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Are the New High Temperature Superconductors

Strong Coupling Systems?”
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ABSTRACT

Under certain circumstanceé the excitations of a superconductor will not be
those predicted by BCS theory, but rather electron bag states. A variational
calculation is used to establish this regime in which such collective states form.
The fact that such bags may bind more than one electron implies the existence of
more than one peak in the plots of dI/dV versus Vp obtained in Giaver tunneling
experiments. The estimate of the number and ratios of voltages associated with

such peaks is in qualitative agreement with recent experimental results®
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Speculation that the new high temperature superconductors1 are strongly
coupled systems has been widespread. The strong coupling behavior of BCS-

like systems is not commonly discussed in solid state physics, but it has been
looked at extensively in
some simple results which follow from applying such ideas to the new class of
superconductors. This analysis implies striking differences between the behavior
of these superconductors and the more familiar weak coupling superconductors

studied in BCS theory; this behavior appears to have been seen in the Giaever

tunneling experiments carried out at Stanford by Smith et.al’

In superconducting systems, due to their interaction with the condensate,
fermions above the fermi surface behave as massive particles. Under certain
circumstances an extra fermion injected into the system can lower its mass by
expelling condensate from its immediate neighborhood. It will then produce a
region, or bag, of radius R, filled with normal material and trap itself in this
region. Such objects have been discussed for the case of quantum field theory in

the context of the SLAC bag model of hadrons?

To decide whether such an excitation has a lower energy than the energy
of a single electron as computed in BCS theory, it is necessary to obtain an
upper bound on the energy of a one-electron bag. This bound depends upon the
condensation energy, which determines the energy required to drive a spherical
region normal, and the energy which required to localize the extra electron inside
the normal region. The question is for what range of parameters will the energy
of the one-electron bag state be smaller than the gap Ap. When this happens,

the BCS description of the lowest lying excitations must break down.



The starting point of the argument is the familiar BCS Hamiltonian

cle
H = Ze C~Ck+ Z k1k2k3k4 k1 kz F.Fs
kl,kZ;k31k4

where the usual simplification is to assume that V’c Rafake = —V5El,_526_53’,—c'4
for |e’—cv'_| < hwp, and zero otherwise. The usual BCS calculation is equivalent
to a variational calculation wherein we choose as a trial state the ground state
of a quadratic Hamiltonian with a constant mass M. The minimization of the
expectation value of the BCS Hamiltonian as a function of the mass parameter,
M, yields the BCS gap M = Ao. The condensation energy, A€ =~ n(0)AZ/4, is
the difference between the expectation value of the BCS Hamiltonian in the state
corresponding to M = 0 and that for M = Ag. Here, n(0) is the density of states
near the Fermi surface. To obtain an effective quadratic Hamiltonian for the
electrons we replace the operators c;%lc;[c.2 or ¢ ¢ by their constant expectation

values in the trial state. This yields a Hamiltonian for a fermionic excitation of

mass Ag.

To calculate the energy of a baglike excitation we follow the same reasoning,
but do not assume that the expectation value is translationally invariant. Rather,
we assume that it has the form shown in Fig 1. In that case the electron’s
contribution to the bag energy is obtained by solving for the lowest eigenstates
of a quadratic fermionic Hamiltonian with a position dependent mass term. A
complete analysis of this problem for the analogous field theory problem is given

in Ref. 2.

For the s-wave states it costs an energy of order 1/R to put an electron into

the lowest eigenstate of the bag (for the moment we ignore Coulomb effects); the



cost of putting an electron into the first state with one node is approximately
2/R. Making these approximations, we see that for a single electron in a bag,

the quantity

Ey(R) = (47/3)[n(0)AJR* /4] + (1/R) (1)

provides an upper bound on the energy of the lowest-lying baglike state. We
should, in reality, include a term of the form dR? to represent the energy due to
the transition region in which the groundstate expectation value of the condensate
changes from zero to its bulk value (d stands for the width of the transition region
as shown in Fig.1). While this term is easy to obtain for the field theory case it
is more difficult to obtain from the BCS approximation. In order to present the
argument in simplest terms we will initially ignore the presence of such a surface

term. Minimizing Eq(1) with respect to R yields
R7™! = (nn(0)A3/3)/* 5 Ey = (4/3)(wn(0)A3/3)"/*. (2)
The condition that the one electron bag lie lower in energy than Ay is
(4/3)[mn(0)/3]/* < Ay, (3)

This suggests that if we use Eq. (3) as a definition of strong coupling, then such
a system should be characterized by a small density of electrons available for
pairing.

