the early time expansion rate is increased, leading to a decrease in the sound
horizon and hence in 6, shifting all peaks to larger multipoles. The same increase in the
early expansion rate also changes the damping scale. All these effects are clearly seen in the
dashed blue curve in the upper panel of Fig. 4.11, plotted for Neg = 3.046 and keeping w,
and h fixed to the same values I used for the Neg = 0 case.

As discussed in [194], there is a way to increase Neg while keeping zeq, 7s, and x.
(and hence ;) fixed. This involves performing the transformations h — hy/a and w, —
we + (@ = Dwy,, with « defined in Eq. (4.32). In this way, one reabsorbs the changes due
to the shift in 65 and the enhanced EISW effect. The effect on the CMB power spectrum of
increasing Neg while keeping 0, and 2.4 fixed is shown in the solid green, blue, and red curves
in the upper panel of Fig. 4.11. Most of the remaining changes are then due to the change
in the damping scale (which is still a background quantity), and to a lesser extent from
direct perturbation effects. As argued in [981,982], direct perturbation effects are related to
a suppression in the EISW effect, the reason being that neutrinos cannot cluster on small
scales and hence reduce time variations in the gravitational potential on those scales: this
leads to a suppression of ADTT/DIT ~ —0.072ANyg. Moreover, during the BAO epoch,
neutrinos travel at a speed close to the speed of light, whereas temperature fluctuations
travel at the speed of sound (lower by a factor of ~ 4/3): this mismatch in speed leads to

9Technically, this effect depends on the masses of the individual eigenstates, but in practice the effect
of the individual masses is below sub-percent, and hence unobservable even with next-generation CMB
experiments.
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Figure 4.11: Impact of increasing the effective number of neutrinos Neg on the CMB
temperature power spectrum. Upper panel: the black curve is the power spectrum for
the baseline model where Nog = 0. In addition, we set w., = 0.12 and h = 0.7. The
dashed blue curve is obtained for N.g = 3.046, keeping w. and h fixed. The other three
curves are obtained for Neg = 3.046 (solid blue curve), Neg = 2 (solid green curve),
and Neg = 4 (solid red curve), where the increase in Neg is compensated by setting
we = 0.217, h = 0.9105 (solid blue curve), w, = 0.184, h = 0.8441 (solid red curve), and
we = 0.247, h = 0.9670 (solid blue curve). Notice that, as per standard convention in
the field, the quantity plotted on the y axis is T2ypf(¢ + 1)Ce, with Toup ~ 2.725K
the CMB temperature today. Lower panel: relative change in power with respect to
the baseline model, with the same color coding as above. The main changes are due to
shifts in 6, zeq, and rq when keeping w. and h fixed (dashed blue curve), and shifts in
rq as well as direct perturbation effects (reduced EISW effect and phase shift) for the
remaining three cases.

neutrinos dragging out temperature fluctuations from potential wells. In the temperature
power spectrum, this shows up in a phase shift, i.e. a shift in the peaks towards smaller ¢
even when 6, is kept fixed.

As an aside, since the shift in the damping scale is still a background shift, it would
be somewhat desirable to reabsorb it. Unfortunately, within the minimal ACDM+ Ng this
is not possible while also keeping s and ze, fixed (as earlier for the ACDM+M, model it
was not possible to keep z fixed) [194]. To keep r4 fixed, it is necessary to change the
recombination history. One way to do so, pursued in [982,983] is to decrease the primordial
Helium fraction Y),, which therefore rescales the density of free electrons n. appearing in
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Figure 4.12: Impact of increasing the effective number of neutrinos Neg on the CMB
temperature power spectrum while adjusting the Helium fraction Y}, to keep the damp-
ing scale rq fixed. Upper panel: the black curve is the power spectrum for a baseline
model where Neg = 3.046. In addition, we set w. = 0.12, h = 0.7, and Y, = 0.24.
The blue curve is obtained by increasing Ne.g = 4 and compensating this increase by
setting w., = 0.138 and h = 0.7435, in order to keep 05 and zeq, but not rq fixed. The
red curve is obtained by further setting Y}, = 0.19 to keep ry4 fixed. However, this is an
unrealistically low value for Y}, so this exercise is to be considered purely illustrative.
Notice that, as per standard convention in the field, the quantity plotted on the y axis
is Tyl + 1)Cp, with Tomp ~ 2.725 K the CMB temperature today. Lower panel:
relative change in power with respect to the baseline model, with the same color coding
as above. The main changes are due to the shift in r4 when not varying Y}, (blue curve),
and direct perturbation effects (reduced EISW effect and phase shift) when varying Y,
(red curve).

Eq. 4.26. I show the result of following this approach in Fig. 4.12, where I compare a
reference model with Neg = 3.046 to a model with N.g = 4, after reabsorbing the shifts
in 0, and z.q as discussed earlier by shifting w. and h, and reabsorbing the shift in r4 by
decreasing Y},. However, I find that Y, needs to be decreased to unrealistically low values
(in practice, Y, is basically fixed to 0.24 by BBN [984-988]), and hence such an exercise is
to be considered purely illustrative.

In summary, I have argued that in order to understand the direct impact of neutrino
parameters on the CMB spectra it is necessary to reabsorb naively shifts in background
quantities (75, X«, Zeq) as much as possible by tuning other parameters while M, and Neg
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Figure 4.13: Impact of increasing the sum of the neutrino masses M, on the linear
matter power spectrum, keeping wy, and w,. (and hence z.q) fixed, and increasing h to
keep §,,, fixed. Upper panel: the black curve is the power spectrum for the baseline
model where M,, = 0.06eV, w, = 0.02, w. = 0.12, h = 0.7, and hence €2, = 0.287. The
blue (red) [green] curves are obtained for M, = 1.8eV (M, = 0.9¢V) [M, = 0.6eV],
where the increase in M, is compensated for by setting h = 0.7447 (h = 0.7218)
[h = 0.7141]. Lower panel: relative change in power with respect to the baseline model,
with the same color coding as above. The main changes are due to the small-scale
power suppression induced by neutrino free-streaming, which saturates on small scales
at a value AP(k)/P(k) = —8f,, with f, = Q,/Q,,.

are varied. In this way, we found that the direct effect of neutrino masses on the CMB tem-
perature spectrum shows up as a depletion of power at intermediate scales due to a reduced
EISW effect, as well as a reduction of the lensing potential on small scales and a reduced
LISW effect on large scales. The direct effects of varying the effective number of neutrinos
are instead reflected in a reduced EISW effect and a phase shift of the acoustic peaks due to
the neutrino drag effect in the early Universe (as well as a shift in the damping scale which
cannot be removed if not by setting the primordial Helium fraction to unrealistically low
values which are excluded by BBN).

4.3.2 Signatures of neutrinos in the matter power spectrum

To discuss the effect of neutrinos on the matter power spectrum, we will follow an approach
similar to the one we carried out earlier for the CMB. In Chapter 4.2.2, we have already
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Figure 4.14: Impact of increasing the effective number of neutrinos Neg on the linear
matter power spectrum, keeping wp and w,. (and hence z.q) fixed, and increasing h to
keep €, fixed. Upper panel: the black curve is the power spectrum for the baseline
model where M,, = 0.06eV, w, = 0.02, w. = 0.12, h = 0.7, and hence €2,,, = 0.287. The
blue (red) [green] curves are obtained for M, = 1.8eV (M, = 0.9¢eV) [M, = 0.6eV],
where the increase in M, is compensated for by setting h = 0.7447 (h = 0.7218)
[h = 0.7141]. Lower panel: relative change in power with respect to the baseline model,
with the same color coding as above. The main changes are due to the induced changes
in wp/w. and wy, respectively.

identified the scales, as well as parameters/combinations of parameters, most responsible
for shaping the matter power spectrum. We have already seen that z.q is a key quantity,
as it sets the scale at which P(k) turns around, reflecting the different growth experienced
by modes which entered the horizon prior vs after matter-radiation equality. Moreover, the
overall amplitude of P(k) is governed by €,,, whereas w, and wp/w. govern the high-k part
of the spectrum.

Therefore, a meaningful comparison of the matter power spectrum for different values
of M, should be made keeping zeq, Qm, wp, and wp/w. constant. Since zeq is given by
Eq. (4.32), increasing M,, while keeping w;, and w, kept fixed will result in both zeq and wy/we
remaining fixed (and of course, by construction, wy is fixed). As for €,,, since neutrinos are
non-relativistic at late times, Q,,, = Q¢ + Qp + 2, = (we + wp + w, ) /A% Since we are fixing
we and wy, the only way to keep €2, fixed is to increase h as M, is increased.

In Fig. 4.13, we show the impact on P(k) of increasing M, with €2, and z.q fixed, thus
reabsorbing any shifts in background quantities. In this way, the most prominent signature
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of neutrino masses is a step-like suppression in P(k) on small scales (large k). This is
a result of two effects working in the same direction. Firstly, below their free-streaming
scale, neutrinos do not cluster. Secondly, subhorizon perturbations in cold dark matter and
baryons grow slower in the presence of massive neutrinos. In a purely matter-dominated
Universe, a perturbation § grows as 0 « a, with a the scale factor. On the other hand,
in the presence of massive neutrinos, numerical solutions find that § o a!=3f+/5 where
fv = Q,/9Qy, is fraction of the matter energy density stored in neutrinos [194]. These two
effects combine to result in a maximal suppression of 6P(k)/P(k) ~ —8f, in the linear
regime [194] (from numerical simulations it has been found that non-linear effects enhance
this suppression to —10f,) [989-994]. 10

Since the suppression in the matter power spectrum depends on the energy density stored
in neutrinos, one would expect the matter power spectrum to be sensitive not only to M,
but also to the masses of the individual eigenstates. In particular, one would expect there to
be three “kinks” (or two if the lightest neutrino is massless) corresponding to the ky, of each
eigenstate. This expectation is correct, and a number of early works explored the possibility
of measuring the masses of the individual eigenstates using high-precision LSS and CMB
lensing data [995-1001]. However, the imprint of the individual mass eigenstates has been
found to be too small to be probed by current and near-future LSS surveys. Therefore,
we will not pursue this possibility further in this Thesis (although this is something I have
devoted coming-and-going thoughts to, from time to time, during my PhD). For this reason,
the effect of massive neutrinos on cosmological observables is parametrized in terms of M,
(or equivalently muignt), since that is (to zeroth order) the quantity cosmology is sensitive
to.

Let us finally discuss the impact of the effective number of neutrinos Neg on the matter
power spectrum. Again, we should try to perform the comparison between different values
of Neg keeping zeq, Qm, wp, and wp/w, fixed. Keeping the former two fixed is particularly
important as it governs the turnaround point and the overall amplitude of the power spec-
trum. However, it is easy to convince oneself that within the framework of the minimal
ACDM+N.g model, it is impossible to keep both w, and w,/w. fixed, once Nog is varied
fixing zeq and €2,,. I will follow the approach of [194], and first consider the case where zqq,
Q,,, and wp/w, are fixed with wj, varying, and then the case where zeq, O, and wy, are fixed
with wp/w. varying. The latter case is more useful when CMB and LSS data are combined,
since CMB data fix wy, to high precision using the relative height of the odd/even peaks. I
consider a baseline model where N.g = 0, whose power spectrum is given by the black curve
of the upper panel of Fig. 4.14.

I first consider the case where Neg is increased keeping zeq, {2, and wy fixed. It is easy
to show that this can be achieved by performing the transformations w. — w. + (o — 1wy,
and h — hy/a we already saw when discussing the impact of Neg on the CMB (keeping zeq
and 6y fixed) in Chapter 4.3.1. The result is given by the blue curve in the upper panel
of Fig. 4.14. The transformation we have performed has kept w; fixed at the expense of
decreasing wy/w.. As we have seen earlier in Chapter 4.2.2 (see also Fig. 4.6), this results
in more power on small scales (due to less reduction in the growth rate of dark matter
perturbations), as well as damped BAO. The neutrino drag effect we have already seen in
the CMB in Chapter 4.3.1 is present here as well: albeit the effect is tiny, it is more evident

10Notice that, since f, o M,, the result that AP(k)/P(k) o« —f, is rather counterintuitive since it
suggests that the suppression is larger for more massive and hence slower neutrinos, which free-stream less.
This result follows because the amplitude of the suppression is a reflection of the mismatch between the
fraction of matter clustering on large vs small scales. This mismatch is quantified by the energy density of
neutrinos w,, which is in fact proportional to M, .
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in the lower panel.

I then consider the case where Neg is increased keeping zeq, Qm, and wp/w, fixed. This
can be achieved by performing the transformations w. — awe, wy — awy, and h — /ah.
The result is given by the red curve in the upper panel of Fig. 4.14. In this case, we have
kept wp/w. fixed at the expense of increasing wp. The result is that of altering the phase and
amplitude of the BAO, because the sound horizon r; is altered. The neutrino drag effect is
present here as well, and more evident in the lower panel.

In summary, we have seen that the direct effect of neutrino masses on the matter power
spectrum shows up as a suppression in power on small scales, for k 2 ki, reflecting the fact
that neutrinos do not cluster on small scales, and slow down the growth rate of dark matter
perturbations. The effect is proportional to M,,, and more precisely to f, = Q,/Q,. The
direct effects of varying Neg instead depend on whether this parameter is increased keeping
wp or wp/w, fixed. At any rate, it results in a change in the amplitude and phase of the
BAO appearing in the matter power spectrum on intermediate and small scales.

So far I have given an overview of the main features governing the shape of the CMB and
matter power spectra, and how neutrino parameters affect these spectra. The next natural
step would be to actually go after these effects on real data, in order to constrain neutrino
properties. Before doing so, however, a general overview of statistical methods widely used
in cosmology will be necessary: this will be the topic of the next Chapter.



5

A brief interlude: statistical meth-
ods in cosmology

“There are three kinds of lies: lies, damned lies, and statistics”
— (?7) Arthur James Balfour (1982, often attributed to Mark Twain)

The field of observational cosmology is inevitably intertwined with that of statistics,
necessary in order to make sense of the vast amounts of data provided by the Universe. At
this point in our journey, it is therefore useful to review a number of statistical and data
analysis concepts widely used in cosmology, necessary in order to fully understand the re-
maining chapters of the thesis, as well as the included papers. In particular, the machinery
of Bayesian statistics underlies most of the statistical methods adopted in cosmology. For
practical reasons, I will not attempt to provide an in-depth review of these concepts. In-
stead, I redirect the interested reader to a number of excellent cosmology-oriented resources
covering Bayesian statistics and data analysis present in the literature [1002-1011] for a
necessarily incomplete list.

This Chapter is organized as follows. I begin in Chapter. 5.1 by providing a brief overview
of the Bayesian school of thought, contrasting it to the main competing school of thought,
namely the frequentist one, and briefly discussing possible reasons for the widespread use
of Bayesian methods in cosmology. I continue in Chapter 5.2 by covering some of the main
notions of Bayesian statistics including Bayes’ theorem in Chapter 5.2.1, and the concepts of
marginalization, credible regions, and model comparison in Chapter 5.2.2, before discussing
in Chapter 5.3 how these methods are applied in practice when analysing cosmological data.

5.1 Bayesian vs frequentist statistics

It is quite remarkable that a rather simple mathematical result obtained by an obscure
Presbyterian minister nearly 300 years ago and then published posthumously [1012], has
come to become the cornerstone of the statistical methods underlying several disciplines,
ranging from biology, to economy, and of course to cosmology. Bayesian statistics, named
after Reverend Thomas Bayes, is unquestionably on the rise, for a number of very good
reasons.

