CERN-THESIS-2014-066

//2014

@

UNIVERSITA DEGLI STUDI DI PERUGIA

MASTER THESIS

A Flexible simulation and verification
framework for next generation hybrid
pixel readout chips in High Energy
Physics

Author: Supervisor:

Sara MARCONI Ph.D. Eng. Pisana PLACIDI

Assistant supervisors:

Ph.D. student Elia CONTI

Eng. Jorgen CHRISTIANSEN

A thesis submitted in fulfilment of the requirements

for the degree of Electronics and Telecommunication Engineering

i the

Electronics Research Group

Engineering Department

Academic year 2012/2013


http://www.ing.unipg.it
http://www.diei.unipg.it/index.php?option=com_k2&view=itemlist&task=category&id=10:electronics-projects&Itemid=628&lang=en
http://www.diei.unipg.it

“Strive for perfection in everything you do. Take the best that exists and make it better.

When it does not exist, design it.”

Sir. Henry Royce



Acknowledgements

I would like to express my gratitude to my supervisor Pisana Placidi for the continuous
help and for the useful comments and remarks from the very beginning up to the end
of this work.

Moreover, this paper would not have been possible without my assistant supervisor
Jorgen Christiansen and his precious teachings and guidance through the learning
process of this master thesis.

Furthermore I would like to thank the Ph.D. student Elia Conti for introducing me to
the topic as well as for the (not only) technical support on the way. Also, I am very
grateful to all my supervisors and to all the other people, between whom Andrea
Scorzoni and Gianmario Bilei, that have helped me in having the opportunity of
working in a international and stimulating environment.

In my daily life I have been pleased by a friendly and cheerful group of students and
professionals from building 14 (that can not all be listed), especially Sebastian,
Manoel, Marco, Marcos and Matteo.

Also I would like to thank my exceptionally close high school and university friends
Alessandra, Angela, Federica, Giulia and Valentina who are always there for me in the
various stages of my life (through thick and thin!). I cannot leave apart all the other
university friends that have made the last years pleasant even in some tought moments.
Last, but not least, I would like to thank my family members, especially my parents,
my sister Giulia, my aunt Manuela and my grandparents that have always been there

for me every step of the way and have supported me through all of my decisions.

ii



Contents

[Acknowledgements|

Contents!

[List of Figures|

[List of Tables

Abbreviations
Introductionl

(1 Electronic circuits in pixel detectors for High Energy Physics|

ii

iii

ix

1.1 Basics on hybrid pixel detector design| . . . . . . ... ... ... .....
[L.LI.T The Front-end electronicsl . . . . . .. ... ... ... ... ....

2 System Description and Verification Languages|

2.1 SystemC and Transaction Level Modeling| . . . .. ... ... .. ...
2.2 SystemVerilogl. . . . .. ... o
[2.2.1  SystemVerilog for Design| . . . . . ... .. ... ... .....
[2.2.2  SystemVerilog for Verification|. . . . . . . . .. ... ... ...
[2.2.3  Universal Verification Methodology|. . . . . . . .. .. .. ...

3 Evaluation of software toolsl

[3.1  Preliminary study on scalability|. . . . . . ... ... ... .. ... ..

[3.1.1 SystemVerilog arrays|. . . . . . ... ... L.

[3.2  Study of commercial simulation tools pertormancel . . . . . ... ...
3.2.1 Designflow| . . ... ... ... . ... ... .. ...

[4 Design under test: description of the system|

4.1 Development of a model for the Pixel Unit Cell| . . . . . . . .. .. ..
4.1.1  Digital PUC: use of System Verilog constructs] . . . . . . . . ..
4.2 System architecture| . . . . . .. ... ... ...

[4.2.1 Independent pixels architecturef . . . . . . . . . ... ... ...
[4.2.2  Zero-suppressed FIFO architecturel . . . . . .. ... ... ...

iii

14
15
15
16
18
19

22
23
25
26
27



Contents iv

[6__UVM simulation and verification framework: VEPTX53| 48
.1 Overall architecture of the simulation and verification frameworkl . . . . . 50
1.1 Interfacesl . . . . . . .. . . 51
p.1.2  Project organization| . . . . . . ... ..o 0oL 53

[5.2  Verification components| . . . . . . . . ... oo 55
0.2.1  Hit environment| . . . . . .. ... o Lo 57
0.2.2  Trigger environment| . . . . . . . . ... 62
5.2.3  Readout environment| . . ... ... ... ... L. 66
[5.2.4  Analysis environment| . . . ... .. ... ... 67
5.2.5 Top level environment| . . . . . . ... 00000000 71
9.2.6 Top level tests| . . . . . . . . . 72

5.3 User guide: scripts and UVM message facility| . . . . . . . ... ... ... 75

[6 Hit generation with constrained distribution within the framework|( 78

6.1 Classesof hitsl. . . . . . . . . . . . . e 79
BT Trackd . . . . . . 83

6.1.2 Loopers| . . . . . . . 86

6.1.3 Jets] . . . . ... 89

614 Monsters . . . . . . . . .. . 91

615 Noise Hitsl. . . . . . . . . .. . . 93

6.2 Monitoring and statistics collection| . . . . . . . . ... ..o 95
[6.2.1  Graphics by MATLAB|. . . . .. .. ... ... .. ... .. 97

[6.2.2  Monitoring actual hit rates per cm?| . . . .. ... ... ... ... 97

[6.3  The configuration of the hit generator| . . . . . . . ... ... ... ... . 101

[7  Generation of input stimuli for a study of buffering architectures| 106
[7.1 Statistical /analytical cluster and PR buffer models| . . . . . . . ... ... 106
[r.2  Simulation results from VEPIX53l. . . . .. .. .. ... ... ... .... 110
[t.2.1 Clusters with fixed sizel . . . . ... ... ... ... ... ..... 111

[(.2.2 Clusters with variable sizel . . . . . . ... ... ... ... ..... 114
/Conclusions! 117

[References| 119



List of Figures

1.1  Topology of a short-lived particle decay, with ordinary particles emerging |

| from the same collision [L].| . . . . ... ... ... 0oL 4
(.2 Traditional MAPs building block [2].[ . . . . ... ... ... ... ... .. 5
[L.3  Hybrid Pixel Detectors: single building block [2].| . . . . . ... ... ... 5
[L.4  Generic pixel detector: active area and periphery circuitry [1].[. . . . . . . 6
[1.5  Quarter of the r-z slice of the CMS tracker.| . . . . . . ... ... ... .. 7
[L.6 Components of a generic PUC [1I.| . . ... ... ... ... . ....... 7
[1.7  Comparison between charge digitization methods: ADC and TOT |

| approaches [O]] . . . . . ... 8
[2.1 Partial UVM class library 41| . . . . .. .. ... 20
[3.1 Initial (and partial) structure of the Verification Environment used for |

| study on scalability|. . . . . . . ... oo oo 23
[3.2  FE-14 full chip diagram [5].| . . . . . ... ... L 27
[3.3  Multi Snapshot Incremental Elaboration flow: comparison between the |

| first run (a) and the following ones (b).| . . . . ... ... ... ... ... 29
3.4  Flow diagram ot the optimized two-step modelsim flow.| . . . . .. .. .. 29
[4.1  Pixel chip hierarchical organization [6[.|. . . . . . . .. ... ... ... .. 33
4.2 Block diagram of the pixel unit cell| . . . . ... ... ... .. ... ... 34
4.3  Timing diagram of the TOT converter.|. . . . . . . . .. .. ... ..... 35
4.4 Block diagram of the digital part ot a PUC| . . . . . . . .. ... ... .. 37
4.5 Timing diagram of the synchronization logic module). . . . . . . . .. .. 38
4.6  Timing diagram of the configuration register| . . . . . . . . ... ... .. 38
4.7 Timing diagram of the TOA register.|. . . . . . . ... ... .. ... ... 38
4.8 Timing diagram of the TOT counter.|. . . . . . . . .. ... ... .. ... 39
4.9 Timing diagram of the TOT counter.|. . . . . . . . . ... .. ... .... 40
4.10 Timing diagram of the TOT counter.|. . . . . . . ... ... .. ... ... 41
[4.11 Timing diagram of a single PUC (both TOT converter and digital front- |
end). . . .. e 42

|4.12 Block diagram of the pixel chip architecture,| . . . . . ... ... ... .. 43
4.13 Block diagram of a PR containing indipedent PUC bufters.| . . . . . . .. 44
|4.14 Structure of the hit packets contained in the PR buffer for the independent |

| pixel architecture.| . . . . . . . .. ... 45
|4.15 Structure of the hit packets contained in the PR buffer for the zero- |

| suppressed FIFO architecture.. . . . . . . ... ... ... ... ... ... 46
4.16 Structure ot the hit packets contained in the PR buffer for the zero- |

| suppressed FIFO architecture). . . . . . . .. . ... ... ... ... ... 47




List of Figures vi

5.1 Block diagram of a dedicated simulation and verification framework for |

| next generation pixel chips.| . . . . ... oo oo oo 49
5.2 Block diagram of VEPIX53. . . . . .. ... ... ... ... ..., 50
5.3 Project organization: first level of directories.| . . . . . . .. .. ... ... 53
.4  Project organization: directories of the verification environment. . . . . . 54
5.5 Block diagram of the verification components of VEPIX53, with focus on |

[ their Tink to the DUT interfaces] . . . . . . .. .. .. ... ... ..... 55
[5.6 Hit environment block diagram.|. . . . . . .. ... ... ... ... ... . 57
b.7  UML class diagram of the hit_trans.| . . . . . . . ... ... .. ... ... 58
5.8  UML class diagram of the hit_time_trans.| . . . . . . . ... ... .. ... 60
5.9 Timing diagram of two PUCs with analog hit signals with an added |

[ baseline noise. . . . . . . .. 62
[5.10 Trigger environment block diagram. . . . ... .. ... ... ... ... 63
[5.11 UML class diagram of the trigger_trans| . . . . . . .. ... ... ... .. 63
b.12 UML class diagram of the trigger_time_trans.| . . . . . . .. ... ... .. 64
b.13 UML class diagram of the trigger master config)|. . . . . . . . . ... ... 65
|b.14 Readout environment block diagram.|. . . . . .. ... ... ... ... .. 66
[5.15 UML class diagram of the readout trans for the independent pixels |

[ architecturel. . . . . . . . L 67
[5.16 UML class diagram of the readout trans for the zero-suppressed FIFO |

[ architecturel. . . . . . . . L L 67
b.17 Block diagram of the analysis environment.| . . . . .. ... ... ... .. 68
5.18 UML class diagram of the analysis_trans for the independent PUCs |

[ architecturel. . . . . . . . L 69
5.19 UML class diagram of the analysis_trans for the zero-suppressed FIFO |

[ architecturel. . . . . . . . L 69
[5.20 UML class diagram of the analysis_master_config.| . . . . . . . . . ... .. 70
6.1  UML class diagram of the hit_master_config object.| . . . . . . . . . .. .. 82
[6.2  Sketch of the track of a particle crossing the sensor.| . . .. ... ... .. 83
[6.3 Formation of clusters of different size in silicon detectors: (a) size 1, (b) |

| size 2, (c)size 3 ([IN]. . . . . . o 83
[6.4  Formation of clusters in a silicon detector in presence ot a magnetic field |

in two cases : (d) with the track perpendicular to the sensor surface and |

(e) tilted by the Lorentz angle ([I[)] . . . .. ... ... ... .. ..... 84

6.5 Geometrical representation of a track crossing the sensor with a certain |
...................................... 85
6.6 Sketch of a cluster with a central part and some adjacent pixels being hit |

| as eftect of charge sharing.|. . . . . .. ... ... o000 85
(6.7 Example of tracks generated in one BX cycle. Track rate per cm?= 500 |

| MHz, track angle= 9%, charge sharing = LEV_ONE, percentage of |
| surrounding pixel hit =50%. . . . . .. ... ... ... ... ... 87
6.8 Example of square and elongated clusters generated with difterent track |

| angles, 1.e. 90° (a) and 9° (b) without charge sharing with adjacent pixels.| 87
[6.9 Examples of square clusters with charge sharing. The % hit pixels are: |

| 10% (a), 50% (b), 80% (c), 100% (d).| . . . . . . .. .. ... ... 88
[6.10 Examples of elongated clusters with charge sharing. The % hit pixels are: |

10% (), 50% (b), 80% (<), 100% ()] - - - - . . . - .. ... .. . ... 88




List of Figures vii
[6.11 Sketch ot a looper crossing the sensor surface| . . . . . ... ... ... .. 88
[6.12 Geometrical representation of a track crossing the sensor with a certain |

...................................... 88
[6.13 Example of (only) loopers generated in one BX cycle in the whole 512x512

| matrix. Looper rate per cm? = 500 MHz, charge sharing = LEV_ONE,

| percentage of surrounding pixel hit =50%.| . . ... ... ... ... ... 89
6.14 Zoom on few loopers generated in one BX cycle. Charge sharing = |

| LEV_ONE, percentage of surrounding pixel hit = 50%.|. . . . . . ... .. 90
6.15 Sketch a jet (bunch of particles) crossing the sensor.| . . . . . .. ... .. 90
6.16 Example of tracks generated in one BX cycle. Jet rate per cm”= 200 |

| MHz, average number of tracks per jet = 10, jet area = 10x10 pixels, |

| track angle= 30°, charge sharing = LEV_ONE, percentage of surrounding |

| pixel hit =50%.] . . ... ... ... 91
[6.17 Zoom on a single jet. Parameters: average number of tracks per jet = 10, |

| jet area = 10x10 pixels, track angle= 30°, charge sharing = LEV_ONE, |

| percentage of surrounding pixel hit =50%.| . . ... ... ... ... ... 92
[6.18 Sketch a track coming almost parallel to the sensor (so-called monster).| . 92
[6.19 Example of a BX cycle in with only one monster has been generated in |

[ the PHI direction] . . . . . . . . . . . . . . . . . .. . . 93
[6.20 Example of a BX cycle in with just one monster has been generated in |

[ the Z direction] . . . . . . . . . . .. 94
[6.21 Example of a BX cycle during which only noise hits are generated in the |

| 512x512 ROC matrix. A rate per cm?® of 2 GHz has been set.| . . . . . . . 94
[6.22 Zoom on generated noise hits. 1x1 clusters are clearly visible.| . . . . . . . 95
[6.23 Hit environment block diagram with the hit subscriber built (and hit |

| monitoring only on total hits)] . . .. . .. ... ... .. ... ... ... 97

6.24

Histogram accumulated in 500000 BX cycles while generating only tracks.| 98

[6.25 Hit environment block diagram with the hit subscriber built and detailed |

| level of hit monitoring provided.| . . . . . .. ... ... ... 99
[6.26 Example results on detailed hit monitoring. Settings: track rate: 1
GHz/cm? (with 45° angle, causing 2 pixel clusters), looper rate: 2
GHz/cm?, jet rate: 500 MHz/cm?, 2 tracks per jet), monster rate:7

MHz/cm?, noise hit rate: 2 GHz/cm?, no charge sharing,| . . ... .. .. 100

[7.1 Symmetrical cluster model; (b) elongated cluster model. Hit pixels are |

| highlighted in dark pink.. . . . .. .. ... ... ... ... ... ..... 107

[7.2  Examples of statistical distributions of n, in a cluster: (a) “Single”; (b) |

| “Average 4.22”; (c) “Average 6.57”; (d) “Maximum”.| . . ... ... ... 108

[7.3  Distributions of number of hit pixels in the simulation| . . . . . . ... .. 112

[7.4 Typical distribution of number of hit pixels (i.e. n,) for the square cluster |

[ modell . ... 112

[7.5  Distribution of number of hit pixels (i.e. n,) for the square cluster model |

| (obtained from real physics data)| . . . . . .. .. ... .. L. 112

[7.6 Comparison between VEPIX53 simulations (with generation of fixed size |

| clusters) and the symmetrical cluster model based on buffer occupancy.| . 113
[7.7  Comparison between VEPIX53 simulations (with generation of fixed size
| clusters) and the symmetrical cluster model in terms of buffer overflow

| probability| . . . . . ... 114




List of Figures viii

[7.8 Typical distribution of number of hit pixels (i.e. n,) for the square cluster

| model with Average 4.22. . . . . . . . . . . ... ... ... ... 115
[7.9  Observed distributions of number of hit pixels in the simulation. The |
| measured average is slightly lower than expected: 3.84] . . . . . ... ... 115

[7.10 Comparison between VEPIX53 simulations (with generation of variable

| size clusters) and the symmetrical cluster model based on buffer occupancy.[116
[7.11 Comparison between VEPIX53 simulations (with generation of fixed size

| clusters) and the symmetrical cluster model based on buffer overflow

| probability| . . . . . .. 116




List of Tables

[[.1 Hybrid pixel ASICs classification [2]] . . . . . ... ... ... ....... 10
[L.2  Pixel chip generations [7).| . . . . . . . ... ... 11
[2.1 SystemC and System Verilog complementary design capabilities |8 . . . . 16
BT Soihionh s ohiamed T o] . 1 . | 24
3.2 Results of simulation performance tests.| . . . . . . . .. ... ... .... 31

ix



Abbreviations

ADC Analog-to-Digital Converter

ASIC Application Specific Integrated Circuit
ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC ApparatuS

BX Bunch crossing

CAE Computer-Aided Engineering

CERN  European Organization for Nuclear Research
CMOS Complementary Metal Oxide Semiconductor
CMS Compact Muon Solenoid

DAC Digital-to- Analog Converter

DAQ Data AcQuisition

DUT Design Under Test

EDA Electronic Design Automation

EOC End Of Column

ESL Electronics System Level

FIFO First In First Out

FSM Finite State Machine

HEP High Energy Physics

HDL Hardware Description Language

HDVL  Hardware Description and Verification Language
IC Integrated Circuits

10 Input Output

LHC Large Hadron Collider

(0]0) Object Oriented Programming

OSCI Open SystemC Initiative



Abbreviations

xi

MAPS
MSIE
OVM
PC
PUC
RNM
ROC
RTL
SV

TL
TLM
TOA
TOT
VHSIC
VHDL
UML
UVM

Monolothic Active Pixel Sensors
Multi-Snapshot Incremental Elaboration
Open Verifiication Methodology

Pixel Chip

Pixel Unit Cell

Real Number Modeling

Read-Out Chip

Register Transfer Level

System Verilog

Transaction Level

Transaction Level Modeling

Time Of Arrival

Time Over Threshold

Very High Speed Integrated Circuits
VHSIC Hardware Description Language
Unified Modelling Language

Universal Verifiication Methodology



Introduction

ert generation pixel detector systems and ASICs will have to face many technical
challenges, including smaller pixels to resolve tracks in boosted jets, much higher hit
rates (1-2 GHz/cm?), unprecedented radiation tolerance (10 MGy), much higher output
bandwidth, and low power consumption. Their electronics will also have to work reliably
for years under extremely hostile radiation conditions. A collaboration, named RD53,
has started to design the next generation of hybrid pixel readout chips to enable the phase
2 pixel upgrades of the ATLAS (A Thoroidal LHC ApparatuS) and CMS (Compact
Muon Solenoid) expertiments. This formal collaboration has participating universities
and research institutes from Europe and USA. In detail, in this thesis I worked in the
implementation of a pixel verification and simulation framework for the optimization of
the architecture of next generation pixel chips.

In the remainder of this section I will describe the contents and the organization of the
thesis. In Chapter [I]an introduction on the state of the art of such detectors and on next
generation requirements will be introduced. Moreover, a big challenge will be the growing
complexity of such systems, both at the level of the single blocks specifications and at the
top level. This requires a large effort to design and qualify front-end electronics following
a modular approach and to encourage re-usability between different experiments for
saving time and resources. For those reasons it is necessary also in High Energy Physics
applications to start to look into system level design flow and new high level languages
largely used in industry: a summarily description of SystemC, System Verilog and of the
Universal Verification Methodology will be provided in Chapter In order to prove
that the tools used are able to deal with the system target complexity, initial study
on scalability and an evaluation of some commercial simulation tools have been done

and are reported in Chapter Parallel design of singular blocks, of the system top



Introduction 2

level and of a framework capable of simulating it, optimizing its architecture and finally
verifying it is encouraged for facing the design complexity. In Chapter [4], the work done
for obtaining a model for the basic building block of a pixel chip is described and the
different architectures that have been simulated at the system level in the framework
are introduced. The overall structure of the simulation and verification environment
will be presented in Chapter [b| and details will be provided on its interfaces to the chip
and on the role of each verification component. A specific one, in charge of generating
meaningful hit stimuli, will be the focus of Chapter [f] Finally, in Chapter [7 it will
be presented a test case where the developed framework and hit generator have been
used for the optimization of buffering architectures. Simulation results will be compared
with the ones obtained from an implemented statistical/analytical model of the same

buffering architecture.



Chapter 1

Electronic circuits in pixel

detectors for High Energy Physics

sbe notion of pixel comes from image processing applications and it describes
the smallest discernible element in a given process or device. A pixel detector is
therefore a device able to detect an image and the size of the pixel corresponds to the
granularity of the image. For high energy physics (HEP) applications, the focus is put
on pixel detectors which are particularly fast and able to detect high-energy particles
and electromagnetic radiation. Pixel detectors are used in High Energy Physics (HEP)
applications as radiation sensors that are distributed in complex systems used for
tracking high energetic particles. Accelerators generate elementary particle collisions
at a rate of 10-100 MHz, with particles emerging from every collision. Some rare, but
interesting particles live about 1 ps and then decay into a few daughter particles [IJ.
An example of such a decay is sketched as in Figure the collision vertex (V) and

the decay vertex (D) are also indicated.

Therefore they are high granularity tracking detectors which provide unambiguous and
precise 3D measurements in the harsh environment close to the interaction point. The
charged particles traversing the sensor releases electron-hole pairs that can be separated

and drifted to collection electrode with high voltage biasing ( ~100V).

The main requirements of such detectors are:



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 4

F1cURE 1.1: Topology of a short-lived particle decay, with ordinary particles emerging
from the same collision [1].

e space and time resolutions for unambiguous detection of short-lived particles;

e capability of coping with the increasing interaction rates and energies of modern

particle accelerators;

e high level of radiation hardness, since they are placed in an extremely hostile

environment;
e fast readout (depending on technology);

e selection of events of interest.

Pixel detectors are used at the heart of the trackers in the experiments of the Large
Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN),
e.g: A Large Ion Collider Experiment (ALICE), A Thoroidal LHC ApparatuS (ATLAS)
and Compact Muon Solenoid (CMS). They are also key elements for the upgrades, as

will be more presented more in detail in the following sections.

Different approaches exist for pixel detectors when it comes to the way the sensible part
(i.e. the sensor) is linked to the readout Application Specific Integrated Circuit (ASIC).
As regards the sensor material, there are potentially multiple options: planar silicon, 3D
silicon, diamond (both planar and 3D), CMOS sensor, etc. The material most commonly
used at the state of the art for pixel detectors is silicon. Some groups have looked into
the possibility of building both electronics and sensor in the same technological process,
integrating the charge generation volume into the ASIC itself. This leads to the so-
called Monolithic Active Pixel Sensors (MAPS), whose basic block is shown in Figure
Such an approach aims to reach lower cost, higher resolution, lower mass but has
also drawbacks, starting from the fact that silicon substrate used for electronics chips

in most cases is not ideal as silicon detector, where low resistivity would be the optimal



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 5

choice. The connection to the detector in the substrate is also critical, as also getting

sufficient charge collection (and speed) efficiency.

K B v ¥ Nmos

L e
4 |n-well

p++ substrate

: particle track

FIGURE 1.2: Traditional MAPs building block [2].

For those reasons, at the state of the art the baseline approach used for the running
detectors are the Hybrid Pixel Detectors (HPD). They are composed of a sensor
(typically a semiconductor photodiode), where information related to the passage of a
particle is generated, decoupled from a high density ASIC circuit for data readout and
processing. The adjective “hybrid” comes from the fact that those two blocks are
fabricated separately and are then joined together through a process called bump
bonding, as shown in the basic building block shown in Figure [I.3] Such a process is
characterized by very high cost, even if there is hope that it could improve in the
future profiting from bonding techniques from 3D technologies. Hybrid pixels are

capable of standing high radiation levels and are also reliable for high rate applications.

- —

front-end
chip

J

/

T £ pixel
detector

FIGURE 1.3: Hybrid Pixel Detectors: single building block [2].

Matrices made of hundreds of thousands of pixel cells can be implemented in few square

centimeter surfaces thanks to planar integration technology. Such a matrix of elementary



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 6

Pixel Unit Cells (PUCs) is called Pixel Chip (PC): it can be divided into an active area
which contains a repetitive matrix of nearly identical pixels and the chip periphery from
where the active part is controlled, where data are buffered and global functions common

to all pixels are located, as shown in Figure [1.4]

[G
o o oo e
A o o ola olc o o N
o o ajo alo o o

o PUC ojo olo ° o
o olo olo =] o
o ole ole ° o
o ofe ole © o
o ofe BE o o
o ole ofo ) o
o ojo ofo o o
o oo oo =] o
column control, column control,

logic and buffer logic and buffer

global chip control, trigger handling, event building,
bias generators for analog part, monitering functions

FIGURE 1.4: Generic pixel detector: active area and periphery circuitry [I].

