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Abstract

The method of faithful realizations is defined and explored within the context
of several physical problems. We constructed a general procedure for deriving
faithful realizations from arbitrary semi-classical truncations, as well as applying
this procedure to several explicit examples. This method is useful in systems which
have a strong time dependence or which lack a ground state, because in these
situations one cannot use the standard tools, such as the effective action.

Using the faithful canonical realizations we developed, as well as an all orders
closure, we studied the problem of tunneling times, which has been recently de-
bated in the literature. Our definition of tunneling times, based on the canonical
realizations, always gives a time delay. The usage of a canonical coordinate system
also allowed us to use the moments as a tool to study the purity of a quantum
state. That is, given a set of moments, a faithful canonical realization will have
some parameters that correspond to the purity of the state. Moreover, canoni-
cal realizations facilitate the usages of methods from statistical mechanics in the
realm of canonical effective methods, allowing one to consider ensemble averages of
semi-classical quantities. They also facilitate the usage of the powerful techniques
of canonical transformations in semi-classical physics. Using the framework of
realization equivalence, we were also able to explore a link between the model of
loop quantum cosmology as well as a model of group field cosmology. This link has
led to several implications on the group field side of the equivalence, with regards
to the formations of singularities and of quantization ambiguities.

il
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Chapter 1
Introduction

1.1 Motivations

Most problems in physics are too difficult to be solved exactly. In practice one has
to find a solvable problem that is “close” to the actual problem and implement some
form of perturbation theory to extract predictions. In settings close to classical
mechanics, where quantum effects are nevertheless relevant, one can do semi-
classical perturbation theory in order to study the problem at hand. A powerful
tool for accomplishing this is the effective action [1]. However, this tool is most
useful only close to the adiabatic vacuum state. Such a state will not exist in
certain cosmological systems, or in systems without ground states. Furthermore,
in systems with instabilities, one might not be interested in the evolution close
to the vacuum state, but rather close to an unstable state. Nevertheless, one
might want to perform semi-classical analysis for these types of systems. Canonical
effective methods provides a pathway for one to perform a semi-classical analysis
in cases where adiabatic vacuum states don’t exist or aren’t of interest. This
approach is technically more involved though, owing to a non-linear Poisson bracket
and constraints stemming from the Cauchy-Schwartz inequality. A way past these
technicalities is to use a set of coordinates that renders the Poisson bracket canonical.
This can simplify problems, aid one’s intuition and render the constraints trivial to
implement in many cases.

A powerful tool for extracting semiclassical physics from a system is the effective
action. One famous example is Coleman’s use of the effective action in order to

show that spontaneous symmetry breaking can arise from radiative corrections [2].



It has also been used in a myriad of other applications in particle physics. For
an historical review see [3]. The effective action, I, mimics the classical action, S,
because we have the correspondence;

oS or

el I (1.1)

dq o

Where now I'[¢] has h dependent corrections that can effect the evolution of the
system. The hope is that one can use this quantum effective action to study the
behavior of the system in the presence of quantum effects. If the system is close to

the ground state one can use the typical ansatz for the effective action,

Tlo] = [ d'e[~Vin(9) — 5K(0),00" + .. (12

Where the ellipsis stands for a derivative expansion. If the field is slowly varying
one can ignore the higher order derivatives, and then derive the equations of motion
for the field to be 0,0"¢ = —V3(¢). This is the local potential approximation [4].
The form of this equation suggests that we can use Vg for the effective potential,
and that we can use this potential to study the dynamics near equilibrium. For
example, in simple quantum mechanics in one dimension, the adiabatic effective
potential can be derived either canonically or by path integral methods [5,19], and
is found to be;
2 2
Vi) = Vi @) + 5 Vi) + 57 (Vi)™ 15 (Vi) ™) + O0).
(1.3)
This shows explicitly how A dependent corrections can enter the equations of motion
and affect the dynamics.

The limits of the effective action can be found if one tries to access the full
dynamical content of a theory. I' can be used to track the semiclassical dynamics
of a quantum system, however if there is strong space or time dependence in the
problem, the derivative expansion in the action won’t exist. Just as with most
other divergent asymptotic expansions, one might try to employ some resummation
or approximant procedure. This can be done in many cases, but not generally. For
example, the derivative expansion for QED is divergent always because the theory

is unstable for negative fine structure constant [6], however for simple cases the



expansion is alternating in sign and is Borel summable. Generally however, if non
perturbative instabilities are introduced into the theory the derivative expansion is
non-alternating and not Borel summable, signaling a breakdown of the effective
action [7].

Furthermore, when one computes the effective action from (1.2), one is implicitly
perturbing around the ground state. In particular, this is an issue for quantum
gravity because it’s not expected that the gravitational field will have a non-
perturbative ground state [11]. Attempts have been made to circumvent these
problems of states or divergent expansions in [8-10]. However these attempts
usually involve some type of time dependent variational principle, which requires
one to promote some state to a privileged status when there may be no physical
reason to do so. With this loss of generality, one might worry that some physical
effects may be missed.

Lastly, the effective action is possibly hard to interpret. Close to the adiabatic
vacuum state, the interpretation that I' is the action for the expectation value of the
field is fine. However, pushing towards non adiabatic problems this interpretation
is not so clear. For example, I' is generally imaginary, unlike the classical action.
This can be seen by examining (1.3). If the particle enters a region where the
concavity is negative one finds imaginary quantum corrections. This is because,
the quantum q variable in (1.1) is not the expectation value of ¢, but is related to
non-diagonal matrix elements of ¢ [4]. The unclear connection between the classical
dynamics and the quantum action in these circumstances can be troublesome if
one wants to study problems in regimes away from a ground state, or when the
state is non-adiabatic.

These issues outlined above are particularly relevant in quantum cosmology.
Euclidean path-integral and effective action techniques have been useful for certain
problems in quantum cosmology [11]. However, at a broader level most quantum
cosmological models do not have ground states [12]. Furthermore, states with
adiabatic fluctuations are hard to find in quantum cosmology [13]. Therefore, a

general toolkit that circumvents these issues is needed.



Canonical effective methods provides a scheme that circumvents the issues
outlined above, at the price of being more technically involved. To begin, one can
start with the Ehrenfest Theorem;

(F) = —(Vitass (D))

= Viael() — > VL@ (@ - (@), (14

Classical Force

Quantum Corrections

This shows explicitly how quantum corrections can affect the classical dynamics
by way of moments of the state: ((¢ — (¢))"). The full state is then specified by
the coordinates (q,p, A(q“pb)). Where a and b are positive integers such that
a+b > 2, and for simplicity, we have the notations: ¢ = (3), p = (p), A(q*p®) =
(G = ()" (P — (D)"Y weyr- Weyl ordering is used in order to avoid over-counting
the moments and to ensure that the moments are real valued, which is necessary
because they are observables. In order to track the exact dynamics of the state
one will need the dynamics of the moments as well. The Hamiltonian generating

the dynamics of the moments is simply Hy (q, P, A(qapb)) = (Hyeyr). This can be

expanded in terms of moments:

a = 1 aa+bHclaSS(Q7p) a
Hq = (q,p, A(q pb)) = Heoass(4:0) + D) abl Opedg A(p*q"). (1.5)

a=0b=0

We also have the bilinear skew-symmetric bracket: {(/D, (B>} = %(Vl, B}) This
bracket needs to be augmented by the Leibniz rule in order to define a Poisson
bracket for all moments. So by definition, one has to enforce: {(fl}, (§><C')} =
{(fl), (B)} (C) + {(fl), (C’)} (B). For example, this can be used to calculate the

Poisson bracket between products of moments:

{A@), M) AP | = {A@), Alap) } AW®) + {A(@*), A*) } Algp)

(1.6)
= 2A())A(p?) + 4A(gp)?

With these tools in hand, we can write down the equations of motion for a function

of the coordinates,
K (¢, A(¢"p")) = {K, Ho}. (1.7)



In this way, the quantum evolution of the system can be tracked exactly by studying
the dynamics of ¢, p, and A(q%p"). For brevity, a system with a single degree of
freedom has been focused on, however this prescription generalizes easily to systems
with many degrees of freedom.

The dynamics given by (1.7) are equivalent to the dynamics one obtains from
the Schrodinger evolution. However, doing exact calculations in this scheme can
be cumbersome in all but the simplest problems because (1.7) corresponds to an
infinte dimensional system of non linear differential equations. To make progress,
the state is assumed to be semi-classical: A(q%p?) ~ O(R*+?/2). This property
is motivated by the Gaussian states, who are the prodigal semi-classical states.
Once this property is assumed, moments that are above a given order in v/A can be
truncated to give a system that is finite, and in principle solvable. In the language
of statistics, this amounts to choosing the stochastic closure [101]. For situations
where the semi-classical approximation is not valid, one can choose another more
appropriate closure.

While numerically tractable, the system will generally be non linear, due to a
non linear Poisson bracket, and subject to non-holonomic constraints due to the
Cauchy-Schwartz inequality. Therefore performing calculations with this approach
can still be cumbersome and non intuitive. In physics, one usually puts some
thought into choosing a coordinate system that is optimal for the problem one
is solving. In the current situation, a natural coordinate system would be one
that brings the Poisson tensor into canonical form. In the examples studied in
this dissertation, these canonical coordinate systems, generally allow one much
more intuition. Furthermore, usage of a canonical coordinate system can trivialize
these non-holonomic constraints, or transform them into reality conditions, which
are much easier to implement. These properties allow one to more quickly move
through calculations. Furthermore, since the Poisson tensor is independent of the
Hamiltonian, the work spent on putting it into a canonical form can be used in

many problems.



1.2 Organization

In this thesis the construction, properties, and applications of the canonical co-
ordinate systems are explored. The contents of each chapter are summarized

below.

o Chapter 2:

Here the notions traced in the motivation section regarding canonical coordi-
nate systems are made rigorous. The semi-classical phase space is defined as a
semi-classical truncation. This is a manifold with a boundary, the coordinates
on this manifold are: (q,p, A(q“pb)), where a + b < N. Hence the notion
of truncation. The semiclassical truncation is equipped with a non-linear
Poisson bracket: {A?, A7} = P%(A). A general method to transform P into
the canonical bracket is developed and applied to several specific examples.
An invertible transformation that puts P in canonical form is called a faithful
realization of the Poisson algebra. For a system with N degrees of freedom,
the algebra of moments at the second order is identified as the Lie alge-
bra sp(2N,R). A consequence of this is that the Casimirs of sp(2/V,R) are

approximate constants of motion for semiclassical systems.

o Chapter 3: Canonical semiclassical methods can be used to develop an intu-
itive definition of tunneling time through potential barriers. An application
to atomic ionization is given here, considering both static and time-dependent
electric fields. The results allow one to analyze different theoretical construc-
tions proposed recently to evaluate ionization experiments based on attoclocks.
They also suggest new proposals of determining tunneling times, for instance

through the behavior of fluctuations.

e Chapter 4: New canonical realizations for up to fourth order in moments for
a single classical degree of freedom and to second order for a pair of classical
degrees of freedom are derived and applied to several model systems. It is
shown that these new canonical variables facilitate the derivation of quantum-
statistical quantities and effective potentials. Moreover, by formulating
quantum dynamics in classical language, these methods result in new heuristic

pictures, for instance of tunneling, that can guide further investigations.



o Chapter 5: The paradigmatic models often used to highlight cosmological
features of loop quantum gravity and group field theory are shown to be
equivalent, in the sense that they are different realizations of the same model
given by harmonic cosmology. The loop version of harmonic cosmology is a
canonical realization, while the group-field version is a bosonic realization.
The existence of a large number of bosonic realizations suggests generalizations

of models in group field cosmology.

o Chapter 6: All contributions of this thesis are summarized here. The outlook
for the methods for applications in Cosmology and quantum mechanics are

discussed.



Chapter 2
Faithful Realizations of Semi-
classical Truncations

2.1 Introduction

In this chapter, we lay the groundwork for the method of faithful realizations that
we will use in the following chapters. We begin by reviewing canonical effective
methods. From there, we introduce the concept of a faithful realization, which
can be used to simplify canonical effective calculations. We present a method for
finding faithful canonical realizations in general case. We then apply this method
to several example cases. As an example, we study the phenomenon of parametric
resonance in two coupled harmonic oscillators.

Semiclassical truncations approximate quantum dynamics by dynamical systems
in which expectation values are coupled to moments of a state. The classical phase
space is thereby extended to an enlarged manifold with a Poisson bracket of
expectation values and moments derived from the commutator of basic operators.
These canonical effective methods have been used in various contexts, such as
quantum chemistry [100] and quantum cosmology [107], and they reproduce well-
known results including tunneling phenomena [16], the low-energy effective action
[92,93], or the Coleman—Weinberg potential [19]. However, the enlargement of
the classical phase space tends to complicate qualitative interpretations as well as
computations, in particular because moments, unlike expectation values, do not
form canonically conjugate pairs. In this paper, we therefore analyze the problem

of constructing canonical realizations of Poisson systems, or their Casimir—-Darboux



coordinates. To second moment order for a single pair of classical degrees of freedom,
an interesting canonical realization has been known for some time [99,100]. Our
main goal is to extend these results to multiple degrees of freedom and to higher
orders in a semiclassical expansion.

At leading order, semiclassical truncations turn out to be closely related to
the Lie algebras sp(2N,R). Our methods and examples can therefore be extended
directly to finding canonical realizations for these algebras. Moreover, once a
canonical realization is found, one automatically obtains a bosonic realization using
the standard Poisson structure on the complex numbers. (Canonical pairs are
thereby replaced by classical analogs of annihilation and creation operators.)

We put special emphasis on the construction of faithful realizations, in which
the number of independent variables is equal to the dimension of the original
system, and the co-rank of the Poisson tensor agrees with the number of Casimir
functions. Canonical and bosonic realizations of systems of the type studied here
have been used for several decades, but achieving faithfulness often presented a
problem. Bosonic realizations go back to theoretical work on magnetic systems [21].
Interest in particular in bosonic realizations of sp(6, R) grew after the introduction
of a symplectic model of nuclear shells and vibrations [22]. Non-faithful bosonic
realizations have been used in several papers mainly to compute matrix elements in
irreducible representations [23,25,118-120]. Some of these studies noted difficulties
in finding faithful realizations, starting with sp(4,R) [119, 120]. Bosonic and
canonical realizations of Lie algebras other than sp(2/N,R) have been analyzed and
formalized in [28-32], which in most cases were not faithful.

Our results lead to an extension of some of the results of [119] to a faithful
bosonic realization, but we expect the main applications of our methods to be in
semiclassical discussions of quantum mechanics. Even though we address quantum
systems, the use of semiclassical truncations means that we are interested here in
classical realizations of a system with Poisson brackets. We do not consider the
more complicated question of constructing bosonic realizations of operator algebras

— the main topic of [119] — in which factor ordering questions are relevant.



2.2 Canonical Effective Methods

Canonical effective equations [92,93] describe quantum effects through interactions
between expectation values and moments of a state with respect to a fixed set
of basic observables. The commutator of operators induces a Poisson bracket on
the space of expectation values and moments, leading to an infinite-dimensional
extension of the classical phase space. In semiclassical approximations of varying
degrees, finite-dimensional truncations are used for each canonical pair. The
Hamiltonian operator then implies an effective Hamiltonian on the extended phase
space for each of its finite-dimensinal truncations, and quantum dynamics can
be analyzed much like a classical dynamical system. Mathematically, canonical
effective methods replace partial differential equations for wave functions by a
system of coupled ordinary differential equations for an enlarged set of variables
We assume that the unital x-algebra A of observables defining the quantum
system is canonical, that is, generated by the unit operator together with a finite
set of self-adjoint position and momentum operators (); and I, 1 < j,k < N, with

canonical commutation relations
[Qj, 0] = thdjy, . (2.1)

States are positive linear functionals w from the algebra to the complex numbers,
such that w(a*a) > 0 for all @ € A [33]. They may (but need not) be obtained
from wave functions or density matrices in or acting on a Hilbert space H on which
A may be represented by a — a: In such a case, every ¥ € H defines a state
wy: a — (@), and every density matrix p defines a state w,: a — tr(ap). To be
specific, and for easier comparison with the physics literature on the subject, we
will use the notation (@) to denote w(a), but expectation values could as well be
defined using mixed states or algebraic states.

We introduce a set of basic variables taking real values:

Definition 1 Given a state on a canonical algebra A generated by self-adjoint Q;
and 1y, in addition to the unit, the basic expectation values are g; = (Qﬂ € R and
m = () € R.

For positive integers k; and l; such that vazl(k:i +1;) > 2, the moments of the
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state are given by

Agf gl ) = (Qi—q)™ - (Qu—an)™ (=)™ -+ (T =78)"™ Y eyt
(2.2)
where the product of operators is Weyl (totally symmetrically) ordered.

If the state is a Gaussian wave function in the standard Hilbert space on which

A can be represented, the moments obey the hierarchy
A (qifl gk .W%v) —0 (h% En<zn+kn>) _ (2.3)

This property motivates

Definition 2 A state on a canonical algebra A is semiclassical if its moments obey
the hierarchy (4.5).

A semiclassical state is much more general than the Gaussian family, which has two
free parameters per canonical pair of degrees of freedom. A general semiclassical
state, by contrast, allows for infinitely many free parameters per canonical pair of
degrees of freedom.

We will use the semiclassical hierarchy mainly in order to truncate the infinite-

dimensional space of expectation values and moments:

Definition 3 The semiclassical truncation of order s > 2 of a quantum system with
canonical algebra A is a finite-dimensional manifold Ps with boundary, determined
by global coordinates q;, T, and all moments (4.2) such that Y, (L, + k) < s. Its

boundary components are obtained from the Cauchy—Schwarz inequality.

A semiclassical truncation of order s therefore includes variables up to order %s in
h when evaluated on a Gaussian state. Well-known components of the boundary

are given by Heisenberg’s uncertainty principle

h2
A(G)A(my) = Algyme)* > -0 (2.4)

but there are higher-order versions relevant for s > 2.

Basic expectation values and moments are equipped with a Poisson bracket

defined by .
ih

{(A).(B)} = —([4,B)), (2.5)

11



extended to all moments by using linearity and the Leibniz rule. The Poisson bracket
turns any semiclassical truncation into a phase space by ignoring in {Aq, Ay} all
terms of order higher than s in moments. This condition includes the convention
that the product of a moment of order s; and a moment of order s5 is of semiclassical
order s; + Sp. Moreover, the product of a moment of order s; with A°2 is of order
s1 4 2s9. The consistency of this notion of order and the resulting truncation has
been shown in [96].

In general, the Poisson tensor on a semiclassical truncation is not invertible,
such that there is no natural symplectic structure on a semiclassical phase space.
For instance, for N = 1 the phase space of a semiclassical truncation of order
s = 1 is five-dimensional with coordinates (g, 7, A(¢?), A(qm), A(7?)), and cannot

be symplectic. The non-zero basic brackets are

fg.m} =1 (2.6)

and

(AP, Algr)} =2A(¢%) . {Agr), A} =2A(%) |, {A(P), AR} = 4A(qn).
(2.7)
Quantum dynamics is determined by a Hamiltonian element H € A. We assume
that the Hamiltonian element is given by a sum of Weyl-ordered products of the
canonical generators. It defines the quantum Hamiltonian Hy((-),A) = (H ) (.0
identified as a function of basic expectation values and moments through the state
used in (f[ ). On a semiclassical truncation of order s, the quantum Hamiltonian

leads to the effective Hamiltonian of order s,

A A

Hgs = (H(Q;+(Q; —g5), 1, + (ﬁk — Tk))) (2.8)
s 6”H(q,7r) A(q{l...q%\’ﬂ]fl‘..ﬂkzv)

= H(g,m)+ - ~ . ,
D D RS 3 e Loy O RSy N TR

Y

obtained by a formal Taylor expansion in Qj —q; and I — Tk, where H(q, ) is the
classical Hamiltonian corresponding to H € A. If the Hamiltonian is a polynomial
in basic operators, the expansion in (4.6) is a finite sum and exact, and merely

rearranges the monomial contributions to H in terms of central moments. By
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definition of the Poisson bracket from the commutator, Hamiltonian equations of

motion

FU)A) = {f((-), A), Her,s} (2.9)

generated by an effective Hamiltonian are truncations of Heisenberg’s equations of

motion evaluated in a state.

2.3 Faithful realizations of semiclassical truncations

While the Poisson brackets {q;, 7} = 1, {¢;, A} = 0 = {m, A} involving basic
expectation values are simple, the brackets between two moments are non-canonical

and, in general, non-linear [92,97]:
{A(g"m), A(g"n)} = ad A7 A7) — beA(¢" ' n) Ag*m )

M 10 n—1
s () Ko At (210)

odd n=1 2

with M = min(a 4+ ¢,b+ d,a + b,c+ d) and

K= 3 (—1)"ml(n — m)! (“) ( _b ) ( ‘ ) (d) . (211)

Since only odd n are included in the sum in (4.13), all coefficients are real. Whenever
a term A(q) or A(m) appears on the right, it is understood to be zero, which is
consistent with an extension of (4.2) to Y.(k; + ;) = 1 because (@4 — a) = 0 for
any operator a. The brackets (4.13) are therefore linear in moments if and only if
a+b=2orc+d=2.

We will look for mappings of the moments to new variables such that the Poisson
brackets can be simplified. In particular, we will derive canonical realizations of

semiclassical truncations.

Definition 4 A canonical realization of an algebra (C*°(M),{-,-}) on an open
submanifold U C M is a homomorphism (C=(U),{-,-}) = (C®(R*? xRY), {-, - }ean)
to the algebra of functions on the Poisson manifold R***! equipped with the canonical
Poisson bracket on R*, while {f,C}ean = 0 for all f € C®(R* x R!) and C € RL.
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A canonical realization of (C*°(M),{-,-}) is faithful if dimM = 2p + I and 2p

is equal to the rank of the Poisson tensor on M.

Our examples of M will be given by open submanifolds of the phase space of a given

semiclassical truncation. A closely related concept is that of a bosonic realization:

Definition 5 A bosonic realization of an algebra (C*(M),{-,-}) on an open
submanifold U C M is a homomorphism (C®U),{-,-}) = (C°(CP x R), {-, - }pos)
to the algebra of functions on the Poisson manifold CP x RY, where C is equipped
with the Poisson bracket {z*, 2 }nos = 1, while { f, C}pos = 0 for all f € C>(CP x RY)
and C € R

A bosonic realization of (C*(M),{-,-}) is faithful if dimM = 2p + I and 2p is

equal to the rank of the Poisson tensor on M.

Pullbacks by the local symplectomorphisms

O R¥ — €, (g5, p1) = (L5 + ip)) (2.12)

define a bijection between canonical realizations and bosonic realizations which
preserves faithfulness.

We note that the definitions impose reality conditions on the canonical or
bosonic variables. In particular, all ¢; and p; must be real, and a bosonic pair

(z,2") with {2/, 2} =i must be such that 2’ = z*.

2.3.1 Poisson structure of semiclassical truncations

Since basic expectation values have canonical Poisson brackets with one another
and zero Poisson brackets with any moment, the non-trivial task is to construct a
canonical realization of the space of moments for a given semiclassical truncation,
at fixed basic expectation values.

A canonical realization of a semiclassical truncation of order s induces a map
X U Py — RP xR (A) = (50,8, Uy) (2.13)

such that the variables (sa,ps), {Sa,Ps} = 0ap, can be used as coordinates on
symplectic leaves defined by constant U,. The coordinates U, are therefore local

expressions of Casimir functions of the Poisson manifold [85].
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A faithful realization requires a bijective map between the moments and canoni-
cal variables. For a single degree of freedom and a semiclassical truncation of order

s, the dimension D of the phase space is the number of moments up to order s, or
S . 1 )
D=3 (j+1)=(s*+3s—4). (2.14)
j=2

Note again that this dimension D may be even or odd, depending on s. Even if D
is even, the Poisson tensor is not guaranteed to be invertible.

Every function on a Poisson manifold we are considering can be expressed as a
function of finitely many moments A; in some ordering. We introduce the Poisson
tensor

PS(A) = {A;, A} (2.15)

)

such that the Poisson brackets of the set of coordinates X'(*)(A) are

D 9xE)(A) xS (A)
(s) s) — Zla 2 pl Ay 228 T
{(x9(A), 29 (A)} iz}jﬂ oA P () TVt (2.16)

The dimension of the nullspace of the Poisson tensor is equal to the number of
Casimir functions in a neighborhood of a given set of A;.

If the co-rank of the Poisson tensor is equal to I, at each point of phase
space there exist [ linearly independent vectors wy, k = 1,..., 1 with components
wi,i=1,...,D, such that

D
S PYwl =0, k=1,...,1. (2.17)
j=1

The vectors wy, = (wi) are the eigenvectors of the Poisson tensor with zero

eigenvalue. Since this eigenspace has [-fold degeneracy, the w;, are not unique if
I > 1. They can be rearranged in linear combinations with coefficients depending
on Az

Suppose one of the eigenvectors, wy, can be expressed as

i 0Ck(A)

(2.18)
Then Cy(A) is a Casimir function which commutes with any function on the
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Poisson manifold. At a given point, each 1-form dC% defines a smooth submanifold
of codimension one in the Poisson manifold through dC% = 0. As the eigenvectors
wy, and therefore the dCj, are linearly independent, the intersections of all I
(D — 1)-dimensional submanifolds is a (D — I)-dimensional submanifold, called a
symplectic leaf. If we choose local coordinates (vy,...,vp_;) on a symplectic leaf,
we have (v, -+ ,v9,,C1, -+ ,Cr) as a coordinate system on phase space, where

n = %(D — I). The Poisson tensor in these coordinates takes the form

P10
(s) _ ap
P = ( 0 0) ) (2.19)

s):

where P! 5 = {Va,vp} and det(]?’&sﬁ)) # 0. A faithful canonical realization provides a

map
(Ula"' 7U2n7017"' 701) — (317"' ySnyP1y "0 amel»"‘ 7UI) (220)

of the local coordinates. After applying this map, the Poisson tensor has the form

(2.19) with
~ 0 I
() _ n
PY) = ( o ) . (2.21)

Darboux’ theorem shows that local canonical coordinates s, and pg exist.

As C; = {Cy,H} = 0 for any Hamiltonian H, motion is always confined to
a symplectic leaf C; = const. Moreover, the existence of a Casimir function
implies that the Hamiltonian is not unique because {f, H} = {f, H + M C;} for
any phase-space function f and M € R.

