PHYSICAL REVIEW D 102, 124025 (2020)

Conservative tidal effects in compact binary systems
to next-to-leading post-Minkowskian order
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Using the Effective Field Theory approach together with the boundary-to-bound map, we
compute the next-to-leading order (NLO) post-Minkowskian (PM) tidal effects in the conservative
dynamics of compact binary systems. We derive the mass and current quadrupole and, for the first

time, octupole corrections to the binding energy for circular orbits at O(G?). Our results are
consistent with the test-body limit as well as the existent post-Newtonian literature. We also
reconstruct a Hamiltonian incorporating tidal effects to NLO in the PM expansion and find
complete agreement with the recent derivation of its quadrupolar part using the classical limit of

scattering amplitudes.
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I. INTRODUCTION

The demonstrated feasibility of direct detection of
gravitational waves (GWs) from binary systems [1,2],
and, in particular, the observation of neutron star
inspirals [3], has revealed a new window to explore
compact objects in an unprecedented fashion [4-6].
Not only do GWs carry the imprint of the equation of
state of nuclear matter through tidal effects [7-9], but
they have also opened new frontiers for beyond the
standard model searches [10-12], as well as the
exploration of the remarkable properties of black holes
in Einstein’s gravity [5,6]. On the other hand, distin-
guishing the properties of compact objects from tidal
disruptions is a daunting task requiring a high level of
analytic control, to at least fifth post-Newtonian (5PN)
order [5,6], while lifting several degeneracies may also
require an even a higher level of precision for wave-
form modeling.

The Effective Field Theory (EFT) formalism for PN
sources introduced in [13], which has already achieved
a high level of analytic accuracy both for nonspinning
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[14-28] and spinning binaries [29-42], is tailor made to
incorporate finite-size effects; see, e.g., [13,43—47]. For
instance, it was used in [48] to obtain the next-to-next-to-
leading-order (NNLO) contributions to the equations of
motion to 7PN order. However, partially due to the
repurposing of powerful tools from the amplitudes pro-
gram, e.g., [49-58], as well as EFT, e.g., [49,50], the
boundary-to-bound dictionary [59,60] and other develop-
ments, e.g., [61-65], it has become apparent that the
study of scattering in the post-Minkowskian (PM) expan-
sion may ultimately push further the frontiers of analytic
understanding of binary systems. With these ideas at
hand, a worldline EFT approach was developed in [66]
and readily implemented in [67] to reach the present
state-of-the-art at 3PM [52,53,56]. Our purpose here is to
extend the calculation of leading tidal effects in [66] (see
also, [65,68]) and compute the mass and current quad-
rupolar and octupolar tidal effects to NLO in the PM
expansion. While the latter are presented for the first
time, we find agreement for the former with the recent
results in [69]. The derivation in [69] uses the classical
limit of the scattering amplitude augmented with higher-
derivative interactions and standard Feynman diagrams,
together with the impetus formula [59]. Although
Feynman’s tools are also at the core of our approach,
the formalisms are rather different. In particular, unlike
the derivations in [52,53,56,69], ours is reduced to
(massless) integrals, whose velocity dependence can be
obtained via differential equation from the EFT with
static classical sources [67], which greatly simplifies the
calculations.
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A. Extended objects in the EFT approach

Following [13], tidal effects are incorporated in [66] by
including a series of higher-derivative terms in the world-
line action,l’2

/ dz, < gﬂyvav +c1(;)EWE/‘”
a=1.2

+ C< >B BW - C( )E/lmElwa - C%?B/luaB”m + - ) ’

(1)
with ¢/, each particle’s velocity, (c(Eaz), ;2)) and (c EEZ), c%“z))
the mass and current quadrupole and octupole tidal Love
numbers, respectively. The couplings are written in terms of
the electric- and magnetic-type components of the Riemann
(Weyl) tensor and its dual,

E(lﬁ = Rﬂ(wﬂ’l}”l}y, Bu[)’ = R*a ﬂ’U”UD,

=VER: L v"Y, (2)

(l/}J’ v{(zR/}/’Y}VU v ”ﬂ?’ {a " ppriv

where V2 is the covariant derivative projected orthogonal
to the velocity, and {...} stands for symmetrization. The
two-body effective action is obtained by integrating out
the metric field in the weak-field and saddle-point approxi-
mation via Feynman diagrams [66,67]. We use the con-
vention 7, = diag(+, —, —, —) for the Minkowski metric.
Intermediate divergences are handled by dimensional
regularization in D = 4 — 2¢ dimensions.

