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Abstract In this work, we investigate the geodesic motion
of both massless and massive test particles in the vicinity
of a spherically symmetric Finslerian Hayward-like black
hole (FHBH) that is coupled to a quintessence field (QF) and
carries a global monopole (GM). By examining the com-
bined effects of the GM and QF, we observe significant devi-
ations in the geodesic structure for both null and time-like
particles when compared to the conventional BH models.
Additionally, we explore spin-0 scalar field perturbations by
solving the massless Klein—-Gordon equation in this modi-
fied BH space-time background and analyze the influence of
the Finslerian geometry, GM, and QF on the resulting scalar
perturbative potential. Using the effective potential derived
from null geodesics, we compute the transmission and reflec-
tion coefficients and discuss their physical implications. Fur-
thermore, we numerically calculate the quasinormal modes
(QNMs) frequencies based on the scalar perturbations poten-
tial and assess how the Finslerian modifications, along with
the presence of GM and QF, affect the QNM spectrum.

1 Introduction

General Relativity (GR) has been remarkably successful in
describing gravitational phenomena, yet it faces significant
challenges when extended to the quantum scale or to cos-
mological scenarios involving dark matter and dark energy
[1,2]. In recent years, alternative theories of gravity have
gained increasing attention as they offer insights into these
unresolved issues [3,4]. Among them, Finsler geometry has
emerged as a promising extension of Riemannian geome-
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try, providing a broader mathematical framework to describe
space-time structure [5,6]. Unlike GR, where the metric ten-
sor alone defines the space-time, Finsler geometry general-
izes this concept by allowing the fundamental length element
to depend on both position and velocity, leading to modifica-
tions in geodesic motion and causal structure [7,8]. Such an
approach is particularly useful in addressing scenarios where
Lorentz symmetry breaking, anisotropic effects, or quantum
gravity corrections become relevant [9-15].

Black holes (BHs) serve as an ideal setting to test the impli-
cations of modified gravity theories, as they provide a natural
laboratory for studying strong gravitational effects [16,17].
One of the most extensively studied regular BH solutions is
the Hayward BH (HBH), which avoids the central singularity
by introducing a non-linear electrodynamics (NED) source
[18-23]. The HBH solution has been widely explored in var-
ious contexts, including geodesics [24,25], thermodynamics
[26,27],and QNMs [28-36]. Given the success of the HBH in
addressing singularity-related issues, it is natural to investi-
gate its modifications within the framework of Finsler geom-
etry. A Finslerian generalization of the HBH would provide
new insights into the effects of non-Riemannian space-time
structures on BH physics [37,38].

The concept of Finsler space-time has been extended and
refined in the literature [39-42], building upon the origi-
nal framework proposed by Beem [43]. This generalized
approach has been instrumental in describing a wide range
of indefinite Finslerian lengths, offering a broader perspec-
tive on space-time geometry. Finslerian geometry provides
a natural extension of GR, preserving the dimensionality of
space-time while offering enhanced flexibility in characteriz-
ing observers, gravity, and temporal structure simultaneously
[44].

Researchers have been exploring various models, includ-
ing black holes, wormholes, and cosmological models,
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within the framework of Finslerian geometry. These stud-
ies have spanned a wide range of theoretical investigations,
contributing noticeably to our understanding of space-time
dynamics and the fundamental nature of the universe. A
few applications of Finslerian geometry are the Friedmann—
Robertson—Walker (FRW) cosmological model [45], which
describes the evolution of a homogeneous and isotropic uni-
verse. Additionally, wormhole solutions have been derived
using various shape functions, including exponential ones
[46,47] and other traversable wormholes [48,49] within
Finslerian geometry. The Finsler—Randers (FR) metric has
been explored in the context of cosmology [50], offering
new insights into the role of Finslerian geometry in shap-
ing the large-scale structure of the universe. The extension
of Schwarzschild-de Sitter space-time in Finslerian geom-
etry has also been studied [51-53]. Finslerian geometry
has also been utilized in constructing models of astrophysi-
cal objects-such as charged gravastars exhibiting conformal
motion [54,55] and charged anisotropic strange stars [56],
contributing to our understanding of compact stellar objects
in Finslerian contexts. Moreover, a few black hole solutions
[57,58] and exact vacuum solution to the field equations
[59] within the Finslerian geometry have been investigated.
Additionally, cosmological models have studied in Finsle-
rian background, as discussed in [60,61]. Notable studies
have included the analysis of Kiselev black holes [62] and
the incorporation of a quintessential field into the Hayward
black hole model [63,64], providing insights into the inter-
play between dark energy and the geometry of black holes
in a Finslerian context.