Matrices are then joined together and arranged in complex modules that cover the inner
surface of the collider. Hybrid pixel detector modules are made from multiple pixel
Read-Out Chips (ROC) bump bonded to a single pixel sensor. Readout and control
signals plus power are connected from the ROCs through wire-bonding to a thin and
light printed circuit board glued on the back side of the pixel sensor. Just to give an
example, in the CMS tracker sensors are arranged in concentric cylinders around the
interaction region of the LHC beam. A sketch of this structure can be seen in Figure
The center of the tracker is at the left-bottom corner of the drawing, the horizontal
axis, to which the detector has a cylindrical symmetry, points along z, and the vertical

axis points long the radius r. The LHC beams are parallel to the z axis [9].



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics

"y ;S SS S S i’:
s bk b edee 18
= = | | | | T =
= A L ] >
- |] |I Il |I | |I |I |I |l 2
Inner Barrel 7 — _— _—_ 5 et O 5 e e
(T8) = A LT Endcap
_P:x;::;}rn_l‘; :;_——l | |ﬂﬂ¢rll'1gi'sc; (TEC) +
p © Pl Encap T N e wm mm e = s P

(TPE)

FIGURE 1.5: Quarter of the r-z slice of the CMS tracker.

1.1 Basics on hybrid pixel detector design

Some basic concepts which are important in order to understand the features and the
design challenges of HPDs are mentioned in this part. For more detailed descriptions

references that can be found in literature will be provided.

1.1.1 The Front-end electronics

The classical approach for the analog front-end of a single unit cell is made of a
combination of pre-amplification circuitry and a discriminator(whose threshold can be
set through a Digital-to-Analog Converter) that produces a binary output, to be read
out from the digital front-end. Such a generic structure, with an optional shaping filter

in addition, is shown in Figure Details on this architectures can be found in [I].

feedback

—C O—
Lo

bump pad

LC
T

Cinj

fitter discriminator
mash — "
0= £ I)_> Readout
o e
. U
i
leakage global
| compensation threshold
| test local threshold | | hit OR Con’u'd.l
injection adjustment Register bits

FIGURE 1.6: Components of a generic PUC [I].




Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 8

In order to perform the analog to digital conversion of the charge information different
approaches can be evaluated, i.e. the use of a Analog-to-Digital Converters (ADC,
individual or shared between different PUCs, with just one or more bits) or a Time
Over Threshold (TOT) measurement. The key concept behind each of them can be
observed in Figure While the first is a quite generic way of achieving analog-to-
digitl conversion, the latter is particularly used for HEP applications: the TOT is the
time during which the signal is higher than the discriminator threshold. It can be

measured using a clock signal and a digital counter.

Thr

F 3
A

]
»
>

F Y

TOT

Ficure 1.7: Comparison between charge digitization methods: ADC and TOT
approaches [3].

From the Figure it can also be observed the time-walk problem: in the analog front-
end particles that deposit higher charge produces a faster response than those that
produce a lower charge. The response time of the discriminator (in combination with
the rising time of the pre-amplifier) is crucial in applications where the arrival time of
a signal must be detected with high precision. In the case of very low-energy particles
the time walk can become higher than the minimum required time resolution, causing
the particle arrival to be associated to the following cycle. Compensation strategies are
then needed in order to correct it. For details on the concept of response time of the

discriminator the reader can refer again to [I].

1.1.2 Readout architectures

The readout architecture of the ASICs of HPDs depends very much on the target
application. Position, time and possibly the corresponding pulse amplitude, of all hits
belonging to an interaction must be usually provided in HEP. This requires a timing
precision at least equal to the bunch crossing interval (25ns) for the detectors at LHC.
An exhaustive description of the readout architectures is beyond the scope of this work

and material on existing detectors can be found in [I] and [10]. Just an introduction



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 9

on the distinction between trigger-less and triggered architectures will be herein
provided since it is a key concept to be introduced for the understanding of this work.
Some experiments with low input rates allow the readout of each event to be done
immediately after the interaction, while when higher rates are involved on-detector
data reduction is needed in order to obtain a feasible data rate towards the Data
Acquisition (DAQ). For this purpose, usually a trigger signal, that is generated by
other parts of the detector (e.g. calorimeters or muon chambers), is used for selection
of hits of interest. Since the delay between the time when a particle is detected and
when the trigger signal is provided to the digital logic that performs the selection can
be high (latency is currently in the order of around 100 interactions and will be
incremented in the future detectors, see Table in the following section), some
storage logic is required and the limited buffering space available is a source of loss of
hits. Also the choice on in which part of the pixel chip to locate the buffers (End Of
Column (EOC), single PUC, region of certain number of PUCs) leads to different
architectures. Some details on existent and planned buffering strategies to be used can

be again found in Table [I.2]in the subsequent section.

1.2 State of the art and future of hybrid pixel detectors

Running detectors are all based on the hybrid approach and this is still the baseline choice
for next generation pixel chips as well. Indeed, even if MAPs offer many advantages
(smaller pixels, lower capacitance, less material, lower cost, etc...), hybrid detectors
are still considered the most reliable way of coping with very high particle rates and
fluence [11] that add additional challenges to the designers (e.g. radiation hardness
requirements, need to integrate high rate logic and large buffers, cross-talk problems
coming from in-pixel logic).

The LHC community tends to refer to pixel readout chips in terms of generations.
The present ATLAS and CMS detectors contain the so-called 1% generation chips. 2"d
generation chips have been designed and fabricated and will become operative for the so-
called phase0/1 upgrades, after the end of the first Long Shutdown, that is taking place
during the years 2013-2014 [12]. The longer-term plan would lead to the 3' generation
chips, that are supposed to become operative for the phase 2 upgrade, that will follow

the second Long Shutdown (2017-2018). A straightforward classification of the state of



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 10

the art of hybrid pixel ASICs, taken from a seminar on the Timepix3 pixel readout chip
[13], can be observed in Table

TABLE 1.1: Hybrid pixel ASICs classification [2].

Medipix2 1BM250n | 2005 | 55 [256*256 pC 14 Fullframe | External | MO No Imagin
p
continuous
32-bit CMOS DDR
EIGER UMC 250nm | 2010 75 256*256 PC 4,80r12 Full frame External | Continuous No @ 200 Mbps
.y & 1,2,4 or 8-LVDS
Medipix3RX IBM 130n 2012 55 256*256 PC 1,6,12 or 24 Full frame External | Continuous No @ 2;; Mbps
——
- = Non- 32-bit CMOS
Timepix IBM250n | 2006 | 55 |256*256| PC,TOTerTOA 14 Full frame | External ek No :
continuous @ 100 Mbps
384*384 TOA and TOT 1,2,4 or 81LVDS
SmaliPix IBM 130n | 2014 ? | 35-40 24-32 0-compressed | External | Continuous No =
512*512 PC and iTOT B @ 250 Mbps
S Non-
ClicPix_demo | TSMC 65nm | 2012 25 64*64 | TOTand TOA 9 0O-compressed | External c‘mti"n ':mus NI HEP Low Rate
5 3 N 32-GTL
Alice1LHCb IBM 250n 2001 | 50%425 | 256*32 | TOA and Binary |2 FIFO of 8 bit BCOj0-compressed | External | Continuous Yes @ 40 Mbps
< 6-8 bit analog
PSI46 [CMS) 1BM 250n 2005 | 100*150 | 52*80 Analog i 0-suppresed | External | Continuous Yes @ 40 MH
z
8-bit TOA +
FEI3 (ATLAS) IBM 250n 2006 | 50 *400 | 160*18 TOA and TOT pddkee= O-suppresed | External | Continuous Yes e
EOC event PP @ 40 Mbps
Buffering
FEI4 (ATLAS) 1BM 130n 2011 | 50*250 | 336*80 TOA and TOT ? O-suppresed | External | Continuous e HEP Tr|gge red
TDCpix (NA62) | IBM 130n 2012 300 45%40 TOA and TOT 48 0-suppresed Data Continuous No i
e P! driven @ 3.2 Gbps
ToPIX (PANDA 1BM 1301 2012 100 116*110 TOA and TOT 48 0 d Ut Conti N LIV0S
oPIX ( ) n an -supprese: . ontinuous L] T
P O
Ti ix3 1BM 1301 256*256 TO:nd‘ TOT 44 0 d ot Conti L& SIVDS DOR
imepix n a -supprese diven ontinuous @ 640 Mbps
PC .
i ? * - i coar-
VeloPix 1BM 130n | 20147 55 |2567256| .o 30 O-suppresed | | Continuous HEP Trigger-less
SCaRR AR T
Semi- .
;i -
Dosepix 1BM 130n 2010 220 16*16 TOT 256 Full frame | External P s D05| metry

Hybrid pixel ASICs are therein classified depending on the application: imaging, High
Energy Physics with Low Rate, High Energy Physics with triggering (Triggered) or
without triggering (Trigger-less), dosimetry. The target application affects significantly
the design challenges and choices. For example, while buffering resources are a more a
critical aspect for triggered than trigger-less architectures, since all the incoming data
need to be read out in the latter case.

As regards the technology node of the detectors at the state of the art, it can be noticed
still in Tablethat 15t generation chips like the current ATLAS and CMS chips [14, [15]
are fabricated in a 250 nm technology. What can be considered the state of the art are
chips under construction or at advanced design stage for ATLAS and CMS, as well as
the Medipix and Timepix chips [16, [17]. As concerns the technology used, the CMS pixel
upgrade is based on a modified version of the 15¢ generation chip in 250 nm CMOS [18],
while the other examples are all 2"9 generation chips in 130 nm CMOS. Between those
ones it is worth to mention the FE-I4 chip being used to build the Insertable B-Layer
upgrade of ATLAS [19].



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 11

1.2.1 RD53 Collaboration

Now the attenction will be focused on next generation pixel chips. The Phase 2 pixel
detector systems and ASICs will have to support unprecedented high hit rates (~1-2
GHz/cm?) and radiation levels. The pixel detector electronics will have to work reliably
for 10 years under extremely hostile radiation conditions of up to 10 MGy and 106
hadrons/cm?. This is an unprecedented radiation level for electronics of such complexity.
A large part of the required design efforts will be assigned to design and qualify front-
end electronics to work reliably under such harsh radiation conditions. Besides, they are
meant to achieve better resolution thanks to the use of smaller pixels and to keep power
consumption the same or possibly lower. The increase in trigger latency (of a factor
of ~10) combined with the growing hit rate will bring to ~100 times higher buffering
requirements. A substantial increase (factor of 100) in the readout data rate will also
have to be faced by future designers. A comparison of the 3¢ generation chips with
the state of the art can be observed in Table for the ATLAS and CMS pixels: some

parameters of crucial importance are highlighted.

TABLE 1.2: Pixel chip generations [7].

Generation Current Phase 1 Phase 2: HL-LHC
FEI3, PSI46 FEI4, PSI46DIG

Pixel size 100x150um? (CMS) 100x150um? (CMS) ~ 50x50um?
50x400um? (ATLAS) 50x250um? (ATLAS)
Sensor 2D, ~300um 2D+3D (ATLAS) 2D, 3D, Diamond,
2D (CMS) HVCMOS ?
Chip size 7.5%x10.5mm? (ATLAS) 20x20mm? (ATLAS) > 20 x 20 mm?
8x10mm? (CMS) 8x10mm2 (CMS)
Transistors 1.3M (CMS) 87M (ATLAS) ~1G
3.5M (ATLAS)
Hit rate 100MHz/cm? 400MHz/cm? 1-2 GHz/cm?
Trigger rate 100kHz 100KHz 200kHz - 1MHz
Trigger latency 2.5us (ATLAS) 2.5us (ATLAS) 6 - 20us
3.2us (CMS) 3.2us (CMS)
Hit memory per chip 0.1Mb iMb ~16Mb (160x)
Readout rate 40Mb/s 320Mb/s 1-4Gb/s (100x)
Radiation 100Mrad 200Mrad 1Grad
Technology 250nm 130nm (ATLAS) 65nm
250 nm (CMS)
Architecture Digital (ATLAS) Digital (ATLAS) Digital
Analog (CMS) Analog (CMS)
Buffer location EOC Pixel (ATLAS) In Pixel buffering
EOC (CMS)
Power ~1/4 W/cm? ~1/4 W/ecm? 1/2-1W/cm?

In order to cope with those unprecedented requirements (a detailed list can be found in

[6]), that are similar for the ATLAS and CMS experiments, a new cross experiment



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics 12

R&D collaboration, named RD53, that aims to develop the next generation of pixel
ROCs has started. This formal collaboration involving 18 participating institutes from
both ATLAS and CMS experiments is focused on the required radiation
testing/qualification of the proposed Integrated Circuit (IC) technology and developing
the required IC to build the next generation pixel ASIC. Large pixel chips are going to
be designed and prototyped within this collaboration framework. In particular, the
collaboration is focused on different subjects, for each of which a dedicated working
group has been created: qualification of a technology able to survive in the harsh
radiation environment, definition of a top-level architecture, development of a
simulation framework, development of rad-hard Input Output (I0) cells, evaluation

and design of the analog front-end, design of specific IP blocks.

As regards the pixel size, two basic ones of 50x50 ym? and 25x100 pym?, that bring to
the same ROC area, have been found to be the most promising compromise between
significantly improved tracking performance and what can realistically be implemented
in a next generation pixel readout chip and pixel sensors. This pixel size is also
compatible with available bump bonding technologies. Elongated pixels (25x100 pym?)
can be optimal in some parts of the pixel detector (e.g. end of barrel layers with
inclined tracks) and square pixels (50x50 pm?) can be optimal in other parts (middle
of barrel and forward disks with near perpendicular tracks). With an appropriate
bump-bonding pattern the same ROC can be used for the two different pixel aspect

ratios.

As concerns the technology node to be used, currently 65 nm is currently being
investigated by both the CMS and ATLAS phase 2 pixel upgrade projects as baseline
technology, even if it needs further testing for higher radiation levels. This technology
is quite mature and long-term available in industry and thanks to the scaling process it
can also guarantee the higher speed and density (the latter is vital for obtaining
smaller pixels and to ensure more logic capability). Going to smaller technology nodes
(e.g. 40 nm or 28 nm are existing ones) has also its drawbacks: higher costs of
engineering and of Mixed-Project Wafer runs together with a higher design complexity.

The 65 nm technology is therefore considered a good compromise.

As regards the object of this work, it can be collocated in the working group (WG3)

that is dedicated to the development of a pixel verification and simulation framework



Chapter 1. Electronic circuits in pizel detectors for High Energy Physics

13

for the actual optimization of the architecture of next generation pixel chips.



Chapter 2

System Description and

Verification Languages

@n the industrial context the increasing complexity of system-on-chips (SoCs)
and time-to-market pressures, have lead to an attempt to raise the abstraction level of the
description of the systems [20]. By designing at the system level, it becomes possible for
hardware engineers to avoid gate-level semantics, to manage growing system complexity,
to speed up simulation, to support system-level verification and possibly HW/SW co-
design. All this advantages enable design productivity to increase, development costs
and risks to reduce and time-to-market to accelerate.

Even in HEP applications, the evolution to new generation pixel chips leads to an
increase of complexity. For this reason the community has started to look into available
and appropriate languages and tools to enable simulations at both very high level and
detailed gate level using well established toolkit components for all the major Computer-
Aided Engineering (CAE) tool suppliers [6]. A brief introduction about existent high-
level design languages and tools is provided in this chapter and the motivations of the

decisions that have been currently taken are described.

14



Chapter 2. System Description and Verification Languages 15

2.1 SystemC and Transaction Level Modeling

SystemC is defined and promoted by the Open SystemC Initiative (OSCI), and has
been approved by the IEEE Standards Association as IEEE 1666-2005 [2I]. It has
increasingly been used for system-level modeling, architectural exploration, functional
verification, and high-level synthesis. It uses a set of C++ classes enabling a designer
to simulate concurrent processes, each described using C++ syntax and, if needed,
Object Oriented Programming (OOP) features. In certain aspects, SystemC
deliberately resembles Hardware Description Languages (like VHDL and Verilog), but
is more appropriate to describe it as a system-level modeling language.

This language is often associated with the concept of Transaction Level Modeling
(TLM). In such models, the details of communication are separated from the details of
computation components. Communication is not modeled through signals resembling
the HW, but by high level channels where information is passed through transactions.
Details of communication and computation are hidden in a TLM and their addition is
postponed to following steps of the design. This is claimed to be an approach that
speeds up simulation and that allows architecture exploration to be easier and faster
[22]. On the other hand, it can be observed that such models than need to be detailed
in order to obtain a synthesizable description of the chip and no gate-level description
can be used. So a clear design flow and appropriate synthesis design tools need to be
available and proved to be effective.

Even if not excluded as a possible system description level language, it has not been
chosen in the context of this work. The reason of the choice that has been made will

be clarified in the following sections.

2.2 SystemVerilog

Another language that is spreading in the industry for system-level modeling is
SystemVerilog (SV). Differently from SystemC, it has been developed as an extension
of an established Hardware Description Language (HDL). Indeed, it has its bases on
IEEE 1364-2005 Verilog Standard [23] with which many additional features (coming
from SUPERLOG, C, C++4+ and VHDL languages, along with OVA and PSL

assertions), are integrated in order to provide improved specification of design,



Chapter 2. System Description and Verification Languages 16

conciseness of expression, together with unification of design and verification. Like
SystemC, SystemVerilog supports Object Oriented Programming, that adds both the
possibility of obtaining high level description of systems and a new approach for
verification. For this reason it is often referred as a Hardware Description and
Verification Language (HDVL). What has to be underlined is that with SystemVerilog
these multiple levels of description can not only co-exist, but also be developed using a
unique language.

It is so clear how in the context of RD53, where this work can be collocated, for the
development of a dedicated pixel verification and simulation framework (capable of
simulating alternative pixel chip architectures at increasingly refined level [6]),

SystemVerilog has been taken into account as a particularly valuable option.

A comparison between some fundamental capabilities of SystemC and SystemVerilog is
reported in Table

TABLE 2.1: SystemC and SystemVerilog complementary design capabilities [8]

SystemC SystemVerilog

Core abstration level Events and messages Logic states and transitions

Architectural design System:-level hardware view | HW implementation view;
and SW programmer's view | DPI link to C/Ce++MSystemC

Architectural verification Cycle accurate Timing accurate RTL @

and HW/SW co-verification | TLM& >10,000 cps 1-10 ¢ps; TLM capability;

C-like extensions for
algorithmic descriptions

RTL-to-gates design No gate-level modeling Logic synthesis

RTL-to-gates verification TLM/RTL ce-stimulation Implementation testbench,
including ABV and
functional coverage

2.2.1 SystemVerilog for Design

A brief overview on SV capabilities when it comes to chip design will be herein provided
since they have been used for the developed model of the pixel chip, as it will be described
in the following parts. It is herein reminded that the design can be described at different

levels (not all directly synthesizable, since just a subset of the SV constructs are):



Chapter 2. System Description and Verification Languages 17

Gate Level (GL): describes the logic gates and the interconnections between them.

It it is always synthesizable;

Register Transfer Level(RTL): a model that describes the data flow between
registers and how a design processes these data. It is normally done using

synthesizable code;

Behavioural level: a model that implements a design algorithm in high-level
language, describing how a particular design should respond to a given set of
inputs. It is not in general guaranteed to synthesize (this implies that the

designer is aware of synthesizable SV constructs);

TLM: this approach is intended to be used for high level system description and

cannot be directly synthesized.

Among the new features, SV offers conciseness of expression achieved through the

addition of coding shortcuts from C, the simplification of port expressions, and the

collection of related data together. Those new capabilities have been used in the work

that has been done for the description of the Design Under Test (DUT) part of this

work. The main improvements when comparing it with Verilog are listed below [24]:

extended built-in data types and enhanced ways of specifying literal values;
user-defined and enumerated data types;

support for array, structures and unions;

enhancement to Verilog procedural blocks and tasks/functions;
enhancement to Verilog procedural statements;

enhanced modelling of Finite State Machines (FSM);

enhanced modelling of interconnections.

It is not purpose of this work to cover all of them, and it is recommended to make

reference to [24] and to the Language Reference Manual (LRM) [25]. Just the ones that

have been used in this project will be summarized if needed.



Chapter 2. System Description and Verification Languages 18

2.2.2 SystemVerilog for Verification

With designs getting bigger and more complex, verification is starting to take the most
part of the design effort. In industry there is furthermore a strong need to reuse existent
code, to use more efficient coding constructs and to have ways to measure verification
progress. In this context, SystemVerilog itself provides many features to create complete
verification environments at a higher level of abstraction than what is possible to achieve
with a standard HDL. This makes also possible a verification approach that goes beyond
traditional simulations based on directed testing. Some of the typical features of this

HDVL that distinguish it from a HDL are summarized in the list below [26]:

e constrained-random stimulus generation;

e High level structures, especially Object Oriented Programming and Transaction

Level Modeling;
e multi-threading and inter-process communication (IPC);
e assertions;

e functional coverage, that measures the progress of all tests in fulfilling the

verification plan requirements.

Also in this case, it is not a goal of this work to give a complete description of all of them.

When needed for the understanding of the following sections details will be provided.

Directed testing is a very automatic and unobtrusive way to collect test coverage, by
measuring which tests have passed and which have failed, and performing failure
analysis. FEven if it makes easy to measure progress, protocol specific stimulus can
often require much rework under architectural changes. Another significant problem
with this approach is that only defects with specific features are normally found, while
the methodology does not cover unforeseen bugs.  Advanced RTL verification
techniques start to look into use of constrained random stimuli, that enables testing to
be capable of identifying more bugs and faster. At the same time it is difficult to see
what has been actually tested because the testbench is by definition randomized.
Coverage driven verification is added to visibly see what is tested and what is not

during this randomization process. Functional coverage has been seen to produce huge



Chapter 2. System Description and Verification Languages 19

amounts of coverage data: it can make difficult to analyze which design features belong
to which coverage point. Coverage driven has for this reason some limitations that
affect its usability and scalability. The newest approach is to use the so-called Metric
Driven Verification that aims to use different “metrics” rather than just coverage,
including: checks, assertions, software, and time-based data points. This can be
achieved starting from a clear and organized verification plan, that helps to manage
the wealth of data captured by all the tools involved in the execution of a verification
project. It is goal of this (and of the future) work to achieve such an efficient, scalable,

productive, and predictable verification process.

2.2.3 Universal Verification Methodology

On top of SV, specific verification methodologies have also been defined based on
industry practices. The more recent ones are the Open Verification Methodology
(OVM) and the Universal Verification Methodology (UVM), where the latter is
becoming a mature standard used by a growing community. For getting started with
UVM there are many available references: the UVM user guide [4] and online resources
offered by industries (e.g. [27] are valuable and free ones). This book [2§] can also be
recommended since it provides with practical advices. @ Compared to standard
SystemVerilog, UVM offers a set of more solid and documented base classes for all the
building blocks of the environment, as it can be noticed in Figure 2.1  High
configurability, highly customizable reporting features and the possibility of building

reusable environments are other well-known UVM capabilities.

Components can be instantiated hierarchically and their operation is controlled through
an extendable set of pre-defined phases that are executed in a strict order. These phases
are potentially many, but the most relevant ones (that have been mostly frequently used)

are the following;:
e an initial build_phase(), used to construct various components and configure them;

e a connect_phase(), during which the components are linked one to the other;

e the actual run_phase(), when the parallel simulation of all the components takes

place;



Chapter 2. System Description and Verification Languages 20

uvm_object

name I

copyl()

clone() | uvm_transaction |

=

P ‘ uvm_sequence_item |

—ll il
uvm_report_object
uvm_report_"() u:::?:?eqmm
[ T ¥
SR I rim

parent : A A :
children Im_‘_m| | uwim_*_port | | wm_*_imp |

get’set_config()
uvm_subscriber | create()

writad) build() F——— tm_fita | —4 tim_req_rsp_channel |

connect) . = B
:;::Efgf:nﬁz?m?::ﬂ | analysis ffo | | tm_wansport_channel |
Fun
|
e Fay ray :
v aer, | - montor [ g
luvm_scoreboard

FIGURE 2.1: Partial UVM class library [4].

e the report_phase(), finally used for reporting the pass/fail status and for eventually

dumping result of analysis performed in the environment.

Potentially the run phase itself could be furthermore divided in a quite long list of
different phases, that are reported in the UVM Class Reference [29], but the use of
those is not recommended for re-usability [28] since it is not a well-established approach
and it is likely to change in the future.

From the experience gained working on this thesis, it can be reported that the initial
learning phase of the UVM coding constructs has been rewarded by the pre-existent
features offered by the methodology, as it has been partially introduced. Indeed, as an
initial step in this work just self-defined SV classes had been used when building the
environment (some examples of such components can be found in the last chapters of
[26]), but they have clearly much less evolved features and they simplify much less the
task of building a very configurable and generic environment if compared with the UVM
ones. For those reasons it has been decided to adopt this advanced methodology in this
work.

The description of the role of the different UVM components will not be herein provided,
apart from what will be described in the context of the environment description.

What is anyway worth to be highlighted is the UVM capability of performing different



Chapter 2. System Description and Verification Languages 21

tests on a certain DUT reusing a unique verification environment for all of them. The
test case-specific code is kept separate from the testbench and it is the code intended
to be used by verification engineers that have not been developing the environment
itself and may not know the details on how it has been designed. This aspect is of
fundamental importance in industry where the team of “test-writers” engineers can be
separate from the people that design the environment, but also in the context of a

collaboration between multiple experiments and institutes like RD53.



Chapter 3

Evaluation of software tools

Every valid methodology requires the existence of tools capable of dealing with
problems of growing complexity in a shorter time. For this reason, the Electronic
Design Automation (EDA) tools have evolved during the years from simple simulators
to complex frameworks capable of guiding the designer also in high-level choices [20].
As concerns the design verification role, SystemVerilog and UVM are widely used in
industry and the largest EDA vendors have incorporated it into their mixed language

HDL simulators. The three main and EDA vendors are:

e Cadence, with the simulation tool Cadence Incisive Cadence Incisive [30];
e Methor Graphics, whose HDL simulator is Questa/Modelsim [31];

e Synopsys, with the tool Synopsys VCD [32].