The Bayesian school of thought is customarily contrasted to the frequentist one. At the
root, the two differ essentially in their interpretation of probability. Within the frequentist
school of thought, the probability of an event is viewed as being the limit of the relative
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frequency of occurrence of the given event in the limit of an infinite number of equiprobable
trials. In contrast, the Bayesian interpretation of probabilities views the latter as measuring
the degree of belief in an event. In other words, from the Bayesian point of view, probabilities
(which can be associated both to repeated or one-off events) quantify our state of knowledge
(or ignorance) in the presence of partial information.

Already from this very brief discussion it is clear that there are very fundamental differ-
ences between the Bayesian and frequentist views of probability. From the frequentist point
of view, model parameters and hypotheses are fixed and immutable: most importantly, they
are not assigned probabilities. In Bayesian statistics, the probability or degree of belief in
an event can (and will) change as new information is gathered, and depends on prior knowl-
edge such as personal beliefs or results of earlier experiments. In fact, one of the guiding
principles of Bayesian statistics is that no inference can be made without first specifying
prior assumptions, forcing one to question one’s assumptions and state of knowledge before
even embarking into a statistical inference problem.

A question often heard is whether one of the two approaches is “better” then the other,
and the statistics community is far from settled on this debate, with heated discussions often
ensuing. I would argue that this question is irrelevant and take the more pragmatic stand
of preferring the school of thought that provides me tools and results best suited to my
objective. In this respect, one could argue that, at least as far as cosmology is concerned,
Bayesian methods do appear to have a slight edge over frequentist ones, for a number of
reasons, among which:

1. We only have one Universe on which we can “experiment”. Barring ergodicity consid-
erations, speaking about long-run results wherein we observe N Universes, necessary to
embrace the frequentist picture does not really make sense in the context of cosmology.
Similarly, “replicating” cosmological experiments is usually tricky, if not impossible.

2. Sociological effects are important as well. The widespread use of Bayesian parameter
inference tools in cosmology, such as CosmoMC [1013] and Montepython [1014] has
certainly contributed to the preference for Bayesian statistics in cosmology.

3. Bayesian statistics provides a natural framework for comparing the performance of
models (see Chapter 5.2.2), which is a question often of interest in cosmology.

Let us now move on to discuss elementary notions of Bayesian statistics, and in particular
the mathematical foundations thereof.

5.2 Elementary notions of Bayesian statistics

5.2.1 Bayes’ theorem

The whole machinery of Bayesian statistics rests upon a simple mathematical result known
as Bayes’ theorem, after Reverend Thomas Bayes, who formulated a specific case of this
theorem in his most famous paper [1012], published posthumously thanks to Richard Price.
Before presenting this theorem, let us first introduce our notation. With A and B being two
propositions (to which we can assign probabilities as per the Bayesian school of thought), we
will use the notation p(A|B) to denote the probability we assign to proposition A conditional
on assuming that proposition B is true. Let us also denote by p(A, B) the joint probability of
A and B. Finally, let us denote by I any relevant background information which is assumed
to be true (for instance, if we are considering a coin toss experiment, I can reflect the fact
that the coin is known to be fair).
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Let us recall the Kolmogorov definition of conditional probability of proposition A given
proposition B [1015]:

p(A, B|I)
p(A|B,I) = ————= 5.1
(B, = L0 (5.1
Obviously, the following trivially holds:
p(A, B|I) = p(B, A|I). (52)
Combining Egs. (5.1,5.2), we then trivially arrive at:
A|B,Ip(B|I
i) - PABD(BID .

p(A[I)

In its simplicity, Eq. (5.3) is known as Bayes’ theorem and lies at the heart of Bayesian
methods. Notice that, as clearly discussed in [1003], Bayes’ theorem is a mathematical
statement, and as such it is not controversial: any controversy on the matter (especially in
relation to Bayesian vs frequentist debates) is solely related to whether it should be used to
perform statistical inference.

I will now change the notation of Eq. (5.3) very slightly to make its interpretation more
obvious. In doing so, I will switch from discrete events to continuous random variables. One
can still convince oneself that Eq. (5.3) will remain unchanged, with the ps now describing
probability distribution functions rather than probabilities themselves. Let us consider a
situation where we have some data/observations d and a model M described by some
parameters 6. Then, I will rewrite Eq. (5.3) performing the substitutions A — d, B — 6,
and I — M:

p(d|0, M)p(6| M)
p(d|I) ’

In the form given by Eq. (5.4), the utility of Bayes’ theorem becomes more obvious. In
cosmology, it is typically the case the one has a model M in mind, from which it is often
relatively easy to compute predictions for what observations d should look like, given a set
of parameters 6. Therefore, it is relatively easy to compute the p(d|@, M) term on the
right-hand side of Eq. (5.4). However, the question one is usually more interested in is:
“given the data I just observed, what do I learn about the model parameters?”. The answer
to this question is given by p(6|d, M), the left-hand side of Eq. (5.4). Bayes’ theorem gives
us a simple route for going from quantities we know how to compute, to quantities we are
interested in. In fact, one can really view Bayes’ theorem as a prescription for how we learn
from experience: we start from some initial belief (irrespective of the data), quantified by
p(6| M), and then update our state of belief after having observed the data, to get p(8|d, M).

Let us introduce some terminology and further clear up our notation a bit. First of
all, as long as we are concerned with parameter inference (as opposed to model comparison
which will be covered later in Chapter 5.2.2, i.e. we have one specific model in mind and
are only interested in inferring the probability distribution of its parameters given the data)
all probability distributions in Eq. (5.4) are implicitly conditioned on the same model M:
hence, for notation simplicity, I will drop the symbol M which will always be implicitly
understood. The left-hand side of Eq. (5.4), p(0|d), is typically referred to as the posterior
distribution of the model parameters after having observed the data. The quantity p(d|@)
is typically referred to as the likelihood function: 1 will denote it by £(d|@). Still on the
numerator of the right-hand side, p(@) is known as the prior distribution for the model

p(0|d,M) = (54)
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parameters, and I will denote it by P(8). Finally, the denominator of the right-hand side is
known as the Bayesian evidence or marginal likelihood (the reason why will become apparent
in a while), and I will denote it by £(d). Using this notation, we can finally express Bayes’
theorem as follows:

likelihood prior

£(d|8) P(0)
0|d) = 5.5
posterior Y

At this point three comments on Bayes’ theorem, Eq. (5.3), are in order. As a first
comment, note the inevitable dependence of the result of any Bayesian inference process on
the prior choice [P(@)]. This has historically been considered one of the main problems in
Bayesian statistics, for two reasons. Firstly, to begin with this might be seen as undermining
objectivity. Secondly, there is no indication as to how the prior should be selected besides
the fact that it should reflect one’s degree of belief and state of knowledge. I will not
dive into discussions as to whether the dependence on the prior is actually a problem or
a strength: the interested reader is invited to consult many excellent references present in
the literature, and in particular Sec. 2.3 of [1003]. Instead, I want to point out that there
are many instances wherein including reasonable prior choices is not only desirable, but
also necessary. 1 Moreover, as long as the likelihood is large only within the support of the
prior (the support being the subset of the prior domain wherein the prior is non-zero), the
posterior distribution will mostly depend on the likelihood rather than the prior. In other
words, the data is informative and the process of parameter inference is driven by the data
rather than the prior. If the data is not informative or weakly informative, the prior plays an
important role and at that point it is responsibility of whoever is performing the statistical
analysis to ensure that this dependence is adequately discussed and taken into account. 2

A second comment is that the posterior distribution wviewed as a function of model pa-
rameters @ is a probability distribution, hence it should be normalized. Demanding that the
posterior be normalized in turn gives us an expression for the Bayesian evidence:

/dep(0|d) _ ﬁ/d@.f;(dw)p(e) — 1 — £(d) :/dGE(d\G)P(O). (5.6)

A third comment relates to the fact that the evidence is independent of the model param-
eters. In fact, as we have just seen in Eq. (5.6), it simply acts as an overall normalization
constant for the posterior distribution. However, as long as one is concerned with parameter
inference as opposed to model comparison, one cares about the ratio between the values of
the posterior distribution at different values of the model parameters. For this purpose, all
one really needs to know is that the posterior is normalizable, but the actual normalization
[as provided in Eq. (5.6)] is in itself irrelevant. Therefore, for the purposes of parameter

1For instance, a central topic in this thesis is that of inferring the sum of the neutrino masses M, from
cosmological data. As M, is a mass, it is necessarily a positive quantity: hence, to avoid the parameter
inference process producing unphysical results, one should include the information M, > 0eV in the prior
choice.

2As we shall see, this is currently the situation with cosmological determinations of neutrino masses:
cosmological data is currently unable to detect a non-zero M,, but only provides upper limits on the latter.
Therefore, these upper limits are inevitably driven by prior choices, and in particular the choice of prior
for M,. This topic will be discussed later in the thesis, as well as in the included papers, and has been
the subject of much debate in the recent literature (see for instance the discussions in [10,1016-1023]; see
also [1024], as well as the response paper [1025]).
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inference, it is actually sufficient to write Bayes’ theorem in the following form:
p(0]d) x L(d|0)P(6). (5.7)

We will return later to the subtleties of Bayesian model comparison and the complications
they bring.

5.2.2 Marginalization, credible regions, and model comparison

I will now briefly discuss a number of other important concepts in Bayesian statistics. The
first is that of marginalization. In general, we will not be interested in the whole parameter
vector @. In fact, some of the parameters will be of limited physical interest, and are
used to model instrumental calibration, systematics, and so on. Parameters we are not
interested in are referred to as nuisance parameters. Since we are not interested in them, an
useful operation we can perform is to report the probability distribution for the parameters
of interest after having integrated out the uncertainty on the nuisance parameters: this
operation is known as marginalization.

Consider the simple case where we are interested in the parameter 6, whereas 0, ..., 0,
are our nuisance parameters. Then, we are interested in obtaining the marginal posterior
distribution for 6y, p(1), rather than the joint posterior distribution on all parameters
p(6]d):

p(01) = / d05...d0,, p(6]d) . (5.8)

The generalization of Eq. (5.8) to the case where we are interested in more than one pa-
rameter is trivial. It is customary practice in Bayesian statistics to first compute the joint
posterior (including both the parameters of interest and the nuisance parameters), and then
to plot one- or two-dimensional marginal posteriors for selected parameters/subsets of pa-
rameters, with all the other parameters marginalized over. For instance, in this thesis we
will often be interested in the 1D marginal posterior distribution for M,,, where all the other
parameters (including the 6 ACDM parameters) are treated as nuisance parameters and
marginalized over. Alternatively, when exploring degeneracies/correlations between M, and
any other parameter, we will be considering 2D marginal posteriors for M, and this other
parameter.

Another important concept is that of credible regions. A 100x f% credible region encloses
a fraction f of the posterior probability. In other words, denoting a f% credible region by
F, and considering a normalized posterior distribution (i.e. such that [d@p(6|d) = 1), we
have that:

/dOp(G\d) — . (5.9)
JrF

It is common practice to consider various nested credible regions, usually corresponding to
values f ~ 0.683, f =~ 0.954, and f ~ 0.997, and colloquially referred to as 1o, 20, and 3o
confidence regions. In the case of a single parameter, confidence regions are usually referred
to as confidence intervals.

3Note that there is a subtle difference between Bayesian and frequentist confidence intervals. Considering
for definiteness a 95% confidence interval, in the Bayesian case a parameter falls within this interval with
95% probability. In other words, the interval is fixed and the parameter is the random variable. In the
frequentist case, the situation is in some sense reversed: the parameter is fixed, whereas it is rather the
interval which is the random variable. In particular, for a large number of repeated samples, 95% of the
intervals calculated adopting this prescription include the fixed (unknown) value of the parameter.
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Note that there is generally ambiguity in the choice of a 100 x f% confidence region,
as usually several regions can be constructed satisfying Eq. (5.9), but still being different
between each other. The common choice is then to consider highest posterior density regions,
F*, such that p(6|d) > p for all points in parameter space belonging to F*, with p(6|d) = p
defining the boundary of the credible region. For well-behaved unimodal distributions, F*
is usually uniquely defined for any given p.

When talking about confidence intervals, we refer to 1D 2-tail symmetric 100 x f%
confidence intervals as intervals enclosing a fraction f of the probability, with the remaining
(1 — f)/2 of the probability being enclosed on either side outside the confidence interval.
Sometimes, it is instead more convenient to talk about a 100 x f% upper/lower limit (very
often referred to, with a slight abuse of language, as 100 x f% confidence level [C.L.] upper
limits), indicating the value below/above which a fraction f of the probability is enclosed.
In this thesis, we will almost always report 95% upper limits on M,,. The reason is that the
1D marginal posteriors on M, will always be highly asymmetric and peaked at M, = 0eV,
which also happens to be the lower boundary of the prior we impose on M,,. In other words,
cosmological measurements are currently only consistent with an upper limit on M, and not
a detection of non-zero M, .

The final important concept I want to briefly discuss is that of model comparison. So
far, we have worked within the assumption of a given model M, described by a parameter
vector 6. Doing so, we were only interested in the posterior distribution of 8, p(6|d, M),
and more specifically in the ratio between the values of the posterior distribution at different
values of the model parameters. This has allowed us to neglect the overall normalization
given by the evidence £(d) in Eq. (5.5) [see Eq. (5.7)].

However, in Bayesian statistics it is possible to work at a “higher” level and compare
models themselves. In fact, one can conceive a situation where there are several competing
models, and it is desirable to evaluate their relative probabilities. The “best” model will
be the one that reaches an ideal balance between quality of fit and predictivity. In other
words, it is often the case that a more complex model with more parameters will fit the data
better. However, added layers of complexity should be avoided whenever a simpler model is
able to provide an adequate description of the observations, in the spirit of Occam’s razor.
Bayesian model comparison provides a quantification of Occam’s razor, evaluating whether
an extra layer of complexity provided by a model is warranted by the data or is unnecessary.
Note that Bayesian model comparison is a comparison process: that is, it only makes sense
insofar as there is more than one competing model.

Often, it is the case that one wishes to compare two competing models in light of data d.
Let us refer to the two models as My (described by parameter vector 8g) and M (described
by parameter vector €;). Then, we can apply Eq. (5.7) with M in place of 0, as follows:

p(Mild) ox P(M;)L(d|M;), i=0,1, (5.10)

where this time £(d|M;) is none other than the evidence £(d) we have already seen in
Eq. (5.6), where recall we had dropped the |M bit for simplicity since we were only con-
sidering one model. Similarly, p(M) is the prior probability assigned to the model itself. If
no prior information is present and one has N models to compare, the typical conservative
choice is to set p(M;) = 1/N fori =1,..., N. Then, the quantity of interest when comparing
two models is the odds ratio, given by:
p(Mold) _ L(d|Mo) P(Mo) (5.11)
p(Mald)  L(d|M;y) P(My) ’
As said previously, it is often the case that all competing models are assigned equal prior
probabilities, so the second fraction on the right-hand side of Eq. (5.11) simplifies to 1.
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Then, one is left with the first fraction on the right-hand side of Eq. (5.11), which is usually
referred to as Bayes factor:
L(d|Mo) _ E(d|My)

Bor = Faia) = edimy) (512

The Bayes factor By, quantifies the increase/decrease (for By; > 1 and By < 1 respectively)
of the support in favour of model My versus model M after observing the data. It is
given by the evidence ratio of model Mg to model M, with the evidences computed from
Eq. (5.6).