2.3.2 Algebraic structure of second-order semiclassical trunca-

tions

For a system with N classical degrees of freedom, we collectively refer to ¢; and 7,
as x;, i =1,...,2N. As can be seen from (4.13) or directly from commutators, the

Poisson brackets of second-order semiclassical truncations are then of the form

{A(zx;), Alxgr)} = Z fgﬁZlA(xmxn). (2.22)

m<n
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The A(z;z;) form an independent set of moments if we require that i < j.

The brackets are linear and form a Lie algebra with structure constants
ikl = Tik0; 0" + Tudj 0y + Tik0;" 0" + Tju0;" 0y (2.23)
using 7;; = {z;,z;}. For 7;;, we have the identity

ZTZJTJk - Z{JIZ,ZE]}{ZL‘], xk} — — Uk (224)

because both brackets are non-zero if and only if x; is canonically conjugate to

both z; and zj, which implies x; = x;, for basic variables. We note that the i

are manifestly symmetric in the index pairs (i, j) and (k, (), but not in (m,n).
Instead of summing over restricted double indices, it is more convenient to

symmetrize all of them explicitly, in particular

fz%?) — ; <Tik5;"’5f + 707 0 + Tik0; 0" + 0 O + Tikd;0)" + Tudy 0y + 070" + leéﬁézn) ,

(2.25)
and include all A(z,,x,,) in (2.22) using A(z,2,) = A(z,2,). Summations over
restricted double indices (m,n) such that m < n can then be replaced by two full

summations over m and n. For instance,

{Awizy), Alwrz)} = D fiiA@mea) Zfzﬂ?)& (Zmn) . (2.26)

m<n

2.3.2.1 Cartan metric and root vectors

We compute the Cartan metric

G = > [SP ) = 4(N + 1) (rames + Taey) - (2.27)

m7n707p

Lemma 1 The Cartan metric (2.27) is non-degenerate.

Proof: The metric acts on objects of the form V =¥, ; VI A(z;x;) via

g(Vi, Vo) = > gimVi? V3. (2.28)

i7j7k7l
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For V to be non-zero we need Sym(V¥) = (V% 4 V7%) £ 0 because A(z;z;) =
A(zjx;). Suppose there is a non zero object V' in the null space of g, such that

g(V,-)=0o0r Y, ; Vg = 0. Using (2.27) and rearranging, we find

0=8(N+1)> 7 Sym(VY) 1. (2.29)
Y]
Because 7 is invertible, (2.29) implies that V¥ is antisymmetric, but then V' = 0.

We conclude that g is non-degenerate. O

The algebra of second-order moments is therefore a semi-simple Lie algebra.
We can show that it is actually simple, and identify it, by examining its Dynkin
diagram. We should first find the Cartan subalgebra.

Lemma 2 The adjoint action of any moment of the form A(q;q;), A(mim;), or
A(qpm) with k # 1 is nilpotent.

Proof: The claim is easy to see for A(g;q;) and A(m;7;): The adjoint action of
A(g;q;) on a moment A is a sum of moments in which any 7, that may appear in
A is replaced by q, if K =i or k = j. After applying this action twice, no 7y is left
and the third application gives zero. Analogous arguments hold for A(m;7;).

For A(gxm) with k& # [, the adjoint action is non-zero only on moments of
the form A(xm) or A(yq), where z and y can be any position or momentum

component. In the first case, we compute

{Algem), Alrme)} = Azm) + {m, v} A(grm)

Algm) — Alqeme) if v =g
A(xm) if x #q

Therefore,

—A(qrm) ifz=gq
{ae, 2} A(mP)if x # g
—Algem) iz =g
= A(r?)  ifx=m,

0 otherwise

{A(qgm), {A(qgpm), Alxm)}} = {
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The next adjoint action of A(gxm) gives zero, and similarly on A(yq,). O
Since nilpotent actions are non-diagonalizable, we construct the Cartan subalgebra
from moments of the form A(g;m;). Since they Poisson commute with one another,

they span the Cartan subalgebra

H = <A(Qi7"z’>>1§¢§N : (2.30)

The moments A(g;m;) are orthogonal to one another and have the same norm with
respect to the Cartan metric.

The entire set of moments forms a Cartan—Weyl basis. For any A(g;m;), the
set of basic moments A(xyz;) with k& < [ is an eigenbasis of the adjoint action
with eigenvalues 2 if xp, = x; = m;, 1 if oy = 7w, and ¢; # xp # m, —1 if xp = ¢
and ¢; # v; # m;, —2 if r;, = 2; = ¢;, and zero otherwise. The eigenvectors with
eigenvalues +2 have eigenvalue 0 with any other A(g;m;), while the eigenvectors
with eigenvalues £1 are shared by two moments of the form A(gm;). The root
system is therefore given by all vectors with only two non-zero components of
opposite sign and absolute value one, and vectors with a single non-zero component
equal to 2. A suitable subset of eigenmoments with the smallest possible positive

eigenvalues for the adjoint action of all A(g;m;) gives the simple root vectors

{A((Mﬁ)’ Algsma), ..., AlgnTn-1), A(WJQV)} ; (2.31)
with simple roots
1 0 0 0
-1 1 0 0
0 -1 0 0
0 0 0
) . PR | . b . * (2'32>
0 0
1
-1

The resulting Dynkin diagram, shown in Fig. 2.1, belongs to sp(2N, R).
The Casimir functions of sp(2/N,R) can therefore be thought of as approximate
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Figure 2.1. The Dynkin diagram for a second-order semiclassical truncation. We adopt
the convention that the filled circles correspond to shorter roots and the empty circles
correspond to longer roots.

constants of motion in quantum mechanics: At the second semiclassical order, the
Hamiltonian is a function of basic expectation values and second-order moments,
and the sp(2N,R) Casimir functions commute with any such function. These

constants of motion can be written as
U o tr {(TA)Zm] , m<N (2.33)

where A is a matrix with components A;; = A(x;z;), and 7;; = {x;, x;} as before.

There is one approximate constant of motion per classical degree of freedom.

2.3.2.2 Example of sp(4,R)

For two classical degrees of freedom, we show the Cartan metric ordering the

moments as

{A(W%)a A(miqr), A(Q%)v A(’ﬂ';), A(maq), A(q%), A(myma), A(m1q2), A(T2q1), A(CHQZ)} .
(2.34)
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The result,

0 0 -2 0 0 0 0 0 o0
0 12 0 0 0 0 0 0 0
240 0 0 0 0 0 0 0 0
0 0 0 0 0 -24 0 0 0 0

Lo 0o 0o o0 12 0 0 00 o0

7“1 0o 0 0o -4 0 0o 0 00 o0 |
0 0 0 0 0 0 0 0 0 —12
0o 0 0 0 0 0 0 0 12
0 0 0 0 0 0 12 0 0
0 0 0 0 0 0 —12 0 0 0

is easily seen to be non-degenerate. The Cartan subalgebra is

H = (A1), Algam))

and the simple root vectors

{A<QQ71>7 A(Wg)}

(1)

corresponding to the Cartan matrix

imply simple roots

of sp(4,R) (or Cy).

2.3.3 Examples

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

We present standard examples of faithful realizations before we proceed with the

general theory.
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2.3.3.1 The Lie algebra su(2)

The Poisson bracket for su(2) with generators S;, i = 1,2, 3, is given by

3
{Si,S;} = €ijnSk- (2.40)
k=1
It is well known that S? = 322 | S? is a Casimir function of this algebra. The task

is to find a pair of functions of the generators that are canonically conjugate with

respect to the original Poisson tensor. These variables can be defined implicitly by

Sy =14/5%— 5% cos(¢p) , S, =1/5?—52sin(¢), (2.41)

such that {¢,S,} = 1. Solving for ¢ and inserting it into the Poisson bracket, we

indeed have

darctan(Sy,/S;) darctan(Sy/S,)

{¢,5.} = {arctan (S, /S,),S.} = 5. {Sz, S, }+ 73, {S,,8.} =1.
(2.42)
2.3.3.2 The Lie algebra su(1,1)
The Lie algebra su(1,1) is defined by the relations
[IC07 ’Cl] = _ICQ ) [IC17 ’CQ] = ICO ) UCO) ,CQ] = ICI . (243)

For this bracket, a faithful canonical realization is given by

1 s
K0:k+§(32+p§) , lclzg./4k+32+pg , /czz%w/4k+32+p§,
(2.44)
where K7 + K2 — K2 = —k? is the Casimir function and s and p, are canonically

conjugate variables.
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2.3.3.3 The Lie algebra sp(2,R)
The Lie algebra sp(2,R) can be expressed as the set of matrices of the form

c a )
( , with generators

b —c
A:<01) | B:(OO) | C:(l 0) (2.45)
00 10 0 -1

and relations
[A,B]=C , [AC]=-24 , [B,C]=2B. (2.46)
Over the complex numbers, this Lie algebra is isomorphic to su(1,1) via
A=Ky +iK, , B=Ky,—iK, , (C=2iK,. (2.47)

The canonical realization (2.44) can therefore be mapped to this case:

1 1
A= S(petis)Ak+s2+p2 . B=(pe—is)dk+s2+p} , C=i(2k+s"+p]).

(2.48)
However, because sp(2,R) and su(1,1) are different real forms, these generators
are not real. The generators (5.31) therefore do not present a suitable canonical
realization for our purposes.

Similarly, using b = 27/2(s + ip,), we obtain generators
A= VEb 12k , B=—ibWibt2ok , C=2i("b+k)  (2.49)

of Holstein—Primakoff type [21] in which A and B = A* can be quantized to raising
and lowering operators. However, these generators are not real either, and do not

present a suitable bosonic realization.
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2.3.3.4 Second-order semiclassical truncation for a single pair of clas-

sical degrees of freedom

The constructions used in [99, 100] can be interpreted as a faithful canonical

realization

U
Alg®) =8>, Agm)=sps A(W2)=p§+;2 (2.50)

of a semiclassical truncation with N =1, s = 2, and Casimir function U.

The mapping

A= —;A(ﬁ) . B- ;A(qz) O = Algr) (2.51)

generates an isomorphism to sp(2,R), giving a simple example of the results of
Section 2.3.2, and a corresponding faithful canonical realization of sp(2,R). If
we use the canonical realization (2.44) of su(1, 1), on the other hand, we obtain
complex expressions for the moments and therefore violate the reality conditions
imposed on faithful canonical realizations.

Using (2.51), the canonical realization (2.50) can be related to (2.49) if we define

Y —V/2iA i pP4+U/s? V2iB
V—iC + 2k f/ VT — isps ~ V/=iC t 2k f/ VU — isp.

(2.52)
with U = 4k?, such that {b', b} = i. However, reality conditions are again violated
because b # b*.

2.3.3.5 Non-faithful bosonic realization of sp(2N,R)

The Lie algebra sp(2N,R) can be written with N (2N + 1) generators A;; (i < j),
B;; (i < j) and C;; where i,j = 1,..., N and relations [118§]

[Aj, Avyr] = 0 = [Bij, By (2.53)
[Bij, Avjr] = Cyrj0ir + Cirjbijr + Cyridjir + Ciinjj0 (2.54)
[Cij, Airyr] = zg'%' + Aiirdjje (2.55)
[Cij, Byl = gg’5zz — Bjidij (2.56)
(Cij, Cyjr] = — Cyj0ijr . (2.57)
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It has a bosonic realization [117-120]

Z Ve By =2 biabja , Cy ;Z binbja + bjabi,)  (2.58)
a=1 a=1 a=1

for every integer n > 1, with nN boson variables b;, (implying 2nN degrees of
freedom).

For our purposes, this realization violates reality conditions. Moreover, it is
not faithful: Since 2N + 1 is odd, the number of degrees of freedom cannot match
the dimension N (2N + 1) of sp(2N,R), and since sp(2N, R) has rank N, it has N
Casimirs. For a faithful bosonic realization, one therefore needs N2 boson variables
bio (that is, n = N) and N Casimir variables. Finding an explicit realization of this
form has proven to be difficult even for sp(4,R). For instance, possible expressions
have been given up to solving complicated partial differential equations [119] or
diagonalizing large matrices [120]. In the next section, we will solve this problem for
the analogous question of finding a faithful canonical realization of a second-order
semiclassical truncation with two classical degrees of freedom, which is algebraically

equivalent to sp(4, R).

2.4 Constructing Casimir—-Darboux coordinates

A partially constructive proof of Darboux’ theorem for symplectic manifolds is pre-
sented in [98]: Given a symplectic manifold (M, w), the following steps demonstrate
the existence of Darboux coordinates (¢;, ) in a neighborhood U C M around a
given point x € M, such that w =37, dg; A dm;. We first choose some function on
M, calling it ¢, such that dg; # 0 at z. Its Hamiltonian vector field X, is then
non-zero and generates a non-trivial flow Fy, (t) = exp(tX,, ) in a neighborhood of x.
Choosing a hypersurface transverse to X,,, we can endow the whole neighborhood
with a pair of coordinates given by ¢; and m; = —t, defined by the parameter ¢ of
the Hamiltonian flow such that ¢ = 0 on the hypersurface. These two coordinates

are canonically conjugate because

0
{q,m} =X, t = St =1 (2.59)

We then move on to the hypersurface defined by ¢; = 0 = 71, apply the previous
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steps, and iterate until we have the required number of coordinates ¢; and 7
defined on a family of hypersurfaces of decreasing dimension. Starting with the
last hypersurface of dimension two, we iteratively transport the coordinates into
a neighborhood within the next higher hypersurface by declaring that they take
constant values on all lines of the flows F,(s)Fy,(¢), if ¢; and 7; have already been
transported in this way. The proof concludes by showing that the coordinates
transported to the neighborhood U of x in M are indeed canonical.

The steps used to prove Darboux’ theorem for symplectic manifolds can be
simplified and extended to a systematic procedure to derive Casimir—Darboux
coordinates on Poisson manifolds. We keep the first step, but instead of using
hypersurfaces of constant canonical coordinates we construct hypersurfaces which
are Poisson orthogonal to the already constructed canonical pairs. This modification
eliminates the need to transport coordinates from hypersurfaces to the full manifold.
We first illustrate the method for the second-order semiclassical truncation of a

single pair of classical degrees of freedom.

2.4.1 Canonical realization for a single pair of degrees of free-

dom at second order

The Poisson brackets of our non-canonical coordinates A(g?), A(qr) and A(7?) are

given in (4.8):

{A(¢*), Algm)} = 2A(¢%) , {Algn), A(r*)} =2A(7%) , {A(¢), A(n*)} = 4A(qr) .
(2.60)

As our first canonical coordinate we choose s = /A(g?). Identifying the (negative)

parameter along its Hamiltonian flow with the new momentum p,, we have the

differential equations

W) {a@?). /D) =0 261

Ops
T~ (Al AD) = A - (2.62)
OA(m?) Algr)

_ _{A(WZ)’\/@}:Q\?%ZQ T e

Ops
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Since s is held constant in these equations, we can first solve (4.27) by a simple
integration,
A(gm) = sps + fi(s), (2.64)

insert the result in (4.28) and integrate once more:

fi(s)

S

A7) = pi +2=—=ps + fals). (2.65)

Computing {A(gm), A(7?)} using the canonical nature of the variables s and ps,

and requiring that it equal 2A(7?) implies two equations:

dfi o df_ hdf L f

s oA teas X (2.66)
They are solved by
U
fi(s) =Uss ,  fos) = ?21 +U? (2.67)

with constants U; and U,. We can eliminate U, by a canonical transformation
replacing ps with p, + Us. The constant U; is the Casimir coordinate. The resulting

moments in terms of Casimir—Darboux variables are
Al®) =5, Algm)=sp, , A@)=pi+ (2.68)

as in (2.50) or [99,100]. The Casimir coordinate U; can be interpreted as the
left-hand side of Heisenberg’s uncertainty relation,
h?

A(@)A(T*) = Algm)* = U = (2.69)

which is a constant of motion at second semiclassical order.

2.4.2 Poisson tensors of rank greater than two

If we have a Poisson tensor of rank greater than two, we have to iterate the procedure
used in our example in order to find additional canonical pairs. In general, it may
be difficult to solve some of the differential equations explicitly.

Instead of using general solutions and eliminating surplus parameters through

canonical transformations, in practice it is more useful to make suitable choices
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for functions such as f; and f5 in the preceding example. There are wrong choices
in the sense that the procedure may terminate before the required number of
coordinates has been found, in which case one obtains a non-faithful canonical
realization. Usually, it is not difficult to see which choices lead to a loss of degrees
of freedom.

In order to iterate the procedure, we use the following method related to the
notion of Dirac observables in canonical relativistic systems [39-41]. Having found
a canonical pair (s,ps) on a (sub)manifold of dimension d, we construct d — 2
independent functions f; such that {f;, s} =0 = {fi,ps} for all i. These functions
are then Dirac observables with respect to s and p,. The construction of Dirac
observables is, in general, a very difficult task, and in fact presents one of the main
problems of canonical quantum gravity. Here, however, the structure of already-
constructed canonical coordinates helps to make the construction of suitable f;
feasible. In particular, the free functions that remain after constructing s and
ps, such as f; and fs5 in the example, are, by construction, independent of s, and
therefore already fulfill {f;, ps} = 0.

Only a single set of conditions, {f;, s} = 0, then remains to be implemented
by suitable combinations of the original f;, which can be done by eliminating
integration parameters in the flow Fy(¢). For instance, had we not already known
that U; in (2.69) is a Casimir function, we could have derived it as follows: The
flow generated by s? = A(g?) on the remaining moments is determined by the

differential equations

dA(gm) 9 dA(n?)
P @) — (q7) (2.70)
The first equation implies that A(qr)[t] = —2A(¢?)t + d with t-independent d.

Inserting this solution in the second equation, we find A(7?)[t] = 4A(¢*)t*> —4dt +e

with another constant e. We now eliminate ¢ by inserting t = 5(d — A(gm)|[t])/s? in
A(m?)[t]:
A(gm)[t)? d*
A(m?)[t] = -3 +e. 2.71
TM="5 A 27
Therefore, Uy = A(¢*)A(7?)[t] — A(gn)[t]* = —3d* + es? is independent of ¢, which
implies AU, /dt = {U;, A(¢*)} = 0, and U, is a Dirac observable with respect to

A(q*) which can be used as a coordinate Poisson orthogonal to s.
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The Poisson bracket of two Dirac observables is also a Dirac observable. (This
property may be useful for calculating further Dirac observables once more than two
have been found.) Given a complete set of Dirac observables, they form coordinates
on a Poisson manifold, and we can compute their Poisson brackets from their
expressions in terms of the original variables. On this new Poisson manifold, we
proceed as in the first step, and then iterate. The procedure terminates when we
reach the full dimension, in which case the Poisson manifold is symplectic, or when
we obtain a complete set of Poisson commuting Dirac observables. The commuting
Dirac observables are the Casimir functions. Because all coordinates constructed in
this way are functions of the original variables (the moments in our case of interest),

there is no need to transport coordinates to successive hypersurfaces.

2.4.3 Second-order canonical realization for two classical de-

grees of freedom

A non-trivial example of our general procedure is given by the second-order semi-
classical truncation of a system with two pairs of classical degrees of freedom,
(¢1,m) and (g2, 7). We obtain ten moments: two fluctuations and one covariance
for each pair, as well as four cross-covariance such as A(q1q2). The rank of the
resulting Poisson tensor is eight, so that we should construct four canonical pairs
and two Casimir functions.

Since we already discussed the case of a single canonical pair, we can speed
up the first step and construct two canonical pairs at the same time by defining
s1 = 1/A(¢}) and sy = y/A(g3). Their canonical momenta can be generated as in
the case of a single degree of freedom, but analogs of the functions f; could now

depend on all the remaining canonical variables: We have

P fﬂ'2
A(Q17T1) = Slpl + fq17r1 5 A(’]T%) = p% + Q;ifqlﬂl + (12171'1 + 5721 (272)
1
and
_ 2y _ .2, oP2 2 frz
A(qQﬂ'Q) = Sa2P2 + fq27r2 ; A(WQ) = Dy + Q;quQWQ + qamo + ST (273)
2

with four functions fg,x,, fz2, fo,r, and frz independent of s1, p1, s2 and p,.
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We now have to find spaces which are Poisson orthogonal to (si,p1, S9,p2), Or
functions of the moments which Poisson commute with all four canonical coordinates.
If we choose fy,r, = 0 = fgr,, this condition is equivalent to having moments which

Poisson commute with A(q?), A(qip1), A(¢3) and A(geps). Two such functions are

w2 = s1A(m) — sipt = A(g)A(rr) — Algim)* =: fi (2.74)

and
frz = s30(13) — s5p5 = A(g5)A(m3) — Algema)® =: fo (2.75)

obtained simply by solving (4.92) and (4.93) for fr2 and frz. After computing the
Poisson brackets between all the cross-covariances and A(q?) = s2, A(qim1) = s1p1,
A(q2) = s2 and A(gama) = sopa, We can construct a complete set of other Poisson
commuting functions by integrating flow equations generated by A(q?), A(qim1),

A(g3) and A(gams). The resulting combinations are

fs = ((J17T2) <9271)—A(Q1Q2)A(7717TQ) (2~76)

fio= AR - M) 17

fo = AR - Al 2.19
_ Alg)A(g)

fe = 7A(Q1Q2)2 , (2.79)

as can be checked explicitly. The Poisson brackets between these six functions are
closed, so that we can iterate the procedure.

We start the next step by defining s3 = fs, which is the inverse of the squared
correlation between the two particle positions. Its flow equations impose conditions
on derivatives of functions Poisson-commuting with ps, which can again be inte-

grated. Solving some of the integrals, we obtain ps as a function of the f; and s3,

explicitly
Ji+ [s
= 2.80
ps 483(1 — 53) ( )
Moreover, the four combinations
- - —
o o= fi+ (fa+ f5)° 3 L(fat [5)(fa— 15) (2.81)

4(1— fo) L—fs
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(fat+fs)? 1(fat+f5)(fa—Ss)

go = fat —f) 2 T, (2.82)
_ (fa+ f5)?

gs = f3+m (2.83)

ga = ;(le—fs) (2.84)

Poisson commute with s3 and ps3, as can again be checked explicitly. It turns out
that
g1+ g2 — 293 =Us (2.85)

is the quadratic Casimir of the full moment system. Using U;, we have three
remaining variables, which can conveniently be chosen to be g; & g, and g4. Their
mutual Poisson brackets are again closed.

The next step of the procedure leads to the combinations

g4

B 2.86
1 L (2.86)
S3 — 1
hy = (g1 — g2) (2.87)
53
By — (L758)(g1F0) +ssls £+ 2(1 4 s5)(1 = 53)"" i (2.88)

/5

Poisson-commuting with s3 and ps, in addition to U;. We choose py = h; as our

final canonical momentum, such that invariance under its flow implies

hy = A(ps)cos(sy) (2.89)
hs = A(ps)sin(sy) (2.90)

with some function A(p,). From the remaining Poisson brackets of h;, it follows
that

dA
A(p4) d(m) = —8psUy + 32p3 . (2.91)
P4
The general solution of this equation is
Alps) = \/Uz — Sp3U, + 16p} (2.92)

with a constant of integration Us which can be interpreted as the second Casimir.

31



(At this point, it could be any function of the quadratic and quartic Casimirs).
To summarize, we express the original moments in terms of Casimir—Darboux

variables. For moments of the first classical pair of degrees of freedom, we find

Alg)) = st Algm) =sip (2.93)
A(r}) = pi+ (D(SW;%’ S4, P1) (2.94)
with
D(s3,p3,84,p1) = iz ZL 1]94 4s3v/s3 — Ipspy +4s3 (s3 — 1) p5 + ﬁﬂﬁ
;S;/—_l \/Ug — 8pilUs + 16pj (\/837—1008 (s4) + sin (54)) ,

For moments of the second classical pair of degrees of freedom,

A(q%) = 5% . A(gm) = s2p2 (2.96)
F<S37p37547p4)
A(m3) = pj+ = (2.97)
2
with
S3 + 1 2 2 1
U'(ss,ps,80,p1) = — 3 — 1174 + 4s3\/s3 — 1psps + 453 (s3 — 1) pj T35 (12198)
5.1 \/UQ — 82U, + 16p} ( V83 — 1cos (54) + sin (34)) )
5 —
Finally, we have
-1
Almmy) = fi;? 4,5 (ZQ _ ?) s (2.99)
3 1 2
—2./53 (s3 — 1) (pl + pQ) L Bszl)
378 S9 S1 b3 8152\/8_3(83 — 1) 4
IO L PSRV R
5189 3 28182 (83 — 1) !
53 .
S U, — 8paU, + 16p]
+23152(33—1) 5111(54)\/ 2 — 8pyUs + 16p;
S s3—1s
Alpm) = Z2 =[P o= 2 (s = 1) VA s (2.100)

\/5_3 83
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P18 s3—1s S
Algm) = 224 333 S—?m —2(s3—1) @ipg (2.101)

Alqng) = (2.102)

Vo)
—
%’%%’
Wl w

for the cross-covariances.

2.4.4 Third-order semiclassical truncation for single pair of de-

grees of freedom

Third-order moments are subject to linear Poisson brackets within a third-order
truncation. In particular, the Poisson bracket of any pair of third-order moments
is zero within this truncation, and we have linear brackets between second-order

and third-order moments, such as

{A(e), Al®m)} =2A(¢%) . {A(@%), Agm™)} = 4A(¢* 1), {A(g), A(r)} = 6A(gr?)
(2.103)

and so on. Thanks to the truncation, the brackets still define a linear Lie algebra, but

it is not semisimple because the third-order moments span an Abelian ideal. This

seven-dimensional Lie algebra is the semidirect product sp(2, R) x R* where sp(2, R),

spanned by the second-order moments, acts on R*, spanned by the third-order

moments, according to

0000

1 3000
A = ——Ar) = , 2.104
5A() 02 0 0 (2.104)

0010

0100

1 0020
B = -A(§) = , 2.105
@@= 00y s (2.105)

0000

-3 0 00

0 -1 00
C = Agr) = 2.106
(qm) 0 0 10 (2.106)

0 0 03
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using (2.51). Computing the Casimir

1 1 15 3 /3
K=—-—-(AB+BA)— -(C?=—-"1=-=- ( 1) I 2.107

this action is recognized as the spin-3/2 representation of sp(2, R).