In addition to considering Finslerian modifications, we
introduce a GM and a surrounding QF. A GM arises from
spontaneous symmetry breaking in field theory and induces
a deficit angle in spacetime, leading to significant modifi-
cations in geodesic structure and thermodynamic properties
[65,66]. Meanwhile, QF serves as an effective description of
dark energy, influencing the causal structure and stability of
BH solutions [67,68]. The interaction among Finsler geom-
etry, Hayward-like regularization, GM, and the QF yields
intricate phenomenology necessitating detailed analysis.

The primary objective of this study is to investigate the
influence of Finslerian modifications, the presence of a GM,
and a surrounding QF on the geodesic motion of both mass-
less and massive test particles in the vicinity of a FHBH.
We conduct a comprehensive analysis of both null and time-
like geodesics, highlighting how the combined effects of the
Finslerian structure, GM, and QF introduce significant devi-
ations in key physical features, including the effective poten-
tial, particle trajectories, and the stability of circular orbits,
when compared to classical general relativistic BH models.
Furthermore, we extend our investigation to scalar field per-
turbations by solving the massless Klein—Gordon equation
in this modified background. Here, we explore how the Fins-
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lerian parameter, along with the contributions from the GM
and the QF, shapes the scalar perturbative potential. Using the
derived effective potential from null geodesics, we compute
the transmission and reflection coefficients to analyze wave
scattering behavior around the BH. In addition, we determine
the QNM spectrum based on the scalar perturbation poten-
tial, with a particular focus on how Finslerian geometry, GM,
and QF influence the stability characteristics of the BH.

The paper is organized as follows. In Sect. 2, we introduce
the FHBH solution with GM and discuss its fundamental
properties. Section 3 presents the geodesic analysis, cover-
ing effective potentials, photon sphere characteristics, and
stability considerations. In Sect. 4, we examine scalar per-
turbations through the Klein—-Gordon equation, specifically
analyzing transmission and reflection probabilities. Section
5 focuses on the QNMs of the FHBH, utilizing the WKB
approximation and exploring their dependence on BH param-
eters. Finally, in Sect. 6, we summarize our key findings and
outline possible future research directions.

2 FHBH space-time with QF and GM

In this section, we introduce a metric ansatz for an FHBH
surrounded by a QF that incorporates a GM. We then exam-
ine the geodesic motion, focusing on both null and time-like
geodesics, and analyze in detail how the Finslerian geome-
try, QF, and GM influence the motion of light-like and time-
like particles. Furthermore, we study the dynamics of spin-
0 scalar field perturbations and discuss the behavior of the
perturbative potential, highlighting the influence of the afore-
mentioned parameters. Additionally, we calculate the QNMs
spectrum and discuss the results. Therefore, the line element
of a static and spherically symmetric solution describing a
FHBH metric, surrounded by a QF and featuring a GM in
Schwarzschild coordinates (¢, r, 6, ¢) is given by [63,64]

d 2
ds? = —F(rydi® + 2 4,2 [d92 +sin?(\/7 6) d¢2] ,

F(r)
2Mr? c
_ 2
Fry=y—8xn"— B+ et
g =22 M. (1)

Here M denotes BH mass, n being energy scale of the sym-
metry breaking [69,70], ¢ is a normalization constant, w is
the state parameter, and ¢ is the Hayward-like parameter.
This metric represents a semi-definite Finsler space, which
allows us to use the covariant derivative from Riemannian
geometry. Consequently, the Bianchi identities in this frame-
work coincide with those of Riemannian geometry, specifi-
cally the covariant conservation of the Einstein tensor. The
gravitational field equations can thus be derived alternatively
as shown in [71]. Our paper investigates the FHBH in the
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context of Finsler geometry, where Riemannian geometry is
a special case. The Ricci scalar plays a significant role in
shaping the FHBH structure. When y = 1, FHBH reduces
to the Riemannian case. This indicates that Finsler geome-
try offers a novel approach to the analysis of BH structures,
distinct from the Riemannian treatment, as demonstrated in
various works referenced in [72-75].