B. Scattering angle

In the EFT formalism of [66], the scattering angle is
computed via the impulse. The latter follows iteratively
from the effective Lagrangian,

+oo0 oL
(T R— eff
aph=r [T G ) 0)

by inputting the PM expansion of the trajectories,

M(ra) = Vi +ulr, + D 60N(w),  (4)

"The action in Eq. (1) is equivalent to the reparameterization-
invariant one in [13], up to higher orders in the curvature. In the
presence of finite-size terms, the gauge choice e, = 1 for the
einbein sets 7, as the proper time at future and past infinity. The
relatlve signs are due to our flat-metric convention.

’In principle, there are other operators, involving time deriv-
atives of the Riemann tensor, which are relevant in the PM
expansion (see [65]). In fact, due to the vanishing of Love
numbers [70-72], these represent the first nonzero corrections
beyond minimal coupling for (nonrotating) black holes. How-
ever, for neutron stars, we expect these conservative (absorptive)
effects to be suppressed with respect to higher order multipoles.
For instance, time-dependent terms were not included in [71]. In
principle one can include higher dimensional operators also in the
Einstein-Hilbert action, see e.g., [73-75].

with b# = b} — by the impact parameter and u, the incom-
ing velocities. The leading L. also contributes to NLO
when evaluated on (4). We refer to these corrections as
iterations [66,67]. The deflection angle is given by

—Ap?
2sing:)(+0()(3)=7pa, (5)
where pe =u Y=l with T=£=/T+2(y-1),

(M,E) the total mass/energy, y = m;m,/M the reduced
mass, and v = u/M the symmetric mass ratio. Throughout
this paper, we use the notation

L_1+5+ &, (6)
mymy

where £ = (E — M)/u is the (reduced) binding energy.

C. Feynman master integrals

At leading PM order, only the diagram in Fig. 1(b)
contributes. The derivation for the quadrupole coupling
was carried out in [66] and can be easily extended to the
octupole term. For the NLO effects, the remaining diagrams
in Fig. 1 are needed, including Fig. 1(a), which is required
to compute the iterations. As discussed in [66,67], in
addition to the standard massless 1/k?> propagators for
the gravitational field, we have linear ones, (k - u, F i0)~,
which arise from the expansion in Eq. (4). We restrict
ourselves to the impulse in the direction of the impact
parameter, which is sufficient to obtain the scattering angle
[66]. As in [67], the computation is reduced to terms
involving the (transverse) Fourier transform in the transfer
momentum of a series of two loop (cut) integrals.

As it turns out, a subset of the family of master integrals
in [67] is sufficient to compute all of the diagrams in Fig. 1,
including the iterations. As it was discussed in [67], the y
dependence is obtained either by going to the rest frame of
one of the particles or through differential equations whose
boundary conditions are extracted from the static limit. In
all cases, the integrals are reduced to the same type that
appear in the computation of tidal effects in the EFT with
PN sources [15]. The intermediate divergences either
cancel out or yield contact terms that do not enter in the
classical limit. Hence, we do not encounter ultraviolet poles
requiring a counterterm contribution in the effective action

(b) (c) (d) (e)

FIG. 1. Feynman diagrams needed for tidal effects to NLO. The
square represents the finite-size couplings in Eq. (1).
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in Eq. (1) at this order. Not surprisingly, at the end of the
day, the resulting tidal effects also feature the (in)famous

factor of sinh™'/(y — 1)/2, first observed in the monopole

contributions at NNLO in [52,53] and later confirmed
in [58,67].

Aes 457 (r* - 1)
r 64 (I))°
N 192 (y> - 1)3/2
35 (1))
vyl
35 (1))
9% \/y* — 1
= o K
35 ()
576v+/y* — 1

()

D. Scattering data

Garnering all the ingredients for the impulse projected in
the direction of the impact parameter, the scattering angle
then follows from Eq. (5), yielding for the quadrupolar tidal
effects [with 1/j = GMu/(pb)]

[(357* = 30y% — 5)Ag + (357* — 3072 + 11) 2]

