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Abstract

The g-Onsager algebra Oy is defined by two generators Wy, Wi and two relations called the g-
Dolan/Grady relations. Recently Baseilhac and Kolb obtained a PBW basis for O, with elements denoted

{Bn5+a0}§°:0, {Bn8+a1}zo:()s {an}go:]-

In their recent study of a current algebra Ay, Baseilhac and Belliard conjecture that there exist elements

Woid2e: W3, {Grrt}g: {Gra1li

in Oy that satisfy the defining relations for A4 . In order to establish this conjecture, it is desirable to know
how the elements on the second displayed line above are related to the elements on the first displayed line
above. In the present paper, we conjecture the precise relationship and give some supporting evidence. This
evidence consists of some computer checks on SageMath due to Travis Scrimshaw, a proof of the analog
conjecture for the Onsager algebra O, and a proof of our conjecture for a homomorphic image of Oy called
the universal Askey-Wilson algebra.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We will be discussing the g-Onsager algebra O, [3,35]. This infinite-dimensional associa-
tive algebra is defined by two generators Wy, W and two relations called the g-Dolan/Grady
relations; see Definition 3.1 below. One can view O, as a g-analog of the universal enveloping
algebra of the Onsager Lie algebra O [19-21,28-31].
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The algebra O, originated in algebraic combinatorics [35]. There is a family of algebras
called tridiagonal algebras [35, Definition 3.9] that arise in the study of association schemes
[34, Lemma 5.4] and tridiagonal pairs [22, Theorem 10.1], [35, Theorem 3.10]. The algebra O,
is the “most general” example of a tridiagonal algebra [24, Section 1.2]. A finite-dimensional
irreducible O,-module is essentially the same thing as a tridiagonal pair of g-Racah type [35,
Theorem 3.10]. These tridiagonal pairs are classified up to isomorphism in [23, Theorem 3.3].
To our knowledge the g-Dolan/Grady relations first appeared in [34, Lemma 5.4].

The algebra O, has applications outside combinatorics. For instance, O, is used to study
boundary 1ntegrable systems [2-5,7,10-12,16]. The algebra O, can be realized as a left or
right coideal subalgebra of the quantized enveloping algebra U (5 2); see [4,5,25]. The alge-
bra O, is the simplest example of a quantum symmetric pair cmdeal subalgebra of affine type
[25, Example 7.6]. A Drinfeld type presentation of O, is obtained in [26], and this is used in
[27] to realize O, as an (Hall algebra of the projective line. There is an injective algebra ho-
momorphism from O, into the algebra [, [37, Proposition 5.6], and a noninjective algebra
homomorphism from O, into the universal Askey-Wilson algebra A, [36, Sections 9,10]. In [5,
Section 4] some infinite-dimensional O,-modules are constructed using g-vertex operators. In
[24] the augmented g-Onsager algebra is introduced; this algebra is obtained from O, by adding
an extra generator. The augmented g-Onsager algebra is used in [17] to derive a Q-operator. In
[4] a higher rank generalization of O, is introduced, and applied to affine Toda theories with
boundaries.

In [15, Theorem 4.5], Baseilhac and Kolb obtain a Poincaré-Birkhoff-Witt (or PBW) basis for
Oy. They obtain this PBW basis by using a method of Damiani [18] along with two automor-
phlsms of O, that are roughly analogous to the Lusztig automorphisms of U, (5[2) The PBW
basis elements are denoted

{Bn5+ao }210: {Bn5+al }3.;0’ {Bn(S}:ozl- (1)

In mathematical physics, O, comes up naturally in the context of a reflection algebra [2,3].
Using a framework of Sklyanin [33], in [10,16] a current algebra A, for O, is introduced. In
[16, Definition 3.1] Baseilhac and Shigechi give a presentation of .4, by generators and relations.
The generators are denoted

{W—k}lc:io’ {Wk+l }lcéio’ {gk—H }]2107 {g~k+l}1<:io

and the relations are given in (20)—(30) below.

We now summarize some recent results about 4,. In [5, Section 3] a reflection algebra is
used to obtain a generating function for quantities in a commutative subalgebra of A,. In [10,
11] some finite-dimensional tensor product representations of A, are constructed, and used to
create quantum integrable spin chains. The algebra A, is used to study the open XXZ spin
chain with generic nondiagonal boundary conditions [11,12] and also its thermodynamic limit
[5,13,14]. In [13,14] the study of A, is combined with the g-vertex operator approach of the
Kyoto school, to derive correlation functions and form factors. For the open XXZ spin chain in
the thermodynamic limit, the algebra A, is used in [6] to classify the non-abelian symmetries
for any type of boundary condition. In [8], a limit ¢ — 1 is taken in O, to obtain a presentation
of the Onsager algebra O in terms of a non-standard Yang-Baxter algebra. In [9], a similar
limiting process is applied to A, to obtain a Lie algebra .4 that turns out to be isomorphic to
O. An explicit isomorphism between O and A is established, and explicit relations between the
generators of O and A are given.
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The algebras A, and O, are both g-analogs of the universal enveloping algebra of O, so it
is natural to ask how A, is related to OJ,. Baseilhac and Belliard investigate this issue in [7];
their results are summarized as follows. In [7, line (3.7)] they show that Wy, W satisfy the
g-Dolan/Grady relations. In [7, Section 3] they show that .4, is generated by Wy, W, together
with the central elements {A,,},‘;":1 defined in [7, Lemma 2.1]. In [7, Section 3] they consider
the quotient algebra of A, obtained by sending A, to a scalar for all » > 1. The construction
yields an algebra homomorphism W from O, onto this quotient. In [7, Conjecture 2] Baseilhac
and Belliard conjecture that W is an isomorphism. If the conjecture is true then there exists an
algebra homomorphism A, — O, that sends Wy = W; and Wy = Wj. In this case there exist
elements

Woidlo:  Wir)i2o, {Gis1)2g, 1Gir1) )

in O, that satisfy the relations (20)—~(30). In order to make progress on the above conjecture, it is
desirable to know how the elements (2) are related to the elements in (1). In the present paper, we
conjecture the precise relationship and give some supporting evidence. Our conjecture statement
is Conjecture 6.2. Our supporting evidence consists of some computer checks on SageMath (see
[32]) due to Travis Scrimshaw, a proof of the analog conjecture for the Onsager algebra O, and
a proof of the conjecture at the level of the algebra A, mentioned above.