In the FHBH metric, where Ric = y = constant, the
term rsz represents the quintessence component, and 7>
denotes the energy scale associated with spontaneous sym-
metry breaking. Here, M refers to the mass of the Finsle-
rian Hayward BH, g*> = 2 &% M with ¢ is the Hayward-like
parameter, w is the state parameter of the quintessence mat-
ter, which lies in the range —1 < w < —1/3, and c is a
positive normalization factor used in the metric equation.
When ¢ = 0, the metric (1) reduces to the standard Finsle-
rian Hayward BH. If g = 0, the metric describes the Finsle-
rian Schwarzschild BH, surrounded by quintessence matter
[71,76]. Furthermore, when both ¢ = 0 and g = 0, the
solution behaves like the Finslerian Schwarzschild BH [77],
which features a single event horizon. It is important to note
that a variety of BH solutions can be derived by selecting
different values for the state parameter w.

The metric function F(r) is plotted as a function of the
radial coordinate r for various values of the Finslerian param-
eter y, GM parameter n, and Hayward-like parameter ¢ keep-
ing fixed QF parameters (¢ = 0.02, w = —2/3) in Fig. 1.
Moreover, a comparison of this metric function for differ-
ent BHs is depicted in Fig. 2. These figures show that the
space-time metric can have two horizons, one horizon, and
no horizon.

The horizon structure of this FHBH space-time is gov-
erned by the parameters y, n, &, M, ¢, and w, which must
satisfy specific physical bounds. For consistency with Fins-
lerian geometry, we require 0 < y < 1; the quintessence
state parameter must lie within —1 < w < —1/3 to ensure
physically meaningful behavior; and 8 7 %> < y to maintain
positive asymptotic behavior at spatial infinity. It is worth
noting that at large spatial distances, r > M, ¢, the metric
function approaches F = y — 8 7 5 other than unity. This is
occur due to the Finslerian geometry as well as the presence
of GM which causes a solid angle deficit. Thus, the selected
BH space-time is non-asymptotically flat.

Extremal BHs, characterized by a single degenerate hori-
zon, occur when both F(r) = 0 and F'(r) = 0 at the
same radius. Computing the derivative of the metric func-
tion yields:

2M 6Mrg3
P +g) (P +g)?

cBw +1)
O

F'(r) =

where prime denotes differentiation with respect to r. The
complexity of this expression requires numerical solutions

to identify extremal configurations. When the parameters do
not satisfy the extremality condition, the space-time exhibits
either two distinct horizons or no horizon, as shown in Figs.
1 and 2.

The horizon equation F(r) = 0 expands to

2Mr? c
+
r(r3 + g3) 3w+l

=y — 8’ 3)

requiring numerical methods to determine horizon radii for
given parameter values.

— The parameter y should lie within the range 0 < y < 1
to ensure consistency with the Finslerian framework.

— The state parameter w for the QF should be constrained
within the range —1 < w < —1/3 to remain physi-
cally meaningful, avoiding unrealistic behaviors such as
superluminal propagation or instability.

— The energy scale n should be constrained such that
871> < y to ensure the asymptotic behavior of the met-
ric function remains positive at spatial infinity.

— The parameters ¢ and ¢ should be chosen such that they
do not lead to pathological solutions, ensuring that the
BH retains its regularity.

Below, we examine in detail the geodesic motion of test
particles (both massless and massive) around the selected BH
space-time. We analyze how the Finslerian parameter, GM,
and QF influence the dynamics of test particles, and compare
these effects to those observed in the standard BH scenario.