Guided by our second-order examples, we make the choice

Al = s (2.108)
Agm) = sipr (2.109)

as the first step in the introduction of canonical coordinates. Suitable variables on

the hypersurface Poisson orthogonal to (s1,p;) are

fi = A(P)A(F?) — Agn)?
fo = A(QZ)AA(Z];;) A(qm)

A 2\2 5 3
ho= R (@7 - Ar)aw)

A(¢*)A(7°) = A(gm?) A(g°n)
A(g*m)? — A(gm?)A(g3)

The dimension of the Poisson manifold at third order is D = 7, while the rank of

fi = 2A(gm) + Ag?)

the Poisson tensor is six. We therefore expect three degrees of freedom and one
Casimir function. One additional coordinate Poisson commuting with (s1,p;) is
needed to have seven independent variables. Since the Poisson brackets of f; are
closed, the last variable Poisson commuting with (s1,p;) has to be the Casimir

function, which by ansatz can be found to be

U = (A< > A(q AT (A(g*r)? = Alg*)Agr?))  (2.110)

2

4
- (A ) = Ag)AR)) (2.111)
To initiate the next step, we choose

S9 = f3 (2112)
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and integrate its flow equations. The resulting expressions tell us that

6f2 + fa
= —— 2.113
P2 1682 ( )
while ,
_ (6f2 + fa) 1 1
g=hH+ 16 , gQ——sz 4f4 (2.114)

Poisson commute with sy but not with p,. After a further transformation of

variables, we obtain the remaining canonical pair

g2
= 2= 2.115
S3 —82 ( )

291 —Tsy+ 10p3s,
6y/s2(—1+4p3)

ps = (2.116)

as can be checked directly.

The resulting faithful canonical realization is given by the second-order moments

A(?TQ) _ p§+f1(3272122,33,p3) (2.117)
1

A(gr) = sipr (2.118)

Alg?) = & (2.119)

where
2 1 2 2.2
f1(s2,p2, 83,p3) = —3+/52 (483 — 1) p3 + 3 (7 — 1033> s9 — 16s5p3 , (2.120)

and third-order moments

, 1 U, 1/4
_ O(sip) [t 2.121
Alr) V/528% (i, p5) <16Sgs§ — 482> ( )
1
Aqr?) = (p151 + (83 — 1) /52 + 4s9p») (2.122)

81\/5

I 1/4
X (p151+ (s3+ 1) v/S2 + 4s2p2) <1>

165952 — 49

) U, 1/4
Alg*m) = NG (P1S% + 51 (p3y/s2 + 432202)) <16525§—452> (2.123)
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A = U " (2.124)
V52 \ 165253 — 45, '

with

P(s;,p;) = pi’s? + Bpfs%\/gsg + 3p15159 (sg + 4s1p1ps — 1) + 64p§3§’ (2.125)

+s5/ %83 <S§ + 24s1p1p2 — 7) + 4829332/233 + 12pss3 (Sg + 4s1p1p2 — 1) :

2.4.5 Momentum dependence

In [100], the moments are quadratic in the new momentum p,. This property
is useful because it implies an effective Hamiltonian (4.6) with standard kinetic
term, quadratic in the classical momentum 7 (the expectation value) and the new

momentum py related to A(m?):

HY = —+V(({)=—-r—"2
() 2m (@) 2m
? p2 2 1 " 2
T s 174 vV 2.12
2m+2m+2m+ (q)—|—2 (@)s"+ (2.126)

FV(a) + 5V @A)+

The corresponding property for a bosonic realization implies that generators of a
Lie algebra have some terms bilinear in the boson variables. (However, bosonic
realizations corresponding to canonical realizations of moment algebras cannot
be completely bilinear, owing to Casimir terms such as U/s*.) Our third-order
realization for a single classical degree of freedom is similar in that A(7?) is quadratic
in the new momenta, altough with s-dependent coefficients.

Unlike the example of a single pair of degrees of freedom, the moments for two
pairs of degrees of freedom, given so far, are not quadratic in the new momenta. In
fact, we can prove by ansatz that, for a second-order semiclassical truncation for
two classical degrees of freedom, there is no faithful representation quadratic in
momenta with s-independent coefficients. The Poisson tensor has rank eight, so

that we are looking for four canonical pairs (s;,p;) and two Casimir functions.
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We write

A(m7) = pi + p3 + Fi(si)p1 + Fa(s:)ps + F(s:)
A(73) = py + pi + Gi(si)p2 + Ga(si)ps + G(s:)
A(mi72) = pip2 + p3pa + Hi(s:)pr + Ho(s:)p2 + Hz(s:)ps + Ha(si)pa + Hs(s;)
(2.127)
and choose
Alg) =si+s3 . A@)=s3+s] . Alqige) =s1so+s3sa.  (2.128)

A realization of the entire algebra can be generated by taking Poisson brackets: We

can compute

Almm) = - H{A(ng). AFD} A} (2.129)

IS,

and, given this moment,

Algim) = 1A, Amm)} . Alem) = A, Amm)} . (2130)

Finally, once we know these three moments, we compute

A(qim)+A(gem2) = {A(q1g2), A(mima)} ,  —Aqim)+A(gema) = {A(qim2), Algem) }
(2.131)

from which A(q;m) and A(gams) follow from linear combinations. If F} = F, =

F35=0, G, =Gy =G3=0,and HH = Hy = H; = H; = Hs; = 0, we have a

non-faithful realization because there are no Casimir variables. We therefore have

to find suitable functions depending on two additional variables, U; and Us, such

that the required Poisson brackets are realized.

Evaluating all Poisson brackets for consistency conditions, such as {A(7?), A(73)} =

0, we find the following mapping:

Alg) = si+s3 (2.132)
1 1 1 1 1 1
A(qlﬂ‘l) = S1p1 + S3P3 + 58182U1 <$% — 5%) + §S3S4UQ <$?1 — 3§>(2133)
2 2, .2 11 I 1
A(r) = pi+p3+piselUi | 5 — 5 | +p3sala | 5 — — (2.134)
S2 51 54 53
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2 2
1, ,(1 1 1, ,(1 1
TRl ( - ) A i

for the first classical degree of freedom,

Al@) = s3+s; 2.135)

(
1 1 1 1 1 1
A(q271'2) = SoP2 + S4p4 + 58182[]1 (S% — 8%) + 283$4U2 <S§ 5421>(2136>
1
i

11 1
A(m) = p3+pi+pesili (82 - ) +p453U2< .
1 2

53
2 2
1 1 1 1 1
0 202 (=
4 11 (sl s%) 45372 (33 sﬁ)

for the second classical degree of freedom, and

(2.137)

Alqig2) = 152+ 5384 (2.138)
11\ 1, (1 1

A(qimy) = $1p2+ S3ps + slUl 22 + o8s30 | 5 — = (2.139)
81 53 2 53 54
1 1 1 1 1

A = Sy UL e —_— s3U. 2.140

(gamy) Sop1 + Sap3 + 232 1 (s% s%) 2 2 <3421 s%) ( )

1 1 1 1 1 1
A(mm) = pipa + pspa+ §p181U1 ( 2) + S p2s2Us < 2)(2 141)
st s 2 51

1 1 1 1 1 1
- Uy | = — U.
+2p333 2 (s% 3) + 2}7484 2 <34 S%>
1 1
2
2

2
1 1 1 1

——518U7 | — — “s38,U3 | = — =
4715 (s 3%) 473542 (3?1 s%)

for the cross-covariances.

If the two free parameters U; and U; were independent Casimir functions, we
would have a faithful canonical realization. However, the rank of the Jacobian of
the transformation from (s;, p;, Ur) to the moments can be seen to equal seven, and
therefore the realization is not faithful. Moreover, the quadratic Casimir of the

algebra,
Gy =tr (((r4)%), (2.142)

can be computed explicitly and does not equal a function of U; and U, — it depends
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on the coordinates as well. If the map were faithful, we would have

oc, _ oc,
832- N 8pj

=0. (2.143)

Finally, we note that the canonical transformation

1 1 1 1 1 1
P, —sUy | 5 — = P, = 51U | 5 — =
1 p1+252 1(8% s%) ) 2 p2—|—251 1 (s% s%)

1 1 1 1 1 1
Py = p3+284U2<2—2> , P4:p4+83U2<8§_82>

Sy 53 2 4

and S; = s; maps our realization to the non-faithful

A
A

(@) =S;+5; , Alam)=S1P+S3P , Aln})=P+P;
(q%) :SQ+SQ y (QQWQ) SQP2+S4P4 s A(’/T%) :P22+P4?
(1q2) = S182+ 5384, A(qima) = S1P> + S3Py
(

@) = So Py + S4Py , A(mm) = PPy + P3Py,

e

in which there are no free parameters that could play the role of Casimir functions.
The only possibilities are therefore realizations non-quadratic in momenta, or with
non-standard, s-dependent kinetic terms. None of these options can lead to a

bilinear bosonic realization.

2.4.6 Realizations of sp(2n, R)

The isomorphism between second-order semiclassical truncations and sp(2n,R)
implies that faithful bosonic realizations of sp(4, R) cannot be bilinear in the boson
variables. This result underlines some of the difficulties in finding such realizations
pointed out in [119,120]. Given the generators A;; (i < j), B;; (i < j) and Cj;,
i,7=1,...,N, of sp(2N,R) with relations (5.26), it is easy to see that an explicit
isomorphism between sp(2N, R) and the second-order semiclassical truncation with

N classical degrees of freedom is given by
Aij = A(mim) . Bij = Alaigs) »  Cy = Alaim;).- (2.144)
In particular, for sp(4,R) we obtain a realization from (2.93)—(2.102) with
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four bosonic variables b; = \%2(31 +ip1), by = %(32 + ip9), by = %(33 + ip3)
and by = %(84 + ipy), in addition to two Casimir variables U; and U,. We do
not reproduce here all generators obtained by substituting bosonic variables in
(2.93)-(2.102), but note that the resulting expressions are rather different from the
non-faithful form (5.25). Even the moments that are bilinear in bosonic variables,
such as Byy = s? = 2(by + b})? or Ciy = s1p1 = 1 ((b7)? — b?), depend on different
combinations of the b;. These changes are required to maintain the reality conditions
implied by a bosonic realization. Moreover, our realization brings in the two Casimir

variables U; and U, in a way that requires a non-bilinear realization.

2.5 Parametric resonance of fluctuations in coupled

oscillators

In order to illustrate the usefulness of canonical realizations for physical applications,
we analyze the problem of parametric resonance in a quantum system of coupled

oscillators, based on the classical Hamiltonian

H = ; (v} +m3) + ; (¢} + &) +1(Dara- (2.145)

If v(t) is a small periodic function, one can apply time-dependent perturbation
theory to the corresponding quantum problem. However, if v(t) has twice the
natural frequency (w = 1) of the uncoupled system, as we will show, parametric
resonance leads to large fluctuations that may violate the perturbation assumption.
Our second-order canonical realization, on the other hand, presents exact results
for the quadratic Hamiltonian (2.145), which we display here in analytic form. The
canonical nature of our system allows us to adapt standard classical methods of
parametric resonance to the quantum problem.
A time independent canonical rotation by i?‘f radians decouples the two oscilla-
tors:
1., 1., 1 o 1 9
H=gm+5m+ 5(1 +7(0)a + 5(1 — ()% (2.146)
in the rotated canonical variables (¢;, 7;). The quantizations of (2.145) and (2.146)
are unitarly equivalent, but the quantization of (2.146) is easier to analyze and will

be used here.
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In a canonical realization of the second-order semiclassical truncation, the

quantum Hamiltonian takes the form

Hq — 3T+ 3T+ 31+ NE+ 3(1—1)B (2.147)
+301 + 595 + 3B + 3% + 5(L )t + 5(1—7)s3.

Since the oscillators are decoupled, we have used two individual realizations for
a single degree of freedom, and can set U; = Uy = 1/4 (using h = 1) with zero
cross-correlations for the ground state. Moreover, all cross-correlations should
remain zero in this coordinate system, because their equations of motion form a
four dimensional autonomous system that is non-degenerate. Once the analysis
has been done in this coordinate system the results can be transformed into the
original coordinate system by applying the inverse of the canonical rotation. The
coupling in the original system then illustrates some features of our new canonical
variables, such as the correlation angle 8 introduced in Sec. ?77.

Unlike the classical Hamiltonian, the quantum Hamiltonian Hgq is not quadratic.
As we will see, the nonlinear nature of the fluctuation dynamics implies new
resonance properties for suitable choices of v(¢). The Hamiltonian (2.147) is the
sum of four uncoupled Hamiltonians, two classical ones and two for the fluctuations.
In order to isolate the dynamics of fluctuations, we can focus on one of the fluctuation

Hamiltonians,

U 1
Hyye = =p* + 72 T3 1+7) % (2.148)

We recognize this as the radial part of the Hamiltonian of a two-dimensional har-
monic oscillator, such that %U /s* is analogous to the centrifugal term. Introducing

a spurious degree of freedom, ¢, we make the identifications

. 1
U = const = L? = (s%¢)* > 1 (2.149)
r = scos(p) , y=ssin(p) , 2=+, (2.150)
The fluctuation Hamiltonian
H’”y:}p2+1p2+1(1+7)x2+1(1+7)y2 (2.151)
fluc 2 xT 2 Yy 2 2 :

is now quadratic, but with additional degrees of freedom.
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Equation (2.149) gives us constraints on the initial values. Starting in the
harmonic-oscillator ground state, we have the initial values sy = 1/ V2 and pso =0
as well as U = 1/4. Thus, x3+y2 = % and zodo+yolo = 0. Moreover, s2¢ = U = %
implies ¢y = 1. Finally, there is an arbitrary initial phase o = ¢ which arises

because of the spurious nature of the coordinate ¢. We thus arrive at the initial

conditions
_ cos (a) _sin (a) (2.152)
r9 = —=cos(a) |, = ——sin(« .
0 \/i Yo \/5
1 1
Pz0 = 3 sin (@), pyo = ﬁcos () (2.153)

using L = xopyo — YoPzo0 = 1/2. Each of the two oscillators starts with a non-zero
fluctuation energy because of Heisenberg’s uncertainty principle.

We now choose v = 7 sin (2Qt), where 2 is a parameter we can tune. The
choice of 2 &~ 1 is of particular interest because it causes the fluctuations to grow
parametrically. We proceed by analyzing the equations of motion of one of the

auxiliary quantum degrees of freedom, x:
Z+ (14 ypsin (2Q2t))x = 0. (2.154)
We make the ansatz
x(t) = A(t) cos () + B(t) sin (Qt) (2.155)

where A and B are assumed to vary slowly compared with the trigonometric
functions. Our initial conditions imply A(0) = zo and B(0) = po.

We now apply standard methods of parametric resonance. Using (2.154) and
neglecting second-order derivatives of A and B as well as higher-frequency terms,
we find

; Yo 1 2

A = 24— (2*-1)B (2.156)
. ]_ 2 ’YO

B = 5 (2 —1)A——4 B. (2.157)
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This system of linear equations has the eigenvalues

Ay = iJ (Z{02>2 - <Qz§_2 1>2. (2.158)

Therefore, if 2 € [\/ 1— /2, \/ 1+ v/ QJ there is one solution that grows exponen-

tially, and one that decays exponentially. For generic initial conditions, this system

has the solution

A = zgcosh (M) + $ozgm)\(>\t> — Dz0 (Q;; 1) sinh)\()\t) (2.159)
B = (Cosh (AE) — EW) Pro + o <9225 1) SmhA(At) . (2.160)

The case €2 = 1 leads to more manageable solutions:
A = xgexp (th) , B =1pgexp (_Zl()t) (2.161)

and thus

x(t) = \}5 cos (o) exp (1%) cos (t) — \}5 sin («) exp (—?t) sin (t)  (2.162)

for the required initial values. Similarly, the second auxiliary degree of freedom has

the solution

y(t) = \/1§ sin (a) exp (th) cos (t) + \}5 cos (o) exp (—th) sin (). (2.163)

For the fluctuations, we obtain

1 t 1 13
si=2*+y* = 5 eXP (7;]) cos (1) + 5 exXP (—720) sin (1) (2.164)

and, making the replacement vy — —7o,

1 t 1 t
53 = 5 €XP (—720> cos ()* + 5 €XP (7;)) sin (£) . (2.165)

The system has now been approximately solved in this coordinate system using

an adiabatic approximation at (2.156). We still need to rotate back to the original
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coordinate system. For global linear transformations the moments of the states

transform like tensors

A =0TAO (2.166)

because the Poisson structure is conserved by this transformation. Using (2.166)

we find,

Alpg) = ;(sf—sg) (2.167)
Agt) = A@) =5 (5 +). (2.168)

We can isolate the canonical angle of the correlation function

0 = arccos (A(%qz)) (2.169)
Alqt)A(g3)

which, in the late-time limit, reduces to linear growth,
O ~ 2t. (2.170)

The canonical angle therefore phase locks with the pumping signal. The moment

A(qm ) can be found as well, with the result

1 , 1
Alqm) = 5(811)1 + Sopa) = %smh (iyt). (2.171)

The momentum dispersion is more complicated and we omit it here, but it can
be derived analytically. We can however write down the Heisenberg uncertainty for
each oscillator,
1 14 +~% 4 (2 +72) cos (4t) + 16 cosh (1) + 4 cosh (2yt) sin (2t)* — 4 sin 4¢ sinh ty

Ujp = —
Y27 16 6 + 2 cos (4t) — 2 cos 4t cosh ty + 2 cosh t~y

with exponential asymptotic behavior
1
Us ~ g &XP (7t) . (2.172)

The quadratic Casimir, by contrast, is an exact constant of motion for this system,

which can be confirmed explicitly despite the complexity of some of the correlation
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functions, and even after using an adiabatic approximation:

N —

Cy(t) (2.173)

This analysis would have been harder using other methods. The canonical
structure of our realization helped us to map the non-linear fluctuation dynamics to
a two-dimensional linear system. It therefore allowed us to make direct contact with
the literature on parametric resonance, without having to reinvent this analysis
for the corresponding ten-dimensional autonomous system of quantum moments.
Furthermore, the usage of canonical variables is fairly general as it only relies on
the Poisson bracket of the moments and not on the specific Hamiltonian. The effort
put into finding this canonical mapping can therefore be spent in other problems

as well.
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Chapter 3
Canonical tunneling time in ion-
ization experiments

3.1 Introduction

Our goal in this chapter is to apply the methods developed in chapter 2 to the
problem of tunneling times. That is, we want to address the question “How much
time does a particle take to tunnel through a barrier?”. Detailed observations of
atom ionization have recently become possible with attoclock experiments [44,69,70],
suggesting comparisons with various predictions of tunneling times. The theoretical
side of the question, however, remains largely open: Different proposals of how to
define tunneling times have been made through almost nine decades, yielding widely
diverging predictions and physical interpretations [71,72]. Even the extraction of
tunneling times from experiments has been performed in different ways [47-52],
and the original conclusion of a non-zero result has been challenged [53-55]. The
situation therefore remains far from being clarified, and a continuing analysis of
fundamental aspects of tunneling is important.

A recent approach to understand the tunneling dynamics in this context is
the application of Bohmian quantum mechanics [56,57], in which the prominent
role played by trajectories provides a more direct handle on tunneling times [79].
However, through initial conditions, the ensemble of trajectories remains subject to
statistical fluctuations. An alternative trajectory approach, which we will develop
in this paper, is to consider, in an extension of Ehrenfest’s theorem, the evolution of

expectation values and fluctuations, possibly together with higher-order moments
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of a state. By including moments of a probability distribution, such an approach
remains statistical in order to capture quantum properties, but it provides a unique
trajectory starting with the expectation values and fluctuations of a given initial
state. The ensemble of trajectories used in Bohmian quantum mechanics is replaced
by a single trajectory in an extended phase space, enlarged by fluctuations and
higher moments as non-classical dimensions.

In the context of tunneling, a semiclassical version of this proposal has been used
occasionally in quantum chemistry [99, 100], which we extend here to higher orders
and apply to models of atom ionization. Unlike Bohmian quantum mechanics,
these methods present an approximation to standard quantum mechanics, rather
than a new formulation. Nevertheless, since they lead to a single trajectory rather
than a statistical ensemble of trajectories, they provide a crucial advantage which,
we hope, can help to clarify the question of tunneling times in atom ionization.

In [79], it has been shown that a trajectory approach based on Bohmian quantum
mechanics reliably shows non-zero tunneling times in atomic models of ionization.
There is therefore a tension with recent evaluations of ionization experiments which
give the impression of zero tunneling delays [54]. The latter results are based on a
definition of the tunneling exit time through classical back-propagation [53]: Since
the energy of a tunneling electron in a time-dependent electric field is not conserved
and usually unkonwn in experiments, it is difficult to apply the intuitive definition
of the tunneling exit as the time when the electron’s energy equals the classical
potential. As an alternative, classical back-propagation evolves the final state of a
measured electron back toward the atom using classical equations of motion, and
defines the tunneling exit as the time when the momentum in the direction of the
electric field is zero, taking the point closest to the atom in the event that this
condition may be realized multiple times. As already noted in [79], this condition
is conceptually problematic because it uses classical physics near a turning point,
where the equations governing a classically back-propagated trajectory are usually
expected to break down. We will use our single-trajectory approach to compare a
quantum trajectory with a classical back-propagated one.

In addition, our analysis will allow us to derive further properties of the tunnel-
ing process. In order to obtain a single trajectory describing an evolving quantum
state, we write evolution of a quantum state in terms of a classical-type system

with quantum corrections, in which the expectation values of position and momen-

47



tum are coupled to fluctuations. The coupling terms, quite generally, lower the
classical barrier such that the classical-type system can move “around” it in an
extended phase space with a real-valued velocity. This detour has a certain duration,
depending on initial conditions, and provides a natural definition of tunneling time.

It turns out that several new ingredients are necessary compared with existing
treatments in quantum chemistry. For instance, semiclassical states are not always
sufficient for a full description of tunneling. This fact is not surprising because,
intuitively, a tunneling wave splits up into two wave packets separated by the barrier
width. Deep tunneling then implies states with large fluctuations, even if each
wave packet remains sharp and perhaps nearly Gaussian. Moreover, fluctuation
terms do not always lower the barrier enough to make tunneling possible at all
energies for which quantum tunneling occurs. In [100], the classical-type system
used for tunneling has been extended to moments of up to fourth order, with a clear
improvement of predicted tunneling times closer to what follows from wave-function
evolution. However, the extension was done mainly at a numerical level, which does
not provide much intuition about the tunneling process in a given potential. To
second order, by contrast, an effective potential was used in [99,100] which shows
how the classical barrier can be lowered by quantum fluctuations. One of our main
new ingredients is an extension of such effective potentials to higher orders.

In Sec. 3.2 we describe quantum dynamics using canonical semiclassical methods
and present a new effective potential that includes effects from higher-order moments.
In Sec. 3.3, we introduce various models of atom ionization in which our methods
can be applied, and discuss specific results focusing on tests of tunneling conditions

and the definition of tunneling times.

3.2 Quantum dynamics by canonical effective meth-

ods

Using canonical effective methods [92,93], we describe the dynamics of a quantum
state by coupled ordinary differential equations for the expectation values z = ()

and p = (p) coupled to central, Weyl-ordered moments

Azp") = (& = 2)*(D — p)" ) wey - (3.1)
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(In this notation, the usual fluctuations are written as A(z?) = (Ax)? and A(p?) =
(Ap)?, while A(xp) is the covariance.)

The Hamiltonian operator H(Z,p) implies the quantum Hamiltonian

Hq = (H(@+ (& —=),p+(—p))

= ety ( " ) O H.p) 7 (yayn-ay (3.2)

n=2a=0 a axaapn—a

with the classical Hamiltonian H (z,p). Hamiltonian equations for moments are

generated using the Poisson bracket

(A (pyy = 220 33)

derived from the commutator and extended to moments by using linearity and the
Leibniz rule.
Unfortunately, the Poisson brackets between moments are rather complicated

at higher orders, and they are not canonical. For instance,

{A(z?), A(zp)} = 2A(2%) . {A@?),A(p")} =4A(>p) . {Alep), A} =247,
(3.4)

corresponding to the Lie algebra sp(2,R), but those of higher moments are in

general non-linear. For these second-order moments, canonical variables were

introduced in [99, 100]:

s = A(xQ) , DPs =

(3.5)

together with a third variable, U = A(z?)A(p?) — A(xp)?, which has zero Poisson
brackets with s and p,. Inverting these relationships, we write the second-order

moments U
A@@®)=s* |, Axp)=sp, , AQP)=pi+— (3.6)

in terms of canonical variables (s, ps) and a conserved quantity U. To second order,

the quantum Hamiltonian can then be expressed as
(H) = -+ (V())
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+V((2) + QV"<<@>><M)2 =7 ;,f’s + Vigr(2, 5)(3.7)

with the effective potential

Via(z, s) = V() + 27;{92 V@), (3.8)

An extension to higher orders turns out to be more involved, but it can be
accomplished with the new methods developed in [115]. The canonical form of
higher-order moments then gives useful higher-order effective potentials, and it
suggests closure conditions, in the sense of [101], that can be used to turn the
infinite set of moments into finite approximations.

We introduce closure conditions based on the following properties of higher
moments which we have confirmed for up to fourth order [65]: the second-order
variable s also contributes to an n-th order moment, in the form ((& — (Z))") ~ s",
in addition to terms that depend on new degrees of freedom. Moments of odd
and even order, respectively, often behave rather differently from each other. For
instance, a Gaussian has zero odd-order moments, a property which extends
to generic states that evolve adiabatically in symmetric potentials [92]. This
difference is reflected in mathematical properties of the canonical variables. At
third order, for instance, there are three canonical coordinates, si, s, and ss3, such
that ((2 — (2))3) o s3 + s5 + s3. The constant of proportionality has zero Poisson
brackets with the canonical variables but is state dependent. As an approximation,
we set this constant equal to zero, reducing the number of degrees of freedom. If we
assume this behavior also for orders greater than four, we can complete the Taylor
expansion in (3.2) and derive the all-orders effective potential
v 1A (V()

Veg(z,5) = 52T V(z) + 2501 qp

U 1
— W+§(V(a:—|—s)—|—\/(:v—s)) . (3.9)

n

Heuristically, therefore, the particle does not follow a potential local in x, but rather
is feeling around itself at a distance s. This distance increases as the wave function
spreads out.

We have moved beyond the semi-classical approximation by replacing a strict
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truncation with a specific behavior of the moments. This extension is crucial for
our purposes because tunneling states or the ground states of an electron in most
atoms are not semi-classical. A semi-classical approximation should then not be
expected to give accurate results in situations where the tunneling times are very
long, or the electron spends a fair amount of time in states close to the ground

state.

3.3 Effective theory of tunneling ionization

In order to test various aspects that have been found to be relevant for tunneling
times in ionization experiments, we discuss properties and results of different models.
An application to tunneling ionization requires an extension of (3.9) to three
dimensions. The main question is then how to deal with cross-correlations between
different coordinates, which significantly enlarge the phase space. Motivated by
the intuition that a tunneling wave packet should split up predominantly in the
direction of the force that lowers the confining potential of a bound state, we assume
that the main moments to be considered are the two fluctuations (position and
momentum) in the direction of the force. These moments then play the role of
reaction coordinates [66], which reduce a large parameter space to a few significant
variables.