The paper is organized as follows. Section 2 contains some preliminaries. In Section 3 we
recall the algebra Oq, and describe the PBW basis due to Baseilhac and Kolb. In Sections 4,
5 we develop some results about generating functions that will be used in Conjecture 6.2. In
Section 6 we state Conjecture 6.2 and explain its meaning. In Section 7 we present our evidence
supporting Conjecture 6.2. In Section 8 we give some comments. In Appendices A, B we display
in detail some equations from the main body of the paper.

2. Preliminaries

Throughout the paper, the following notational conventions are in effect. Recall the natural
numbers N = {0, 1, 2, ...} and integers Z = {0, =1, 2, ...}. Let F denote a field. Every vector
space mentioned is over [F. Every algebra mentioned is associative, over I, and has a multiplica-
tive identity.

Definition 2.1. (See [18, p. 299].) Let A denote an algebra. A Poincaré-Birkhoff-Witt (or PBW)
basis for A consists of a subset 2 € A and a linear order < on 2 such that the following is a
basis for the vector space .A:

aiay---ay neN, ai,az,...,a, € Q, ar<ar<---<a,.

We interpret the empty product as the multiplicative identity in A.

We will be discussing generating functions. Let A denote an algebra and let ¢ denote an
indeterminate. For a sequence {a,},cn of elements in A, the corresponding generating function

is
a(t) = Z ant”.

neN

The above sum is formal; issues of convergence are not considered. We call a(t) the generat-
ing function over A with coefficients {a,},<N . For generating functions a(t) =), .y ant” and

3



P. Terwilliger Nuclear Physics B 966 (2021) 115391

b(t) =) ,cn bat" over A, their product a(t)b() is the generating function ),y c,t" such
that ¢,, = Z?:o aib,_; for n € N. The set of generating functions over A forms an algebra. Let
at)y=>y_, <N dnt" denote a generating function over .A. We say that a(t) is normalized whenever
ap=1.If 0 # ag € F then define

at)Y =ay'a(), (€))

and note that a(¢)V is normalized.
Fix a nonzero g € F that is not a root of unity. Recall the notation

n__ ,—n
[n]q:% neN.

q9—9
3. The g-Onsager algebra O,

In this section we recall the g-Onsager algebra O, . For elements X, Y in any algebra, define
their commutator and g-commutator by

[X,Y]=XY —YX, [X,Y], =qXY —q 'YX.
Note that

[X.[X,[X,Y],],-11= XY — 31, X°YX + 3], XY X* - Y X°.

Definition 3.1. (See [3, Section 2], [35, Definition 3.9].) Define the algebra O, by generators
Wo, W1 and relations

[Wo. [Wo. [Wo. Wilg],—11= (g — g 2[W1. Wol. )
[Wi, W1, [W1, Wolgl,—11= (g% — ¢~ [Wo, Wil. (5)

We call O, the g-Onsager algebra. The relations (4), (5) are called the g-Dolan/Grady relations.

Remark 3.2. In [15] Baseilhac and Kolb define the g-Onsager algebra in a slightly more gen-
eral way that involves two scalar parameters c,g. Our O, is their g-Onsager algebra with

c=q"'q—q )

Remark 3.3. We clarify how to recover the Onsager algebra O from O, by taking a limit g — 1.
To keep things simple, assume that F = C. In (4), (5) make a change of variables Wy = &£ A¢ and
Wi =£A; with € = /—1(q — ¢~ 1)/2. Simplify and set ¢ = 1 to obtain

[Ao, [Ao, [A0, A1]]] = 16[Ag, A1], [A1,[A1, [A1, Aolll = 16[A4, Ag].
These are the Dolan/Grady relations and the defining relations for O [9, Section 2.1].
In [15], Baseilhac and Kolb obtain a PBW basis for O, that involves some elements
{Bus+ag neo> {Bus+a; o {Bns}n—- (6)
These elements are recursively defined as follows. Writing Bs = q’le Wo — WoW; we have

4
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q[Bs, Wol
By, = W(), B(3+ = Wl + s (7)
0 o (@—qNHq>—q™?
q[Bs, B(n—1)s+ao]
Bustay = Bn—2)s+ao + n=2 3
e N U e )
and
q[Bs, W1]
By, = Wi, Bstay = Wo — ; ®
“ “! (@—qHq>—q™
q[Bs, Bi—1)s+a ]
Bus+ay = Bn—-2)s+a; — n>2. (10)
e N U e )
Moreover for n > 2,
n—2
—g2 -2
Bus =4 > Bu—1ysoy Wo — WoBu—1)s4a; + @ > = 1) Y Bisya Bu—t—star- (1)
=0

By [15, Proposition 5.12] the elements {B,5}-> | mutually commute.

Lemma 3.4. (See [15, Theorem 4.5].) Assume that q is transcendental over . Then a PBW basis
for Oy is obtained by the elements (6) in any linear order.

Remark 3.5. With reference to Remark 3.3, we give the limiting values of the elements (6). In
(7)—(11) and the expression for Bs below (6), make a change of variables

Bustao =§A-n, Bustar =EAnt1, By =4&By,
for n > 0 and m > 1. Simplify and set ¢ = 1 to obtain
[B1, Anl =2Ap41 — 2An-1, [Am, Aol =4By

for n € Z and m > 1. The elements {A,},cz, {Bn},-, form the basis for O given in [9, Defini-
tion 2.1].

Definition 3.6. We define a generating function in the indeterminate #:

B(t)=)_ Bust", Bos=q % —1. (12)
neN

In Section 6 we will make a conjecture about B(#). In Sections 4, 5 we motivate the conjecture
with some comments about generating functions.

4. Generating functions over a commutative algebra
Throughout this section the following notational conventions are in effect. We fix a commu-
tative algebra A. Every generating function mentioned is over .A.

The following results are readily checked.

Lemma 4.1. A generating function a(t) =), N ant” is invertible if and only if ag is invertible
in A. In this case (a(1))™ = > neN bnt" where by = ao_1 and forn > 1,

n
-1
by = —a, Zakb,,_k.
k=1
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Lemma 4.2. For generating functions a(t) =), . ant" and b(t) =), N bat" the following
are equivalent:

(i) a(t) =blgnblg~"1);
(i) an =" obiby_iqg* " forn e N.