[(1607° — 192y* 4 3072 + 2) A + (160y° — 192y* + 72y% — 5) 2]

k2 [2247° — 320p% — 72877 + 704¢° + 5488y — 444y* + 66262y° + 56y + 28084y + 4]
[224y° — 320y% — 728y7 + 704y° 4 5628y° — 528y* + 65982y> + 154y% 4- 28329y — 10]

[(4407* + 474> + 32)Kp + (4407* + 47477 + 33)kp2]agn(y). ™

where we used the shortened notation ag,(,) = (y* — 1)7"/2sinh™"\/(y — 1)/2; whereas for the octupolar contribution,

A)((Ejg) 525z
r  512())3
512(y> — 1)3/2

3003(Tj)°

(y? = 1)3[(21y° + 385y* — 305y% + 91)Az + (21y% + 385y — 385y% — 21)4z]

(48007 + 77520y — 74888y* + 1770772 + 1888) 5

+ (4800y8 + 7752070 — 87472y* + 5552¢% — 400)45:]

N 128v+/y? = lkp

3003(T'j)°

[27456y'3 — 1920072 4 205920y!! — 271680710 — 1589016y° -+ 950848y" + 22048884y

— 10320647° + 579540390y + 3959047* + 82661393 1y° — 254082 + 148331040y + 1600]

n 128v+/7% — lkze

3003(Tj)°

[27456y'3 — 19200712 4 205920y!! — 27168070 — 1468896y° + 9005128 + 21724560y

—980012y% + 580453302y° + 433656y* + 837773079y — 55724y + 155291994y — 7552]

38400/ = 1

()

In these expressions, we introduced the parameters

O o)
2 E2
e = g (o )
2 = 2 = _— s
BT G G*M*\m; | my

and similarly for all the other couplings, normalized with
1/G°M’ for the octupole Love numbers. We find the

[(7292y° 4 19484y* + 7905y% + 288k + (7292y° + 19644y* + 814177 + 310)k2]agy(,)-

(8)

[
expression in Eq. (7) to be fully equivalent to Eq. (13) in
[69]. Notice that, as it happens also at leading PM order
[65,66], the electric- and magnetic-type tidal effects have a
strikingly similar behavior in the high-energy limit. (Like-
wise, this is encoded in the rather simple factor in the 4
coupling to the Kretschmann scalar in [69].)

E. Probe limit

A nontrivial test for our results is the consistency with
the test-particle limit. We computed the scattering angle for
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a tidally deformed object by means of the on-shell con-
dition in a Schwarzschild background,

Geapi Py = m2 = 2m () (ESh)? + ) (BSeh )2

— i (E50)? = e (B2)?). (10)
We constructed the radial action for hyperbolic motion,
from which we derived the scattering angle in the PM
expansion via differentiation. Identifying the incoming
(reduced) energy with the boost factor (£, — y), we found
that the expressions in Egs. (7) and (8) are consistent with
the deflection of a tidally disrupted test body in a black hole
background. Not surprisingly, the probe limit also fixes the
leading tidal effects [59]. See the Appendix for more
details.

F. Boundary-to-Bound dictionary
The (reduced) radial action [59,60],

p 1) 2o )(Qn)
iy =———=y; —Jj{1+= j—,,) (11)
/=p2’ < ﬂ';(l—Zl’l)]2

is built from the PM expansion of the deflection angle,

(n)

n ']

via analytic continuation in the binding energy. Similarly to
what occurs at 3PM with the monopole term [59,60,67], we
can incorporate the information in the NLO tidal effects by
performing a PN truncation. To do so, we use the map in
[59] to write the P,s in the expansion of the square of the
center-of-mass momentum for each particle,

P =t S Py(E) <G> (13)

r

as a function of the PM coefficients in (12). This allows us
to read off the finite-size contributions to {Pg, P, Pg, Py}
from Egs. (7) and (8). We then use the inverse map [59],

e.g.,

® 1057 <Pg

PP
4=\

12 2

+ P P}P; + pL (P3P,
2 ~4 (D D D D f’go—
+P2P3)+poo(P1P7+P2P6)+TP8+"' ,

(14)

X T 512

?2 + PPg 4 - - - + 4p2, (3P3P, Py

+ P3Py + ) 4+ 6p% (P1Pg + 2P PPy + - )