Traditionally, computing the Bayesian evidence in Eq. (5.6) has always been a challenging
task, due to the multi-dimensional integral over the whole parameter space. This has been
one of the factors hampering a more widespread use of Bayesian model comparison (whereas
efficient methods for performing parameter estimation have existed for quite some time, see
Chapter 5.3). Recently, a number of efficient methods for performing the integral in Eq. (5.6)
have been devised, including nested sampling [1026], applied in a cosmological context in
e.g. [1027-1031], aided by the development of the MultiNest software [1032]. In general, if
one is interested in performing a Bayesian model comparison analysis, it is always a good
idea to try and simplify the evidence computation as much as possible. In this thesis, I will
consider an explicit case in Paper I, where we were interested in computing the posterior
odds for normal versus inverted mass ordering.

It is customary to interpret the values one obtains for Bayes factors on empirically
calibrated scales qualifying the strength of the evidence for one model with respect to the
other. One widely used scale is the Jeffreys scale [15], presented in Tab. 5.1. Related
alternative scales are also used in the literature, for instance the Kass-Raftery scale [1033].

’ Bo1 ‘ Strength of evidence for model Mg ‘
< 10° Negative (data supports model M)
10° to 10'/2 Barely worth mentioning
10%/2 to 101 Substantial
10" to 10%/2 Strong
10372 to 102 Very strong
> 102 Decisive

Table 5.1: Jeffreys scale for comparing the strength of the evidence for model M,
against model M7, when the Bayes factor By; is known [15].

5.3 Bayesian statistics in practice: MCMC methods

At the lowest level, the way we want to apply Bayesian statistics in cosmology is to per-
form parameter estimation. We have some data d and have a model M in mind, specified
by parameters 8. Given the data, we want to determine the posterior distributions of the
parameters. In particular, theoretical predictions for the observations enter within the like-
lihood. In practice, in cosmology, each evaluation of the likelihood typically involves a call
to Boltzmann solvers (e.g. CAMB [8] or CLASS [873]). Evaluating the posterior is, in principle,
easily done using Eq. (5.7) to evaluate the joint posterior for the parameters. In practice, in
cosmology we are usually dealing with O(10) parameters (the minimal ACDM model alone
has 6 parameters, and each experiment carries a number of nuisance parameters to account
for calibration, systematics, etc.). A naive grid exploration of the parameter space, which
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was the approach initially followed in the 1990s, clearly becomes untenable as soon as one
is dealing with more than ~ 5 parameters. In any case, such an approach would be a waste
since typically the posterior is extremely low in most of the parameter space hypervolume.
Clearly, a smarter way of sampling the posterior distribution, concentrating on regions where
such a distribution is highest, is needed.

Fortunately, there a number of numerical methods which come to our rescue. Nowadays,
the most widely used methods is the Monte Carlo Markov Chain (MCMC) method (see
e.g. [1034] for a pedagogical introduction to MCMC methods). The aim of MCMC methods
is to generate a “chain”, wherein each node of the chain consists of a point in parameter
space. The distribution of points in asymptotically proportional to the target density one
wishes to sample, in this case the posterior distribution. This then makes it possible to
estimate any quantity of interest from the distribution (e.g. mean, variance, and so on). An
MCMC algorithm makes random draws in a Markovian way, meaning that at each step the
next sample depends only on the current sample, but not on the previous ones.

The basic procedure works as follows. Say at the current step the chain has landed in the
point 8. Then, a new point 6* is proposed from a proposal distribution ¢(6*|@). One of the
most popular MCMC algorithms is based on the Metropolis-Hastings algorithm [1035,1036],
which envisages accepting 8* with an acceptance probability of:

. p(6*) ¢(6*16)
«a = min (1, 2(0) W) , (5.13)

where p(6) [p(6*)] denotes the posterior probability (and more generically the target den-
sity) evaluated at @ [0*]. Usually the proposal distribution is chosen to be symmetric, i.e.
q(0*10) = ¢(6]6*). In this case, we refer to the algorithm simply as Metropolis instead of
Metropolis-Hastings, and Eq. (5.13) simplifies to:

a = min <1, 7;5(9;))) : (5.14)

In practice, this acceptance/rejection step can be performed by drawing a random number
y between 0 and 1, and accepting the the point if y < « (and rejecting it otherwise).
Implementing the Metropolis algorithm in practice is very simple, and can be done in a
couple of lines in Python. There are a number of important issues (going under the name
of burn-in, convergence, thinning) which I will not cover here, related to the necessity o
fmaking sure the MCMC algorithm has explored the posterior distribution in an acceptable
way (see [1002-1011] for a complete coverage of these issues within the context of cosmology).
Assuming these issues have been dealt with, an MCMC run returns us a (or more than one)
chain containing N elements 0, n = 1,...,N. At this point, estimating Monte Carlo
estimates for any function of the parameters becomes trivial. Considering a simple one-
dimensional case where we have a parameter 6, we can estimate the expectation value of 6,

4The choice of proposal distribution is, in practice, a crucial one. We will not discuss it further here, but
just note some general results suggesting that the optimal proposal distribution should lead to an acceptance
rate of about &~ 25%. Rather than the exact shape of the distribution, what’s important is its “scale” (which
can be the variance of the distribution if it is a Gaussian, or its half-width if it is a top-hat function). The
optimal scale for the proposal distribution has been found to be 244/\/3 [1037], where d is the dimensionality
of the parameter space. If the scale is too small, the MCMC algorithm can be stuck locally and not explore
the parameter space efficiently. If the scale is too large, the chain acceptance rate might be very low and the
chain not jump very frequently, again resulting in an inefficient exploration of the parameter space. Usually,
a Gaussian proposal distribution is chosen, with covariance matrix estimated from an earlier MCMC run or
from an exploratory MCMC run.
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(0), as:

1L
0~ > 6. (5.15)
i=1

Similarly, we can estimate the expectation value of any function of 6, as:

N

HOEES WIS (5.16)

i=1

Marginalization is also a simple business. Imagine we want the marginal distribution of
parameter 01, and want to ignore parameters 0o, ...,0,,. Then it is sufficient to construct
a histogram of the 6; values for each point in the chain, ignoring the values of the other
parameters. Higher-dimensional marginal posteriors are obtained analogously.

MCMC methods are widespread in cosmology, and several efficient MCMC samplers
exist on the code market. Two names emerge above all the others: CosmoMC [1013] is written
in Fortran and interfaced with the Boltzmann solver CAMB [8], whereas Montepython [873] is
written (you guessed it...) in Python and interfaced with the Boltzmann solver CLASS [509)].
In this thesis, I have performed parameter estimation and forecasts using both CosmoMC (in
Paper I, Paper II, Paper IV, and Paper V) and Montepython (in Paper III).






6

Results and discussion of included
papers

“In God we trust. All others must bring data.”

- (?7) William Edwards Deming (19787)

Armed with the necessary machinery in cosmology and statistics briefly described in the
previous Chapters, we are now ready to discuss the results obtained in the included papers.
This Chapter will inevitably be quite succinct in nature, and I invited the interest reader
to read the papers for more details. From a broad picture perspective, the included papers
follow a rather coherent storyline, which broadly proceeds as follows:

Q1: “What does current (as of 2017) cosmological data tell us about the neutrino mass
scale? How can we use this information to make statements about the neutrino mass
ordering in a statistically robust way?”

A1: Current cosmological data places rather tight constraints on the neutrino mass
scale, with the most robust bound being M,, < 0.12 €V at 95% confidence level. The use
of galaxy clustering data seems especially promising. We can start to say something
interesting about the mass ordering, with the normal ordering being weakly favoured
due to parameter space volume effects. I can certainly tell you more in Paper I and
Chapter 6.1.

Q2: “How can we improve from here especially in our use of galaxy clustering data?”

A2: A better understanding of galaxy bias is crucial. It would be great to also nail
down its scale-dependence better. People have been talking about doing this using
CMB lensing-galaxy cross-correlations for a long time, but for the first time we got
around to doing it using real data. Let me tell you more in Paper II and Chapter 6.2.

Q3: “I heard that when putting massive neutrinos into the picture, the galaxy bias
becomes scale-dependent even on large scales. Is this true and should people worry
about t?”

A3: Yes, this is true. And yes, people should worry about it (although they haven’t so

far), else future determinations of cosmological parameters from galaxy clustering data
will be biased (no pun intended). You can read more in Paper III and Chapter 6.3.

73
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e Q4: “So far we’ve looked at the simplest ACDM+M, model. But I would imagine
your tight limits on M, degrade if you relax your assumptions, due to parameter de-
generacies. Is it always true that neutrino mass upper limits degrade when opening up
your parameter space? And if not, can this be used to learn something interesting?”

e A4: Interesting question! In fact, it isn’t always true, and we found an important
exception: a non-phantom dark energy component, i.e. with time-dependent equation
of state w(z) > —1 throughout the expansion history, as for instance quintessence.
And yes, this information can be used to potentially rule out dark energy models from
laboratory measurements of the neutrino mass ordering. If you find this confusing or
unexpected (and you should), I'll tell you more in Paper IV and Chapter 6.4.

o Q5: “Still along the lines of parameter degeneracies, certainly the reverse argument is
also a problem, i.e. our ignorance of neutrino properties can bias our determination of
other parameters? For instance, is our knowledge about inflation (and hence in some
sense the initial conditions of the Universe) affected by our ignorance of meutrino
properties?”

e A5: Good point! Luckily, for the specific case of inflation, it turns out that what we
learn isn’t really affected by our ignorance of neutrino properties (mass, mass ordering,
effective number). If you still aren’t convinced, take a look at Paper V and Chapter 6.5.

The rest of this Chapter is organized as summarized in the Q-A thread above, with
Secs. 6.1, 6.2, 6.3, 6.4, 6.5 briefly summarizing the results of Papers I, II, ITI, IV, V respec-
tively.

6.1 Early 2017 limits on neutrino masses and mass ordering

In early 2017, we set ourselves to analyse a selection of the most recent cosmological datasets.
Just a few months back, the BOSS collaboration [879] had released cosmological products
from their final data release, DR12, containing over a million galaxies [1038,1039]. This was
the largest spectroscopic sample of galaxies to date and one could certainly expect great
cosmological constraints from it. Our goals were twofold: to understand how far down
current cosmological data could push the upper limits on M,, and to address what was
starting to become a hot question at the time, namely whether, and in case how, we could
use these limits to make statements about the neutrino mass ordering in a statistically robust
way. Our results were discussed in Paper I [10], which at the time of writing (early 2019)
still reports the tightest upper limits on M,. An incomplete list of recent related works
examining cosmological constraints on neutrino masses, both in light of current and future
data, can be found in [4,5,27-32,34,35,166,829,1040-1067]. I will briefly discuss the content
of Paper I: there, we analysed several datasets and even more (28) dataset combinations.
It is not my goal here to discuss all these dataset combinations, but only to focus on the
essential findings, while the full details can be found in Paper I.

Given their importance in motivating our study, let me first briefly describe the BOSS
DR12 product we used. We considered measurements of the spherically averaged power spec-
trum of galaxies from the BOSS DR12 CMASS sample [1068], containing 777,202 massive
galaxies in the redshift range 0.43 < z < 0.7. Later we will refer to this particular dataset
as P(k). The low-level modelling of the power spectrum is described in Paper I, and notably
involves convolving the theoretical power spectrum with a window function accounting for
mode mixing due to the finite size of the survey. Here, I will briefly discuss our treatment of
galaxy bias. Denoting by P9 the theoretical galaxy power spectrum (theoretical because it
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is what we then compare against observations, after convolution with the window function
as discussed previously), we modelled this quantity as:

P4 (k,z) = b* Pl (k, ) + PPt (6.1)

In Eq. (6.1), Pgr, is the matter power spectrum computed using the Boltzmann solver
CAMB [8] and corrected for non-linear effects using the Halofit method [1069,1070], and
in particular the version of Bird, Viel, & Haehnelt calibrated to simulations of massive
neutrinos [992]. P8t is a constant shot-noise contribution included to reflect the fact that
galaxies are discrete tracers of the underlying cosmic web. Finally, b is a bias factor which
we take to be constant (scale-independent). This is motivated by the fact that we limited
our analysis to scales 0.03 hMpc™t < k < 0.2hMpc ™!, i.e. scales which are at most mildly
non-linear at the redshift in question. As we have seen in Chapter 4.2.2, on linear scales
the galaxy bias is expected to be constant. . The measured BOSS DR12 CMASS power
spectrum is shown in Fig. 6.1, where it is compared against the theoretical nonlinear power
spectrum computed using CAMB+Halofit, as well as using the Coyote emulator [891-893]
calibrated onto several large N-body simulations (the figure also compares the measurements
with those from the BOSS DR9 CMASS sample [1072], included for comparison with our
earlier work [1047]),

We analyse cosmological data using the cosmological MCMC sampler CosmoMC [1013].
Data-wise, we first considered measurements of the CMB temperature anisotropies, as well
as large-scale polarization anisotropies, from the Planck 2015 data release [7]: we de-
note this dataset combination as base (for reference, this dataset is typically referred to
as “PlanckTT+lowP” in the literature). Using this dataset, we recover the well-known
95% C.L. upper limit M, < 0.72eV. 2 This limit is driven both by the effect of massive
neutrinos on the first peak through the early ISW effect (see Chapter 4.3.1), as well as on
the higher-multipole peaks through modifications to the lensing potential. When adding
the P(k) dataset to our base dataset combination, the upper limit on M, considerably im-
proves to M,, < 0.30eV. This improvement is driven by the suppression effect of massive
neutrinos on the power spectrum, as well as the degeneracy-breaking ability of power spec-
trum measurements. We then add BAO distance measurements from the 6dFGS [883],
WiggleZ [1073], and BOSS DR11 LOWZ surveys [1074], referring to these datasets BAO.
When combining the BAO dataset with our base and P(k) datasets, we denote this combi-
nation by basePK and find that the upper limit on M, improves to M, < 0.25eV. BAO
distance measurements help in pinning down the late-time expansion rate, and in particular
H,, alleviating the M,-H, degeneracy and hence aiding a tighter determination of M, (see
Chapter 4.3.2). Finally, we included a Gaussian prior on the optical depth to reionization,
7 = 0.055 £ 0.009, which we denoted by 70p055: this prior is intended to mimic, to the
best of our knowledge, the new large-scale polarization measurements to be delivered by the
Planck collaboration in 2019. 3 We found that including the 70p055 dataset improved our

INotice, however, that this approximation breaks down in the presence of massive neutrinos (see for
instance [1071]), although this subtle effect turns out not to be important currently, given the limited
sensitivity of current data. A further investigation of large-scale galaxy bias in the presence of massive
neutrinos will be the topic of Paper III. Moreover, the role of scale-dependent galaxy bias on mildly non-
linear scales will be studied in Paper II.

2Henceforth all our upper limits are 95% C.L. upper limits unless otherwise stated.

3The value of 7 we included was obtained from the Planck collaboration after identifying, modelling,
and removing previously unidentified systematics in large-scale polarization data from the High Frequency
Instrument (HFI), resulting in an improved determination of the optical depth to reionization, and a shift of
the latter towards lower values [1075,1076]. While the full HFI low-£ likelihood was not available at the time,
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Figure 6.1: Top panel: nonlinear galaxy power spectrum computed using
CAMB+Halofit (red curve), compared with the same quantity computed using the Coy-
ote emulator. Both quantities are plotted assuming the Planck 2015 best-fit parameters
and M, = 0eV and a bias b =~ 2. The green triangles denote the galaxy power spec-
trum measured from the BOSS DR12 CMASS sample, whereas the purple circles denote
the galaxy power spectrum measured from the BOSS DR9 CMASS sample. Bottom
panel: the blue line denotes the fractional difference between the power spectrum com-
puted using the Coyote emulator vs using CAMB+Halofit. The orange line denotes
the wavenumber range we use in [10], which is safe both against systematics on large
scales and nonlinear corrections on small scales. Reproduced from [10] (Paper I) with
permission from APS.

upper limit to M, < 0.20€V, because of the mutual degeneracies between M,,, Ag, and 7
(discussed in more detail in Paper I).