3 Geodesics motions of test particles in FHBH geometry
with GM and QF

In this section, we study motions of massless photon and
time-like particles in the gravitational field around the
selected FHBH solution with GM and QF and analyze the
outcomes. Geodesic analysis in BH physics is essential for
understanding the motion of particles and light in curved
space-time, showing the structure and properties of the BH.
It helps determine key features-such as photon spheres,
BH shadow, particle trajectories, and the stability of circu-
lar orbits, which are essential for interpreting astrophysical
observations and testing gravity theories. In the present study,
we employ the Lagrangian method to investigate the geodesic
motion in the chosen BH background, following the approach
adopted in Refs. [30-33,78-81].

The Lagrangian density function in terms of the metric
tensor g, can be expressed as

1
L= Eg,w xtxv, “)

@ Springer
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Fig. 1 The behavior of the metric function F(r) as a function of r
for various values of Finslerian parameter y, energy scale parameter 7,
and Hayward-like parameter ¢. Here, we set M = 1, ¢ = 0.02, and
w=-2/3

— HBH surrounded by QF
— HBH with GM surrounded by QF
— FHBH with GM surrounded by QF]

0 1 2 3 4 5 6 7

r

Fig. 2 A comparison of the metric function F(r) as a function of r for
different BHs. Here, weset M = 1, ¢ = 0.02, w = —2/3. Hayward BH
surrounded by QF: y = 1, ¢ = 0.2; Hayward BH with GM surrounded
by QF: y = 1, ¢ = 0.2, n? = 0.2; FHBH with GM surrounded by QF:
y=09,6=021n>=02
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where dot represent ordinary derivative w. r. t. an affine
parameter T.

since the selected BH space-time is static and spherically
symmetric in nature, we study the geodesics motions in the
equatorial plane defined by 6 = /2. Therefore, using the
metric (1), we find the Lagrangian density function (now
onward calculations, § = /2, so that 0 < sinz(ﬁ w/2) <
1, where y < 1. For simplicity, we continue with the trigono-
metric function)

L= % [ — F() P2+ Fr) 2 4 r? sin((y 0) ¢2] ®)

From the above we see that the Lagrangian density func-
tion L is independent of (¢, ¢) coordinates and depends on
the radial distance r. Thus, we find the following first order
geodesic paths for the coordinates ¢, ¢ given by

. E . L
CF) 2 sin?(/7 )’
where E, L respectively are the conserved energy and the
angular momentum.

Substituting Eq. (6) into Eq. (5), we find the geodesics
equation for the r coordinate as follows (2 £ = €):

F=vE? = Ve, @)

where Vgt is the effective potential for null or time-like
geodesics and it is given by

i

(6)

L2
—€ + -
r2 sin?(/7 0)

2 M r? c
_m_m ’

where € = 0 for null geodesics and —1 for time-like.

From the above expression of the effective potential (8),
we see that various factors, such as Finslerain parameter char-
acterize by 0 < y < 1, the energy-scale of the symmetry
breaking characterize by n, the QF constant ¢ along with
state parameter w influences this effective potential both for
massless and time-like test particles around the selected BH
solution. This potential gets shift in comparison to the result
obtained for Hayward-like BH in Riemann geometry.

Vefr = [7—87”12

®)

3.1 Analysis of Null Geodesics: Circular null orbits,
force on photon particles and photon trajectory

Null geodesics play a crucial role in analyzing various phe-
nomena associated with the motion of photons in curved
space-time. They help us understand important features such
as the size of the photon sphere, the trajectories followed
by photons near a BH, the angle by which light is deflected
due to gravitational lensing, and the stability or instability of
circular photon orbits.
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Fig. 3 The behavior of the effective potential Ve (r) for null geodesics
as afunction of r for various values of Finslerian parameter y, the energy
scale parameter 1, and Hayward-like parameter €. Here, we set M = 1,
¢=0.02,and w = -2/3

In this part, we discuss null geodesics in detail and analyze
the outcomes. For null geodesics, € = 0, and therefore, from
Eq. (8) we find the effective potential given by