Lemma 4.3. For a normalized generating function a(t) =), ant", there exists a unique
normalized generating function b(t) =Y, .n bnt" such that

a(t) = b(gtb(g~"1).

Moreover forn > 1,

n—1 2i—
an — Z,‘:] bib,—iqg™™"

b, =
n q"+q"

Definition 4.4. Referring to Lemma 4.3, we call b(¢) the g-square root of a(t).

Lemma 4.5. For generating functions a(t) =), . ant" and b(t) =), .\ bat" the following
are equivalent:

() a() =b(LHLT);

N t411
(i) ap = bg and forn > 1,

L(n—1)/2] n—1—2¢
an= Y (—1)6( . )[21;—2%”_2@. (13)
£=0

Proof. Note that for k € N,

A—0*1= Z (kifg)r‘f. (14)

LeN
We have
_ _ — k+1
q+q 1) <q+q 1)” qg+q!
b( = bu=bo+ ) bict1-
—1 —1 -1
t+t e t+t e t+t
We have
-1
q+q _
P =21t (1457

By this and (14) we find that for k € N,

C1 k1
9+4q k1 k1 e(k+E\ 2
=[2],"t E -1 .

(t+t1 > (2l zeN( ) 1

By these comments
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g1
b(i+f—1) bo + Z (— 1)e< )[2]k+1 tk+l+2/d
k,£eN

oo L(n—1)/2] (

=bo+ Y Z (-1
n=1

The result follows. O

— E .
)[Z]Z by gt

Lemma 4.6. For a generating function a(t) = )_, N ant", there exists a unique generating func-
tion b(t) =), . bnt" such that

(a+q!
a(t)_b<t+t_1 ) (15)

Moreover by = ag and forn > 1,

ZL(n 1)/2j( l)g(n—(lz—e)[z]g—ﬂbn_%
212 '

by =

Proof. This is a routine consequence of Lemma 4.5. O
Definition 4.7. Referring to Lemma 4.6, we call b(t) the g-symmetrization of a(t).
We now combine the above constructions.

Proposition 4.8. Let a(t) = ), ant" denote a normalized generating function. Then for a
generating function b(t) =), . but" the following are equivalent:

(1) b(t) is the g-symmetrization of the q-square root of the inverse of a(t);
>i1) b(t) is normalized and

-1 -1
ap( 2L \p( 4T\ _ . (16)
gt +q1t7! gt +qgt~!
(iii) b(t) is normalized and
q+q”" 0 q9+q”!
bl ——— | = Hb| ————— |, 17
a(qr) <q2t+q_2t_1> a(g 't) (q—2t+q2r—1 a7
@{iv) bo=1and forn > 1,
0=[nlgan+ Y. (= 1%( )[2n—nq[2] lajbisr. (18)
J+k+20+1=n,
k>0

Proof. (i) = (ii) Let a;(¢) denote the inverse of a(t), and let ax(#) denote the g-square root
of aj(#). By assumption b(¢) is the g-symmetrization of a;(¢). The generating function a(t) is
normalized, so aj(¢) is normalized by Lemma 4.1. Now a»(#) is normalized by Lemma 4.3 and
Definition 4.4. Now b(t) is normalized by Lemma 4.6 and Definition 4.7. By construction

7
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-1

aai =1,  ai)=alghag'n, az(t)=b<%>-
Combining these equations we obtain (16).
(ii) = (iii) In the equation (16), replace ¢ by g and also by ¢~'¢. Compare the two resulting
equations to obtain (17).
(iii) = (iv) Write each side of (17) as a power series in ¢, and compare coefficients.
(iv) = (i) By assumption, the generating function b(¢) is normalized and satisfies (18). Let b (¢)
denote the g-symmetrization of the g-square root of the inverse of a(¢). From our earlier com-
ments, the generating function 4'(¢) is normalized and satisfies (18). The equations (18) admit a
unique solution, so b(¢) =b'(¢t). O

Definition 4.9. Referring to Proposition 4.8, we call b(t) the g-expansion of a(t) whenever the
equivalent conditions (i)—(iv) are satisfied.

Lemma 4.10. Let a(t) = ZneN ant™ denote a normalized generating function. Let b(t) =
Y neN bnt" denote the g-expansion of a(t). Then for n > 1 the following hold:

(1) by is a polynomial in ay,ay,...,a, that has coefficients in ¥ and total degree n, where
we view ay as having degree k for 1 < k < n. In this polynomial the coefficient of a, is
—[nly[2n]; (21

(ii) ay is a polynomial in by, ba, ..., b, that has coefficients in F and total degree n, where
we view by as having degree k for 1 < k < n. In this polynomial the coefficient of b, is
—[n];" (201, (21,

Proof. (i) By (18) and induction on 7.
(i1) By (i) above and inductiononn. 0O

5. Generating functions over a noncommutative algebra

Throughout this section the following notational conventions are in effect. We fix an algebra
B that is not necessarily commutative. Every generating function mentioned is over B.

Definition 5.1. A generating function a(t) = ),y ant” is said to be commutative whenever
{an}nen mutually commute.

Lemma 5.2. For a commutative generating function a(t) =, N ant" there exists a commuta-
tive subalgebra A of B that contains a, for n € N.

Proof. Take A to be the subalgebra of B generated by {a,},cNn. O

Referring to Lemma 5.2, we may view a(f) as a generating function over A.
Definition 5.3. Let a(r) = ), .y ant” denote a generating function that is commutative and
normalized. By the g-expansion of a(t) we mean the g-expansion of the generating function

a(t) over A, where A is from Lemma 5.2. By (18) and Lemma 4.10, the g-expansion of a(z) is
independent of the choice of A.
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6. Some elements in O,

In the previous two sections we discussed generating functions. We now return our attention to
the g-Onsager algebra O, . Recall from Section 1 that in [7, Conjecture 2] Baseilhac and Belliard
effectively conjecture that there exist elements