After an initial period during which the different vendors were proposing different
verification methodologies, the birth of UVM has finally brought to a unique (and

possibly compatible) framework.

It has to be reported that while working on the definition of the verification environment
in some cases significant simulation speed problems have been hit. For this reason, before
going on with the design of the simulation framework an initial study on scalability and
also an evaluation of some commercial simulation tools has been performed. Some details
on this study are reported in the sections of this chapter. It is anyway highlighted that
the tool mainly used for this thesis has been Cadence Incisive, since it was the software
more eagsily available in the context of the work.

22



Chapter 3. Evaluation of software tools 23

3.1 Preliminary study on scalability

As anticipated, while developing the first versions of the verification environment
significant simulation time issues have been hit. It is not purpose of this chapter to
describe them in details, since just the latest version of the environment will be
presented in chapter [5|. A quick overview on the problems that have been encountered
will be anyway given in order to understand their entity and to introduce the
expediences used to analyse and possibly solve them. The initial simulation had been
run with a very preliminary and partial version of the environment, shown in Figure
which will not be described here. Its overall architecture should anyway become
quite clear after the reading of the dedicated chapter.

PixelChip_test2 |
PIXE'ChIp_tEStl \
PixelChipEnv
Stimuli_Component

Virtual Hit Agent Trigger Agent

Sequencer Hit it Driver Trigger Trigger Driver
Sequencer Analog hits Sequencer
Virtual r ||
] Hit Sequence [ Trigger Sequence
SEIuen # #(Hit_Trans) T #(Trigger_Trans) /

Hit Monitor
/ _—4!.’
LY
\

PixelChipHarness \ J / PixelChip
Hit_intf | Trig_intf
Clock and reset D UT
generator PixelChip Interfaces

FIGURE 3.1: Initial (and partial) structure of the Verification Environment used for
study on scalability

While starting to build the environment the first very simple approach used to generate

random hits to be sent to the pixel chip was the following;:

e every bunch crossing cycle a complete bi-dimensional matrix (since 1024x256 is
an option mentioned in [6] this size has been used), with a correspondence 1:1

between the elements of the array and the pixels of the chip;

e the whole array has been randomized with a constrained probability of being hit.



Chapter 3. Evaluation of software tools 24

TABLE 3.1: Simulation time results obtained from the initial version of the

environment.
Number of bunch crossing cycles | Simulation time CPU usage | Memory usage
100 143.0s (~2min30s) 99.0% 1134.4M total
10000 12217.1s (~3h30min) | 100.0% 1134.4M total

Simulations with such a simple generation approach have been run with:

e DUT not actually instantiated in the simulation (further development was at the

time still needed)

e All debug messages turned off since it has been observed that they cause simulation

time to increase significantly

In order to study simulation performance a tool used in IC design for this purpose has
been used, i.e. the so-called profiler. In particular, Cadence HDL simulator contains a
utility that generates an output file with information that can guide users in
understanding and possibly optimizing the environment, also improving simulation
performance. The profiler internally keeps track of the number of what are called
“hits” in the running activities: this is a quantity that approximates the amount of
CPU time spent in each of them. In particular, Cadence also offers the possibility of
running a profiler specifically designed to be used with UVM environments. This is the
Incisive Advanced Profiler, that has been herein used, as in other steps of the design,

each time it was considered useful.

Some simulation time results have been reported in Table , highlighting the number
of BX cycle being run, the total simulation time needed, the CPU and memory usage.
It has to be said that these results were obtained already after some optimization of the

code done thanks to the profiler analysis.

The analysis performed with the profiler has shown that the use of resources was mainly
due to randomization of the bi-dimensional array made of around 256K pixels. If still
sustainable when simulating small models of the chip, such performance is not acceptable
when running only a subset of the environment, i.e. the stimuli generator. For this reason
it was planned to change the approach used for hit generation to a higher level one, that
would have not required to randomize every single element of the matrix. This high

level strategy will be presented in chapter [0}



Chapter 3. Evaluation of software tools 25

3.1.1 SystemVerilog arrays

When it comes to optimizing performance of the environment for scalability, an
essential aspect that needs to be taken into account is the how data are represented in
the framework. To this end, SystemVerilog adds several enhancements to Verilog for
representing large amounts of data [25]. The Verilog array construct has been
extended and other ways of representing collections of variables have been introduced.
Classic verilog arrays hold a fixed number of equally-sized data elements. Arrays can
be classified as fixed-sized arrays (or static arrays) whose size cannot change once their
declaration is done, or dynamic arrays, which can be re-sized. In addition to them,
other “special” dynamic arrays like queues and associative arrays have been introduced
in SystemVerilog in order to achieve an optimized managing of storage resources in
different situations. It is important to underline that all dynamic arrays are not
synthesizable, and are mainly intended to be used for verification or for a high level
modelling of the design for initial studies, that will then need to be described through
synthesizable blocks when the architecture of the design will be defined. Among the
dynamic arrays, in this work the queue and associative array constructs have been
used. The first one enables the simulator to automatically perform a run-time
managing of space allocation, while for dynamic arrays an explicit variation of the
array dimension needs to be performed. This way of storing data is particularly useful
when the dimension of the array continuously grows and shrinks during the simulation.
Queues can be used to model a last in, first out buffer or first in, first out buffer and
they support insertion and deletion of elements from random locations using an index.
Queue elements are by the way stored in contiguous locations, so it is efficient to push
and pop elements from the front and back, like it is required for a First In First Out
(FIFO) buffer. Adding and deleting elements in the middle of the queue requires
shifting the existing ones to make room. In this case the time need grows linearly with
the size of the queue [26].

As concerns the associative arrays, they are meant to be used while entries are stored
in a very large but sparse matrix, were most of the elements do not actually need to be
written or accessed at a single time. In this case allocating, initializing and possibly
randomizing all the elements of such an array for every clock cycle of the simulation
would just waste resources, as has already been shown (static arrays where being used

when generating the simulation results presented in . For this reason, as it will be



Chapter 3. Evaluation of software tools 26

presented later, such a data structure has been used in this work for the generation

and randomization process.

3.2 Study of commercial simulation tools performance

Since the framework that will be developed is intended to be used to verify and
simulate very wide matrices of pixel chips, potentially described also at gate level, the
feasibility of a detailed simulation and its performance are clearly between the main
issues that need to be taken into account from the very beginning.

To this end, a study has been carried out using an available designed pixel chip
provided by ATLAS in the context of the collaboration. The pixel chip is FEI4[19],
already mentioned as one of the most relevant examples of existent chips for the future
upgrades. In particular, the version B of it has been simulated. The use of such a
complete design was necessary in order to obtain meaningful results on performance.
The entire architecture of the DUT is reported in Figure [3.2] where also the full chip

size of 336x80 pixels organized in 336 rows and 40 double columns can be observed.

The verilog description of the different modules of such a DUT has been provided at
two abstraction levels: Gate level and RTL. Unfortunately those where not available in
a double version for all of them, not enabling the comparison to be completely effective.

So what has been actually simulated is:

e a mainly RTL description: the approach used has been to first compile the gate
level description and then override most of the modules with a behavioural

description;

e a mainly GL description: the only exception made for the Phase Locked Loop and

Double Digital Column modules.

An already fully developed and very DUT-specific Verification Environment based on
OVM has also been made available for those initial studies. Between the different
simulators that a reasonable option for such applications, it has been possible to use

have Cadence Incisive and Modelsim/Questa to obtain more significant results.



Chapter 3. Ewvaluation of software tools 27

40 double-columns

20 mm |
o _J_olo o0 &)= [a)la) oo [ al
O OO oo olo Ol0 olo |[ 9
o || oo o0 olo oo oo o)
1G] Ol [&](e] [a][#] (818 OO | O
H Analog Frort End Crigitsl Pisei Ragion Araiog Pt End _C)
k (‘\_E;I_L HiPocessng | hitProcesseg ) —2
q [CH ] oser | Hommieglrosser | e <3< —t:
olplp e e o] |2
O
a3 =) Ol oo (SN | = P | =)
o [0 [ O clo olo ol || ol 5]
gllo |t oA olo olo [Ba) oo [ 9
o [0 |[NO[OY][Tl0 0l0 @0 _|L7olc | o
@ 0 [ g0 o0 [SIN | PSSTI { I<) (S0 | )
[IC [ Ok 1}, _Clo Q[0 ) | ) ) 0
(o ol |[xClo olo Al o olo 1| _9Q
g [O olo N[ VIO olgr [.Ola olo o
Elo olo b Qo o ¥ olo olo 0
“|o oo 1Ml [5) (et | Ie)s! olo 8]
ifa] oo JLalo JL olg JL oo JL ola JL o
| Eng of Digital Columns Logis
DumlLlT_Tm-Ih'.ﬂ TPhd&Hﬂl [=
J; i End of Chip Logic

Hamming | Data Format/ Hammng[nFo Hamming

Decder Comgiress Enooder Dracoder
ur
Current Biag Configuration
E; Ref. | Generalor & DACS Register | ET /SE

I I YPAzE | Sean ax Cma ] |
cha

Voltage | Shunt | DC-BC | oo | Command il

Ref. | LDO [ Conv. Dooodcr ICrl-"ux

Pod Frams 7 EIEIE.;Q;.@;.M

Dal el In Out Aux Rel Dala
=n [E M]3 Clock Clock -Out

|+

FIGURE 3.2: FE-14 full chip diagram [5].

3.2.1 Design flow

The design flow offered by the two vendors are clearly similar, even if not identical. The
main steps that required for the simulation can be considered anyway three: compilation,

elaboration/generation of the design hierarchy and actual simulation.

The “setup” of the tools that has been done in this particular context is herein

highlighted.

The design flow used for simulations with Incisive Cadence is the following:

1. initial compilation of project libraries;

2. Multi-Snapshot Incremental Elaboration (MSIE) has been performed. With
Cadence software, elaboration is the step which creates the simulatable model of

the complete design and testbench environment called Snapshot. Such a step can



Chapter 3. Evaluation of software tools 28

turn out to be heavy and lenghty, as the complexity and size of the SoCs
increases. It is particularly undesired when performing minor changes in the
snapshot requires re-elaboration of complete DUT and environment. Using MSIE
it is useful not only at the design level (to separate the part of the design that is
stable from the one that is intended to change often), but also for verification
engineers, since it allows them to avoid to re-elaborate the whole complex DUT

model each time the testbench is modified. What is performed in this work is:

e a primary snapshot is generated considering only the top-level DUT;

e a secondary snapshot with the whole class-based Verification Environment.
It is then combined by the tool with the primary snapshot(s) for execution:
in this way rebuilding the whole environment is extremely fast when change

happens to incremental portion of the code;

3. actual simulation.

The difference between the flow used for the first run (when also the first snapshot needs

to be generated) and the following ones is shown in Figure respectively in (a) and

Figure (b).

Another aspect that is characteristic of the simulator used concerns the optimization,
performed automatically by the tool if it is not differently indicated through command
options. In this work no optimization made by the tool has been turned off.

In the case of Questa/ModelSim, the user can intervene more the optimization process
using dedicated arguments. Optimization options have been specified through simulation
commands. As regards the simulations performed with the tool of this vendor, it has
been chosen an optimized two-step Flow (due to pre-existent scripts that have been

made available), whose main steps are shown in Figure and herein summarized:

1. Initial compilation of project libraries (modules can keep gate level description or

can be overwritten using RTL);
2. Simulation phase, that can be in turn divided into two steps:

e the loading of compiled design units from their libraries and generation of

optimized code (a new top level is generated);



Chapter 3. Evaluation of software tools 29

(a) (b)

FI1GURE 3.3: Multi Snapshot Incremental Elaboration flow: comparison between the
first run (a) and the following ones (b).

Compile

veom -noveopt libl.vhd
vlog -novopt libl.wv

Simulate
vsim top =-novopt

Three-step Flow Simulation

vopt top -o opt_out
vsim opt_out

Or
—

Two-step Flow Simulation

vsim top

F1cURE 3.4: Flow diagram of the optimized two-step modelsim flow.



Chapter 3. Evaluation of software tools 30

e actual simulation of the optimized code.

Other settings that have been done for the simulation and that need to be highlighted

before presenting the results of the study are the following:

e simulations have been run on different machines, but with close performance (on

the processor and the BogoMips indicator details will be provided);

e simulation have not be run granting access to all the signals (/nets/ports/cells..),
but only to a subset of them that had been considered of interest by the designers
of the chip;

e no Standard Delay Format (SDF) annotation of the timing delays has been
performed. Such a file normally includes path delays, timing constraint values,

interconnect delays and high level technology parameters;

e simulations have been performed in a single-threaded fashion, without running

them in multiple cores since such an option was not available for both the vendors.

The results of the test on performance have been quite comforting. Both the tools
used have demonstrated to be capable of dealing with a full pixel-chip (of 336x80 pixels)
without hitting insurmountable compilation or simulation time problems. This has been
both possible with the (partially) gate level and RTL descriptions of the chip. The use of
memory observed while running them has also been encouraging. More detailed results
are reported in Table clearly without giving details on which vendor assures certain
performances. This is also motivated by the fact that simulation time can be potentially
affected a lot by the settings done by the user, so even if (as presented) in this context
it has been tried to keep the comparison “fair enough”, it is not excluded that more
experienced designers could use different settings of the parameters to obtain different
and possibly better performance for one vendor or for the other. To explain slightly
more in detail what is presented in Table it can be noticed that the machine used
for testing both the simulation tools coming from different vendors is reported, together
with the compilation, elaboration and simulation time observed for both the Gate level
and Register Transfer Level (RTL) description of the DUT. Simulations have been run
at steps of 80 us. Finally, when it has been possible to obtain them, also indications on

memory usage have been reported.



Chapter 3. Evaluation of software tools 31
TABLE 3.2: Results of simulation performance tests.
Intel(R) Xeon(R) CPU Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz X5677 @ 3.47GHz (6916
(6667 bogoMips) bogomips)
~12s ~12s ~4s ~4s
~1min50s ~1min50s  ~10min(DUT) ~10min(DUT)
~10s (TB) ~10s (TB)
~2min10sec  ~1min30s ~30s ~30s
~1min ~1min ~10s ~10s
- - 2732.9M 2164.9M
total total

As a conclusion of this preliminary work, it can be said that it has encouraged to
keep using the tools that had been chosen without necessarily considering different (and
maybe more high-level) ones. It is anyway important to highlight that the chip simulated
was smaller that the one that is planned to build and that the environment used was
anyway DUT-specific and may not had some advanced features and analysis capabilities
that one may want to obtain for a more generic framework. To this end, it is good
practice every time a decision on how to proceed is made, to always consider its impact

on simulation time and memory usage.



Chapter 4

Design under test: description of

the system

Zo efore presenting the work that has been done in the verification environment, it
is important to introduce the architecture that is supposed to be simulated at the system
level. It should be clear that, as it often happens in the industry, the design of the chip
and of the verification environment are being carried out in parallel in the context of
RD53 collaboration. Moreover, the simulation framework itself is supposed to be used
as a design tool to optimize the architecture of the future pixel chip, and to then verify
it up to the final versions of the design. A common pixel chip architecture, that is fully
digital after the basic threshold detection and charge digitization in the analogue pixel
cell, has been defined: the block diagram of its hierarchical organization is shown in
Figure It can be noticed how pixels are grouped in regions, how columns are made

of a replication of regions and how several columns form a full matrix.

Digital hit processing including the critical trigger latency buffer is implemented within
the pixel array in local pixel regions followed by data merging, data formatting and
readout after the first level trigger accept. As it can be seen, the hit information is
supposed to be stored locally at the different stages of the data readout. It is of primary
importance to optimize such a storage through the use of shared buffers in order to
achieve compact circuitry and low power. Indeed, storing information from multiple

hits from the same cluster together translates into significant savings in required storage

32



Chapter 4. Design Under Test: description of the system 33

Pixel Columns: ~256 pixelsx 100um

Pixel Rows: e.g. ~1024 pixels x 2bum Pixel data: ‘
o (Parallel/serial)
- . Timing (clk, . ) =
1 1 T 5
o = Config Control (trig, ,) ol
Analog Digital Config
s || <=
| Region .En
1 proc. S k5]
‘.ADC’ B-ID tag = E
o 11222 S5 ||| Prontonng <
: A
Pixel cell I [B1D | e .f;];if;gm
~25um x 100um u Config : —
Trigger |
match — i——1 Control [€>
NN Controll
Pixel region: Col
e.g. 2x2 or 4x4 Int. (1 _; Deries e
Readout
( g
i ) 7\-‘ Interface
Pixel region column | H

EOC: End Of Column

Pixel chip: ~256 x 1024 pixelsof ~25um x 100um

FIGURE 4.1: Pixel chip hierarchical organization [6].

resources [6]. On this topic also preliminary statistical studies have been done and
the most convenient Pixel Region (PR) shapes and sizes to adopt in the design of next
generation pixel chips have been considered without taking into account implementation
related issues (e.g. routing, occupation of area, power consumption). This study [33]
has been carried out with simple assumptions on the shapes of clustered hits, as it will
be described in Chapter [7]] Such statistical analysis needed to be cross-checked with
simulation results, performed starting from initial architectures of the pixel chip that
could be afterwards optimized. Some preliminary results obtained using VEPIX53 will
be also presented in [ Also considerations on the layout of the analog part would
anyway play a separate but fundamental role in the choice [6]. It has to be highlighted
that my personal activity has not been focused on the design of the hierarchical pixel
chip architecture. My main contribution has been on the definition of a behavioural
model for a single PUC. For this reason, a section will be dedicated to this part, while
the complete architectures being simulated will be described at a higher level in the

subsequent sections.



Chapter 4. Design Under Test: description of the system 34

4.1 Development of a model for the Pixel Unit Cell

Since the purpose of the framework is to be capable of simulating different kind of
architectures, it has also been chosen to start with an interface from the framework to
the chip as generic as possible, so no assumptions have been done on how the
analog-to-digital conversion is performed in each PUC. As it has been mentioned in
subsection on the Front-End electronics, possible options are ADCs (independent
or shared) or a TOT converter. For this reason the input of the single PUC has been
considered as an “analog” amplitude, being in particular represented as a
SystemVerilog real data type, i.e. a double precision floating-point type (correspondent
to C double). This choice, even if not really of fundamental importance at the early
stage of the design, has been taken because the use of such a data type is advised for
modeling analog signals in SystemVerilog when Mixed-Signal simulations of the
complete architecture are performed. Real Number Modeling (RNM) turns out indeed
to be a new “trend” when it comes to modeling analog signals (i.e. current, voltage),
with an acceptable level of accuracy, in a digital domain, where analog modules are
simulated through a behavioural description, in order to allow designers to perform
system simulations making only use of the digital solver: for big and complex designs

this is claimed to assure the best trade off between simulation speed and accuracy [34].

A simple block diagram of the PUC that has been developed can be seen in Figure
As previously stated, it can be noticed how the main input to such a cell is the “analog”

value representing the amplitude of an hit.

PIXEL UNIT CELL

ToA
DISCRIMINATOR
ANALOG HITS ToT OUTPUTS  _ Digital

>

converter PUC TaT

Y

\ J

Y

FIGURE 4.2: Block diagram of the pixel unit cell.



Chapter 4. Design Under Test: description of the system 35

As concerns its architecture, a TOT-based one has been taken into account. In

particular, the single PUC is composed of:

e a simple TOT converter module which abstracts the behavior of the analog front-

end;

e the actual digital part of the cell, that outputs information on the Time Of Arrival
(TOA) of the hit (corresponding to the bunch crossing cycle when it has been
detected) and on its amplitude, represented by the Time Over Threshold (TOT).

As regards the TOT converter, it is a very simple model that is meant to produce a
binary output (discr_out) whose value is high for a number of clock cycles equal to the
“amplitude” of the analog hit. A timing diagram of this module is reported in Figure
in correspondence of an incoming hit. A limitation that is intrinsically part of such
an “analog” front-end is the dead time due to the TOT accumulation. Indeed, while
the discriminator output is high the pixel unit is practically blind if new particle arrive.
Depending on the actual implementation of the analog section, their charge could be just
neglected or accumulated to the previous one causing a higher energy hit to be observed.

It can be noticed in the timing diagram the presence of two internal flag signals that are

& Bazelinev=0
EF| Cursor-Baseline v = 24,162, 500ps

MNamew Cursarw

analog_hit

FI1GURE 4.3: Timing diagram of the TOT converter.

also probed to inform the Verification Environment about the deadtime of the PUC. It
can be in particular seen how the number of clock cycles that follow the detection of the

hit (but are still needed to measure the TOT) are marked by the TOT_conv_busy signal



Chapter 4. Design Under Test: description of the system 36

high. At the same time, it has been chosen to avoid starting to measure a new incoming
hit TOT during the fixed time during which the PUC is busy in digitally processing the
previous one. Such a time is identified as DUT_busy. Even if it would be interesting to
obtain more sophisticated simulations in the future, in this version no precise conversion
from a “charge” deposited in a sensor to the TOT measured in the different PUCs is
done, and simply the TOT value is being passed as the amplitude. When needed, this
module could be modified in order to obtain a more sophisticated model of the analog
block. A hardware limitation that has instead already partially modeled from a “digital
point of view” has been the already mentioned timewalk. Instead of actually modeling
a slow response of a discriminator module, what has been done is the following: for hits
whose amplitude is lower than a certain parameterized threshold, this causes the binary
discriminator output to be raised at the subsequent (and so wrong) bunch crossing cycle.
Anyway, since the study of the limitations of the front-end is not the primary focus at
the early stages of the design, for the initial simulations such a threshold has been fixed

to zero.

4.1.1 Digital PUC: use of SystemVerilog constructs

The architecture of this basic module will be presented together with timing diagrams
obtained with Incisive Cadence, with the aim to focus on the SystemVerilog features
that have been used and that are meant to improve the digital design with respect to
Verilog approach.

The block diagram of this module is displayed in Figure [£.4] Before going further in the
description, it is pointed out that for the actual digital part all the inputs and outputs
have been defined with the SystemVerilog 4-state data type logic. The Verilog language
uses the reg type as a general purpose variable for modelling hardware behaviour. It is
known to be a misnomer since it reminds the association to a “register”, while there is
no correlation between this variable and the kind of hardware inferred (combinational
or sequential logic). SystemVerilog uses the more intuitive logic keyword to indicates
indicating that the signal can have 4-state values (and can be used with both wire and
var types, even if it is a var if not differently specified). A logic signal can be used
anywhere a wire is used, except that a logic variable cannot be driven by multiple
structural drivers (this is done in order to prevent design errors). Rather than trying

to choose between reg (variable) and wire it is a recommended approach [24] to declare



Chapter 4. Design Under Test: description of the system 37

all signals as logic at a first time, and check if compilation errors are produced for the
presence of multiple drivers: if it was expected, one can change it into wire only where
it is actually necessary. This is the reason why the logic variable has been used mainly

for the design.

DIGITALPUC
Synchronization Control
logic logic L
DISCRIMINATOR
OUTPUT _
- ToT
—
Configuration Hit
register processing

FIGURE 4.4: Block diagram of the digital part of a PUC.

The digital PUC contains the following sub-modules:

e Synchronization logic, which takes care of the synchronization with the 40 MHz

input clock;

e Pixel configuration register, which is a rudimental description of the configuration

block inside the pixel;

e Pixel core, which gathers both the control logic and the hit processing logic. It is

in turn composed of some sub-modules:

— a 16-bit TOA register, which synchronously loads the value taken as a parallel
input from the external reference counter (resolution: 25 ns) and outputs it

in a parallel fashion;

— a 16-bit counter with parallel output, the function of which is to measure the

Time Over Threshold;

— a Finite State Machine (FSM) which represents the control logic of the pixel.

The synchronization logic is basically made of a D-flip flop that transforms the
synchronous or asynchronous signal coming out from the discriminator in the

synchronous output, meant to be sent to pixel core. This is clearly visible from Figure



Chapter 4. Design Under Test: description of the system 38

[ Baselinev=0
£ Cursor-Baseline v = 537 600ps = =
[TimeA = 537,600ps

FIGURE 4.5: Timing diagram of the synchronization logic module.

As concerns the pixel configuration register, since it is not a priority for
architectural studies, just a support for the pixel mask bit has been included as a basic
functionality. In the timing diagram present in two subsequent loadings of the
mask register are shown: the value passed from mask_in (respectively 1 and 0) is
copied in the register (see mask_out) at the clock rising edge. When the value of the
mask bit is 1 every hit coming from the discriminator output is not detected by the

synchronization logic, as shown on the last two signals in grey. As regards the

el Baselnev=0
FF| Cursor- Baselne v = 42 687 S00ps

Name~= Cursore
il clk

ol miask_in

el discr_in 0

-
= hit_to_sync_logic -

FIGURE 4.6: Timing diagram of the configuration register.

sub-modules of the pixel core, it has been mentioned the presence of a register for the
TOA and a counter for measuring the TOT. The timing diagram of the former is

shown in Figure [4.7] while the latter is reported in Figure [4.8 The behaviour of the

[ Bageline==0
FF| Cursor-Bageline = = 250,037 500ps

INal cursore

FIGURE 4.7: Timing diagram of the TOA register.