2 2 2Mr? c
L [V —8mn” — P2l M ,3w+1:|

r? sin?( /7 0)

, &)

Vet =

In Fig. 3, we illustrate the behavior of the effective poten-
tial for null geodesics by varying different parameters of the
space-time geometry, with each panel highlighting specific
trends. In the top panel, we demonstrate that increasing the
Finslerian parameter from y = 0.6, while keeping the energy
scale parameter n”> = 0.1 and the Hayward-like parameter
e = 0.2 fixed, results in an increase of the effective poten-
tial. The middle panel shows a similar behavior: the effective
potential increases as the Finslerian parameter y is raised

Vest

— HBH surrounded by QF
— HBH with GM surrounded by QF
— FHBH with GM surrounded by QF |

0.0 0.5 1.0 1.5 20 25 3.0

HBH surrounded by QF
— HBH with GM surrounded by QF
— FHBH with GM surrounded by QF |

L L L L L

0 1 2 3 4

()

Fig. 4 A comparison of the effective potential Vig(r) for null
geodesics in a and time-like geodesics in b as a function of r for dif-
ferent BHs. Here, we set M = 1, ¢ = 0.02, w = —2/3. Hayward BH
surrounded by QF: y = 1, ¢ = 0.2; Hayward BH with GM surrounded
by QF: y = 1, & = 0.2, n> = 0.2; FHBH with GM surrounded by QF:
y=09,6=021n*=02

from 0.60 to 0.90. However, in this case, the energy scale
parameter n? is decreased from 0.4 to 0.1, further emphasiz-
ing the interplay between these two parameters in modulating
the effective potential. In the bottom panel, we observe the
effective potential increasing as the Hayward-like parameter
¢ increases from 0.2, with the Finslerian parameter y fixed
at 0.90 and the energy scale > = 0.1. Together, the Fig-
ure illustrate the inter-dependencies between the Finslerian
parameter y, the energy scale parameter 7, and the Hayward-
like parameter ¢ in shaping the effective potential for motions
of photon light in the gravitational field around the selected
BH space-time geometry.

In Fig. 4, we illustrate a comparison of the effective
potential for both null and time-like geodesics in different
BHs space-times. We observed that presence of the Finsle-
rian parameter y and the energy scale parameter 7 together
decreases the effective potential for both null and time-like
geodesics.

For various state parameter, w, this effective potential (9)
are as follows:

(i) for w=—1/3,
2Mr? ]

L2 [y - 8P - 245
Verr = i , (10)
r2 sin*(/y 6)

@ Springer
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(ii) for w = —2/3, Y
2 30F
L2 [V—Snnz_%—cr] wt — w=-1/3
Veff = 2 o 2 ’ (11) w=-2/3
r< s (ﬁ@) 2 20f W=—5/6
(lll) for w= —5/6, 15F
2
Verr = r2 sin? (/7 0) (12 °
ﬁ Ot3 Ot4 Ot5 Ot6 0t7 0t8 0f9 1t0
To calculate the radius of an unstable photon orbit, we Y
apply the following conditions: Vegr = 0 = Vj;. Therefore, (@)
the equation for photon sphere radius is given by 4o
/ — w=-1/3
I'ps F (rps) - 2‘7:("ps) =0. (13) 487 w=-2/3
w=-5/6
Explicitly, S AT //
461 1
oMr SIS ) —2y 4297 =0, (14)
— a5 cr w) — = U.
GRS ree

Analytically, equation (14) is extremely difficult to solve. As
aresult, we give numerical analysis in tables, demonstrating
the effects of ¢ and y parameters.

Table 1 displays the numerical results rp, for various
y alternatives with all BH parameters held constant. The
parameter y has a considerable impact on the radius of the
photon sphere radius, with 7, increasing significantly as y
values decrease. Table 2 displays the numerical results for dif-
ferent ¢ selections when the BH parameters remain constant.
The table shows that ¢ has a modest impact on the photon
sphere radius, with larger ¢ values causing a slight increase
in rp,. Figure 5 depicts the dependency of the photon radius
on the parameters y (up) and ¢ (down) for different values of
the quintessence parameter w. Figure 5 shows that the pho-
ton radius falls significantly as the parameter y increases.
In contrast, for BH parameter c, the photon radius increases
somewhat. In Fig. 5 the value of r,; is consistent with the
data presented in Tables 1 and 2.

