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1s INTRODUCTION

Cooperative effects of a system of atoms interacting with
common coherent filelds and with the vacuum of radiation 1s a sub-
Ject of continuing interest in the last years since Dicke first
introduced the collective superradiance[1j +« The process of su-
perradiance and superfluorescence has received much theoretical
and experimental attention[2-6 and refs. therein_] ; however,
the superradiance in the frame of the Dicke model has been expe-
rimentally observed in the microwave range with using the Ryd-
berg atom5[7jand in the radiowave range with using the system
of nuclear magnetic moments|8 ] .

In the last years, an extention of the Dicke model 1s widely
used to study collective resonance fluorescence[9-11] « Collective
Raman scattering D2,13] and collective double optical resonance
f4,15] . In the works[14,15] the influence of the black-body radi-
ation has been neglected. The effects of thermal fields are negli-
glble for optical transitions even at normal temperature., How-
ever, when atoms are the Rydberg atoms and their transitions are
the microwave transitions (where the Dicke model 1s justified)
the effects of the thermal field become important at very low
temperature (T ~ 4°K), In this work we consider the influence
of the thermal field on the spectral and statistical properties
of the fluorescence field from collective double resonant proces-

8e8.

II. BASIC MASTER EQUATION

The N three-level atoms (Fig.1), concentrated in a region

small compared to the wavelength of all the relevant radiation
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modes, intersct with two resonant clessicel driving fields and
with a thermel reservoir. In the boson representation of atoms[14]
when each atomic level 1s compared with a boson veriable, the
master equation for the reduced atomic density operator £ in
the frame of rotaeting wave and Markovien epproximetion takes the

following form (in interaction picture)[16J :

. @
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where %4 and zz are radiative spontaneous transition rates
for transitions 4> J4> and 13> = 12> , respectivelys;
'S V2
L= (12, + 9, ) and fgd: -(2_‘/_0_1 where 1, and fl-4 are
the Rabl frequencies for the upper and lower atomic transitions

respectively; J}J = C}‘C; (¢ ,J = 1-3) where C, and C}’

satisfy the boson commutation relation
+*

e, 3 = J".J_

and can be treated as annihilation and creation operators for

the atoms populated on the level J¢ 5

(«w,)= [expiw, /erd-4]3 -t )
(W, )= [ exprev,, /x7)- 1177
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are the mean photon numbers in the broad-band thermal field
provided by the reservoilr at the atomlc frequencles and @)

<1 32
respectively.

After performing the canonical (dressing) transformation

1
C1:-éCOJJQ'-JInJG 4 Casel Qg ,
(4)
L4 I + =z 3 }]
-4 og; Co 4 "
Cb = L.‘nﬂdaq + S ot Ql + —‘ ' od QB ,

the Liogyville operator L. appeering in equation (1) splits into
the slowly varying part and terms oscillating at frequency
nan {(7m = 1-4). In the case of intense external fields so

that

n o> WY N7, : (5)

the secular approximation is justified[9,14l and master equation

(1) reduces to

3§ = -4 [CR,FI- A(RF.RIR 14.C)
6 - FR -R £ H.c.
- A (qu 155’ R’s Rsff R34fR13 ﬁf_afﬁ;»f" )
] $-R R - ¢ H € (6)
'x1(thR24f*RJzR45y ,34”?42 @‘Bfka,z* )

where §’= upyg u” , U 1is the unitary operator representing the

canonical transformation (4)
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Ry = Ryy - Ryq ) (190)
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..z @’a. (¢ , 4 = 1-3) are the collective
[¥] ¢ J

operators of the dressed atoms, Since the transformation (4) is

canonical the operators &, and Q; satigfy the boson commu-~

tation relation
+
a,, dj J = é}j
50 that
R.. R... = R. S, - R . .
[ ‘J ’ “J,J "J’ "J‘ ‘.;J.é:j,
The exact stationary solution of equation (6) takes the form

