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Abstract. Entanglement, chaos, and complexity are as important for de Sitter space
as for AdS, and for black holes. There are similarities and also great differences between
AdS and dS in how these concepts are manifested in the space-time geometry. In the
first part of this paper the Ryu–Takayanagi prescription, the theory of fast-scrambling,
and the holographic complexity correspondence are reformulated for de Sitter space.
Criteria are proposed for a holographic model to describe de Sitter space. The criteria
can be summarized by the requirement that scrambling and complexity growth must be
“hyperfast.” In the later part of the paper I show that a certain limit of the SYK model
satisfies the hyperfast criterion. This leads to the radical conjecture that a limit of SYK
is indeed a concrete, computable, holographic model of de Sitter space. Calculations
are described which support the conjecture.
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1 Introduction

There are holographic representations of AdS that are so precisely defined that in principle
one could program a quantum computer to simulate and test them. By contrast there is
no such completely concrete representation of de Sitter space. Not only do we not have
an example; we don’t even know the rules. My purpose in this paper is to lay out some
principles, and then to construct a well-defined example which realizes those principles.

The framework is static-patch (SP) holography [1][2]. We assume that there exists a
unitary Hamiltonian quantum mechanics of a de Sitter static-patch in which the degrees
of freedom are located on the stretched horizon. We begin by considering the roles of
entanglement, chaos, and complexity, and derive necessary requirements—very different
from those for AdS—for a quantum system to be dual to de Sitter space. We will see
that these requirements are met by a non-standard, but perfectly definite limit of the SYK
system. Quantum-simulating the system should be no harder than simulating SYK in the
usual range of parameters.

1.1 Four Conjectures

The paper revolves around four conjectures:

1. There exists a de Sitter generalization (which I will describe) of the RT and HRT
equations for entanglement entropy in which the AdS boundary is replaced by the
boundary of the static patch; namely the horizon.

2. The fundamental holographic horizon degrees of freedom are “hyperfast” scramblers
which scramble on a time scale of order the dS horizon scale R, rather than the fast-
scrambling time scale R logS. If true this implies that the Hamiltonian is not of the
usual k-local type but is more complex.

3. The hyperfast scrambling property implies that complexity growth is also hyperfast.
I argue that hyperfast complexity growth is the holographic dual of the most essential
feature of de Sitter space: its exponential growth.

4. The last section of the paper introduces a “hyperfast” limit of the SYK model which
has the required features for a holographic de Sitter dual. This leads to the unexpected
conjecture that a limit of SYK describes de Sitter space.

There are very few equations in this paper, but lots of figures. The figures efficiently
summarize calculations that were done in earlier papers by many people.

1.2 A Word About Time

The metric of the static patch of de Sitter space is,

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 (1)

where,

f(r) =

(
1− r2

R2

)
. (2)

In what follows we will sometimes use a dimensionless time coordinate on the stretched
horizon denoted by ω. The relation between t and ω is,

ω = t/R (3)
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Figure 1: The near horizon region of de Sitter space is approximately Rindler space. The
Rindler time ω is a hyperbolic angle. The stretched horizon is the hyperbola at a distance
ρ from the bifurcate horizon.

Near the horizon the geometry can be approximated by Rindler space. In figure 1 the
relation between ω and the light-like coordinate x+ is shown. The stretched horizon is
indicated by the hyperbola at a distance ρ from the light-cone.

The relation between ω and x+ is,

ω = log x+ − log ρ (4)

The value of ω on the stretched horizon for a given x+ is mildly dependent on the value
of ρ that we assign to the stretched horizon. More importantly, time differences along the
stretched horizon are not dependent on ρ.

There is of course something uncomfortable about assuming a universal eternal time
in de Sitter space. In AdS boundary time can have unlimited accuracy provided by clocks
located on, or even beyond, the asymptotically frozen boundary. In the static de sitter patch
the best we can do is to assume the horizon itself defines a clock (for example through the
growth of complexity), but no clock built out of a system of entropy S can keep time for
times longer than eS . It is also likely that no de Sitter vacuum can be stable against decay
for longer than eS . The things I will talk about here do not require such long times.