TOA register that can be noticed from the simulation is the following: when the load
input is active (in correspondence of an incoming hit) the value of the parallel input
(provided from an external counter present in the End Of Column) is loaded into the
register, providing an absolute TOA measurement, that is initially stored and then

sent out from the PUC.



Chapter 4. Design Under Test: description of the system 39

[ Baselinew=0
EF| Cursor-Baseline==13,812,500ps

FIGURE 4.8: Timing diagram of the TOT counter.

From the timing diagram concerning the TOT counter, it is evident how it starts
increasing the count value progressively when the enable input is asserted, i.e. for the
time during which a hit is seen as an input to the PUC. This module can also be
synchronously reset and cleared acting respectively on the reset (active low) and clear
input (active high). Even if their effect on the counter is the same, these two signals
have been kept separated in order to distinguish the clear needed enable a new

counting to start from the general reset of the whole PUC.

As far as the modelling of FSMs is concerned, the consistency of how different software
tools interpret the Verilog models can be increased thanks to SystemVerilog. The main

SystemVerilog features used to achieve this goal are:

e using enumerated types for modelling FSMs;
e using enumerated types with FSM case statements;

e using always_comb with FSM case statements.

Normally what is used to code a FSM is a three procedural block modelling style: one
is used to increment the state machine to the next state, one to determine the next
state and the last to set the output values. By using enumerated types, one can assure
(and check) that the possible values assumed by the state are only the possible ones
listed. Additional use of the unique/priority case statements instructs the tool on how
to interpret a case statement. Verilog case/casex/casez statements allow designers to
select one branch of logic among multiple choices. For example they can be used inside
an always_comb block that is intended to behave in a different way depending on the
current state of a FSM. In Verilog standard it is defined that the case selection has to be
evaluated in the order in which they are listed. This normally implies that the compiler

has to optimize with some additional logic in order to reach the priority encoding.



Chapter 4. Design Under Test: description of the system 40

SystemVerilog introduces special unique and priority modifiers to be put before the
case statements in order to directly specify whether a priority is needed or not in the
selection. A unique case asserts that there are no overlapping case items and hence that
it is safe for them to be evaluated in parallel, while a priority one acts only on first
match, implying a selection with priority. In the combinatorial processes of the FSM
of the project (for next state and outputs update), unique case statements have been
used since no priority scheme was required. The defined FSM is quite simple, it has just

three possible states that are summarily described in the following;:

e IDLE (00), i.e. the initial state, where both the TOA register and TOT counter

are cleared;

e COUNTING (01), to which the FSM passes when the discriminator output signal
goes high (the rising edge of this signal is detected by an internal edge generator
that rises a r_edge pulse). In this state the TOA register and TOT counter are

enabled to perfom their respective measurments;

e READY/(10), final state which signals the conclusion of the operations and allows
the FSM to go back to the IDLE state when ack is asserted from the higher level
logic. During such a state the content of the single PUC gets written into the
indipendent PUC or PR buffer (depending on the architecture).

ack=0

FI1GURE 4.9: Timing diagram of the TOT counter.

A simplified state diagram and a timing diagram of the state evolution when a hit is

received are also reported respectively in Figure and



Chapter 4. Design Under Test: description of the system 41

[ Baseline v =0
ET| Cursor-Baseline »= 13,512, 500ps

Cursors

IDLE
1}

COUHTING

1

FIGURE 4.10: Timing diagram of the TOT counter.

The actual description of the presented modules has not be done at the gate level, but at a
more concise (but synthesizable) level. When dealing with sequential and combinational
logic in the description of the design, the specific SystemVerilog always processes have
been used. Indeed, while in pure Verilog it was a common mistake to use an always
block to model combinational logic and to forget an else (leading to an unintended
latch), SystemVerilog has added specialized always-comb, always_latch and always_ff
blocks, which indicate design intent to simulation, synthesis and formal verification tools.
Always_comb is for the specification of combinational logic. Synthesis tools can check
that the hardware synthesized from the block does not contain any sequential elements.
Additionally, the sensitivity list for an always_comb block is calculated by tools rather
than by the user, ensuring that simulation will behave closely with the synthesized
result. Always_latch is another form of always block designed to express latch logic (it
also determines its sensitivity list automatically). The always_ff block was added to
ensure that the hardware being described contains a flip-flop. These blocks also limit
the block to a single activation expression, so that an implicit state machine will not be

inferred. Additional explanations on this topic can be found in [25].

When dealing with design hierarchy issues, SystemVerilog offers some shortcuts to make
the code lighter and more readable. A simple (but useful) feature is the possibility of
specifying an ending name for modules and any kind of block (tasks, functions, loops. .. ):
this is a good coding style that makes it easier to identify and separate the different parts.
When connecting ports of different modules that are instantiated inside another, one can
normally do it either connecting them by name or by order: the first way is clearer but

quite verbose, while the second one can easily lead to some errors. A nice (and fast)



Chapter 4. Design Under Test: description of the system 42

solution is possible with SystemVerilog: the dot-star “ .* ” connection can be used
together with a connection by name: that means that all the ports that have the same
name get automatically connected without listing them in the module instantiation,
while the ones that have different names in different modules can be specified by name
to avoid mistakes. Even if dealing with small and simple modules, this approach has

been extensively used in the design hierarchy of the project.

The simulation output of such a PUC is reported in Figure The two different
parts, i.e. the TOT converter and the digital PUC can be distinguished since the
correspondent signal names are shown in different colors, respectively green and
orange. It is therein shown that when a hit whose amplitude (analog_hit) is 8 is
received, the detection takes place and the discriminator output (discr_out) is kept
high for an equal number of bunch crossing cycles. In the digital part instead, at the
rising edge of the clock after the discr_out signal has been asserted, the value of the
external counter (ezt_count-in) is copied in the TOA register and immediately
available at the output though the parallel_out, while the TOT counter starts counting
and stops only when the discriminator ouput goes low again. At that point the counter
informs the higher level logic that it is ready (cnt_ready) and only after the arrival of
the read_pizel signal both the TOA register and the TOT counter are reset. The time

when a new hit can be received is highlighted by the marker.

[ @ Baselingv=0
£F| Cursor-Bassline v = 2,158, 400ps

Mamer Cursore

o 1 VR P e [ S s 55 e 551 S i 5 v S i 5 e S R 5 e S o 0 I

J
. 0 gy Yy By I

FIGURE 4.11: Timing diagram of a single PUC (both TOT converter and digital front-
end).



Chapter 4. Design Under Test: description of the system 43

4.2 System architecture

With the aim of optimizing the pixel chip architecture, some preliminary models have
been designed in the context of the collaboration. It is once more reminded that such a
design has not be directly subject of my work, but it is herein reported as a description
of the DUT wused in the simulation and verification environment. Initially, the focus
has mainly been put on obtaining an efficient use of the buffering resources that will
be likely located in the pixel region for the 3" generation. At the time of writing, two
different architectures have been taken into account in order to investigate how one can
better profit from the use of logic shared within the pixel region. For this purpose the
first models of the DUT that have been taken into account do not contain a whole pixel
chip matrix but just a group of pixel unit cells (PUCs), i.e. a pixel region (PR), of
parameterized size. The general structure of the simulated pixel chip is shown in 4.12
It can be noticed as just one PR is so far instantiated, but also that column arbitration

logic is already present at the end of column.

Pixel Chip

_________ a9
:_ | : €
B s Py i
g
HITS '
£ Pixel Region
TRIGGER (PR) =
Endof | 1]
Column :
CONTROL
LOGIC ——D

FIGURE 4.12: Block diagram of the pixel chip architecture.

In the current status of the work a behavioural and non directly synthesizable description
of the DUT has been used, since at this stage of the design is more reasonable to aim
to use models that are described in a simple (and generic) fashion that can be easily
studied, understood and simulated in less time instead of directly start from complex and

elaborated architectures. For all the architectures the starting point for the model of a



Chapter 4. Design Under Test: description of the system 44

single PUC has been the one described in the previous section, even if some modifications

have been done to adopt it for the second architecture.

4.2.1 Independent pixels architecture

The very first architecture taken into account has been one where the different PUCs
can be basically considered as independent. In order to use it for comparison with more
complex schemes, this architecture has been developed as the simplest possible. Its block

diagram can be observed in Figure [4.13]

Pixel Region (PR)

PUC matrix PR buffer Derandom.
puc | puc| | puc | Tod, ToT FIFO
HITS ~ I e Wit =] Trig'd w0 col.
el PUC i
»| 12 C e | || =] ... B
[ -4
~ N
Pucl el | ack ACK '
== = I LOGIC I
TRIG. > TRIGGER
METCHING
EXT COUNT= TIMETAG = LOGIC

FI1GURE 4.13: Block diagram of a PR containing indipedent PUC buffers.

The main functions defined for the pixel region can be summarized in the following:
e conversion of the amplitude value of a hit into discriminator output for each PUC
in the matrix;

e computation of hit time of arrival TOA and amplitude TOT separate for each

PUC in the matrix;
e storage of incoming hits in the so-called pixel region buffer;

e trigger selection of hits depending on the input trigger signal (performed by the

trigger matching logic);

a derandomizing FIFO to send data from the PR to the column bus.

From the block diagram in Figure [4.13] also the main input and outputs of such a

model can be noticed. As regards the inputs, an “analog” hit signal is sent to each



Chapter 4. Design Under Test: description of the system 45

PUC in the PR, a parallel signal coming from an external counter is used to perform
the TOA measurement and a yes-no trigger signal is provided to the trigger matching
logic. As concerns the outputs, the only physical one is represented by the output
of the derandomizing FIFO, that gathers the hit information for each PUC, as it will
be more precisely reported. It can be highlighted that, although the code used to
describe the pixel chip uses some non-synthesizable constructs, the description has not
been completely decoupled from implementation, since the logical function of each block
is defined. The main non-synthesizable structure that is being used is the so-called
SystemVerilog queue, used to implement both the buffer and the derandomizing FIFO.
As already mentioned in the previous subsection [3.1.1] when the dimension of the array is
expected to grow and shrink during the simulation it is advised use of such a structure
for handling memory allocation. In this application buffer occupancy is a parameter
that needs to be investigated in order to understand the number of buffering location
required to keep the overflow probability of such a buffer under a certain value, since
such an overflow translates in hit loss. The maximum width of a queue can potentially
be unspecified, but in this case an upper bound has been fixed through a dedicated and
settable parameter. When the interest is to study (potentially) all the possible values
for buffer depths, the approach is simply to use a very high value that is never reached
during the simulation. Some details are provided regarding the organization of the pixel
region buffer. Even if represented as a unique block, it is in reality made of a buffer
for each PUC and they work completely independently one from the other. To be more
precise, each PUC has a dedicated FSM that controls the writing into the PUC buffer
and also the output of the single PUCs can be all read in parallel at the same time. The
structure of the packets that are written on such a buffer is shown in Figure [4.14

TOA[0][0]  ToT[O][0]} ToA[1][0] ToT[1][0]}...! ToA[m][n] ToT[m][n]

FIGURE 4.14: Structure of the hit packets contained in the PR buffer for the
independent pixel architecture.

It can be noticed as both the TOA and the TOT of the hits are separately stored by
each PUC in a totally independent fashion. As can be seen, the number of unit cells is

parameterized in a bi-dimensional fashion, reproducing the physical matrix structure.



Chapter 4. Design Under Test: description of the system 46

4.2.2 Zero-suppressed FIFO architecture

In order to study the advantages that a shared pixel region architecture brings in terms
of saving storage resources, another model of the DUT has been developed in the context
of the simulation working group of the RD53 collaboration. It can be said that from a
functional point of view, such a module performs the same operations of the previous
architecture. In order to be more precise, a block diagram of the pixel region architecture
is reported in Figure [4.15 and the main functionalities of the PR are listed below,

highlighting the differences with the previous model:
e conversion of the amplitude value of a hit into discriminator output for each PUC
in the matrix;

e computation of hit amplitude TOT is separate for each PUC in the matrix, while

for the TOA it is shared;

e the storage of incoming hits in a single and shared pixel region buffer and the

access to the buffer is arbitrated by the “write logic” block;

e trigger selection of hits depending on the input trigger signal (performed by the
trigger matching logic);

a derandomizing FIFO to send data from the PR to the column logic.

Pixel Region (PR)

PUC matrix PR buffer Derandom
Tol_out i
HTS | 15| 5] - [t < i FIFO
1 FUC Trig'd to od,
> 1z - | r_edge DACKETHEE hi%s bus

L =
L4

= " {PUC state| WRITE
vl I I L % LOGIC

1n mrun
M MM wr_en_dlcbal .
r_edge_or
TRIGGER
=k SRR MATCHING
-———— | Lo6ic LOGIC
+ 3
ExT CNT |
TRIGGER.

FIGURE 4.15: Structure of the hit packets contained in the PR buffer for the zero-
suppressed FIFO architecture.



Chapter 4. Design Under Test: description of the system 47

As for the previous model, the hardware description level is non-synthesizable mainly
because of the use of SystemVerilog queues. In Figure it can be noticed how the
inputs and outputs of the block diagram are, as for the previous case, the hit signals,
the trigger, the signal of an external counter and the data output. Clearly the latter
is in this case organized in a different fashion with respect to the independent PUCs
architecture: for a straightforward comparison in terms of the hit packet being stored

in the buffer (and then sent out to the column logic) one can refer to Figure It is

ToA i hit map + i hit map + hit map +
| ToT[0][0] i ToT[1][0] ToT[m][n]

FIGURE 4.16: Structure of the hit packets contained in the PR buffer for the zero-
suppressed FIFO architecture.

shown as a single location of the buffer contains a packet where the TOA measured value
is shared between all the PUCs in the pixel region while just the TOT value is measured
independently to maintain the spatial resolution of the measurement. Together with
the TOT, in Figure also a potential hit map bit is represented: it is, at least
theoretically speaking, meant to be used to distinguish whether which PUC has been
hit (hit map value equal to 1) and which not (hit map value equal to 0). This approach
is anyway redundant, and it is likely to be substituted with the storage of just the TOT
values, where a hit map value equal to zero is simply represented by a TOT value of

zero. Further compression may be reached with more evolved schemes.



Chapter 5

UVM simulation and verification

framework: VEPIX53

sbe first version of the simulation and verification framework for the RD53
collaboration has been developed [35]. With obvious reference to the context in which
it is collocated, it has been named VEPIX53. Such an environment is a preliminary
version of the final one. As stated in the RD53 Proposal itself [6], the goals of such a

platform are:

to be capable of simulating alternative pixel chip architectures;

to enable designers to simulate and verify pixel chip architectures at increasingly

refined level as design progresses;

to perform automated verification functions;

to be capable of dealing with different kinds of data sets:
— realistic (and extreme) pixel hits and triggers (to be generated within the
framework itself);

— particle hits from external full detector/experiment Monte Carlo and/or

detailed sensor simulations (to be imported in the framework);

— mixed data (external and generated in the framework).

48



Chapter 5. UVM simulation and verification framework: VEPIX53 49

The final goal of the simulation working group is therefore to obtain a framework that
provides all the features shown in the one in the block diagram in Figure It can be
therein noticed as some master timing should be capable of controlling the generation
of the hits (e.g. random, tracks and Montecarlo data) and of the trigger signal. The
generation of the signals needed to configure the pixel chip should also be provided, as
long as a high level control/sequencer in order to decide how to inject such stimuli to
the pixel chip. Also, it should be capable of reading the pixel chip outputs (readout
interface), to compare them with the ones generated by the reference model and to
finally produce information on errors/warnings together with performance indicators.
As a last point, the possibility of performing directed tests should also still be an option
in order to check possible expected bugs of the design, even when using such a complex

and automated framework. As it has been already highlighted, the HDVL chosen for

Master timing Global control/
sequencer ! I

o
TIIIs I
Implementation
k< —) ﬂ e
'1 @} I"I"IOI'_]ltDHng

| o .
1| Pixel chip (DUT)
| Moee P I Transaction
iR Config I Behavioural
: RTL
Ly Trigger 1 Gate
- 1 Mixed signal
| ROl : | H
e e ——— -—====.
N Re:ﬁgagfe - Comp. K] Readout interface
s B L.
Directed N4 S
tests Error/\Warning Performance
logging maonitoring

F1GURE 5.1: Block diagram of a dedicated simulation and verification framework for
next generation pixel chips.

such a framework is SystemVerilog. It has been also made use of the UVM library for
the sake of standardization and re-usability.

Not all the features have currently been developed, but a working “engine” to use for
preliminary architecture studies and will be presented in this chapter.

In the remainder of this work it will be highlighted what has mainly been developed

without my personal contribution.



Chapter 5. UVM simulation and verification framework: VEPIX53 50

5.1 Overall architecture of the simulation and verification

framework

The block diagram of the overall simulation and verification framework (VEPIX53) is

reported in Two main parts can be distinguished in such an architecture:

me===""7 | top level tests _U"‘-v-.....____
- Il L
- -hl-

1L
top env
top virtual
sequencer
analysis env [y—— rezt;l_l?rut

LY ff .
Pixel Chip Harness \ / / T

i hit | analysis | readout
Clods/reset frigger |
generator Pixel Chip Interfaces DUT

FI1GURE 5.2: Block diagram of VEPIX53.

1. the DUT, its interfaces to the environment and a generator for fundamental signals
(i.e clock and reset) on the bottom, highlighted by the use of an orange colour and

wrapped by the Pizel Chip Harness module;

2. the actual simulation and verification environment (top env) whose blocks are

represented with a blue colour.

A major difference between the two parts has to be highlighted: while the first is
described in a standard Verilog module-based fashion (even if SystemVerilog constructs
are used), the verification part is described at a higher level, the so-called transaction
level, using the capabilities of OOP. This means that the components that are shown

in [5.2) are specific instances of classes. To be more precise, in a UVM environment with



Chapter 5. UVM simulation and verification framework: VEPIX53 51

different types of instances of classes can be distinguished (see Figure for
identifying them in the UVM library):

e classes that are directly inherited from wuvm_objects are actually dynamic and
continuously allocated and deallocated during the simulation. An example of
such objects are the uvm_sequence_items, i.e. the transactions that are passed

between the channels of the different components to allow them to communicate.

e uvm_components are instances that can be considered quasi-static. Even if they are
also instances of classes, that need to be built in the UVM build_phase(), they are
“stable” and cannot in general be removed from the environment during a single
simulation. Such components provide some additional capabilities, e.g. phasing
and execution control, hierarchy information functions, configuration methods,

factory methods, hierarchical reporting control [28].

As concerns the Pizel Chip Harness it should be reminded that the description of the
DUT has been performed by using a time-based and behavioral description. Even if
different levels are also being considered (e.g. a TLM description) at the time of writing
the framework is not capable of interfacing all the different verification components with
them. That means that some additional work needs to be performed to achieve better
flexibility and generality. To conclude the overview of the block diagram, it can be
noticed the presence of some interfaces (Pizel Chip Interfaces) between the chip and
the verification environment. Such modules can be considered the “link” between the
module-based and the class-based worlds. It can also be observed that an “environment”
(env) has been defined for generating input and/or reading the outputs of each one of
the pixel chip interfaces. While the DUT architecture has been exhaustively presented
in the Chapter [4] further details on the verification components and on the interfaces to

the chip will be provided in the following sections and subsections.

5.1.1 Interfaces

Just to provide a brief introduction on SystemVerilog interfaces, they were specifically
created to encapsulate communication between blocks. At its lowest level, an interface
is indeed simply a named bundle of nets or variables. The interface is instantiated in a

module and can be accessed through a port as a single item but also the single nets or



Chapter 5. UVM simulation and verification framework: VEPIX53 52

variables can be referenced if needed. The ability to replace a group of signals by a
single name can significantly reduce the size of a description and improve its
maintainability. Additional power of the interface comes from its ability to encapsulate
functionality as well as connectivity. Indeed, also tasks and functions can be declared
within an interface and called from modules that are connected to the interfaces.
Moreover, clocking blocks and modports can also be used when dealing respectively
with synchronous signals and with different blocks in the environment accessing the
same interface with different roles (these last features have been used in this work).
Further details that are not herein presented can be found in dedicated chapters both
in [24] and in [26], as well as in various online resources. As regards VEPIX53,
following UVM guidelines, the interface construct has been used to bundle the DUT
signals that need to be connected to the testbench. It has to be highlighted that, since
they are actually nothing less than modules, they can be instantiated in a module but
not inside a class. For this reason, SystemVerilog provides with an additional wvirtual
keyword to allow the verification engineer to place a pointer to the physical interface in
a class [28]. In this work, the interfaces have been instantiated in the harness block and
the pointers to them are registered in the UVM configuration database. In such a way,
references to them are available for the class-based verification components. So far,

four interfaces have been defined for the current versions of the DUT, that is to say:

1. hit interface: it contains a bi-dimensional array of “analog” (as presented in section
the real datatype has been used for each of them) hit signal that represent
the amplitude of the hit that is fed to each pixel of the pixel chip; it has been
so far defined as a synchronous interface using clocking blocks. An asynchronous
version is also defined for initial studies done on the introduction of asynchronous
delays or analog baseline noise to the incoming hits. Such aspects have not been

completely developed at the time of writing;

2. trigger interface: it contains the physical trigger, represented with a simple yes-no

signal. Also in this case synchronous access to the interface has been defined;

3. readout interface: it is meant to communicate with the pixel chip output. At
the current status, its actual implementation can slightly vary depending on the
specific version of the DUT being simulated. In any case, for both the independent

pixel and the zero-suppressed FIFO architectures, it consists of a buffer output



Chapter 5. UVM simulation and verification framework: VEPIX53 53

packet, whose structure has been previously shown in Figure and The

access to such an interface has been defined as synchronous;

4. analysis interface: this is a peculiar interface, since it does not contain actual
inputs or outputs of the DUT, but it is used to probe virtual flag signals related to
DUT status. This approach has been chosen for collecting statistical information
on pixel deadtime due to TOT and to digital hit processing (such signals have
been shown in the timing diagram in Figure and buffer occupancy. As for
the other physical signals, such internal flags are accessed in a synchronous fashion.
Further monitoring of the DUT status could be performed adding additional and

meaningful signals to such an interface.

5.1.2 Project organization

In this subsection the way the project directories of the UVM framework are organized
is described. When accessing the svn repository three main directories are (by default)
present: branches, tags and trunk. VEPIX53 project has been uploaded in the latter.
Therein, one can find two main directories that are linked to such a project, shown in

the Figure As it can be noticed, a directory is used for gathering all the source files,

VEPIX53 v1.0

— source (source files)
+ define
+ PixelChipHamess
+ VerificationEnvironment

work

» command line scripts

+ simulation library

+ stored output file directory

FIGURE 5.3: Project organization: first level of directories.

ile.:



Chapter 5. UVM simulation and verification framework: VEPIX53 54

e the define folder contains both files where the ‘define compiler directives are

declared and a file which groups all the user-defined data types;

e the module-based parts of the environment are grouped in the PizelChipHarness

directory;

e all the files related to the verification part are gathered in the

VerificationEnvironment directory.

As regards the work directory, that is the location where the simulation is supposed
to be run. It contains the command line scripts, a directory for possibly storing the
output files of the simulation and the actual simulation library automatically generated
after each simulation. Further details on such files will be provided at the end of the
chapter. It is instead worth it to focus on how the VerificationEnvironment directory is
organized, since it has a strong relation with the framework architecture, as presented in

Figure As recommended in [28] and in a lot of online resources, a different directory

VerificationEnvironment

— top

— hit

— trigger

— readout

— analysis

FIGURE 5.4: Project organization: directories of the verification environment.

is defined for each “environment” of the framework. With this term one refers to a
reusable verification block which is in general an encapsulated, ready-to-use, configurable
verification component for an interface protocol, a design submodule, or a full system
[4]. The recommended approach is to define a directory for each interface protocol

of the DUT. In this case for each interface between the environment and the DUT,



Chapter 5. UVM simulation and verification framework: VEPIX53 55

already described in subsection a directory has been used: hit, trigger, readout
and analysis can be distinguished in Figure For each of them the SystemVerilog
source files are contained in the sv folder and a package file (identified by the _pkg suffix)
is used to group them in a unique compilation scope, while keeping separate files makes
the code more clear and maintainable even when growing in complexity. Besides, a top
directory is used to wrap the top level environment and all the other top level classes,
together with the UVM tests: the role of such components will be presented more in
details in the following sections. When other interfaces to the DUT will be defined in
the future, it is good practise to dedicate a folder to each of them, adding elements to

the provided list. Separate packages are used for the top level classes and the tests.

5.2 Verification components

As for the project directories, also the definition of the different verification
components of the framework is highly related to the existent interfaces between the
DUT and the environment: it has been extensively highlighted in the block diagram of

the framework in Figure [5.5l Even with some differences depending on the specific

_o===""" top level tests | | o

¥ T *

hit and analysis readout
trigger interface interface
interface

FI1GURE 5.5: Block diagram of the verification components of VEPIX53, with focus on
their link to the DUT interfaces.



Chapter 5. UVM simulation and verification framework: VEPIX53 56

interface, each environment of the design is composed of some basic UVM verification
components that are recurrently used. Moreover, within an environment different
instances communicate at high level through channels, where objects are passed at the
transaction level. Normally, a certain type of transaction is used for internal
communication in each of the environments. In UVM testbenches, such structures are
represented extending the wvm_sequence_item class. Data items basically represent the
input and output of the DUT at a higher level of abstraction than that of the physical
signals that are actually driven to them. Other types of objects are usually part of

UVM testbenches:

e uvm_sequences, i.e. a user-defined sequence of data items and/or sequences;
e configuration objects, used to gather configuration fields of each one of the different

verification environments. Potentially they could also be randomized.