We then considered the impact of including small-scale CMB polarization data. As dis-
cussed in detail in Paper I, due to the presence of tiny residual systematics in this dataset,
the resulting limits should be interpreted with more caution. We denoted by basepol the
dataset resulting from combining small-scale polarization with our base dataset (for ref-
erence, this dataset combination is typically referred to as “PlanckTTTEEE+lowP” in the
literature). We find that the upper limit on M, improves from the 0.72 eV found for the base
dataset to M,, < 0.49eV. The fact that small-scale CMB polarization measurements can
considerably improve cosmological parameter estimation, including the determination of the
neutrino mass, is well known and was recently emphasized in [874]. * We now gradually add

an important part of the cosmological information contained in large-scale polarization measurements resides
in the value of the optical depth to reionization, which determines the shape and location of the reionization
bump in the polarization power spectra (see Chapter 4.2.1): for this reason, we made the conservative choice
of not including large-scale polarization data in order to avoid double-counting information, while retaining
large-scale temperature data.

4There are several reasons why this is the case, even though the signal-to-noise ratio is lower in polarization
than it is in temperature. As shown in [874], the change of the spectra under a variation of cosmological
parameters compared to the noise is larger in polarization than it is in temperature. This is particularly true
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additional LSS datasets to the basepol dataset combination, in order to improve the deter-
mination of M,. When we add the P(k) dataset the limit improves to M,, < 0.27 eV, while
further adding the BAO dataset (resulting combination referred to as basepolPK, in analogy
to the previous basePK dataset) our limit improves to M, < 0.21€V. Finally, including
the 70p055 prior on the optical depth to reionization, our limit improves to M,, < 0.18 eV.
In Paper I we tested the inclusion of other datasets (for instance, direct measurements of the
Hubble parameter [459,463], or SZ cluster counts [1079,1080]): these lead to even tighter
limits (up to M, < 0.11€V), at the price of being less robust. For this reason I will not
discuss the corresponding results here, but invited the interested reader to read Paper I for
more details.

The careful reader will have noticed that, whenever we included P(k) measurements from
the BOSS DR12 CMASS sample, we did not include BAO distance measurements from the
BOSS DR11 CMASS sample (despite these being readily available and widely used). The
reason is that there is a substantial overlap in volume between the two samples, so using both
measurements would lead to double-counting of data. This naturally raises the question:
which of these two datasets would be more constraining? A naive guess would be that a
P(k) measurement is more constraining than a BAO distance measurement: if anything, P(k)
technically already contain the BAO information (see Chapter 4.2.2), so loosely speaking
the BAO measurement extracted from a given survey should be a “subset” of the power
spectrum measurement extracted from the same survey. Our guess was that replacing the
P(k) dataset with the BAO distance measurement from the BOSS DR11 CMASS sample at
z = 0.57 should have resulted in looser constraints on M,,.

Of course, in Paper I we checked our guess. We first removed the P(k) dataset, while aug-
menting the BAO dataset with the BAO distance measurement from BOSS DR11 CMASS:
the resulting combination of four BAO measurements was referred to as BAOFULL. We
denoted the combination of the base and BAOFULL datasets as baseBAQ. For this dataset
combination, we found M, < 0.19€V (compare with M, < 0.25€V found for the basePK
dataset). Surprisingly, replacing power spectrum measurements with BAO distance mea-
surements resulted in a tighter limit on M,! This trend was confirmed for other dataset
combinations we tested. When adding the 70p055 prior to the baseBAO dataset combina-
tion, we found M, < 0.15€V (compare with M, < 0.20eV found for the basePK+70p055
dataset). Analogous results were obtained when using small-scale polarization data. Com-
bining the basepol and BAOFULL datasets (combination denoted by basepolBAQO), we found
M, < 0.15€V (compare with M,, < 0.21eV found for the basePK dataset); finally, adding
the 70p055 prior to the basepolBAO combination, we found M, < 0.12€eV (compare with
M, < 0.18¢V found for the basePK dataset). For the reader’s convenience, the content
of the datasets/dataset combinations adopted is briefly summarized in Tab. 6.1, while the
limits from the 12 dataset combinations we discussed are summarized in Tab. 6.2.

The results of Paper I, surprisingly, indicated that BAO distance measurements appear to
be more constraining than P(k) measurements, despite the latter carrying more information
than the former. Note that our results are confirmed by related earlier findings of [1081,1082].
The only sensible explanation must be that, somehow, we are not analysing P(k) data in a
wise way, and this is preventing us from fully retrieving the information therein contained.
One limitation in the modelling of P(k) data is the need to introduce several nuisance

for the TE cross-correlation spectrum. In other words, the response of the polarization spectra to changes
in cosmological parameters is substantially greater than that of the temperature spectrum. Besides this,
the acoustic peaks are also sharper in polarization than in temperature, and the small-scale polarization
spectrum is less sensitive to astrophysical foregrounds than the temperature spectrum at the same scales,
which is affected by contamination from unresolved radio and infrared galaxies [1077,1078].
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| Dataset [ Content
base Planck CMB temperature and large-scale polarization
basepol base+small-scale polarization
P(k) BOSS DR12 CMASS spherically averaged power spectrum
BAO BAO from 6dFGS BAO, WiggleZ, BOSS DR11 LOWZ
BAOFULL | BAO from 6dFGS, WiggleZ, BOSS DR11 LOWZ & CMASS
basePK base+P(k)+BAO
basepolPK basepol+P(k)+BAO
baseBAO base+BAOFULL
basepolBAO basepol+BAOFULL

Table 6.1: Content of datasets and/or dataset combinations used in Paper 1.

‘ Dataset | Upper limit on M, (95% C.L.) |
base 0.72eV
base+P(k) 0.30eV
basePK 0.25eV
basePK+10p055 0.20eV
basepol 0.49eV
basepol+P(k) 0.27eV
basepol PK 0.21eV
basepolPK +10p055 0.18eV
baseBAO 0.19eV
baseBAO+10p055 0.15eV
basepolBAO 0.15eV
basepolBAO+70p055 0.12eV

Table 6.2: 95% C.L. upper bounds on the sum of the three active neutrino masses
M, (in eV). The left column shows the combination of cosmological datasets adopted
(see Tab. 6.1 for further details on these datasets), while the right column shows the
95% C.L. upper limits obtained for the specific combinations.

parameters. In our case, we introduced two extra parameters (a constant bias and a shot-
noise term): marginalizing over these extra parameters, especially on the bias, loosens the
constraints on M,,. Clearly, a better handle on the bias (and eventually its scale-dependence)
is highly desirable. A long-standing idea in this direction has been to use cross-correlations
between CMB lensing and galaxies [1083-1092]: for the first time, we realized this idea
on real data, but the reader will have to wait until Chapter 6.2 (and Paper II) to read
more. Recall also that we set a hard cutoff at k = 0.2 hMpc™" to avoid delving into the
non-linear regime. While the BAO feature in the 2-point correlation function appears on
rather linear scales, the extraction of distance measurements benefits from what is known
as the reconstruction procedure [1093-1095], which sharpens the BAO peak but introduces
some amount of non-linear information (which we are instead conservatively choosing not
to use when analysing P(k) data). Our conclusion in Paper I was that, albeit prima facie
BAO information counterintuitively leads to tighter limits than P(k) measurements, this
results reflects not so much a limitation of P(k) data, but rather a limitation of the way
we analyse P(k) data, and that improvements in that direction are certainly warranted (see
e.g. Paper II). A visual representation of the BAO vs P(k) comparison is shown in Fig. 6.2
(notice that the figure also contains results obtained using a prior on Hy based on the locally
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Figure 6.2: Posteriors on M, (normalized to their maximum values) obtained using
different dataset combinations. The figure should be read as follows: to make the
BAO vs P(k) comparison, choose a given color and compare the solid curve [P(k)|
against the dashed curve [BAO]. It is clear that BAO (dashed curves) leads to tighter
constraints. Notice that the black curves are obtained including a prior on Hj based on
the locally measured value, not discussed in this Chapter (see Paper I for more details).
Reproduced from [10] (Paper I) with permission from APS.

measured value by Riess et al. [463], not discussed in this Chapter but extensively discussed
in Paper I, see Sec. ITID of Paper I for more details).

Let me now cover the final major point discussed in Paper I, namely how to robustly
quantify the preference for one of the two mass orderings: normal ordering (NO) and inverted
ordering (I0). ® Intuitively, since the I0 requires M, > 0.1 eV, the reader might expect that
the closer our upper limits get to 0.1 eV, the more the I0 is under pressure. This expectation
is certainly correct. However, the naive guess that a 95% C.L. upper limit of M, < 0.1eV
would exclude the I0 at 95% C.L. would be incorrect. In reality, as pointed out in the
important earlier paper [1016], the problem one has to solve here is a Bayesian model
comparison problem (see Chapter 5.2.2) between two competing models: NO and I0. Or, in
other words, to determine whether the I0 hypothesis can be rejected in favour of the NO
hypothesis at some confidence. The goal is then to compute the Bayesian evidence for NO
and I0, and hence the Bayes factor of NO vs I0. As we discussed in Chapter 5.2.2, computing
Bayesian evidences and Bayes factors is usually computationally expensive. However, in this
case the situation is rather simplified: we have two very similar competing models sharing

5The following discussion will deviate slightly from that in Sec. IIB of Paper 1. Both qualitatively and
quantitatively, the results are basically unchanged. The approach I will choose here allows one of the main
conclusions of this part of Paper I, the fact that cosmology will always prefer the NO due to volume effects,
to be more easily grasped and understood. Over the 2 years between writing Paper I and writing this thesis,
by giving a number of talks on the subject I have realized that the chosen approach is more effective at
conveying the message. In any case, the reader might want to be aware of these changes.



80 Chapter 6. Results and discussion of included papers

the same parameter space. The only difference is that one of the two models has access to
a larger region of parameter space for a specific parameter: the NO can access the region
0.06eV < M, < 0.1eV, whereas the I0 cannot.

Our highly simplified situation makes it easy to write down a simple and illuminating
expression for the Bayes factor of NO vs I0, Byg,1o. Under the valid assumptions that the
prior on M,, is factorizable from the priors on the other cosmological parameters and that
the likelihood does not depend on the chosen mass ordering (i.e. that all difference between
the two mass orderings resides in the different volume of parameter space accessible, a
reasonable assumption given that cosmological data cares about M, and not about the
individual masses), we find that Byg 1o can be written as follows:

foo.zaev P(M,)p(M,|d)
foo.Cmev P(M,)p(M,|d) '

Buo,10 = (6.2)

where P(M,,) denotes the prior on M, (flat in our case), and p(M,|d) denotes the posterior
of M, given data d. The confidence level at which we can exclude the inverted ordering
(or equivalently, the posterior odds for the normal ordering), is given by Byg 10/(1 + Buo,10)-
Generalizing Eq. (6.2) to the case where NO and I0 are not taken to be equally likely a priori
is trivial. Three comments on Eq. (6.2) are useful:

1. The integrand is the same in the numerator and the denominator: the only difference
is the range of integration, which is wider for the numerator.

2. Combining the above with the fact that the integrand is a strictly positive quantity (it
is a product of two probability distributions), it will always be the case that Byg 1o > 1!

3. The inevitable appearance of P(M, ) implies that the result is sensitive, to a greater
or less extent, to how one chooses to weigh one’s prior volume.

Using Eq. (6.2), I computed the Bayes factor for NO vs IO for the 12 different dataset
combinations discussed above and summarized in Tab. 6.2. I found that the Bayes factor
remains rather low for all combinations, and in any case always below the threshold value
of v/10 necessary for claiming a substantial preference for the NO according to the Jeffreys
scale presented in Tab. 5.1: according to the same scale, the preference for the NO remains
always barely worth mentioning. The highest value of the Bayes factor is achieved for the
basepolBAO+10p055 dataset combination, which gives Byg 10 ~ 2.4 (M, < 0.12¢€V), a figure
which excludes the I0 at only 71% C.L.! As mentioned previously, in Paper I we tested other
less robust dataset combinations which led to tighter limits, but in any case the highest value
of Byo,10 we obtained was 3.3 (excluding I0 at 77% C.L.), even though for the same dataset
we found the extremely tight limit M, < 0.093eV (see Paper I for more details).

Our findings in Paper I highlighted the fact that cosmology will always prefer the NO
over the I0 [which is self-evident from Eq. (6.2), since Byg o > 1 will always hold]. This
preference arises entirely due to volume effects, i.e. the fact that the NO has access to a
larger region of parameter space, and not due to physical effects (since besides these volume
considerations, the data is not sensitive to differences between the two orderings). Notice
that a corollary of these findings is that cosmology will only be able to determine the mass
ordering if Nature has chosen the NO and a value of M, substantially lower than 0.1eV. As
a back of the envelope estimate, in the best event a sensitivity oar, ~ 0.02eV would be
needed for a 20 discrimination of the mass ordering (confirmed quantitatively in [1016]).
These conclusions hold insofar as cosmological data remains mostly sensitive to M, rather
than the masses of the individual eigenstates, which is expected to remain the case for
the foreseeable future. The cosmological preference for the normal ordering being due to
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volume effects also warrants a careful investigation into the choice of prior on M,,. This is
a fascinating discussion which however is well beyond the scope of Paper I: I invited the
interested reader to consult a number of papers which appeared around the same time, or
later than Paper I, see for instance [10,1016-1022,1024,1025].

6.1.1 Executive summary of Paper |

Let me finally wrap up and summarize our results in Paper I. We analysed a suite of state-
of-the-art cosmological datasets (including the galaxy power spectrum from the CMASS
sample of the BOSS final data release). The tightest upper limit on M, we found and deemed
sufficiently robust was M, < 0.12eV 95% C.L., which at the time of writing remains the
tightest upper limit on M,, ever reported (matched by [4,5]). This upper limit is tantalizingly
close to 0.10 eV, the minimum allowed value of M, within the inverted ordering, suggesting
that cosmological data might be putting the inverted ordering under pressure. We devised
a simple method for quantifying the preference for the normal ordering in a statistically
robust way [Eq. (6.2)], based on Bayesian model comparison. In doing so, we clarified that
cosmological data, insofar as only sensitive to M, and not the masses of the individual
eigenstates, will always prefer the normal ordering due to parameter space volume effects,
thus emphasizing the role of choice of prior. Applying our method we found that the dataset
combination leading to M, < 0.12¢V indicates a 2.4:1 preference for the normal ordering,
barely worth mentioning according to the Jeffreys scale of Tab. 5.1. Finally, we analysed
the relative constraining power of power spectrum versus BAO distance measurements,
finding the counterintuitive result that BAO distance measurements appear to be more
constraining. We argued that this finding indicates the necessity of devising wiser ways
of analysing power spectrum data, and in particular improving the determination of the
galaxy bias. The natural continuation of this work is therefore in Paper II (to be discussed
in Chapter 6.2), where we devise a method representing a first step in this direction.

6.2 Scale-dependent galaxy bias and CMB lensing-galaxy
cross-correlations

As we have argued in Chapter 6.1 and Paper I, galaxy clustering (i.e. power spectrum)
data represents a powerful probe of massive neutrinos (and more generally of free-streaming
species). However, naively comparing the constraining power of P(k) vs BAO measurements
revealed that improvements are needed in order to fully harness the constraining power of
the former, especially in terms of getting a better handle on the galaxy bias. For quite some
time, a long-standing idea in this direction has been that of using cross-correlations between
CMB lensing and galaxy maps to calibrate the galaxy bias and possibly its scale-dependence.
While some steps had been taken in this direction (e.g. [1083—-1092]), nobody had ever tried
to fully apply this idea on real data. In early 2017, we decided the time was ripe to try
our this idea on real data, understand what the practical difficulties (both theoretical and
observational) were, and see whether we could use this to improve our limits on neutrino
masses: the results of our work were described are described in Paper II [11], and will be
summarized in this Chapter.