1.3 A Word About “Tomperature”

In a system with a finite Hilbert space the temperature can be infinite while the energy and
all physical time scales remain finite. An example is a spin in a magnetic field. The limit of
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Figure 2: Penrose diagram for dS and stretched horizon

infinite temperature is just the limit in which spin-up and spin-down are equally probable,
but both spin states have finite energy and the Larmor frequency is finite. In this type of
system the idea of infinite temperature can be misleading.

The SYK system is an example of this kind in which the temperature can be infinite
without the energy-per-degree-of-freedom being infinite or time scales going to zero. For
example the energy of a fermion excitation and the decay time for the fermion two-point
function are both finite in the infinite temperature limit.

It can be useful to define a quantity T which Henry Lin and I called tomperature, which
reflects the finiteness of energies and time scales for such systems. The precise definition of
tomperature is not important but one property involves the decay of perturbations. We will
assume that tomperature is defined so that the decay of typical two-point functions behaves
like

e−T t.

The important thing about T is that it remains finite as T →∞, and at low temperatures
it is equal to the usual temperature T.

2 Entanglement in de Sitter Space

It is all but certain that the holographic principle [3][4], entanglement [5][6][7], and complex-
ity growth [8] are the essential quantum-mechanical mechanisms that lead, in appropriate
limits, to the emergence of classical space-time geometry. It would be very surprising if they
did not play an outsize role in cosmology, but so far we know very little about how they
work in de Sitter space, or in other cosmological space-times.

In this paper I will assume that there is a holographic description of a static (SP)
patch in four-dimensional de Sitter space1; but unlike AdS, the spatial slices of de Sitter
space have no asymptotic cold boundaries where the holographic degrees of freedom are

1The various mechanisms and calculations described in this paper apply to four dimensions except for in
the last section where a possible relation between SYK and two-dimensional de Sitter space is conjectured.
Generalization to other number of dimensions is non-trivial and I will not undertake the task here.
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Figure 3: A t = 0 slice of dS and the stretched horizons shown as purple great circles. The
red surface is homologous to the light blue horizon. It can be shrunk to a point.

located. Instead, they are nominally located on the boundary of the SP (see for example
[9][10][11][12][13][1][2]); that is to say, the stretched horizon.

Static patches come in opposing pairs. To account for the pair, two sets of degrees of
freedom are required. The Penrose diagram of dS in figure 2 shows such a pair of SPs along
with their stretched horizons. Following [1] the center of the SPs (sometimes thought of as
the points where observers are located) will be called the “pode” and the “antipode.” I’ll
also refer to the two SPs as the pode-patch and the antipode-patch.

2.1 RT in dS

Although it is clear from the Penrose diagram that the two SPs are entangled, it would be
good to have a generalization of the RT and HRT equations [6][7] to support this claim.
Let’s recall the original statement of the RT formula for AdS. It begins by dividing the
boundary (on a fixed time-slice) into two subsets A and B.

The entanglement entropy of A and B is 1/4G times the minimal area of a surface homol-
ogous to either A or B.

In dS there is no boundary of a global time-slice but there is a boundary to a SP, namely
the horizon. Therefore we try the following formulation:

The entanglement entropy between the pode and antipode patches is 1/4G times the minimal
area of a surface homologous to the stretched horizon (of either side).

This however will not work. Figure 3 shows the spatial slice and the adjacent pair of stretched
horizons. The red curve represents a surface homologous to the pode’s stretched horizon.
It is obvious that that curve can be shrunk to zero, which if the above formulation were
correct would imply vanishing entanglement between the pode and antipode static patches.
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Figure 4: A spatial slice through dS. In the right panel the geometry of the slice is shown.

