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Abstract

The q-Onsager algebra Oq is defined by two generators W0, W1 and two relations called the q-
Dolan/Grady relations. Recently Baseilhac and Kolb obtained a PBW basis for Oq with elements denoted

{Bnδ+α0 }∞n=0, {Bnδ+α1 }∞n=0, {Bnδ}∞n=1.

In their recent study of a current algebra Aq , Baseilhac and Belliard conjecture that there exist elements

{W−k}∞k=0, {Wk+1}∞k=0, {Gk+1}∞k=0, {G̃k+1}∞k=0

in Oq that satisfy the defining relations for Aq . In order to establish this conjecture, it is desirable to know 
how the elements on the second displayed line above are related to the elements on the first displayed line 
above. In the present paper, we conjecture the precise relationship and give some supporting evidence. This 
evidence consists of some computer checks on SageMath due to Travis Scrimshaw, a proof of the analog 
conjecture for the Onsager algebra O, and a proof of our conjecture for a homomorphic image of Oq called 
the universal Askey-Wilson algebra.
© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We will be discussing the q-Onsager algebra Oq [3,35]. This infinite-dimensional associa-
tive algebra is defined by two generators W0, W1 and two relations called the q-Dolan/Grady 
relations; see Definition 3.1 below. One can view Oq as a q-analog of the universal enveloping 
algebra of the Onsager Lie algebra O [19–21,28–31].
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The algebra Oq originated in algebraic combinatorics [35]. There is a family of algebras 
called tridiagonal algebras [35, Definition 3.9] that arise in the study of association schemes 
[34, Lemma 5.4] and tridiagonal pairs [22, Theorem 10.1], [35, Theorem 3.10]. The algebra Oq

is the “most general” example of a tridiagonal algebra [24, Section 1.2]. A finite-dimensional 
irreducible Oq -module is essentially the same thing as a tridiagonal pair of q-Racah type [35, 
Theorem 3.10]. These tridiagonal pairs are classified up to isomorphism in [23, Theorem 3.3]. 
To our knowledge the q-Dolan/Grady relations first appeared in [34, Lemma 5.4].

The algebra Oq has applications outside combinatorics. For instance, Oq is used to study 
boundary integrable systems [2–5,7,10–12,16]. The algebra Oq can be realized as a left or 
right coideal subalgebra of the quantized enveloping algebra Uq(ŝl2); see [4,5,25]. The alge-
bra Oq is the simplest example of a quantum symmetric pair coideal subalgebra of affine type 
[25, Example 7.6]. A Drinfeld type presentation of Oq is obtained in [26], and this is used in 
[27] to realize Oq as an ιHall algebra of the projective line. There is an injective algebra ho-
momorphism from Oq into the algebra �q [37, Proposition 5.6], and a noninjective algebra 
homomorphism from Oq into the universal Askey-Wilson algebra �q [36, Sections 9,10]. In [5, 
Section 4] some infinite-dimensional Oq -modules are constructed using q-vertex operators. In 
[24] the augmented q-Onsager algebra is introduced; this algebra is obtained from Oq by adding 
an extra generator. The augmented q-Onsager algebra is used in [17] to derive a Q-operator. In 
[4] a higher rank generalization of Oq is introduced, and applied to affine Toda theories with 
boundaries.

In [15, Theorem 4.5], Baseilhac and Kolb obtain a Poincaré-Birkhoff-Witt (or PBW) basis for 
Oq . They obtain this PBW basis by using a method of Damiani [18] along with two automor-
phisms of Oq that are roughly analogous to the Lusztig automorphisms of Uq(ŝl2). The PBW 
basis elements are denoted

{Bnδ+α0}∞n=0, {Bnδ+α1}∞n=0, {Bnδ}∞n=1. (1)

In mathematical physics, Oq comes up naturally in the context of a reflection algebra [2,3]. 
Using a framework of Sklyanin [33], in [10,16] a current algebra Aq for Oq is introduced. In 
[16, Definition 3.1] Baseilhac and Shigechi give a presentation of Aq by generators and relations. 
The generators are denoted

{W−k}∞k=0, {Wk+1}∞k=0, {Gk+1}∞k=0, {G̃k+1}∞k=0

and the relations are given in (20)–(30) below.
We now summarize some recent results about Aq . In [5, Section 3] a reflection algebra is 

used to obtain a generating function for quantities in a commutative subalgebra of Aq . In [10,
11] some finite-dimensional tensor product representations of Aq are constructed, and used to 
create quantum integrable spin chains. The algebra Aq is used to study the open XXZ spin 
chain with generic nondiagonal boundary conditions [11,12] and also its thermodynamic limit 
[5,13,14]. In [13,14] the study of Aq is combined with the q-vertex operator approach of the 
Kyoto school, to derive correlation functions and form factors. For the open XXZ spin chain in 
the thermodynamic limit, the algebra Aq is used in [6] to classify the non-abelian symmetries 
for any type of boundary condition. In [8], a limit q �→ 1 is taken in Oq to obtain a presentation 
of the Onsager algebra O in terms of a non-standard Yang-Baxter algebra. In [9], a similar 
limiting process is applied to Aq , to obtain a Lie algebra A that turns out to be isomorphic to 
O. An explicit isomorphism between O and A is established, and explicit relations between the 
generators of O and A are given.
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The algebras Aq and Oq are both q-analogs of the universal enveloping algebra of O, so it 
is natural to ask how Aq is related to Oq . Baseilhac and Belliard investigate this issue in [7]; 
their results are summarized as follows. In [7, line (3.7)] they show that W0, W1 satisfy the 
q-Dolan/Grady relations. In [7, Section 3] they show that Aq is generated by W0, W1 together 
with the central elements {�n}∞n=1 defined in [7, Lemma 2.1]. In [7, Section 3] they consider 
the quotient algebra of Aq obtained by sending �n to a scalar for all n ≥ 1. The construction 
yields an algebra homomorphism � from Oq onto this quotient. In [7, Conjecture 2] Baseilhac 
and Belliard conjecture that � is an isomorphism. If the conjecture is true then there exists an 
algebra homomorphism Aq → Oq that sends W0 �→ W0 and W1 �→ W1. In this case there exist 
elements

{W−k}∞k=0, {Wk+1}∞k=0, {Gk+1}∞k=0, {G̃k+1}∞k=0 (2)

in Oq that satisfy the relations (20)–(30). In order to make progress on the above conjecture, it is 
desirable to know how the elements (2) are related to the elements in (1). In the present paper, we 
conjecture the precise relationship and give some supporting evidence. Our conjecture statement 
is Conjecture 6.2. Our supporting evidence consists of some computer checks on SageMath (see 
[32]) due to Travis Scrimshaw, a proof of the analog conjecture for the Onsager algebra O, and 
a proof of the conjecture at the level of the algebra �q mentioned above.

The paper is organized as follows. Section 2 contains some preliminaries. In Section 3 we 
recall the algebra Oq , and describe the PBW basis due to Baseilhac and Kolb. In Sections 4, 
5 we develop some results about generating functions that will be used in Conjecture 6.2. In 
Section 6 we state Conjecture 6.2 and explain its meaning. In Section 7 we present our evidence 
supporting Conjecture 6.2. In Section 8 we give some comments. In Appendices A, B we display 
in detail some equations from the main body of the paper.