As regards the verification components, the main ones that have been used all over the

project are the following:

a stimulus generator (uvm_sequencer) to create transaction-level traffic to the

DUT. For this purpose it runs a uvm_sequence;

e a driver (uvm_driver) to convert these transactions to signal-level stimulus at the
DUT interface. Connection between the sequencer and the driver is done through

a point-to-point port-export connection, realized at the Transaction Level (TL);

e a monitor (uvm_monitor) to recognize signal-level activity on the DUT interface
and convert it into transactions: it is a passive element since it does not drive any

signal towards the DUT;

e an analysis component, such as a coverage collector or scoreboard, to analyze
transactions. In the current project, for such components the suffix subscriber has

been used;
e an agent (uvm_agent) is an abstract container with a monitor and (if active) also

a driver and a sequencer. If passive it is intended just to monitor DUT outputs.

Following the common approach of OOP, all those classes are extended from a

common base one: uvm_object. The detailed hierarchical relationship can be found in



Chapter 5. UVM simulation and verification framework: VEPIX53 57

Figure [2.I] where also the distinction between dynamic uvm_objects and quasi-static
uvm_components can be noticed. Further information on the specific use done of such

classes in VEPIX53 will be provided in the following subsections.

5.2.1 Hit environment

The hit environment is supposed to inject and monitor hits sent to the pixel chip
matrix. The basic hit environment block diagram is already reported in Figure [5.6]

The structure that has already been introduced can be recognized: in the hit

FIGURE 5.6: Hit environment block diagram.

environment, a hit master agent can be identified as a wrapper for three other main
blocks: the hit master sequencer, driver and monitor. All those components are
inherited from the UVM specific and correspondent classes. In the figure the TL
connection between the sequencer and the agent is represented with the green arrow,
while the library of possible sequences that can be run by the hit master sequencer is
shown under its block with a similar green colour. The modules that have also a link
to a physical DUT interface contain a white rectangle that represents the virtual
interface that points to it. It can be also noticed as a hierarchy has been defined for
the configuration objects. Indeed, the hit master config object is the one to which all

the lower level components (wrapped in the agent) point, while the higher level



Chapter 5. UVM simulation and verification framework: VEPIX53 58

components (in this case just the hit environment) point to the hit config, that
contains itself a reference to the lower level configuration object. Although quite
redundant, this approach has been used following the UVM guidelines. With such a
structure it would be possible to define other lower level configuration objects (for
other components in the hit environment) and to point to each of them using the
higher level configuration object.

As regards the types of transactions used in such an environment, an unusual
distinction has been done between the ones used at the driving level and the ones used

by the monitor, in particular:

1. hit_trans is used at the generation side;

2. hit_time_trans is used at the monitoring side.

The class diagram of both of them is reported respectively in Figure[5.7and [5.8] following
the Unified Modelling Language (UML) scheme. The most relevant fields of the hit_trans

hit_trans

+amplitude: shortint unsigred [0.. k]
+time_ref: int
-next time ref: int

[optional] +hit_delay : int unsigned [0...k]
+hit_gen_pixel_chip_z: int

+hit_gen_pixel_chip_phi: int
+hit_gen_pixels_in_pixel_chip: int

+newlname: string)
+convertZstring (): string
+do_copy (rhs: uvm_ohject)
+increment_tref

FIGURE 5.7: UML class diagram of the hit_trans.

have been highlighted in bold. To the hit transaction that it is meant to be sent to the
pixel chip, it is associated a time reference value, so far correspondent to the bunch
crossing cycle (BX), and an array of amplitude values. Since pixel chips are very large
pixel matrices, where most of the elements do not actually need to be accessed at a single
time an associative array has been chosen. It has already been described in section

how this can significantly save simulation resources. Such a type of array is forced to



Chapter 5. UVM simulation and verification framework: VEPIX53 59

have just one-dimension. This means that when driving the hit signals to the actual
bi-dimensional DUT a conversion from the 1D indexes to the 2D ones is performed,
based on the parameters set for the pixel chip size. For a similar reason the information
on the pixel chip matrix simulated at the generation level (not necessarily equal to the
actual pixel chip matrix, as will be clarified in Chapter @ is also memorized in such an
item in the remaining fields to be available for the transaction methods. As regards the
datatype used for the array of amplitude values a shortint was initially suggested in the
collaboration. This means clearly that randomization is done on a subset of all possible
real values that may be driven to the hit interface; at the time of writing there was no
interest on complicating the hit generator in order to perform real value randomization,
it indeed requires particular expedients and can slow down the simulation. An additional
field of such a transaction, classified as “optional” since it is selected through a compiler
directive, is a preliminary model for the delay of the hits going to each pixel with respect
to the synchronous bunch crossing cycle. Such a feature has been developed just at the
generation level and in order to use it also at the monitoring level further development
is needed.

As regards the transaction methods, they are just the standard ones that normally need

to be overwritten for uvm_sequence_items:

e the constructor new(), normally used in OOP to create an object, even if in UVM
it is not recommended to directly use it (the create() function is instead usually

adopted since it delegates the call to new() to the UVM factory);
e the method used to print details of the item (convert2string());

e the do_copy() function used to create a so-called “deep copy” of the object (i.e. a

complete new pointer to a new but identical object).

Such methods could be also directly inherited from the parent classes, but it is good
practise to override them. A summary of the standard transaction methods and of the
right way of invoking them can be found in the dedicated section of [27]. The only
additional method is a very simple one used to increment the time reference value from
the hit master sequences when generating a sequence of transactions. As regards the
hit_time_trans diagram reported in it can be noticed that in this particular case

a slightly different approach has been used at the monitoring level: a bi-dimensional



Chapter 5. UVM simulation and verification framework: VEPIX53 60

Hit_Time_Trans

+timeOfArrival: int unsigned [0..m] [0...n]
+amplitude: int unsigned [0..m] [0...n]

+newlname: string)
+convertZstring () string
+do_copy (rhs: uvm_ohject)

FIGURE 5.8: UML class diagram of the hit_time_trans.

array has been used to store both the monitored information of the TOA of a hit and its
amplitude. It means that there is a 1:1 correspondence between the bi-dimensional arrays
and the pixel chip matrix. This kind of approach has been kept mainly for simplicity,
but it is not excluded that when starting to simulate larger DUTs it may turn out to
be worth it to switch to more optimized ways of storing data. Once more, from a quick
look at the transaction methods it can be noticed that they are simply the standard
ones that have already been described. As concerns the operations of the blocks in the
hit environment which are functional for the simulation, they can be summarized in the

following way:

e the hit master sequencer is used to run user-defined sequences of hit transactions
which are collected in the sequence library hit_master_seq_lib. It includes 3

sequences, but it may be extended adding more of them:

1. the hit sequence generates a user-defined number (num_trans) of transactions,
one for each BX cycle. In any of them a randomization is separately done for
the amplitude value of each pixel in order to decide whether to hit it or not.
The probability of hitting each pixel is set through the is_hit_prob field, while
the maximum and minimum allowed amplitude for the generated signals are
specified through dedicated variables. As it will be better shown in subsection
such parameters can be accessed by the test writer from a unique test
file. In the context of the sequence they are simply get at the beginning
of the so-called body() task, that is the main one for an object, assuming
that they have been set in the test. The get and set terms refer to the

actual functions used to access the UVM configuration database, that enables



Chapter 5. UVM simulation and verification framework: VEPIX53 61

configuration parameters to be exchanged between different hierarchical levels

of the environment;

2. the hit_sequence_poisson also generates a parameterized number (num_trans)
of hit transactions. For each BX a randomization is separately done for
each pixel in order to decide the amplitude of the generated hits. For this
particular and very simple model the amplitude have been set to follow a
Poisson distribution with specified seed and mean. There is no correlation of

such an example sequence with realistic ones;

3. the hit_sequence_cluster creates a sequence of a certain number
num_bx_cycles of hit transactions, one for each BX. It is anyway much more
complex compared to the previous and it contains a high number of fields.
For this reason a more extensive description of it will be provided in

Chapter [6}

In order to impose constraints to the fields of the generated transactions in a
flexible and time-saving way (some studies about how the SV constraint solver
slows down the simulation when having to randomize in parallel big arrays can
be found in [36]) they have been imposed using dedicated tasks in the sequences,
executed each time a new hit transaction needs to be created and randomized. Such
an approach would also in the future allow designers to write into the transaction
not randomized data, but input coming from other sources, like from physics
simulations. It can be also highlighted that the specific sequence to run in the
sequencer is something that can be defined at a higher level, without having to

look in the lower level detailed file. See for more information;

e the hit master driver main operations can be found in the run_phase(): after
an initial waiting period (set in the hit configuration object) it starts getting
transactions from the sequencer for each clock cycle. Its role is to translate the high
level information contained in the transaction into the the hit interface signals. The
drive() task is used to do it in parallel for each pixel of the DUT. Parallel-threading
has been achieved thanks to the SystemVerilog fork...join_none construct, that
makes it possible to launch a sequence of operations and to continue with the
execution of the code without waiting for any of them to conclude (see [26] for
details on Multi-threading with SystemVerilog). The possibility of generating a

sinusoidal baseline noise and of adding delays to the driven hits has also been



Chapter 5. UVM simulation and verification framework: VEPIX53 62

investigated at the driving level for potential further developments: since it was
not considered as a priority, the related code has been isolated with the use of
compiler directives). A timing diagram obtained by Incisive Cadence showing
such hit signals with an added baseline noise is reported in Figure for two
PUCs. For the use of the mathematical functions access to the C library has been

done through the SystemVerilog DPI interface as presented in [37];

e the hit monitor senses the hit interface: when hits are seen, it measures the time
and amplitude for every pixel, converts the time in the bunch crossing cycle
information and gathers such data in the hit_time_trans in order to send them to
the analysis components.

[ Baseline =0
EF| Cursor-Baseline == 139,031 250ps

Mamew Cursors
=i arizlog_hit[0]

o il anvalog_hit [0][0] 0.013730 2%

F1GURE 5.9: Timing diagram of two PUCs with analog hit signals with an added
baseline noise.

As regards the hit subscriber and the hit configuration objects, they will be described

in detail in Chapter [6] since their role is much linked to the topic therein presented.

5.2.2 Trigger environment

The trigger environment is in charge of driving and monitoring the trigger signal used

by the pixel chip to select hits of interest. The block diagram of such a component is



Chapter 5. UVM simulation and verification framework: VEPIX53 63

FI1GURE 5.10: Trigger environment block diagram.

reported in Figure [5.10[ It can be noticed as its structure is basically identical to the
hit environment one, since it is also responsible of generating inputs to the chip and
according to UVM re-usability principle. The same approach has been also followed for

the definition of transaction items used in such a component, i.e.:

1. trigger_trans is used at the generation side;

2. trigger_time_trans is used at the monitoring side.

Their UML class diagram can be observed in Figure and[5.12] As it can be noticed,

+isTrig: bit
+time_ref: int

-next time ref: int
+trigger rate_khz: int

+newlname: string)
+convertZstring [ string
+do_copy [rhs: uvm_ohject)
+increment_tref

F1cURE 5.11: UML class diagram of the trigger_trans.

each trigger transaction contains few fields:



Chapter 5. UVM simulation and verification framework: VEPIX53 64

e a isTrig bit, used to decide whether or not to generate a trigger signal for a certain

BX; such a decision is taken depending on the trigger_rate_khz field;

e a time reference value, correspondent to the BX of the associated hits (no

information on the latency is added at this level);

e in addition, a field is used to pass to each transaction the trigger rate specified from
the sequence. In this way it can be used to impose constraints on the isTrig value
from the transaction itself, using the standard SystemVerilog constraint solver,
since in this case there is no need to use special expedients as for dealing with

randomization of big arrays.

Trigger_Time_Trans

+timePlusLatency: int unsigned

+new(name: string)
+convertZstring () string

FIGURE 5.12: UML class diagram of the trigger_time_trans.

As regards the trigger_time_trans diagram reported in [5.12] it contains just one field.
Indeed, since such a transaction is produced only if the trigger signal is sensed, the
only interesting information is related to the time when it has been detected. Even
if still represented in number of clock cycles, the timePlusLatency value already adds
the trigger latency. As concerns the methods of both the presented items, they are
exactly the same standard and non-standard ones that have been already described for
the hit environment. In the trigger environment reference is made to a configuration
object. The same hierarchical structure used for the hit configuration objects has been
used. The trigger_master_config is referenced by the components wrapped in the master
agent, while for the higher level components a pointer to the trigger_config object is
adopted. Such an item so far just contains the reference to the lower level configuration
object, but other pointers could be potentially added if needed for configuring other new
components. The fields of the trigger_master_config can be seen in Figure It can

be notice the presence of:

e a configurable name for the object;



Chapter 5. UVM simulation and verification framework: VEPIX53 65

trigger_master_config

+name: string

+is_active: uvm_active passive_enum
+init_idle_cycles: int
+trigger_latency_cyclas: int
+consec_triggers: consec_triggers t
+consec_triggers_num: int

+newlname: string)

FiGure 5.13: UML class diagram of the trigger master config.

a variable to specify whether the trigger master agent is active or passive;

an initial number of cycles before the start of operations of the driver;

a variable to define the trigger latency, expressed in number of BX cycles;

a variable to define if any number of consecutive triggers can be generated
(consec_trig = UNLIMITED) or if such a value should be limited (consec_trig =
LIMITED) to a certain value (such a data type is user-defined, and can be found
in dedicated file the define folder, as introduced in the section ;

an integer to specify the number of allowed consecutive triggers (if limited).

The operations performed by the main components of the trigger environment are herein

listed:

e the trigger master sequencer is used to run sequences of trigger transactions. The
trigger master seq lib contains just one simple sequence (trigger_sequence). It has
two fields, used to specify the number of bunch crossing cycle to run (num_trans)

and the trigger rate. Both those two values can be set from the test file;

e the trigger master driver waits for an initial period (set in the trigger configuration
object) and afterwards begins to get trigger transactions from the sequencer at each
clock cycle in order to translate them to the trigger physical signal. Indeed, such
a component has a pointer to the trigger interface. Once more, the drive() task is

used for such a goal. It also takes into account possible limitation to the number



Chapter 5. UVM simulation and verification framework: VEPIX53 66

of consecutive triggers that it is allowed to send to the DUT, as specified by the

configuration object;

e every time a trigger signal is detected in the trigger interface, a trigger_time_trans
is built by the trigger monitor and sent to the analysis ports that are in charge of

driving it to the analysis environment.

5.2.3 Readout environment

The development of the readout environment has not been the focus of my personal work.
It will be anyway described for completing the overview on the whole framework. Its

block diagram can be seen in Figure As it can be seen, its structure is extremely

readout env

readout master agent

readout monitor

FIGURE 5.14: Readout environment block diagram.

simple: it basically contains one passive agent, used to wrap the monitor. Such a
component is indeed not meant to drive any signal to the DUT, but just to sense its
outputs from the readout interface and to group them into a readout_trans. Even if its
role is generic, the specific structure of such a transaction is so far dependent on the
format of the DUT output. It is straightforward to notice the correspondence between
the output packets of the two different DUT architectures presented in the previous
chapter in the Figures and with the UML class diagram reported respectively
in Figure [5.15] and It can be seen as in the first case an array is used for both
the TOA and the TOT (amplitude) of the hits and as it refers to an architecture with
independent pixels. As regards the methods of such a transaction, it can be noticed the
presence of some standard ones and only a simple additional one (get_ToA()) used to
obtain the maximum TOA value contained in the array. Comparing it with the second

class diagram, it is clear how the TOA is stored just once per each PR, while a separate



Chapter 5. UVM simulation and verification framework: VEPIX53 67

readout_trans

+timeOfArrival: int unsigned [0..m] [0...n]
+amplitude: int unsigned [0...m] [0...n]

+new(name: string)
+convertZstring (): string
+do_compare (rhs: uvm_ohject,
comparer; uvm_comparer)
+get_ToAl) int

FIGURE 5.15: UML class diagram of the readout trans for the independent pixels
architecture.

TOT value is present for each PUC in the region. As concerns the role of the readout

readout_trans

+timeOfArrival: int unsigned
+hit_map: int unsigned [0..m] [0...n]
+amplitude; int unsigned [0..m] [0...n]

+new(name: string)
+convertZstring () string
+do_compare [rhs: uvm_ohject,
comparer: uwm_comparer)

FIGURE 5.16: UML class diagram of the readout trans for the zero-suppressed FIFO
architecture.

monitor, it basically checks at each bunch crossing cycle if the output of the PR buffer
has changed and if it is the case case senses the signals of the readout interface and uses

them to build one readout trans.

5.2.4 Analysis environment

I have have not been personally involved on the development of this component, apart
from some minor aspects. It will be anyway presented for completeness without
providing many details. The block diagram of such an environment is shown in Figure
Besides the usual master agent wrapping the monitor, many other components

can be noticed:



Chapter 5. UVM simulation and verification framework: VEPIX53 68

{ analysis env

scoreboard feadoui

W

lo=t hits
output
file

analysis
config

i

analysis i output
master file
config

F1cURE 5.17: Block diagram of the analysis environment.

e a reference model that, fed with the same hit and trigger inputs, emulates the ideal

behaviour of the DUT and predicts the expected output;

e a scoreboard for conformity checking between predicted and actual DUT outputs:

results on matches and mismatches are reported in the simulation log file;

e a lost hits subscriber for collecting classification of lost hits and printing it to a

text output file during the UVM report_phase();

e analysis buffer subscriber, for collecting histograms of buffer occupancy of the PR

buffer and printing such information to a text file during the UVM report_phase().

It can be also noticed the presence of the usual hierarchy for the configuration objects.
As regards the transaction (analysis_trans) created by the analysis.monitor and sent
to the other components of the environment, it has the role of grouping signals used
to monitor the DUT status: its field depend on the DUT. Indeed, to be capable of
classifying sources of hit loss and providing statistics collection, the signals that need to
be monitored can vary from one DUT to another. Moreover, such signals are also used
by the reference model to emulate the DUT behaviour without predicting DUT outputs
that are already seen to be lost. That would otherwise cause a sequence of mismatches
in the scoreboard (since it simply compares the reference model output with the actual
DUT output) without any possibility of recovering. At the time of writing, modifications

on the reference model itself are likely to be necessary when changing the DUT under



Chapter 5. UVM simulation and verification framework: VEPIX53 69

simulation. The UML class diagram of the analysis_trans used for both the independent
PUC and the zero-suppressed FIFO architectures are shown, respectively in Figure [5.18
and Status signals probed for both the architectures are:

analysis_trans

+hufferFull: bit

+pixelBusy_ToT: hit [0...m] [0...n]
+pixelBusy_DUT: hit [0..m] [0...n]
+wr_en_semaphore: bit [0..m] [0...n]
+hufferOccupancy: int [0..m] [0...n]

+newlname: string)
+convert2string () string

FiGure 5.18: UML class diagram of the analysis_trans for the independent PUCs
architecture.

e the buffer overflow flag;

the flag used to monitor when each PUC is busy measuring the TOT;

the flag used to check if the PUC is “blind” because digitally processing a hit;

the flags used to get information on buffer occupancy: the value itself and the

wr_en_semaphore that decides when to actually monitor it (only on write).

analysis_trans

+hufferFull: bit

+pixelBusy_TaT: bit [0...m] [0...n]
+pixelBusy_DUT: bit [0...m] [0...n]
+PRBusy: bit
+wr_en_semaphore: bit
+bufferOccupancy: int

+newiname: string)
+convertZstring [ string

FIGURE 5.19: UML class diagram of the analysis_trans for the zero-suppressed FIFO
architecture.

For the zero-suppressed FIFO architecture an additional flag is being probed since the

PR buffer is shared: when one or more pixels are fired in a PR, it is blind for a certain



Chapter 5. UVM simulation and verification framework: VEPIX53 70

number of clock cycles and such a dead time is monitored through the PRbusy flag. The
analysis_master_config is referenced by the components wrapped in the master agent,
while for the higher level components a pointer to the analysis_master_config is used. The

UML class diagram of such an object can be seen in Figure Beside the presence of

analysis_master_config

+hame: string

+is_active: uvm_active passive_enum
+dump_huffer_occupancy: hit
+dump_lost_hit_clas; hit

+newiname: string]
+convertZstring [ string

FI1GURE 5.20: UML class diagram of the analysis_master_config.

the usual fields (configurable name for the object and variable for active/passive agent),
there are two additional fields that are actually responsible for the structure and behavior
of the analysis environment. In particular, it has been said that such a component is
capable of producing two output files with report on classification of lost hits and on
buffer occupancy. It has been also shown as two dedicated components (subscribers)
take care of generating them. In order to provide flexibility and configurability it has
been left to the user to decide whether to print or not such output files. This can be

achieved by setting accordingly the following switches in the test (as it will be shown in

subsection [5.2.6)):

o dump_buffer_occupancy, if active it causes the analysis buffer subscriber to be built

into the analysis environment, and the corresponding output file to be generated;
o dump_lost_hit_clas, if asserted it causes the analysis lost hits subscriber to be built

and the corresponding output file to be produced.

Such a strategy has been followed for all the text or data output files that generate

reports or statistical analysis.



Chapter 5. UVM simulation and verification framework: VEPIX53 71

5.2.5 Top level environment

The top level environment represents the wrapper for the whole simulation framework,
reported in the block diagram of Figure All the other components that have been
described are therein built during the UVM build_phase(). In addiction to those, a
component which has a fundamental control role is defined: the top virtual sequencer,
that runs virtual sequences contained in the correspondent library (top virtual seq lib).
A virtual sequencer is in charge of coordinating the stimulus across different interfaces
and the interactions between them. The use of the adjective “virtual” is related to the
fact that such a sequencer is not directly connected to any driver linked to a DUT
interface. It only contains pointer to the lower level sequencers. Once the pointers have
been defined, it is possible for a virtual sequence to control which specific sequences
(taken from the correspondent library) to run on each of the non-virtual sequencers
and how to do it, e.g. in parallel or serially. Just to provide an example, the
top_virtual_sequence present in the library launches in parallel (through a standard
fork...join process) an instance of type hit_sequence and one trigger_sequence
respectively in the hit_master_sequencer and in the trigger_master_sequencer. As
regards the top level coordination of the environment it is probably also worth it to
mention the way it is defined when the simulation ends. It could be potentially just
defined a certain duration time or the Verilog system function $finish could be used,
nevertheless when dealing with complex environments with multi-threading those
classical approaches do not always ensure control on the actual moment in which the
planned simulation comes to an end or they may not be flexible enough. UVM
provides an objection mechanism to allow hierarchical status communication among
components. There is a built-in objection for each phase, which provides a way for
components and objects to synchronize their testing activity and indicate when it is
safe to end the phase. In general, components or sequences have to raise a phase
objection at the beginning of an activity that must be completed before the phase
stops and to drop the objection at the end of that activity. Once all of the raised
objections are dropped, the phase terminates. So end-of-test in the UVM is controlled
by managing objections: for uvm_components the objection mechanism is automatic
while it is normally necessary to handle it for the sequences. Every time a root

sequence (without any parent sequence) is launched an objection is raised, while when



Chapter 5. UVM simulation and verification framework: VEPIX53 72

it ends its operations it is dropped, as suggested in [4]. For details on such a

mechanism one can refer to UVM references like [27] and [28].

5.2.6 Top level tests

As it can be seen on top of the framework block diagram in Figure UVM tests are
separated from the top level environment itself. The wvm_test class defines a specific
test scenario for the top environment specified in the test, enabling configuration of the
verification components. A peculiarity of the uvm_test class is that it can be directly
launched using command line options and it gets automatically instantiated. As
recommended ([4]), a base test class that just instantiates and configures the top level
environment has been defined, and then extended to obtain scenario-specific
configurations of the environment. In the basic test it is also chosen to print in the log
file the environment hierarchy and the components registered in the so-called UVM
factory. Since this is the most important file to be modified by possible users, some
details on how it is organized will be provided in this subsection. So far, three specific
tests, all extended by the top_base_test one, have been written and they have been
named with increasing numbers, i.e: top_testl, top_test2 and top-test3.  The
correspondent  files can be found in  the  tests folder in  the
source/ VerificationEnvironment/top path, as shown in subsection The
build_phase() of such a class is crucial for the configuration of the environment. Indeed,
during such a phase, for each one of the lower level environment for which a
configuration object has been defined, it is created and specific values are specified for
its fields. The way it is done in the top_test! for the trigger environment is shown as

an example:

// Creating the configuration objects

m_trigger cfg = trigger_config ::type_id::create("m_trigger_cfg");

m_hit_cfg hit_config ::type_id::create("m_hit_cfg");

m_analysis_cfg = analysis_config ::type_id::create("m_analysis_cfg");
// Setting the trigger configuration
m_trigger cfg.add_master("m_trig agent",

UVM_ACTIVE,



Chapter 5. UVM simulation and verification framework: VEPIX53 73

“INIT_IDLE CYCLES,
‘PIXEL_CHIP_TRIGGER_LATENCY,
LIMITED,

3);

The fields of the trigger configuration object that were presented in subsection can
be recognized. Such objects are then set, going through the design hierarchy, in the

pointers present in the correspondent environments, as shown in the following code:

uvm_config_ db#(trigger_config) ::set(this,"*.m_trig_env",
"cfg", m_trigger_cfg);

uvm_config_db#(hit_config) ::set(this,"*.m_hit_env",
"cfg", m_hit_cfg);

uvm_config_db#(analysis_config) ::set(this,"*.m_analysis_env",

"cfg", m_analysis_cfg);

This is possible thanks to the UVM configuration mechanism. The uwvm_config_db is a
type-specific configuration mechanism, offering a robust facility for specifying
hierarchical configuration values of desired parameters. It is built on top of the more
general purpose wvm_resource_db which provides side-band (non-hierarchical) data

sharing [4].