The relationship to the direction of the force implies a crucial difference between
the treatment of a constant force and time-dependent, rotating forces as used in
attoclock experiments. We first deal with examples subject to a constant force in
order to illustrate the tunneling process with our new methods, and then show how

time-dependent forces alter the conclusions.

3.3.1 Coulomb potential in a static electromagnetic field

As usual, we can treat tunneling ionization as a a single electron moving in
an effective potential with two contributions: a spherically symmetric term for
interactions with the nucleus and the remaining electrons, and a linear potential
in the direction of the electric field. Assuming that correlations between the
independent coordinates can be ignored, an approximation that can be expected

to be valid during most of the tunneling process which affects mainly one of the
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coordinates, the all-orders effective potential (3.9) for the 3-dimensional Coulomb

interaction and the electric field strength F' is then

.U 1 e
Veff(xi,sj) :Zﬁ+§ Z V(Il—f-(—l) ZSi) s (310)
i=1 <% {n;=0,1}
where
1 - orF-x
Vv 2\ . - F 3.11
(%) 77 7 (3.11)

is the classical potential and «; is the static polarizability of the ion. (We set
Z = (z,y, z) and use atomic units h = e = m, = k. = 1 throughout the paper.)
Evolution in the effective potential requires initial values of z;, s;, p; and p,.
Since these describe expectation values and fluctuations, they could in principle be
determined from an initial atomic state. However, it is more useful to minimize the
energy in the field-free (F' = 0) effective potential (3.10), in order to fix these initial
values within our approximation. That is, to get initial values for the canonical
variables we minimize § Y (p? + p2) + Veg(Z, 5) in the absence of the electric field.

We find

s, = and p)=p) =1} =0 (3.12)
for ¢ = 1,2, 3. These values, taken as initial conditions for tunneling with a non-zero
field, result in a ionization potential of I, = —2/9 which in our model corresponds
the ground-state energy Fgouna in the absence of the electric field.

We choose our coordinate system such that the x3-axis points in the direction
of the force. Figure 3.1 shows the ground-state equipotential line of (3.10) in the
x3 — s3 plane for both Argon (ay = 7) and Krypton (a; = 11), as well as the
behavior of the fluctuation parameter s3 with respect to the direction along zs.
When the field strength is small enough, the equipotential line of the ground state
literally forms a tunnel that the electron has to follow in order to escape. The
tunneling time is related to the amount of time spent in this tunnel. At this point,
we can see the importance of our extension beyond semiclassical effective potentials.
The quadratic s-term in (3.8) reduces the classical barrier monotonically in the
s-direction, giving us a steep slope instead of a tunnel. Numerical solutions in such

a potential show that the resulting tunneling times would be too large because
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Figure 3.1. A contour plot of the effective potential for both Argon (ay = 7) and
Krypton (ay = 11). The solid curve is the equipotential line, Veg = Eground = —2/9
for the approximate ground-state energy corresponding to (3.12). It shows the location
of the classical barrier in the presence of a field F' = 0.015 (a laser intensity of I ~
0.8 - 10'*W /cm?). The path of the electron is shown here by the (almost overlapping)
dashed lines for Argon and Krypton. The electron escaping from either atom has to
travel along an actual tunnel, formed by the equi-potential line in phase space.

trajectories get dragged into the s-direction with little movement in the x-direction.
The tunnel in our all-orders potential, by contrast, guides the trajectories such that
they still move substantially in the x3-direction. Corresponding tunneling times
are significantly shorter.

Our dynamical system contains not only expectation values but also the fluctu-
ation variables s; and ps,, related to Az; and Ap; as in (3.6). As shown in Fig. 3.2,
our effective evolution is self-consistent in the sense that it is indeed only the

fluctuation sz in the direction of the force (our reaction coordinate) that increases
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Figure 3.2. Trajectories of the tunneling coordinate x3, its fluctuation s3 and the
fluctuation s for Argon. The behavior for Krypton is qualitatively similar.

significantly, while s; and s, remain nearly constant. Nevertheless, the behavior of
the transversal position fluctations, shown in Fig. 3.3 for the example of s; at the
tunneling exit, is also of interest: There is a local minimum with a value less than
the ground-state fluctuation (3.12). At higher intensities, the fluctuations level off
because in a strong field they do not have much time to change. Moreover, these
fluctuations depend more strongly on the element used compared to the trajectories
in Fig. 3.1 for variables in the direction of the force, or the tunneling time to which
we turn now.

Using the all-orders potential in a static field, we estimate the tunneling time
in Argon and Krypton as a function of the laser intensity. The tunneling time is
determined by how long the particle travels from one turning point to another in a
state parameterized by x; and s;. The tunneling times for both Argon and Krypton
in the range of laser intensities used in [70], are shown in Fig. 3.4. We see tunneling
at all relevant scales, and qualitative agreement with the calculations from Wigner
formalism used in [70].

Traditionally, proposed tunneling times have often been expressed as integral
formulas, motivated by the WKB approximation. Our effective potential can be

used to derive a new version if we eliminate some of the basic variables in further
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Figure 3.3. The transverse exit fluctuation s; over the observable range of laser
intensities for Argon and Krypton.
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Figure 3.4. Tunneling times for Argon and Krypton. The dashed (Argon) and solid
(Krypton) lines correspond to the approximation (3.13) with s3 ~ x3. The range of the
laser intensity is obtained by scaling the electric field I = %ceOFQ. Time variables are
scaled to atto-seconds from atomic units.
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approximations. As suggested by Figs. 3.1 and 3.2, we may assume that s3 ~ x3

inside the barrier. The tunneling time can then be written as

TN/IS dzs / Yo day , (3.13)

ground — eff (ZEZ, Sz)

where 53 = x5 and 3 is the tunneling exit position. The values of x; and z, are
assumed zero, while 5; and 55 retain their ground-state values. The qualitative
behavior of the tunneling time in Fig. 3.4 under this approximation is not too far

from the results of our full computation.
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Figure 3.5. Exit momenta for the electron as a function of the laser intensity. They
have the same qualitative behavior as in [70] with an agreement of order of magnitude.

Our method also yields the momentum ps at the tunnel exit, shown in Fig. 3.5.
The longitudinal momentum is non-zero because the electron exits the tunnel with
momentum in the direction of the force: As shown in Fig. 3.1, in the effective poten-
tial, the classical turning point is replaced by an actual tunnel exit. Our effective
potential therefore presents a self-contained model in which several observational
features are qualitatively reproduced, without any free parameters beyond the
coefficients used to define the classical potential. However, it requires an extension

to time-dependent forces modelling laser fields.
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3.3.2 Time-dependent, circularly polarized electric fields

If the direction of the force is not constant, tunneling should affect the moments
of more than one degree of freedom. If the force is rotating at constant angular
velocity w, we can nevertheless find suitable reaction coordinates by transforming
to a frame co-rotating with the force. It is sufficient to start with a two-dimensional
system in the plane in which the force is rotating. For instance, the example used

in [54] is a two-dimensional, time-dependent vector potential

Ay = 2 ~ cos® (wt/2N) ( cos(wt) ) (3.14)

1+e esin(wt)
for N cycles of frequency w, with ellipticity e. The corresponding electric field is

dg Aow 4
—_— = t/2N
&~ Jira s Wi/2N) (

P sin(wt) + % tan(wt/2N) cos(wt) )

€ (— cos(wt) + % tan(wt/2N) sin(wt))
(3.15)
Specialized to two cycles, N = 2, and circular polarization, e = 1, also as in [54],

we have

sin(5wt/4) ) A

-~ Aw 3 1
E = WCOS (wt/4) ( cos(ouwt/d) | Wcos (wt/4)S ( 0 ) (3.16)

with the orthogonal matrix

( sin (5wt /4) —‘COS(5Wt/4) ) ' (3.17)
cos(bwt/4)  sin(5wt/4)

In terms of the electric field, we can write the Hamiltonian for a negatively
charged particle as

H=_p*+7 E+V(r). (3.18)

| —

In co-rotating coordinates

R=S"'% , P=5§5"y (3.19)
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we have

1oy = = 5
H= P+ R-Ey+V(R)+ Zw (PiRy — P,R)) (3.20)
with an electric field

Ey=S"'F = il/ogcosg(wt/él) ( (1) ) , (3.21)
which is not constant but points in a fixed direction. The fluctuations in this
direction are our reaction coordinates.

The transformation to a co-rotating frame shows that the two-dimensional
nature of tunneling in circularly polarized electric fields is not essential, but it turns
out that the non-static behavior of the field amplitude is important. This behavior
can be studied by Bohmian quantum mechanics in one-dimensional models [79], or
by our effective potentials as we will do in the rest of this paper.

For our methods, in the one dimensional case, it is of advantage to have a
smooth potential which is finite everywhere. Instead of the Coulomb potential or
the truncated version of [79], we therefore consider a one-dimensional model for a

Gaussian potential well in a time-dependent electric field:

g2

e

V(z,t) = — +x F(t). (3.22)
The potential depth is chosen so that the ground state energy agrees with Eground-

As the time-dependent electric field, we choose, as in [79],

(3.23)

Ft) = —Fysin(wt)?sin(wt) if0<t <X
0 otherwise,

which has an amplitude of Fp, frequency w = 0.05811, and starts at time ¢ = 0.
Compared with [54], this field belongs to a half-cycle pulse, N = 1/2. The
corresponding intensities are considered in the observed regime. We will use the
form (3.23) in our examples, and later on comment on some of the differences
compared with (3.21).

We use this model in order to probe different definitions of the time when the
electron exits the tunnel. The standard definition of tunneling exit points equates

the energy of the particle with the potential, at which time a classical turning point
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would be reached in the absence of quantum corrections. As shown in [53-55], this
condition cannot always be imposed in non-static situations, in which the energy
of the electron is not constant and may not be known in an experiment. As an
alternative, these papers proposed classical back-propagation as a new method,
combined with a definition of the tunneling exit as the time when the momentum of
the particle in the direction of the force, evaluated on a classically back-propagated
trajectory, is zero. However, while this condition is of advantage in evaluations of
experimental results [54,55], it is questionable, as also pointed out in [79], because it
makes use of a classical property (zero longitudinal momentum at a classical turning
point) in a region where classical physics is known to be inadequate. Our methods
describe tunneling by a single quantum trajectory, which we will compare directly

with the back-propagated classical trajectory in order to see possible deviations.

3.3.3 Definition of tunneling time for dynamic fields

The main quantity of conceptual interest is called “tunneling traversal time” in [79],
which is the time the electron spends in a classically forbidden region between two
turning points. In a constant field, the positions of turning points depend only on
the initial energy of the electron and can be easily determined, but the definition is
more difficult to implement when the dynamical behavior of the force is crucial [54].

As a solution, [54] proposed the method of classical back-propagation in order
to determine the “tunneling exit time” defined as the point in time when the
electron reenters a classically allowed region. By definition, the tunneling exit time
is therefore a point in time, while the tunneling traversal time is a duration. The
examples considered in [54] suggested near-zero tunneling exit times, which has to
be interpreted in the context of the pulse (3.21) with maximum intensity at time
zero. In the terminology of [79], the tunneling exit time of [54] is therefore equal
to the “tunneling ionization time” defined as the duration between the maximum
of the external force and the time when the electron reenters a classically allowed
region.

The tunneling ionization time can be accessed in observations more directly
than the tunneling traversal time. But it does not give us a full picture of the
tunneling process because the electron may well start tunneling before the external

force has reached its maximum. The near-zero tunneling exit times or tunneling
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Figure 3.6. Equipotential plot of the all orders at potental at ¢ = 16, about half-way to
the wave peak.

ionization times of [54] therefore do not imply that the electron tunnels without
any delay. The example of tunneling times given in [79] illustrates this difference,
which we can show explicitly using our effective potential: As shown in Figs. 3.6
and 3.7, the tunnel has already opened as early as halfway through the build-up of
the external force.

In the next subsection, we will analyze tunneling exit criteria, and then return

to the question of tunneling traversal.

3.3.4 Tunneling exit criteria for dynamic fields

For the time-dependent potential (3.22) we should use a definition of tunneling

exit time which can account for non-adiabatic effects. For instance, the energy
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Figure 3.7. Zoom-in of Fig. 3.6 on the area of interest. The dashed contour is from
t = 15 at which time the tunneling channel has not completely opened. A little while
later, at ¢ = 16, the tunneling channel is open and the particle can leave.

condition
Hq(p(t), ps(t), z(t), s(t);t) — z(t) F(t) = 0 (3.24)

gives us a finite time because we always have Vg < 0 when the term U/ 2ms? can
be ignored. This definition focuses on the energy gain in an external force: By the
time the electron reaches zero energy, it is in an allowed region for any negative
potential. In this condition, quantum effects can be significant, for instance when
the kinetic energy p?/2m of fluctuations raises the energy to positive values; see
Fig. 3.9 below. The condition is adapted to non-adiabatic situations, in the sense
that the dynamically changing energy is kept track of. While this criterion includes

non-adiabatic effects, the quantum dynamics is approximated by an all orders
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Hamiltonian. The canonical tunneling exit time is taken to be the instant when
(3.24) is satisfied.

We present results from numerical simulations with the quantum Hamiltonian
(3.7) for an effective potential (3.10) and the initial conditions (3.12). We mainly
show the tunneling exit time 7., by extracting the instant when the interaction-free
part of the quantum Hamiltonian (3.24) crosses the time axis. From this value, we
are able to determine the tunneling ionization time 7io, = Tex — Tmax, Which is defined
with respect to the instant of maximum field, ¢t = 7/2w in (3.23); see Fig. 3.8.
In particular, the tunneling ionization time 7., is several atomic units for a field
amplitude Fy = 0.14 and becomes smaller for higher intensity pulses. Figure 3.9
shows that the “quantum” kinetic energy Ty = p?/2m is important for an evaluation
of this condition. The tunneling exit time of the electron in Fig. 3.8 explicitly
indicates non-zero tunneling ionization time for a dynamic barrier, similarly to

what has been obtained in [47,48,70] but on a smaller scale.

Ho- xF
2.0+
— Tmax //’
18 ] Fo=0.14
''''' F0=0. 16 ,’/
1 0 [ | ==~~~ F0=O_ 1 8 ,II, -’/_,.-
0.5¢ 'I,' I/'l'
‘ I.'I "',. ; & | | .
20 y; o 40 60 80 100
- 0.5.’_____._.-/96:—.’-2:-’- -
-1.0¢

Figure 3.8. The tunneling exit time as an energy condition: Hg — x F' = 0. The
intermittent lines represent this condition with respect to time parameter ¢ for three
different electric field amplitudes (corresponding to an intensity range of Fg ~ [6 x
10,12 x 104 W/cm?). The vertical solid line indicates the instant of maximum field
strength at Tyax ~ 27 atomic units.
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Figure 3.9. The energy as a function of time, with the kinetic term of the quantum
degrees of freedom removed.

In addition, laser pulses of sufficiently high frequency do not lead to tunneling
if we keep the same maximal field amplitude for varying frequencies; see Fig. 3.10.
This implication is easy to understand because less energy then falls on the atom.
However, if we use pulses with various frequencies and intensities such that there is
always the same energy hitting the atom, we find that, as the frequency rises, the
tunneling exit criterion gives ionization times that tend to zero. In this limit, most
of the energy reaches the atom close to the wave peak. The result is conceptually
similar to the traditional distinction between tunneling ionization and multiphoton
ionization based on the Keldysh parameter yx = wrk with 7« = \/m /F [67,68].
If vk > 1, the pulse frequency w is too large to allow a process of duration 7« to be
completed during a laser cycle, which suggests that tunneling does not take place
at high frequency. However, the Keldysh time 7k refers to the ionization potential
I,, and is therefore adapted to a static electric field during tunneling.

Our method of approximating quantum dynamics allows us to compare different
possible tunneling criteria, in particular criteria based on momentum and energy

conditions for the tunnel exit. The recent study [54], analyzing a model for a

63



0.6}
-------- w=0.05
04 | - w=0.1
————— w=0.15
0.2+
20 i 40 60 80 100
0.2}
-0.4+ ,'/ //'I'
-0.6"

Figure 3.10. Above a certain critical frequency we no longer obtain tunneling according
to the condition (3.24).

single active electron in a helium atom, obtains a near-zero ionization time using
classical backpropagation and zero longitudinal momentum to define the tunneling
exit time. The basic idea of classical backpropagation is to evolve the initial state
quantum-mechanically forward to some time after the laser pulse has ended. Then,
the classically transmitted ionized part of the wave packet is backpropagated and
tunneling exit properties are extracted corresponding to the specific tunneling
criterion applied.

We can compare the momentum condition with the energy condition that we
introduced in (3.24). First, we evolve the system by the quantum Hamiltonian in
(3.7) forward to some late time, ¢ ~ 150. Then, using the final values of {(Z), ()}
at the late time as initial conditions of position and momentum {zyy, pyp}, We use
the classical Hamiltonian Hy = p?/2 + V(z) to backpropagate classically to an
early time. Figure 3.11 shows that the backpropagation trajectory of the particle
stays rather close to the quantum evolved trajectory. However, the backpropagated
trajectory deviates from the effective trajectory around the instant (¢ ~ 27) when
the electric field amplitude is maximum, close to the tunneling exit, where it

bounces off the potential well. In Fig. 3.12 we show how the tunneling exit time is

64



t
20 40 60 80

Figure 3.11. Quantum trajectory (solid line) going forwards and the classical trajectory
(dashed line) being back propagated in time. The quantum Hamiltonian is responsible
for the evolution of the quantum trajectory. The back propagated trajectory is obtained
by first evolving the classical trajectory backward in time with the initial condition of
the quantum trajectory at some later time.

realized with respect to the momentum condition based on classical backpropagation.
There is a non-zero tunneling ionization time 7i,, ~ 3 (atomic units) in qualitative
agreement with but smaller than what we obtained from the energy condition.

So far, our results have been shown for a half-cycle pulse (3.23), while [54] used
a two-cycle pulse. We repeated our calculations for one- and two-cycle pulses while
keeping the same frequency used in the half-cycle pulse, see Fig. 3.13. Figures 3.14
and 3.15 confirm our general findings, and they show that tunneling is possible
for significantly larger field amplitudes than for a half-cycle pulse (for which less
energy falls on the atom). The frequency dependence of tunneling times can also be
confirmed. More cycles in a pulse of the same frequency produce a longer tunneling
ionization time according to both criteria evaluated here because the field intensity

rises more slowly for bigger N.
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Figure 3.12. Momentum, as a function of time, being back propagated in time. The
intermittent lines represent the momentum condition with respect to time parameter ¢
for the same three different electric field amplitudes used for the energy condition. The
vertical line indicates the instant of maximum field strength 7,,x ~ 27 atomic units.

3.3.5 Tunneling dynamics of Hydrogen in three dimensions

As the most realistic one of our models, we now consider the three dimensional

case of a Hydrogen atom in a time dependent electric field

1o 1 7 E
H:§|m |ﬂ+ E(t), (3.25)

where we use a half cycle pulse

sin (wt)
E(t) = —Egsin® (wt)0(1)0(r/w —t) | cos (wt) | . (3.26)
0

The classical Hamiltonian at (3.25) has the all-orders quantization given in (3.10).
We use the definition of the tunnel exit time as the moment when the quantum
Hamiltonian with the electric field term removed is zero: Hg — 7'+ E (t) = 0. The

ionization time is then defined as the difference between the time of the maximum
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Figure 3.13. The tunneling energy condition as a function of time for various pulses
with different field amplitudes: HCP (half-cylce pulse, Fy = 0.15), OCP (one-cycle pulse,
Fy = 0.45), TCP (two-cycle pulse, Fy = 0.75).

electric field strength and the exit time, Tion = Tex — Tmax, and shown in Fig. 3.16.
Depending on the peak laser intensity, we find an ionization time that is either
positive or negative. We can easily understand this result as showing that the
electron can tunnel well before the peak reaches the atom, provided the intensity
of the pulse is large enough. However, a negative ionization time does not imply
that there is no tunneling delay.

Other observables are also accessible as well as correlations between them.
Figures 3.17 and 3.18 show that the spot size of the electron jet, defined as the
geometric mean of the transversal fluctuations, depends monotonically on the
exit time. This result indicates that there is indeed a tunneling delay, or at least
non-trivial tunneling dynamics, even if the ionization time is negative: The larger
the exit time, the more time there is for the wave packet to spread out. Additionally,

the tunneling time depends monotonically on the offset angle, see Figures 3.19 and
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Figure 3.14. Quantum trajectory (solid line) going forwards and the classical trajec-
tory (dashed line) being back propagated in time for a two-cycle pulse. The quantum
Hamiltonian is responsible for the evolution of the quantum trajectory.

3.20.

3.3.6 Alternate Definition of tunneling time

The transverse fluctuations used to define the spot size have an interesting dynamics
which can be used to define the tunneling exit time in an inherently quantum
way, rather than using classical dynamics as in backpropagation. As indicated by
Fig. 3.2, and confirmed below for the 3-dimensional non-static model, the transversal
fluctuations have three phases. Initially, the particle is confined for some time and
the fluctuations stay constant near their ground-state values. During tuneling in the
second phase, the state and its fluctuations undergo a more complicated dynamics.
After tunneling and when the pulse has ended, during the third phase transversal
fluctuations grow linearly as is well-known for a free particle. These phases are
clearly demarcated in a plot of the fluctuations, which are readily accessible from

simulations in our effective potential.
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Figure 3.15. Momentum, as a function of time, being back propagated in time for both
one- and two-cycle pulses. The intermittent lines represent the momentum condition
with respect to time parameter ¢ for the same three electric field amplitudes used for the
energy condition.

Nevertheless, extracting the transverse fluctuations is not entirely trivial. To do
so, we transform to the co-rotating frame in which some fluctuation parameters
s; are transverse to the external force at all times. Under global rotations, the

second-order position moments of a state, defined in general as
Ay = (7 = (7)) (75 — (7)), (3.27)

transform in the following way

Ajj = O A Oy, (3.28)

where O;; is the rotation matrix that acts on position coordinates. This transfor-
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Figure 3.16. Ionization time as a function of the laser intensity in the 3-dimensional
model (3.25).
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Figure 3.17. The exit time as a function of the spot size at a distance of 1000 atomic
units.
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Figure 3.18. Spot size of the wave packet a distance of 1000 atomic units from the
atom.
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Figure 3.19. Off-set angle of the ionized part of the wave packet.

71



Tex

T S T A S S SN S SRS AN S SR AR I NI 0
6 7 8 9 10 11 12
Figure 3.20. Tunneling exit time in terms of the offset angle.
mation results in the transverse fluctuation
s1 = y/cos? (0(1))s2 + sin? (6(t))s? (3.29)

where 6 is the offset angle as a function of time.

The transversal fluctuation during the tunneling process is shown in Fig. 3.21,
together with two linear fits of the first and final stages. The resulting tunneling
exit times in Fig. 3.22 are less than the time of the peak at ¢ ~ 27, so that we obtain
negative tunneling ionization times based on this criterion, similar to Fig. 3.16.
However, the extrapolated time in Fig. 3.21 lies somewhere in the middle of the
second stage, and therefore does not mark the end of the tunneling process.

We have to look at the tunneling dynamics in more detail in order to identify the
end of tunneling. In Fig. 3.23 we show the second time derivative of the transversal
fluctuation as a function of time, which can be interpreted as an effective force that
causes the spreading. The three phases are clearly visible, with significant time
dependence and a rich dynamics only in the important second phase during which
tunneling happens. The time where there is a negative force is interesting, because
it could be interpreted as a squeezing the particle state as it passes through the

tunnel. The last local maximum and the last inflection point, indicated in the
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Figure 3.21. The transverse fluctuations as a function of time. The tangent lines of the
linear regions are plotted in the dotted lines, and their intersection is marked with a dot.
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Figure 3.22. Alternative tunnel exit time, based on the fitting process shown in Fig. 3.21,
as a function of the intensity.

73



Fst

0.05-

Figure 3.23. The effective force acting on the transverse fluctuations. We see a rich
structure in the force as the particle goes through the tunneling region. The filled circle
and square represent the last local maximum and the inflection point, respectively.

plot, are very close to the wave peak and gives the time of the maximum force on
the transverse fluctuations. In particular, the last inflection point can be used as
an indicator for the tunneling exit. For a range of laser intensities, the resulting
tunneling exit times are shown in Fig. 3.24. In the entire range shown in this
diagram, the exit time is greater than the time of maximum intensity at t ~ 27,

and a positive tunneling ionization time of a few atomic units is obtained.

3.4 Summary

In summary, our main result — an all-orders effective potential — makes possible
a detailed analysis of the tunneling dynamics in various situations. It agrees well
with observed features and is able to make new predictions. Numerical solutions
give us an efficient way of generating data about the state of the electron which

can be compared with observations. Our method, perhaps in combination with
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Figure 3.24. Tunneling time based on the last inflection point of the tunneling phase
force.

numerical simulations of multi-electron wave functions, can therefore be used to
turn ionization experiments into indirect microscopes focused on the atomic state.

We have found qualitative agreement between our approximation and the exact
Bohmian treatment. In particular, there is always a tunneling delay. One advantage
of our new methods is that we have a single effective trajectory describing the
quantum state through its expectation values and moments. This trajectory can
directly be compared with the classical back-propagated trajectory, showing crucial
deviations near the tunneling exit. In specific examples, classical back-propagation
tends to underestimate the tunneling exit time. Our results therefore indicate
non-zero tunneling times, but by about an order of magnitude less than what had
initially been extracted from experiments. In particular, the tunneling time in a
half-cycle pulse is significantly less than the tunneling time in a static field at a
level of the maximum field of the pulse, which is not surprising once the importance
of non-adiabatic effects has been realized [53,79].

We also found that the definition of tunneling ionization time in non-constant
fields, given by the difference of the tunneling exit time and the time of maximal
field strength, does not give a full picture of the tunneling dynamics. In particular,
it is possible for the electron to start tunneling well before the maximum field is

reached. The entire tunneling process then takes longer than indicated by the
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tunneling ionization time, considered mainly in [54]. The tunneling traversal time,
used in [79], gives a more complete picture of time-dependent tunneling. In our
examples, we see that a tunnel opens up already at weak fields: The intensity
assumed in the static example of Fig. 3.1 is about one tenth of the intensity used
in our non-static examples, such as Fig. 3.8; see also Fig. 3.7.