(10) 315x <P5

+ 4P, (PyPy + PPy + PyPy) + plPry+ - ) ,

(15)

with P, =P,/(u*M") and p, = pe/u, to input the
known information into the )(;2")’s in (11). We have

displayed only a subset of the relevant coefficients and
their respective dependence on the { P, P,, Py} at 3PM, as
well as the {Pg, P7, Pg, Py} whose tidal contributions we
have computed. Notice we are still missing the quadrupole
corrections to {Pg, Py}, as well as P,5jo. However, the
reader will immediately notice the factors of p2, attached to
each term in Eqgs. (14) and (15) (depending on the number
of P,s involved) [59,60]. After analytic continuation, the
P2, scales with the (reduced) binding energy of the binary.
Hence, since the static limit of (13) is well defined, we can
consistently truncate Eq. (11) by ignoring terms that enter
at higher PN orders. There is still one subtlety left. While
the analytic continuation formally maps the 1/j expansion
of the observables between hyperbolic and elliptic motion,
for the latter case, we have the additional PN scaling
j '~ |pel, which mixes the power counting. Therefore,
we have to retain also higher orders in the 1/ expansion of
(11). For instance, by keeping the { P, P} contributions to
the deflection angle in Eqgs. (14) and (15), we recover the
exact value of the periastron advance in the Newtonian limit
in [65]. Different powers in 1/ are also necessary to match
the PN results for the monopole terms at higher PM/PN
orders [59,60].

The procedure is now straightforward, allowing us to
derive gauge-invariant observables directly from the ana-
lytically continued radial action [59,60,66,67]. For in-
stance, we readily obtain the azimuthal orbital frequency,
Q4(j.y), by taking derivatives of Eq. (11), with respect to
the binding energy and angular momentum. For the case of
circular orbits, we proceed as follows [59,60,66]. First, we
solve for j . (y) with the condition i, = 0 in (11), including
also the 3PM monopole corrections [59,60,66,67]. We plug
it back into Q(jeirc(7).7) = Qeirc(y), Which can then be
inverted to extract the binding energy as a function of the
orbital frequency. (Alternatively, we have checked that the
first law of binary dynamics [76] holds for tidal effects.)
Bundling the terms together and keeping up to 2PN
corrections in each sector, we find
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13
AEr=x {IS/IszS +113(1 =) A + 64 + Svkp)xS + <390/1,~52 ~ 55 (16122 = 1610~ 132)2

13v

13
+ 78 (616w + 699)A5 + 4

6
27200v

85
- <— (108307 + 15390 + 163)Az2 + = kje = (2700 + 383)k: —

36 3

with x = (GMQ;,.)*> the standard PN parameter. The

APEP) and AP%@ are the contributions in the static limit
(y = 1) from the quadrupole and octupole couplings at
NNLO in G, respectively. The expression in Eq. (16) agrees
with the results in Eq. 6.5b of [48] for the quadrupole
couplings to 6PN, as well as the leading octupole at 7PN.
Moreover, the difference at 7PN in [48] is only due to the

static limit of Pg. We can extract its value using Eq. (14)
with the ;(5.8), which follows from the Lagrangian to 7PN
obtained in [48], yielding

1326

AP = 22 vk + (243 = 900k
885v 675
2 _
+ (451/ 7 + 14),1E2
837

We have checked that its O(2”) part is consistent with the
probe limit (see the Appendix). The correction in Eq. (17)
gives us the last ingredient for the binding energy at 7PN,
while, at the same time, proves the equivalence of the
|

13
(4900 — 729k + — AP

1326v

Kp2

;i;‘j))ﬂ + 75450k — (130 + 3) Az + 1645)x°

680
-5 (

C

17 (5
90 + 173) 4z — FAngjg))x9} ,

(16)

|
derivations in [48] with a truncation of the PM results in the
quadrupole sector to O(G3v?).

As advertised, the octupolar contributions at 8PN are
presented for the first time. We also included the partial
results at 9PN order, missing only the static corrections at
NNLO in G from AP, whose O(1°) part can be extracted
from the probe limit (see Appendix),

APED) — 2 (205045 — 1312045) + O(v).  (18)

W[ =

G. Hamiltonian

The Boundary-to-Bound (B2B) map allows us to directly
produce observables without a Hamiltonian. However, it is
still instructive to reconstruct it using our dictionary [59].
We do so in the center-of-mass (isotropic) frame, where