2. Preliminaries

Throughout the paper, the following notational conventions are in effect. Recall the natural 
numbers N = {0, 1, 2, . . .} and integers Z = {0, ±1, ±2, . . .}. Let F denote a field. Every vector 
space mentioned is over F . Every algebra mentioned is associative, over F , and has a multiplica-
tive identity.

Definition 2.1. (See [18, p. 299].) Let A denote an algebra. A Poincaré-Birkhoff-Witt (or PBW) 
basis for A consists of a subset � ⊆ A and a linear order < on � such that the following is a 
basis for the vector space A:

a1a2 · · ·an n ∈ N, a1, a2, . . . , an ∈ �, a1 ≤ a2 ≤ · · · ≤ an.

We interpret the empty product as the multiplicative identity in A.

We will be discussing generating functions. Let A denote an algebra and let t denote an 
indeterminate. For a sequence {an}n∈N of elements in A, the corresponding generating function 
is

a(t) =
∑
n∈N

ant
n.

The above sum is formal; issues of convergence are not considered. We call a(t) the generat-
ing function over A with coefficients {an}n∈N . For generating functions a(t) = ∑

ant
n and 
n∈N

3
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b(t) = ∑
n∈N bnt

n over A, their product a(t)b(t) is the generating function 
∑

n∈N cnt
n such 

that cn = ∑n
i=0 aibn−i for n ∈ N . The set of generating functions over A forms an algebra. Let 

a(t) = ∑
n∈N ant

n denote a generating function over A. We say that a(t) is normalized whenever 
a0 = 1. If 0 	= a0 ∈ F then define

a(t)∨ = a−1
0 a(t), (3)

and note that a(t)∨ is normalized.
Fix a nonzero q ∈ F that is not a root of unity. Recall the notation

[n]q = qn − q−n

q − q−1 n ∈N.

3. The q-Onsager algebra Oq

In this section we recall the q-Onsager algebra Oq . For elements X, Y in any algebra, define 
their commutator and q-commutator by

[X,Y ] = XY − YX, [X,Y ]q = qXY − q−1YX.

Note that

[X, [X, [X,Y ]q ]q−1 ] = X3Y − [3]qX2YX + [3]qXYX2 − YX3.

Definition 3.1. (See [3, Section 2], [35, Definition 3.9].) Define the algebra Oq by generators 
W0, W1 and relations

[W0, [W0, [W0,W1]q ]q−1 ] = (q2 − q−2)2[W1,W0], (4)

[W1, [W1, [W1,W0]q ]q−1 ] = (q2 − q−2)2[W0,W1]. (5)

We call Oq the q-Onsager algebra. The relations (4), (5) are called the q-Dolan/Grady relations.

Remark 3.2. In [15] Baseilhac and Kolb define the q-Onsager algebra in a slightly more gen-
eral way that involves two scalar parameters c, q . Our Oq is their q-Onsager algebra with 
c = q−1(q − q−1)2.

Remark 3.3. We clarify how to recover the Onsager algebra O from Oq by taking a limit q �→ 1. 
To keep things simple, assume that F = C. In (4), (5) make a change of variables W0 = ξA0 and 
W1 = ξA1 with ξ = √−1(q − q−1)/2. Simplify and set q = 1 to obtain

[A0, [A0, [A0,A1]]] = 16[A0,A1], [A1, [A1, [A1,A0]]] = 16[A1,A0].
These are the Dolan/Grady relations and the defining relations for O [9, Section 2.1].

In [15], Baseilhac and Kolb obtain a PBW basis for Oq that involves some elements

{Bnδ+α0}∞n=0, {Bnδ+α1}∞n=0, {Bnδ}∞n=1. (6)

These elements are recursively defined as follows. Writing Bδ = q−2W1W0 − W0W1 we have
4
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Bα0 = W0, Bδ+α0 = W1 + q[Bδ,W0]
(q − q−1)(q2 − q−2)

, (7)

Bnδ+α0 = B(n−2)δ+α0 + q[Bδ,B(n−1)δ+α0 ]
(q − q−1)(q2 − q−2)

n ≥ 2 (8)

and

Bα1 = W1, Bδ+α1 = W0 − q[Bδ,W1]
(q − q−1)(q2 − q−2)

, (9)

Bnδ+α1 = B(n−2)δ+α1 − q[Bδ,B(n−1)δ+α1 ]
(q − q−1)(q2 − q−2)

n ≥ 2. (10)

Moreover for n ≥ 2,

Bnδ = q−2B(n−1)δ+α1W0 − W0B(n−1)δ+α1 + (q−2 − 1)

n−2∑
	=0

B	δ+α1B(n−	−2)δ+α1 . (11)

By [15, Proposition 5.12] the elements {Bnδ}∞n=1 mutually commute.

Lemma 3.4. (See [15, Theorem 4.5].) Assume that q is transcendental over F . Then a PBW basis 
for Oq is obtained by the elements (6) in any linear order.

Remark 3.5. With reference to Remark 3.3, we give the limiting values of the elements (6). In 
(7)–(11) and the expression for Bδ below (6), make a change of variables

Bnδ+α0 = ξA−n, Bnδ+α1 = ξAn+1, Bmδ = 4ξ2Bm

for n ≥ 0 and m ≥ 1. Simplify and set q = 1 to obtain

[B1,An] = 2An+1 − 2An−1, [Am,A0] = 4Bm

for n ∈ Z and m ≥ 1. The elements {An}n∈Z, {Bn}∞n=1 form the basis for O given in [9, Defini-
tion 2.1].

Definition 3.6. We define a generating function in the indeterminate t :

B(t) =
∑
n∈N

Bnδt
n, B0δ = q−2 − 1. (12)

In Section 6 we will make a conjecture about B(t). In Sections 4, 5 we motivate the conjecture 
with some comments about generating functions.

4. Generating functions over a commutative algebra

Throughout this section the following notational conventions are in effect. We fix a commu-
tative algebra A. Every generating function mentioned is over A.

The following results are readily checked.

Lemma 4.1. A generating function a(t) = ∑
n∈N ant

n is invertible if and only if a0 is invertible 
in A. In this case (a(t))−1 = ∑

n∈N bnt
n where b0 = a−1

0 and for n ≥ 1,

bn = −a−1
0

n∑
akbn−k.
k=1

5
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Lemma 4.2. For generating functions a(t) = ∑
n∈N ant

n and b(t) = ∑
n∈N bnt

n the following 
are equivalent:

(i) a(t) = b(qt)b(q−1t);
(ii) an = ∑n

i=0 bibn−iq
2i−n for n ∈N .

Lemma 4.3. For a normalized generating function a(t) = ∑
n∈N ant

n, there exists a unique 
normalized generating function b(t) = ∑

n∈N bnt
n such that

a(t) = b(qt)b(q−1t).

Moreover for n ≥ 1,

bn = an − ∑n−1
i=1 bibn−iq

2i−n

qn + q−n
.

Definition 4.4. Referring to Lemma 4.3, we call b(t) the q-square root of a(t).