- IR :
£ =2 2 X" e mMm>S<M,p) Y (1)
P=o M=o
where
— . l -
- 2— X“ n, Sin"d 4+ 3'32(%‘-'4)605‘:,1- )
5 Yy (7, 140807 4 ¥, 7 cos®e
(12)
Nt R N+4
. et X T oy x My
) (x-1)2 ' (13)

The state | P, M > is an eigenstate of the operators K= l?”-' R55
(with an eigenvalue P ), KM (with an eigenvalue M ) and
ﬁ - Rﬂ 4 R‘u. 4 R53 (with an eigenvalue N ).
The stationary density matrix (11) of the atomic system is
dependent on the mean photon numbers 5% and 5; of the thermal
field. Consequently, all the stationary expectation values of the

atomic observables are dependent on the thermal reservoir. Only

in the special case of J;zm'o?:%sfﬁ:( the density matrix (11)

is independent of the thermal field. By using the density matrix
(11) one can calculate all the stationary expectation values of

the atomic observables. Some of the results that will be needed for

our further consideration are given in Appendix.

III. STEADY-STATE FLUORESCENCE SPECTRUM

In this section we investigate the spectral properties of

the fluorescence field. We assume that | W, - “3{ ] > n

then, the steady-state spectra of fluorescence fields correspond-
ing to the lower |2>-» 11> and upper /3>- /2> atomic transitions
are clearly separated and can be calculated as the Fourier trans-

forms of the atomic correlation functions

- Lm <JT (G1TIT (L)D (14)
) =
<T AT 3 DML 12
J,, (T)J = &1}\. < J (£4TYT _(t) D (15)
< 32 43?3 ¢ > o 32 23 ’
where {-'++> denotes an expectation value over the steady-state
s

(11). Pirst, let us consider the fluorescence spectrum according
to the lower stomic transition JLY - 114 > .

By using the master equation (6) one can derive the equation
for a mean value of the atomic operator Q

d ¢qy = -cn<[a, R I> +
dt

+ AJ<[R,QIR, >+ <R [Q,RT >

+ <L K},I‘QJ Rda >+ < 634 [a, R,,J >
4 (L'R,,,GJR3,> + <Ryl a, R)13>f +

e Xy S IR, QIR D>+ <R TG, BT S
p Ry G1R, >+ <Ry [Q R 215 {

+ X, 5 S [ Ry QIR > v <Ry [G Ry ] > (16)

1< IRy, QIR >+ SRy [G Ry IS

In particular, the equation of motion for <,%)'(t)> cen be

derived from eq.(16) in following form:

i‘ <R >z - X <R5(t>>+}{<§N-Nf’/§f”f()ﬂ;



d =(inr-Y IR (&) Ly . ,
J-I-< R’z(f)> (¢ ) ‘32 >"/' A (18) l and equations (17)-(28) take the form:

K HN-2R, R (PIF S = Z(R (05" ) ‘ i <SR r) >= -9 <R (40> y (27)
d - -
z <R)>= (-in-% ) <R ()5 24 <g’4[“>= (8N -0 I<R, (1)) = d—(ﬂ >,
¢ (28)
d »
-4 N-2R(t), R (¢) z Z KR ()
A,aé<; / 12 f> dt <4 »> / J(R (tJ> (oin x)(ﬂ (t)>=i<€,(¥‘)>*,
- = ¢ - % v
(19) dt " de (29)
. d = (AN ICR (1> L ¢rR (e)S*
(%(Rw(t)>= (<200 -% )< R 0> ALNDLY <R Lk 05"
Equations (27)-(30) are linear exact solvable. Applying the
{ 20
"z % < {N Rle), R {“f >= al <R (t)> J {20) quantum regression theorem one can obtain the expresaion for the
where atomic correlation function of the kind (14) and show that the
Y - 4 1 2 P - 2 spectum of the single-atom fluorescence(corresponding the lower
3;-;{,4 ;gzmsohk 4, 7 (4rc05%2) +
v 2 (21) transition 12> » M))contains five components located at fre-
K X.‘Ll e (14 5in’sl) ’ quencies CO‘” . 14 N and w 32 that have the line-
Y o £ 0 + 4% (qecosi) s Ly o (245rn%s) widths ¥, ¥, and {'z . respectively. It is shown in egs. (21)
1 4 4 32 vou (22) -(23) that the linewidths of the spectrum components are expand-
— 2
+ Ly m, (24cosTL) 4 ‘ ed due to the presence of the thermal field. In thls case the
4 32 2
central ( W, ) intermediate ((y + ) and extreme sidebands
z 3 . 2 : 24 YRR
b’z = 7'.'. ‘54 (2+ cos"ad ) 4 y ?”2 Srasd 4 (23) ( w‘u + 2L ) have the integral intensities proportional to
138, n (1rcos™) v L7 7 (145mY) 2 (2 X
'z 1 £ ’ T ~ 4 W rRT> = L st ——— -,
21 2 3a “o 4 cos 3 s 4 ZX 44 (31)
¥ = £« %, Srntd - % cos®l ) ; (24) T CsntiCRR. > = 2 simi X ,
¢ 4™ 2 33237 2 2X44 (32)
- L costl <R R =L (33)
fR‘.J.,Rf- R R 1 RR . (25) Lianm @95 R3 23 1,

It is easy to see from €@8.(31)~-(33) and (12) that in the
aingle-atom case integral intensities of the spectrum components

In the single-atom case one can use the operator relation are dependent on the thermal field without the point of JSrm'l 5’

= b_;z cos %t where X = 1 for arbitrary values of ﬂ , 7}3 .

R. R = R. S . Further, we shell consider the collective case. One can see
5 ke ‘e Tk (26)
i that eqs. (17)-(20) contain & product of operators that makes them
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unsoluble. Only in the special case Jy,

parameters X, = {z and the terms with the products of operators

cos Sl = 02‘ Sratl the

vanish; then, all equations (17)-(20) reduce to the exact solvable
lineer differentiasl equations.
Por the common case, according to the works [10,12,14_] we
use the decorrelation scheme
<¥ R, R‘.)_(t)} >z 2 ‘(R/} (I‘.J. t) > .
(34)

By using the density matrix (11) one can show that in the cese

of lurge N the decorrelation (34) yilelds a small error (with

an order of N-QQ ) in the calculation of the steady-state fluo-
rescent spectrum. Applying the decorreletion scheme (31), eqs.(17)-
(20) have a simple exponential solution. Using the quantum reg-
ression theorem[17] one obtains the atomic correlation function

(14) in the following form:

¢ 2 RZ e"/:z.
g 3 c ges™ <R3
.2 e'/;r
+ sindd <R RO L Cos (R T) (35)
! costd < RE> e 2% s cant)y
-'z J 3 =
where
- 6
roo= X 4 X (W <R> ) ) (36)
4 -
R A Ly (w-2¢RZ ) ) (37
r,o= Y o4 e (M- <R3 - (38)

2
The expressions for (Ru R44>f and <R’ >_r can be found in
Appendix, It 13 easy to see that the steady-state spectrum of the
fluorescence field, which is proportional to the Pourier trans-
form of the atomic correlation function (35), contain five com-

ponents at frequencies &, (5, ) , W_u 1t (s,, ) and

8

a)“ 20 (Szl).All the spectum components have the Lorent-
zian shape. The cantral component &, has the linewidth T

and intensity Io ~ % Coste < 0?54? ; the intermediaete side-
bands -5__“ have linewidths 1'1' and intensities

1-14 ,v&i ;,'.,,"z,,( (R’z @ll ?f i the extreme sidebands J_;z have
the linewidths /[, and intensities I.t.z ~Ji cost < R-”‘%_