Since the first electron has already paid the price for creating a bag, what
happens if we place another electron in the same region? Since the second electron

can fall into the same spatial wavefunction, because the spins can anti-align, for



such a two-electron bag, we have
Ey(R) = mn(0)AZR3/3+2/R (4)

which, at the minimum, is

E; = 28/*E, (5)

Since the energy of two separate one-electron bags is 2E, we see that the physics
of a strong coupling condensate causes a localized, doubly charged, spin zero
bound state to form. In other words, the interaction between two localized one-

electron bags will be attractive.

If we now attempt to add a third electron to the bag we can no longer put it
into the s-wave bound state. We can, however, put it into a state with a single
node, increasing the localization energy by an additional term of 2/R. Thus the

energy of the localized three-electron bag is given by
E3(R) = [mn(0)AZR®/3] + [(1 + 1+ 2)/R] (6)
and so at the minimum we have
E3 = 4*E, (7)

Since 43/4 > 14 23/4, we see that for a bag energy which doesn’t include a surface

term the interaction between localized two and one-electron bags is repulsive.

Thus, in the strongly coupled system, unlike the ordinary weak-coupling BCS
approximation, there are two distinct sets of levels available for the tunneling of

electrons into the superconductor. Hence, in Giaever tunneling into a sample of



this kind of superconductor, one would expect the plot of dI/dV to show two
peaks at distinct values of Vp. This result is the most important qualitative fea-
ture which distinguishes the strong coupling superconductor, as we have defined
it, from ordinary weak coupling superconductors which are well described by the
usual BCS analysis. Note, such distinct states may not be readily available as
sources for taking electrons out of the superconductor, which would imply asym-
metrical behavior in Giaever tunneling experiments. Whether or not this has
anything to do with the asymmetry seen in the Stanford tunneling experiments
awaits to be seen. To calculate the location of these peaks one has to refine this
calculation; however, before doing this we should first return to the question of

the surface energy term in E(R) and the question of including the Coulomb force.

In general the cost of creating a localized normal region will be described by
both a volume and surface term. Thus, we expect the energy of a one-electron

bag to have the form

AR®+ BR?+1/R (8)

There are two extreme cases; A = 0 and B = 0. We have already discussed is the
B = 0 case. Also, since the electrons are charged, localizing them inside the bag
will cost Coulomb energy. Since these particles are in quantum states which are
more or less uniformly spread out over the radius of the bag, gives a contibution
to E(R) of the form zn?/R; where n stands for the number of electrons in the
bag and the parameter z is a factor introduced in order to absorb shape and
wavefunction factors that do not calculated in this approximation. The general

expression for the energy of such a one-electron bag state is therefore:

E(R) = AR®*+ BR* + (1 +z)/R (9)



If B = 0, the one-electron energy will be proportional to A/ 41+ x)a/ 4 If
on the other hand A = 0, the one-electron bag energy is B/3(1 + £)?/3. If this
energy is less than the A obtained from the BCS calculation, then we have prima
facie evidence for the fact that the BCS description of the excited states of the

superconductor has broken down.

We can carry out the calculations for multi-electron bags for both limits. The

results for B = 0 are

Ey = AV4(1 4 2)%% ; By =[(2+42)/(1 + )/ E, 10
10
Es={(4+9z)/(1+2)/*E; ; E4=](6+16z)/(1+ z)]*/*E,

The results for A = 0 are

Ey =B+ 2)*? ; Ey=|2+42)/(1+2)*E,
| (11)

Es=[(4+92)/(1 +z)**E, ; E4=[(6+16z)/(1+ z)]*/3E,
We see that there is a crucial difference between these two cases, since in the case
A = 0 there exists an additional three-electron bound state. All bags containing

more than three electrons are unbound in both cases.