Unfortunately, it is difficult to extract the full traversal time from experiments,
but we have given examples of indirect signatures, such as the spot size based on
fluctuations, which could be useful in this context. Moreover, if the spot size and a
corresponding longitudinal fluctuation can be measured, one could use it, along
with the final expectation values of position and momentum, as initial conditions
for semiclassical backpropagation defined as in [53] but using our effective dynamics
instead of the classical dynamics. This process would eliminate potential problems

of classical backpropagation near turning points.
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Chapter 4
Effective potentials from semi-
classical truncations

4.1 Introduction

In this chapter we extend the methods laid out in chapter 2 to more general effective
potentials and to higher semi-classical orders. Our methods are tested by taking
the adiabatic limit and comparing with known results. In particular we are able to
reproduce some basic results from quantum field theory. Beyond reproducing some
known results, we are able to add something new by getting analytic formulas for
the moments in an adiabatic state. Given the canonical structure of our variables,
we are able to examine the thermodynamics of our effective potentials, allowing us
to compute the moments in some thermal equilibrium with an external reservoir.
We also discuss how the purity of a quantum states can correspond to its moments.
We argue that some parameters in out mapping should correspond to parameters
that parametrize the purity of the state.

Semiclassical physics can often be described by classical equations of motion
amended by correction terms and possible new degrees of freedom. For instance,
Ehrenfest’s theorem shows that the expectation values of position and momentum
in an evolving quantum state obey equations of motion which are identical with the
classical equations to zeroth order in A but, in general, have a modified quantum
force given by —(VV (%)) not equal to the classical force —VV ({Z)) evaluated at
(#). The difference depends on (%), but also on the variance (Az)? and higher

moments, which constitute new, non-classical degrees of freedom.
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A moment expansion can be used to derive quantum corrections systematically.
In this way, one can formulate quantum dynamics as classical-type dynamics on an
extended phase space, given by expectation values and moments equipped with a
Poisson bracket that follows from the commutator of operators [92,93]. Moments,
however, do not directly form canonical variables on this Poisson manifold, which
complicates some of the usual procedures of canonical mechanics. Darboux’ theorem
guarantees the existence of local canonical coordinates, but it is not always easy to
find them. Using a procedure we developed in [115], as well as other new methods,
we present here detailed derivations of canonical variables for moments of up to
fourth order for a single degree of freedom, as well as to second order for a pair
of degrees of freedom. The resulting expressions can be used to make interesting
observations about the behavior of states, and they are crucial for the derivation of
effective potentials. We present several applications, including tunneling which is

also discussed in more detail in [95].

4.2 Canonical Effective Methods

We use a quantum system of N degrees of freedom with basic operators §; and 7y,

1 <4,k < N that are canonically conjugate,

In a semiclassical truncation [92, 93|, the state space is described by a finite-
dimensional phase space with coordinates given by the basic expectation values
q;j = (g;) and 7, = (%) and, for positive integers k; and I; such that % | (k;+1;) > 2,

the moments

A (qlfl g W%V) = ((G—q)"™ - (Gv—an)™ (F1—m)" - (RN —78)"™ )Wyt »
(4.2)

where the product of operators is Weyl (totally symmetrically) ordered. The

phase-space structure is defined by the Poisson bracket

[ (B) = = (1A, B), (4.3
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extended to all moments by using linearity and the Leibniz rule. The phase space

has boundaries according to Heisenberg’s uncertainty relation

MPIAR) - Algm)? > (4.4

and higher-order analogs.
Any given state (which may be pure or mixed) is therefore represented by a
point in phase space defined by the corresponding basic expectation values and

moments. A state is considered semiclassical if its moments obey the hierarchy
A (qllﬂ gl Wﬁ\y) —0 (h% Zn(ln+kn)) (4.5)

which is satisfied, for instance, by a Gaussian, but includes also a more general class
of states. A semiclassical truncation of order s of the quantum system is defined
as the submanifold spanned by the basic expectation values and moments such
that 3, (I, + k,) < s, which implies variables up to order %3 in h according to the
semiclassical hierarchy. The Poisson bracket that results from (4.3) can consistently
be restricted to any semiclassical truncation by ignoring in {A;, Ao} all terms of
order higher than s in moments. In this restriction, the product of a moment of
order s; and a moment of order s, is considered of semiclassical order s; + s, while
the product of a moment of order s; with A% is of order s; + 2s5 [96]. For given
s, the Poisson tensor on the semiclassical truncation of order s is, in general, not
invertible. Therefore, semiclassical truncations and the resulting effective potentials
cannot be formulated within symplectic geometry.

The Hamilton operator H determines a Hamilton function (PAI ) on state space,
which can be restricted to any semiclassical truncation of order s to define an effective
Hamilton function of semiclassical order s. We assume that each contribution to
the Hamilton operator is Weyl-ordered in basic operators. Any Hamilton operator
that does not obey this condition can be brought to Weyl-ordered form by using
the canonical commutation relations, which results in terms that explicitly depend
on h. In order to compute an effective Hamiltonian of order s for a given Hamilton

operator H(§;, ), we use

Hego = (H(G+ (3 — qj), fx + (Fr — 1)) (4.6)
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This expansion is reduced to a finite sum if H is polynomial in basic operators, in
which case the expansion serves the purpose of expressing the expectation value
of products of basic operators in terms of central moments. For a non-polynomial
Hamilton operator, the expansion is a formal power series in A. The definition of

our Poisson bracket ensures that Hamilton’s equations

FUC)A) = {f((-), A), Hers} (4.7)

on any semiclassical truncation are consistent with Heisenberg’s equations of motion

evaluated in a state.

4.2.1 Examples

For a single pair of classical degrees of freedom, N = 1, the phase space of the
semiclassical truncation of order two is five-dimensional (and therefore cannot be
symplectic). In addition to the basic expectation values ¢ and 7, there are two
fluctuation variables, A(¢?) and A(7?), and the covariance A(gm). The non-zero

Poisson brackets of these variables are given by

{o,7} = 1 (4.8)
{A(¢®), Algm)} = 2A(¢%) (4.9)
{Agm), A(7*)} = 2A(x%) (4.10)
{A(¢%), A7)} = 4A(gn) (4.11)

which are linear and equivalent to the Lie algebra sp(2,R).

More generally, the second-order semiclassical truncation for N pairs of classical
degrees of freedom is equivalent to sp(2N,R) [115]. Third-order semiclassical
truncations also have linear Poisson brackets which are no longer semisimple:
Within a higher-order semiclassical truncation, the Poisson bracket of two third-
order moments is a sum of fourth-order moments and products of second-order
moments, all of which are of order four and set to zero in a third-order truncation.

Moreover, the Poisson bracket of a second-order moment and a third-order moment
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is proportional to a third-order moment, for instance

{A(P), Al*m)} =2A(¢%) . {A(@%), Algm™)} = 4A(¢° 1), {A(g), A(r*)} = 6A(gr?)
(4.12)
for N = 1. The third-order moments in a semiclassical truncation of order three
therefore form an Abelian ideal, and the corresponding Lie algebra is not semisimple.
(For N = 1, the Lie algebra is the semidirect product sp(2,R) x R* where sp(2,R)
acts according to its spin-3/2 representation [115].)
For orders higher than three, the Poisson brackets are non-linear and therefore

do not define Lie algebras. A general expression is given by [92,97]

{A(d"p"), Algp)} = adA(¢"p*)A(q"'p) — beA(d"'p")Algp™)

M 10 n—1
() g e

odd n=1 2

where M = min(a + ¢,b+ d,a + b, ¢+ d) and

n o= i_o(—mmm!(n —m)! (:1) (n _b m) (n ‘ m) (i) L (4.14)

The inclusion of only odd n in the sum ensures that all coefficients are real. Terms
containing A(q) or A(p) are considered zero: They correspond to expectation values

of the form (@ — a) = 0 which are identically zero.

4.2.2 Purity

The collection of all moments determines a state, provided it obeys conditions that
follow from uncertainty relations. Since moments are defined using expectation
values, which can be computed from a pure or mixed state, they may describe a
pure or mixed state. In general, it is not easy to determine the purity of a state
described by moments without first reconstructing a density matrix from them. As
we will see, however, canonical variables for moments can provide indications as to
possible impurity parameters. In preparation of this application, we discuss here
ingredients for possible reconstructions of states from a given set of moments.

If the state is pure, it is sufficient to consider only the moments A(g") and

A(q"'7) to reconstruct a wave function [92]. For instance, we can use Hermite
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polynomials H,,(q) and their coefficients h,,; defined such that H,(q) = >, hmlql.

The expectation values a,, = (¢") can then be used to compute
Cn = g = /dQW(Q)IZHn(q), (4.15)
!

from which we obtain the probability density

o =Y

(4.16)

2"7Tn'

using the orthonormality relation of Hermite polynomials.
Using b, = (¢"7), the phase a(q) of the wave function ¥ (q) = exp(ia(q))|¥(q)|

then follows from

hd
Reb, — Re / dqiq d’ (4.17)
—ix za ZCMd
~ Re [ daello ( 9l +e C'fé") (118)
- nf dalul2n . (4.19)
dg
If we define q
d, =3 h,Reb, = h/dq[¢|2£Hn(q) , (4.20)
1
we reconstruct )
da e 1 d
— = " _H,(q). 4.21
dg ﬁ|¢|2 Z )| (Q> ( )

Integration gives a(q) up to an arbitrary constant phase.
In order to reconstruct a density matrix, we need all moments. First, position

moments are given by

A" = 6@ = (@)"7) = [ (a—(@)*pla.9)da (4.22)

from which we can reconstruct the diagonal part p(q, ¢) using orthogonal polyno-

mials. Using momentum-dependent moments, we can compute the values of

t((a - (@)"7"0) = (h) [a- @y 2550

]

dg (4.23)

Yy=q
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and use them in

i (%) wa-@ren = [u-arsy D

b b y=q

= [(a—(@)"0la+d.q)g (4.24)

to reconstruct p(q + d,q) for arbitrary ¢ and d.

In a semiclassical truncation we have incomplete information about the mo-
ments and it may be impossible to tell with certainty whether truncated moments
correspond to a pure or mixed state. However, if there are parameters that appear
only in moments of the form A(¢%r®) with b > 1, they may be considered candidates
for impurity parameters. We will see several examples in our derivation of canonical

variables for moments.

4.2.3 Casimir—Darboux coordinates

Since the brackets (4.13) are non-canonical, it is not possible to interpret the
moments directly in terms of configuration variables and momenta. However, the
Darboux theorem and its generalization to Poisson manifolds guarantees that one
can always choose coordinates that are canonical, together with a set of Casimir
coordinates that have vanishing Poisson brackets with all other variables. The
required transformation from moments to Casimir-Darboux variables of this form
is, in general, non-linear. In [115], we have developed a systematic method to derive
such transformations, based on a proof of Darboux’ theorem given in [98]. We have
applied this method to semiclassical truncations in [115], which we review here

with further details in the relevant integrations.

4.2.3.1 Single pair of degrees of freedom at second order

We illustrate the method for the case of a semiclassical truncation of order two
for a single canonical pair of degrees of freedom. In this case, Casimir-Darboux
variables had already been found independently in [99,100].

The relevant Poisson brackets of second-order moments are given in (4.8). The
procedure starts by choosing a function that plays the role of the first canonical

coordinate. It is convenient to have a quantum fluctuation as one of the configuration
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variables, and therefore we choose s = 1/A(¢?). This function, viewed formally as

a Hamiltonian, is the generator of a Hamiltonian flow on phase space defined by

df(A(g?), Algm), A(7?)

de = {F(A(@"), Algr), A(x?), s} (4.25)

If we already knew canonical coordinates, it would be obvious that the Poisson
bracket on the right-hand side of this equation changes only the variable p,; canoni-
cally conjugate to s, and therefore the derivative should be equal to the (negative)
partial derivative of f by ps. Since we do not know p, yet, we revert this argument
and implicitly define py such that the derivatives in (4.25) equal the negative
partial deirvative by ps for any function f. In particular, for the three second-order

moments we obtain

2L qa) A = (4.26
PO~ . A} = B - 5 (4.27)
OA(T®)  _ (n(n2 o Algm) _ A(gr)

o {A(7%),\/A(¢?)} =2 A 2 . (4.28)

By construction, these are partial differential equations in which s is held constant.

We can easily solve (4.27) by
A(gqm) = sps + fi(s) (4.29)

with a free function f; depending only on s. Inserting this solution in (4.28), we

f1(s)

S

have

A(r®) = p? +2=—ps + fals) (4.30)

with another free function f; depending only on s.
Computing {A(gn), A(7?)} using the canonical nature of the variables s and
ps, and requiring that it equal 2A(7?) implies two equations:
d d d
i:ﬁ ﬁ_zﬁi_zé' (4_31)

ds s 7 ds Ts2ds S
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They are solved by
fils) =Uss ,  fals) = - + U3 (4.32)

with constants U; and U,. We can eliminate U, by a canonical transformation
replacing ps with ps 4+ Us. The constant U; is the Casimir coordinate. The resulting

moments in terms of Casimir—Darboux variables are
Al®) =5, Algm)=sps, , AF)=pi+ 5 (4.33)

as in [99, 100].
In general, it may be difficult to recognize a variable such as U; as a Casimir

coordinate. In such a case, the flow generated by s or s> = A(¢?) is again useful:

dA(qm) 9 dA(m?)
e —2A(q¢%) e —4A(qr) . (4.34)
The solutions are similar to what we already used, A(gm)[e] = —2A(q%)e + d for

the first equation and A(7?)[e] = 4A(¢?)e? — 4de + e for the second equation, with
constants d and e. But now we use these equations to eliminate € instead of solving

for ps. Inserting € = 1(d — A(gm)[e])/s* in A(w?)[e] implies

A(r?)[e] = ~3 +e. (4.35)

The combination U; = A(¢?)A(7?)[e] — A(gn)[€e]* = —3d? + es? is therefore indepen-
dent of €. Since dU; /de = {U;, A(¢*)} = 0, Uy is a coordinate Poisson orthogonal
to s. It is also Poisson orthogonal to ps by construction, and therefore represents

the Casimir variable of this system.

4.2.3.2 Single pair of degrees of freedom at third order

We now try to find an extension of our Casimir-Darboux coordinates to third
order. There are now seven moments, and the rank of the Poisson tensor shows
that there is a single Casimir variable. We must therefore derive two additional
pairs of canonical degrees of freedom. Since Darboux coordinates are defined only
up to canonical transformations, the form in which they appear in the moments is
not unique and subject to choices. For now, we make a choice motivated by the

canonical form we just derived at second order: We assume that A(g?) depends
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only on one of the new canonical pairs,
A) = 3 (4:36)

from which it quickly follows, by a calculation similar to our second-order example,
that

A(gr) = s1p1 (4.37)

is a consistent (but not unique) choice of introducing the first momentum.

The remaining canonical pairs must be such that they have zero Poisson brackets
with s; and py, or with A(¢?) and A(gn) according to our first choices. The same
procedure that we used to derive U; as a coordinate Poisson orthogonal to both
s and pg at second order can also be used here, but now we have five additional
moments which should be expressed in terms of functions Poisson orthogonal to
s and ps. By systematically computing the flows of all the remaining moments
generated by s; and p; and eliminating flow parameters, it follows that the following

functions of moments are Poisson orthogonal to s; and p;:

fi = A(@)AT?) — Agn)?
fr = A(QZ)AA(EJ(];)—A(W)

A %)? 2_\2 2 3
ho= 3 (A7 - Ar)aw)

A(@)AT?) = Algr*)Alg’m)

fi = 2A(qm) +A(q2) A(@m)2 — A(gn?)A(¢?)

One additional variable can be derived independently from the Casimir function of

the Lie algebra that corresponds to third-order moments,

f=U = (AlePmAgr®) - A@)AE)) (4.38)
~4(A(gm®)? = A(@m)AT) (A(g*T)” = Alg*)A(gr?)) (4.39)

(The fourth power of U; is chosen such that U; is of third order just like the moment
order considered here.) While f5 Poisson commutes with all other f;, (f1, f2, fs, f1)
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have non-linear brackets

{fi,fo} = 2f+2ff +4fs (4.40)
{fi.fs} = 12fafs+2fsfs (4.41)
{fi. 11} = —4h—fi+4fs— Q2+ ) (4.42)
{fo, f3} = —Afs (4.43)
{fo. fi} = —4f2 =2y (4.44)
{fs, s} = —8f (4.45)

with one another.

We are now ready to choose our second configuration variable. We define

S2= fs, (4.46)
such that
dfr dfs 0f4
— _12 -2 2 =4 — =-8 4.47
Ops sof> safa Ops %2 Ops 52 ( )

can be used to determine the second momentum variable. Integrating the last two

equations and inserting the results in the first one gives

fi = —16s5p5 — 52 (1292 + 294) p2 + 1 (4.48)
fo = 4sopa+ g2 (4.49)
fa = —8sapsr+ g (4.50)

with three functions ¢y, go and g4 independent of py. (They can therefore depend
on s, and the remaining canonical pair, s3 and ps3, as well as the Casimir variable
U;.) Since we are interested in deriving py, we can choose the free functions such
that it is easy to invert (4.48), (4.49) or (4.50) for po. A wrong choice at this point
could result in a degenerate system that does not allow us to derive all canonical

pairs. Since we know how many canonical pairs we obtain, a little bit of trial and

error quickly shows when a choice is suitable. If we choose g4 = —6g2, we obtain
6f2+ fa

= 4.51

P2 1655 ( )
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from a combination of (4.49) and (4.50), as well as

(6f2 + f1)°

g =N+ 16

1 1
y g2 = —§f2 - 1f4- (4-52)

By construction, g; and g do not depend on ps, but we have not made sure
yet that they do not depend on s, either. Since s; is defined as sz, the Poisson
brackets (4.40)—(4.45) can be used to show that g; and go do, in fact, depend on s,.
The same Poisson brackets determine the canonical flow generated by py in (4.51)
on g; and go. By eliminating the flow parameter as in some of the previous steps,

we find that the combinations

g2
= 2= 4.53

2g1 — Ts9 + 10p§sZ

6/52(4p3 — 1)

are independent of sy and are therefore Poisson orthogonal to all previously con-

53 (4.54)

structed canonical pairs. They determine our final pair (s, p3).
In order to express moments in terms of canonical pairs and the Casimir variable,

we insert the functions

fio= 3vE (=1 +4p3) ss + ; (7s2 — 10s2p3) — 16553 (4.55)
fo = /Saps + 4saps (4.56)
fo— s (4.57)
fi = —4y/sop3 — 8sapy ( )
fs = U (4.59)

in (4.38) and (4.38) and invert the resulting relations for

Alg?) = s, Algn) =sip (4.60)
3/52 (4p2 — 1) 55 + 159 (7 — 10p2) — 1652p?
A) = gl B U Dt s (T 100) = 1000, ),
81 Sl
U
A(n®) = - (4.62)

(s, i)
s31/255% /1 — 4p?
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Ui

A(gr?) = -1 4 4.63
(qm*) o = (p151+ (p3 — 1) /52 + 4s2p2) (4.63)
255 "y/1 — 4p3
X (p151 + (1 +p3) \/8_2 + 482}72) (464)
U
A(Pr) = L (pr5? + 51 (psy/52 + 4s0p2) ) (4.65)
3/2 2
2s5'"4/1 —4p3
U 3
Alg®) = S N (4.66)
2552, /1 — 4p?
where
O(s;,pi) = p151 + 3p1p331\/_ + 3p15182 ( 1 ~|—p3 + 4p151p2) + (54}9252 (4.67)

+psy ( T+p5+ 24p1p281) + 48pspdsy’” + 12pss} ( 1+ p3 + 4p151p2) :
More compactly, some of the momentum-dependent moments can be written as

Uy <P3 — 3P — 4p333/2)

A(r?) = (4.68)
57 \/23 1 - 4p
P —
Agrt) = =5 (4.69)
/25524 /1 — 4p?
P
Alg*r) = Giss (4.70)

2552\ /1 — 4p?

if we introduce P = pysy + p3,/s2 + 4s9p2. Note that s3 does not appear in any
A(g*w®) with b < 1, and may therefore be a candidate for the impurity of a state.

4.2.3.3 Third order by ansatz

As we have seen, several choices have to be made in the process of deriving Casimir—
Darboux coordinates. Some choices may lead to degenerate systems in which a
smaller number of canonical pairs results, and which should therefore be discarded.
However, even within the class of non-degenerate systems, there cannot be a
unique set of Casimir-Darboux coordinates because one can always apply canonical

transformations of Darboux variables. Depending on the application, some choices
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may lead to more useful realizations of canonical variables than others. Staying
with the third-order system for a single pair of canonical degrees of freedom, we now
apply an alternative method which works by ansatz and therefore is somewhat less
systematic than the previous procedure. However, it makes it easier to implement
certain properties such as a simplified version of A(7?) in (4.61) with s;-independent
coefficients. As we will see, such a version greatly simplifies the effective dynamics,
but it does not always exist, in particular if we have more than one pair of classical
degrees of freedom.

We make the ansatz

3 3
A(m?) =D p; + F(s1,82,83)  ,  Algm) = sips (4.71)
2

=1

(2
3
APy = st Ald)=> s (4.72)
i=1 i=1

introducing three canonical pairs, as required. The function F'(sq, s9, $3), which is
assumed to be independent of the momenta, is subject to consistency conditions that
follow from the required Poisson brackets of moments. Once we have a consistent F',

we can generate all the remaining moments by taking successive Poisson brackets

with A(7?): X
At = =5 {A), Alg"T) | (4.73)

2m
starting with m = 3, n = 0 in which case we have defined A(¢®) in (4.72) and can

derive

Alg’m) = D pisi (4.74)
1 OF
2 _ 2. = 27
A(gr®) = zi:pi Si =] : S; 95, (4.75)
1 OF R
A(r?) = i | 4si— 2 . 4.
(%) Zijpz 4Zijpz ( 5 %s: +;Sﬂasiasj) (4.76)

Since we have explicitly used all three canonical pairs expected for a third-order
truncation, F' depends on one further parameter, U, which will be the Casimir
coordinate. Since F' and therefore U appear only in moments which have at least

two momentum factors, U is a candidate for an impurity parameter in this mapping.
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Equation (4.73) also applies to second-order moments, m+mn = 2. Since we have
defined all three second-order moments in (4.71), we obtain consistency conditions

on F. We first compute

{A(r%),Al¢*)} = —4281‘2% (4.77)
and from this
(A7 (), AP} = 80 4T s, (4.78)
The condition
{Ar? {A(7%), A(¢*)}} = 8A(n?) (4.79)
then implies
Zsigi = —2F (4.80)

and therefore F' is homogeneous of degree —2 if all s; are rescaled by the same
constant.
Applying further Poisson brackets with A(7?) does not give new conditions.

For instance,
0 ={A(), {A@), {A(r), A} }} (4.81)

is equivalent to
oF 0’F
0=sl3 ) si—— | . 4.82
( Zi:p 8si+%p5jasﬁsj> (4.82)

Since the s; and p; can be varied independently, the condition implies that all three
OF/0s; are homogeneous of degree —3 if all s; are rescaled by the same constant,
which follows from F' being of degree —2.

Another consistency condition can be derived by looking at the third order

moments:
0= {A@), {A@), {AE), {AF), A¢*) }}}} (4.83)

is equivalent to

OF O*F 1 PF
4 S ———— + — 2y —— 4.84
Ds, + isz SiPj asiasj + 5 Uzk S PiPk 8siasj83k ( )

0 = 6> p
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2 2
3 <3F> L L 20F OF (4.85)

_5 Xl: % 831- 1 i % st 8si85j .

This condition is generally independent from (4.80). For example, the solution
F =73%,U/s? of (4.80) is not a solution of (4.84).

One further condition has to be imposed, which is the invertibility of the
mapping from moments to (s;, ps,). (Otherwise one could choose the trivial solution
F =0.) For any given F', this condition can be checked by computing the Jacobian

of the transformation, and it is fulfilled, for instance, by the solutions

F(s1,59,83) = Z (4.86)

i<j (si = s5)?
of (4.80) and (4.84), where U is the Casimir variable. Therefore, there is a faithful
mapping from moments to canonical coordinates at the third order, such that
moments are quadratic in the new momenta with s-independent coefficients. The
ansatz used here provides a simplified procedure to compute Casimir-Darboux
coordinates, but only if moments quadratic in momenta exist. The choice (4.86) is
not unique, but it is interesting because for U > 0 it implies repulsive potentials
between the s; in an effective potential.

At this point, we have obtained two different canonical systems for the third-
order semiclassical truncation of a single classical degree of freedom, with Casimir
variables U; and U, respectively. However, a direct comparison of these two
versions of the Casimir variable is difficult because the two Poisson algebras we have
canonically realized, in fact, differ from each other in a subtle way: For the mapping
derived with the ansatz we have Poisson brackets of third order moments of the
form {A?, A?} = O(h?). The right-hand side is considered zero in a third-order
semiclassical truncation, which corresponds to an fi-order of 3/2. For the mapping
derived systematically, however, we were able to exactly impose {A?, A?} = 0.
Therefore, the two Casimir variables are likely to differ from each other by terms of
the order h2.

Nevertheless, it is instructive to compute the Poisson bracket of the moments de-
rived with the ansatz with the Casimir U; that was derived systematically. Assuming
that s and p are of the order O(v/h) in a semiclassical state, computer algebra shows
that the Taylor expansion of the Poisson brackets {Aunsatz; Ut (Qansatz) } = O(h>/?)
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in VA is zero within the third-order truncation. Therefore, the Casimir variable
derived systematically is a Casimir variable also for the realization derived using

an ansatz, up to a truncation error.

4.2.3.4 Fourth order

The solution at the third order can be extended in a rather direct manner to the
fourth order. Inspection of the rank of the Poisson tensor at this order shows that
we expect five canonical pairs of quantum degrees of freedom and two Casimir

variables. We then try the ansatz

A(r?) = ip?JrZU (4.87)

i>j (si = s5)?

Al®) = X5 (4.88)

Al = C© Z S0 (4.89)

In addition to an extension of the third-order ansatz to five pairs of canonical
degrees of freedom, we have inserted a new parameter C' which will play the role of
the second Casimir variable.
The moment A(g*) can be generated from the Poisson bracket {A(7¢?), A(¢®)} =
3A(¢%)* = 3A(¢"):
Algh) =C?> st + Y sis? (4.90)
i J

We also need to check that the Poisson bracket is consistent at this order. For

instance, while an expansion of the right-hand side of

0= {A@?), {A@), {AG?), {AE?), {A@E), Ag)} ] (4.91)

would be too complex to be shown here, computer algebra confirms that (4.91) is
indeed satisfied for our ansatz. This result supports the physical principle that
(when U > 0) the quantum coordinates feel a repulsive potential between one

another that goes as one over the square of the distance between them.
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4.2.3.5 Second-order truncation for two pairs of classical degrees of

freedom

For two pairs of classical degrees of freedom, we have a ten-dimensional submanifold
of second-order moments. The Poisson tensor has rank eight, so that we have to

construct four canonical pairs and two Casimir variables.