Lemma 4.5. For generating functions a(t) = ∑
n∈N ant

n and b(t) = ∑
n∈N bnt

n the following 
are equivalent:

(i) a(t) = b
( q+q−1

t+t−1

)
;

(ii) a0 = b0 and for n ≥ 1,

an =
�(n−1)/2
∑

	=0

(−1)	
(

n − 1 − 	

	

)
[2]n−2	

q bn−2	. (13)

Proof. Note that for k ∈N ,

(1 − t)−k−1 =
∑
	∈N

(
k + 	

	

)
t	. (14)

We have

b

(
q + q−1

t + t−1

)
=

∑
n∈N

(
q + q−1

t + t−1

)n

bn = b0 +
∑
k∈N

(
q + q−1

t + t−1

)k+1

bk+1.

We have

q + q−1

t + t−1 = [2]q t (1 + t2)−1.

By this and (14) we find that for k ∈N ,(
q + q−1

t + t−1

)k+1

= [2]k+1
q tk+1

∑
	∈N

(−1)	
(

k + 	

	

)
t2	.

By these comments
6
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b

(
q + q−1

t + t−1

)
= b0 +

∑
k,	∈N

(−1)	
(

k + 	

	

)
[2]k+1

q bk+1t
k+1+2	

= b0 +
∞∑

n=1

�(n−1)/2
∑
	=0

(−1)	
(

n − 1 − 	

	

)
[2]n−2	

q bn−2	t
n.

The result follows. �
Lemma 4.6. For a generating function a(t) = ∑

n∈N ant
n, there exists a unique generating func-

tion b(t) = ∑
n∈N bnt

n such that

a(t) = b

(
q + q−1

t + t−1

)
. (15)

Moreover b0 = a0 and for n ≥ 1,

bn = an − ∑�(n−1)/2

	=1 (−1)	

(
n−1−	

	

)[2]n−2	
q bn−2	

[2]nq
.

Proof. This is a routine consequence of Lemma 4.5. �
Definition 4.7. Referring to Lemma 4.6, we call b(t) the q-symmetrization of a(t).

We now combine the above constructions.

Proposition 4.8. Let a(t) = ∑
n∈N ant

n denote a normalized generating function. Then for a 
generating function b(t) = ∑

n∈N bnt
n the following are equivalent:

(i) b(t) is the q-symmetrization of the q-square root of the inverse of a(t);
(ii) b(t) is normalized and

a(t)b

(
q + q−1

qt + q−1t−1

)
b

(
q + q−1

q−1t + qt−1

)
= 1; (16)

(iii) b(t) is normalized and

a(qt)b

(
q + q−1

q2t + q−2t−1

)
= a(q−1t)b

(
q + q−1

q−2t + q2t−1

)
; (17)

(iv) b0 = 1 and for n ≥ 1,

0 = [n]qan +
∑

j+k+2	+1=n,
j,k,	≥0

(−1)	
(

k + 	

	

)
[2n − j ]q [2]k+1

q ajbk+1. (18)

Proof. (i) ⇒ (ii) Let a1(t) denote the inverse of a(t), and let a2(t) denote the q-square root 
of a1(t). By assumption b(t) is the q-symmetrization of a2(t). The generating function a(t) is 
normalized, so a1(t) is normalized by Lemma 4.1. Now a2(t) is normalized by Lemma 4.3 and 
Definition 4.4. Now b(t) is normalized by Lemma 4.6 and Definition 4.7. By construction
7
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a(t)a1(t) = 1, a1(t) = a2(qt)a2(q
−1t), a2(t) = b

(
q + q−1

t + t−1

)
.

Combining these equations we obtain (16).
(ii) ⇒ (iii) In the equation (16), replace t by qt and also by q−1t . Compare the two resulting 
equations to obtain (17).
(iii) ⇒ (iv) Write each side of (17) as a power series in t , and compare coefficients.
(iv) ⇒ (i) By assumption, the generating function b(t) is normalized and satisfies (18). Let b′(t)
denote the q-symmetrization of the q-square root of the inverse of a(t). From our earlier com-
ments, the generating function b′(t) is normalized and satisfies (18). The equations (18) admit a 
unique solution, so b(t) = b′(t). �
Definition 4.9. Referring to Proposition 4.8, we call b(t) the q-expansion of a(t) whenever the 
equivalent conditions (i)–(iv) are satisfied.

Lemma 4.10. Let a(t) = ∑
n∈N ant

n denote a normalized generating function. Let b(t) =∑
n∈N bnt

n denote the q-expansion of a(t). Then for n ≥ 1 the following hold:

(i) bn is a polynomial in a1, a2, . . . , an that has coefficients in F and total degree n, where 
we view ak as having degree k for 1 ≤ k ≤ n. In this polynomial the coefficient of an is 
−[n]q [2n]−1

q [2]−n
q .

(ii) an is a polynomial in b1, b2, . . . , bn that has coefficients in F and total degree n, where 
we view bk as having degree k for 1 ≤ k ≤ n. In this polynomial the coefficient of bn is 
−[n]−1

q [2n]q [2]nq .

Proof. (i) By (18) and induction on n.
(ii) By (i) above and induction on n. �
5. Generating functions over a noncommutative algebra

Throughout this section the following notational conventions are in effect. We fix an algebra 
B that is not necessarily commutative. Every generating function mentioned is over B.

Definition 5.1. A generating function a(t) = ∑
n∈N ant

n is said to be commutative whenever 
{an}n∈N mutually commute.

Lemma 5.2. For a commutative generating function a(t) = ∑
n∈N ant

n there exists a commuta-
tive subalgebra A of B that contains an for n ∈ N .

Proof. Take A to be the subalgebra of B generated by {an}n∈N . �
Referring to Lemma 5.2, we may view a(t) as a generating function over A.

Definition 5.3. Let a(t) = ∑
n∈N ant

n denote a generating function that is commutative and 
normalized. By the q-expansion of a(t) we mean the q-expansion of the generating function 
a(t) over A, where A is from Lemma 5.2. By (18) and Lemma 4.10, the q-expansion of a(t) is 
independent of the choice of A.
8
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6. Some elements in Oq

In the previous two sections we discussed generating functions. We now return our attention to 
the q-Onsager algebra Oq . Recall from Section 1 that in [7, Conjecture 2] Baseilhac and Belliard 
effectively conjecture that there exist elements

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N (19)

in Oq that satisfy the following relations. For k, 	 ∈N ,

[W0,Wk+1] = [W−k,W1] = (G̃k+1 − Gk+1)/(q + q−1), (20)

[W0,Gk+1]q = [G̃k+1,W0]q = ρW−k−1 − ρWk+1, (21)

[Gk+1,W1]q = [W1, G̃k+1]q = ρWk+2 − ρW−k, (22)

[W−k,W−	] = 0, [Wk+1,W	+1] = 0, (23)

[W−k,W	+1] + [Wk+1,W−	] = 0, (24)

[W−k,G	+1] + [Gk+1,W−	] = 0, (25)

[W−k, G̃	+1] + [G̃k+1,W−	] = 0, (26)

[Wk+1,G	+1] + [Gk+1,W	+1] = 0, (27)

[Wk+1, G̃	+1] + [G̃k+1,W	+1] = 0, (28)

[Gk+1,G	+1] = 0, [G̃k+1, G̃	+1] = 0, (29)