(Woideens  (Warihiens  {Graiheens  {Graileen (19)
in O, that satisfy the following relations. For k, £ € N,
[Wo, Wii1] = [W—i, Wil= (Gry1 — Grs) /(g + 47, (20)
[Wo, Git1lg = [Grr1, Wolg = pW_i—1 — pWis1, 2D
[Git1, Wilg = W1, Giiilg = pWig2 — pWog, (22)
[(W_i, W_¢] =0, [(Wit1, Wer11=0, (23)
[(W_i, Wes1] + (Wi, W_] =0, (24)
[(W_k, Geq1] + [Gr41, W=l =0, (25)
(Wi, Gerl + [Gryr, Wl = 0, (26)
[(Wit1, Go1] + [Git1, Wer] = (27)
[Wis1, Ges1]+ [Gk+1 Wer1l = (28)
[Gi+1, Ger1]l = [Git1. Gz+1] =0, (29)
[Git1, Gl + [Gk+l Ges1l= (30)

In the above equations p = —(g* — q_2)2. For notational convenience define

Go=—(¢—q HI2I;, Go=—(q¢ —q HI2l;. 31)

Remark 6.1. Referring to Remark 3.3, we give the limiting values of the elements (19). In
(20)—(30), make a change of variables

Woe=EW . Wi =&Wi,, G =£&Gi,,  Gi1=68Gy,
for k € N. Simplify and set ¢ = 1. Lines (20)—(22) become

[Wos Wii] =W, Wil =Gyt — Giu)/2, (32)
(W3, Gy 1 =[Gy, Wil =16W | — 16W} 4, (33)
[Glsr. Wil =W, Gy ] = 16Wp ) — 16W/, (34)

and (23)~(30) remain essentially unchanged. In [9, Definition 4.1] and [9, Theorem 2], Baseilhac
and Crampé display a basis {W’, }reN, {W12+1}keN, {G;(.H}keN for O that satisfies (23)—(34),
where G| = G}, fork e N.

Returning to Oy, it is desirable to know how the elements (19) are related to the elements (6).
In this paper we conjecture the precise relationship. We will state the conjecture shortly. Before
stating the conjecture, we discuss what is involved. Let us simplify things by writing the elements
(19) in terms of Wy, Wi, {Gi+1}ren- To do this, we use (21), (22) to recursively obtain W_y,
Wiy fork > 1:
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W_ =W, — M
(¢*> —q72)?
[G1.Wol, W1, Galg
v v
[G1, Wol, (W1, Gal, [G3, Wol,

A PE e o 1A

Ws— W, — [G1, Wolg [, Gol, _ [G3, Wolg W, Gal,
@ =972 @*—q* @—-qD> (¢*—q %

Wos=W, — [G1, Wol, — [W1,Galy  [G3, Wol, — [W1,G4ly  [Gs, Woly
- @ —q2% @*—q9 D @ -9 (@G*—qg D> (@*—q>*
Wy = Wo — (W1, G1l,

(¢ —q72)?
(Wi, Gl [G2, Wolg

B 7 e S e g5
We—we_ WGl [Ga, Woly W, Gl

T @D (P —g )

W= Wo— (W1, Gilg _ (G2, Wolg [, Gsly _ (G4, Wolg
- @>—q72> @*—qD* @—qD> (¢*—q %

We = Wo — [Wi.G1l,  [G2,Wol,  [W1,G3ly  [Ga,Wol,  [W1,Gsly

@—q2? @—92? @-q @G—qgD? (@*-q ¥

The recursion shows that for any integer k > 1, the generators W_;, Wi are given as follows.
Forodd k =2r + 1,

r

r

10

[Gaes1, Wolg (W1, Garlg
W_ =W — — = — (35)
; (¢*—q™? ; (¢*—q™?
r ~ r ~
(W1, Gaer1lg [G2e, Woly
Wi =Wo— Y —=—2=td N~ 220 704 (36)
i g (¢>—q72)? ; (¢>—q72)?
For even k = 2r,
r—1 o r ol
[W1, Gaey1lg (G2, Woly
W_i =Wy — — - —, (37)
; ¢*—q7? ; (¢*—q™?
r—1 .~ r =
[G2e+1, Wolg [W1, Gaelg
Wigr =W, =y =70 N~ 22 R (38)
" g (¢*—q™? ; (¢*—q™?
Next we use (20) to obtain the generators {Gi+1}reN:
Gri1 =Gir1 + (g +q HIWi, Wy] (k e N). (39)
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We have expressed the elements (19) in terms of Wy, Wi, {ék+1 }ken- Next, we would like to
know how the elements {Gk+1 }reN are related to the elements (6). We will discuss this relation-
ship using generating functions.

Recall the generating function B(¢) from Definition 3.6. The generating function B(¢) is com-
mutative by Definition 5.1 and the comment above Lemma 3.4. By (12) the generating function
B(t) has constant term q‘z —1= —q_l (g — q_l), so by (3) we have

B®)" =—q(q—q" 7' B().
The generating function B(¢)Y is commutative and normalized, so we may speak of its g-

expansion as is Definition 5.3.

Conjecture 6.2. Define the elements

{(W_i}keN, {Wis1)keN, {Gi+1}keN, {Git1)keN (40)

in Oy as follows:
(i) the generating function G(t)" is the q-expansion of B(t)", where G(1) =Y. N Gnt" and
Go is from (31);
(i) the elements {W_}reN, {Wi+1}keN satisfy (35)—(38);
(iii) the elements {Gyt1}reN satisfy (39).

ne

Then the elements (40) satisfy (20)—(30).

We have some comments about the g-expansion of B(¢)". We mentioned above that B(z) is
commutative, so by Lemma 5.2 there exists a commutative subalgebra A of O, that contains B,
for n € N. So B(t) is over A. The g-expansion of B(¢)" is over A, and described as follows. For
the moment let G () = D neN Gnt" denote any generating function over A such that G satisfies
(31). By Proposition 4.8 and Definitions 4.9, 5.3 we find that

G(1)" is the g-expansion of B(r)"

if and only if
~( a+a' \~f a+aq’! = 13y
B(t)G G =— — 2 41
() <qt+q1,1> <q1t+qt1) 9 (g—q )2 (41)
if and only if
~( q+q”! s ata!
B(gt)G| ———— ) =B(q 'nG| 55—— 42
(q1) <q2t—|—q2t1) (q—'1) <q2t+qt2 (42)
if and only if for n > 1,
~ e+t - k1. A
0=[nlgBusGo+ >, (D", )J2n— il BjsGur. (43)
jAk+20+1=n,
j.k,£>0

In Appendix A we display (43) in detail for 1 <n <8.