To correct this problem begin by separating the two stretched horizons. This is a natural
thing to do since they will separate after a short time, as is obvious from figure 2. The space-
like surface shown in green in the left panel of figure 4 passes through the separated stretched
horizons. In the right panel the geometry of the space-like slice is illustrated.
The reason for the bulge between the horizons is that in de Sitter space the local 2-sphere

exponentially grows as one moves behind the horizons.

Let us now reformulate a dS-improved version of the RT principle:

The entanglement entropy of the pode-antipode systems is 1/4G times the minimal area of a
surface homologous to the stretched horizon of the pode, and lying between the two sets of degrees
of freedom; in this case between the two stretched horizons.

It is evident from the geometry of the space-like slice that the minimum-area two-dimensional
surface lying between the two horizons is degenerate: there are two equal minimal-area
surfaces, and they lie right at the horizons. This version of the RT principle is illustrated in
figure 5

Clearly the area of this de Sitter version of the RT surface is the area of the horizon. This
gives the entanglement entropy that we expect [14], namely,

Sent =
Horizon Area

4G
. (5)

One thing to note, is that in anti-de Sitter space the phrase “lying between the two
sets of degrees of freedom” is unnecessary. The degrees of freedom lie at the asymptotic
boundary and any minimal surface will necessarily lie between them.

This version of the de Sitter RT formula is sufficient for time-independent geometries.
A more general HRT “maxmin” formulation goes as follows: Pick a time on the stretched
horizons and anchor a three-dimensional surface Σ connecting the two. This is shown in
figure 6. Find the minimum-area two-dimensional sphere that cuts the three-dimensional
surface Σ and call its area Amin(Σ). Now maximize Amin(Σ) over all space-like Σ. Call the
resulting area

Amaxmin.
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Figure 5: The red curve represents the minimal surface lying between the two stretched
horizons shown in purple. There are two such surfaces, only one of which is shown, lying
right on top of the horizons.

Figure 6: The black dots represent the anchoring points of a space-like surface Σ connecting
the two horizons at a particular time. The minimal two-sphere cutting Σ lies at the anchoring
points.
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Figure 7: The green lines represent bit-theads.

The entanglement entropy between the pode and antipode static patches is,

Sent =
Amaxmin

4G
. (6)

However, in the present case, because Amin(Σ) occurs at the anchoring points the max-
imization of Amin(Σ) is redundant: the minimum area is independent of Σ. Later we will
see an example in which this is not true.

All of this may be more intuitive in the bit-thread picture [15] which is illustrated in fig
7.

We introduce a set of bit-threads ending on the two horizons. The bit-threads have a
thickness or area of Planckian size. The maximum number of bit-threads that can be
squeezed through without overlapping is the entanglement entropy. In general the minimum
area surface defines the bottleneck which controls the maximum number of bit-threads. Since
in the present case the bottleneck is at the horizon, it follows that the entanglement entropy
is determined by the horizon area.

2.2 Black Holes

We come now to black holes in dS. In particular we will consider a pair of Schwarzschild-
de Sitter black holes located near the pode and the antipode. The relevant Penrose and
embedding diagrams are shown in figure 8. If we construct a space-like slice at a positive
time it will look like figure 9, the bulge in the middle representing the exponential growth of
the geometry behind the cosmic horizon. The two black holes are connected by an Einstein-
Rosen bridge and are therefore entangled.

The full horizon (generalized horizon) of the static patch now has two components: the
large cosmic horizon and the small black hole horizon. The minimal surface homologous to
the generalized horizon lying between the two generalized horizons consists of two compo-
nents shown in red and the entanglement entropy is the sum of the two areas divided by
4G.

The bit-thread picture is especially clear. Bit threads from the generalized horizon of
one side—say the pode side—can end on the generalized horizon of the other side. The
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Figure 8: Penrose and embedding diagrams for the Schwarzschild-de Sitter black hole. The
diagrams should be periodically identified along the dashed vertical lines. The two black
holes at the pode and antipode are connected by an Einstein-Rosen bridge.