[G̃k+1,G	+1] + [Gk+1, G̃	+1] = 0. (30)

In the above equations ρ = −(q2 − q−2)2. For notational convenience define

G0 = −(q − q−1)[2]2
q, G̃0 = −(q − q−1)[2]2

q . (31)

Remark 6.1. Referring to Remark 3.3, we give the limiting values of the elements (19). In 
(20)–(30), make a change of variables

W−k = ξW ′−k, Wk+1 = ξW ′
k+1, Gk+1 = ξ2G′

k+1, G̃k+1 = ξ2G̃′
k+1

for k ∈ N . Simplify and set q = 1. Lines (20)–(22) become

[W ′
0,W

′
k+1] = [W ′−k,W

′
1] = (G̃′

k+1 − G′
k+1)/2, (32)

[W ′
0,G

′
k+1] = [G̃′

k+1,W
′
0] = 16W ′−k−1 − 16W ′

k+1, (33)

[G′
k+1,W

′
1] = [W ′

1, G̃
′
k+1] = 16W ′

k+2 − 16W ′−k (34)

and (23)–(30) remain essentially unchanged. In [9, Definition 4.1] and [9, Theorem 2], Baseilhac 
and Crampé display a basis {W ′−k}k∈N , {W ′

k+1}k∈N , {G̃′
k+1}k∈N for O that satisfies (23)–(34), 

where G′
k+1 = −G̃′

k+1 for k ∈N .

Returning to Oq , it is desirable to know how the elements (19) are related to the elements (6). 
In this paper we conjecture the precise relationship. We will state the conjecture shortly. Before 
stating the conjecture, we discuss what is involved. Let us simplify things by writing the elements 
(19) in terms of W0, W1, {G̃k+1}k∈N . To do this, we use (21), (22) to recursively obtain W−k , 
Wk+1 for k ≥ 1:
9
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W−1 = W1 − [G̃1,W0]q
(q2 − q−2)2 ,

W3 = W1 − [G̃1,W0]q
(q2 − q−2)2 − [W1, G̃2]q

(q2 − q−2)2 ,

W−3 = W1 − [G̃1,W0]q
(q2 − q−2)2 − [W1, G̃2]q

(q2 − q−2)2 − [G̃3,W0]q
(q2 − q−2)2 ,

W5 = W1 − [G̃1,W0]q
(q2 − q−2)2 − [W1, G̃2]q

(q2 − q−2)2 − [G̃3,W0]q
(q2 − q−2)2 − [W1, G̃4]q

(q2 − q−2)2 ,

W−5 = W1 − [G̃1,W0]q
(q2 − q−2)2 − [W1, G̃2]q

(q2 − q−2)2 − [G̃3,W0]q
(q2 − q−2)2 − [W1, G̃4]q

(q2 − q−2)2 − [G̃5,W0]q
(q2 − q−2)2 ,

· · ·

W2 = W0 − [W1, G̃1]q
(q2 − q−2)2 ,

W−2 = W0 − [W1, G̃1]q
(q2 − q−2)2 − [G̃2,W0]q

(q2 − q−2)2 ,

W4 = W0 − [W1, G̃1]q
(q2 − q−2)2 − [G̃2,W0]q

(q2 − q−2)2 − [W1, G̃3]q
(q2 − q−2)2 ,

W−4 = W0 − [W1, G̃1]q
(q2 − q−2)2 − [G̃2,W0]q

(q2 − q−2)2 − [W1, G̃3]q
(q2 − q−2)2 − [G̃4,W0]q

(q2 − q−2)2 ,

W6 = W0 − [W1, G̃1]q
(q2 − q−2)2 − [G̃2,W0]q

(q2 − q−2)2 − [W1, G̃3]q
(q2 − q−2)2 − [G̃4,W0]q

(q2 − q−2)2 − [W1, G̃5]q
(q2 − q−2)2 ,

· · ·
The recursion shows that for any integer k ≥ 1, the generators W−k , Wk+1 are given as follows. 
For odd k = 2r + 1,

W−k = W1 −
r∑

	=0

[G̃2	+1,W0]q
(q2 − q−2)2 −

r∑
	=1

[W1, G̃2	]q
(q2 − q−2)2 , (35)

Wk+1 = W0 −
r∑

	=0

[W1, G̃2	+1]q
(q2 − q−2)2 −

r∑
	=1

[G̃2	,W0]q
(q2 − q−2)2 . (36)

For even k = 2r ,

W−k = W0 −
r−1∑
	=0

[W1, G̃2	+1]q
(q2 − q−2)2 −

r∑
	=1

[G̃2	,W0]q
(q2 − q−2)2 , (37)

Wk+1 = W1 −
r−1∑
	=0

[G̃2	+1,W0]q
(q2 − q−2)2 −

r∑
	=1

[W1, G̃2	]q
(q2 − q−2)2 . (38)

Next we use (20) to obtain the generators {Gk+1}k∈N :

Gk+1 = G̃k+1 + (q + q−1)[W1,W−k] (k ∈N). (39)
10
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We have expressed the elements (19) in terms of W0, W1, {G̃k+1}k∈N . Next, we would like to 
know how the elements {G̃k+1}k∈N are related to the elements (6). We will discuss this relation-
ship using generating functions.

Recall the generating function B(t) from Definition 3.6. The generating function B(t) is com-
mutative by Definition 5.1 and the comment above Lemma 3.4. By (12) the generating function 
B(t) has constant term q−2 − 1 = −q−1(q − q−1), so by (3) we have

B(t)∨ = −q(q − q−1)−1B(t).

The generating function B(t)∨ is commutative and normalized, so we may speak of its q-
expansion as is Definition 5.3.

Conjecture 6.2. Define the elements

{W−k}k∈N , {Wk+1}k∈N , {Gk+1}k∈N , {G̃k+1}k∈N (40)

in Oq as follows:

(i) the generating function G̃(t)∨ is the q-expansion of B(t)∨, where G̃(t) = ∑
n∈N G̃nt

n and 
G̃0 is from (31);

(ii) the elements {W−k}k∈N , {Wk+1}k∈N satisfy (35)–(38);
(iii) the elements {Gk+1}k∈N satisfy (39).

Then the elements (40) satisfy (20)–(30).

We have some comments about the q-expansion of B(t)∨. We mentioned above that B(t) is 
commutative, so by Lemma 5.2 there exists a commutative subalgebra A of Oq that contains Bnδ

for n ∈N . So B(t) is over A. The q-expansion of B(t)∨ is over A, and described as follows. For 
the moment let G̃(t) = ∑

n∈N G̃nt
n denote any generating function over A such that G̃0 satisfies 

(31). By Proposition 4.8 and Definitions 4.9, 5.3 we find that

G̃(t)∨ is the q-expansion of B(t)∨

if and only if

B(t)G̃

(
q + q−1

qt + q−1t−1

)
G̃

(
q + q−1

q−1t + qt−1

)
= −q−1(q − q−1)3[2]4

q (41)

if and only if

B(qt)G̃

(
q + q−1

q2t + q−2t−1

)
= B(q−1t)G̃

(
q + q−1

q−2t + qt−2

)
(42)

if and only if for n ≥ 1,

0 = [n]qBnδG̃0 +
∑

j+k+2	+1=n,
j,k,	≥0

(−1)	
(

k + 	

	

)
[2n − j ]q [2]k+1

q BjδG̃k+1. (43)

In Appendix A we display (43) in detail for 1 ≤ n ≤ 8.
11



P. Terwilliger Nuclear Physics B 966 (2021) 115391
7. Supporting evidence for Conjecture 6.2

In this section we give some supporting evidence for Conjecture 6.2.
Our first type of evidence is from checking via computer. The algebra Oq has been imple-

mented in the computer package SageMath (see [32]) by Travis Scimshaw. Using this package 
Scrimshaw defined the elements (40) for 0 ≤ k ≤ 5 using (43) along with (35)–(38) and (39). He 
then had SageMath verify the relations among (20)–(30) that involved these defined elements.