11
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7. Supporting evidence for Conjecture 6.2

In this section we give some supporting evidence for Conjecture 6.2.

Our first type of evidence is from checking via computer. The algebra O, has been imple-
mented in the computer package SageMath (see [32]) by Travis Scimshaw. Using this package
Scrimshaw defined the elements (40) for 0 < k < 5 using (43) along with (35)—(38) and (39). He
then had SageMath verify the relations among (20)—(30) that involved these defined elements.

Our next type of evidence concerns the analog of Conjecture 6.2 for the Onsager algebra O.
Consider the equation (41). In that equation we compute the limit ¢ > 1 in two steps: (i) make a
change of variables as before; (ii) simplify the result and set g = 1.

Step (i): We express our generating functions as

B(t)=q > — 1 +4&°B(). B(t)=Y  But", (44)

n=1
G)=—(g—q H2I; +E°G ), G'ty=Y G" 45)
n=1

Evaluating (41) using (44), (45) and £2 = —(q — ¢~ 1)?/4 we obtain

-2 132 s =g, q+q7!
(61 -1-(@—q )B(l)><—(q—q 21, — 1 G(qt+q—1t—1

132 1
x (—(q—q‘)[2]§—(q a )G/( a+4 )>=—q‘<q—q‘)3[213.

4 g lt4qr!

Step (ii): For the above equation, let D denote the left-hand side minus the right-hand side. After
expanding D and doing some cancellation, we find that D is equal to —(g — ¢~ )4[2]3 /2 times

1 - 1 -1
2B+ 62T )y L 2T (46)
4 2q gt +q 7! 2q gt +qt!
plus (g — g~ 1)> times some additional terms. Dividing D by (¢ — ¢~")* and then setting ¢ = 1,

we find that (41) becomes

- 2 B
8B(1) + G (W) =0. (47)

Equation (47) matches the equation on the right in [9, Line (4.8)]. By that citation the equation
(47) is satisfied by the basis for O described in Remark 6.1. We have verified the analog of
Conjecture 6.2 that applies to O.

Our next type of evidence has to do with the universal Askey-Wilson algebra A, [36, Defi-
nition 1.2]. This algebra is defined by generators and relations. The generators are A, B, C. The
relations assert that each of the following is central in A:

gBC—q~'CB qCA—q'AC gAB —q 'BA
2 -2 B+ 2 ) 2 -2
q9°—q q9°—q q9°—q
For the above three central elements, multiply each by ¢ + ¢! to get «, 8, . Thus

A+ ) C+

12
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gBC —q~'CB o
At == —, (48)
q°—q q9+q
gCA—q~'AC B
B+ 2_,2 -1 (49)
q°—q q9+q
AB—q 'BA
cydo 1 LY (50)
q°—q q9+q

Eachofa, 8, y is central in A,. By [36, Corollary 8.3] the center of A is generated by a, 8, y, 2
where

Q=gABC +q*A>+ ¢ ?B*+¢*C?> —qAa —q 'BB — qCy. (&2))]

The element €2 is called the Casimir element. By [36, Theorem 8.2] the elements «, 8, y, Q2 are
algebraically independent. We write [F [«, B8, y, 2] for the center of A.

Next we summarize from [36, Section 3] how the modular group PSL>(Z) acts on A, as a
group of automorphisms. By [1] the group PSL;(Z) has a presentation by generators o, o and
relations o> = 1, 0 = 1. By [36, Theorems 3.1, 6.4] the group PSL,(Z) acts on A4 as a group
of automorphisms in the following way:

u |A B C la By @
ow) | B C A By a R
o) | B A C+q[j‘;fi]. B a y
For notational convenience define
p [A, B]
C'=C+- (52)
q—4q
Applying o to (48)—(50) and using the above table, we obtain
AC'—q~'C’'A
B+ 2 q A B . (53)
9 —q q+q-
C'B—q 'BC’
e (54)
q° - —q q+q-
BA—q 'AB
R (55)
q° - —q- q+q-

Next we explain how A, is related to O, . By [36, Theorem 2.2] the algebra A, has a presentation
by generators A, B, y and relations

A’B —[3],A’BA +[31,ABA® — BA® = (¢* — ¢ *(BA — AB), (56)
B*A—[31,B*AB +[3],BAB* — AB® = (¢* — ¢ "*)*(AB — BA), (57)
A’B? — B’A%> 4+ (¢* 4+ ¢ ) (BABA — ABAB)= (¢ —q_")*(BA — AB)y, (58)

yA=Ay, yB =By. (59)

The relations (56), (57) are the g-Dolan/Grady relations. Consequently there exists an algebra
homomorphism § : O, — A, that sends Wo > A and W) — B. This homomorphism is not
injective by [36, Theorem 10.9].

For the elements (6) and (40) we retain the same notation for their images under §. We will
show that for A, the elements (40) satisfy the relations (20)—(30).

13
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For the algebra A, define
() =B@®) +1-q77 (60)
where B(t) is from Definition 3.6. By (12) we have W(¢) = ZZO 1 Bust™. By [38, Corollary 5.7]
the elements {Bmg}oo | are contained in the subalgebra of A, generated by F[e, 8, y, 2] and C.
Consequently the elements {B,s}>>; commute with C, so W(t) commutes with C. By this and
[38, Line (5.19)] we find that
W) (qt+q 't +C) (g 4+t +C) (61)
is equal to 1 — ¢~ times

1 2 2
@ (ZtJr—tt—f?f B (?—Jtr—ﬂl)z — @+ Yy +@+g He+THe+

Upon eliminating W(¢) from (61) using (60), we find that
B (gt +q 7't +C) (gt +qt7" +©) (62)
is equal to 1 — g2 times

Ll 2, g2
- (it _Z_?‘;‘f - (;"_ tﬁ)2 Uy @ +aT

YD 't +qr7h.