Before starting, I want to heuristically argue that using cross-correlations between CMB
lensing and galaxy maps, in combination with galaxy clustering [i.e. P(k)] measurements, is
a good idea. Let us for the moment just consider a constant linear bias b. We have already
seen [e.g. Eq. (6.1)] that galaxy power spectrum measurements are proportional to b2, with
b treated as a nuisance parameter which is marginalized over. Being somehow able to at the
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same time measure another quantity which scales like a different power of b (e.g. b*) would
help us nail down b even better, which would reflect in marginalized parameter constraints
being less loose than they would otherwise be. How do we construct a quantity proportional
to b'? We can try cross-correlating the galaxy overdensity field (which carries one power of
b) with another field carrying no dependence on b (and thus directly tracing the underlying
matter overdensity field). CMB lensing cares about the (projected) matter overdensity field,
and hence appears as an excellent candidate for the latter field. Cross-correlations between
the CMB lensing field and galaxy maps should thus be proportional to one power of b.

Lensing acts to remap the direction of photons reaching us from the CMB, see e.g. [807—
809] for seminal reviews. Assume we receive a photon coming from direction 7o. We define
the deflection field d to point from 7 to the direction from which the photon was originally
emitted: this field can be measured from CMB maps due to the subtle effects lensing imprints
on the statistics of CMB fluctuations (see e.g. [812,1096] for more details). From d one can
determine the lensing convergence k = —V -d/2. In a direction n,  is given by a weighted
projection of the matter overdensity ¢ [808]:

Zdec
i) = [ W), (6.3)
0
where the lensing kernel W*(z), in a flat Universe, is given by:
3 x«(2) — x(2)
W5 (2) = =~ Qu Hg (1 + 2)x(2) 22— 6.4
( ) 2}?(2) O( )X« ) X*(Z) ( )

The meaning of the often heard statement that CMB lensing cares about the projected
matter overdensity field between us and last-scattering is reflected in Eq. (6.3). Given a
galaxy survey, we can now consider the fractional galaxy overdensity field and cross-correlate
that with the CMB lensing convergence field. The lensing convergence-galaxy overdensity
cross-power spectrum, which we will refer to as Cy?, is given by (see e.g. [825,826, 1088,
1097-1103]):

z1
Cpe = / dz T k() o (2) Py (k — z) , (6.5)
o X(2)

where the galaxy sample is assumed to reside in the redshift range between 2y and z; and
to have a normalized redshift distribution given by f4(z). On the other hand, Pp,4(k) is the
matter-galaxy cross-power spectrum. Since it results from correlating the galaxy overdensity
field (carrying one power of bias) with the underlying matter field (independent of bias), it
will carry only one power of bias b.

Let us discuss in more detail P,,,4, and its relation to galaxy bias and the galaxy power
spectrum P,, which is less trivial than one might imagine. Let us also reinstate into the
picture the leading-order scale-dependence of galaxy bias due to complexities inherent in
the processes leading to galaxy formation (see Chapter 4.2.2): b(k) = by + b1 k2. One might
naively guess that Pn4(k) and P, (k) are related to the underlying matter power spectrum
P(k) as follows:

Pung(k) = b(k)P(k) . Py(k) = (k) P(k). (6.6)

The implicit assumption in Eq. (6.6) is that the bias appearing in cross-correlation and
auto-correlation measurements is the same quantity. This assumption turns out to be not
entirely correct. In fact, it is more correct to rewrite Eq. (6.6) as follows:

Pmy(k) = beross (k) P(k) , Pg(k) =0

auto

(F)P(K), (6.7)
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Figure 6.3: Measured CMB lensing convergence-galaxy overdensity cross-power
spectrum from cross-correlating Planck 2015 lensing maps with galaxies from the
BOSS DR11 CMASS sample (blue points), compared against the theory predic-
tions (green curve). Theory predictions are made assuming a scale-dependent bias
beross(k) with parameters a and c¢ fixed to their central values inferred from the
PlanckTT+lowP+Cy9+P(k) dataset combination, a = 1.95 and ¢ = 0.48 h~2Mpc®
(see Tab. I in Paper II).

where beross and bauto share the same functional forms (i.e. a constant plus a k? correction)
and same large-scale value (i.e. the constant term is the same in both), but have different
coefficients in front of the k2 correction. In Paper II we therefore chose to parametrize these
two biases as follows:

bcross(k) =a+ Ck2 s bauto(k) =a+ dk2 ) (68)

with a, ¢, and d being free nuisance parameters which we will eventually marginalize over.
From simulations and theoretical considerations, one expects dbeyoss/dk > 0 and dbayio/dk <
0: in other words, after the large-scale plateau where both biases are constant and equal to
each other, the biases in cross- and auto-correlation increase and decrease with decreasing
scale (increasing wavenumber) respectively. This behaviour is clearly seen in the simulations
of [1104]: see the short-dashed (beross) and long-dashed (bauto) curves in the top row panels
of Fig. 2 in [1104]. We therefore expect ¢ > 0 and d < 0. It would of course be highly
desirable if a relation between ¢ and d existed (perhaps calibrated to simulations), but to
the best of our knowledge no such relation exists: therefore, in the following, we will treat
them as independent (nuisance) parameters. The origin of the differences between beyoss (k)
and buto(k), and in particular their different behaviour on small scales, are discussed in
much more detail towards the end of Section II of Paper II. These differences can be traced
back to the discrete nature of galaxies as tracers of the matter density field, as well as the
principle of halo exclusion, and I invite the interested reader to read Paper II for more details
(see also e.g. [932,1105,1106]).

Our idea in Paper II was to combine clustering [i.e. P(k)] and CMB lensing-galaxy
cross-correlation [i.e. C;9] measurements, to interpret them within a theoretically motivated
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scale-dependent bias model [Eq. (6.8)], and to see whether this would lead to substantial
improvements in the upper limits on M,. Recall that in Paper I, we found M, < 0.30eV
for our base+P(k) dataset combination. This limit will be our yardstick for quantifying
improvements in the limits on M, brought upon our work. Our modelling of the data is
discussed in more detail in Paper II. We place flat priors on the bias parameters a, b, and ¢
appearing in Eq. (6.8). Although from the discussion in the previous paragraph we expect
¢ > 0 and d < 0, we place flat priors on these quantities which still allow for ¢ < 0 and d > 0
as well: we decided to leave it up to data to choose the sign of ¢ and d, in an attempt to be
as conservative as possible.

T | T T

—  +Pg(K) with by (k) = a -1
— P (k) with by ()
+C& with beoss (k)

+Pgg (K)+C/E with byyeo (k) and by (k)|
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Figure 6.4: Posterior distributions for M, (normalized to their maximum values) ob-
tained using different datasets and making different assumptions on the galaxy bias:
CMB (PlanckTT+lowP; black curve), CMB+P(k) (BOSS DR12 CMASS) with con-
stant bias (from Paper I [10]; red curve), CMB+C}* (BOSS DR11 CMASS x Planck
2015 lensing) using scale-dependent beyoss(k) (from Eq. (6.8); green curve), CMB+P(k)
using scale-dependent bauio (k) (from Eq. (6.8); blue curve), and CMB+C, 9+ P(k) with
scale-dependent beyoss(k) and bauto (k) (purple curve). Reproduced from [11] (Paper II)
with permission from APS.

We combined CMB temperature and large-scale polarization data from the Planck 2015
data release with galaxy power spectrum data from the BOSS DR12 CMASS sample (already
discussed in Paper I), and the cross-correlation between CMB lensing convergence maps from
the Planck 2015 data release and galaxy maps from the BOSS DR11 CMASS sample [1074,
1107]. The measured cross-correlation is shown in Fig. 6.3. Using this dataset combination
and parametrizing the scale-dependent biases appearing in P(k) and Cfg with bauto and beross
as in Eq. (6.8) respectively, we find that the upper limit on M, improves to M, < 0.19€V:
this represents a substantial improvement over the previous M, < 0.30eV upper limit. In
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Fig. 6.4 we show the posterior distributions for various dataset combinations (including the
earlier result of [10], red curve): note that the posterior distribution for the M, < 0.19eV
limit previously quoted is given by the purple curve.

As for the bias parameters, for the scale-independent parameter we find a = 1.95 + 0.07
(consistent with expectations [1039]), while for the scale-dependent parameters we find ¢ =
0.48 £0.90 n~2Mpc? and d = —14.134+4.02 h~2Mpc?. This is quite remarkable: despite not
imposing that ¢ > 0 and d < 0 at the level of priors, we find that the sign of these quantities
is consistent with theoretical expectations! Notice also that we “detect” a scale-dependence
in the galaxy power spectrum at over 3o (i.e. d = 0 is more than 30 away from the measured
value). The measured value of d naturally defines a scale kyq at which the complexities of
galaxy formation lead to strong scale-dependence in the bias: ksq = 1/ Vd ~ 0.27 hMpc ™.
This is consistent with the expectation that the k2 correction we have considered in Paper II
should become prominent somewhere between 0.2 hMpc™' and 0.3 AMpc™ . Clearly, our
analysis shows that even at mildly non-linear scales (we set kmax = 0.2hMpc™!) scale-
dependent galaxy bias should no longer be ignored. As future data becomes more precise,
so should the theoretical modelling of the bias, considering even terms beyond k2, and

possibly relying on a perturbation theory-based approach (see e.g. [1108-1110]).

6.2.1 Executive summary of Paper Il

In summary, in Paper II we have realized on real data the long-standing idea of using CMB
lensing-galaxy cross-correlations to help nail down the (scale-dependent) bias in clustering
measurements. In doing so, we have clarified an issue, far from widely known, pertaining to
the different behaviour of the bias parameter in auto-correlation and cross-correlation mea-
surements. We demonstrated that our method improves the constraining power of galaxy
clustering measurements by finding substantial improvements in our upper limits on the
sum of the neutrino masses, which improved from M, < 0.30eV to M, < 0.19eV. We de-
tected scale-dependence in the auto-correlation bias at moderate significance, with sign and
magnitude consistent with expectations from simulations and theory. Our results suggested
that, even in the mildly non-linear regime, it is time to start worrying about higher-order
corrections to the usually adopted approach of a constant galaxy bias. As a natural con-
tinuation of this work, I asked myself whether our assumption of a constant bias on large
scales was justified? This question had been nagging me for a while, so I set myself to find
a definitive answer, the quest towards which is described in Paper III (to be discussed in
Chapter 6.3).

6.3 Scale-dependent galaxy bias induced by massive neutri-
nos

So far we have assumed that we could safely treat the galaxy bias as being scale-independent
(i.e. constant) on large scales (small wavenumber k). In the absence of massive neutrinos,
this is a simple and well-known result known at least since [911] (see also the review [913]),
following from simple Press-Schechter theory [914]. However, once massive neutrinos are
introduced into the picture, the situation is no longer so simple. To see why, recall so far
we have defined the bias as the factor relating the galaxy and matter overdensities:

69 = b’IIL67IL ) (69)

In Eq. (6.9) I have introduced a subscript ,, to reflect the fact that we are defining the bias
with respect to the matter field. Heuristically, this means we are implicitly assuming that
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the tracers on the left-hand side (in this case, galaxies) form from the field on the right-hand
side (in this case, matter).

Is the previous assumption still true when one introduces massive neutrinos into the
picture? At late times, i.e. those relevant for the formation of galaxies, neutrinos are non-
relativistic and hence contribute to the matter field. ¢ However, the wavenumbers relevant
for galaxy formation are k > kg, with kg the neutrino free-streaming scale introduced in
Chapter 4.3.2. In other words, on the scales relevant for galaxy formation, neutrinos are
free-streaming and cannot be kept within the potential wells from which galaxies will form.

From the above discussions, it becomes clear that the previous assumption of galaxies
forming from the total matter field (where by total I mean including CDM, baryons, and non-
relativistic neutrinos), implicitly entering into the definition of Eq. (6.9), is no longer valid.
Instead, galaxies can only form from the CDM+Dbaryons field, and a meaningful definition
of galaxy bias should reflect this simple observation. We therefore define a different galaxy
bias, be, (where the subscript o, refers obviously to CDM+baryons), as follows:

(59 = bepOeh (6.10)

where as usual ., denotes the CDM+baryons overdensity field. At the level of power
spectra, Eq. (6.10) translates to:

Py(k, ) = b2 (k, 2) Peo(k, ) , (6.11)

with P, the CDM+baryons power spectrum.

In the presence of massive neutrinos, the bias by, as defined in Eq. (6.9) becomes scale-
dependent even on large scales! The reason is that on large scales (k < kgs) neutrino free-
streaming is irrelevant and neutrinos behave as CDM, and therefore galaxies trace the total
matter field (including massive neutrinos). On small scales (k >> k) galaxies instead only
trace the CDM+baryons field. The transition between the two regimes (non-free-streaming
and free-streaming) marks a change in behaviour in the clustering of galaxies, and will be
reflected in a scale-dependence of the bias. This scale-dependence will depend on the value
of M, (governing the free-streaming scale), hence the bias will also depend on M,,.

On the other hand we can expect by, to be a more “meaningful” definition of galaxy
bias in the presence of massive neutrinos, where by “meaningful” I mean a definition which
preserves the properties one would expect hold for galaxy bias: namely, a quantity which
is scale-independent on large scales, and independent of M,. © The above expectation
has been verified by dedicated simulations carried out by Castorina et al. in [1071] (see
also [1111,1112] for other two papers in the same series exploring cosmology with massive
neutrinos through state-of-the-art simulations, and the later [1113]). These simulations
verified that the bias defined with respect to the CDM+baryons field as in Eq. (6.10), bep
is to very good approximation scale-independent on large scales, as well as universal (i.e.
independent of M,). On the other hand, the bias defined with respect to the total matter
field as in 6.9, b,,, is scale-dependent on large scales, and the scale-dependence depends on
the value of M,,: we refer to this effect as neutrino-induced scale-dependent bias (NISDB). &

6This is true for at least two out of three neutrinos. However even if the lightest eigenstate were massless
the energy density of the two non-relativistic species would completely dominate over the energy density of
the massless one.

"Notice that both by, and b, are anyway scale-dependent on small scales, with the leading-order correc-
tion in Fourier space being a k? correction, as already discussed in Chapter 6.2.

8 Although in reality neutrinos are not actually inducing any scale-dependence in the bias, but rather it
is the definition of bias which needs to be revised.
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Notice that, in principle, there is nothing wrong in using the bias b,, as defined in
Eq. (6.9): the only practical obstacle is that it is much more difficult to model b, than it
is to model b.,! As long as one is consistent and careful in one’s treatment of bias, one is
free to use either of the two biases. The problem, however, is the following: most analyses
of neutrino masses from galaxy clustering data have been using the bias b,,, while treating
it as being scale-independent on large scales, i.e. as if it were actually b.p, in other words
mixing the two. This is clearly inconsistent, and begs the question: “Is this inconsistency
in our treatment of galaxy bias in the presence of massive neutrinos a problem for current
and future analyses?” This was a very important open question at the time I started my
PhD, and a question we set ourselves to answer in Paper III. The answer, as it turns out,
is yes! In the following, I will very briefly summarize the results obtained in Paper III. The
interested reader is invited to read through Paper III for more details.