Our next type of evidence concerns the analog of Conjecture 6.2 for the Onsager algebra O. 
Consider the equation (41). In that equation we compute the limit q �→ 1 in two steps: (i) make a 
change of variables as before; (ii) simplify the result and set q = 1.
Step (i): We express our generating functions as

B(t) = q−2 − 1 + 4ξ2B(t), B(t) =
∞∑

n=1

Bnt
n, (44)

G̃(t) = −(q − q−1)[2]2
q + ξ2G̃′(t), G̃′(t) =

∞∑
n=1

G̃′
nt

n. (45)

Evaluating (41) using (44), (45) and ξ2 = −(q − q−1)2/4 we obtain(
q−2 − 1 − (q − q−1)2B(t)

)(
−(q − q−1)[2]2

q − (q − q−1)2

4
G̃′

(
q + q−1

qt + q−1t−1

))

×
(

−(q − q−1)[2]2
q − (q − q−1)2

4
G̃′

(
q + q−1

q−1t + qt−1

))
= −q−1(q − q−1)3[2]4

q .

Step (ii): For the above equation, let D denote the left-hand side minus the right-hand side. After 
expanding D and doing some cancellation, we find that D is equal to −(q − q−1)4[2]2

q/2 times

2[2]2
qB(t) + 1

2q
G̃′

(
q + q−1

qt + q−1t−1

)
+ 1

2q
G̃′

(
q + q−1

q−1t + qt−1

)
(46)

plus (q − q−1)5 times some additional terms. Dividing D by (q − q−1)4 and then setting q = 1, 
we find that (41) becomes

8B(t) + G̃′
(

2

t + t−1

)
= 0. (47)

Equation (47) matches the equation on the right in [9, Line (4.8)]. By that citation the equation 
(47) is satisfied by the basis for O described in Remark 6.1. We have verified the analog of 
Conjecture 6.2 that applies to O.

Our next type of evidence has to do with the universal Askey-Wilson algebra �q [36, Defi-
nition 1.2]. This algebra is defined by generators and relations. The generators are A, B, C. The 
relations assert that each of the following is central in �q :

A + qBC − q−1CB

q2 − q−2 , B + qCA − q−1AC

q2 − q−2 , C + qAB − q−1BA

q2 − q−2 .

For the above three central elements, multiply each by q + q−1 to get α, β , γ . Thus
12
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A + qBC − q−1CB

q2 − q−2 = α

q + q−1 , (48)

B + qCA − q−1AC

q2 − q−2 = β

q + q−1 , (49)

C + qAB − q−1BA

q2 − q−2 = γ

q + q−1 . (50)

Each of α, β , γ is central in �q . By [36, Corollary 8.3] the center of �q is generated by α, β, γ, �
where

� = qABC + q2A2 + q−2B2 + q2C2 − qAα − q−1Bβ − qCγ. (51)

The element � is called the Casimir element. By [36, Theorem 8.2] the elements α, β, γ, � are 
algebraically independent. We write F[α, β, γ, �] for the center of �q .

Next we summarize from [36, Section 3] how the modular group PSL2(Z) acts on �q as a 
group of automorphisms. By [1] the group PSL2(Z) has a presentation by generators 
, σ and 
relations 
3 = 1, σ 2 = 1. By [36, Theorems 3.1, 6.4] the group PSL2(Z) acts on �q as a group 
of automorphisms in the following way:

u A B C α β γ �


(u) B C A β γ α �

σ(u) B A C + [A,B]
q−q−1 β α γ �

For notational convenience define

C′ = C + [A,B]
q − q−1 . (52)

Applying σ to (48)–(50) and using the above table, we obtain

B + qAC′ − q−1C′A
q2 − q−2 = β

q + q−1 , (53)

A + qC′B − q−1BC′

q2 − q−2 = α

q + q−1 , (54)

C′ + qBA − q−1AB

q2 − q−2 = γ

q + q−1 . (55)

Next we explain how �q is related to Oq . By [36, Theorem 2.2] the algebra �q has a presentation 
by generators A, B, γ and relations

A3B − [3]qA2BA + [3]qABA2 − BA3 = (q2 − q−2)2(BA − AB), (56)

B3A − [3]qB2AB + [3]qBAB2 − AB3 = (q2 − q−2)2(AB − BA), (57)

A2B2 − B2A2 + (q2 + q−2)(BABA − ABAB) = (q − q−1)2(BA − AB)γ, (58)

γA = Aγ, γB = Bγ. (59)

The relations (56), (57) are the q-Dolan/Grady relations. Consequently there exists an algebra 
homomorphism � : Oq → �q that sends W0 �→ A and W1 �→ B . This homomorphism is not 
injective by [36, Theorem 10.9].

For the elements (6) and (40) we retain the same notation for their images under �. We will 
show that for �q the elements (40) satisfy the relations (20)–(30).
13
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For the algebra �q define

�(t) = B(t) + 1 − q−2, (60)

where B(t) is from Definition 3.6. By (12) we have �(t) = ∑∞
n=1 Bnδt

n. By [38, Corollary 5.7]
the elements {Bnδ}∞n=1 are contained in the subalgebra of �q generated by F[α, β, γ, �] and C. 
Consequently the elements {Bnδ}∞n=1 commute with C, so �(t) commutes with C. By this and 
[38, Line (5.19)] we find that

�(t)
(
qt + q−1t−1 + C

)(
q−1t + qt−1 + C

)
(61)

is equal to 1 − q−2 times

� − (t + t−1)αβ

(t − t−1)2 − α2 + β2

(t − t−1)2 − (t + t−1)γ + (q + q−1)(t + t−1)C + C2.

Upon eliminating �(t) from (61) using (60), we find that

B(t)
(
qt + q−1t−1 + C

)(
q−1t + qt−1 + C

)
(62)

is equal to 1 − q−2 times

� − (t + t−1)αβ

(t − t−1)2 − α2 + β2

(t − t−1)2 − (t + t−1)γ − (qt + q−1t−1)(q−1t + qt−1).