Define
B(t t+qg '+ Cqglt+grt +C
By the above comments
N@®) =1+ Ni()Q+ Na()ep + N3()(@® + B*) + Na(t)y, (64)
where
—1
N 1) = s 65
1o (gt +q~ 't D(g 1+ q171) ©
4t
N 1) = s 66
T TP e T T (©0)
1
Na(t) = s 67
30 (t—1=D2(qt +q~ =) (g7t +qr71) ©7
t417"
Ni(t) = (68)

(gt +q~t=D(g lt+ g7’
Evaluating (65)—(68) using

1 n 2n+1,2n+1
ﬁ=2<—l> g
qt +q~ 't aeN

1)n —2n— 12n+1
=2
qrrqr neN
t_t—l)z Znt
neN

14
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we find that the functions Ny(¢), Na(t), N3(t), N4(t) are power series in ¢ with zero constant
term. By this and (64), we may view N (¢) as a normalized generating function over F[«, 8, v, 2].

Definition 7.1. Define a generating function Z(t) =)
Zy= q_2 — q2 and Z(1)" is the g-expansion of N (¢).

N Znt" over Fla, B, y, 2] such that

ne

The notation Z(¢)V is explained in (3). The g-expansion concept is explained in Proposi-
tion 4.8 and Definition 4.9. By these explanations and Definition 7.1,

g+q! qg+q! 2 22
N(t)z(qt+qft‘>z<q‘t+qt‘):(q A ©

Proposition 7.2. For the algebra A,

Gt)=Z(t)(g+q ' +10). (70)

Proof. Define the generating function G t)=2Z@t)(q+ q‘l + tC). We show that G(t) =G (1).
Let A denote the subalgebra of A, generated by F[a, 8, ¥, 2] and C. Note that A is commuta-
tive. By construction G (1) is over A. By our comments below (60), the generating function B(t)
is over A. By the discussion around (41), it suffices to show that

B 4ol N - +g-1

Using (63) and (69),

< g+q ' \af g+q7!
BO)g( - 1)g( - 1)
qt+q~'t q 't +qt

) q+q " \qt+qg it +C g+q7' g lt+qt ' +C
=[21;B(Z 1,1 1 4\ o —1 —1 -1
qt+q~'t qt+q~'t q 't +qt q—'t+qt
—1 -1
— q+q q+q
=[2;(¢ > = DNNZ )2\ ==
qt+q~'t q 't +qt
=[2015(q > - Dg*—q )
=—q (g —q "2},
We have shown (71), and the result follows. O
Define the generating functions
W)=Y W_ut", WH@E) = Wygat™.

neN neN
By (35)-(38) we obtain

t{G(1), Aly + B, G(D)],
(2 —1)(q2 —q2)2

_ [G(1), Al, +t[B, G(1)]
W= =

wh = . (72)

(73)

15
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Lemma 7.3. For the algebra A,

@—qg DHa+pt)—(@>—qgHt—tHB
(q> =g —1t71) '
@—qg Hat+p)—(q>—qgHt—tHA
(> —q )@t —t71) '

W)= Z@) (74)

W= ()= Z() (75)

Proof. To obtain (74), eliminate G(t) from (72) using (70), and evaluate the result using (48),
(49). Equation (75) is similarly obtained. O

Define the generating function
Gt)=)_ Gut".
neN
Using (39) we obtain

GO =G +1(g+¢ HIB,W ). (76)
Lemma 7.4. For the algebra A, we have

G)=Z)(g+q ' +1C), (77)
where C’ is from (52).

Proof. Eliminate G () from (76) using (70). Eliminate W™ (¢) from (76) using (75), and evaluate
the result using (52). O

Let s denote an indeterminate that commutes with ¢.

Lemma 7.5. For the algebra Ay we have

[A, WO =[W™ (1), Bl=t""(G(t) —Gt) /(g +q ).
[A,G()]g =[G(), Alg=pW (1) — pt W (1),
[G(t), Bly=[B.G()]g =pW'(t) — pt W™ (1),
[W=(s), W-()]=0,  [WH(s), Wh(#)]=0,
W= (s), WHEO]+ [WH(s), W™ (1) =0,
sSIW™(5). G(O)] +1[G(s), W~ (1)] =0,
sSIW™(5), G()] +1[G(s), W (1)] =0,
sSIWH(s), GO + 1[G (s), W ()] =0,

sSIWT (), GO +1[G(s), W) =0,
[G(s).GH]=0,  [G(s),G1)]=0,

[G(s), G()] +[G(s), G(1)] =0,

where p = —(q> — g ~2).

16
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Proof. These relations are routinely verified using Proposition 7.2 and Lemmas 7.3, 7.4 along
with (48), (49), (53), (54). O

Theorem 7.6. In the algebra A, the elements (40) satisfy the relations (20)—(30).
Proof. This is a routine consequence of Lemma 7.5. O
8. Comments

In the previous section we gave some supporting evidence for Conjecture 6.2. In this section
we assume that Conjecture 6.2 is correct, and provide more information about how the elements
(40) are related to the elements (6). We will give a variation on (35)—(38).

Using Appendix A and Bs = g —2W; Wy — Wo W] we obtain

G =—qBs = [Wy, Wil,. (78)
Lemma 8.1. For k e N,

() [ék+1~, Wolg = (g — q_l)WO(:;k+l —q*[Bs, W_¢],
(i) [W1, Grs1lg = (g — g YW1 Grp1 + [Bs, Wi 1.

Proof. (i) Observe that
[Gri1. Wolg = (g — g~ Y WoGrs1 +q[Gry1. Wol.
By (26) and (78),

[(Gri1, Wol =[G1, W_x] = —q[Bs, W_¢].

The result follows.
(ii) Observe that

(Wi, Gitilg = (g — g HWiGrp1 — g [Grpr, Wil
By (28) and (78),
[Gi+1, Wil =[G1, Wis1] = —q[Bs, Wip1].

The result follows. O

Lemma 8.2. Forn > 1,

(@ —q HWoGy = q*[Bs, Wi_n]
(q* —q72)? (q*—q=2)?*"
(@—q "YWiG,  [Bs, Wyl

Wt =W == o e g2 (80)

Wy =W, —

(719)

Proof. Use the equations on the right in (21), (22) along with Lemma 8.1. O

17
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We recall some notation from [15]. For a negative integer k define

Bist+ag = B(—k—1)s+a; s Bist+ay = B(—k—1)s+ap-
We have
Brs+ag = Bssta; (r,seZ, r+s=-1). (81)

Lemma 8.3. Forn € Z,
6][35, Bn5+a0]
(-9 4> —q7?)
ql[Bs, Bn6+a1]
(@—9"Yq*>—q7?