When accounting for RSD effects and dropping all z-dependences, Eq. (6.11) becomes:

Pg(kv Ml/) = (bcb(k') + fcb(ka ]\/[1/))2 P(:I)(k:7 Z) ) (612)
where the growth rate of the CDM+baryons perturbations fg, is defined as:

dln( Pcb(k,z,Ml,))
dlna ’

fen(k, M) = (6.13)
The validity of Eq. (6.12) has been checked explicitly using simulations in [1113], and
the appearance of the f., factor implies that it is solely the CDM+baryon component
which is driving RSD effects. In summary, the name of the game here is to compute the
CDM-+baryons power spectrum P, as well as the CDM+baryons growth rate f.p, in order
to then model the tracer power spectrum as in Eq. (6.12). We modified the CLASS Boltz-
mann solver [509,1114-1116] to compute both quantities: this patch was made public in
v2.7 of the code.

Our goal in the rest of Paper III was to then check whether the heretofore inconsistent
treatment of galaxy bias in cosmologies with massive neutrinos (i.e. treating b, as if it were
bey) will affect analyses of future galaxy clustering data, and if so to what extent. We chose
to focus on future galaxy clustering data from the Euclid satellite [885,1117,1118]. Euclid
is a space telescope scheduled to launch in 2022, which will measure spectra and shapes of
galaxies up to redshift 2, with the aim of unveiling the nature of cosmic acceleration through
Baryon Acoustic Oscillation and weak lensing measurements. Since of course Fuclid data is
not yet available, we perform an MCMC sensitivity forecast (see e.g. the seminal [1119], as
well as relevant follow-up papers such as [30,32,873]), proceeding through the following five
basic steps:

1. Choose a fiducial model. The fiducial values of the cosmological parameters are given
by Tab. I in Paper III.

2. Generate mock power spectrum data consistent with Fuclid’s sensitivity. °

3. Analyse the mock data with standard MCMC techniques with the NISDB properly
taken into account, i.e. with the galaxy power spectrum modelled as in Eq. (6.12)
(notice that this analysis presumably should recover the input fiducial parameters).

9The reader is invited to consult Paper III for a full discussion of our modelling of the galaxy spectrum,
accounting for effects such as redshift-space distortions, Fingers of God, limited instrumental resolution,
Alcock-Paczynski effect, uncertainties in the bias model, and other approximations.
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Figure 6.5: The impact of not correctly accounting for the NISDB effect when ana-
lyzing mock galaxy clustering data from Fuclid. Left panel: one-dimensional posterior
distributions for M, normalized to their maximum values, when the NISDB effect is
correctly accounted for (blue solid), or not accounted for (red dashed). The dot-dashed
vertical line denotes the input fiducial value M, = 0.06eV. Right panel: triangular
plot showing joint and one-dimensional marginalized posterior distributions for M,
Wedm = We, and ng, when the NISDB is correctly accounted for (blue contours/solid
curves) and when it is not accounted for (red contours/dashed curves). Reproduced
from [12] (Paper III) with permission from IoP.

4. Analyse the mock data with standard MCMC techniques with the NISDB not taken
into account. In other words, we model the galaxy power as in Eq. (6.12), but with
by and f,, in place of by, and f.p [with f,, defined analogously to fe in Eq. (6.13)].

5. Compare the cosmological parameters extracted for the two cases.

Notice from Tab. I of Paper III that we pessimistically M, = 0.06eV, i.e. the minimal
value allowed within the normal ordering. Our motivation is twofold: first, this value would
be the hardest to detect. Second, as argued in [1071], the size of the NISDB effect is
~ f, < M, (where by “size” I mean the difference between P, and P, on the scales under
consideration). Therefore, if we find that the NISDB effect is important for the minimal
allowed value of M,,, the same conclusion will hold to an even great extent for any other
value of M,!

Our result is conveniently summarized in Fig. 6.5, where we plot (left panel) the posterior
distributions of M, we obtain when correctly accounting for the NISDB effect (blue curve)
and when we fail to do so (red curve). The vertical dot-dashed line denotes the input
fiducial value M,, = 0.06 eV, which is perfectly recovered when the NISDB effect is correctly
accounted for [M, = (0.061 £ 0.019) eV]. On the other hand, when not accounting for the
NISDB effect, our determination of M, is biased: we find M, = (0.046+0.015) €V, a shift of
about 0.60 from the “true” fiducial value. We also get a spurious increase in sensitivity, since
the error bar obtained when not accounting for the NISDB effect is about 25% smaller than
the one obtained when correctly accounting for the effect. The magnitude of such shifts are
consistent with theoretical expectations, as we explain in Paper III. Notice of course that
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the shifts in the recovered value of M, would be proportionally larger if the fiducial value
of M, were larger. For instance, for M,, = 0.18 eV (still marginally allowed by cosmological
limits) such shifts would be three times as large (i.e. almost 20). Moreover, shifts in M,
would naturally propagate to other parameters correlated with M,. As an example, the
triangular plot in the right panel of Fig. 6.5 shows the induced shifts in w, and ng, two of
the parameters most strongly correlated with M,,. As we see from the figure, the shifts in
we and ng are comparable in size to those in M,,. Our result confirms and supports earlier
findings of [1120] (see also the later work [1121]), who performed a similar analysis but using
a Fisher matrix formalism.

There is one final caveat I want to briefly discuss, which we did not consider in [12].
Namely, we have assumed that b, is a constant on large scales. In reality, it is known that
a small residual scale-dependence, due to the effect of massive neutrinos on the process of
halo collapse, should be imprinted in b., on large scales [1122-1127]. This effect was recently
seen in simulations for the first time in [1126], and is smaller than the NISDB effect we have
studied in [12]. The question of whether this residual scale-dependence is important for
parameter estimation is still unclear [1125], and detailed studies (mirroring what we have
done in [12]) are underway.

6.3.1 Executive summary of Paper Il

In conclusion, in Paper III we found that an incorrect treatment of galaxy bias in the
presence of massive neutrinos leads to O(o) shifts in the determined cosmological parameters:
this affects both M, as well as other parameters correlated with M, (for instance ng or
we). In the era of precision sub-percent cosmology, systematic shifts of such magnitude are
clearly unacceptable. We therefore encourage the cosmology community to carefully take the
neutrino-induced scale-dependent bias effect into account, especially when analysing future
galaxy clustering data.

6.4 Massive neutrinos meet (non-phantom) dark energy

The greatest weakness of cosmological limits on neutrino masses is their (in)stability against
a larger parameter space: typically, limits degrade considerably when relaxing assumptions
on the underlying cosmological model and allowing for an extended parameter space. An
example is discussed in Sec. IVC of Paper I (not discussed in Chapter 6.1), where we treated
the dark energy equation of state as a free parameter (this quantity is fixed to w = —1 in
ACDM): for a particular dataset combination, this broadened our upper limit from M, <
0.19¢eV to M, < 0.31eV. 0 The reason is that marginalizing over additional parameters
strongly correlated with M, (for instance w) significantly broadens the M, distribution. !
This observation, however, begs the question: “ Will moving to an extended parameter space
always broaden the M, distribution?” The answer, as we found in Paper IV, is no! In the
remainder of this Chapter, I will briefly summarize the results of Paper IV, providing an
explanation for this unexpected result.

10For an incomplete list of other recent works examining neutrino mass constraints in extended cosmolog-
ical models, see e.g. [1060,1061,1128-1145].

HThe reason there is a strong correlation between M, and w is that one can vary one parameter and
then adjust the other to keep the observables fixed. In this case, one can increase M, and correspondingly
decrease w to keep the angular size of the first peak of the CMB 6, roughly fixed: thus, we expect there to
be an inverse correlation between M, and w (see Fig. 4 of Paper I).
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In Paper IV we relaxed the assumption, implicit in ACDM, wherein DE consists of a
cosmological constant with constant EoS w = —1. Instead we allowed for a dynamical dark
energy (DDE) component with EoS varying with redshift, w(z). Several parametrizations of
the EoS of DDE components exist in the literature, some more phenomenological in nature
and others more closely rooted to specific models. Aiming for a rather model-independent
approach, we considered a simple two-parameter description of a time-varying EoS which
usually goes under the name of Chevallier-Polarski-Linder (CPL) parametrization, where
the evolution of the EoS with redshift is given by the following [1146,1147]:

w(z) = wo + wq (6.14)

1+2°
Rewriting Eq. (6.14) in terms of scale factor rather than redshift, we arrive at the expression:
w(a) = wy + we(1 —a), (6.15)

which one immediately recognizes as a Taylor expansion of the DE EoS as a function of the
scale factor a = (1 + z)~! around the present time (ag = 1), truncated to first order. Phys-
ically speaking, wg corresponds to the EoS today, whereas w, corresponds to the derivative
of the EoS with respect to the scale factor, up to a minus sign. The energy density of a dark
energy component whose EoS is of the CPL form, pppr(z), is given by:

z
pDDE(Z) = pDE,O(l + Z)3(1+w1)+71m> exp (*3’U.)a T Z) s (616)

where ppg o is the DDE energy density at the present time.

The CPL parametrization is probably the most widely used DDE parametrization, for
several reasons (e.g. discussed in [1147]): besides being highly manageable due to its 2-
dimensional nature, this parametrization is bounded at high redshift (unlike the previously
used linear-in-redshift parametrization), and has a simple physical interpretation. Most
importantly, it has a direct connection to several physical dark energy models, notably
quintessence dark energy. First proposed by Ratra and Peebles in 1988 [1148] (see e.g. [704,
1149-1152] for other seminal papers), in its simplest incarnation quintessence consists of a
class of dark energy models wherein the role of dark energy is played by a rolling scalar
field, ¢. It has been shown that Eq. (6.14) is accurate to sub-percent level in recovering
observables for quintessence models [1147,1153-1156]. 12

Even when adopting a parametrized framework, such as in Eq. (6.14), it is always of
paramount importance to make contact with known and physically viable theories. In
Paper IV, our initial goal in using Eq. (6.14) was to make contact with a model we can
refer to as standard quintessence, where DE consists of a single, minimally coupled scalar
field, with a canonical kinetic term. In other words, we are considering the following simple
Lagrangian for the quintessence field ¢:

L %8,,,(;58“(;5 ~ V(o). (6.17)

12By “observables”, I mean quantities to which the main cosmological observations (CMB, BAO, Super-
novae, weak lensing) are sensitive, such as Hubble parameter and/or distance measurements. Notice that the
EoS itself is not directly observable, thus there is fundamentally no strong case for obtaining parametrizations
which provide sub-percent accuracy in the EoS. Notice also that in the whole literature there exist only two
simple physical parametrizations of the EoS of scalar field DE, in the sense of being tested against exact so-
lutions of the Klein-Gordon equation. Besides the CPL parametrization, the other physical parametrization
is the 4-parameter Copeland-Corasaniti-Linder-Huterer parametrization [1157,1158].
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It can be shown that the EoS of a standard quintessence field will in general be time-
dependent, but will always satisfy w(z) > —1 3. The value w = —1 is usually referred to
as phantom divide (and, correspondingly, a DE component with EoS w < —1 is referred
to as phantom DE), and cannot be crossed by standard quintessence models. !4 Standard
quintessence is arguably one of the simplest models of DDE: hereafter, whenever we refer
to “quintessence”, it will be understood that we are referring to standard quintessence.
In phantom dark energy models, the dark energy density keeps growing with time and
correspondingly the acceleration of the Universe’s expansion increases: in most phantom
dark energy models, this results in the end of the Universe through the dissociation of any
bound structure (including atoms), a rather tragic prospect known as “Big Rip” [1171]. 15

Upon choosing to parametrize the EoS of quintessence through the CPL parametrization
in Eq. (6.14), it is important to keep the non-phantom nature of quintessence in mind. That
is, we better make sure that w(z) > —1 for all z: this can easily be satisfied by imposing
the following two conditions:

wo > —1, wo+w, > —1. (6.18)

Eq. (6.18) forces the DE component to be non-phantom both today (wg > —1) as well as in
the far past (z = 00, wo+w, > —1). The monotonic nature of the CPL parametrization will
then ensure that the DE component remains non-phantom throughout the expansion history.
We refer to the model parametrized by the combination of CPL equation of state [Eq. (6.14)],
restricted by the conditions in Eq. (6.18), as non-phantom dynamical dark energy (NPDDE
in short). On the other hand, we refer to the model parametrized by the CPL equation of
state without further restrictions on the values of wg and w, as wow,CDM. Notice that,
during the period of DE domination, the energy density of a NPDDE component [Eq. (6.16)]
is always greater than that of a cosmological constant with the same ppg .

In Paper IV, we compared the upper limits on M, obtained assuming the standard
ACDM scenario, against those obtained assuming the NPDDE model (which contains two
extra parameters). For completeness, we also considered how these upper limits change when
assuming the wow, CDM model. We considered two different combinations of datasets. The
first combination, which we refer to as base, contains measurements of the CMB tempera-
ture anisotropies from the Planck 2015 data release, a Gaussian prior on the optical depth
to reionization 7 = 0.055 & 0.009 (intended to mimic large-scale polarization measurements
from the Planck 2019 data release), SNela distance measurements from the JLA catalogue,
and finally BAO distance measurements from the BOSS DR11 CMASS and LOWZ sam-
ples [1074], the SDSS DR7 MGS [1187], and the 6dFGS survey [883]. The second combina-
tion, which we refer to as pol, contains small-scale polarization and temperature-polarization
cross-correlation spectra from the Planck 2015 data release in addition to the aforementioned
datasets.

13To show this, it is sufficient to compute the stress-energy tensor of the quintessence field from Eq. (6.17).
From that one can read off the pressure and energy density of the scalar field, the ratio of which gives the
EoS. The fact that w(z) > —1 follows if one neglects spatial derivatives in the EoS. This is justified since
late-time acceleration requires a very light scalar field, whose Compton wavelength will typically be larger
than the Hubble scale. Therefore, the quintessence field will typically be smooth within the Hubble scale.

14Crossing the phantom divide requires either a wrong-sign kinetic term (e.g. [1159-1163]), using multiple
fields (e.g. [1161, 1164, 1165]), non-minimally coupling the scalar field to gravity (e.g. [1166]), including
higher derivative operators (e.g. [1163]), or mixing the metric and scalar kinetic terms through kinetic
braiding (e.g. [1167,1168]). Notice also that several modified gravity models can feature an effective phantom
behaviour (see e.g. [1169,1170]).

5However, the Big Rip does not occur if w — —1 asymptotically in the future, which occurs frequently
in certain modified gravity models, see e.g. [1172-1186].
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For the ACDM case we find the 95% C.L. upper limit M, < 0.16¢eV for the base dataset
combination. When considering the wow,CDM model, unsurprisingly we found that the
upper limit degrades significantly to M, < 0.41eV. When considering the NPDDE model,
we found that the upper limit tightened by about 20% to M, < 0.13eV. This is very
surprising especially considering that ACDM is a special case of the NPDDE model, given
that it is recovered when we set wg = —1 and w, = 0. We find similar values for the
pol dataset combination, namely M, < 0.13eV (ACDM), M, < 0.37eV (wow,CDM), and
M, < 0.11eV (NPDDE). The posterior distributions for M, obtained in the six cases just
discussed are plotted in the left panel of Fig. 6.6.
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Figure 6.6: Left panel: one-dimensional posterior distributions for M, normalized to
their maximum values, assuming ACDM (black), the wyw,CDM model (blue), and the
NPDDE model (red), and using the base (solid) or pol (dashed) dataset. The dot-dashed
vertical line denotes M, = 0.1V, the minimum value of the sum of the neutrino masses
allowed for the inverted ordering. Right panel: one-dimensional posterior distributions
for M, for a selection of cosmological models where wy and w, are fired. The ACDM
posterior is given by the solid black curve. The posteriors to the left/right of the ACDM
posterior, lying in the “non-phantom” /“phantom” region, are obtained fixing wg and w,
fixed to values satisfying/not satisfying the NPDDE condition [Eq. (6.18)]. Reproduced
from [13] (Paper IV) with permission from APS.