Figure 9: RT surfaces and bit-thread diagram for the dS-Schwarzschild geometry.
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maximum number of non-overlapping bit-threads is obtained by the configuration in the
lower panel of figure 9.

In this case the maxmin surface behind the smaller black hole horizon does not lie at
the anchoring points but at the bifurcate horizon. That is because the black hole geometry
shrinks as one moves behind the horizon.

A generalization to include bulk entanglement is possible. In fact the black hole contribu-
tion to the entanglement entropy may also be thought of as bulk entanglement in which the
entanglement of the cosmic horizons is supplemented by the entanglement of bulk matter;
namely the two entangled black holes.

3 Hyperfast Scrambling and Quasi-normal Modes

Now we come to the second subject of this paper: chaos and scrambling in de Sitter space.

3.1 Scrambling

At first it seems obvious: if a particle is dropped from near the pode it falls to the horizon in
a manner very similar to the way it would fall to the horizon of a black hole. The momentum
grows exponentially which, according to the momentum-size correspondence [16] [17], means
that the operator size also grows exponentially with the standard exponent,

size = e2πt/β (7)

or in terms of Rindler time,

size = eω. (8)

This implies a scrambling time (time at which the size saturates at value S)

t∗ =
β

2π
logS

ω∗ = logS. (9)

Thus it would naively appear that the static patch Hamiltonian should be a conventional
fast-scrambler2.

But what do we mean by size? Whose size, and how is it defined? Consider the oper-
ator that creates a particle at the pode. In the theory where size is best understood—the
SYK model—size refers to the number of simple fermionic operators in the time-dependent
operator that perturbs the boundary [18]. At the time the operator acts to create a fermion
at the boundary its size is one. We might imagine that in dS the operator that creates a
particle at the pode is also simple and of small size. This is wrong: in de Sitter holography
the simple operators are located at the stretched horizon, not at the pode. The operator
that creates a particle at the pode is likely to be highly complex. One sees this explicitly
in the dS-Matrix theory [10][11][12] where creating a single particle at the pode requires
constraining all N “off-diagonal” matrix degrees of freedom that link the cosmic horizon to
the particle.

2This argument was put forth in [11]. I now believe it is incorrect.
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3.2 Quasinormal Modes

That raises the question: what is the bulk interpretation of the simple degrees of freedom—
for example a single matrix degree of freedom—in dS holography? The answer is clear. By
analogy with AdS where simple operators describe perturbations of the boundary, in dS
holography the simple operators describe disturbances of the horizon. A simple operator
excites a single quantum of energy in the low angular momentum quasi-normal modes of
the cosmic horizon.

3.3 Scrambling

The logS factor in the the scrambling time in SYK has a simple intuitive bulk meaning
as the time it takes for a single fermion to fall from the boundary, where the holographic
degrees of freedom are located, to the stretched horizon [19]. But in static patch holography
the holographic degrees of freedom are already located at the stretched horizon. Therefore
there is no logS factor in the scrambling time. The scrambling time for an initially simple
operator is of the same order as the decay time of the quasinormal modes. In Rindler units
that means a time of order unity,

ω∗ ∼ 1,
t∗ ∼ β = R. (10)

One could say that scrambling of the fundamental degrees of freedom in de Sitter space is
“hyperfast.” Any system that satisfies (10) I’ll call a hyperfast system.

One might object that hyperfast scrambling violates the rigorous fast-scrambling bound of
[20]. However that bound is based on an important assumption—k-locality of the Hamilto-
nian:

The meaning of k-locality: The Hamiltonian consists of a sum of monomials (in the fun-
damental degrees of freedom) each of which has degree less-than-or-equal-to k, where k is
parametrically of order unity in the limit of large entropy. In otherwords k is fixed as R
becomes large in Planck units.