= Bu4+1)s+ag — Bii—1)s+ag> (82)

= Bu—1)s+a; — Bur)s+a; - (83)

Proof. Use (7)—(10) and (81). O

Proposition 8.4. For n € N the following hold in Oy :

n k
- K\ k—201ni—k— =
Wo=—(g—q¢ H"'Y > ( E)qk 121,572 Be—20ys-+a0 Gk (84)
k=0 £=0
n k k _
Wari=—(g—q¢ H7"' Y > (z)Clz/é_k[2]q_k_23(k—2£)a+al Gn—r- (85)
k=0 £=0

Proof. We use induction on 7. First assume that n = 0. Then (84), (85) hold. Next assume that
n > 1. To obtain (84), evaluate the right-hand side of (79) using induction along with (81), (82).
To obtain (85), evaluate the right-hand side of (80) using induction along with (81), (83). O

In Appendix B we display (84), (85) in detail for0 <n <7.

Referring to (84) and (85), if we express each term G,_j as a polynomial in Bg, By, ...,
B(n—k)s using (43), then we effectively write W_, and W, in the PBW basis for O, given in
Lemma 3.4. Unfortunately the resulting formula are not pleasant.
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Appendix A

For the g-Onsager algebra O, we use (43) to obtain Gl, Gz, e, Gg in terms of Bg, Bys, ..
Bgs.

L)

Recall that
Bos=q > —1, Go=—(¢g—q Hi2l;.
Gl satisfies
[214Bos  [114Bi1s
O = (N;O 0 1
[21,G1 1 0

Gz satisfies

[4]4Bos [314B15 [214B2s

_ Go 0 0 1
121,61 0 1 0
212G 1 0 0

G satisfies

[6];Bos [51¢B1s [4l4B2s [31yB3s

Go 0 0 0 1
0=12],G, -1 0 1 0
212Gy | 0 1 0 0
213Gs| 1 0 0 0

G4 satisfies

[8l4Bos [714B1s [6]qBas [51yB3s [4]y Bas

Go 0 0 0 0 1

0= 214G 0 -1 0 1 0
212Gy | -2 0 1 0 0
RI3G3| © 1 0 0 0
RIGs| 1 0 0 0 0

G 5 satisfies

[10],Bos [91¢B1s [8lgB2s [714B3s [6]lyBas [5]yBss

Go 0 0 0 0 0 1
121,61 1 0 -1 0 1

0= 212G 0 -2 0 1 0 0
[213G3 -3 0 1 0 0 0
213G 0 1 0 0 0 0
[213Gs 1 0 0 0 0 0
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éﬁ satisfies

(12],Bos [11]4B1s [10]4B2s [914B3s [8lgBas [714Bss [6]y Bes
Go 0 0 0 0 0 0 1
[21,G, 0 1 0 ~1 0 1 0
o 213G2| 3 0 ) 0 | 0 0
213G 0 -3 0 1 0 0 0
RIIGs| —4 0 1 0 0 0 0
[213Gs 0 0 0 0 0 0
215G 1 0 0 0 0 0 0
G7 satisfies
[14],Bos [1314B1s [12]yBas [11]14B3s [10l3Bas [914Bss [8l4Bes [714B7s
Go 0 0 0 0 0 0 0 1
21,G1 | -1 0 1 0 ~1 0 1 0
212G, 3 0 -2 0 1 0 0
0= 213G 6 0 -3 0 1 0 0 0
2I}Gs| O —4 0 1 0 0 0 0
213Gs| -5 0 1 0 0 0 0 0
[215Gs | O 1 0 0 0 0 0 0
217G 1 0 0 0 0 0 0 0

Gg satisfies 0 =

[16]4Bos [1514B1s [1414Bas [13]4B3s [12]4Bas [11]4Bss [10], Bes [914B7s [8l4Bss

Go 0 0 0 0 0 0 0 0 1
121,61 0 -1 0 1 0 -1 0 1 0
212G, | —4 0 3 0 -2 0 1 0 0
23G3 0 6 0 -3 0 1 0 0 0
[213G4 10 0 —4 0 1 0 0 0 0
[215Gs 0 -5 0 1 0 0 0 0 0
215G —6 0 1 0 0 0 0 0 0
217Gy 0 1 0 0 0 0 0 0 0
218Gy 1 0 0 0 0 0 0 0 0

Appendix B

For the g-Onsager algebra O, we use (84), (85) to obtain { W_,,}Z=0 and {W, 4 }Zzo in terms

Of {Bustaph_g» {Bustar }p—g» {Gn}i_o- Recall that Go = —(q — g~ ")[212.
We have

Wo = Byy =—(q —q~") 1217 Bay Go.

W_yisequalto —(g — g~ 1)~ [2];3 times

20
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| Go 21,61
q[_lBa1 1 0
By, 0 1
qBS+a0 1 0

W_sis equal to —(g — 61_1)_1[2](;4 times

Go [2],Gq [2]3, G2
G ?Bsiq, | 1 0 0
qg! By, 0 1 0
B, 2 0 1
qBsiey | O 1 0
4*Brstay | 1 0 0

W_szisequalto —(g — g~ 1)~ [2];5 times

Go [21,G1 [212G> [213G3

4 Bastay | 1 0 0 0
¢ ?Bstq, | O 1 0 0
g~ 'By, 3 0 1 0
Bu, 0 2 0 1
qBsiey | 3 0 1 0
q*Basia, | O 1 0 0
q3B35+a0 1 0 0 0

W_4 is equal to — (¢ — q’l)’1 [2];6 times

Go [21,G1 [212G2 [213G3 [214G,4

q74336+a1 1 0 0 0 0
g 3Bosie, | O 1 0 0 0
G Bsiq, | 4 0 1 0 0
q ' By, 0 3 0 1 0

Buy, 6 0 2 0 1
qBsiwy | O 3 0 1 0
q°Bas 1o 4 0 1 0 0
q3B35+a0 0 1 0 0 0
q4B45+a0 1 0 0 0 0

W_sisequalto —(g — g~ 1)~ [2];7 times

21
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o [21,G1 212G, [213Gs [24Gs4 [213Gs