As for the case when the thermal field is absent, the fluorescen-
ce spectrum is symmetric.
From eqs. (36)-(38) one sees that the linewlidths of the

gpectrum components contain the single-atom terms ( Yo , 0"

and 2’; ) and the collective terms (which are proportional to

b:: ). For the case of 5;1 sin¥t = 631 costa the collective

terms vanish and the linewldths of the spectrum components are
the same as for the single-atom case, In this cese, as has been
noted above, the linewidths of the spectrum components are ex-

panded due to the presence of the thermael fields and this expan-

gion 1e rather lerge for the casge of 'I_, B v?.z 5D 1 » In this
case, the parameter X = 1 for arbitrary values of '7—1, , 73

and, consequently, all the intenaities of the spectrum components
I, + I;, and I, 4 are independent of the thermal field and
have the superradiant behaviour ( /V'¢ J.

For the case of 64 simdd 2 %e cos¥¢ the density matrix

(11) is dependent on the thermal field intensities ﬁ; y By

congequently, the single-atom part as well as the collective part
of the spectrum linewidths are dependent on the thermal field.

For a large number of atoms N > 4, ”-',,7; the linewidths of

the spectrum components take the form

r, = 32

Xof’fclﬁ/-‘ix_t X d {151"”2’1)3’ cos 5t
~ (39)
J
(-

. . 2 z
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(3 2 7 560
5 (<K">S + 2<R2 D ‘

"
where the steady-state averages < R Z_ can be found in Appendix.

For the single-atom case one finds 3505.
@ 2 Axq 1 [
= R
Go,o = <R /< > “ 1 ) (49) i
160& NI ST N TN taleaaaiy s s
ok 'z 0 020 0.40 060 080 100
CY = GL s O . (50) 2
24,214 t2,t1 @ cos‘oC
It is easy to see from eqs. (47) and (12) that in the one-atom Fig. 1, Function Go o against the parameter cos ot for the casge
case the degree of second-order coherence of the central spectrum of N = 503 b;: /‘5, w 0.8, The curves 1-4 correspond
component S, is dependent on the thermal field intensities ’;14 = 4”-1;’ = 03 0.3; 1; 2.
-~ n " . 2
" = .
f, , M without the point of ijsmd ) C05°el « However G:?
we note that as for the case when the thermal field intensities ’
9'1; = ln—‘ =o [14] , the central component S, has super- )
2
Poissonian photon statistics, i.e. G;, >4 , for all values 2400 2
0, 0
of the parameter X . As is seen from eq.(48), the degree of L
second-order coherence of the sidebands 5‘.“ R ‘;j g 18 equal b (3
zero for arbitrary values of the thermal field intensities '7?, R 190 [ [
- H
'n‘ , 1.8, the sub~Poissonian photon statistics tekes places [
for the sidebands., . [ &
In contrast with the single-atom case, the photon statis- 1.40 Lo L ol ) 1
tics of all the spectrum components in the collective case Nz £ ’ 0 020 040 2“0'50 080 100
cos
— @
1_5 strongly dependent on the thermal field intensities 7, and Fig. 2. Function G’ , sgainst the parameter C€oS$ ?:  for the
n, . The dependence of the normelized correlation functions B ’ :
T @) @ _ of N = 503 b.,!l /(u = 0,8, The curves 1-4 cor-
G , a and G, on the thermal field intensities #, , - ..
00 24,21 24,12 reapond "4“’"‘4 a 03 0.5; 13 2.
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t2)
400 Gz‘2 Plays an important role in determining the photon statistics of
all the spectrum components,
APPENDIX
300} In this appendix we give the explicit expressions for the
averages of the atomic operators over the steady-state (11). The
[ parameters X and Z are given in formulas (12) and (13).
200f - #12
- ) <Ry = 20 Nemio 2w U7,
N+a 3
NG N33 X T2 X JUx-1) (A1)
. 2 .
1.w' N NS NS TN U | . 1C°S & -9 Nt 4h 2 ¢ 3
0 Q20 040 060 080 100 <R = 2L NP X TTD K (3N T eN-a0 X
2 Mr2 2 Nr d
Fig. 3. Punction G‘ 4 @geinst the parameter cos®é for the case + (N2 2) (3n*i3m-2)x - (N+1) (Nr2) X (A.2)
’d 3
of N = 504 b:u /5' = 0,8. The curves 1-4 correspond + J,x"-. 2x ] /(x-4)‘l
#f, = 27, = 05 0.5; 1; 2. p v
/3 4 b CR®> = 27 [W3cwr0) 15w e st g
ﬁ; is shown in PFig.1-3 where they are plotied as functions of (4 Ve 3
- - 3 2
the parameter cos?s!  for various values 711 R '& and for + (6”4-! 18N 13N 15M+8) X (A.3)
N+ 2 °
b:u/ru = 0.5; ¥ = 50, It is clear from Figs.1-3 that - (4”"-;4(/!/3,1 15wt gw-91) X
.2 2
except for the point of ¥ sra’el = J, Cos~el , the thermal field N+ d
%4 30 s (N2 swPighn7mead X
plays an important role in the photon statistiica of the spectrum
2 5
components., - ex3. q4x®-ax J /("'1)
4 - -1 ¢ Ny €
In & aimilar manner one can show that the fluoreascence field <R >5 = 2 I NS Y AR (5#_,;40”4_ w3, 4ut
corresponding to the upper atomic transition 18> —» /% >  has s