Evidently hyperfast scrambling requires a violation of k locality. One way to do this is by
loosening the requirement that k be independent of the overall size of the system. An exam-
ple would be a system of N qubits in which we retain the requirement that the Hamiltonian
consists of a sum of monomials of degree less-than-or-equal-to k, but allow k to grow with
N . In general this will allow the system to evade the fast-scrambling bound. In section 5.3
we will analyze an example of this type.

In what follows I will reserve the term k-local strictly for the case in which k is fixed and
independent of N.

3.4 Scrambling and Thermalization

Scrambling and thermalization are two different phenomena. Scrambling is diagnosed by
out-of-time-order four-point functions while thermalization is diagnosed by the conventional
two-point function or more simply the decay rate of a simple perturbation. For example the
decay time of quasinormal modes for black holes is order β, the inverse temperature, while
the scrambling time is of order β logS.



Entanglement and Chaos in De Sitter Space Holography: An SYK Example 13

Nevertheless I am arguing that de Sitter space is a hyperfast system meaning that the
two time-scales—scrambling time and quasinormal mode decay time—are of the same order,

tthermal ∼ t∗ ∼ β. (11)

In section 5.3 I will give a quantitative argument for this behavior in a certain limit of qubit
models including SYK.

4 Hyperfast Complexity Growth

Complexity is a powerful tool for relating the geometry behind horizons to the quantum
behavior of holographic dual [8][22]. In this section we will consider its implications for de
Sitter space.

Hyperfast scrambling has implications for complexity growth. For k-local Hamiltonians
complexity growth is bounded and cannot exceed linear growth with a coefficient propor-
tional to the product of temperature and entropy. Typically this is saturated for black holes.
Equivalently, for black holes complexity grows with the time like,

C ∼ STt = Sω (12)

But if the Hamiltonian itself is complex—for example if it contains terms of very high
order in the elementary degrees of freedom—then one might expect complexity growth to
be hyperfast. This, in turn, should manifest itself in the space-time geometry through the
holographic complexity dualities. We will see that hyperfast complexity growth is closely
related to the key property of de Sitter space: its exponential growth.

4.1 Maximal Slices in dS

Let us consider generalizations of holographic complexity to de Sitter space. First the CV
proposal. Instead of anchoring spatial slices on the boundaries (which do not exist) we
anchor them on the horizons. Then, subject to the anchoring conditions, we determine
the maximal space-like surface that stretch between the two horizons. The holographic
complexity conjecture is that the complexity is proportional to the volume of those slices.

For early times the maximal slices are smooth but relative to AdS they bulge up into
the interior region as shown in figure 10.

The reason is that the geometry of de Sitter space exponentially grows behind the horizon.
Therefore, in order to capitalize on that growth, the maximal surfaces bend upward toward
the future boundary. Let us consider the midpoint of the maximal surface and assume that
it is a proper time τ from the bifurcate horizon. At the midpoint the area of the local
two-sphere grows like exp τ

R . This has the effect that the volume of the maximal slice also
grows exponentially.

As figure 10 shows, a point quickly occurs at which the surfaces become light-like and
reach the future boundary. This happens after a time of order β or a Rindler time of order
unity.

Beyond this point the classical rate of volume growth becomes infinite. Since the true
complexity is limited to be exponential in the entropy, I take this to mean that the rate
of complexity growth becomes exponentially large once the anchoring points have moved
a short distance along the stretched horizons. A reasonable interpretation is that for a
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Figure 10: The top panel shows the early smooth maximal slices bending upward due to the
expanding local two-spheres. At some point the maximal surfaces intersect future infinity.
The bottom panel shows the maximum slices, assuming an appropriate cutoff, at later times.
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hyperfast system, after a Rindler time of order unity the complexity grows linearly with
time, but with a rate that is non-polynomially large in S,

C(ω) ∼ exp
(

a
√
S
)
× ω

1 < a <∞, (13)

instead of as in (12). Later in section 5 we will see that this is exactly what is predicted by
quantum circuits in the hyperfast regime.