H(r.p?) = i c",(ﬁz) (g)

n=0

(19)

with ¢y =", /p?> + m2. The ¢, coefficients in Eq. (19)
can be then obtained iteratively from the P,s in
Eq. (13). The tidal contributions to the latter are collected
in the Appendix, from which we derive the (lengthier)
finite-size contributions to the former,

v
{yz 1 [(D7,1kg2 + Diokpe) + (D7 3k + D74Kp2 ) Agny)]

1%
(Dys + (r = Dy + (7 - 1>3D7,12v2>]132},

270M71?
Acg = _T; [(357* = 3072 + 11)Age + 5(77* = 62 — 1)A2].
270M8L2
C g
T (-
2
+ [Dms +I“7—§2 (D77 + (r = 1)Dyov + (y — 1)3D7.11V2)}/152
P 2
y-—1
+ l:D7’6 + ( l—qu)
18900M°12
ACg = —1_‘425

[(21y° + 385y* — 30572 + 91)Az> + 7(3y® + 557* — 55¢% — 3)Ap],
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302400M 042 { v
(

5 (Do, 1k + Do skpe) + (Do skge + Do 4Kp)Agn(y))

T3 - (A=)
128712
+ [D9,5 + W(Dm + (y = 1)Dgov + (y — 1)3D9,11V2)] Ap2
128702(7% = 1)
+ |:D9.,6 + e (Dog + (r = 1)Dg jov + (¥ — 1)3D9,12V2)} A } (20)

The D;; are polynomials in y, which we display in
the Appendix. We find agreement with the results for
the quadrupolar contributions computed in [69], while the
octupolar corrections beyond leading PN/PM order are
derived here for the first time.

II. CONCLUSION

Motivated by probing compact objects via GW obser-
vations [4-12], we computed tidal effects in the
conservative dynamics to NLO in the PM expansion. We
used the EFT approach and B2B map developed in
[59,60,66,67] to calculate the mass and current quadrupolar
and, for the first time, octupolar corrections to the scattering
angle to NLO, from which we derived the binding energy
for circular orbits. Ultimately, it is through the accurate
reconstruction of finite-size effects that we will constrain
the nature of compact objects, notably the one(s) recently
observed in the so-called mass gap [77,78]. Measuring tidal
responses is especially relevant for (nonrotating) black
holes, due to their vanishing Love numbers [70-72] (see
also, [79]), which offers a unique opportunity to search for
new physics [5,11,12]. Our results thus provide new
ingredients for accurate waveform modeling including tidal
corrections.

Our derivation is also interesting with regards to the
high-energy limit (y — o0). Remarkably, there is a pattern
between the electric and magnetic quadrupolar as well as
octupolar corrections, notably for the impulse at fixed
impact parameter. For instance, the difference at leading
PM order is O(1/y) in the quadrupole, as noted in [65], and
O(y) for the octupole. This feature extends to all orders in
the probe limit, whereas, at O(v), the electric/magnetic split
picks an extra factor of y for each multipole, except for the
Agh(y)- The mismatch in the impulse for the latter goes as
Gy~ logy for the quadrupole (octupole) coupling. We
also find a softer behavior for the individual terms in
comparison with the monopole, which instead scales as
G’y*logy in the high-energy limit [67]. It would be
interesting to understand these features and whether they
persist at higher orders.
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APPENDIX: SUPPLEMENTAL MATERIAL

In this Appendix, we provide the details of the con-
sistency check of our derivation of the scattering angle
with the probe limit of a tidally-disrupted object in a
Schwarzschild background. We also collect various fomu-
lae which are relevant for the results presented in the
main text.

Schwarzschild Background.—The consistency of our
results with the test-particle limit can be shown directly
in terms of the (gauge-invariant) scattering angle. Using the
on-shell (constrain) condition due to the reparameterization
invariance of the worldline effective action; or equivalently,
using the relation between p* and »* and the normalization
of the velocity which follows from the gauge choice e, = 1
for the einbein, we have

dan i p = m2 = 2my (8 (ESSM)? + ¢ (BSh)?
_ c(ﬂ)(Esm)z _ c(ﬂ)(BSch)2) 4o,

B2 apy B2 apy

(A1)

up to terms quadratic in the tidal operators. We can then

(1)

solve for p;’ as a function of the distance, the (reduced)

energy, S(()U, angular momentum, J(()D, and tidal Love

numbers of the test body (which we take as particle 1).