These results imply that Giaver tunneling experiments will show either two
or three peaks, depending upon the specific properties of the superconducting
sample. Since the present perovskite superconductors are multi-phasic materials
it is entirely possible that both kinds of behavior will be seen. It is not clear

whether or not such a difference has in fact been observed>

While this result is suggestive, one has to be careful to observe that to this
point the calculations are for localized bag states. If a localized state exists, then

translating the center of the bag by an arbitrary amount yields a configuration



having exactly the same energy. To calculate the lowest energy bag state one
must calculate the expectation value of the Hamiltonian in such a plane wave
state; such a calculation of this type is difficult, and lies outside the scope of this
paper. We can estimate the effect if we consider the kinetic terms (which allow
for the mixing of shifted bag states) as perturbations of the energy. Since the
kinetic terms are bilinears in the fermion operators they can move a one-electron
bag in first order, a two-electron bag in second order, etc. If the typical strength
of such a hopping term is represented by a parameter A/4g or Bl/3g, then we

might expect ratios of multi-electron bag states to the one-electron bag state to

be

By = (2 +42)% — ¢*1/[(1 + 2)3 — g]; Esjy = [(4 +92)% — ¢%/[(1 + 2)% — g]

L]

By =[(6+162)F = g")/[(1+ 2)} g

(12)
for the case B =0, and

Eyp =2 +42)% ~ ¢)/[(1 +2)% - gl; By = [(4+92)F — ¢*)/[(1 + 2)F — g]

Ey =[(6+ 16z)% — g*|/[(1 + z)3 — g]
(13)

for the case A = 0. Ratios, rather than absolute energies are calculated in order
that unknown factors cancel out. Tables I and II present the results of computing
these ratios for various values of ¢ and z. Since the factors of 1/R, 2/R, etc, are
obtained by assuming that the wavefunction of the electron vanishes at the walls
of the bag, it is possible that a more careful analysis taking the finiteness of Ag
into account could lead to a third bound state for the three-electron bag. For this
reason the ratio to the three-electron case is included in the case B = 0 because it

is only marginally unbound. While the present calculation does not support this



possibility display the prediction for the three-electron bag as if it was bound in
order to exhibit the sensitivity of the ratios to the various assumptions. Tables
I and II show that the ratios do not change all that much between the extremes
A = 0 and B = 0; the results for intermediate cases lie in between. Note, the
higher states, once the kinetic terms are taken into account presumably represent

resonances and not true eigenstates of the full Hamiltonian.

The dI/dV curves of Smith et.al. for both the LaSrCuO and YBaCuO type
superconductors, clearly exhibit more than a single peak. Data at different points
on the sample exhibit slightly different ratios for the locations of the peaks and
not all the points exhibit three peaks. This could imply that the different regions
correspond to phases with different values of the parameters 4, B and g. Were
all samples to exhibit three peaks with ratios of 1:3:5, this would favor a surface

dominated bag with g ~ .53 .

To conclude, staying within the context of a BCS theory, it has been argued
that the charged excitations of the strong coupling theory will not be the fermions
of the BCS solution, but will instead be collective excitations. The number
of excitations of this type will be finite, most likely two or three in number
and should show up as peaks in the dI/dV plots obtained in Giaever tunneling
experiments. Furthermore, it is entirely possible that the structure seen when
one tunnels electrons into the superconductor can be different from what is seen
going the other direction. It is much more difficult to compute the relation of
the critical temperature to the gap, since in order to do the calculation correctly
the effect of these extra states must be taken into account. Most likely it will
be necessary to redo the BCS calculation in order to obtain a correct prediction.

Techniques which have been applied to analogous problems in particle physics



may be useful for this calculation.

From an experimental point of view, there is one interesting feature of this
class of excitations that might be tested; namely, that the states of the bag which
correspond to radial excitations of non-zero angular momentum can be split in
a magnetic field. Since these materials are type II superconductors, at high field
there are many flux tubes penetrating the material. Hence, if a sample is placed
in a strong magnetic field, and if the penetration depth of the field into the
superconducting volume is large enough, then the number of bound states which
can exist in a bag may change because states which are degenerate at zero field
now split. It would be interesting to measure dI/dV for these materials as a

function of applied magnetic field.
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Table I(a):volume dominated z = 0 | TableI(b): = = .03
g Ey/Ey Es/E; E:/E, | E3/E;
4 2.54 4.61 2.57 4.67
42 2.60 4.75 2.62 4.80
44 2.66 4.90 2.68 4.95
.46 2.72 5.06 2.75 5.10
.48 2.79 5.14 2.81 5.27
.50 2.86 5.41 2.88 5.45

Table II(a): surface dominated z = 0

Table II(b): = = .03

g E;/E; Es/E; E;/E, | E3/E;
47 2.58 4.56 2.60 4.60
49 2.64 4.71 2.66 4.74
.51 2.711 4.87 2.73 4.90
.53 2.78 5.04 2.80 5.07
.55 2.86 5.23 2.87 5.25
57 2.94 5.43 2.95 5.44
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Fig. 1
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