4.2 Inflation: The Dual of Hyperfast Complexity Growth

The growth of maximal surfaces is a geometric feature whose dual is complexity growth.
Hyperfast growth of maximal surfaces, as in figure 10 reflects the inflationary growth of the
interior of de Sitter space. (The same things are true for the complexity-action duality.)
This leads to the following conjectured duality:

The property of hyperfast complexity growth is the holographic dual of the exponential growth
of de Sitter space behind the horizon of the static patch.

What does it take for complexity to grow in a hyperfast way? A necessary condition is
that the Hamiltonian not be k-local (unless k is allowed to grow with N).

5 SYK and dS

I now want to conjecture that a particular limit of a well-known system displays features of
de Sitter space:

5.1 A Radical Conjecture

The SYK system, and other similar qubit systems, in the limit of high temperature (but finite
tomperature), with q scaling as a power of N,

T → ∞
q ∼ Np

0 < p < 1, (14)

are hyperfast and have features that strongly resemble de Sitter space.
In particular systems defined by (14) are hyperfast scramblers with the scrambling and

thermalization times of the same order, as in equation (11). Both time scales are set by the
fundamental energy scale of SYK, namely the parameter J .

tthermal ∼ t∗ ∼ J−1, (15)

where J is the usual SYK energy scale that controls the magnitude of the q-local terms in
the Hamiltonian.

Most significantly, the SYK system in the limit (14) exhibits hyperfast complexity
growth, the importance of which I explained in section 4.1. In section 5.3 an explicit calcu-
lation will confirm this3.

3I thank Adam Brown for sharing his calculations of complexity growth in SYK at large q.
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Figure 11: Penrose diagram for the JT bulk dual of SYK. The dynamical Schwarzian bound-
ary bends inward toward the horizon. At low temperature shown in the left panel the
boundary bends in very little. At high T it bends inward and almost hugs the horizon.

5.2 The Boundary Becomes the Horizon

SYK in this parameter regime has other similarities with de Sitter holography. Consider
the Penrose diagram for the bulk dual of SYK; namely JT gravity. The geometry for low
temperature is shown in the left panel of figure 11. As is well known, the boundary of the
geometry bends inward toward the horizons by an amount that depends on the temperature
[21]. For very low T the boundaries bend in very little and the distance between them
at t = 0 is large as in the left panel. But as the temperature increases the boundaries
move closer to the horizon and if one follows the formulas to T → ∞ (or tomperature to
J ) they get within a cutoff distance J−1 of the horizons as in the right panel. In the
high temperature limit the boundary merges with the stretched horizon and the holographic
degrees of freedom cannot be distinguished from horizon modes. To put it another way, the
boundary degrees of freedom become the quasinormal horizon modes.

If we combine this picture with the conjecture that for q ∼ Np complexity growth (see
next section 5.3) is hyperfast then it follows that the geometry between the horizons grows
rapidly, just as one might expect for de Sitter space.

All in all, I think it is possible that in the limit T →∞, T → J , and q ∼ Np, the SYK
system may have more in common with de Sitter space than with a black hole. But two
things are missing: an argument that there is an emergent space-time in the grey shaded
region of the right panel of figure 11, i.e., geometry near the pode and antipode; and evidence
that the model has the symmetries of de Sitter space.

As I argued earlier, the degrees of freedom near the pode region should be constructed
from somewhat complex combinations of the horizon degrees of freedom and might not be
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Figure 12: The function in (18) for q = 2 (red), q = 6 (blue), and q = 100 (green). By
the time we get to q = 100 the curve has become indistinguishable (for n > 0) from the
late-time behavior in (19). The very early exponentially growing region collapses to zero as
q increases.

easy to see. As for the symmetries I don’t have anything to say right now.