Afterwards, we construct the radial action, f pgl)dr, such
that the scattering angle follows via differentiation with
respect to the angular momentum. Expanding in powers of

1/jo = (Gmymy)/ J(()l), replacing the energy by the boost
factor, 5(()1) — v, and following the integration procedure
described in, e.g., Ref. [65], we arrive at the following

corrections due to tidal effects in the deflection angle in a
Schwarzschild background,
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45
At = (77 = D2((357 = 3077 + 11)AY + (357 = 307> = 5)A))
64]0
192 3/2 6 4 2 (1) 6 4 2 (1)
+35—7( — 1)¥2((1607° — 192/* + 7277 — 5)2% + (16075 — 192¢* + 305> + 2)213)
5128 T (P = 1)P((21y° + 385 = 30577 + 91)2%) + (2178 + 385y* — 38577 — 21)23))
0
63
+ 52 6’;8 (7 = 1)((90097® — 15246y5 + 8484y* — 166> + 59)A%) + 21(y2 — 1)(429¢° — 297/* + 2772 + 1)AL)
0
256 2 10 8 6 4 2 (1)
+ V- 1((14336y'0 — 32256y% + 257926 — 87205* + 1104/% — 25)A.%
0
+ (1433610 — 3225678 +23680,° — 6080y + 3127 + 8)2L))
512
30037 (7 = 1)5/2((4800y® + 77520,° — 74888y* + 17707y + 1888)A)
0
+ (480078 + 7752070 — 87472* + 555272 — 400)2%)) + O(1/,1°), (A2)
where /15512)(32) = G‘4m55(m2 / ml)cgz>(82) and /1‘(32(32) = G %m;" (m,/ ml)cgz)@z). The expression in (A2),

which to our knowledge is presented here for the first time, must be symmetrized to obtain the mirror image.
The result neatly agrees with the test-body limit of the scattering angle shown in Eqgs. (7) and (8). Moreover,
using (A2) and the map from [59], we can also solve for the tidal correction to the momentum coefficients P5" in a
Schwarzschild background, e.g.,

APSeh — % (357* = 3077 + 11)2) + ? (Tr* = 6r% = )AL,
APSh = 238 (1107* + 363> = 305)4% + % (107/4 +3372 +13)20),
APSh = 9 g (544" 9337 ¢ 1139)20) + 0 (544)/ — 9332 — 541)A)
5 (2175 +3857* — 30572 + 91 + 105 346 1 5574 — 5572 — 3)4%),

16 16

_ 1 1
APSh — (143027 + 5918772 — 107149)2'Y) + — (143029* + 5918742 + 51251)A'Y)

(71178y° + 1857639y* — 2313484y> + 940651)A)

6864
71178y° + 1857639y* — 2949548y — 21478 ,
~zaea r°+ r* — 2949548y 9)4%)
ApSeh _ (42008y* — 108497y> + 257471) 20 (42008y* — 108497y% — 123679) 0
10 1540 E? 1540 B2
(872265}/ +37951761y* — 65175713y + 34559887) A0
12012 52
N (872265y° + 37951761y* — 83522041y% — 7834465) 40 (A3)
12012 B

After adding the mirror images, the quadrupole contribution to P§"(y — 1) exactly matches the static limit of the APy at
O(°) shown in the main text. Similarly, the APS"(y — 1) yields the associated part of the full AP, at O(2°). Finally,
notice that the probe limit also fixes the leading deflection for comparable masses. This is clear in impact parameter space,

where the impulse remains the same and we only have to add the mirror image. Hence, replacing pEX‘,) — /7> = 1/T we
obtain the two-body deflection angle at leading order.
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Momentum and Hamiltonian PM-coefficients.—The tidal corrections to the center-of-mass momentum,

ap =30 ar,) (%) (A%)

n=1

are obtained from the map in [59]. Using the value of the NLO scattering angle reported in the main text, we find for the
quadrupole contributions,

APGZ

AP’]:

3M8 2

4; (5(77* = 672 = 1)z + (357* = 3072 + 11)Ap2),

3MOL2 p . 5 . . 5
3807~ ) 161607 = 1927 5307 + 2)ge o (1607° = 1927" + 727 = 5)A2)

—35T(2y% — 1)((357* = 307> — 5) A + (357 = 3072 + 11)Ap)
8
+ 5 - : (22477 — 320p% — 72877 + 704y° + 5488)° — 444y* + 66262y° + 56y*
}/ —
+ 28084y + 4)kp + (22477 — 320y® — 728y7 + 704y° + 5628y° — 528y* + 65982 + 154y* + 28329y — 10)k 2