Define

N(t) = B(t)

q−2 − 1

qt + q−1t−1 + C

qt + q−1t−1

q−1t + qt−1 + C

q−1t + qt−1 . (63)

By the above comments

N(t) = 1 + N1(t)� + N2(t)αβ + N3(t)(α
2 + β2) + N4(t)γ, (64)

where

N1(t) = −1

(qt + q−1t−1)(q−1t + qt−1)
, (65)

N2(t) = t + t−1

(t − t−1)2(qt + q−1t−1)(q−1t + qt−1)
, (66)

N3(t) = 1

(t − t−1)2(qt + q−1t−1)(q−1t + qt−1)
, (67)

N4(t) = t + t−1

(qt + q−1t−1)(q−1t + qt−1)
. (68)

Evaluating (65)–(68) using

1

qt + q−1t−1 =
∑
n∈N

(−1)nq2n+1t2n+1,

1

q−1t + qt−1 =
∑
n∈N

(−1)nq−2n−1t2n+1,

1

(t − t−1)2 =
∑
n∈N

nt2n
14
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we find that the functions N1(t), N2(t), N3(t), N4(t) are power series in t with zero constant 
term. By this and (64), we may view N(t) as a normalized generating function over F[α, β, γ, �].

Definition 7.1. Define a generating function Z(t) = ∑
n∈N Znt

n over F[α, β, γ, �] such that 
Z0 = q−2 − q2 and Z(t)∨ is the q-expansion of N(t).

The notation Z(t)∨ is explained in (3). The q-expansion concept is explained in Proposi-
tion 4.8 and Definition 4.9. By these explanations and Definition 7.1,

N(t)Z

(
q + q−1

qt + q−t t−1

)
Z

(
q + q−1

q−1t + qt−1

)
= (q2 − q−2)2. (69)

Proposition 7.2. For the algebra �q ,

G̃(t) = Z(t)(q + q−1 + tC). (70)

Proof. Define the generating function G̃(t) = Z(t)(q + q−1 + tC). We show that G̃(t) = G̃(t). 
Let A denote the subalgebra of �q generated by F[α, β, γ, �] and C. Note that A is commuta-
tive. By construction G̃(t) is over A. By our comments below (60), the generating function B(t)

is over A. By the discussion around (41), it suffices to show that

B(t)G̃
(

q + q−1

qt + q−1t−1

)
G̃
(

q + q−1

q−1t + qt−1

)
= −q−1(q − q−1)3[2]4

q . (71)

Using (63) and (69),

B(t)G̃
(

q + q−1

qt + q−1t−1

)
G̃
(

q + q−1

q−1t + qt−1

)
= [2]2

qB(t)Z

(
q + q−1

qt + q−1t−1

)
qt + q−1t−1 + C

qt + q−1t−1 Z

(
q + q−1

q−1t + qt−1

)
q−1t + qt−1 + C

q−1t + qt−1

= [2]2
q(q−2 − 1)N(t)Z

(
q + q−1

qt + q−1t−1

)
Z

(
q + q−1

q−1t + qt−1

)
= [2]2

q(q−2 − 1)(q2 − q−2)2

= −q−1(q − q−1)3[2]4
q .

We have shown (71), and the result follows. �
Define the generating functions

W−(t) =
∑
n∈N

W−nt
n, W+(t) =

∑
n∈N

Wn+1t
n.

By (35)–(38) we obtain

W+(t) = t[G̃(t),A]q + [B, G̃(t)]q
(t2 − 1)(q2 − q−2)2 , (72)

W−(t) = [G̃(t),A]q + t[B, G̃(t)]q
2 2 −2 2 . (73)
(t − 1)(q − q )

15
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Lemma 7.3. For the algebra �q ,

W+(t) = Z(t)
(q − q−1)(α + βt) − (q2 − q−2)(t − t−1)B

(q2 − q−2)2(t − t−1)
, (74)

W−(t) = Z(t)
(q − q−1)(αt + β) − (q2 − q−2)(t − t−1)A

(q2 − q−2)2(t − t−1)
. (75)

Proof. To obtain (74), eliminate G̃(t) from (72) using (70), and evaluate the result using (48), 
(49). Equation (75) is similarly obtained. �

Define the generating function

G(t) =
∑
n∈N

Gnt
n.

Using (39) we obtain

G(t) = G̃(t) + t (q + q−1)[B,W−(t)]. (76)

Lemma 7.4. For the algebra �q we have

G(t) = Z(t)(q + q−1 + tC′), (77)

where C′ is from (52).

Proof. Eliminate G̃(t) from (76) using (70). Eliminate W−(t) from (76) using (75), and evaluate 
the result using (52). �

Let s denote an indeterminate that commutes with t .

Lemma 7.5. For the algebra �q we have

[A,W+(t)] = [W−(t),B] = t−1(G̃(t) − G(t))/(q + q−1),

[A,G(t)]q = [G̃(t),A]q = ρW−(t) − ρtW+(t),

[G(t),B]q = [B, G̃(t)]q = ρW+(t) − ρtW−(t),

[W−(s),W−(t)] = 0, [W+(s),W+(t)] = 0,

[W−(s),W+(t)] + [W+(s),W−(t)] = 0,

s[W−(s),G(t)] + t[G(s),W−(t)] = 0,

s[W−(s), G̃(t)] + t[G̃(s),W−(t)] = 0,

s[W+(s),G(t)] + t[G(s),W+(t)] = 0,

s[W+(s), G̃(t)] + t[G̃(s),W+(t)] = 0,

[G(s),G(t)] = 0, [G̃(s), G̃(t)] = 0,

[G̃(s),G(t)] + [G(s), G̃(t)] = 0,

where ρ = −(q2 − q−2)2.
16
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Proof. These relations are routinely verified using Proposition 7.2 and Lemmas 7.3, 7.4 along 
with (48), (49), (53), (54). �
Theorem 7.6. In the algebra �q the elements (40) satisfy the relations (20)–(30).

Proof. This is a routine consequence of Lemma 7.5. �
8. Comments

In the previous section we gave some supporting evidence for Conjecture 6.2. In this section 
we assume that Conjecture 6.2 is correct, and provide more information about how the elements 
(40) are related to the elements (6). We will give a variation on (35)–(38).

Using Appendix A and Bδ = q−2W1W0 − W0W1 we obtain

G̃1 = −qBδ = [W0,W1]q . (78)

Lemma 8.1. For k ∈N ,

(i) [G̃k+1, W0]q = (q − q−1)W0G̃k+1 − q2[Bδ, W−k],
(ii) [W1, G̃k+1]q = (q − q−1)W1G̃k+1 + [Bδ, Wk+1].

Proof. (i) Observe that

[G̃k+1,W0]q = (q − q−1)W0G̃k+1 + q[G̃k+1,W0].
By (26) and (78),

[G̃k+1,W0] = [G̃1,W−k] = −q[Bδ,W−k].
The result follows.
(ii) Observe that

[W1, G̃k+1]q = (q − q−1)W1G̃k+1 − q−1[G̃k+1,W1].
By (28) and (78),

[G̃k+1,W1] = [G̃1,Wk+1] = −q[Bδ,Wk+1].
The result follows. �
Lemma 8.2. For n ≥ 1,

W−n = Wn − (q − q−1)W0G̃n

(q2 − q−2)2 + q2[Bδ,W1−n]
(q2 − q−2)2 , (79)

Wn+1 = W1−n − (q − q−1)W1G̃n

(q2 − q−2)2 − [Bδ,Wn]
(q2 − q−2)2 . (80)

Proof. Use the equations on the right in (21), (22) along with Lemma 8.1. �

17
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We recall some notation from [15]. For a negative integer k define

Bkδ+α0 = B(−k−1)δ+α1 , Bkδ+α1 = B(−k−1)δ+α0 .