5.3 Hyperfast Scrambling in SYK

This rest of this section is based on calculations that were explained to me by Adam Brown,
Steve Shenker, Douglas Stanford, and Zhenbin Yang. The detailed calculation in the Brow-
nian4 “epidemic model” was done by Adam Brown. It applies to the SYK model, but also
more general qubit models in the limit of large temperature and large k-locality parameter
which in SYK is called q.

At high temperature it is sufficient to consider so-called Brownian models. We begin
with an epidemic model for operator growth. The rule is that in each step of a quantum
circuit (N/q) random q-local gates act on the N qubits. Each qubit is represented in one
gate and no qubit interacts in more than one gate.

At the start one qubit is “infected.” After n steps the probability that any qubit is
infected is P (n). According to Brown, P (n) satisfies the recursion relation,

P (n+ 1) = P (n) +
[
1− P (n)

][
1−

(
1− P (n)

)q−1]
. (16)

In the continuum Brownian limit this becomes,

dP

dn
=

(
1− P

) (
(1− (1− P )q−1

)
. (17)

Integrating (17) gives,

P (n) = 1−
(
1 + e(q−1)n

) −1
q−1 (18)

shown in figure 12.
The solution involves two exponential behaviors:

P (n) =
1

N
e(q−1)n early time

4As in Brownian motion.
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P (n) = 1− e−n late time (19)

The early behavior is the usual limiting Lyapunov behavior associated with the scram-
bling bound [20]. This determines the relation between n and the Rindler time for the usual
SYK theory,

ω = (q − 1)n. (20)

The scrambling time is determined by P (n)→ 1,

n∗ =
1

q − 1
logN. (21)

But analyzing the solution (18) we see that as q increases the range of time over which
the Lyapunov behavior is relevant shrinks to zero with large q. This is easily seen in figure 12.
When q is extremely large the scrambling time n∗ is determined by the late-time exponent
and we find,

n∗ = 1. (22)

This applies whenever q ∼ Np.
On the other hand the thermal time (the time-constant for the decay of the two-point

function) in the limit q ∼ Np can also be calculated from the Brownian model. One finds
that the thermalization time is proportional to the scrambling time5,

ωtherm =
ω∗
2
. (23)

We may interpret this to be dual to the statement that the scrambling time and the decay
time for quasinormal modes are equal apart from a factor of order unity. This, as I explained,
is what one expects if the holographic degrees of freedom are located on the stretched horizon
of the de Sitter static patch.

The thermal time scale is also the decay time for quasinormal modes, and in Rindler
units it is of order unity. This observation allows us to identify the circuit time n with
Rindler time up to a constant of order unity,

n

ω
∼ 1. (24)

5.4 Hyperfast Complexity Growth in SYK

The mathematics of complexity evolution—at least for qubit systems—is geometry; in par-
ticular M. Nielsen’s complexity geometry of right-invariant metrics on the group SU(2N ),
with certain “penalty factors” [23]. In this section I will use results from a soon-to-be
published paper by Adam Brown, Henry Lin, Michael Freedman, and myself that deals
with complexity geometry. The things I will use are consequences of a central conjecture,
which although unproven is supported by a number of examples. The conjecture implies the
following result6 for the behavior of complexity growth for the SYK system at large q:

After a short transient period the growth of complexity for a q-local SYK system at infinite
temperature is linear in time and satisfies,

C(t) = 2qεNt (25)

5I thank Zhenbin Yang for this observation.
6This is applicable for a wide class of penalty schedules, including the very draconian sub-Riemanian

schedule advocated by Nielsen, in which all penalty factors are infinite except for 2-local directions, as well
as for the much softer exponential schedule of [23], and everything in between.
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where ε is the variance in the energy per degree of freedom,

〈H2〉 = Nε2 (26)

Ordinarily for a system at high temperature ε would grow with temperature, but for reason
discussed in section 1.3 we identify it with the tomperature which remains finite as T →∞.