—210((4407* + 4749% + 32)kp + (440p* + 474y% + 33)KEz)ash(y)]}, (AS)

whereas for the octupolar corrections we have

15M'1% 6 4 2 2 6 4 2
APy = == ((217° + 3857 = 3057 + 91)22 + 7(37° + 557" = 557 = 3)2).
SM'y? 8 6 4 2
APy = 64[(4800y° + 77520y° — 74888y* + 17707y~ + 1888)A72

+ 16(300y® + 4845y° — 5467y* + 347y% — 25)A5] — 9009(2y> — 1)
x T[(219° + 385y* — 305y + 91) Az + 7(3y° + 557* — 5577 — 3)Az]

16v
MRS

27456y'% — 192005'2 + 205920y'" — 27168050 — 1468896°
+ 900512y + 2172456057 — 980012y° + 580453302y + 433656y*

+ 837773079y — 557247* + 155291994y — 7552)k

+ (27456y'3 — 192005'2 + 2059207 — 2716807'° — 158901652 + 950848y
+ 2204888457 — 103206475 + 579540390y + 3959047 + 826613931y

— 25408y + 148331040y + 1600)xz -+ 90090((7292° + 19644y* + 8141y> + 310)kz

+ (7292y° + 19484y* + 7905y% + 288)ng)ash(y)]}. (A6)

Following the steps described in [59] we obtain the PM coefficients of the Hamiltonian displayed in the main text, where the
D; j polynomials are given by:
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Dy, = —8(224y° — 320y° — 728y7 + 704y° + 5628y° — 528y* + 65982y> + 154y% + 28329y — 10),
D, = —8(224y° — 320y% — 728y7 + 704y° + 5488y° — 44dy* + 66262y> + 56y% + 28084y + 4),
D75 = 1680(440y* + 474y* + 33),
Dy, = 1680(440y* + 474y% + 32),
D; 5 = —16(160y5 — 192y* 4 7242 — 5),
D7 = —16(160y° — 192y* + 3042 + 2),
D55 = 7(700y% — 1110y° 4 597y* — 96y% — 11),
Dyg = 35(140y° — 82y —y2 — 1),
D7 = 7(1750y% — 10507 — 2785y° + 1655y° + 1436y* — 952y° — 181y + 203y — 44),
D710 = 35(350y° — 210y° — 207y* + 121y° = 3y> +y — 4),
D7, = 14(490y7 — 280y° — 895y + 380y* + 536y — 208y% — 115y + 44),
D715 = 70(98y° — 56y — 81y +20y> + Ty + 4),
Do, = —27456y"3 4 19200y'? — 205920y'" + 271680y'% + 1468896y° — 900512y"
— 21724560y + 980012y° — 580453302y° — 433656y* — 837773079y° + 55724y — 155291994y + 7552,
Dy, = —27456y"3 + 19200y'% — 205920y + 271680y'" + 1589016y° — 950848y*
— 22048884y7 + 10320647° — 579540390y° — 395904y* — 826613931y> + 25408y% — 148331040y — 1600,
Dy 5 = 90090(7292y° + 19644y* + 8141y> + 310),
Dy, = 90090(7292y° + 19484y* + 790572 + 288),
Dy 5 = —4(4800y® + 77520y5 — 74888y* + 17707y 4 1888),
Dy ¢ = —4(4800y% + 77520y% — 87472y* + 5552y> — 400),
Dy 7 = 588y'0 4 8694y — 13695y° + 6881y* — 1033y — 91,
Dyg = 588y +9282y° — 6013y* + 196y% — 21,
Dy o = 1470710 — 882y° + 20881y® — 13895y7 — 33371y + 21409y° + 16239y*
— 11285y% — 1975y% + 2157y — 364,
Dy 1o = 7(210y% = 126y7 + 3193y° — 2111y° — 2100y* + 1336y> + 53y% — 59y — 12),
Do 1y = 2(420y° — 210y® + 5656y7 — 3745y% — 10464y + 4975y* + 5928y — 2435y% — 1156y + 455),

Dy 1, = 14(60y” — 30y5 + 868y — 565y* — 764y + 260y? + 92y + 15). (A7)
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