In the designed test files the final steps performed using once more the wvm_config_db,

are the following:

e it is chosen which top level sequence of the library to run in the fop wirtual

sequencer;

e the fields of specific lower level sequences (i.e. hit_sequence and trigger_sequence)

are configured.

Here it is an example the detailed code from the top_test1:

// The top wirtual sequence configuration

uvm_config_wrapper::set(this, "m_env.m_virt_seqr.run_phase" ,



Chapter 5. UVM simulation and verification framework: VEPIX53 74

"default_sequence",
top_pkg: :top_virtual_sequence::type_id::get());
// Configuring the specific sequences run in the low level sequencers
// trigger sequence
uvm_config_db#(int)::set(this,"*.top_virtual_sequence.m_trig_seq",
"num_trans", 10000);
uvm_config_db#(int)::set(this,"*.top_virtual_sequence.m_trig_seq",
"trigger_rate_khz", ‘TRIGGER_RATE_KHZ);
// hit sequence
uvm_config _db#(hit_config)::set(this,"*.top_virtual_sequence.m_hit_seq",
"m_hit_cfg", m_hit_cfg);
uvm_config_db#(int) ::set(this,"*.top_virtual_sequence.m_hit_seq"O,
"num_trans", 10000);
uvm_config_db#(real) ::set(this,"*.top_virtual_sequence.m_hit_seq",
"is_hit_prob", 0.5);
uvm_config_db#(shortint) ::set(this,"*.top_virtual_sequence.m_hit_seq",
"min_amplitude", 1);
uvm_config_db#(shortint) ::set(this,"*.top_virtual_sequence.m_hit_seq",

"max_amplitude", 16);

Even in this case, the parameters of the specific sequences that have been described in
the dedicated sections can be recognized. It should be at this point clear that what
distinguishes one of the defined tests from the others is the way the environment is

configured and which sequences are run. In detail:
e the top_test! has been used to run in parallel the basic hit_sequence and
trigger_sequence, as already shown;

e in the top_test? instead the hit_sequence is substituted with the

hit_sequence_poisson, taken from the same library;

e the top_test3 is used to run, still in parallel to the trigger_sequence, the more

complex hit_sequence_cluster, that will be presented in the next chapter.



Chapter 5. UVM simulation and verification framework: VEPIX53 75

5.3 User guide: scripts and UVM message facility

When approaching the use of UVM, the first step has been adopting a strategy for

handling the design flow through scripts. Since the tool used for the code currently

in repository has been Incisive Cadence, the design flow that is adopted is the already

described MSIE design flow (see[3.2.1). As regards the actual files where the scripts are

contained it has been followed the approach presented from a technical course [38] held

at CERN.

p-3):

Two main files can be found in the work folder (previously shown in Figure

1. the Makefile file, to which the user is most likely to refer, since it actually defines

many variables that are then called by the compiling and running scripts that

are contained in the subsequent file. The use of the make command is diffused in

software development, above all under Uniz, and it automatically builds executable

programs and libraries from source code by reading files called makefiles which

specify how to derive the target program. This means that from the terminal one

can run the command make followed by the name of the specific script. In such a

“higher level” file one can find:

a variable that points to the top level module of the project;
a pointer to all the source code related to the DUT;

a variable that points to all the packages of the different environments

contained in the framework, included the top level one;
a pointer to the package that holds all the defined tests;

a variable that gathers the paths to the directories that need to be included

when compiling the verification environment source code;
one for doing the same when compiling the DUT source code;

a variable that groups all the extra options that the user wants to specify to
run the simulation (e.g. debug access to the signals, seed, verbosity level of

messages, single/multi core,...);

a variable that holds the argument of the running command that specifies
the test to be run: the user should modify such a variable for changing the

specific test being run;



Chapter 5. UVM simulation and verification framework: VEPIX53 76

2. the Makefile.defs file, that the user is in principle not supposed to modify, since
it actually contains scripts that simply refer to the previously listed variables. In

details, here it follows what is contained in such a file:

e variables related to the UVM version and that point to the UVM library

location;
e variable for pointing to the installation path;

e a script (to launch it type make plib) for compiling the project library, that
creates the plib library, where all the source files related to the DUT are

contained (and to which the following commands refer);

e a script (to start it use make runt) for generating the primary snapshot with

the top level module of the project (called PizelChip_tb);

e a script (to launch it type make run2) for generating the secondary
snapshot and running the simulation (here all the packages of the
verification environment and in particular where also the specific test are

compiled);

e an additional script (make rungui) that replicates the functions of the
previous one, but also opens the Graphical User Interface (GUI), instead of
simply showing the simulation results in the shell. In this case to actually
start the simulation it is necessary to launch the start of the simulation

from the GUI;

a script (make clean) for cleaning all the results from a previous simulation.

In the work directory one can also find a run.sh executable shell script that can be
directly used to run in sequence: make clean, make plib, make runl and make run?2.
It is also highlighted that during the execution of the three main commands output
.log files are produced (i.e. compile.log, irunl.log, irun2.log). Moreover, in the work
folder there is also an additional directory where the output text and data files can be
stored at the end of a simulation and before launching a new one. In order to move
such files to a dedicated subdirectory of stored_output_files, named from the simulation
date and time, one can execute the shell file muv_hit_map_out.sh. This also causes the
current date and time to be appended to each output file name. To conclude this

section, it is worth it to provide some details on the UVM approach used to handle



Chapter 5. UVM simulation and verification framework: VEPIX53 77

the verbosity level of messages coming out from the simulation. It has been mentioned
that a variable can be defined in the Makefile to specify such a verbosity as argument
of the running commands. Such messages are the ones printed in the shell and stored
in the irun2.log log file. Using Verilog’s $display for printing messages, does not allow
nonintrusive filtering and control of them. Changing the verbosity on the command line
does not require to recompile and re-elaborate the design and enables the engineer to
obtain more or less detailed information from the simulation (and respectively slower
or faster engine). UVM reporting services are built into all components and dedicated
macro APIs are defined for them to make their use easier. As regards their severity, four

main levels can be distinguished:

e ‘uvm_info(string id, string message, int verbosity);
e ‘uvm_warning(string id, string message);
e ‘uvm_error(string id, string message);

e ‘uvm_fatal(string id, string message).

The verbosity level is an integer value to indicate the relative importance of the
message, specified just for information messages. When using the message macros,
verbosity is instead ignored for warnings, errors and fatal errors in order to prevent
verbosity modifications from hiding bugs. Specific information messages are issued
only if the value is smaller or equal to the current verbosity level. An enumerated type
provides several standard verbosity levels like: UVM_NONE=(0, UVM_LOW=100,
UVM_MEDIUM=200, UVM_HIGH=300, UVM_FULL=400, UVM_DEBUG=500. At
the time of writing, to keep good simulation performance, the chosen verbosity level is
UVM_LOW. With it, just messages related to the checkings done in the analysis
scoreboard (matches/mismatches) are shown in the log file. For collecting other kinds
of information on the simulation the text and data files are used. Lower level messages,
intended to be used at the very debugging level or at an intermediate one have also
been defined. For details on the specific level on each message one can simply look for
‘uvm_info in the source file of the different verification components or even modify

them /their verbosity level if needed.



Chapter 6

Hit generation with constrained

distribution within the framework

sbe hit environment has already been presented in the previous chapter as regards
its basic blocks and structure. The sequence of transactions sent to the DUT through
the simple hit_sequence and hit_sequence_poisson are random with settable and already
described parameters, but the way the pixel is hit is not much related to actual physics
inputs. In those cases, indeed, the randomization of the hits sent to each pixel is done
independently from the others (they just have common constraints). For the RD53
collaboration program it is anyway mostly required to develop a highly flexible pixel hit
generator that can emulate real pixel hits in phase 2 pixel detectors. Such a pixel hit
generator should be capable of emulating pixel hits on a large number of pixels with
appropriate correlations in order to be used to drive the critical optimization of a pixel
ASIC design. The development of such a generator is subject of this work. It has to
be anyway clearly highlighted that, even if it aims to reproduce physics input, such a
hit generator is not meant to substitute inputs from Montecarlo or sensor simulations.
It is just supposed to be a simple and easy-to-use tool (within the framework itself)
that provides the flexibility of driving both realistic and extreme inputs to the chip,
depending on the specific interest of the user that launches a test. Moreover, the hit
generator should be made able to generate pixel hits based on detector Monte Carlo or
sensor simulations, when such data will be made available. A collaboration has started
on this with the LCD community.

78



Chapter 6. Hit generation with constrained distribution within the framework 79

6.1 Classes of hits

In order to develop a model for the hit generator easy to be simulated and not too
sophisticated but able to run within the SystemVerilog UVM framework itself, some
classes of inputs of interest have been identified. For each of them some basic
parameters have also been defined, still aiming to obtain a simplified (but valuable as
an additional tool for verification) model of physics inputs. It is herein highlighted

that when mentioning a “hit” in this context we refer to a single pixel being hit:

e at a certain time (at the time of writing the generation is all synchronous and it is
given through a BX cycle number, even if the possibility of adding an additional

delay to it has been partially evaluated, just at the generation level)

e a certain amplitude, so far expressed as a TOT value (and that may be in the
future modified into a charge value when developing more detailed and realistic

models of the analog front end of the DUT)

The types of hits have been classified on the base of expected physics at LHC detectors
and such information on particle generated after the proton-antiproton collision has been
translated on how they are seen when detected from the ROC. The identified classes are

herein listed and will be further described in the dedicated subsections:
1. single tracks, in general associated to energetic particle crossing the sensor at a
certain angle;

2. loopers, soft charged particle that in the solenoidal magnetic field become curling

tracks [39];

3. jets, collimated bunches of final state partons and hadrons coming from hard

interactions [39];

4. monsters, not really a special phenomenon for physics, but a very extreme input

to be used by engineers for extensive verification of the design;

5. noise hits, phenomena not directly associated with tracks, intended to add

background noise.



Chapter 6. Hit generation with constrained distribution within the framework 80

In order to emulate such interactions using a geometrical model for the particle hitting
the sensor, some generic parameters concerning the latter have been identified and can

be set by the user. The main ones are:

e pixel pitch (intended as the dimension of the pixel in the same direction of the

tracks, i.e. Z). For a square pixel size it is simply set to the edge value;
e pixel chip size of the full matrix;

e pixel chip area (specified separately, but should be calculated from the pixel size

and total number of pixels in the chip);

e sensor thickness.

As regards the data type that has been used for them, a real has been used even where
int would have been sufficient. This has been done because such values need to be used
for performing mathematical calculations. When even only one operand is an int, in
SystemVerilog the operation is evaluated as for integers. This can lead to undesired
rounding off or, in particularly unlucky cases, to complete misleading results. For the
same reason, it has been also avoided to perform calculations in the ClassDefines.sv file,
since when dealing with compiler directives it is not clear with kind of format is being
used for the operators. The assumption done on such parameters in order to obtain the
graphical results shown in this section are based on values that are at the time of writing

reasonable options for next generation sensors and ROCs, i.e.:

e pixel pitch equal to 50 ym (assuming a pixel size of 50x50 pum?, as presented in

subsection [1.2.1]);

e pixel chip size equal to 512x512 pixels (leading to bigger ROC compared with

previous generations);
e pixel chip area equal to 6.5536 cm?;
e sensor thickness of 100 pum, a small value that seems to be at the limits of

technological feasibility at the time.

Most of these parameters can be specified from the test and/or from ClassDefines.sv

file, located in the define folder. As regards the test to choose to obtain the



Chapter 6. Hit generation with constrained distribution within the framework 81

environment configuration presented in this chapter, the user should refer to top_test3
and modify it according to needs. The setting of the various parameters is done both
from configuring the UVM hit configuration object and from the specific
hit_sequence_cluster used for generating transactions with the different classes of hits.
Before going into details, it has to be highlighted that a basic distinction exists
between the top_test3 and the top_test1-2. While the latter simply generate inputs for
the pixels of the actual ROC being simulated (whose dimension is so far quite small,
correspondent to just one pixel region), the first is capable of generating inputs for a
full matrix with the final expected pixel chip size. This means that so far just a subset
of the generated inputs are driven to the actual (smaller) DUT being simulated. In
order to keep the two ROC dimensions separate, a specific define has been used in
ClassDefines.sv for the entire ROC size (i.e. PIXEL_CHIP_Z_ FULL and
PIXEL_CHIP_PHI FULL) referring to the cylindrical coordinate space inside the
detector. When configuring the environment through the tests, it has been chosen to
use an enumerated parameter to decide whether to simulate the whole matrix
(FULL_PIXEL_MATRIX) at the generation level or just the matrix correspondent to
the actual DUT under simulation (CURRENT_DUT_PIXEL_MATRIX). Such a
parameter can be set in the hit configuration object and clearly affects the behaviour
of the hit master driver. Each of the defined tests has been designed for one of the two
cases, as already said. Warnings are issued if the opposite choice is done. As concerns
the hit configuration object that is created in the tests (that has not been shown in
subsection , it is displayed in Figure Many parameters can be therein
noticed, starting from the very generic ones (name, definition of active or passive
master agent, definition of the number of idle cycles at the beginning of the simulation
before the driver starts sending hits to the DUT), going to more specific ones. In

particular:

e gen_maltriz_size is the enumerated type that chooses between the
FULL_PIXEL_MATRIX or CURRENT_DUT_PIXEL_-MATRIX simulation at the

generation level;

e in case a FULL PIXEL_MATRIX is being simulated with a smaller DUT,
submatriz_shift_z and submatriz_shift_phi enable the user to define where to

collocate the simulated chip into the bigger matrix;



Chapter 6. Hit generation with constrained distribution within the framework 82

hit_master_config

+hname; string

+is_active: uvm_active passive_enum
+init_idle_cycles: int

+gen_matrix_size: generation_matrix_size_t
+submatrix_shift_z: int
+submatrix_shift_phi: int
+hit_gen_pixel_chip_z: int
+hit_gen_pixel_chip_phi: int
+hit_gen_pixels_in_pixel_chip: int
+pixel_chip_area_cm?2; real
+dump_each_hx_data: hit
+dump_hist_hit_position: hit
+num_cycles_before_hist_dumped: int
+monitor_actual_hit_rate: monitor_hit_rate t

+hew(hame: string)
+oonvertZstring (1 string

F1GURE 6.1: UML class diagram of the hit_master_config object.

e the parameters on the pixel matrix dimension (i.e. hit_gen_pizel_chip_z,
hit_gen_pizel_chip_phi, hit_gen_pizels_in_pizel_chip ) at the generation level are
automatically set (when the configuration object is built) depending on the

choice done on the previous parameter;
e the pixel chip area;

e the last four parameters are used for guiding the monitoring done for checking

generated inputs and they will be better described in section [6.2

All the previously listed parameters are generic and used to configure the
environment under any circumstances: they do not depend on the specific classes of
hits being generated. It is instead the hit_sequence_cluster that takes care of generating
a sequence of transactions that emulate such physics hits. This sequence is therefore
the one run in the hit_master_sequencer, as defined in the top level sequence launched
in the top_test3. It is also the one whose configuration enables the user to stimulate the
ROC with different inputs, characterized by different parameters (e.g. rates, track

angle, etc..).



Chapter 6. Hit generation with constrained distribution within the framework 83

6.1.1 Tracks

A simple representation of the track that a particle goes through after having been
generated in the interaction point (or other secondary vertexes) is sketched in Figure

Each single track hits a variable number of pixels, generating a so-called cluster.

Interaction point

/ : Sensor

FIGURE 6.2: Sketch of the track of a particle crossing the sensor.

The dimension of such a cluster depends on the angle of the track itself with respect
to the sensor surface. The less the particle path is close to being perpendicular to the
sensor, the longer the cluster, as it can be noticed in Figure In the Figure, the
different types of small arrows denote the polarity of the charge carriers (the filled ones
are electrons, the open ones holes) while the big arrows indicate the particle tracks.

Such an angle is ultimately dependent on the position of the sensor itself in the whole

TWRTELY!

piptal

D"
S L
_
i

Wi 7 §
/ / N

(a) (b) (c)

FIGURE 6.3: Formation of clusters of different size in silicon detectors: (a) size 1, (b)
size 2, (c) size 3 ([I]).

pixel detector or on how it is tilted. The phenomenon of having multiple pixels hit from
a single track is generally referred as charge sharing. Apart from the pure geometrical

considerations, additional aspects that can influence the cluster dimension are ([1):

e the presence of a magnetic field that makes the signal charge deflect by the Lorentz
angle can increase the charge sharing as shown in Figure for both perpendicular

and tilted tracks;



Chapter 6. Hit generation with constrained distribution within the framework 84

e charge sharing can also happen in the perpendicular direction when perpendicular
tracks hit the corner between multiple pixels (such a phenomenon can also cause

the charge to be too much distributed and uncomfortably small);

e Operating in partial depletion, that can be necessary after irradiation, and
trapping influence the charge sharing, since they decrease the collected signal

charge;

e higher operation voltages needed to operate after irradiation, make the Lorenz

angle decrease, still influencing the charge sharing.

FIGURE 6.4: Formation of clusters in a silicon detector in presence of a magnetic field
in two cases : (d) with the track perpendicular to the sensor surface and (e) tilted by
the Lorentz angle ([I).

It has been purpose of this work to model such (more complex) phenomena defining a

subset of simple and easy parameters. Such parameters are:

a) track rate per cm? (can also be set to 0);
b) the track angle;
c¢) the charge sharing level,

d) the percentage of pixels surrounding the central cluster that are hit (used only if

charge sharing is present).

As concerns the track angle, it is important to highlight the reference system used. It has
been associated a a 90° angle to tracks perpendicular to the sensor surface. This value is
used to geometrically evaluate the cluster length, as shown in Figure The dimension
of such a central cluster can therefore be from 1x1 to 1xN. As far as charge sharing is

concerned, it has been described as many aspects (beside geometrical considerations)



Chapter 6. Hit generation with constrained distribution within the framework 85

pixel
pitch

< —

' sensor

/ \; thickness

il

FIGURE 6.5: Geometrical representation of a track crossing the sensor with a certain
angle.

can affect it. Trying to model all of them would clearly require a too sophisticated
model for a SystemVerilog simulation framework (such inputs will be provided from
actual sensor simulations). For this work, it has been chosen to represent the variability
on the number pixels that are hit surrounding the central cluster with two parameters.
A sketch of such a cluster is shown in Figure In particular, the charge sharing level
(either LEV_ZERO or LEV_ONE) defines whether or not to hit such adjacent pixels
and, if so, their percentage. Even if such a model is clearly simplified, it makes it
possible to obtain not only clusters of fixed dimension but with more realistic variable
shape. It also provides some simple control knobs to generate them that can be set

into the hit_sequence_cluster through the top_test3. Also some other generic parameters

FIGURE 6.6: Sketch of a cluster with a central part and some adjacent pixels being hit
as effect of charge sharing.

previously introduced, i.e. number of BX cycles to run, sensor thickness, pixel pitch and
maximum and minimum amplitude of the incoming hits, can be specified in the same
way. As concerns the algorithm used to generate such tracks, the following steps are

performed:

e depending on the rate, for each BX cycle it is decided whether or not to generate

tracks and, if so, how many clusters;



Chapter 6. Hit generation with constrained distribution within the framework 86

e for each cluster the starting address is randomly chosen in the matrix and an

amplitude is randomized within the allowed range;

e the cluster length is evaluated from the pixel pitch, track angle and sensor

thickness;

e the task generate_single_track is called in order to actually generate each cluster
and the starting address, the amplitude, the length, as well as the details on
the charge sharing parameters are passed to it. At the time of writing the same
amplitude is used for the central cluster, while a slightly lower value (amplitude
- 1) is used for the neighbours. Generated clusters are written (and eventually
summed, if overlapping) in the hit_trans transaction that will be sent at the end

from the sequencer to the driver.

In Figure [6.7] an example of a matrix where clusters have been generated in one BX
cycle is shown. Details on the parameters set for the tracks are also provided in the
caption. Such graphical results have been produced importing an output .dat file (that
will be introduced in Section in MATLAB. More detailed examples on the
generated clusters are provided in order to show the results produced by the model
used for the charge sharing. In Figure two clusters are shown without charge
sharing and with two different track angles, respectively 90° and 9°, that give rise to
square and elongated clusters. The same types of clusters, both square and elongated,
are also shown in Figures and when charge sharing is turned on (LEV_ONE)

and with an increasing percentage of surrounding pixels being hit.

6.1.2 Loopers

A simple representation of a low energy particle going through a curling track is sketched
in Figure[6.11] It can be noticed as such particles are likely to hit the sensor in a direction
that is close to being perpendicular to its surface. For this reason, in this work it has
been chosen to model them as single tracks crossing the sensor at 90°, as shown in
Figure This means that the dimension of the central cluster is fixed to 1x1. It
is anyway not excluded that in the future a range of angles might be used, instead
of a single value. Therefore, the parameter that has been defined for the generation

of loopers is just the rate normalized by the area (looper_rate_per-cm?2), that can also



Chapter 6. Hit generation with constrained distribution within the framework 87

100

130

w ra ra
o o =1
=] o o

Mumber of pixels (along £)

o
o
=]

400

450

a00

50 100 150 ] 250 300 350 400 450 500
Murmber of pixels (along PHI)

FIGURE 6.7: Example of tracks generated in one BX cycle. Track rate per cm?= 500
MHz, track angle= 9°, charge sharing = LEV_ONE, percentage of surrounding pixel
hit = 50%.

{(a) {b)

F1GURE 6.8: Example of square and elongated clusters generated with different track
angles, i.e. 90° (a) and 9° (b) without charge sharing with adjacent pixels.




Chapter 6. Hit generation with constrained distribution within the framework 88

(a) (b) (c) (d)

FIGURE 6.9: Examples of square clusters with charge sharing. The % hit pixels are:
10% (a), 50% (b), 80% (c), 100% (d).

(a) (b) (c) (d)

FIGURE 6.10: Examples of elongated clusters with charge sharing. The % hit pixels
are: 10% (a), 50% (b), 80% (c), 100% (d).

Interaction point

_re

FIGURE 6.11: Sketch of a looper crossing the sensor surface.

pixel
pitch
< >

sensor
thickness

FIGURE 6.12: Geometrical representation of a track crossing the sensor with a certain
angle.



Chapter 6. Hit generation with constrained distribution within the framework 89

be set to 0. Furthermore, the settings done for the charge sharing of the tracks are
also used for the generation of loopers. In practice indeed, the generation of loopers is
performed using the same approach as for the tracks, and in particular for each looper
the generate_single_track task is called specifying cluster length equal to 1. They are all
summed in the same transaction that is meant to be sent to the driver. An example of
a whole matrix to which only loopers are sent is shown in Figure Also in this case

the charge sharing has been turned on with 50% of surrounding pixels hit. Since they

16

a0
14

100
12

180
10

350

400

450

500

r
=}
=

r
a
o

@

Mumber of pixels (along £)
2

= )

™

a0 100 130 zoo 230 300 330 400 430 500
Murnber of pixels (along PHI)

FIGURE 6.13: Example of (only) loopers generated in one BX cycle in the whole
512x512 matrix. Looper rate per cm? = 500 MHz, charge sharing = LEV_ONE,
percentage of surrounding pixel hit = 50%.

are quite small clusters in a big 512x512 matrix, also a zoom of a subset is reported in

Figure [6.14]

6.1.3 Jets

A jet can be seen as a narrow cone of particles concentrated in a given area, as shown in
Figure [6.15] Such a phenomenon has been modeled, per each BX, as a combination of

multiple and close tracks that hit the sensor, giving rise to a group of clusters localized



Chapter 6. Hit generation with constrained distribution within the framework 90

4a0

485

I
w
=

435

Mumber of pixels (along £

500

505

Mumber of pixels (along PHIY

FIGURE 6.14: Zoom on few loopers generated in one BX cycle. Charge sharing =
LEV_ONE, percentage of surrounding pixel hit = 50%.

Interaction point

e

FIGURE 6.15: Sketch a jet (bunch of particles) crossing the sensor.

in a certain area of the matrix. In order to achieve such a model, the definition of a set

of additional parameters is required, i.e.:

a) jet rate per cm? (can also be set to 0);

b) average number of tracks per jet (a poisson distribution with such an average has

been used);

c) size of the jet area, given in number of pixels for each edge.