4.2.3.5.1 First step: The system contains two subalgebras that correspond to a
single degree of freedom, given by (A(¢?), A(qim1), A(7?)) and (A(q3), A(gams), A(73)).
We can therefore make use of some of our previous derivations if we choose the first
two configuration variables as s; = y/A(¢}) and sy = 1/A(¢3). We obtain solutions
similar to (4.29) and (4.30) with (4.32), but now the free functions fy,z,, fr2, foom

and frz in

P fﬂ'2
A(Q17T1) = Slpl + fq17r1 5 A(’]T%) = p% + Q;ifqlﬂl + (1217” + 8721 (492)
1
and
- 2 2 D2 2 fﬂ%
A(q277'2) = Sop2 + fq27r2 ) A(WQ) = D2 + 2;2fq2ﬂ2 + qam2 + ST (493)
2

may still depend on the remaining two canonical pairs, as well as the two Casimirs.

Since fy,r, fﬂ%, fqom, and fﬁg do not depend on s1, p1, s3 and ps by construction,
they parameterize coordinate Poisson orthogonal to the first two canonical pairs.
However, it is convenient to choose f,,, = 0 = fg,r, because the condition of
being Poisson orthogonal to sy, p1, so and p, is then equivalent to having vanishing
Poisson brackets with the basic moments A(q}) = s2, A(qim1) = sip1, A(¢3) = s3

and A(gamy) = sops. This leaves two functions,
2 = SIA(TY) = sipt = Al A = Algm)® =: fi (4.94)

and
frz = 5A(m3) — s5p5 = A(g3)A(73) — Algema)® =: fa, (4.95)

out of the original free functions in (4.92) and (4.93), which we can easily write in
terms of moments.

In addition to f; and fs, we need four further functions that Poisson commute
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with the first two canonical pairs, or with A(¢?), A(q1m1), A(g3) and A(gams). As
before, we find such variables by considering the flows generated by A(q?), A(qimy),
A(g3) and A(goms). For instance, for A(qym;), the flows d/de = {-, A(q;71)} on the

remaining moments are

dA dA (g dA(qom
Eiq;(h) = Aq192) ) (51612) =Alqm) qu€21) = —A(gm)
dA(my7m9) dA(q?)
ﬁ = —A(mm) i L —2A(¢?). (4.96)
These linear differential equations can easily be solved by
A(qi1g2) = cref ) Alqima) = c2e® , Algem) =cze™
Almimy) =cie™®,  Alq]) = cse™. (4.97)

By eliminating €, we find that A(q1g2)A(gem), Alqig2) A(mime), Alqime) Algem),
A(qma)A(mims) and A(g?)A(myme)A(gomy) Poisson commute with A(gy ). How-
ever, these combinations are not necessarily invariant under the flows generated by
A(q?), A(g3) and A(gams). After computing variables invariant with respect to any

one of these four flows, we find that the combinations

fs = A(Q17T2)A(Q27T1)—A(CI1Q2)A(7717T2) (4-98)

fi = A(q@i((ff;)) ~ Algm) (4.99)

s = A(Qz)i((zllgj)) — A(gas) (4.100)
_ Ag)A((g)

fe = Aad)? (4.101)

in addition to f; and f5, are Poisson orthogonal to sy, py, so and ps. Moreover,

their mutual Poisson brackets are closed,

{fi. 2.} = 0={f,fs} ={fo, f3} (4.102)
{fi,.fad = 20h+ ) . {f.fs=2ff . {fi.fe}=4fifs (4.103)
{fo, i} = 2fsfs . {fo, s} =202+ 2) , {fo.fo} =4f5fs (4.104)

{fs. fi} = fi+fafe+fi o {Afsfst=r+hl+f . {ffe}=2(f1 4405
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U fsy = (—fofs  {fafo} = =2f( — fs) = /s, fe} (4.106)

and therefore form a Poisson manifold on which we can iterate our procedure,

expressing the f; in terms of further Casimir-Darboux variables.

4.2.3.5.2 Second step: We now define s3 = f5, equal to the inverse of the
correlation between the two positions. It generates a flow to be identified with the

negative partial derivative with respect tp ps,

g]bil)’ = —{fl, fG} = —483f4 (4107)
g]{z = —453f5 s ggi = —283(f4 + f5) (4108)
g]{i == 283(1 - 83) y ggz = 283(1 — 83) . (4109)

The last two equations are solved by

fr=2s3p3(1 —s3) + g4 and f5 = 2s3p3(1 — s3) + g5, (4.110)

after which the remaining equations can be solved by

fi = —4s5(1 — s3)p; — 4s3p3g4 + o1 (4.111)
fo = —4s5(1 — s3)p3 — 453p3g5 + Go (4.112)
fs = —4s3(1 — s3)p5 — 253p3(g4 + g5) + g3 - (4.113)

The functions g; are independent of ps.

As before, a choice is required to proceed because we have five free functions g;
but only one more canonical pair and two Casimir variables. The choice g5 = —g4
simplifies f3 and eliminates these functions from f; + f5 according to (4.110) and

we obtain our third momentum

py= 1S5 (4.114)
453(1 — 83)
We are left with four functions gy, . . ., g4 which, by construction, are independent

of p3. But they may depend on s3 and are therefore not Poisson orthogonal to the

third canonical pair. In order to find combinations which Poisson commute with
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ps, we consider the flow generated by fy + f5 = 4s3(1 — s3)p3. From

_ (fat fs)?  L(fad f5)(fa— f5)
e Ty A T R g

- (fa+ f5)? Y(fa+ f5)(fs— [5)
g2 = LY yaT 2 1— /,

_ (fa+ f5)?
gs = f3+m

o = 5=,

We obtain the brackets

{91, fa+ f5}
{92, fa + f5}
193, fa + f5}
{94, fa + f5}

= 2(g1 + 5393 + 93

= 2(g2+ 5393 + 93

= g1+ go+ 25393 + 29;
= —28394-

(4.115)
(4.116)

(4.117)

(4.118)

(4.119)
(4.120)
(4.121)
(4.122)

We see that {g1 + g2 — 2g3, f1 + f5} = 0, and if we trace back all the dependencies

on moments, we find that

g1+ g2 — 293 =U,

is, in fact, the quadratic Casimir.

(4.123)

The remaining independent variables can

conveniently be chosen as g1 + g2, g1 — g2 and g4, with mutual Poisson brackets

{91 + g2, 4} =
{91—92794} =

{n+ 92,01 — g2} =

4.2.3.5.3 Final step:

9 _ %
853 2(83 — 1) ’
(g1 + g92)

(g1 — g2) _

g1 — g2
1+ s
g1+ g2 — 25393 + 2 392
1—83
41 943 (g1 + g2 + 28393 + 293) -
— 83

g1 — g2

g1+ 92 + 25393 + 297

883 N 253(1 — 53) ’

(91 + g2)(1 + s3) — s3U1 + 293

(4.124)
(4.125)

(4.126)

We now consider the flow 0/9s3 = {-, p3}, using (4.114):

883 - 283(1 — 83)

283(1 — 83)
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Solving these equations, we find that

g4
_— 4.128
L Ve 1 e
Ss3— 1
By = (g1 — o) 38 (4.129)
3
hy — (L5301t g2) + sl 421+ sa) (1 = 5a) '] . (4.130)

V5
in addition to Uj, are Poisson orthogonal to s3 as well as p;3. They have closed
brackets

{hl, hg} - h3 5 {hl, hg} - —hg ; {hg, hg} - 8h1U1 - 32h? . (4131)

As our final canonical momentum, we choose py = hy. Its flow equations

Oh Ohs
G = G =h (4.132)

have trigonometric solutions with a phase that can be set to zero by shifting s,.

Therefore,
ho = A(ps) cos(sy) , hs = A(ps)sin(sy) . (4.133)

The required Poisson brackets provide a condition on the function A(p,),

dA
A(p4) 2s) _ —8psUy + 32p3 (4.134)
dp4
solved by
Aps) = /Us — 8p3U, + 16p1. (4.135)

The new free parameter U, is a constant and is our second Casimir variable.

4.2.3.5.4 Casimir—Darboux variables: Inverting all intermediate relations,

we obtain the moments in terms of Casimir-Darboux variables,

AlG) = st , Algm) =sip (4.136)
P
A(rf) = pi+ (33’p832’84’p4) (4.137)
1
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with

S3+1 2

D(s3,p3, 84, p1) = o — 1Pa— As3\/s3 — 1psps + 453 (s3 — 1) p3 (4.138)
1 S3
= U
o1
1 /s3

\/Ug — 8piU, + 16p} (\/53 — 1cos(s4) + sin (54)) ,

for moments of the second classical pair of degrees of freedom,

Alg) = s5 . Algm) = s (4.139)
I'(s3, p3, S4,
A2 = g+ L ng 4P1) (4.140)
with
s3+1
U'(s3,p3,80,p1) = _53 1pﬁ + 4s3v/83 — 1paps + 453 (s3 — 1) p3 (4.141)
s —
1 S3
— U
*3 sg—1 "
1 4/
53 831 \/U2 — 8piU + 16p] (—\/33 — 1cos (s4) + sin (54)) ,
5 —
and
D1P2 s3— 1 (p2 Pl)
A = — == 4.142
(71'171'2) 5 + 5 5 5 P4 ( )

P1 |, P2 (3s3 —1) 2
—9 1) (2 2
V53 (s3 — 1) (52 + 81>P3 + 5153/53 (55 — 1)194
3/2
IO PR
5182 3 28182 (83 — 1)

53 .
—_— U, — 8p2U, + 16p}
+23152(53—1) Sm(54)\/ 2 — 8pyUs + 16p;

Ui

P152 53— 159 S2
A = —p4 — 2 —1 — 4.143
(m1q2) NG + 5 81p4 (s3 ) \/5381133 ( )
b251 s3— 159 Sq
A = — —Dy — 2 —1)+\/83— 4.144
(72%) \/3_3 53 82]94 (53 ) S3 S2P3 ( )
518
Alqg) = —= (4.145)

NG
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for the cross-covariances.

4.2.3.5.5 Canonical transformation: We can change our Darboux coordi-
nates by canonical transformations. An intersting example is suggested by the
trigonometric form in which s4 appears in the equations derived so far, which can

be extended to s3 by using the canonical pair

B =arctany/ss —1 , pg=2s3v/53— 1ps. (4.146)

Computing s3 = 1 + tan? 3 = 1/ cos? 3, we see that the new variable 3 interprets

the cross-correlation
A(q1q2) 1

A(q?)A(g5) G

= cos [ (4.147)

as an angle. Uncorrelated canonical pairs are therefore orthogonal to each other in
the sense that cos 5 = 0.

Because s, already appears in trigonometric functions in our realization, we
rename it by defining

aO=3584 , Pa=2pa- (4.148)

The canonical mapping then takes the form

Alg}) = st . Algm)=sip1 , Alr}) =pi+ 3% (4.149)
Algd) = s2 , Algm) =spy , And)=pi+ SF% (4.150)
where
(B, ps: @, pa) = (Pa—1p)? (4.151)
+28H11(5)2 (Ul —dp2 — \JUy = U} + (Uy — 4p2)2sin(a + 6))
L(B,ps,@:pa) = (Pa+pp)° (4.152)
+281nl(5)2 <U1 —dp2 — \JUs — U2 + (Uy — 4p2)? sin(a — 5)) ,
as well as
A(mim) = papacos() — cos(B) » | os(B) +2cot(5) CSC(B)pi (4.153)

5152 A 5152
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—sin(3)ps (]22 + ?) + pasin(B) (pQ - pl)

1 1 S1 S92

_ cot(B) esc(B) U+ csc(8)? sin(a) \/16]% “ 82U, + U
5189 25159
A(miqa) = p1sacos(f) + sin(ﬁ)zj (Pa — Pp) (4.154)
A(ma) = pasi cos(5) +sin(8) (b5 + ) (4.155)
Alq1q2) = s1s2c0s(8). (4.156)

4.3 Applications

As shown in the preceding section, the inclusion of moments in semiclassical
truncations leads to several new degrees of freedom. In this section, we highlight
some of the physical effects implied by them. At the same time, we show that the
form in which canonical variables appear in various realizations of the moment
algebras suggests truncations to smaller canonical subsystems which are easier to

analyze by analytic means and often show physical effects more intuitively.

4.3.1 Partition and two-point function of a free massive scalar
field

Our first example is an application of the second-order mapping (4.33), rederived
here from [99,100], to a free field theory. We start with the Hamiltonian,

H= / dz (;71’2 + ; (0.0)° + ;m2¢2> (4.157)

of a 1-dimensional real scalar field with mass m. We transform to momentum space

by writing

o = \/lz_ﬂ/dx p(r)e ™ | mp = \/12_7T/dx m(x)e ke (4.158)

with a real wave number k. Reality of ¢(z) and m(x) implies that ¢} = ¢_x and
T = T_k.
If we assume that the spatial manifold with coordinate x is compact and of

length 27, thus describing a scalar field on a unit circle, k takes integer values and
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we have finite Poisson brackets

{(ﬁ]w 7Tk/} = 5kk’ (4159)

replacing the field-theory Poisson brackets {¢(x), 7(y)} = d(x — y) in the position
representation. FEach mode with fixed k£ is then described by an independent
canonical pair (¢, m), which can easily be quantized to a pair (ék, 7tx) of operators.

The classical reality condition implies the adjointness relations
=06 , Al=r_4. (4.160)

The Hamilton operator can therefore be expressed as

> (fi] + widd)) (4.161)

k=—o00

H=
with wp = vVm?2 + k2. A further transformation,
(78 +i7) | (4.162)

explicitly decouples left and right-moving modes, (;3% and (2357 respectively. The

Hamilton operator then reads

> <(fr£‘)2 +(7F)" + i”i (88)° + iw,% (&;:)2> . (4.163)

k=—00

N
==
2

4.3.1.1 Partition function

Since all the modes decouple and have harmonic Hamiltonians, the mapping for a
single degree of freedom at the second order provides an exact effective description
in any state in which cross-correlations between different modes vanish. In the
absence of interaction terms in the Hamiltonian, the latter condition is satisfied
in the ground state. More generally, we can also consider ensemble averages in
finite-temperature states. Since cross-correlations do not contribute the the energy
of our non-interacting system, they will not be affected by a turning on a finite
temperature. Moreover, correlations in harmonic systems have oscillatory solutions

around zero and therefore vanish in an ensemble average.
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Mode fluctuations parameterized by the canonical variable s; with momentum
pr and Casimir Uy, by contrast, are bounded from below by the uncertainty relation
and do not average to zero. For every fixed mode and at finite temperature T', we

can compute the partition function

Z(B,wg, A) = /OOO /O:o /UOO dsy dpy AU}, exp (—B (;pi + )\g;% + ;wﬁsi>> ,
(4.164)
where 8 = 1/kgT and Uy, = h? /4 and we have restricted s; to positive values.
We have inserted the auxiliary parameter A in anticipation of an application below
in which a A-derivative of Z will give us the ensemble average of the quantum
uncertainty U. For all other purposes, we use the physical value A\ = 1. If we

perform the Ug-integral before the s.-integral, the partition function

1
Z(B,wp, A) = 4nX 1w 2 B3 <2 + Buwy, Umin/\> exp (—2ﬁwk Umin)\) (4.165)

can be obtained in closed form.

A derivative by wy (at A = 1) results in the ensemble averages

12 Uminﬁ

((s£)"ye = ((5%)" ) = B 1+ I U8

(4.166)

of dispersions in a thermal state. Moreover, the average energy per mode is

OlogZ . 12 + Bwk (6\/ Umin + Uminwk:ﬁ)

(Er)e = . (4.167)
86 26 (2 + ﬂ V Uminwk>
In the limit 7" — 0, the value
w
(Ei)z =\ Uniny (4.168)

agrees with the ground-state energy if we use Uy, = h?/4, noting that a single
mode used here appears with frequency wy/2 in (4.163). (The combination of ¢
and ¢ has the standard harmonic-oscillator energy %hwk on average.) Finally, the

ensemble average of the quantum uncertainty in a thermal state can be determined
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as

o 8 1 622 . U + 24 + 4Umin
B 62wk Z &uk@/\ =1 I 62(«0/% 2+ Vv Uminﬁwk 7

which approaches Uy, as T — 0. For T # 0, (Up)g > Upin in a mixed, finite-

(Uk)E (4.169)

temperature state. The difference U — Uy, is therefore an impurity parameter in
this situation, which is in agreement with our discussion in Sec. 4.2.2 and the fact
that the Casimir U only appears in the second-order moment A(7?).

We see that canonical variables for semiclassical truncations can give easy
access to thermodynamical quantities by rewriting a quantum statistical system in
the form of a classical system. The canonical nature of variables parameterizing
quantum moments makes it possible to determine the correct phase-space volume

for the partition function.

4.3.1.2 Two-point function

We extend the definition of moments to our field theory by applying the quantum-
mechanics definition to each mode ¢;. Introducing c@k = o — <ng5k>Q, we then
have A(prdr) = (&bk(%k,m, from which we can obtain correlations in the position
representation by Fourier transformation. In these definitions, we have explicitly
indicated that expectation values (-)q refer to a quantum state as opposed to the
ensemble average used in (4.166).

The two-point function

(A @@)o))e = D (0040w )q)re™ e

kE’

1 < X < S ikx ik’

= 3 > <<((5¢1,§ - z&b%) ((5(151,} — z6¢%,)>Q>E ekreiky
kk!

combines both types of averages. We can simplify the double summation using

g;bﬁk = —5/;?%, which follows from the adjointness relation for br. Using zero

cross-covariances between the modes as well as the fact that the fluctuations only

depend on the wave number k& but not on whether the mode is left or right-moving,
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the double summation is then reduced to

(A(o(2)o(y))e = ;%X@E(@EKDE cos (k(z —y)). (4.170)

Inserting (4.166), we obtain

(A 6w =5 5 (:25 + 5) cos (k(w—y).  (417])

In the limit in which the radius of the circle goes to infinity, we can replace Y,
by (27)~! [ dk, such that

12 + Uminﬁ
wl%ﬁ 1 + %\/ Uminwkﬁ

(& o= [ 5 ( Jeosthto =) (4172

It is instructive to consider the low-temperature limit  — oo. Restoring h; the

result is,
I (A G = A [ o cos k(e — )
— ;Ko(m|;p—y|) (4173)

with a Bessel function K, agrees exactly with the equal-time two-point function
obtained using path integral methods.

We can also consider the case where the temperature is nonzero but still small
enough for the semi-classical approximation to be valid. Taylor expanding the
integrand about 8 = oo, the first-order temperature correction to the two-point

function is:

h 9kT
(A (D)8 = o Ko(mlr — yl) + 1 -hexp (~mlz — yl) + O(T?) . (4.174)
The asymptotic behavior Ko(z) ~ \/27/z e for large z shows that the term linear
in the temperature decreases more slowly with the distance than the temperature-
independent term. For large-distance correlations, this correction from a non-zero

temperature may therefore be relevant.
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4.3.2 Closure conditions

Our third and fourth order mappings suggest new closure conditions (in the sense
of [101]) that can be used to describe moments by a small number of parameters. In
particular, we may assume that the second-order fluctuation parameter s contributes
to higher-order moments such that A(¢™) = s", at least for even n. For the third-
order moments A(g?) in the fourth-order truncation, we have seen that the cubic
dependence on s; is multiplied by a free parameter, given by the Casimir variable C,
which is lacking in even-order moments A(g*) and A(g?). Since odd-order moments
are often sub-dominant, for instance in the family of Gaussian states, we can set
C = 0 and assume that this behavior extends to higher orders. These considerations

suggest the closure conditions

s™ for even n

Alg") = 4.175
(a") {O for odd n ( )

for all moments, replacing a truncation to finite order. In an effective Hamiltonian,

we then obtain the all-orders effective potential

U 1 d*V(g) ,, U 1
2ms? 2 (2n)!  dg?" T a2 (Vig+s)+Vig—s)
(4.176)

for a classical potential V' (g). The Casimir variable U may be set equal to the

Vallforders(Q: 5) = V(Q>+

minimum value 7%/4 allowed by the uncertainty relation.

4.3.2.1 Non-differentiable potentials

Semiclassical physics is usually based on an expansion which requires a smooth
potential. Our all-orders effective potential, by contrast, explicitly sums up a
perturbative series and expresses quantum effects via finite shifts of the classical
potential. It can therefore be applied to potentials that are not smooth or not even
differentiable.

As an example, consider the potential V(¢) = |¢|. In particular, we can check

the ground state energy. In the static case of zero momentum (and using atomic
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units in which & =1 and m = 1), we have

1
‘/allforders(Q7 5) + 5 (|q + 5| + |q - S|) . (4177)

T 8s?

~2/3_ and the minimum value is

This function has a minimum at ¢ = 0 and s = 2
Eqrouna = 0.94. We can calculate the exact value of the ground state energy using
a truncated oscillator basis. The result is Egiasq = 0.81.

It is possible obtain this non-differentiable potential as a limit of a differentiable

one. To this end, consider the Hamiltonian
1
H=+V1+nr2+ 5q2 (4.178)

which can be interpreted as describing a relativistic particle with position-dependent

mass VH? — 72 = \/@ After a simple canonical transformation (¢, m) —

(—m, q) the Hamiltonian

71.2

H:?—F 1+ ¢? (4.179)
appears in standard form for a non-relativistic system. Now the all-orders effective

potential with U = 1/4 is given by

1 1
‘/allforders(q? 5) - @ + 5 (\/1 + (q + 5)2 + \/1 + (q — S>2) (4180)

and minimized when ¢ = 0. Minimizing

1
Va—orders(0, 8) = gz TViTs (4.181)

with respect to s, we find the minimum value

Egrouna = 1.47. (4.182)
The exact ground state energy is
ng;ffld = 1.44. (4.183)

The agreement here is better than in the preceding example, which can be interpreted
as a limit of a potential in which /1 + ¢? is replaced by limg o v/d + ¢°.
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4.3.2.2 Canonical tunneling in polynomial potentials

The regimes of validity of the all-orders potential can be tested in the case of
tunneling escape. For this purpose, we consider a fourth-order polynomial potential

in order to describe tunneling escape from a metastable state:

27 1
Vooly (q) = ZVmpqu (¢—1) (q - 7) , (4.184)
where V;op, is a parameter that controls the height of the barrier and v controls the
location of the global minimum of this potential. When ~ is small, this potential has
the following approximate critical points with the corresponding potential values:

The top of the barrier is characterized by

2
Qyop = g ) vpoly(Qtop) = ‘/top (4185)

and the global minimum is characterized by

3 729 Vio
min ~ S ) Vo min) ~ — > .
1 Ay poly (Gmin) 1024~

(4.186)

In addition to the global minimum, there is a local minimum at ¢ = 0 with
Vooly(0) = 0.

Classically, if the particle starts close to the local minimum at ¢ = 0 with an
energy less than Vi, the particle will remain confined. However if quantum degrees
of freedom are taken into account, we know that the particle can tunnel through
the barrier and into the lower basin. We can account for this modified dynamics
using second-order variables if the barrier is sufficiently small. If the barrier is large,
higher-order corrections need to be taken into account in order to see tunneling.

The all-orders effective potential, given by

Y L Voa(a + 9) + Vo (g — 9)) (4.187)

V;ll—orders(qv S) = W 2

includes some of the terms that result from higher-order moments.
For escape from a metastable state, the particle is initially at the local minimum
at ¢ = 0, around which
27

Voory (9) & - Viepd” - (4.188)
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For this quadratic approximation, the effective potential is

27 2 2 U
Vear(4,8) = 7 Viop (8 +5%) + 5.5 (4.189)
This potential has a minimum at
2U 1/4
=0 = 4.190
R (27v;op> (4.190)

which give the approximate ground state energy

3 /3
vom S 3 gy 4.191
0 8 ‘/top<tp ) ( 9)

Given the initial conditions (4.190) we can track the particle dynamics numer-
ically; see Fig. 4.1. If the parameter V;,, becomes large the particles no longer
tunnels if one only considers the second-order canonical mapping. Second-order
dynamics can provide good approximations in certain regimes, but for deep tun-
neling we need an extension to higher orders. The all-orders effective potential is
then useful for understanding the escape from a local minimum in deep tunneling
situations.

Using the all-orders potential, we estimate the tunneling time as a function of
the tunnel exit position of the particle, which corresponds to the particle position
around the critical point g, ~ 2/3. Figures 4.2 and 4.3 show numerical comparison
of the canonical tunneling time and the exit momentum of the particle, using the
all-orders potential and exact solutions, respectively.

In [95] we used the all-orders effective potential for atomic systems, based on
the all-orders closure condition. In a further approximation, it was possible to
eliminate some of the basic variables such that s ~ ¢ inside the barrier. For the
polynomial potential we can test the same behavior by computing the evolution of
the expectation value ¢ and its fluctuation s. As shown Fig. 4.4, the approximate
relationship between ¢ and s during tunneling is maintained also here.

Finally, it is interesting to note that the tunneling time can be sensitive to the
parameter v which specifies the location of the global minimum of the classical
potential (4.184). We estimate the tunneling time in terms of ~, starting with
v = 0.1, as shown in Fig. 4.5.
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Figure 4.1. Dynamics in the all-orders effective potential (4.187): The potential is
represented by its ground-state equipotential curve Vog = Vp (solid line), together with
a tunneling trajectory starting from the local minimum (dashed line). For this plot we
chose the parameters Viop, =1, v = 0.1, U = 1/4. The “extra dimension” given by the
fluctuation parameter s provides the particle with an escape route around the classical
barrier, without violating energy conservation.
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Figure 4.5. The tunneling time as a function of 7 in the potential (4.184).
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Figure 4.2. Tunneling times as a function of the starting position, for an exact calcu-
lation and the all-orders potential, respectively. There is good agreement, with larger
discrepancies close to the origin where we have deep tunneling.
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Figure 4.3. The exit momentum of the particle as a function of the initial position.
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Figure 4.4. Trajectories of the tunneling coordinate ¢ and its fluctuation s for the
all-orders effective potential (4.187).

4.3.3 Effective potentials

Casimir-Darboux coordinates for moments, in combination with the effective
Hamiltonian (4.6), allow us to identify the dynamics of a semiclassical truncation
with a dynamical canonical system. The classical momentum 7 (derived from the
momentum expectation value) is then accompanied by one or more new momenta
that parameterize fluctuations, correlations, and higher moments.