We have

Brδ+α0 = Bsδ+α1 (r, s ∈Z, r + s = −1). (81)

Lemma 8.3. For n ∈Z,

q[Bδ,Bnδ+α0 ]
(q − q−1)(q2 − q−2)

= B(n+1)δ+α0 − B(n−1)δ+α0 , (82)

q[Bδ,Bnδ+α1 ]
(q − q−1)(q2 − q−2)

= B(n−1)δ+α1 − B(n+1)δ+α1 . (83)

Proof. Use (7)–(10) and (81). �
Proposition 8.4. For n ∈N the following hold in Oq :

W−n = −(q − q−1)−1
n∑

k=0

k∑
	=0

(
k

	

)
qk−2	[2]−k−2

q B(k−2	)δ+α0G̃n−k, (84)

Wn+1 = −(q − q−1)−1
n∑

k=0

k∑
	=0

(
k

	

)
q2	−k[2]−k−2

q B(k−2	)δ+α1G̃n−k. (85)

Proof. We use induction on n. First assume that n = 0. Then (84), (85) hold. Next assume that 
n ≥ 1. To obtain (84), evaluate the right-hand side of (79) using induction along with (81), (82). 
To obtain (85), evaluate the right-hand side of (80) using induction along with (81), (83). �

In Appendix B we display (84), (85) in detail for 0 ≤ n ≤ 7.
Referring to (84) and (85), if we express each term G̃n−k as a polynomial in Bδ, B2δ, . . . ,

B(n−k)δ using (43), then we effectively write W−n and Wn+1 in the PBW basis for Oq given in 
Lemma 3.4. Unfortunately the resulting formula are not pleasant.
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Appendix A

For the q-Onsager algebra Oq we use (43) to obtain G̃1, G̃2, . . . , G̃8 in terms of Bδ, B2δ, . . . ,
B8δ .

Recall that

B0δ = q−2 − 1, G̃0 = −(q − q−1)[2]2
q .

G̃1 satisfies

0 =
[2]qB0δ [1]qB1δ

G̃0 0 1
[2]qG̃1 1 0

G̃2 satisfies

0 =
[4]qB0δ [3]qB1δ [2]qB2δ

G̃0 0 0 1
[2]qG̃1 0 1 0
[2]2

qG̃2 1 0 0

G̃3 satisfies

0 =

[6]qB0δ [5]qB1δ [4]qB2δ [3]qB3δ

G̃0 0 0 0 1

[2]qG̃1 −1 0 1 0

[2]2
qG̃2 0 1 0 0

[2]3
qG̃3 1 0 0 0

G̃4 satisfies

0 =

[8]qB0δ [7]qB1δ [6]qB2δ [5]qB3δ [4]qB4δ

G̃0 0 0 0 0 1

[2]qG̃1 0 −1 0 1 0

[2]2
qG̃2 −2 0 1 0 0

[2]3
qG̃3 0 1 0 0 0

[2]4
qG̃4 1 0 0 0 0

G̃5 satisfies

0 =

[10]qB0δ [9]qB1δ [8]qB2δ [7]qB3δ [6]qB4δ [5]qB5δ

G̃0 0 0 0 0 0 1

[2]qG̃1 1 0 −1 0 1 0

[2]2
qG̃2 0 −2 0 1 0 0

[2]3
qG̃3 −3 0 1 0 0 0

[2]4
qG̃4 0 1 0 0 0 0

[2]5G̃ 1 0 0 0 0 0
q 5
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G̃6 satisfies

0 =

[12]qB0δ [11]qB1δ [10]qB2δ [9]qB3δ [8]qB4δ [7]qB5δ [6]qB6δ

G̃0 0 0 0 0 0 0 1

[2]qG̃1 0 1 0 −1 0 1 0

[2]2
qG̃2 3 0 −2 0 1 0 0

[2]3
qG̃3 0 −3 0 1 0 0 0

[2]4
qG̃4 −4 0 1 0 0 0 0

[2]5
qG̃5 0 1 0 0 0 0 0

[2]6
qG̃6 1 0 0 0 0 0 0

G̃7 satisfies

0 =

[14]qB0δ [13]qB1δ [12]qB2δ [11]qB3δ [10]qB4δ [9]qB5δ [8]qB6δ [7]qB7δ

G̃0 0 0 0 0 0 0 0 1

[2]qG̃1 −1 0 1 0 −1 0 1 0

[2]2
qG̃2 0 3 0 −2 0 1 0 0

[2]3
qG̃3 6 0 −3 0 1 0 0 0

[2]4
qG̃4 0 −4 0 1 0 0 0 0

[2]5
qG̃5 −5 0 1 0 0 0 0 0

[2]6
qG̃6 0 1 0 0 0 0 0 0

[2]7
qG̃7 1 0 0 0 0 0 0 0

G̃8 satisfies 0 =
[16]qB0δ [15]qB1δ [14]qB2δ [13]qB3δ [12]qB4δ [11]qB5δ [10]qB6δ [9]qB7δ [8]qB8δ

G̃0 0 0 0 0 0 0 0 0 1

[2]qG̃1 0 −1 0 1 0 −1 0 1 0

[2]2
qG̃2 −4 0 3 0 −2 0 1 0 0

[2]3
qG̃3 0 6 0 −3 0 1 0 0 0

[2]4
qG̃4 10 0 −4 0 1 0 0 0 0

[2]5
qG̃5 0 −5 0 1 0 0 0 0 0

[2]6
qG̃6 −6 0 1 0 0 0 0 0 0

[2]7
qG̃7 0 1 0 0 0 0 0 0 0

[2]8
qG̃8 1 0 0 0 0 0 0 0 0

Appendix B

For the q-Onsager algebra Oq we use (84), (85) to obtain {W−n}7
n=0 and {Wn+1}7

n=0 in terms 
of {Bnδ+α0}7

n=0, {Bnδ+α1}7
n=0, {G̃n}7

n=0. Recall that G̃0 = −(q − q−1)[2]2
q .

We have

W0 = Bα0 = −(q − q−1)−1[2]−2
q Bα0G̃0.