Now, we study the photon trajectory in the gravitational
field produced by the selected BH and analyze the result. We
define the following quantity for null geodesics as,

r dr\? .
q? = (%) =rt s1n4(ﬁ9)
1 (V—Sﬂﬂz_w_,h;l)

B r2 sin( /7 6)

. 15)

where B = L/E is the impact parameter for photon light.
Defining a new variable u = % into the Eq. (15) yields

) _ g 16
(%) - (’47,3’7/’77)a ( )
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Fig. 5 Illustration of the photon sphere radius rps as a function of y
in a and ¢ in b for various values of the state parameter w

where we defined

. 4 0
G, .y, 1) = Sm(ﬁ#
) . 2_3&_ 3w+l
! (V T Ty " )
sin? (/7 6). (17)

Equation (16) represents the photon trajectory equation
under the influence of the gravitational field produced by the
chosen BH in Finslerian geometry. From this expression, it
is evident that the photon trajectory is influenced by sev-
eral factors, including the Finslerian parameter y (which is
constrained by 0 < y < 1), the Hayward-like parameter
&, the energy scale of symmetry breaking characterized by
the parameter 7, as well as the QF with constant ¢ and the
state parameter w. These factors collectively shape the path
of photons in this particular space-time configuration.

Now, we compute the force acting on massless photon par-
ticles in the gravitational field produced by the chosen FHBH
geometry. The force acting on the photon light can be deter-
mined in terms of the effective potential for null geodesics,

as F(r) = —@. Using the effective potential for null
geodesics provided in Eq. (9), we can express this force as:
L2
For)= —————
«) r3 sin?(/7 0)
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Table 1 Numerical results for rps of the FHBH with QF under GMs for specific choices of y. Here, M = 1,7 = 0.5, g = (2 2 M)1/3 =05,

¢ =0.003

Photon sphere radius (rps)

y w=-—1/3 w=-2/3 w=-5/6
0.4 20.4076 27.6388 15.3688
0.6 8.64219 8.90852 8.15991
0.8 5.47612 5.52989 5.35518

1 4.00043 4.01689 3.95279

Table 2 Numerical results 7 of the FHBH with quintessence under GM:s for specific choices of c. Here, M = 1,7 = 0.5, g = (2 M) =05

andy =0.9
Photon sphere radius (rps)
c w=—-1/3 w=-2/3 w=-5/6
0.001 4.61073 4.62013 4.62137
0.003 4.62509 4.65394 4.65802
0.005 4.63954 4.68877 4.69617
0.007 4.65408 4.72466 4.73596
x|y — 8 n?— 3M/r fixed. Together, these panels illustrate the inter-dependencies
( |4 262 M)2 between the Finslerian parameter y, the energy scale 1, and
r’ the Hayward-like parameter ¢ in shaping the force on mass-
3c(w+1)/2 (18) less photon light in this specific space-time geometry.
pIwtl ' In Fig. 7, we illustrate a comparison of the force on pho-

From the above expression (18), itis clear that for different
values of the state parameter w, the force acting on a massless
photon varies. Furthermore, we observe that the presence
of the Finslerian parameter 0 < y < 1, the energy scale
of symmetry breaking characterized by the parameter 7, as
well as the QF with constant ¢ and the state parameter w, all
influence this force. These factors lead to a deviation from
the results typically obtained in standard BH solutions within
GR, causing shifts in the behavior of the force on massless
photons in the gravitational field produced by the selected
BH space-time in Finslerian geometry.