R DL AN ETY LS VYASIE A Y D NPV EPPS N il

analogous spectral and stetistical properties.

(1on%, 40w’ +-Z¢/V3- cown 2. LsNrec Dx?"3

V. SUMMARY

We have considered the problem of collective double reso- 4 (sx% 25Ny 36w3. SN spu- PY DY il
nance in the presence of two coherent resonant external fields and M 3 P v (A.2)

- S, 6w% 244 %9 st i .
of the thermal field reservoir. The stationary solution for the (W72 + 74 rINr2) X
master equation in the secular approximation is given. The spec-— + 16 x Yy 0cx 3, 3¢0%;2 xX]/cx-1) ¢
tral and statistical properties of the fluorescence field are in- a
s (R):Z(RR):J(R’R > =
vestigated. The influence of the thermal field on the spectral LA 3113 s 3 3175
properties of the fluorescence field has been shown. The collec- / 2 2 .
: g <Ry rT RS (4.5)
tive narrowing of some spectrum components has also been predicted.
- = -4 <r? 1

It is shown that contrary to the one-atom case the thermal field < Rfl R.a >5 =< k;,z Rz; 7; T a R % T2 (”")<k_>r . (A.6)
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Konnek TuBHBIE ABOHHOIL pe3oHAHC
B MPHCYTCTBHH TENIIOBOrO NOMNA

PaccMoTpeHa npobreMa KONNeKTHBHOIO OBOHHOr'C pe3OHaHca B
NpUCYTCTBUM TennoBoro nonsa. lHomydeHo cTanMoHapHoe peleHHe
MaTpHUb! NIOTHOCTH aTOMHOH CHCTEMbl LI Cliydas CHIbHBX BHeur—
HHX IoJsiefi. O6CyxgeHbl cleKTpaJibHele W CTATHCTHYECKHE CBOHCT—
Ba nona é¢nyopecneHnud. HoKas3aHoO KoONIeKTHBHOE CyKeHHe CIeK—
TpanbHbX KOMIIOHEHT.

Pa6ora BuinonHeHa B JlabopaTopuH TeopeTHUYeCKOH ¢GH3HKH
Ousun.

ITpenpunt O6BeIMHEHHOr0 HHCTUTYTAa AepHbIX HewlenoBanuil. [ly6na 1989

Lan L.H., Shumovsky A.S., Tran Quang E17-89-618
Collective Double Resonance in the
Presence of a Thermal Field

The problem of collective double optical resonance in
the presence of a thermal field reservois is considered.
The steady-state solution to the atomic density matrix is
obtained for the case of strong external fields. The spect-
ral and statistical properties of the fluorescence field
are discussed. The collective narrowing of spectrum com-—
ponents is shown.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1989