For a single classical pair of degrees of freedom to second semiclassical order,
the moments are quadratic in the new momentum p, with constant coefficients. A

dynamical system with standard kinetic term is therefore obtained [100]:

. 72 W w4+ AR 1
iy = )y = TR Ly vga) +
= 7T—2+p§+ +V()+1V”( )s® + (4.192)
 2m 2m 2ms? M '

with effective potential

Virla ) = 5 + Vo) + 3V (0)s*. (4.193

2ms?

Our third-order moments provide an extension to the next order, now with three
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non-classical momenta. The first version, (4.61), is quadratic in momenta but with
coefficients depending on the configuration variables s;. The second version, (4.71),
results in a simplified system with constant coefficients in the extended kinetic
term.

However, for two pairs of degrees of freedom, it is not possible to have momentum
fluctuations which are quadratic in Darboux momenta with constant coefficients
[115]. The resulting effective theories are therefore more involved in such cases.
Nevertheless, it is possible to extract an effective potential. Using the Taylor
expansion (4.6) of the effective Hamiltonian (H) and setting all canonical momenta
equal to zero, we obtain an expression depending only on the canonical coordinates.
We do not require that the momenta vanish for all solutions of interest, which would
then be adiabatic, but rather extract a term from the effective Hamiltonian that
serves as an effective potential. For this purpose, canonical variables are required
in order to know which functions of the moments should be considered momenta.

For two classical degrees of freedom to second semiclassical order, this procedure

leads to the effective potential

‘/;(f%)(qlaq%slas%aaﬁvU17U2> = V((h,QQ) (4194)
1 Uy — VU sin(a + f) n Uy — VU sin(a — f)
4sin?(3) s 52

1 1
+§Vn(ql, 42)s7 + Via(q1, g2)s152 cos (B) + 5‘62(% ¢S5

We have used the notation V;; = 0*V/0¢;0q;, and V (g1, ¢2) is the classical potential.
The two Casimir coordinates U; and U, are constants of motion for any classical
dynamics and can be considered (state-dependent) parameters of the effective
potential, while the remainder in the effective Hamiltonian is a non-standard kinetic
term.

We define the low-energy effective potential Vi (g1, ¢2) as the effective potential
Vet restricted to values of the moments (that is, s1, s, o, 8, Uy and Uy) obtained in
the ground state of the interaction system. We therefore determine the moments by
minimizing the effective potential with respect to si, s9, a, 5 and the two Casimir
coordinates while keeping the classical-type variables ¢; and ¢ free.

In this process, we have to respect the boundaries imposed by uncertainty

relations. Since W is linear in U; and 1/Us, minimization sends these two values to
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the boundary. (From (4.135), we know that U, > 0 for p, = 0 to be possible.) The
relevant boundary components, at zero momenta, can be obtained from Heisenberg’s

uncertainty relation applied to each canonical pair:

®(6,0,,0) = QSml(B)Z <U1 — \/@sin (cv +ﬁ)> > ZQ (4.195)
T(3,0,0,0) — 251nl(ﬁ)2 (U1 — \JUssin (a — 5)) > ZQ. (4.196)

For fixed U; and U,, these two relations must be true for all « and 3. Moreover,
for any choice of U; and U, there must be solutions of a and [ such that both
relations are saturated: If the coupling between the two degrees of freedom is
turned off adiabatically we expect saturation in the ground state. Since U; and U,
are constants of motion for any Hamiltonian, their values do not change during
this adiabatic decoupling. Therefore, any choice of U; and Us; must allow some
solutions of v and [ such that the uncertainty relations are saturated.
At saturation, we can subtract (4.195) and (4.196) and obtain

1 cos(v) _
Z@Sin(ﬁ) 0, (4.197)

and thus Uy = 0 or cos(a) = 0. In the latter case, the Us-dependent term in the

effective potential,
Uycos(B) (1 1

V=Y (5% 38) e
is, for any classical potential, unbounded from below in /U, for any /3 such that
cos(f) > 0. This solution of (4.197) is therefore ruled out by the condition that a
stable ground state must exist for a large class of classical potentials. We conclude
that Uy = 0.

Given this solution, the smallest value of U for which (4.195) can be fulfilled is
Uy = h?/2. Therefore,

h2
DR py—ps=tn=0,0,=h2/2 = Tsn? L ps—ps=to=0,01=n2/2 (4.199)
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from (4.151) and (4.152). The effective potential then reads

VL@(QMQ%&J%@ = V(qh(h)
h? h?
+ +
8sin (B)*s2  8sin (£)°s3
1
+‘/128182 COS (6) + 5‘/2283 . (4200)

1
+ 5‘/118?

Although we have not minimized the potential in the direction of a, the a-
dependence has disappeared. There should, however, be a unique pure state
that corresponds to the ground state where the effective potential has its minimum.
Since minimization does not determine «, it must be the pure-state condition
that fixes its value. This conclusion is in agreement with our earlier discussion of
impurity parameters: In the mapping (4.149)—(4.156), a appears only in moments
of the form A(m;m;) which are not required to reconstruct a pure state in the
position representation.

Minimization by sq, s and [ gives us three equations:

v h?

0 = Doy = _45‘1’ S’ + V1181 + Viasy cos 3 (4.201)
Ve ?

0 = 882 = —483 Sjn2 5 + ‘/2282 + ‘/1281 COSB (4202)
vy h?(s? 4 s3) cos B '

0 = aﬁ = — 4;%55 Si2n2 5 — ‘/128182 S1n B . (4203)

Subtracting s, times (4.202) from s; times (4.201), we obtain

2 2 2

= 122 2 2
4sys3 Viist — Vaosy

sin? 8 (4.204)

Using the sum of sy times (4.202) and s; times (4.201), we derive

h?(s? 4 s2 2
Whstsgoot s = (il - Vit 4 Vs (4.205)
1°2

s+ s2 9 , ) ) 2

2z (V11— Vaos) o+ (Viusy + Vo) | (4.206)

<V115411 - ‘/228%)2
(st — 53)?

4 (4.207)
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Alternatively, we can derive 4V4s7s2 cos? 8 as follows: The sum of s; sin? 3

times (4.201) and cos §sin 8 times (4.203) implies

712(51 + 52) h?

0 = 1% 2 4.208
132 sin? 3 + + 1181 sin” ( )
51 + 52 2 h2 ‘/11 - ‘/22
— V; V- —_ % 4.209
52 — 32( ust — Vaasy) + 4 V1183 — Voys3 ( )

using (4.204). This equation together with (4.204) also gives us

4V22s2cos? B = 4V2s2s2 (1 20 53— 5 (4.210)
5155 COS = 518 - .
125152 125152 5253 Vi15% — Vagsl
V; 2 V- 2
= 4V (sfsi (s} 4 ) A ‘/2252> (4.211)
11 22
V11<‘34 - ‘/2254
= 4qyz—1 =72 4.212
12 ‘/22 . ‘/'11 ( )
Equating (4.205) and (4.210), we have
4 4 Vi 2 2\2
‘/1151 — ‘/2282 = m(sl - 82) (4213)

which can be interpreted as a quadratic equation for s?/s2 with solution

& (Vi Vi) ViaVia — VB — V3 oty

S% B V11(V22 - Vn) - ‘/122

(There is a unique sign choice implied by s7/s3 > 0.)

This solution implies

s% + s% (V22 - Vn) (\/‘/11%2 - V122 + V11) - 2V122

o = (4.215)
T (Vag — Vi1) ( Vi1 Vag — Vi3 — Vn)

s V11— V11V22—V12
Viis — Voo = (Vag — Vi1)y/ Vi Vo — V2 4.216
ng Ve (Voo = Vi) Vi1 Vaz — 2y (Vo = Vir) = V2 ( )
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which can be used in (4.208) to obtain

o PP ViV — VA -V Vi + Vi1 Voo — Vi

S, .
4 ViV =V (Vyy — Vi) Vi Vay — VB + Vi Viay — V2 — 2V
(4.217)
We also have
5] = s5(Vip > Vay) (4.218)

_ thanQ—VfQ—V;Q Voo + 1/ Vi1 Voo — Vi (4.219)

\ .
4 ViV =V (Vg — Vi) Vi Vi — VB + Vi Vag — VB — 2V

and the angle 3 can be obtained by (4.204).
If we insert these solutions in the effective potential, the results can be seen to

equal the low-energy effective potential [102]

h /1
View(q1,62) = Va1, q2) + 2\/2 (VM + Voo + \/(Vn — V22)2 + 4V122>(4.220)

h /1
+\/2 <V11 + Voo — \/(Vn - ‘/22)2 + 4‘/122> . (4.221)

2
although it initially appears in a rather different algebraic form. Our derivation
automatically provides results for the ground-state variances and covariance at
the minimum of the effective potential. For instance, while the actual expression
for £ is quite complicated and not given here, for small V}5 we can use a Taylor

expansion and obtain

Via
(‘/11‘/52)1/4 (\/ Vii + v V22)

ﬁ=g+ L O(V2). (4.222)

In the limit of weak coupling, the moment A(q;q2) therefore goes to zero.
As a simple example, consider the Hamiltonian
1 2 2

1 w w
H = iﬂ'% + 57@ + ?qf + ?qg + YW’ q1qs - (4.223)
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Its quantization has the exact ground-state energy

E = ;hw (VI+7+v1=7) (4.224)

agreeing with what we get from (4.220).

4.4 Discussion

Our extensions of canonical variables for moments from second order for a single
degree of freedom demonstrate several new features of semiclassical states and
their dynamics. In particular, we have identified various parameters related to
the impurity of a state, a result which also plays a role in the determination of
semiclassical potentials. Canonical moment variables are therefore useful tools to
understand features of the quantum state space.

Our other applications illustrate the fact that canonical mappings of the form
derived here can be relevant in a large set of different physical fields. For instance,
they allow one to rewrite quantum statistics in classical terms and thereby provide
convenient access to new types of variables (Section 4.3.1). Interestingly, there is a
well-defined partition function for second-order moments even though these variables
are subject to a non-invertible Poisson structure. For a derivation of the correct
phase-space volume element it is therefore crucial to identify Casimir-Darboux
variables. Casimir variables do not have momenta and therefore do not contribute
the usual 27wh-volume to a partition function. Nevertheless, in our example we saw
that we have to integrate over them in order to obtain the correct thermodynamical
results for fluctuations.

In tunneling situations, canonical moment variables demonstrate a new heuristic
picture of tunneling in which an external field literally opens up a tunnel through a
higher-dimensional extension of the classical potential (Fig. 4.1). During tunneling,
higher than second-order moments are crucial, which we have captured by the
new all-orders effective potential (4.176) defined here for any classical potential. A
separate paper [95] provides a detailed application to tunneling ionization in atoms
with a successful comparison with recent discussions of experimental results, for

which the closure conditions discussed here provide the foundation.
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Chapter 5

Equivalence of models in loop
quantum cosmology and group
field theory

5.1 Introduction

In this chapter we use the idea of faithful realizations in order to define a notion of
equivalence that can be used to link a model of group field cosmology with loop
quantum cosmology. This link is interesting because it suggests new directions on the
group field side of the equivalence. In particular, the link suggests singularities might
be more common than currently expected in group field cosmology. Additionally, the
link suggests possible generalized group field Hamiltonians based on a quantization
ambiguity in harmonic cosmology.

Consider a dynamical system given by a real variable, V', and a complex variable,

J, with Poisson brackets
(V,Jy=i6J , {V,Jy=—isJ , {J J}=2i6V (5.1)

for a fixed real 4. If we identify H) = 6 'ImJ = —i(26)'(J — J) as a Hamiltonian

generating evolution in some parameter ¢, the equations of motion are solved by

V(e) = Acosh(dp) — Bsinh(dp) (5.2)
ReJ(¢) = Asinh(dp) — Bcosh(dyp) . (5.3)
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The brackets (5.1) belong to the Lie algebra su(1, 1) and have the Casimir R =
V2 —|J]?. If R is required to be zero, we obtain A* — B?— (0H()? = 0 and therefore
there is some ¢ such that A/(0HJ) = cosh(dpo) and B/(0HJ) = —sinh(d¢pg). The
solution (5.2) then reads

Vip) = (5Hi cosh(d(v — o)) (5.4)

and displays the paradigmatic behavior of the volume of a bouncing universe model.
This construction defines harmonic cosmology [103,104]; see also [105] for further
properties related to su(1, 1), in particular group coherent states.

The bouncing behavior can also be inferred from an effective Friedmann equation
that describes modified evolution of the scale factor giving rise to the volume V.
To do so, we should provide a physical interpretation to the time parameter ¢
used so far. A temporal description, shared by some models of loop quantum
cosmology [106,107] and group field cosmology [108-112], is a so-called internal
time [113]: The parameter ¢ is proportional to the value of a scalar field ¢ as a
specific matter contribution devised such that ¢ is in one-to-one correspondence
with some time coordinate such as proper time 7. The scalar ¢ itself can then be

used as a global time. Its dynamics must be such that its momentum p, never

becomes zero — “time” ¢ then never stops. With a standard isotropic scalar
Hamiltonian
he = 222 Ly (g) (5.5)
*T 2V ’ '

this condition is fulfilled only for vanishing potential 1 (¢), such that py is conserved.
The scalar should therefore be massless and without self-interactions. With these
conditions, the conserved momentum p, generates “time” translations in ¢, and
can therefore be identified with the evolution generator Hf; introduced above. In

order to match with coefficients in the Friedmann equation derived below, we set
ps = V12rGH] . (5.6)

The Hamiltonian (5.5) also allows us to derive a relationship between ¢ and
proper time 7, measured by co-moving observers in an isotropic cosmological model.

Proper-time equations of motion are determined by Poisson brackets with the
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Hamiltonian constraint, to which (5.5) provides the matter contribution. Therefore,

dg )

Writing proper-time derivatives with a dot and using V' = a® to introduce the scale

factor a, the chain rule then implies

(2)- G AV R AV’ (5.8)
a 3V d¢ V4 \ do '
in which

1 (av)® 1 ) (ReJ)? 0°p3,

follows from the ¢-equations of motion, the zero Casimir R = 0, and the identifica-
tion (5.6) with H:Z = 0~ 'ImJ. Putting everything together,

a\? ArG pi 52p3§ TG 52p¢
Gy P _ 1— 1
<a> 3 2 127GV2 3 o 671G (5.10)

with the energy density p, = %pi /a® of the free, massless scalar. Upon rescaling

6 = 47G9, this effective Friedmann equation agrees with what has been derived in
loop quantum cosmology, following [114].
Harmonic cosmology can be obtained as a deformation of a certain model of

classical cosmology. In the limit of vanishing 0, H g = lims_,0 H, f; has Poisson bracket
0 K
{V,H,} —(lsli%ReJ. (5.11)

For finite Hg, we must have lims_,oImJ = 0, such that the vanishing Casimir

implies lims_,o ReJ = V. Therefore,
{V.H)} =V (5.12)

with an exponential solution V' (¢) = exp(v/ 127G ¢) that no longer exhibits a bounce.
Moreover, noticing that
~1770y _
{(VVV7H,} =1, (5.13)

121



we can identify H g /V = P with the momentum canonically conjugate to V' in the
limit of 6 — 0. Therefore,
H)=VP (5.14)

is quadratic. Squaring this equation, we find

(=Y P

2
= = 1
P V2 127GV? (5.15)

which, upon relating P = a/(47Ga) to the Hubble parameter and V' with the scale
factor cubed, is equivalent to the Friedmann equation of an isotropic, spatially flat

model sourced by a free, massless scalar field with momentum py:

a\? 8rG
(5) =5 (5.16)

5.2 Loop quantum cosmology as a canonical realiza-

tion of harmonic cosmology

It is of interest to construct a canonical momentum P of V also in the case of
non-zero §. The pair (V, P) will then be Darboux coordinates on symplectic leaves
of the Poisson manifold defined by (5.1), and the full (real) three-dimensional
manifold will have Casimir-Darboux coordinates (V, P, R). Following the methods
of [115], we can construct such a momentum directly from the brackets (5.1).
Suppose we already know the momentum P. The Poisson bracket of any function

on our manifold with V' then equals the negative derivative by P. In particular,

agn;‘] ~ _{ImJ.V} = 6ReJ (5.17)
ag;J = —{ReJ,V} = —6ImJ (5.18)

while 9V/OP = 0. Up to a crucial sign, these equations are very similar to our

equations of motion in the preceding section, and the same is true for their solutions:

ImJ(V,P) = A(V)cos(6P) — B(V)sin(0P) (5.19)
ReJ(V,P) = —A(V)sin(6P) — B(V) cos(dP) . (5.20)
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Since we are now dealing with partial differential equations, the previous constants
A and B are allowed to depend on V.

Given these solutions, we can evaluate the Casimir
R=V*—|JP?=V*-A(V) - B(V). (5.21)

If it equals zero, we have A(V)? + B(V)? = V2 and there is a Py such that
A(V)/V = —sin(6PFy) and B(V)/V = —cos(6F,). Thus,

ImJ(V, P) = Vsin(6(P — R)) (5.22)
ReJ(V,P) =V cos(6(P — R)) (5.23)
J(V,P)=Vexp(id(P — R)). (5.24)

The canonical realization of (5.1), given by Casimir-Darboux coordinates (V, P, R),
identifies J as a “holonomy modification” of the classical Hamiltonian (5.14), in
which the Hubble parameter represented by the momentum P is replaced by a
periodic function of P. The vanishing Casimir, R = 0, then appears as a reality
condition for P in (5.24).

We conclude that the paradigmatic bounce model of loop quantum cosmology,

analyzed numerically in [116], is a canonical realization of harmonic cosmology.

5.3 Group field theory as a bosonic realization of har-

monic cosmology

The canonical realization constructed in the preceding section is faithful: the
number of Darboux coordinates agrees with the rank of the Poisson tensor given by
(5.1), and the number of Casimir coordinates agrees with the co-rank. If one drops
the condition of faithfulness, inequivalent realizations can be constructed which even
locally are not related to the original system by a canonical transformations. We
will call “realization equivalent” any two systems that are realizations of the same
model. This notion of equivalence therefore generalizes canonical equivalence. As

we will show now, this generalization is crucial in relating loop quantum cosmology
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to group field theory.

5.3.1 Bosonic realizations

Instead of canonical realizations, one may consider bosonic realizations, replacing
canonical variables, (¢, p) such that {q,p} = 1, with classical versions of creation
and annihilation operators, (z,%) such that {Z,z} = 4. The map z = 27'/2(q + ip)
defines a bijection between canonical and bosonic realizations.

The brackets (5.1) correspond to the Lie algebra su(1,1). A different real form
of this algebra, sp(2,R), has a large number of (non-faithful) bosonic realizations

given by the special case of N =1 in the family of realizations

Z Zzazja +z]~a2m) (525)

a=1

[\')\»—t

_ n
- Z ZiaZja Bz‘j = Z Riakja
a=1 a=1

of sp(2N, R) [117-120] with relations

[Aij, Avyr] = 0 = [Bij, Byy] (5.26)
[Bij, Aijr] = Cjrjdiir + Cyrj0ijr + Ciridjir + Ciin 6o (5.27)
[Cij, Avyr] = zg'5gz + Ai 055 (5.28)
[Cij, Bijr] = —Bjjrbiv — Bjirdiy (5.29)
[Cij, Cijr] = Cijrdirj — Cirjbijr . (5.30)
The indices take values in the ranges a =1,... ,nand ¢, =1,..., N, where i < j

in A;; and B;;. There are 2nN real degrees of freedom in the bosonic coordinates
Zia, While sp(2N, R) has dimension N (2N + 1).

For N =1, we have three generators

n n 1 n
=> ZaZa B — > ZaZa =3 > (Zaza + 20Za)  (5.31)
a=1 a=1 a=1
with relations
[A(”), B(”)] =cm [A("), C(”)] = —24AM™ [B(n)70(n)] —9op) (5.32)
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For any n, the identification
AW =45, BM™M=4qj/5 | C™=2V/s (5.33)

relates these brackets to (5.1).

5.3.2 Model of group field theory

In [121], a toy model of group field theory has been derived that produces bouncing
cosmological dynamics for the number observable of certain microscopic degrees
of freedom. Starting with a tetrahedron, the model assigns annihilation and
creation operators to the sides, which change the area in discrete increments. For
an isotropic model, the four areas should be identical, and their minimal non-
zero value is determined by a quantum number j = 1/2, modelling the discrete
nature through a spin system following the loop paradigm [122]. Each isotropic
excitation has the “single-particle” Hilbert space (1/2)®* which contains a unique
spin-2 subspace. Since this subspace consists of totally symmetric products of the
individual states, it is preferred by the condition of isotropy. Restriction to the
spin-2 subspace then implies a 5-dimensional single-particle Hilbert space with
complex-valued bosonic variables A;.

A simple non-trivial dynamics is then proposed [121] by the action

sz/d¢<2@ (AZ. i d¢A> —H(A,Aj)> (5.34)

in internal time ¢. The first term indeed implies bosonic Poisson brackets { A¥, A7} =

i07. The second term is fixed by proposing a squeezing Hamiltonian

H(A' A7) = JiA (A1 4397 — A'ATg;) (5.35)
with a coupling constant A and a constant metric g;; with inverse g”. The metric
is defined through an identification of the spin-2 index ¢ with all totally symmetric

combinations of four indices By € {1,2} taking two values, such that

9(B1 B2 B3 Ba)(C1CaCsCa) = €(By(Ch € BoCy € B3C3E€B)Cy) (5.36)
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with separate total symmetrizations of { By, By, Bs, B4} and {C}, Cs, C3, Cy4}, re-
spectively, and the usual totally antisymmetric egc. Ordering index combinations
as

i€ (1,2,3,4,5) = (1111, (1112), (1122), (1222), (2222)), (5.37)

the metric can be determined explicitly as the matrix

)

(5.38)

o O = O O
o O O O =

S

Il
_ o o o o
o o o

A second crucial observable, in addition to the Hamiltonian, is the excitation

number,

V= ; (A4 A°47) (5.39)

identified with the cosmological volume following group field cosmology. This
volume evolves in internal time ¢ according to the Hamiltonian . Solutions for
V(¢), derived in [121], show bouncing behavior (5.4) that can be modeled by the
effective Friedmann equation (5.10).

We can now readily show that this behavior is not a coincidence: The metric
(5.38) has eigenvalues +1 with three-fold degeneracy and —1 with two-fold degen-
eracy. Diagonalizing it by an orthogonal matrix gives linear combinations z, of
the A” and A* that preserve the bosonic bracket {A* A7} =46/, defining a bosonic
transformation:

AY+ A oz (A2 =AY | Z3=A° (5.40)

1 ( 1
21 = —= e
T2 V2
for eigenvalue +1, and

1

(A' =A%) | 5= —=(A%+ AY (5.41)

Z4

2

S

1
V2
for eigenvalue —1.

We can deal with the negative eigenvalues in two ways. First, multiplication of

z4 and z5 with ¢ preserves the bosonic bracket and leads to a metric ggj = 0;5. We
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then have H = 1i\(A® — B®) for (5.35) and V = C® for (5.39). Alternatively,

using only diagonalization by an orthogonal matrix, we have

= L (40— 30 (4 — ) 5.2

and
V=0c®40® (5.43)

where 21, zo and z3 contribute to the n = 3 realization, and z, and z5 to n = 2.
Observing (5.33) and the fact that the relations (5.1) are invariant under changing
the sign of J, the volumes and Hamiltonians in both loop quantum cosmology and
group field theory are identified with the same generators in harmonic cosmology.
The models of loop quantum cosmology and group field theory are therefore

realization equivalent.

5.4 Implications and further directions

There is an immediate application of our result to the appearance of singularities
in the model [121] of group field cosmology. As argued in this paper, because the
volume is derived from the positive number operator of microscopic excitations A’
it can be zero only at a local minimum, which requires V(@min) = 0 and dV/d¢ = 0
at some internal time ¢.;,. The combination of these two conditions is quite
restrictive, and [121] concludes that a singularity (zero volume) can be reached
only for a small number of initial conditions.

However, our identification of the model of [121] as a bosonic realization of
harmonic cosmology suggests a more cautious approach to the singularity problem.
In su(1,1), there is no positivity condition on the generator that corresponds to
the volume V. The bosonic realization in terms of microscopic excitations A°
is therefore local, in the sense that the A’ are local coordinates on the Poisson
manifold that realizes harmonic cosmology, and V' = 0 is at the boundary of a local
chart. Accompanying V(¢min) = 0 with dV/d¢ = 0 is therefore unjustified unless
one can show that evolution never leaves a local chart. The condition V(dyin) = 0
is not as restrictive as the combination, and it leaves more room for solutions that
reach zero volume. (These solutions may still be considered non-singular if there is

a unique Hamiltonian that evolves solutions through zero volume. In loop quantum
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cosmology, evolving through V' = 0 is interpreted as changing the orientation of
space [123,124].)

In harmonic cosmology, further generalizations of the model used here have
already been explored in some detail. The new relationship with group field theory
suggests similar generalizations also on the group-field side of the equivalence. For
instance, harmonic cosmology can be defined for any power-law () = a? replacing
V = a3, describing a quantization ambiguity that corresponds to lattice refinement
of an underlying discrete geometry [125,126]. The same algebra, with arbitrary
exponent p, can then be realized bosonically, suggesting related group-field models.
(While the power-law V' = a® is preferred at large volume because it avoids an
expansion of the discrete scale to macroscopic size, a different power low may well
be relevant near a spacelike singularity.)

Another parameter related to the relation V = a3 is the averaging volume V
used to define the isotropic model. We have implicitly assumed Vi = 1 in order to
focus on algebraic properties; in general, we have V' = Vya® where Vj is computed
as the coordinate volume of the averaging region. Classical equations do not depend
on Vj, but quantum corrections do, as can be seen here from the fact that in the
action (5.34) the Hamiltonian H is proportional to Vj, but the symplectic term is
not. The microcopic action is then not invariant under changing Vj. Implications
of a relation between Vj and the infrared scale of an underlying field theory [127]
are of importance for the interpretation of quantum cosmology [128], and similar
conclusions should hold true in group-field cosmology.

In classical harmonic cosmology, the Casimir R = 0 is exactly zero, but this
value usually changes in the presence of quantum corrections [103,104,129]. The
bouncing behavior (5.2) is no longer guaranteed if R < 0 and |R| > (§HJ)?, because
V(¢) behaves like a sinh under these conditions. These conditions require large
quantum corrections, greater than the matter density related to pi. They are
therefore unlikely to be fulfilled in a macroscopic universe. However, as pointed
out in [128], an appeal to the BKL scenario [130] near a spacelike singularity shows
that a homogeneous model is a good approximation only if it has small co-moving
volume, given by the averaging volume V[ mentioned above. Such a tiny region does
not contain much matter energy, which can then easily be surpassed by quantum
corrections in a high-curvature regime: pyg oc Vj is suppressed for small Vj, while

volume fluctuations AV are not proportional to Vj because they are bounded
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from below by the Vj-independent A in uncertainty relations. The genericness of
bouncing solutions in loop quantum cosmology or group-field cosmology is then
not guaranteed.