Chapter 6. Hit generation with constrained distribution within the framework 91

In order to generate a jet, the first step is to randomize the central address of the jet
area, whose limits are specified. At that point each track in the jet is created using
the routine for single track generation. The only peculiarity is that the starting address
of each cluster (passed as an argument to the task) is randomized in the obtained jet
area. The parameters set for the track angle (related to the position of the sensor in
the detector) and for the charge sharing are also used. An example of a whole matrix
where only jets have been generated is shown in Figure [6.16] The detailed parameters

set are listed in the caption. In order to visualize it more in detail, a zoom on a single

45
40
35
30
25
20
15
10

50 100 150 z00 z50 o0 350 400 450 500
Mumber of pixels (along PHI)

Mumber of pizels (along Z)

o

FIGURE 6.16: Example of tracks generated in one BX cycle. Jet rate per cm?= 200
MHz, average number of tracks per jet = 10, jet area = 10x10 pixels, track angle= 30°,
charge sharing = LEV_ONE, percentage of surrounding pixel hit = 50%.

jet obtained from the previous simulation is presented in Figure [6.17]

6.1.4 Monsters

As introduced at the beginning of the section, monsters are not a special phenomenon
expected from physics. The possibility of sending extreme inputs to the ROC is anyway
of interest for designers. It is indeed important to be sure that it is able to recover under

every kind of stimuli. In the context of ROC design, it has become common to refer to



Chapter 6. Hit generation with constrained distribution within the framework 92

216

216

220

parar

r
r
=

Mumber of pixels (along £)
I N
& &

pas i}

232

234

236

114 116 116 120 122 124 126 128 130 132
MNumber of pixels {along PHI)

FIGURE 6.17: Zoom on a single jet. Parameters: average number of tracks per jet =
10, jet area = 10x10 pixels, track angle= 30°, charge sharing = LEV_ONE, percentage
of surrounding pixel hit = 50%.

extreme inputs (that stimulate a whole row/column of the chip) as “monsters”. They
can be seen as tracks very close to be parallel to the sensor surface , as shown in Figure

[6.18 For this reason they have been considered as a separate class of hits. Some basic

Interaction point
Sensaor
0"_‘—'_/__

FIGURE 6.18: Sketch a track coming almost parallel to the sensor (so-called monster).

parameters have been defined to drive them:

a) monster rate per cm? (can also be set to 0);

b) monster direction (either PHI or Z).



Chapter 6. Hit generation with constrained distribution within the framework 93

Also in this case the parameter set for the charge sharing is used. Examples of single

monsters generated in the usual 512x512 ROC matrix in the the two possible directions

are shown in Figure [6.19] and [6.20]

1
50 0.4
100 08
130 0.7
200 0B
250 05
300
04
350
0.3
400
0.2
450
01
500
0

z00 a0 300
MNumber of pixels (along PHI}

Mumber of pixels (along Z)

FI1GURE 6.19: Example of a BX cycle in with only one monster has been generated in
the PHI direction.

6.1.5 Noise Hits

In order to provide the possibility of also generating another class of hits, that are
“unexpected”, in the sense that they have no correlation with tracks, a control knob
for generating noise hits has also been provided. They have been simply modeled as
1x1 clusters randomly hit. The only parameter that can be set is the noise hit rate
normalized by the ROC area, whose value can also be zero. Such minimum size clusters
can be seen in in the whole matrix, or more clearly in a subset of it that has been

highlighted in Figure



Chapter 6. Hit generation with constrained distribution within the framework

94

Mumber of pixels (along Z)

300
Number ufp\xe\s (along PHI)

FI1GURE 6.20: Example of a BX cycle in with just one monster has been generated in
the Z direction.

16

50
14

100
1z

130
10

350

400

430

500

200 300
Mumber of pIXE|S [along PHI)

r~
=
=

ra
@
=

o™

MNumber of pixels (along £}
2

= )

X

FI1GURE 6.21: Example of a BX cycle during which only noise hits are generated in
the 512x512 ROC matrix. A rate per cm? of 2 GHz has been set.

0.8

0.7

0.5

04

0.3

0.1



Chapter 6. Hit generation with constrained distribution within the framework 95

16
70
14
80
1z
30
10
g
B
130
z
140

o 120 130 140 150 160 170 180 190 200
Number of pixels (along PHI)

= =)
= =

Mumber of pixels (along Z)

™
5}

=

FIGURE 6.22: Zoom on generated noise hits. 1x1 clusters are clearly visible.

6.2 Monitoring and statistics collection

Some additional work was needed in order to obtain a straightforward way of checking
the actually produced stimuli, necessary to guide the development of the hit generator,
to debug it and (last but not least) to obtain graphical representation to be shown (as
the ones presented in the previous and in this section). For this purpose some different

approaches have been followed:

1. it has been decided to write (per each BX) to a .dat file all generated hits specifying
the position in the matrix and the amplitude (mainly for debugging and also for

obtaining graphics on clusters);

2. some statistical analysis has been partially performed within the framework (i.e.

histograms on generated hits are accumulated):

e they can be then printed every m BX cycles into a .dat output file for further

elaboration or graphical visualization;

e they can be used in the framework itself to evaluate observed hit rate all over

the simulation (and finally print it to a text file);



Chapter 6. Hit generation with constrained distribution within the framework 96

3. a third possible approach would be to develop a direct interface between
SystemVerilog and C/C++ to directly call C4++ routines from the SV framework
and to immediately obtain graphical visualization without the need to import

output files. This solution has not been taken into account in this thesis.

It is highlighted that, in order to keep track in each output file of the type of configuration
set by the user for the simulation, many parameters are printed on top of the files before
writing there the simulation results. In particular on each of the files that are going to

be described, one can always check settings done on:

e hit configuration object parameters (generation matrix size, pixel chip area, etc..);

e hit sequence parameters (number of BXs, sensor thickness, track angle, charge

sharing level, track/looper/jet/monster/noise hit rates per cm?, etc..).

Performing monitoring, statistics collection and above all writing to files, can clearly
affect simulation time. For this reason it is important to assure that the environment is

capable of deactivating such operations if not needed. It has been therefore decided to:

e mainly use a dedicated component for taking care of such operations and, if not

needed, to even avoid building it;

e define switches in the hit configuration object (see Figure [6.1]) to enable the user

to activate/deactivate such features.

A block diagram of the hit environment changes when at least one of such switches is
activated, since it causes the hit_subscriber to be built, as shown in In this block
diagram it is assumed that just information on total observed hit rate is being collected.
Details on the level of monitoring will be presented below. It can be therein noticed as
the subscribers receives from the sequencer the same transactions that are sent to the
driver, so it is capable of performing statistical analysis on generated stimuli. Moreover,
it is capable of printing each of them into the hit_map.dat file and/or to accumulate info
on hit pixels in an array and write the histograms in the hit_position_histogram.dat file.
Such information can also be used to calculate the observed hit rate per cm? during
the whole simulation. This is the kind of statistical analysis which can be printed in

statistics_file.txt.



Chapter 6. Hit generation with constrained distribution within the framework 97

hit env
4| hit master agent [ hit subscriber
i| [hitmaster i T[] TomAL
MHE hit master
i driver 1

hit master II

seq lib e

hit monitor 1 l l
O

FIGURE 6.23: Hit environment block diagram with the hit subscriber built (and hit
monitoring only on total hits).

6.2.1 Graphics by MATLAB

In the context of this work, the file containing data have been imported in MATLAB
for graphical visualization. The results obtained for the cluster shapes and distribution
in the matrix have been extensively presented in the previous section in different
situations. As regards the histograms on the positions of the hits, accumulated during
a certain settable number of BX cycles, they have also played an important role when
debugging the developed tool. Since the way pixel coordinates (where tracks, loopers,
jets, monsters and noise hits are sent) are chosen is random, it is expected to obtain
uniformly distributed histograms all over the matrix. Such a checking has been
constantly done while developing the different classes of hits. An example of the
bi-dimensional histogram is shown in Figure |6.24] represented as a 2D matrix. It can
be noticed that the values are very low, since they are normalized to the total number
of hit pixels during the considered period. The sum of all the values is also performed

in the framework, in order to check that it equals 1. Otherwise an error is issued.

6.2.2 Monitoring actual hit rates per cm?

It has been mentioned how accumulated histograms are also used to calculate (and

output to a dedicated file) information on observed hit rates. Some more details on



Chapter 6. Hit generation with constrained distribution within the framework 98

o
=
=

Mumber of pixels (along )

o
@
=

100 200 250 300
Mumber of pixels (along PHI)

FIGURE 6.24: Histogram accumulated in 500000 BX cycles while generating only
tracks.

this feature are presented in this section. First, it is reminded that so far a difference
exists between the big pixel matrix considered at the generation level and the subset of
it being actually linked to the ROC. When simulating such a small DUT, one also wants
to check that the hit rate observed in such a subset of pixels is as expected. For this

reason, statistics are printed for both:

e the whole matrix used at the generation level;

e the DUT matrix (that can be a subset, depending on configuration).
To provide with some additional control knobs for the hit monitoring, it has been also
chosen to define different levels of details for it. A field of the configuration object,
defined as an enumerated type, is used to set it. The possible options are the following:

e NONE, which means that the statistics.tzt file is not generated at all;

e ONLY_TOTAL, that causes the file to contain only info on observed total hit rate

per cm? (possibly originating from different sources);



Chapter 6. Hit generation with constrained distribution within the framework 99

e DETAILED, with which one can obtain both information on total hit rate per
cm? and classified hit rate per cm?, depending on the source (i.e. tracks, loopers,
jets, monsters, noise hits). It is reasonable to use such a level only when running
the hit_sequence_cluster, i.e. with the top_test3. For the other tests, a warning is
generated if such a level is chosen. It would anyway simply cause zero values to

be obtained for each specific class of hits.

In order to obtain a detailed monitoring of different sources, sending just a unique
hit_trans (where all the contributions are already summed) to the hit_subscriber is clearly
not sufficient. Indeed, after the transaction has been written, there is no more any way
of distinguishing to which class of hits it belongs. For this reason, in this particular case

a new structure for the hit environment has been defined. It is presented in Figure

{ hitenv

Fhit master agent hit subscriber

! [[IT__T] o
[TIT 1] TrAcks
{hit master [TIT [] LooOPERS
/|sequencer

M1 s
[TI]___J] MONSTERS
[[I] ]] MOISE HITS

______

EEAREL

. hit master
driver [

hit master hit monitor
seq b

-

FIGURE 6.25: Hit environment block diagram with the hit subscriber built and detailed
level of hit monitoring provided.

The hit_sequence_cluster run by the sequencer not only writes into the final transaction
to be sent to the driver (that contains all the generated hits) but also creates five more
transactions per each BX cycles, each one just hosting one class. In this way it is possible
to the sequencer to send such separate information to the subscriber. As it can be seen

in the block diagram, it accumulates a different histogram for each class of hits plus.



Chapter 6. Hit generation with constrained distribution within the framework 100

This enables the statistics_file.txt to contain a classification of the hit rates per cm?. An

example of the obtained results is shown in Figure [6.26] The main settings of interest

are listed in the caption. At a first glance it can be crosschecked as:

FIGURE 6.26: Example results on detailed hit monitoring. Settings: track rate: 1

GHz/cm? (with 45° angle, causing 2 pixel clusters), looper rate: 2 GHz/cm?, jet rate:

500 MHz/cm?2, 2 tracks per jet), monster rate:7 MHz/cm?, noise hit rate: 2 GHz/cm?,
no charge sharing.

e the sum of the classified hit rates corresponds to the total monitored;

e the observed hit rate per cm?

coming from tracks (close to 2 GHz/cm?) corresponds
to the expected one, since the track rate set is 1 GHz/cm? and each cluster is

formed by two pixels;

2 coming from loopers (close to 2 GHz/cm?)

e the observed hit rate per cm
corresponds to the expected one, since loopers are 1x1 clusters and no charge

sharing is present;

2 coming from jets corresponds to the expected one

e the observed hit rate per cm
equal to 2 GHz/cm?. It can be calculated multiplying the jet rate set (500
MHz/cm?), by the average number of tracks per jet (2 clusters) and by the

number of pixel of each cluster (two pixels);

e the observed monster rate is close to the expected one (that can be obtained

multiplying the set rate by the number of pixels in a monster, i.e. 512);

2

e the observed hit rate per cm? coming from noise hits (close to 2 GHz/cm?)

corresponds to the expected one, since they are 1x1 clusters;



Chapter 6. Hit generation with constrained distribution within the framework 101

e the observed hit rates match pretty well between the whole matrix and the smaller

simulated submatrix, showing once more a uniform distribution of generated hits.

In conclusion, it has anyway to be highlighted as such a model has been designed in
order to be used with ROC matrices whose sizes are not too small. First of all, indeed,
addresses are randomized in the existing matrix, so when very small ones are used at the
generation level it does not make much sense to use very complex stimuli (like jets). On
the other hand, when a very small ROC is used as a DUT (e.g. 2x2), the hit generator
model can show some apparently unexpected results. In particular when generating long
elongated tracks (longer than the DUT edge) it has been seen that the hit rate observed
on the DUT sub-matrix is smaller than the one observed in the whole matrix. This
can be understood since no long cluster actually happens to be contained in the smaller
simulated ROC (meaning that for each cluster less pixels are hit with respect to the
bigger matrix). Since it is not really of interest to use the model with so small ROCs, it

has be chosen to avoid going into complicate modification to correct such a behaviour.

6.3 The configuration of the hit generator

Even if many concepts have been already presented in the previous sections, this one is
meant to be a summary and above all a practical guide for correct configuration of the
hit generator. The user basically needs to access two files, i.e. the ClassDefines.sv one
(path: trunk/source/define) and the top_test3 (path:
trunk/source/ VerificationEnvironment/top/tests). The idea for setting the test is the
same as in subsection where it has been presented how to set the trigger and
analysis configuration objects. It is shown the code from top_test3 to be modified to

configure the hit configuration object.

m_hit_cfg.add_master("m_hit_agent",
UVM_ACTIVE,
¢INIT_IDLE_CYCLES,
FULL_PIXEL_MATRIX,
(‘PIXEL_CHIP_Z_FULL/2),
(‘PIXEL_CHIP_PHI_FULL/2),



Chapter 6. Hit generation with constrained distribution within the framework

102

‘PIXEL_CHIP_AREA_cm2,

DETAILED
)

There one can recognize all the fields of the UML class diagram. In particular, in this

example many defines are used to set the different parameters like the initial number

of idle cycle of the driver and the pixel chip area. Moreover, it is chosen to simulate a

full matrix at the generation level and it is defined to move the simulated DUT at the

center of it. As regards the fields related to the hit monitoring: it is chosen not to dump

each BX cycle (switches set to 0), to dump histograms into the output file every 999 BX

cycles and to activate a detailed level of monitoring on the hit rates. Other important

parameters are then set into the hit sequence:

// Common parameters for cluster generation

uvm_config_db#(hit_config)::set(this,

uvm_config_db#(int)

uvm_config_db#(int)

uvm_config_db#(real)::

uvm_config_db#(real)::

"x.top_cluster_virtual_sequence.m_hit_seq",

"m_hit_cfg",m_hit_cfg);

::set(this,

"x.top_cluster_virtual_sequence.m_hit_seq",

"num_bx_cycles", 50000);

::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq,

"track_angle_deg", ‘TRACK_ANGLE_DEG);

set(this,

"x.top_cluster_virtual_sequence.m_hit_seq",

"sensor_thickness", ‘SENSOR_THICKNESS_um);

set(this,

"*x.top_cluster_virtual_sequence.m_hit_seq",

"pixel_pitch", ‘PIXEL_DIM_ANGLE_DIRECTION_um) ;

uvm_config_db#(csharing_level_t)::set(this,

"*x.top_cluster_virtual_sequence.m_hit_seq",



Chapter 6. Hit generation with constrained distribution within the framework 103

"csharing_level", LEV_ZERO);

uvm_config_db#(int) ::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"percentage_hit_pix_env",
‘PERCENTAGE_HIT_PIXEL_ENVELOPE) ;

uvm_config_db#(shortint)::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"min_amplitude, 1);

uvm_config_db#(shortint)::set(this,
"x,top_cluster_virtual_sequence.m_hit_seq",
"max_amplitude", 16);

// 1. Single tracks

uvm_config_db#(real) : :set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"track_rate_per_cm2", ‘TRACK_RATE_PER_CM2);

// 2. Loopers

uvm_config_db#(real)::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",

uvm_config_db#(real) : :set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"jet_rate_per_cm2", ‘JET_RATE_PER_CM2) ;
"looper_rate_per_cm2", ‘LOOPER_RATE_PER_CM2);

// 3. Jets

uvm_config_db#(int) ::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"mean_tracks_per_jet", ‘MEAN_TRACKS_PER_JET);

uvm_config_db#(int)::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"jet_area_z_edge_size", ‘JET_AREA_Z_EDGE_SIZE);

uvm_config_db#(int) ::set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"jet_area_phi_edge_size",
¢ JET_AREA_PHI_EDGE_SIZE);

codeComment// 4. Monsters



Chapter 6. Hit generation with constrained distribution within the framework 104

uvm_config_db#(real)::set(this,
"*x.top_cluster_virtual_sequence.m_hit_seq",
"monster_rate_per_cm2", ‘MONSTER_RATE_PER_CM2);

uvm_config_db#(monster_direction_t) ::set(this,
"*x.top_cluster_virtual_sequence.m_hit_seq",
"monster_dir", PHI);

// 5. Noise hits

uvm_config_db#(real) : :set(this,
"x.top_cluster_virtual_sequence.m_hit_seq",
"noise_hit_rate_per_cm2",

‘NOISE_HIT_RATE_PER_CM2);

Therein one can notice the initial settings done on generic parameters like the number
of BX cycles to be run (that has to agree with the one set for the trigger environment),
the track angle, the sensor thickness, the pixel pitch, charge sharing fields and the hit
amplitude range. Moreover, other specific parameters used only for the single classes
of hits are set afterwards. Also in this case, for most of them it has been preferred to
use defined variables. This does not mean anyway that the user cannot directly write
desired numbers into the test file. Nevertheless, so far such definitions are done in the

ClassDefines.sv, as shown in the code below:

‘define PIXEL_CHIP_Z_FULL 512
‘define PIXEL_CHIP_PHI_FULL 512
‘define PIXEL_CHIP_AREA_cm2 6.5536
‘define SENSOR_THICKNESS_um 100

‘define PIXEL_DIM_ANGLE_DIRECTION_um 50

[/ e
// 1. SINGLE TRACKS

[/ e
‘define TRACK_RATE_PER_CM2 1000000000

‘define PERCENTAGE_HIT_PIXEL_ENVELOPE O

// 2. LOOPERS



Chapter 6. Hit generation with constrained distribution within the framework

105

‘define JET_RATE_PER_CM2
‘define MEAN_TRACKS_PER_JET
‘define JET_AREA_Z_EDGE_SIZE
‘define JET_AREA_PHI_EDGE_SIZE

‘define NOISE_HIT_RATE_PER_CM2

It has been highlighted the definition of the full matrix dimension, the settings of some

generic parameters for the chip and finally the ones related to the generation of the

different classes of hits. Once the settings are done, the user can always check on top

of all the files that the hit subscriber outputs, that they are correct.

Moreover the

possibility of using graphical visualization of clusters and histograms, as much as the

capability of checking the hit rate offers a way of crosschecking what has been generated.



Chapter 7

Generation of input stimuli for a

study of buffering architectures

sbe developed hit generator has been used for architectural studies, in particular
for a the critical optimization of buffering requirements of the ROCs. It has been already
introduced how the simultaneous increase in trigger latency and hit rate brings to ~100
times higher buffer requirements. It has also been mentioned how significant reduction of
storage resources could be obtained using shared buffering resources at the pixel region
level. An analytical study [33] has been carried out on this topic with simple assumptions
on the shapes of clustered hits and it will be introduced in the first subsection of this

chapter.

7.1 Statistical/analytical cluster and PR buffer models

In the previous chapter it has been seen how cluster shape varies depending on the
position in the pixel detector (or track angle), pixel size, sensor thickness, plus on
additional factors that influence charge sharing (e.g. magnetic field component,
radiation damage) and how to instruct the framework to generate such clusters.
Previously, such a tool for intensive simulation was still to be developed and an initial

statistical/analytical study had been carried out starting from evaluating cluster

106



Chapter7. Generation of input stimuli for a study of buffering architectures 107

shapes only with dependence to one factor, i.e. the position of the chip in the pixel

detector. In particular, when considering pixel chips located:

a) in the center of the barrel where tracks are expected to come perpendicular to the
sensor: a cluster is seen as a central hit pixel (HP) with some pixels fired in the

periphery;

b) at the edges of the barrel where track angles are such that signal is generated on

several pixels and the shape is elongated in one preferential direction.

The exact shapes considered in the study are reported in Figure

(a) (b)

FIGURE 7.1: Symmetrical cluster model; (b) elongated cluster model. Hit pixels are
highlighted in dark pink.

The first one (a) is a fixed size square envelope made of 3x3 pixels (to be referred as
symmetrical model), inside which it is possible to have from 1 to 9 HPs, where the
central one is always hit. As concerns the second (b), that can be referred as elongated
model , a rectangular shape made of 1xn, has been considered, where n,, contained in
the range [1,16], is the number of HPs in the cluster. It can be observed as they are quite
similar to the ones that have been obtained with the hit generator respectively in Figure
using 90° track angle tracks and in Figure (b) with lower angles. Moreover, each
cluster model has then been detailed by adding statistical information on number of
HPs inside them. Four typical statistical distributions of n,, shown in Figure have
been made up in order to describe the extreme and intermediate cases of having clusters
made from just one up to the maximum number of HPs. Moreover, such assumption on
the n, probability distribution have been validated by comparing them with real physics

data obtained from data coming from a CMS run [40].

The two cluster models have been used to determine the average number of pixel regions
that are occupied by a cluster, PR. Such quantity depends on the PR configuration and

the cluster model taken into account. A dedicated procedure, that also takes into account



Chapter7. Generation of input stimuli for a study of buffering architectures 108

1 03
-2;; [}_8 ............................................................................ 5 ,
_ 06 F = 02
=] ]
Eoqa o =
s 04 IR B B B
[l
= [}_’} ............................................................................
D T T T T T T T
1 2 3 4 5 &6 7 & %
np
(a)
03 1
z 5 08
— 0.2 e L B =
= = 06 7
= -]
= = 04
E [],_1 I SN BN BN ﬁ:
R
0 - ] T T T T T T T
1 2 3 4 3 6 7 B8 9 1 2 3 4 5 6 7 8§ 89
np np

FIGURE 7.2: Examples of statistical distributions of n, in a cluster: (a) “Single”; (b)
“Average 4.22”; (c) “Average 6.577; (d) “Maximum”.

the n, probability distribution, has been elaborated for each of them but is not herein
reported, details can be found in [33]. The average number of pixel regions that are
occupied by a cluster obtained have been used to evaluate performance of square and
rectangular PR configurations. In particular, in order to critically design the PR logic,
given a certain latency time, it is of interest to understand how many buffer locations
are (at least) necessary to assure a buffer overflow probability lower than a target value,
since buffer overflow translates in hit losses. For HEP applications an acceptable one is
1072, a more conservative approach would be to keep it below 103. In order to carry
out the overflow probability, the PR buffer has been mod-eled as an ideal array of finite
memory locations where hit packets arrive at a rate that depends on the track rate in
the detector and they receive a trigger signal after a fixed latency time. If the number
of memory locations is h, assuming uncorrelated interactions taking place at each bunch

crossing, the probability of arrival of more than A hit packets (i.e.probability of buffer



Chapter7. Generation of input stimuli for a study of buffering architectures 109

overflow) during latency L can be obtained from the binomial distribution formula:

h .
Poverflow =1 — ZZ; B;X Pl —p)x !
Where BX is the bunch crossing period of 25 ns and p is the probability of arrival of a hit
packet during a bunch crossing period, that can be obtained once the track rate and the
pixel size (and therefore the pixel region area) are fixed the certain values. Graphs can
be therefore plot showing how the overflow probability varies depending on the number
of buffer locations for a fixed pixel region configuration. From such plots, given a target
value for the overflow probability, the required number of locations (h) necessary to
avoid buffer overflow can be obtained. The calculations can be repeated for different
cases of study of interest. In [33] different PR configurations have been compared for
each one of the two cluster models and with the various n, probability distribution. The
comparison has been actually performed in terms of memory bits per pixel. The main

steps are summarized in the following:

1. as mentioned, given the track rate, trigger latency, pixel size, pixel region
configuration and finally the target value for the overflow probability, one can

obtain the required number of locations (h);

2. the quantity that is most appropriate to study is actually the total number of
memory bits in the PR buffer, as it contains information related to both the buffer

locations and the memory organization, that therefore needs to be defined;

3. the total number of memory bits in a PR can be obtained from the product between

the required number of buffer locations and the number of bits of a single location;

4. normalizing the obtained total number of memory bits per PR by the number
of pixels in the region gives a quantity that enables the results between different

configurations to be compared.

In [33] a case study starting from assumptions related to next generation pixel chips (on
track rate, trigger latency, etc...) was presented and conclusions on the total number
of required memory bits for the symmetrical and elongated cluster models had been
obtained for both square and rectangular pixel region configurations. The conclusions

of the study have been in support of square pixel regions, going from 2x2 to 4x4. This



Chapter7. Generation of input stimuli for a study of buffering architectures 110

last option is particularly of interest if one starts thinking of layout and area related
issues. Indeed, when considering dedicated SRAM blocks, a few “large” memory blocks
are preferable than many “small” memory blocks and this means that relatively bigger
configurations could be more attractive even if analytically they do not look like being

the optimum.

7.2 Simulation results from VEPIX53

It has been shown in the previous section how for this study, that aims to optimize the
pixel chip architecture comparing different suitable PR configurations, a key quantity
of interest is the buffer overflow probability. Preliminary simulations have been
performed with the VEPIX53 framework to obtain results on such a quantity coming
from simulations to compare them with the analytical ones (they have been presented
in [41]). The parameters that have to be defined for the statistical model are herein

summarized:

a) cluster model (square or elongated);
b) pixel region configuration;

¢) ny, probability distribution;

d) track rate per cm?;

e) trigger latency;

f) pixel size.