Thus, the complexity as a function of time is,

C(t) = 2qT St. (27)

where I’ve used the fact that the entropy is ∼ N. Finally the dimensionless time ω is defined
by,

ω = T t.
The complexity takes the form,

C(ω) = 2qSω. (28)

Next let us go to the hyperfast limit, q = Np,

C(ω) =
(

2N
p
)
ω (29)

This is to be compared with the ordinary complexity growth for an ordinary fast-
scrambler,

C(ω) ∼ Nω. (30)

The rate of growth in (29) is exponentially larger than in (30) in exactly the way described
in (13) (with a = 1/p). In the large N limit it is infinitely faster that (30), as required by the
lower panel of figure 10. The only bulk interpretation that I know of is that the geometry
between the horizons grows exponentially, just as it does in de Sitter space.

The behavior in (29) breaks down for short times t ≤ T −1 and for exponential times
when the complexity has reached its maximum value and must stop growing.

One can use (29) to compute how long it takes to reach maximum complexity. The
maximum complexity of a N -qubit system evolving under the action of a time-independent
Hamiltonian is 2N . The time that it takes to reach that value is,

ω ∼ 2N−N
p

∼ 2N (31)

Thus even with hyperfast growth the complexity still takes time of order 2N to reach its
maximum, after which classical GR must break down for the global space-time geometry.

This completes the argument that SYK (and other qubit models) at high temperature
and q = Np are hyperfast. I have argued that the bulk dual of hyperfastness is:

1. A scrambling time equal (within a factor of 2) to the decay time of quasinormal modes.

2. Exceptionally rapid growth of volume between the horizons, dual to the hyperfast
growth of complexity.

Both of these are inconsistent with the behavior of black holes, but are distinctive features
of de Sitter space.

If correct, the conjectures of this paper open a new direction of research in which the
tools of quantum information theory can be applied to cosmological space-times.
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Notes Added

1. The special case of q = Np with p = 1/2 is called the double-scaling limit of SYK and
was studied more fully in [24][25]. I thank Henry Lin for pointing this out.

2. I can’t recall who it was, but after this paper was circulated someone suggested a
similarity with mechanisms discussed by Silverstein and collaborators [26][27] in their
discussion of the static patch. Consider going from low temperature at fixed q (the
conformal limit) to the limit T → ∞, q → Np in two steps. First, keeping q fixed
we increase T which has the effect of pulling in the boundaries as in figure 11, but
without driving the system into the hyperfast regime. This pushes the theory from a
low temperature near-extremal black hole to a higher temperature non-extremal black
hole, but not toward de Sitter.

Then we let q increase. That is what brings the system from black hole behavior to a
de Sitter-like phase.

Compare this with Silverstein and collaborators who first deform a holographic CFT
by a T̄ T deformation. If I understand correctly, this has the effect of pulling in the
boundaries in much the same way as a cutoff; again illustrated by figure 11. In a
certain sense it is also increases the temperature, or more exactly the ratio of the
temperature to the cutoff scale of the CFT. Of course at the end there is not much
left of the CFT.

If the T̄ T deformation is anything like a conventional cutoff this makes the theory
spatially non-local but does not affect the k-locality of the couplings. (The couplings
in an ordinary gauge theory are at most quartic which means the theory is 4-local.)

They then follow this operation by what they call a Λ deformation, which, it is argued,
drives the system to a de Sitter phase. If it does produce de Sitter space with a
inflating interior, then by the arguments in this paper it should be possible to show
that the Λ deformation leads to a breakdown of k-locality, possibly by the introduction
increasingly high powers of the fields, and to hyperfast scrambling.

3. Herman Verlinde has called to my attention a number of talks in which he also con-
jectured a relation between SYK in the double scaling region and de Sitter space [28].
See also Akash Goel and Herman Verlinde, in preparation.
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