The explanation for this result relies on the observation that, during DE domination, the
energy density of a NPDDE component [Eq. (6.16) with wg and w, satisfying Eq. (6.18)] is
always greater than the energy density of a cosmological constant with the same ppg 0. Let
us consider the normalized expansion rate E(z), defined as follows:

B(z) = %j) ~ (0 + )T+ 27 + Qoon(2) + 0 (2., (6.19)

where in the last approximation we have neglected the radiation energy density, which
is negligible during DE domination. During the same period, ,(z) is proportional to
M, given that at least two out of three neutrino species are non-relativistic. Keeping
Qc, Qp, M, and ppg o fixed, it is clear that the late-time normalized expansion rate is
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higher in a NPDDE model than in ACDM. As we already saw in Chapter 4.2.1, CMB data
accurately constrains 6, the ratio between the comoving sound horizon at decoupling 7
and the comoving distance to the CMB x,. Late-time physics cannot change rs (which is
fixed by pre-recombination physics), so whatever change in the dark energy sector better
keep x4 (approximately) fixed in order not to change 6. Up to proportionality factors, .
can be written as [see Eq. (3.10)]:

1 Fdee (]
% — —, 2
Xe o Ho/o () (6.20)

where E(z) is the normalized expansion rate we saw in Eq. (6.19). Combining Eq. (6.20)
and Eq. (6.19), it is clear that to keep y, fixed when introducing a NPDDE model in place
of the cosmological constant, both Hy and M, need to decrease (decreasing 2. and €, is
not a valid option as it would change the redshift of matter-radiation equality, which is also
strongly constrained by the CMB). Indeed, this is precisely what we find: M, decreases
(more precisely, the upper limits on M, become tighter), but so does Hy (see Fig. 2 in
Paper 1IV).

In Paper IV, we have provided a more intuitive explanation for the fact that the limits
on M, are tighter for the NPDDE model compared to ACDM, building upon the (Bayesian)
statistical method adopted, and the role of the marginalization process. If we imagine fizing
(instead of varying) wy and w, to values satisfying Eq. (6.18), the resulting limits on M,
are always tighter than the ACDM limit (obtained with wy = —1, w, = 0). This is clearly
shown in the right panel of Fig. 6.6 (see the four example curves lying in the region labelled
“non-phantom” to the left of the solid black curve, the latter representing the posterior
obtained assuming ACDM). In reality, however, we vary wy and w, and then marginalize
over them. Heuristically, marginalizing over wy and w, for the NPDDE model results in
a M, posterior which is a weighted average of the posteriors lying in the “non-phantom”
region in the right panel of Fig. 6.6: since all of these posteriors result in limits tighter than
the ACDM limit, the same is going to be true for their weighted average.

I want to conclude this Chapter arguing that our findings can be very interesting in
the event of a non-cosmological measurement of the neutrino mass ordering. From earlier
discussions in Chapter 6.1 and Paper I, it is clear that NPDDE models prefer the nor-
mal ordering more strongly than ACDM does: in other words NPDDE models such as
quintessence more strongly prefer lighter neutrinos, which cannot be reconciled with the
inverted ordering. An extensive program of long-baseline oscillation experiments (such as
T2K [1188,1189], NOvA [1190-1192], and DUNE [744-748]), completely independent from
cosmology, are aiming to determine the neutrino mass ordering within the next 5-10 years.
If these experiments were to determine that the neutrino mass ordering is inverted (recall
that to zeroth order cosmology can instead only determine the mass ordering if it is nor-
mall), non-phantom DDE models would be under strong pressure. In other words DE, if
dynamical, would likely have to have crossed the phantom divide at some point. Of course,
this conclusion excludes non-standard exotic physics in the neutrino sector, such as models
with a vanishing neutrino energy density (due perhaps to annihilation into light bosons at
late times, e.g. [1193]), mass-varying neutrinos (e.g. [1194-1202]), non-standard neutrino
interactions [1203-1207], and so on. In our view, the findings of Paper IV constituted a
rather interesting result, providing unexpected connections between two fields one would
normally not relate: neutrino oscillation experiments and the nature of dark energy.
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6.4.1 Executive summary of Paper IV

To conclude, in Paper IV, we found that it is not always true that the upper limits on M,
degrade when moving to an extended parameter space. We demonstrated this explicitly by
considering a non-phantom dark energy model [NPDDE; w(z) > —1] containing two extra
parameters with respect to ACDM, but which recovers ACDM for a particular choice of
these two parameters. We showed that the upper limits on M,,, in fact, become tighter than
in the ACDM case. This implies that the preference for the normal ordering is even stronger
in NPDDE models: on the other hand, should near-future long-baseline neutrino oscillation
experiments determine that the neutrino ordering is inverted, the viability of such models
(which include quintessence) would be put in jeopardy.

6.5 Massive neutrinos meet inflation

As briefly discussed at the start of Chapter 6.4, the main weakness of cosmological limits on
neutrino masses is their (in)stability against a larger parameter space, particularly when the
extended parameters are strongly correlated/degenerate with M,. So far, we focused on the
effect other parameters have on the limits on M, (e.g. Paper IV). Of course, this problem
can be in some sense reversed: if a particular parameter X is strongly correlated with M,,,
the values inferred for X might be sensitive to the assumptions I make when introducing M,
into the picture, or to the very fact that I introduced M,, in first place. Recall, in fact, that
in the baseline ACDM model, M, is not a free parameter, but is fixed to M, = 0.06¢eV, the
minimum value allowed by oscillations data. Of the six base ACDM parameters, one whose
correlation with M, is particularly strong is the scalar spectral index n, (e.g. [28,1208-
1211]). The scalar spectral index plays a particularly important role when observationally
discriminating between competing inflationary models [1212]. Current cosmological data
can already differentiate between inflationary models, and has ruled some out (see e.g. [628,
685,1213-1216]). Given the correlation between ng and M,,, we asked ourselves the following
question: “are our conclusions about inflationary models strongly affected by our assumptions
about unknowns in the neutrino sector?” The answer, fortunately, turns out to be no. In
the following, I will briefly discuss our investigation of this question, which is reported in
Paper V [14].

It is worth reminding the reader of the three main assumptions/approximations usually
made with regards to the neutrino sector when analysing cosmological data. In the baseline
ACDM model, M, is not a free parameter, and is fixed to the minimum value allowed
by oscillations data if the normal ordering (NO) is realized, M, = 0.06eV. When fixed to
this value, usually one follows the Imass approximation: here, the neutrino mass spectrum
is approximated as consisting of two massless and one massive neutrino (approximation
#1): clearly this is an approximation because even in the NO minimal mass case, in reality
one has two massive eigenstates beyond the lightest massless one. When M, is not fixed
but varying, the 3deg approximation is adopted, where neutrino mass spectrum consists
of three degenerate massive neutrinos each carrying mass m; = M, /3 (approximation
#2): this is also an approximation, since it neglects the mass splittings between the three
eigenstates. Finally, in the standard ACDM model, the effective number of relativistic
species at recombination (also referred to as effective number of neutrinos) Neg is not varied
but fixed to its standard value of Neg = 3.046 [543] (recently re-evaluated to be Neg =
3.045 [544]) (approximation #3): this is an approximation in a “broader” sense, but still
one worth checking. Broadly speaking these three assumptions, related to the neutrino mass,
mass ordering, and effective number, are those we decided to check in Paper V.

We considered CMB temperature and large-scale polarization data from the Planck
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2015 data release (referred to as PlanckTT+lowP), BAO distance measurements from the
6dFGS [883], SDSS-MGS [1187], and BOSS DR11 surveys [1074] (referred to as BAO); when
also varying the tensor-to-scalar ratio r (results only briefly discussed here, refer to Paper V
for more details), we also include degree-scale measurements of the B-mode power spectrum
from the BICEP /Keck collaboration [1217] (referred to as BK14).

We first investigated the impact on the estimation of ns of our assumptions on the neu-
trino mass ordering and total mass M,,. Considering only the PlanckTT+lowP dataset, for
the baseline ACDM model where M,, is fixed to 0.06 eV and the neutrino mass spectrum is
treated following the Imass approximation, we find ns = 0.9656 + 0.0063. When instead
still fixing M,, = 0.06 eV but modelling the mass spectrum following the exact NO with mass-
squared splittings given by oscillations global fits [17-22], we find ns = 0.9655 &+ 0.0063.
The shift in moving from the Imass approximation to the exact NO is negligible and con-
sistent with statistical fluctuations from the MCMC algorithm. We then move on to test
assumptions on the neutrino mass (more specifically, assumptions on the cosmological model
adopted, ACDM+M, vs ACDM), and allow M, to vary while adopting the 8deg approx-
imation. We find a larger shift this time, with ns = 0.9636 & 0.0071. The error bar
broadening is consistent with the expectation from having introduced an additional param-
eter to marginalize over. Within the ACDM+M,, model, we re-test the assumptions on the
mass splittings by abandoning the 3deg approximation in favour of an exact NO modelling,
and find a modest shift to ny; = 0.9629 4 0.0069. The shift in n, when moving from the
8deg approximation to the exact NO for the ACDM+M,, model, while small, is about 7 times
larger than the shift obtained when moving from the Imass approximation to the exact
NO for the ACDM model (M, fixed), naively suggesting that under the ACDM+M,, model
cosmological data might be more sensitive to the exact mass splittings than it is under the
ACDM model. Later I will argue that this is not the case: on the contrary, the shift is
entirely a consequence of volume effects and can be removed by a suitable choice of prior on
M, in the 3deg case.

Overall, we noticed a (small but non-negligible) shift of ng to smaller values when
marginalizing over M, and using only CMB data, compared to the case when M, is fixed
to 0.06eV. As far as CMB data is concerned, there exists a rather strong degeneracy be-
tween M, and n, due to their competing effects both on the damping tail (¢ 2 500) and on
larger scales (¢ < 500). Increasing M, suppresses structure formation and hence suppresses
the lensing potential, which reduces the smearing effect of lensing on small scales (adding
power to the damping tail). This can be compensated by having a redder primordial power
spectrum and hence decreasing ns, in other words tilting the spectrum to give less power
to small scales. Moreover, as we have seen in 4.3.1, increasing M, while decreasing Q5 to
keep 0, fixed reduces the amplitude of the early and late ISW effects, resulting in an overall
depletion of power for ¢ < 500 (see e.g. Fig. 6 of [1218] and Fig. 4.10 in this Thesis). This
effect too can be compensated by decreasing ng to give more power to large scales. In sum-
mary, when using CMB data alone we expect a rather strong inverse correlation between
M, and ng: this is clearly visible from the red contours in Fig. 3 in Paper V. When we
marginalize over M, instead of keeping it fixed, we open up the M,-n, degeneracy, which
results overall in a lower value for ns (as well as a slightly larger error bar).

Coming back to the shift when moving from the 3deg approximation to the exact NO for
the ACDM+M,, model, the key point to note is that when adopting the 3deg approximation
we are allowing values of M, as low as 0eV (i.e. the prior we set is M, > 0eV), whereas
when modelling the exact NO, values in the range 0eV < M,, < 0.06€V are by construction
no longer explored by the MCMC algorithm. The astute reader might have understood that
we are once more getting into the land of volume effects already discussed in Chapter 6.1:
within the same model, the 8deg approximation has access to a larger region of parameter
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space than when modelling the exact NO. An “apples to apples” comparison between 3deg
and NO for the ACDM+M, should somehow take this into account. We therefore tried
using the 3deg approximation but this time applying a prior M,, > 0.06€V: in this case we
found ng = 0.9630 4+ 0.0070, a completely negligible shift with respect to the value found
when using the exact NO. Our conclusion therefore was that the shifts when moving from
8deg to NO were entirely due to parameter space volume effects and not a sign that data is
mildly sensitive to the exact modelling of the neutrino mass spectrum. The exact NO cuts
the region of low M,,: given the inverse correlation between M, and ng, this implies cutting
the region of high ny, which explains why we find a lower value of ns when using the exact
NO. When including also BAO data, the correlation between M, and ng changes sign, for
reasons discussed in detail in Paper V. Therefore, most of the shifts we had seen earlier
for the CMB-only case change direction (e.g. n, increases when M, is marginalized over,
instead of decreasing), but our main conclusions are totally unchanged: our determination
of ng is basically insensitive to assumptions/approximations on the neutrino mass spectrum
if not through parameter space volume effects, and only mildly sensitive to the choice of
cosmological model (i.e. the choice of whether or not to include M, as a free parameter). In
Paper V, we also tested the impact of further marginalizing over the tensor-to-scalar ratio
r (in that case also including the BK1/ dataset), finding that the previous conclusions are
qualitatively unchanged.

Our results so far are conveniently summarized in Tab. 6.3. The table should be roughly
read as follows: for a given dataset, shifts brought upon by marginalizing over M, (i.e. due
to the assumption on the cosmological model), which are the largest ones, can be seen by
remaining on a given row and moving from the left to the right. On the other hand, for a
given dataset, shifts brought upon by assumptions on the neutrino mass spectrum (exact
NO vs approximations) can be seen by remaining on a given column and moving downwards
by one row. When doing so for the ACDM+M,, model (second column), it should be kept
in mind that the shift is due to volume effects and can be reabsorbed by adopting the prior
M, > 0.06eV when using the 3deg approximation. A visual representation of the shifts in
ng is given in Fig. 6.7, including in this case also the results obtained when marginalizing
over 7 (ACDM+r model), not discussed here (see Sec. IIIB of Paper V for more details).

ACDM ACDM+ M,
NO 0.9655 & 0.0063 | 0.9629 % 0.0069

PlanckTT+lowP approx || 0.9656 + 0.0063 | 0.9636 + 0.0071
PlanchTT+iowP+BA0 1O 0.9671 = 0.0045 | 0.9686 % 0.0047

approx || 0.9673 £ 0.0045 | 0.9678 &= 0.0048

Table 6.3: Marginalized 68% confidence intervals for n, for different choices of cosmo-
logical models, cosmological datasets, and approximations on the neutrino mass spec-
trum (NO or approx). Rows labelled “approx” refer to the I'mass approximation (first
column, ACDM model with M, fixed to 0.06eV) or the 3deg approximation (second
column, ACDM+M,,, M, marginalized over).