Such quantities need to be accordingly chosen both when obtaining graphs on buffer
overflow probability analytically and when generating them from simulation results.
For this purpose, the developed hit generator has to be appropriately tuned in order
to create cluster models that are quite similar, or even (on purpose) slightly different,
from the ones assumed analytically. In those initial simulations, only the square cluster
model (a) has been taken into account. The preliminary results will be reported in
the following subsections using two different configurations for the hit generator and

the respective n, probability distribution (c) will be specified, as well as the track rate



Chapter7. Generation of input stimuli for a study of buffering architectures 111

(d). The remaining parameters have been kept the same in both the simulations. It
has been chosen to start using the proposed extended CMS trigger latency of 10us (e)
that is the baseline value. As regards the sensor, the usual 50x50um? pixel size (e)
and 100 pm sensor thickness have been used (this last parameter is not an input of the
analytical model). In particular, it has been chosen to first take into account a 4x4 PR
configuration (b) for the DUT (since it is particularly attractive from a layout point of
view). Furthermore, as far as the simulation framework is concerned, it has been chosen
to simulate a bigger 512x512 pixel chip matrix at the generation level. In order to obtain
sufficient statistics, simulations have been run for 500,000 BX cycles. In this way the
4x4 sub-matrix of the pixel chip being simulated has seen around 10,000 incoming hits.
In conclusion, as regards the DUT, the results presented have been obtained simulating

the zero-suppressed FIFO archicture.

7.2.1 Clusters with fixed size

Since a single parameter was used in the model to describe the rate of incoming hits (i.e.
track rate normalized by the pixel area), for the first simulations the hit generator has
been configured in order to generate only tracks. In this first example it has been chosen
to compare cluster models in principle quite different (but on average quite similar to
each other), keeping all the other parameters as the same. In particular the track rate
has been fixed to 1 GHz/cm?2. For the simulations, fixed size clusters have been used. In
order to instruct the hit generator to produce them no charge sharing has been allowed.
Setting the track angle to 45° (with the set sensor thickness and pixel pitch) has brought
to generation of clusters made of 2 pixels. With the set track rate it translates into an
expected (and actually observed) hit rate close to 2 GHz/cm?. Such a simple distribution
on cluster size is shown in Figure Considering the square cluster model (related to
a position of the detector in the center of the barrel) described in the previous section,
some examples of typical statistical distributions of n, have been previously reported.
Other ones can anyway also be considered to repeat the study and in this case one with
a lower average number of hit pixels, equal to 2, has been taken into account (Figure
. Moreover, a different distribution for n, coming from physics data (acquired in the

center of the barrel) with average 2.46 has also been taken into account. It is shown in

Figure



Chapter7. Generation of input stimuli for a study of buffering architectures

112

Simulation distribution

0 T T T r r r T
1 2 3 4 5 6 7 8

Number of hit pixels

9

FIGURE 7.3: Distributions of number of hit pixels in the simulation

Probability

"Average 2.0" distribution

0.4 -

o
W
!

o
[
1

o
[
1

o
'

i 2 3 4 5 6 7 8
Number of hit pixels

9

FIGURE 7.4: Typical distribution of number of hit pixels (i.e. n,) for the square cluster

model

Probabilit

y
o
SN

Real physics data
(center of barrel)

0.5

0.3

0.2 -

0.1 1

D A T T T
1 2 3 4 5 6 7 8

Number of hit pixels

9

FIGURE 7.5: Distribution of number of hit pixels (i.e. n,) for the square cluster model

(obtained from real physics data)



Chapter7. Generation of input stimuli for a study of buffering architectures 113

For the analytical model, a formula has been presented for calculating the overflow
probability. From the binomial distribution and with the same assumption (and
symbols), another quantity that can be considered is the buffer occupancy. The
probability of having a number ¢ of buffer locations occupied can indeed been obtained
from:

Poccupancy(l) = p (1 - p) BX

L
BX

-1

The same symbols have also been used. On the other hand, such a quantity can be
easily obtained with appropriate settings of the simulation and verification framework. It
particular, it is necessary to instruct the devoted subscriber in the analysis environment
to dump the output file containing information on buffer occupancy (that need to be
normalized to the total number of entries for 1:1 comparison with the analytical one).
The comparison of the plot obtained analytically (using the two distributions for n,)

and from VEPIX53 simulations are reported in Figure Despite the cluster models

Pixel region 4x4 buffer occupancy

0.25

-#-VEPIX53: only tracks, track angle
450

- -Symmefrical cluster model,
I "Average 2.0" distribution

-#-Symmefrical cluster model, real
: physics data (center of barrel)

Entries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Occupancy

FIGURE 7.6: Comparison between VEPIX53 simulations (with generation of fixed size
clusters) and the symmetrical cluster model based on buffer occupancy.

used in the simulations (tracks at 45°) is in principle different from the one assumed
analytically (symmetrical cluster, center of the barrel), using the same track rate, trigger
latency and just similar average cluster sizes brings to a good consistency between the
plots can be seen. A comparison can be also done in terms of buffer overflow probability
and it is straightforward to calculate by using the simulation results. Given a certain

buffer depth h, it is indeed sufficient to sum all the probabilities of having an occupancy



Chapter7. Generation of input stimuli for a study of buffering architectures 114

greater than such a value:

h
Poverflow =1- Z Poccupancy(i)-

i=0
The comparative graphs are shown in Figure [7.7] and are once more quite consistent, if
one considers the different statistical assumptions done in the 3 different cases.

Simulation results look more optimistic than the analytical ones. It can be remarked

Pixel region 4x4 overflow probability

0.1 —
R

- 0.01 \\.\‘\\
= \\
E 0.001
3 : N
)
a

0-0001 ==\/EPIX53: only tracks, track

angle 45°
0.00001 1 ==Symmetrical cluster model, \
) "Average 2.0" distribution ~

—Symmetrical cluster model, real
physics data (center of barrel)

0.000001
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Buffer depth (number of locations)

FIGURE 7.7: Comparison between VEPIX53 simulations (with generation of fixed size
clusters) and the symmetrical cluster model in terms of buffer overflow probability.

how the fixed cluster size used in the first case has probably played a positive role in
this sense. It can be noticed how for the less strict requirement (1072) a buffer depth
between 8 and 11 is necessary, while for the more conservative one (10) goes from 11

to 15 for the different models.

7.2.2 Clusters with variable size

A second simulation has been performed with the aim of using cluster models as similar
as possible to the analitycal ones. For this reason, it has been chosen to generate only
tracks coming at 90° (as happens in the center of the barrel) and to introduce charge
sharing. Such a choice instructs the generator to produce clusters with a central hit
pixel and some fired in the periphery. The specific typical n, distribution herein taken
into account for the statistical cluster model presents an average value equal to 4.22, as

shown in Figure In order to reproduce a similar distribution, with average cluster



Chapter7. Generation of input stimuli for a study of buffering architectures 115

"Average 4.22" distribution
0.4

Probability
o o o
[t ¥} w

o

1 2 3 4 5 6 7 8 9
Number of hit pixels

FIGURE 7.8: Typical distribution of number of hit pixels (i.e. n,) for the square cluster
model with Average 4.22

size around 4, through the hit generator an appropriate value for the percentage of pixels
to be hit in the envelope that surrounds the central one has been chosen. For each cluster
it is clearly know that at least one pixel is hit (in the center) and that the 8 peripheral

ones may be fired depending on the set parameter. In order to hit the 3 additional pixels

3hitpizels _
8totalpizel sintheenvelope #100 =

needed (out of 8), the probability of hitting each is obtained:
37.5. Through some additional coding, it has also been possible to observe the actual
distribution of the number of hit pixels per cluster produced by the hit generator .
Even if not identical, both distributions show some variance around a close average

value. In order to evaluate the impact of a bigger cluster size (with respect to the one

Simulation distribution

e
w

o
N
I

o
=
]

Probability

o
4

i 2 3 4 5 6 7 8 9
Number of hit pixels

FIGURE 7.9: Observed distributions of number of hit pixels in the simulation. The
measured average is slightly lower than expected: 3.84

in the previous subsection), it has been chosen to keep a constant hit rate (2 GHz/cm?).
For this reason a track rate of 500 MHz/cm? has been used for the simulations, while a
slightly lower one has been used in the statistical model. The obtained results are both
presented in terms of buffer occupancy and overflow probability in Figure [7.10] and in

Figure It can be noticed as in both cases comparative graphs are quite consistent.



Chapter7. Generation of input stimuli for a study of buffering architectures 116

Pixel region 4x4 buffer occupancy

- #-VEPIX53: only tracks, track angle
90°, charge sharing 38%

0.25

: - #- Symmetrical cluster model,
"Average 4.22" distribution

0.2

= e ]

Entries
o
99

0.05

0 1 2 3 4 5 6 8 ) 10 11 12 13 14 15 16

Occupancy

FIGURE 7.10: Comparison between VEPIX53 simulations (with generation of variable
size clusters) and the symmetrical cluster model based on buffer occupancy.

From the overflow probability plot, it can be observed how with the assumptions made on

Pixel region 4x4 overflow probability

\\

0.1 \

AN

2
= 0.01
3 NN
2 0.001 e
o \
| ==VEPIX53: only tracks, track angle \\
0.0001 90°, charge sharing 38% N
==Symmetrical cluster model, \
"Average 4.22" distribution \
0.00001
0 1 2 3 4 5 6 7 38 ] 0 11 12 13 14 15 16

Buffer depth (number of locations)

FIGURE 7.11: Comparison between VEPIX53 simulations (with generation of fixed
size clusters) and the symmetrical cluster model based on buffer overflow probability.

track rate, average cluster size and trigger latency a buffer depth around 10 is sufficient

to satisfy the stricter requirement (10-3) on overflow probability.



Conclusions and future work

sbe development of a pixel simulation and verification platform capable of
simulating alternative pixel chip architectures of the high rate pixel detectors for the
ATLAS/CMS upgrades pixel chip has been the main focus of this thesis. First, the
evaluation of performances of commercial simulation software tools has been
performed. It has shown specific bottlenecks that have been further investigated
through the profiler and choices have been taken in order to improve simulation time.
Also the design flow used has been optimized for minimal re-elaboration of code.
Results have anyway shown that the software used assures good simulation
performance.  Secondly, the author has collaborated in the development of a
behavioural model for the system, working on the definition of a simple and basic
module of a single pixel unit cell. Thirdly, the set up of the framework based on UVM
classes has been done, defining the project organization, the design flow and the
running scripts. The main contribution on the development of the verification
components has been on the stimuli generation, both for the hits and the trigger and
for their coordination from the top level. Different and configurable tests have also
been defined, and a short guide for the user has been provided for setting and running
them. Moreover, configuration objects for re-configurability of the different verification
components and for controlling generation of output file have been defined. Special
attention has been put on the development of a hit generator capable of emulating
pixel hits on a large number of pixels with appropriate correlations: based on a
geometrical model of the sensor, it has been made capable of generating tracks,
loopers, jets, monsters and noise hits with parameterized rates and other parameters
characteristic of the specific hit class. Furthermore, generated inputs have been

monitored through graphical visualization (performed with MATLAB) and through

117



Conclusions and future work 118

statistics collection in terms of total and specific hit rate. Results on generated clusters
and observed rates have shown good consistence with the parameters set for the hit
generator. Lastly, the author has collaborated in using the developed engine for
architectural studies, in particular for a the critical optimization of buffering
requirements. Simulation results have been obtained for buffer occupancy and overflow
probability for two preliminary cluster models that were interesting to be compared
with the ones of a previous statistical /analytical study. The reported plots have shown
good agreement between the models and they show buffering requirements to be
compatible with the proposed extended CMS trigger latency of 10 us and for the
absolute highest hit rate of 2 GHz/cm?.

Further investigations and simulations will need to be performed in order to evaluate
different classes of stimuli (e.g. jets) and to compare different PR configurations for
architecture optimization. A deep simulation analysis will be performed to evaluate
the impact of the optional 20 us trigger latency on the buffering requirements and to
compare the obtained results with the analytical ones. Future work will be needed in
the context of the working group both on the DUT and on the simulation and
verification framework. As regards the first, beside the independent PUCs and the
zero-suppressed FIFO one, more buffering architectures will be implemented and
evaluated. Moreover it will be needed to replicate PRs in the pixel chip for further
buffering study and column arbitration study. Several description of the chip are also
being considered, at different level of abstraction. As concerns the framework, a
further refinement of the hit generator and on interfacing it with hit patterns coming
from external full detector/experiment Monte Carlo simulations and detailed sensor
simulations will be required. It should be also improved the generality and flexibility of
the whole environment and of the reference model of the ROC, in order to simulate
chips with different functionality. More quantities will also need to be monitored in
order to provide results on significant performance indicators. In conclusion,
integration of graphical analysis in the framework itself could also be evaluated,

considering interfacing SystemVerilog with C/C++.



References

1]

L. Rossi. Pizel Detectors: From Fundamentals to Applications. Particle Acceleration
and Detection. Springer, 2006. ISBN 9783540283324. URL http://books.google.
fr/books?id=Jbp73yTz-LYC.

Hemperek. Hybrid or monolithic? pixel detectors for future lhc experiments,

December 2013. URL https://indico.cern.ch/event/273886/.

Jorgen Christiansen.  Tdc’s architectures in asics, November 2011. URL
https://indico.cern.ch/event/122027/session/11/contribution/24/

material/slides/1.pdf.

Accellera.  Universal verification methodology (uvm) 1.1 user’s guide, May
2011. URL https://www.cadence.com/rl/resources/white_papers/max_

metric_driven_ver_wp.pdf.
Maurice Garcia-Sciveres. The new atlas pixel chip: Fei4, 2011.

J (CERN) Chistiansen and M (LBNL) Garcia-Sciveres. RD Collaboration Proposal:
Development of pixel readout integrated circuits for extreme rate and radiation.
Technical Report CERN-LHCC-2013-008. LHCC-P-006, CERN, Geneva, Jun 2013.
The authors are editors on behalf of the participating institutes. the participating

institutes are listed in the proposal.

Jorgen Christiansen. Development of pixel readout integrated circuits for extreme

rate and radiation, 2014. URL https://indico.cern.ch/event/306848/.

Victor Berman. A tale of two languages: Systemc and systemverilog. URL http:

//chipdesignmag.com/display.php?articleId=116.

119


http://books.google.fr/books?id=Jbp73yTz-LYC
http://books.google.fr/books?id=Jbp73yTz-LYC
https://indico.cern.ch/event/273886/
https://indico.cern.ch/event/122027/session/11/contribution/24/material/slides/1.pdf
https://indico.cern.ch/event/122027/session/11/contribution/24/material/slides/1.pdf
https://www.cadence.com/rl/resources/white_papers/max_metric_driven_ver_wp.pdf
https://www.cadence.com/rl/resources/white_papers/max_metric_driven_ver_wp.pdf
https://indico.cern.ch/event/306848/
http://chipdesignmag.com/display.php?articleId=116
http://chipdesignmag.com/display.php?articleId=116

References 120

[9]

[11]

[12]

[13]

[14]

[16]

Viktor Veszpremi. Operation and performance of the CMS tracker. Technical
Report arXiv:1402.0675, Feb 2014. Comments: accepted for publication in Journal

of Instrumentation.

Roland Horisberger. Readout architectures for pixel detectors. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 465(1):148 — 152, 2001. ISSN 0168-9002. doi: http:
//dx.doi.org/10.1016/S0168-9002(01)00378-3. URL http://www.sciencedirect.
com/science/article/pii/S0168900201003783. {SPD2000}.

Wermes. Current status and future prospects of pixel detectors, November 2013.

URL http://indico.cern.ch/event/279759/.

Lucio Rossi. Lhc upgrade plans: options and strategy. Proceedings of
IPAC2011, pages 908912, 2011. URL http://accelconf.web.cern.ch/

accelconf/IPAC2011/papers/tuya02.pdf.

Brezina et al. The timepix3 chip, February 2014. URL https://indico.cern.ch/
event/267425/.

G. Aad, M. Ackers, F.A. Alberti, M. Aleppo, G. Alimonti, et al. ATLAS pixel
detector electronics and sensors. JINST, 3:P07007, 2008. doi: 10.1088/1748-0221/
3/07/P07007.

M. Barbero, W. Bertl, G. Dietrich, A. Dorokhov, W. Erdmann, K. Gabathuler, St.
Heising, Ch. Hormann, R. Horisberger, H.Chr. Kastli, D. Kotlinski, B. Meier, and
R. Weber. Design and test of the {CMS} pixel readout chip. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 517(1-3):349 — 359, 2004. ISSN 0168-9002. doi: http:
//dx.doi.org/10.1016/j.nima.2003.09.043. URL http://www.sciencedirect.com/
science/article/pii/S0168900203026391.

R Ballabriga, J Alozy, G Blaj, M Campbell, M Fiederle, E Frojdh, E H M Heijne,
X Llopart, M Pichotka, S Procz, L Tlustos, and W Wong. The medipix3rx: a
high resolution, zero dead-time pixel detector readout chip allowing spectroscopic
imaging. Journal of Instrumentation, 8(02):C02016, 2013. URL http://stacks.
iop.org/1748-0221/8/i=02/a=C02016!


http://www.sciencedirect.com/science/article/pii/S0168900201003783
http://www.sciencedirect.com/science/article/pii/S0168900201003783
http://indico.cern.ch/event/279759/
http://accelconf.web.cern.ch/accelconf/IPAC2011/papers/tuya02.pdf
http://accelconf.web.cern.ch/accelconf/IPAC2011/papers/tuya02.pdf
https://indico.cern.ch/event/267425/
https://indico.cern.ch/event/267425/
http://www.sciencedirect.com/science/article/pii/S0168900203026391
http://www.sciencedirect.com/science/article/pii/S0168900203026391
http://stacks.iop.org/1748-0221/8/i=02/a=C02016
http://stacks.iop.org/1748-0221/8/i=02/a=C02016

References 121

[17]

[20]

23]

[24]

[25]

X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong. Timepix, a 65k
programmable pixel readout chip for arrival time, energy and/or photon counting
measurements. Nuclear Instruments and Methods in Physics Research A, 581:485—

494, October 2007. doi: 10.1016/j.nima.2007.08.079.

CMS Collaboration. Technical proposal for the upgrade of the CMS detector
through 2020. Technical Report CERN-LHCC-2011-006. LHCC-P-004, CERN,
Geneva, Jun 2011.

M. Garcia-Sciveres, D. Arutinov, M. Barbero, R. Beccherle, S. Dube, D. Elledge,
J. Fleury, D. Fougeron, F. Gensolen, D. Gnani, V. Gromov, T. Hemperek,
M. Karagounis, R. Kluit, A. Kruth, A. Mekkaoui, M. Menouni, and J. D.
Schipper. The fe-i4 pixel readout integrated circuit. volume 636, pages S155 —
S159, Amsterdam, 29082009 - 01092009 2011. 7th International ”” Hiroshima’”
Symposium on the Development and Application of Semiconductor Tracking
Detectors, Hiroshima(Japan), North-Holland Publ. Co. doi: 10.1016/j.nima.2010.
04.101. URL http://juser.fz-juelich.de/record/136446.

W. Fornaciari and C. Brandolese. Sistemi embedded. Sviluppo hardware e software
per sistemi dedicati. Pearson, 2007. ISBN 9788871923420. URL http://books.

google.it/books?id=3FfZYFIVLYOC.
1666-2005 - IEEE Standard SystemC(R) Language Reference Manual.

Lukai Cai and Daniel Gajski. Transaction level modeling: An overview.
In  Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS 03, pages 19—
24, New York, NY, USA, 2003. ACM. ISBN 1-58113-742-7. doi: 10.1145/944645.
944651. URL http://doi.acm.org/10.1145/944645.944651

1864-2005 - IEEE Standard for Verilog Hardware Description Language.

Stuart Sutherland, Simon Davidmann, and Peter Flake.  SystemVerilog for
Design: A Guide to Using SystemVerilog for Hardware Design and Modeling.
Springer Publishing Company, Incorporated, 2nd edition, 2010. ISBN 1441941258,
9781441941251.

IEEE Standard for SystemVerilog— Unified Hardware Design, Specification, and

Verification Language.


http://juser.fz-juelich.de/record/136446
http://books.google.it/books?id=3FfZYF9vLY0C
http://books.google.it/books?id=3FfZYF9vLY0C
http://doi.acm.org/10.1145/944645.944651

References 122

[26]

[38]

Chris Spear. System Verilog for Verification, Second Edition: A Guide to Learning
the Testbench Language Features. Springer Publishing Company, Incorporated, 2nd
edition, 2008. ISBN 0387765298, 9780387765297.

Verification Academy. Uvm cookbook. URL https://verificationacademy.com/

cookbook/uvm.

S. Rosenberg and K.A. Meade. A Practical Guide to Adopting the Universal
Verification Methodology (UVM).  Cadence Design Systems, 2010. ISBN
9780578059556. URL http://books.google.fr/books?id=5p7pZwEACAAJL

Accelera. Universal verification methodology (uvm) 1.1 class reference.
URL http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_

Reference_Final _06062011.pdf|

Cadence. Cadence functional verification.

Mentor Graphics. Mentor graphics functional verification.
Synopsys. Synopsys functional verification.

E Conti, J Christiansen, P Placidi, and S Marconi. Pixel chip architecture
optimization based on a simplified statistical and analytical model. Journal of
Instrumentation, 9(03):C03011, 2014. URL http://stacks.iop.org/1748-0221/
9/1=03/a=C03011.

Cadence  Richard  Goering. Webinar: Is  systemverilog the
future of mixed-signal modeling?,  October 2012. URL http:
//www.cadence.com/Community/blogs/ii/archive/2012/10/04/

webinar-is-systemverilog-the-future-of-mixed-signal-modeling.aspxl
Hemperek. Rd53 - wg3 simulation testbench.
www.testbench.it. Array randomization.

Cadence Timothy Pylant. Create a sine wave generator using systemverilog, June
2009. URL http://www.cadence.com/Community/blogs/fv/archive/2009/06/

30/create-a-sine-wave-generator-using-systemverilog.aspx.

Doulos. Systemverilog and uvm adopter class.


https://verificationacademy.com/cookbook/uvm
https://verificationacademy.com/cookbook/uvm
http://books.google.fr/books?id=5p7pZwEACAAJ
http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf
http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf
http://stacks.iop.org/1748-0221/9/i=03/a=C03011
http://stacks.iop.org/1748-0221/9/i=03/a=C03011
http://www.cadence.com/Community/blogs/ii/archive/2012/10/04/webinar-is-systemverilog-the-future-of-mixed-signal-modeling.aspx
http://www.cadence.com/Community/blogs/ii/archive/2012/10/04/webinar-is-systemverilog-the-future-of-mixed-signal-modeling.aspx
http://www.cadence.com/Community/blogs/ii/archive/2012/10/04/webinar-is-systemverilog-the-future-of-mixed-signal-modeling.aspx
http://www.cadence.com/Community/blogs/fv/archive/2009/06/30/create-a-sine-wave-generator-using-systemverilog.aspx
http://www.cadence.com/Community/blogs/fv/archive/2009/06/30/create-a-sine-wave-generator-using-systemverilog.aspx

References 123

[39] T. Binoth, C. Buttar, P.J. Clark, and E.W.N. Glover. LHC Physics. Scottish
Graduate Series. Taylor & Francis, 2012. ISBN 9781439837702. URL http://

books.google.it/books?id=sMZDMZKLLxOC.
[40] Cms lhc run 200091. Data provided by M. Swartz (Johns Hopkins University).

[41] RD53 General Meeting. Simulation framework in system verilog & uvm, 2014. URL

https://indico.cern.ch/event/296570/other-view?view=standard.


http://books.google.it/books?id=sMZDMZKLLx0C
http://books.google.it/books?id=sMZDMZKLLx0C
https://indico.cern.ch/event/296570/other-view?view=standard

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	1 Electronic circuits in pixel detectors for High Energy Physics
	1.1 Basics on hybrid pixel detector design
	1.1.1 The Front-end electronics
	1.1.2 Readout architectures

	1.2 State of the art and future of hybrid pixel detectors
	1.2.1 RD53 Collaboration


	2 System Description and Verification Languages
	2.1 SystemC and Transaction Level Modeling
	2.2 SystemVerilog
	2.2.1 SystemVerilog for Design
	2.2.2 SystemVerilog for Verification
	2.2.3 Universal Verification Methodology


	3 Evaluation of software tools
	3.1 Preliminary study on scalability
	3.1.1 SystemVerilog arrays

	3.2 Study of commercial simulation tools performance
	3.2.1 Design flow


	4 Design under test: description of the system
	4.1 Development of a model for the Pixel Unit Cell
	4.1.1 Digital PUC: use of SystemVerilog constructs

	4.2 System architecture
	4.2.1 Independent pixels architecture
	4.2.2 Zero-suppressed FIFO architecture


	5 UVM simulation and verification framework: VEPIX53
	5.1 Overall architecture of the simulation and verification framework
	5.1.1 Interfaces
	5.1.2 Project organization

	5.2 Verification components
	5.2.1 Hit environment
	5.2.2 Trigger environment
	5.2.3 Readout environment
	5.2.4 Analysis environment
	5.2.5 Top level environment
	5.2.6 Top level tests

	5.3 User guide: scripts and UVM message facility

	6 Hit generation with constrained distribution within the framework
	6.1 Classes of hits
	6.1.1 Tracks
	6.1.2 Loopers
	6.1.3 Jets
	6.1.4 Monsters
	6.1.5 Noise Hits

	6.2 Monitoring and statistics collection
	6.2.1 Graphics by MATLAB
	6.2.2 Monitoring actual hit rates per cm2

	6.3 The configuration of the hit generator

	7 Generation of input stimuli for a study of buffering architectures
	7.1 Statistical/analytical cluster and PR buffer models
	7.2 Simulation results from VEPIX53
	7.2.1 Clusters with fixed size
	7.2.2 Clusters with variable size


	Conclusions
	References