W−1 is equal to −(q − q−1)−1[2]−3 times
q
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G̃0 [2]qG̃1

q−1Bα1 1 0
Bα0 0 1

qBδ+α0 1 0

W−2 is equal to −(q − q−1)−1[2]−4
q times

G̃0 [2]qG̃1 [2]2
qG̃2

q−2Bδ+α1 1 0 0
q−1Bα1 0 1 0

Bα0 2 0 1
qBδ+α0 0 1 0

q2B2δ+α0 1 0 0

W−3 is equal to −(q − q−1)−1[2]−5
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3

q−3B2δ+α1 1 0 0 0
q−2Bδ+α1 0 1 0 0
q−1Bα1 3 0 1 0

Bα0 0 2 0 1
qBδ+α0 3 0 1 0

q2B2δ+α0 0 1 0 0
q3B3δ+α0 1 0 0 0

W−4 is equal to −(q − q−1)−1[2]−6
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4

q−4B3δ+α1 1 0 0 0 0
q−3B2δ+α1 0 1 0 0 0
q−2Bδ+α1 4 0 1 0 0
q−1Bα1 0 3 0 1 0

Bα0 6 0 2 0 1
qBδ+α0 0 3 0 1 0

q2B2δ+α0 4 0 1 0 0
q3B3δ+α0 0 1 0 0 0
q4B4δ+α0 1 0 0 0 0

W−5 is equal to −(q − q−1)−1[2]−7 times
q
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G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5

q−5B4δ+α1 1 0 0 0 0 0
q−4B3δ+α1 0 1 0 0 0 0
q−3B2δ+α1 5 0 1 0 0 0
q−2Bδ+α1 0 4 0 1 0 0
q−1Bα1 10 0 3 0 1 0

Bα0 0 6 0 2 0 1
qBδ+α0 10 0 3 0 1 0

q2B2δ+α0 0 4 0 1 0 0
q3B3δ+α0 5 0 1 0 0 0
q4B4δ+α0 0 1 0 0 0 0
q5B5δ+α0 1 0 0 0 0 0

W−6 is equal to −(q − q−1)−1[2]−8
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5 [2]6
qG̃6

q−6B5δ+α1 1 0 0 0 0 0 0
q−5B4δ+α1 0 1 0 0 0 0 0
q−4B3δ+α1 6 0 1 0 0 0 0
q−3B2δ+α1 0 5 0 1 0 0 0
q−2Bδ+α1 15 0 4 0 1 0 0
q−1Bα1 0 10 0 3 0 1 0

Bα0 20 0 6 0 2 0 1
qBδ+α0 0 10 0 3 0 1 0

q2B2δ+α0 15 0 4 0 1 0 0
q3B3δ+α0 0 5 0 1 0 0 0
q4B4δ+α0 6 0 1 0 0 0 0
q5B5δ+α0 0 1 0 0 0 0 0
q6B6δ+α0 1 0 0 0 0 0 0

W−7 is equal to −(q − q−1)−1[2]−9
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5 [2]6
qG̃6 [2]7

qG̃7

q−7B6δ+α1 1 0 0 0 0 0 0 0
q−6B5δ+α1 0 1 0 0 0 0 0 0
q−5B4δ+α1 7 0 1 0 0 0 0 0
q−4B3δ+α1 0 6 0 1 0 0 0 0
q−3B2δ+α1 21 0 5 0 1 0 0 0
q−2Bδ+α1 0 15 0 4 0 1 0 0
q−1Bα1 35 0 10 0 3 0 1 0

Bα0 0 20 0 6 0 2 0 1
qBδ+α0 35 0 10 0 3 0 1 0

q2B2δ+α0 0 15 0 4 0 1 0 0
q3B3δ+α0 21 0 5 0 1 0 0 0
q4B4δ+α0 0 6 0 1 0 0 0 0
q5B5δ+α0 7 0 1 0 0 0 0 0
q6B6δ+α0 0 1 0 0 0 0 0 0
q7B 1 0 0 0 0 0 0 0
7δ+α0
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W1 = Bα1 = −(q − q−1)−1[2]−2
q Bα1G̃0.

W2 is equal to −(q − q−1)−1[2]−3
q times

G̃0 [2]qG̃1

q−1Bδ+α1 1 0
Bα1 0 1
qBα0 1 0

W3 is equal to −(q − q−1)−1[2]−4
q times

G̃0 [2]qG̃1 [2]2
qG̃2

q−2B2δ+α1 1 0 0
q−1Bδ+α1 0 1 0

Bα1 2 0 1
qBα0 0 1 0

q2Bδ+α0 1 0 0

W4 is equal to −(q − q−1)−1[2]−5
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3

q−3B3δ+α1 1 0 0 0
q−2B2δ+α1 0 1 0 0
q−1Bδ+α1 3 0 1 0

Bα1 0 2 0 1
qBα0 3 0 1 0

q2Bδ+α0 0 1 0 0
q3B2δ+α0 1 0 0 0

W5 is equal to −(q − q−1)−1[2]−6
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4

q−4B4δ+α1 1 0 0 0 0
q−3B3δ+α1 0 1 0 0 0
q−2B2δ+α1 4 0 1 0 0
q−1Bδ+α1 0 3 0 1 0

Bα1 6 0 2 0 1
qBα0 0 3 0 1 0

q2Bδ+α0 4 0 1 0 0
q3B2δ+α0 0 1 0 0 0
q4B3δ+α0 1 0 0 0 0

W6 is equal to −(q − q−1)−1[2]−7 times
q
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G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5

q−5B5δ+α1 1 0 0 0 0 0
q−4B4δ+α1 0 1 0 0 0 0
q−3B3δ+α1 5 0 1 0 0 0
q−2B2δ+α1 0 4 0 1 0 0
q−1Bδ+α1 10 0 3 0 1 0

Bα1 0 6 0 2 0 1
qBα0 10 0 3 0 1 0

q2Bδ+α0 0 4 0 1 0 0
q3B2δ+α0 5 0 1 0 0 0
q4B3δ+α0 0 1 0 0 0 0
q5B4δ+α0 1 0 0 0 0 0

W7 is equal to −(q − q−1)−1[2]−8
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5 [2]6
qG̃6

q−6B6δ+α1 1 0 0 0 0 0 0
q−5B5δ+α1 0 1 0 0 0 0 0
q−4B4δ+α1 6 0 1 0 0 0 0
q−3B3δ+α1 0 5 0 1 0 0 0
q−2B2δ+α1 15 0 4 0 1 0 0
q−1Bδ+α1 0 10 0 3 0 1 0

Bα1 20 0 6 0 2 0 1
qBα0 0 10 0 3 0 1 0

q2Bδ+α0 15 0 4 0 1 0 0
q3B2δ+α0 0 5 0 1 0 0 0
q4B3δ+α0 6 0 1 0 0 0 0
q5B4δ+α0 0 1 0 0 0 0 0
q6B5δ+α0 1 0 0 0 0 0 0

W8 is equal to −(q − q−1)−1[2]−9
q times

G̃0 [2]qG̃1 [2]2
qG̃2 [2]3

qG̃3 [2]4
qG̃4 [2]5

qG̃5 [2]6
qG̃6 [2]7

qG̃7

q−7B7δ+α1 1 0 0 0 0 0 0 0
q−6B6δ+α1 0 1 0 0 0 0 0 0
q−5B5δ+α1 7 0 1 0 0 0 0 0
q−4B4δ+α1 0 6 0 1 0 0 0 0
q−3B3δ+α1 21 0 5 0 1 0 0 0
q−2B2δ+α1 0 15 0 4 0 1 0 0
q−1Bδ+α1 35 0 10 0 3 0 1 0

Bα1 0 20 0 6 0 2 0 1
qBα0 35 0 10 0 3 0 1 0

q2Bδ+α0 0 15 0 4 0 1 0 0
q3B2δ+α0 21 0 5 0 1 0 0 0
q4B3δ+α0 0 6 0 1 0 0 0 0
q5B4δ+α0 7 0 1 0 0 0 0 0
q6B5δ+α0 0 1 0 0 0 0 0 0
q7B 1 0 0 0 0 0 0 0
6δ+α0
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