G Basie | 1 0 0 0 0 0
q74B33+a1 0 1 0 0 0 0
G 3 Bosie | S 0 1 0 0 0
¢ ?Bsiq, | O 4 0 1 0 0
g 'By, | 10 0 3 0 1 0
0 0 6 0 2 0 1
qBsiay | 10 0 3 0 1 0
4*Bsia, | O 4 0 1 0 0
@ Bisiay | 5 0 1 0 0 0
q*Bisiay | O 1 0 0 0 0
q B55+a0 1 0 0 0 0 0

W_g is equal to — (g — q_l)_l[Z];8 times

Go [21,G1 [212G, [213Gs [212Gs [213Gs [215Gs
g °Bssia, | 1 0 0 0 0 0 0
g Basia, | O 1 0 0 0 0 0
G4 *Bisia, | 6 0 1 0 0 0 0
G 3 Bosya, | O 5 0 1 0 0 0
g *Bsya, | 15 0 4 0 1 0 0
g 'By, | O 10 0 3 0 1 0
Bu, 20 0 6 0 2 0 1
qBsiay | O 10 0 3 0 1 0
q*Bosiay | 15 0 4 0 1 0 0
4*Bssiay | O 5 0 1 0 0 0
q*Basia, | 6 0 1 0 0 0 0
¢’ Bss+ay | O 1 0 0 0 0 0
q°Bestay | 1 0 0 0 0 0 0

W_7 is equal to — (¢ — q‘l)_l[Z];9 times

Go [21,G1 [212G> [23Gs [218Gs [213Gs [215Gs [21]Gr

g7 " Bosta, | 1 0 0 0 0 0 0 0
G %Bssia, | O 1 0 0 0 0 0 0
G Basia | 7 0 1 0 0 0 0 0
g *Bisia, | O 6 0 1 0 0 0 0
G 3 Bosie, | 21 0 5 0 1 0 0 0
g Bsiq, | O 15 0 4 0 1 0 0
g 'By, |35 0 10 0 3 0 1 0

Bu, 0 20 0 6 0 2 0 1
qBsiay | 35 0 10 0 3 0 1 0
q*Basiay | O 15 0 4 0 1 0 0
4> Bista, | 21 0 5 0 1 0 0 0
q*Basia, | O 6 0 1 0 0 0 0
4’ Bssiay | 7 0 1 0 0 0 0 0
q°Bes+ay | O 1 0 0 0 0 0 0
9 Brstay | 1 0 0 0 0 0 0 0

N
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Wi =By, =—(g —q ") [2],° B, Go.

W, is equal to —(q — q’])’1 [2];3 times

| Go [21,G:
q_lBS-‘rOu 1 0
By, 0 1
qBay 1 0

W3 is equal to —(q — q’])’1 [2];4 times

Go [21,G1 [212G,
q *Bastay | 1 0 0
¢ 'Bsiq, | O 1 0
By, 2 0 1
q By, 0 1 0
4*Bsiay | 1 0 0

Wy is equal to —(g — q_l)_l[Z];5 times

Go [21,G1 [212G2 [213G3
q_3B33+a1 1 0 0 0
q_2825+011 0 1 0 0
¢ 'Bsia, | 3 0 1 0
By, 0 2 0 1
q By, 3 0 1 0
q*Bsioy | O 1 0 0
4 Bosiay | 1 0 0 0

Ws is equal to —(qg — q’l)’l[2];6 times

Go [21,G1 212G, 23G3 [21:G4
q "Basia, 1 0 0 0 0
q " B3sta, | O 1 0 0 0
q "Basta, | 4 0 1 0 0
¢ 'Bsiq, | O 3 0 1 0

Ba, 6 0 2 0 1

qBuy 0 3 0 1 0
4*Bsia, | 4 0 1 0 0
q° Bostaq 0 1 0 0 0
q*Bista, | 1 0 0 0 0

We is equal to —(g — g~ 1)~} [2];7 times

23
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o [21,G1 212G, [213Gs [24Gs4 [213Gs

G Bssie, | 1 0 0 0 0 0
q74B43+a1 0 1 0 0 0 0
G 3 Bisie, | S 0 1 0 0 0
g *Bosia, | O 4 0 1 0 0
g 'Bsiq, | 10 0 3 0 1 0

Bo, 0 6 0 2 0 1

qBay 10 0 3 0 1 0
q*Bsiay | O 4 0 1 0 0
@ Basiay | 5 0 1 0 0 0
q*Bisia, | O 1 0 0 0 0
¢ Bisray | | 0 0 0 0 0

W7 is equal to —(g — q_l)_l[Z];8 times

Go [21,G1 [212G, [213Gs [212Gs [213Gs [215Gs
g °Besia, | 1 0 0 0 0 0 0
g Bssia, | O 1 0 0 0 0 0
g *Basia, | 6 0 1 0 0 0 0
G 3 Bisya, | O 5 0 1 0 0 0
4 ?Basta, | 15 0 4 0 1 0 0
¢ 'Bsiq, | O 10 0 3 0 1 0

By, 20 0 6 0 2 0 1

q By, 0 10 0 3 0 1 0
q*Bsioy | 15 0 4 0 1 0 0
¢*Bsiay | O 5 0 1 0 0 0
q*Bisia, | 6 0 1 0 0 0 0
@’ Bisia, | O 1 0 0 0 0 0
q°Bssia, | 1 0 0 0 0 0 0

Wy is equal to —(g — (]_1)_1[2];9 times

Go [21,G1 [212G> [23Gs [218Gs [213Gs [215Gs [21]Gr

4 " Bista, | 1 0 0 0 0 0 0 0
g %Besia, | O 1 0 0 0 0 0 0
G Bssia | 7 0 1 0 0 0 0 0
g *Basya, | O 6 0 1 0 0 0 0
G 3 Bass, | 21 0 5 0 1 0 0 0
G >Bosye, | O 15 0 4 0 1 0 0
g 'Bsia, | 35 0 10 0 3 0 1 0
By, 0 20 0 6 0 2 0 1
q By, 35 0 10 0 3 0 1 0
q*Bsiey | O 15 0 4 0 1 0 0
4> Basta, | 21 0 5 0 1 0 0 0
q*Bisia, | O 6 0 1 0 0 0 0
4’ Basiay | 7 0 1 0 0 0 0 0
q°Bssiq, | O 1 0 0 0 0 0 0
q"Bestay | 1 0 0 0 0 0 0 0

)
=
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