Finally, a large class of microscopic models can be constructed from the bosonic
realizations of harmonic cosmology with arbitrary n in (5.31). The question of
whether these are related to group field cosmology in some way appears to be of

interest.
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Chapter 6
Summary

Semi-classical methods are generally considered useful owing to the scarcity of
exact solutions in quantum mechanics. However, standard semi-classical methods
such as the effective action, or the time dependent variational principle have their
own domains of validity and may not help for all problems one is interested in.
Canonical effective methods provides a more general recourse for such situations.
However, this approach is more technically involved owing to a non-linear Poisson
bracket, and constraints stemming from the Cauchy-Schwartz inequality. These
problems can be overcome by a change of coordinates, from the moments to a set
of variables that obey a canonical Poisson bracket. This direction was explored in
this dissertation: A general method for constructing canonical coordinate systems
was constructed, canonical coordinate systems were constructed for several specific
examples, and several physical applications were explored.

The method developed for constructing faithful canonical realizations of semi-
classical truncations is a good step towards making canonical effective methods
available to a wider set of problems, which in turn can open the door to exploring
semi-classical problems in a broader range of validity. Since the canonical coordinate
systems are independent of the Hamiltonian used, once our method has been used
to construct a canonical coordinate system for a given problem, the work spent
finding this coordinate system can be spent in many problems. Also, since the
coordinates obey a canonical Poisson bracket, many of the powerful canonical
transformation techniques developed for classical mechanics can be applied in the
semi-classical regime. This was seen in the example of parametric resonance of two
coupled oscillators, where we used a canonical transformation to make contact with

the problem of parametric resonance in the literature. Furthermore, our study of
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semi-classical truncations led us to identifying the algebraic structure of the second
order moments as the Lie algebra sp(2N,R). This implies that the the Casimirs
of this algebra are semi-classical constants of motion, this in turn can be used to
simplify calculations by the introduction of extra conserved quantities.

The method of canonical realizations also allows one to more intuitively grasp
quantum mechanical processes such as quantum tunneling. This is because the
usage of a canonical coordinate system not subject to any constraints allows one to
use ordinary phase space visualization methods, as we have in chapters three and
four. In particular this allows us to see the path the electron takes in the quantum
phase space as the atom is ionized.

Using the canonical effective methods and the faithful canonical realizations
developed in chapter two, we give new clarity to the problem of tunneling times
in chapter 3. Several new ingredients were needed for this. The ground states
of most atoms are not semiclassical, so to make headway one needs to move
beyond the semiclassical approximation. This was done by choosing a closure
of moments. Motivated by results from chapters two and four, we choose the
closure A(z*") = 5" and zero for odd moments. Given a classical Hamiltonian
of the form H = %pQ + V(z), this leads to the interesting effective potential
Ve = 55 + 5 (V(z + s) + V(z — s)). Where U is the Heisenberg uncertainty and
s? is the variance of the wave function. Heuristically, the particle “feels” around
itself at a distance s to decide where to move next. One interesting feature of this
potential is that it was derived without a derivative expansion, allowing for the
consideration of non-adiabatic states. When applied to tunneling, this effective
potential provides much intuition. For example, inspection of the equipotential line
of the ground state energy, allows one to see the tunneling channel open and close
as the laser pulse passes over the atom. In addition to presenting a tunneling time
definition based on these methods in chapter three, we also extract a wide range of
physical data, such as: tunneling times for a given laser intensity, fluctuation sizes,
offset angles and exit momenta. We were also able to compare with two existing
definitions of tunneling times; The Bohmian tunneling time, and the tunneling
time defined by classical backpropagation.

Beyond using the canonical variables to aid in calculations or visualization
of quantum processes, they can also be used in order to better understand the

properties of a quantum state space. For example, in chapter four we were able
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to identify several parameters arising in our canonical realization as impurity
parameters. Thus the canonical parametrization of the moments can give one some
insight into the purity of the state. Furthermore, the canonical parametrization of
the phase space allowed us to perform apply methods from statistical physics to
semi-classical problems. Calculation of thermodynamic parameters with just the
ordinary moments is difficult because one has to use a very inconvenient integration
region due to the non-holonomic constraints on the moments and also because it is
not clear what the phase space volume element should be for the moments, owing
to their complicated Poisson bracket. Canonical coordinate systems thus alleviate
these issues by trivializing the constraints and transforming the phase space volume
element to standard one.

The framework created for defining and analyzing realizations was also useful
for drawing links between different theories by way of realization equivalence. In
chapter five we were able to link loop quantum cosmology and a model of group
field cosmology by way of realization equivalence. This is significant because these
two models of quantum cosmology were derived within the context of two different
theories of quantum gravity, giving confidence in the predictions of either theory.
Furthermore this link is useful because it implies several generalizations on the
group field side of the equivalence. For one, the quantization ambiguity of harmonic
cosmology suggests the use of a more general group field Hamiltonian. Also, this
link has implications for the formation of singularities in group field cosmology.

The method of faithful realizations has demonstrated a broad range of applica-
bility, from problems in quantum optics to quantum cosmology. This method is
especially useful in situations where standard effective techniques can’t be relied
on, such as non-adiabatic scenarios or for systems without ground states. However
there is still work to do. While we have a procedure for finding faithful canonical
realizations for semi-classical truncations in general and several worked examples,
there are still many truncations that need to have the method applied to them.
In particular, a faithful canonical realization of the second order truncation for
a system with N degrees of freedom remains to be completed. This would be
significant because it would open the door to analyzing quantum field theories and
many body systems in situations where an adiabatic effective potential can’t be

relied on.

132



Bibliography

[1] M. Peskin and D Schroeder in: An Introduction to Quantum Field The-
ory,(Westview Press, Colorado, 1995) pp 364-383

[2] S. Coleman and E. Weinberg, Radiative Corrections as the Origin of Sponta-
neous Symmetry Breaking, Phys. Rev. D, 7, 1888 (1973)

[3] G. Dunne, The Heisenberg-Euler Effective Action:75 years on, arXiv:1202.1557
[hep-th]

[4] V. Branchina et al., Effective action and the quantum equation of motion,
arXiv:hep-th /0306050

[5] L. Dolan and R. Jackiw, Gauge Invariant Signal for Gauge Symmetry Breaking,
Phys. Rev. D, 9, 2904 (1974)

[6] F. Dyson, Divergence of Perturbation Theory in Quantum Electrodynamics,
Phys. Rev., 85, 631 (1952)

[7] G. Dunne and T. Hall, Borel Summation of the Derivative Expansion and
Effective Actions, arXiv:hep-th/9902064

[8] D. Boyansky et al., Non-Equillibrium Evolution of Scalar Fields in FRW
Cosmologies I, arXiv:hep-ph/9310319

[9] F. Cooper et al., Quantum Dynamics in a time dependent variational approxi-
mation, Phys. Rev. D, 34, 3832 (1986)

[10] S. Pi and M. Samiullah, Renormalizability of the time dependent variational
equations in quantum field theory, Phys. Rev. D, 36, 3128 (1987)

[11] M. Bojowald, Quantum Cosmology: Effective Theory, arXiv:1209.3403 [gr-qc]

[12] M. Bojowald, Quantum Cosmology a Fundamental Description of the Universe,
ISBN: 978-1-4419-8275-9

[13] M. Bojowald, H. Hernandez, and A. Skirzewski Effective equations for isotropic
quantum cosmology including matter, Phys. Rev. D 76(2007) 063511

133



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

O. Prezhdo, Quantized Hamiltonian Dynamics, Theor. Chem. Acc. 116 (2006)
206

M. Bojowald, Quantum cosmology: a review, Rep. Prog. Phys. 78 (2015)
023901, [arXiv:1501.04899]

E. Pahl and O. Prezhdo, Extension of quantized Hamilton dynamics to higher
orders, J. Chem. Phys. 116 (2002) 87048712

M. Bojowald and A. Skirzewski, Effective Equations of Motion for Quantum
Systems, Rev. Math. Phys. 18 (2006) 713-745, [math-ph/0511043]

M. Bojowald and A. Skirzewski, Quantum Gravity and Higher Curvature
Actions, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 2552, [hep-th/0606232],
Proceedings of “Current Mathematical Topics in Gravitation and Cosmology”
(42nd Karpacz Winter School of Theoretical Physics), Ed. Borowiec, A. and
Francaviglia, M.

M. Bojowald and S. Brahma, Canonical derivation of effective potentials,
larXiv:1411.3636]

F. Arickx, J. Broeckhove, W. Coene, and P. van Leuven, Gaussian Wave-packet
Dynamics, Int. J. Quant. Chem.: Quant. Chem. Symp. 20 (1986) 471-481

T. Holstein and H. Primakoff, Field dependence of the intrinsic domain
magnetization of a ferromagnet, Phys. Rev. 58 (1940) 1098-1113

G. Rosensteel and D. J. Rowe, Nuclear sp(3, R) model, Phys. Rev. Lett. 38
(1977) 10-14

G. Rosensteel and D. J. Rowe, On the algebraic formulation of collective
models ITI. The symplectic shell model of collective motion, Ann. Phys. 126
(1980) 343-370

J. Deenen and C. Quesne, Dynamical group of microscopic collective states. I.
One-dimensional case, J. Math. Phys. 23 (1982) 878-889

D. J. Rowe, Coherent state theory of the noncompact symplectic group, J.
Math. Phys. 25 (1984) 2662-2671

O. Castanos, E. Chacon, M. Moshinsky, and C. Quesne, Boson realization of
sp(4). I. The matrix formulation, J. Math. Phys. 28 (1985) 21072123

M. Moshinsky, Boson realization of symplectic algebras, J. Phys. A 18 (1985)
L1-L6

134



28]

[29]

[30]

[31]

[32]

[33]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

N. Mukunda, Dynamical symmetries and classical mechanics, Phys. Rev. 155
(1967) 1383-1386

N. Mukunda, Realizations of Lie algebras in classical mechanics, J. Math.
Phys. 8 (1967) 1069-1072

P. Chand, C. L. Mehta, N. Mukunda, and E. C. G. Sudarshan, Realization
of Lie algebras by analytic functions of generators of a given Lie algebra, J.
Math. Phys. 8 (1967) 2048-2059

J. Rosen, On realizations of Lie algebras and symmetries in classical and
quantum mechanics, Il Nuovo Cim. IL A (1967) 614-621

M. Tosifescu and H. Scutaro, Poisson bracket realizations of Lie algebras and
subrepresentations of (ad®*),, J. Math. Phys. 25 (1984) 2856-2962

R. Haag, Local Quantum Physics, Springer-Verlag, Berlin, Heidelberg, New
York, 1992

A. Tsobanjan, Semiclassical states on Lie algebras, J. Math. Phys. 56 (2015)
033501, [arXiv:1410.0704]

M. Bojowald, D. Brizuela, H. H. Hernandez, M. J. Koop, and H. A. Morales-
Técotl, High-order quantum back-reaction and quantum cosmology with a pos-
itive cosmological constant, Phys. Rev. D 84 (2011) 043514, [arXiv:1011.3022]

A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative
algebras, volume 10 of Berkeley Mathematics Lectures, Am. Math. Soc.,
Providence, 1999

S. Goshen and H. J. Lipkin, A simple independent-particle system having
collective properties, Ann. Phys. 6 (1959) 301-309

V. L. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1997
P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva Press, 1969

P. G. Bergmann, Observables in General Relativity, Rev. Mod. Phys. 33 (1961)
510-514

B. Dittrich, Partial and Complete Observables for Hamiltonian Constrained
Systems, Gen. Rel. Grav. 39 (2007) 1891-1927, [gr-qc/0411013]

P. Eckle, A. N. Pfeiffer, C. Cirelli, et al., Attosecond Ionization and Tunneling
Delay Time Measurements in Helium, Science 322 (2009) 1525-1529

N. Camus, E. Yakaboylu, L. Fechner, et al., Experimental Evidence for
Quantum Tunneling Time, Phys. Rev. Lett. 119 (2017) 023201

135



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

U. S. Sainadh, H. Xu, X. Wang, et al., Attosecond angular streaking and
tunnelling time in atomic hydrogen, [arXiv:1707.05445]

E. H. Hauge and J. A. Stovneng, Tunneling times: a critical review, Rev. Mod.
Phys. 61 (1989) 917-936

R. Landauer and Th. Martin, Barrier interaction time in tunneling, Rev. Mod.
Phys. 66 (1994) 217-228

T. Zimmermann, S. Mishra, B. R. Doran, et al., Tunneling Time in Weak
Measurements in Strong Field lonization, Phys. Rev. Lett. 116 (2016) 233603

A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C.
Cirelli, L. Gallmann, and U. Keller, Ultrafast resolution of tunneling delay
time, Optica 1 (2014) 343

L. Torlina, F. Morales, J. Kaushal, et al., Interpreting attoclock measurements
of tunnelling times, Nature Physics 11 (2015) 503-508

A. N. Pfeiffer, C. Cirelli, M. Smolarski, et al., Attoclock reveals natural
coordinates of the laser-induced tunneling current flow in atoms, Nat. Phys. 8
(2012) 76-80

N. Eicke and M. Lein, Trajectory-free ionization times in strong field ionization,
Phys. Rev. A. 97 (2018) 031402

N. Teeny, E. Yakaboylu, H. Bauke, and C. Keitel, Ionization Time and Exit
Momnetum in Strong Field Tunnel Ionization, Phys. Rev. Lett. 116 (2016)
063003

H. Ni, U. Saalmann, and J.-M. Rost, Tunneling Ionization Time Resolved by
Backpropagation, Phys. Rev. Lett. 117 (2016) 023002

H. Ni, U. Saalmann, and J.-M. Rost, Tunneling exit characteristics from
classical backpropagation of an ionized electron wave packet, Phys. Rev. A 97
(2018) 013426

H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. I. Shvetsov-Shilovski,
and L.-W. Pi, Tunneling criteria and a nonadiabatic term for strong-field
ionization, Phys. Rev. A 98 (2018) 013411

D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of
“Hidden” Variables; I, Phys. Rev. 85 (1952) 166—179

D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of
“Hidden” Variables; II, Phys. Rev. 85 (1952) 180-193

136



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]
[70]
[71]
[72]
73]

N. Douguet and K. Bartschat, Dynamics of tunneling ionization using Bohmian
mechanics, Phys. Rev. A 97 (2018) 013402

F. Arickx, J. Broeckhove, W. Coene, and P. van Leuven, Gaussian Wave-packet
Dynamics, Int. J. Quant. Chem.: Quant. Chem. Symp. 20 (1986) 471-481

O. Prezhdo, Quantized Hamiltonian Dynamics, Theor. Chem. Acc. 116 (2006)
206

M. Bojowald and A. Skirzewski, Effective Equations of Motion for Quantum
Systems, Rev. Math. Phys. 18 (2006) 713-745, [math-ph/0511043]

M. Bojowald and A. Skirzewski, Quantum Gravity and Higher Curvature
Actions, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 2552, [hep-th/0606232],
Proceedings of “Current Mathematical Topics in Gravitation and Cosmology”
(42nd Karpacz Winter School of Theoretical Physics), Ed. Borowiec, A. and
Francaviglia, M.

B. Baytag, M. Bojowald, and S. Crowe, Faithful realizations of semiclassical
truncations, arXiv:1810.12127

C. Kithn, Moment ClosureAATA Brief Review, In Control of Self Organizing
Non-Linear Systems, pages 253-271, Springer International Publishing, 2016

B. Baytag, M. Bojowald, and S. Crowe, Effective potentials from canonical
realizations of semiclassical truncations, [to appear]

E. Wigner, The transition state method, Trans. Faraday Soc. 34 (1938) 29-41

L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1945, Sov. Phys. JETP 20
(1965) 1307

V. S. Popov, Tunnel and multiphoton ionization of atoms and ions in a strong
laser field (Keldysh theory), Phys.-Usp. 47 (2004) 855-885

P. Eckle et al., Science 322, 1525 (2009).

N. Camus et al., Phys. Rev. Lett. 119, 023201 (2017).

E. H. Hauge and J. A. Stovneng, Rev. Mod. Phys. 61, 917 (1989).
R. Landauer and T. Martin, Rev. Mod. Phys. 66, 217 (1994).

T. Zimmermann, S. Mishra, R. B. Doran, D. F. Gordon and A. S. Landsma
Tunneling Time and Weak Measurement in Strong Field Ionization, Phys. Rev.
Lett. 116, 233603 (2016)

137



[74]

[75]

[76]
[77]
(78]
[79]

[80]

[81]

[82]
[33]

A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C.
Cirelli, L. Gallmann, and U. Keller Ultrafast resolution of tunneling delay time
Optica 1, 343 (2014)

N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux, Y. Mi, K. Z.
Hatsagortsyan, T. Pfeifer, C. H. Keitel, and R. Moshammer Ezperimental
FEvidence for Quantum Tunneling Time Phys. Rev. Lett. 119, 023201 (2017)

L. Torlina et al., Nat. Phys. 11, 503 (2015)
H. Ni, U. Saalmann, and J. M. Rost Phys. Rev. Lett. 117, 023002 (2016)
U. S. Sainadh et al., arXiv: 1707.05445

N. Douguet and K. Bartschat, Dynamics of tunneling ionization using Bohmian
mechanics, Phys. Rev. A 97, 013402 (2018)

H. Ni, U. Saalmann, and J. Rost, Tunneling exit characteristics from classical
backpropagation of an ionized electron wave packet, Phys. Rev. A 97, 013426
(2018)

F. Arickx, J. Broeckhove, W. Coene, and P. van Leuven, Int. J. Quant. Chem.:
Quant. Chem. Symp. 20, 471 (1986).

O. Prezhdo, Theor. Chem. Acc. 116, 206 (2006).

M. Bojowald and A. Skirzewski, Rev. Math. Phys. 18, 713 (2006), math-
ph/0511043.

M. Bojowald et al., Phys. Rev. D 84, 043514 (2011), arXiv:1011.3022.

A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative
algebras, Vol. 10 of Berkeley Mathematics Lectures (Am. Math. Soc., Providence,
1999).

V. I. Arnold, Mathematical Methods of Classical Mechanics, (Springer, 1997).

C. Kiihn, in Control of Self Organizing Non-Linear Systems (Springer Interna-
tional Publishing, 2016), pp. 253-271.

A. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L.. Madsen,
U. Keller Attoclock reveals natural coordinates of the laser induced tunneling
current flow in atoms Phys. Rev. Lett. 8, 76 (2012)

N. Eicke and M. Lein Trajectory-free ionization times in strong field ionization
Phys. Rev. A. 97, 031402 (2018)

138



[90] H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. Shvetsov-Shilovski, L. Pi
Tunneling criteria and a nonadiabatic term for strong field ionization Phys.
Rev. A. 98, 013411 (2018)

[91] N. Teeny, E. Yakaboylu, H. Bauke and C. Keitel lonization Time and Exit Mom-
netum in Strong Field Tunnel Ionization Phys. Rev. Lett. 116, 063003(2016)

[92] M. Bojowald and A. Skirzewski, Effective Equations of Motion for Quantum
Systems, Rev. Math. Phys. 18 (2006) 713-745, [math-ph/0511043]

[93] M. Bojowald and A. Skirzewski, Quantum Gravity and Higher Curvature
Actions, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 25-52, [hep-th/0606232]

[94] B. Baytag, M. Bojowald, and S. Crowe, Faithful realizations of semiclassical
truncations, [arXiv:1810.12127]

[95] B. Baytag, M. Bojowald, and S. Crowe, Canonical Tunneling Time in Ionization
Experiments, [arXiv:1810.12804]

[96] A. Tsobanjan, Semiclassical states on Lie algebras, J. Math. Phys. 56 (2015)
033501, [arXiv:1410.0704]

[97] M. Bojowald, D. Brizuela, H. H. Hernandez, M. J. Koop, and H. A. Morales-
Técotl, High-order quantum back-reaction and quantum cosmology with a pos-
itive cosmological constant, Phys. Rev. D 84 (2011) 043514, [arXiv:1011.3022]

98] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1997

[99] F. Arickx, J. Broeckhove, W. Coene, and P. van Leuven, Gaussian Wave-packet
Dynamics, Int. J. Quant. Chem.: Quant. Chem. Symp. 20 (1986) 471-481

[100] O. Prezhdo, Quantized Hamiltonian Dynamics, Theor. Chem. Acc. 116 (2006)
206

[101] C. Kithn, Moment ClosureAATA Brief Review, In Control of Self Organizing
Non-Linear Systems, pages 253-271, Springer International Publishing, 2016

[102] F. Cametti, G. Jona-Lasinio, C. Presilla, and F. Toninelli, Comparison
between quantum and classical dynamics in the effective action formalism, In
Proceedings of the International School of Physics “Enrico Fermi”, Course
CXLIII, pages 431-448, Amsterdam, 2000. I0S Press, [quant-ph/9910065]

[103] M. Bojowald, Large scale effective theory for cosmological bounces, Phys.
Rev. D 75 (2007) 081301(R), [gr-qc/0608100]

[104] M. Bojowald, Harmonic cosmology: How much can we know about a
universe before the big bang?, Proc. Roy. Soc. A 464 (2008) 2135-2150,
larXiv:0710.4919]

139



[105] E. R. Livine and M. Martin-Benito, Group theoretical Quantization of
Isotropic Loop Cosmology, Phys. Rev. D 85 (2012) 124052, [arXiv:1204.0539)

[106] M. Bojowald, Loop Quantum Cosmology, Living Rev. Relativity 11 (2008) 4,
[gr-qc/0601085], http://www.livingreviews.org/lrr-2008-4

[107] M. Bojowald, Quantum cosmology: a review, Rep. Prog. Phys. 78 (2015)
023901, [arXiv:1501.04899]

[108] G. Calcagni, S. Gielen, and D. Oriti, Group field cosmology: a cosmological
field theory of quantum geometry, Class. Quantum Grav. 29 (2012) 105005,
[arXiv:1201.4151]

[109] S. Gielen, D. Oriti, and L. Sindoni, Cosmology from Group Field The-
ory Formalism for Quantum Gravity, Phys. Rev. Lett. 111 (2013) 031301,
[arXiv:1303.3576]

[110] S. Gielen, D. Oriti, and L. Sindoni, Homogeneous cosmologies as group field
theory condensates, JHEP 1406 (2014) 013, [arXiv:1311.1238]

[111] S. Gielen and D. Oriti, Quantum cosmology from quantum gravity conden-

sates: cosmological variables and lattice-refined dynamics, New J. Phys. 16
(2014) 123004, [arXiv:1407.8167]

[112] S. Gielen, Perturbing a quantum gravity condensate, Phys. Rev. D 91 (2015)
043526, [arXiv:1411.1077]

[113] P. A. M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950)
129-148

[114] K. Vandersloot, On the Hamiltonian Constraint of Loop Quantum Cosmology,
Phys. Rev. D 71 (2005) 103506, [gr-qc/0502082]

[115] B. Baytag, M. Bojowald, and S. Crowe, Faithful realizations of semiclassical
truncations (2018), [arXiv:1810.12127]

[116] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang:
An Analytical and Numerical Investigation, Phys. Rev. D 73 (2006) 124038,
[gr-qc/0604013]

[117] S. Goshen and H. J. Lipkin, A simple independent-particle system having
collective properties, Ann. Phys. 6 (1959) 301-309

[118] J. Deenen and C. Quesne, Dynamical group of microscopic collective states.
I. One-dimensional case, J. Math. Phys. 23 (1982) 878-889

140



[119] O. Castafios, E. Chacén, M. Moshinsky, and C. Quesne, Boson realization of
sp(4). I. The matrix formulation, J. Math. Phys. 28 (1985) 2107-2123

[120] M. Moshinsky, Boson realization of symplectic algebras, J. Phys. A 18 (1985)
L1-L6

[121] E. Adjei, S. Gielen, and W. Wieland, Cosmological evolution as squeezing: a
toy model for group field cosmology, Class. Quantum Grav. 35 (2018) 105016,
[arXiv:1712.07266]

[122] C. Rovelli and L. Smolin, Discreteness of Area and Volume in Quantum
Gravity, Nucl. Phys. B 442 (1995) 593-619, [gr-qc/9411005], Erratum: Nucl.
Phys. B 456 (1995) 753

[123] M. Bojowald, Absence of a Singularity in Loop Quantum Cosmology, Phys.
Rev. Lett. 86 (2001) 5227-5230, [gr-qc/0102069]

[124] M. Bojowald, Isotropic Loop Quantum Cosmology, Class. Quantum Grav.
19 (2002) 27172741, [gr-qc/0202077]

[125] M. Bojowald, Loop quantum cosmology and inhomogeneities, Gen. Rel. Grav.
38 (2006) 17711795, [gr-qc/0609034]

[126] M. Bojowald, The dark side of a patchwork universe, Gen. Rel. Grav. 40
(2008) 639-660, [arXiv:0705.4398]

[127] M. Bojowald and S. Brahma, Minisuperspace models as infrared contributions,
Phys. Rev. D 92 (2015) 065002, [arXiv:1509.00640]

[128] M. Bojowald, The BKL scenario, infrared renormalization, and quantum
cosmology (2018), [arXiv:1810.00238]

[129] M. Bojowald, How quantum is the big bang?, Phys. Rev. Lett. 100 (2008)
921301, [arXiv:0805.1192]

[130] V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifschitz, A general solution of
the Einstein equations with a time singularity, Adv. Phys. 13 (1982) 639-667

141



Vita

Sean Crowe

Sean Crowe was born in New York on March 22, 1992. He obtained his Bachelors
degree in physics and mathematics from Stony Brook University in May 2014. He
joined the Ph.D. program at Pennsylvania State University in August 2014. He
has been doing his research under the supervision of Martin Bojowald since 2015.
His publications include:

- B. Baytas, M. Bojowald and S. Crowe, Faithful realizations of
semiclassical truncations, [arXiv:1810.12127]

« B. Baytas, M. Bojowald and S. Crowe, Canonical tunneling times
in ionization experiments, Phys. Rev. A 97, 013426 (2018)

« B. Baytas, M. Bojowald and S. Crowe, Effective potentials from
semiclassical truncations, Phys. Rev. A 99, 042114 (2019)

« B. Baytas, M. Bojowald and S. Crowe, Fquivalence of models in
loop quantum cosmology and group field theory, Universe 2019,
5(2), 41