Afterwards, we moved on to test assumptions on the neutrino effective number Neg.
We can expect a direct correlation between Neg and ng. As discussed in [983], increasing
Neg while adjusting other parameters in such a way as to keep 0, fixed, leads to increased
Silk damping, and less power in the damping tail (¢ 2 500): this is clearly shown in Fig. 1
of [983]. This effect can be compensated by increasing n; to give more power to the damping
tail: therefore, we can expect that in general adding N.g as a free parameter should shift
ns to higher values. We also investigated the impact of marginalizing over M, in addition
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Figure 6.7: Marginalized 68% and 95% confidence intervals for ng for different choices
of cosmological models (ACDM, ACDM+r, ACDM+M,,, and ACDM+r+M,), cosmo-
logical datasets (combinations of PlanckTT+lowP, BAO, and BK14), and approxima-
tions on the neutrino mass spectrum (NO or Imass/3deg approximations). The solid
bold lines are obtained using the exact NO modelling, solid light lines using the exact
I0 modelling, and dashed lines for the approximations: Imass approximation when
M, is fixed (ACDM and ACDM+r models), and 3deg approximation when M, is var-
ied (ACDM+M, and ACDM+r+M, models). Only for the case of the ACDM+r
model, we considered two additional cases where M, is fixed to values higher than
the standard M, = 0.06€V, to enlarge the impact of M, on n,: the results are the
two dashed-dotted blue lines, where the top line has M, = 0.07eV and the bottom
line has M, = 0.5¢eV. The vertical grey bands are the 68% and 95% confidence inter-
vals limits obtained by the Planck collaboration for the baseline ACDM model for the
PlanckTT+lowP dataset (which of course basically reproduce our topmost solid red
interval). Reproduced from [14] (Paper V) with permission from APS.

to Neg: that is, we compare the values of ng obtained for the ACDM+ Neg model (M,
fixed to 0.06 eV) and the ACDM+ Ng+M,, model. Since we previously found that the exact
modelling of the mass splittings played essentially no role in determining ns, we choose for
simplicity to model the neutrino mass spectrum following the Imass approximation when
M, is fixed, and the 3deg approximation when M, is varying. As far as Neg is concerned,
we test two different possible scenarios. In a first case, we apply a “broad” flat prior on Neg
between 0 and 10. In a second case, we apply a “hard” prior Neg < 3.046: this prior is a
proxy for low-reheating scenarios [657,782-785], where thermalization is incomplete by the
time of neutrino decoupling, effectively leading to a value of Neg lower compared to the usual
expectations. In this case, given the direction of the Neg-ns correlation previously discussed,
we expect that ns should instead shift to lower values, as we are artificially excluding the
region of high Neg which would pull ng to higher values (this is again a volume effect
argument).

When using only PlanckTT+lowP data, the baseline value of ng to compare against is
ns = 0.9656 + 0.0063 when adopting the ACDM+ N.g model, and n, = 0.9636 £+ 0.0071
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when adopting the ACDM+Neg+M, model (see Tab. 6.3). For the “broad” ACDM+ Ng
case, we find as expected a shift of ng towards larger values: ng = 0.969 4+ 0.016. For the
“hard” ACDM+ N.g case, again as expected we found a shift of ng towards smaller values:
ng = 0.9561’8:33;. We then move to the ACDM+ Neg+M,, model, where for the “broad”

case we find ng = 0.964 £ 0.0017 and for the “hard” case we find ny = 0.951fg:g(1)§. From

these shifts we have drawn two conclusions. Firstly, we have two degeneracies at play which
pull in opposite directions: the Neg-ns degeneracy and the M,-ns degeneracy. Our results
suggest that the former is more relevant than the latter, since even when M, is marginalized
over for the “broad” case the net effect is still an increase in ng, which indicates that the
“pull” due to the Neg-ng degeneracy is stronger than the “pull” due to the M,-ns one. The
second conclusion is that the freedom induced by changing our assumptions on Neg has a
rather non-negligible impact on n,. For instance, assuming low-reheating scenarios (“hard”
prior) lowered the value of ns by almost 1o. Our results concerning shifts in ns as we change
our assumptions on Neg are summarized in Tab. 6.4 and Fig. 6.8 (again in this case including
in also the results obtained when marginalizing over r not discussed here: see Sec. IIID of
Paper V for more details).

ACDM+Neg | ACDM+ Nog+ M,
broad (0 < Neg < 10) || 0.969 £ 0.016 |  0.964 & 0.017
PlanckTT+lowP =
lanckTT+low hard (Neg < 3.046) || 0.95679:001 0.951%9:914
broad (0 < Neg < 10) || 0.971 £0.009 |  0.973 % 0.010
PlanckTT+lowP+BAO "y 4 (Nog < 3.046) || 0.96270007 0.962+0-007

Table 6.4: Marginalized 68% confidence intervals for ngs for different choices of cos-
mological models, cosmological datasets, and approximations on the neutrino effective
number (“broad” or “hard” prior on Neg, described in the table). Note that we adopt
the Imass approximation when M, is fixed (ACDM+ N g model) and the 3deg approx-
imation when M, is varying (ACDM+ N.g+ M, model), given our earlier findings that
modelling the exact mass splittings leads to negligible shifts in ng.

Our findings can be important when assessing the validity of inflationary models in
light of precision cosmological data. Usually, inflationary models are compared against
observations by plotting their predictions in the ng-r plane, assuming a minimal ACDM+r
model. As a concrete example, in Fig. 6.9 we compare the predictions of the original cosine
natural inflation model of Freese et al. [591] (see e.g. [592, 614,615,619, 621, 632, 633, 647,
1219, 1220] for other important works) against observational constraints in the ns-r plane,
within the different cosmological models we have considered in Paper V. Within the minimal
ACDM-+r model and including BK14 data, cosine natural inflation is excluded at more than
20 (see left panel of Fig. 6.9): it can however be “rescued” by relaxing the assumptions on the
neutrino effective number, particularly when considering low-reheating scenarios (see right
panel of Fig. 6.9), although these scenarios are admittedly a bit more exotic. In Paper V we
have also provided forecasts (using the methodology we described in Chapter 6.3) for future
CMB experiments such as COrE [1221] and CMB-S4 [1222], and shown that our conclusions
are still relevant for future data: in other words, even with future data marginalizing over
Neg can lead to shifts of order 1o of n,. The reader is invited to read Sec. IV of Paper V
for more details on our forecasts.
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Figure 6.8: Marginalized 68% and 95% confidence intervals for ns for different
choices of cosmological models (ACDM+ Nog, ACDM+7r+ N, ACDM+ Neg+M,,, and
ACDM+r+Neg+M, ), cosmological datasets (combinations of PlanckTT+lowP, BAO,
and BK14), and assumptions about the neutrino effective number (“broad” 0 < Ng <
10 prior or “hard” Neg < 3.046 prior). Solid lines are for the “broad” prior while dashed
lines are for the “hard” prior. Vertical grey bands as in Fig. 6.7. Reproduced from [14]
(Paper V) with permission from APS.

6.5.1 Executive summary of Paper V

To conclude, in Paper V we have studied how our assumptions about the neutrino unknowns
(mass, mass ordering, effective number) impact the inferred values of inflationary parame-
ters, focusing on the scalar spectral index ns. We have found that modelling the exact mass
ordering leads to negligible shifts in ng, modulo shifts due to volume effects which can be
reabsorbed by an appropriate prior. To put it differently, when allowing M,, to vary, adopt-
ing the 3deg approximation of 3 degenerate eigenstates is for all intents and purposes a good
enough approximation, and results obtained modelling the exact NO (I0) are basically equiv-
alent to those obtained assuming 3deg approximation and assuming a prior M, > 0.06eV
(M, > 0.10eV). The biggest shifts in ns occur when relaxing the assumptions on the ef-
fective neutrino number, particularly when allowing for more exotic low-reheating scenarios
where Neg can be lower than the canonical value 3.046. Despite these shifts are at most
of order 1o, a complete assessment of the impact of neutrino properties on the estimation
of inflationary parameters is important as certain inflationary models which are currently
marginally excluded (e.g. cosine natural inflation) are observationally viable once we allow
for more freedom in the neutrino sector (see also [1223,1224]).
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Summary and outlook

“If you think this has a happy ending, you haven’t been paying attention.”
— Ramsay Snow to Theon Greyjoy in Game of Thrones, Season 3, Episode 6: “The
Climb” (2013)

We have come to the end of this journey into the realm of neutrino cosmology, and at
this point I will briefly summarize the results described in more detail in Chapter 6 and the
included papers, and provide an outlook into future research directions which could build
upon these results. If you, reader, have managed to follow me until here, I believe there is no
need to convince you that neutrino cosmology is an extremely fascinating subject, and one
which promises to be ripe with discoveries in the coming years as more data, and especially
more precise data, pours in. At the time I started my PhD, a number of open questions in
the field of cosmology begged for answers (see Chapter 1.1 for an outline of these questions),
and I believe this thesis contributed to answering them.

In Paper I (Chapter 6.1), I have shown that already current cosmological data provides
a great deal of information about massive neutrinos. In particular, I have shown that a
combination of current CMB and clustering data sets the limit M, < 0.12€eV, currently the
tightest upper limit on the sum of the neutrino masses. Moreover, in Paper I I have devised
a simple method to quantify the preference for the normal neutrino mass ordering from cos-
mology (a slightly different, but conceptually identical, method is discussed in Chapter 6.1).
In fact, a byproduct of such method has been showing that cosmology will always prefer,
even if only slightly, the normal neutrino mass ordering, due not to physical effects but
parameter space volume effects. In Paper I, I have found that current data shows at most
a weak preference for the normal ordering, with odds of about 3 : 1.

One of the side results of Paper I was that galaxy clustering data appears to be less
constraining than BAO distance measurements, despite in principle containing more infor-
mation than the latter. In Paper I I argued that this reflects a limit in our our analysis
methodology, warranting a wiser treatment of galaxy bias. This was the path followed in
Paper II (Chapter 6.2): we took an old idea of using cross-correlations between CMB lensing
and galaxy maps, in combination with galaxy clustering measurements, to provide a better
handle on the scale-dependent galaxy bias, and for the first time realized this idea on real
data. In doing so, we clarified a number of subtleties having to do with scale-dependent bias
in auto- and cross-correlation measurements.

Another important issue in the use of galaxy clustering data to study neutrino properties
is that of properly defining the galaxy bias in first place. Virtually all analyses so far have
defined the bias with respect to the total matter field, whereas it is known from simulations
that a meaningful definition of bias is with respect to the cold dark matter+baryons field.
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In Paper III (Chapter 6.3), we have checked whether this mismatch could be a problem for
the analysis of future clustering data. We have found that an incorrect definition of bias can
lead to misestimated parameters, among which the sum of the neutrino masses. In Paper III
we have also provided public tools for accounting for this effect in a simple and efficient way.

In the two remaining papers, we have instead examined correlations between the sum of
the neutrino masses and other cosmological parameters, and on the consequences of such
correlations. In Paper IV (Chapter 6.4), we have shown that in dynamical dark energy cos-
mologies where dark energy is forced to be non-phantom (i.e. w(z) > —1), the upper limits
on M, become counterintuitively tighter than the ACDM upper limits. As a consequence,
non-phantom dark energy models (which include standard quintessence models) prefer the
normal neutrino ordering more strongly than ACDM does. Their viability could therefore
be jeopardized should upcoming laboratory experiments should determine that the neutrino
mass ordering is inverted. The result of Paper IV provides an unexpected window, that of
neutrino laboratory experiments, into the physics of what is driving cosmic acceleration.

Finally, in Paper V (Chapter 6.5) we have checked whether our ignorance of neutrino
properties can bias our determination of inflationary parameters, and hence of the initial
conditions of the Universe. We have found that, fortunately, this is not a concern. The only
case where important shifts in inflationary parameters are obtained is when low-reheating
scenarios, which are quite exotic, are considered. Therefore, in Paper V we have concluded
that our uncertainties about the physics in the neutrino sector do not affect our determina-
tion of inflationary parameters to a significant extent, neither with current nor with future
data.

Building upon the results in the included papers, there are several directions which could
be pursued in future works (some of which I am already pursuing). One interesting direc-
tion building upon Paper I could be that of robustly combining cosmology and laboratory
(B decay, double 3 decay, and oscillation) experiments, along the lines of [1041]. More
interestingly, such an approach could be used to study sterile neutrinos, including sterile
neutrinos at the eV scale which have been suggested as possible solutions to a series of
anomalies [1225-1237].

Beyond neutrinos, another intriguing study related to Paper I could involve using the
same galaxy clustering data to constrain light relics. That is, species which decoupled
while relativistic like neutrinos. If the species are heavy enough, they essentially behave as
cold dark matter at decoupling, and there is no hope of constraining them from the CMB.
However, their free-streaming would result in a suppression of power on small scales, exactly
as with neutrinos. Moreover, if heavy enough, the light relic would become non-relativistic
during radiation domination. As shown in [1238-1240], this has the effect of enhancing the
maximum suppression, making it 14 f, (with f, = Q,/Q,, the fraction of the energy density
in the relic z) instead of 8f, as in the neutrino case. This suggests that light relics should
be a promising target for large-scale structure probes.

Paper II also warrants several follow-up directions. In light of the precision of future
data, it is important to try and model the non-linear galaxy power spectrum as precisely as
possible, and this includes understanding non-linear bias. It would be interesting to explore
whether combining CMB lensing and galaxy clustering, and possibly higher order correlators
of the lensing and/or galaxy fields could help constraining non-linear bias.

As for Paper III, the most immediate follow-up work would be to make sure that current
and upcoming LSS surveys follow our recommendations, eventually updating their pipelines
if necessary. Besides that, an interesting follow-up would be to explore the issue of proper
definition of bias in cosmologies beyond those with massive neutrinos (for instance mixed
dark matter cosmologies).

Concerning instead Paper IV, it could be worth going “non-parametric”, i.e. to see how
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much our results change if we do not adopt parametric form for w(z). Possible approaches
include for instance adopting a principal component analysis (PCA) approach using PCA
components from future surveys (along the lines of the work in [1241,1242]), or using Gaus-
sian Processes reconstruction binning the equation of state in time (along the lines of the
work in [1243]). Another interesting follow-up would instead be to repeat the analysis for
specific well-motivated quintessence models, or factoring more general theoretical consid-
erations concerning the theoretical health and mathematical soundness of the theoretical
models one is parametrizing (along the lines of the work in [1244]).

Finally, there are two very ambitious research directions I plan to at least keep thinking
about moving forward. One is related to the possibility of going beyond the sum of the neu-
trino masses M, and measuring the masses of the individual eigenstates from cosmological
data. A series of earlier works had examined this problem about a decade ago, conclud-
ing that it will be infeasible in the foreseeable future, due to insufficient sensitivity in LSS
data [997-1001]. However, it might be worth re-examining the issue as we get closer to the
launch date for a number of important LSS surveys, and as we understand the performance
of such surveys better. Should this be possible, our conclusions in Paper I about cosmology
only being sensitive to the mass ordering through volume effects would be surpassed, and it
might be possible to determine the mass ordering even if it is inverted.

The second ambitious direction is related to the cosmic neutrino background (CNB) [1245],
which currently remains undetected. Experimental efforts through capture of cosmic relic
neutrinos on tritium such as Ptolemy [1246,1247] are underway to try and detect the CNB,
and it is far from clear whether these will succeed. ! If, however, they should succeed and
we were to detect the CNB, a whole new field of cosmology could open up by studying
anisotropies in the CNB. The same way anisotropies in the CMB have provided, and are
still providing, a mine of information, the same would definitely hold for anisotropies in
the CNB. It might be worth, in the meanwhile, thinking about how best to exploit these
anisotropies, should we one day manage to detect them [1249,1250].

Technicalities aside, I hope I have convinced the reader that neutrino cosmology is an
extremely exciting and active area of research. The next 5 to 10 years will be extremely
crucial in this direction, as we expect a first detection of non-zero neutrino masses from a
combination of future CMB and LSS probes [23-37]. In this thesis, I have contributed to
addressing a number of critical issues whose resolution is crucial if we want to make sure
that a robust detection is reached. Detecting the neutrino mass scale and possibly the mass
ordering would open the door towards new physics beyond the Standard Model, possibly
shedding light onto processes operating at energy scales we will likely never be able to reach
down on Earth. There is all the reason to believe that cosmological data will provide the
first glimpse onto this realm, and hence all the reason to be excited and stay tuned.

LOther methods to detect the CNB and with it the sum of the neutrino masses have been proposed,
e.g. [1248], but do not appear promising.
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