In Fig. 6, we illustrate the behavior of the force acting
on photon particles under the influence of the gravitational
field, varying different parameters of the space-time geome-
try. Each panel highlights specific trends. In the top panel, we
show that increasing the Finslerian parameter from y = 0.6
to less than unity, while keeping the energy scale parameter
n*> = 0.1 and the Hayward-like parameter ¢ = 0.1 fixed,
results in an increase in the force. The middle panel dis-
plays a similar trend: the force increases as the Hayward-like
parameter ¢ is raised from 0.20 to 0.35, while keeping the
Finslerian parameter y = 0.9 and the energy scale param-
eter 772 = 0.1 fixed. In the bottom panel, we observe that
the force decreases as the energy scale parameter increases
from n> = 0.1 to n> = 0.4, while keeping the Hayward-
like parameter ¢ = 0.2 and the Finslerian parameter y = 0.9

ton particles under the influence of the gravitational field
produced by different BHs space-times both in Riemann and
Finslerian geometries. We observed that presence of the Fins-
lerian parameter y and the energy scale parameter 1 together

decreases the force in compered to the Riemann geometry.
We present this force expression for different state param-
eter w as follows:

(iHYw=—1/3,
L? r 3M/r
F = — 2_ T 1
(r) S5 0) K 8w n (1+252M)2 ] (19)
3
(i)w=—-2/3,
L? [ 3M/r cr
Fr)= —— |y —gapp— 227 "1 2
@) T (76) R (1+282M)2 2},(0)
3
(iii)w = —5/6,
F(r>=L72—y—8nn2
r3sin?(/7 ) L
3M/r _ §r3/2]. (1)

()

3.2 Analysis of time-like geodesics: circular time-like
orbits, Lyapunov exponent

Time-like geodesics are the trajectories followed by massive
particles, such as planets, stars etc. moving under the influ-
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Fig. 6 The behavior of force F(r) on massless photon particles as a
function of r for various values of Finslerian parameter y, the energy
scale parameter n, and Hayward-like parameter €. Here, we set M = 1,
c=0.02,w=-2/3

10p — HBH surrounded by QF
— HBH with GM surrounded by QF |
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Fig. 7 A comparison of force F(r) on the massless photon particles as
a function of r for different BHs. Here, we set M = 1, ¢ = 0.02, and
w = —2/3. Hayward BH surrounded by QF: y = 1, ¢ = 0.2; Hayward
BH with GM surrounded by QF: y = 1, ¢ = 0.2, n> = 0.2; FHBH
with GM surrounded by QF: y = 0.9, ¢ = 0.2, n> = 0.2
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ence of gravity in the curved space-time around BHs. These
geodesics help determine key physical properties, including
the orbital paths, velocities of particles as they revolve around
the BH, and stability of circular time-like orbits. By studying
time-like geodesics, we can study the dynamics of matter in
accretion disks, which are critical in BH astrophysics and
observational phenomena.

In this part, we study time-like geodesics in detail and
analyze the results. For time-like geodesics, € = —1, and
hence, the effective potential from Eq. (8) reduces

2 M r?

v, 1+—L2 8t — ———5—
o _8an?—
eff ; v T M

2 sinz(ﬁé’)

C
—rsTH] ’ (22)

For various state parameter for example, we find

(Hw=—1/3,
L2
Vet = |14+ ————
. F2sin (/70)
871y 2M 1 (23)
YO T ey <
Gi)w = —2/3,
L2
Ve = |14 —————
eff r2sin®(/70)
87 n? 2Mr? cr (24)
YR TG 122 ) ’
Gii)w = —5/6,
L2
Vet = |14 ——
eff r2sin?(/76)
2 M r?
P L L T3 25
[V T2 (25)

Using the conditions of circular orbits for the time-like
particles as, 7 = 0 and # = 0, we find the following relations

E? = Vegr, (26)
And
V/ie(r) = 0. 27)

Using the effective potential (22), we find the angular
momentum of time-like particles on the circular orbits in
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Fig. 8 The behavior of particles’ angular momentum L(r) as a func-
tion of r for various values of Finslerian parameter y, the energy scale
parameter 1, and Hayward-like parameter ¢. Here, we set M = 1,
¢ =0.002, and w = -2/3

the equatorial plane as,

2 | Mr2(3-4e2 M) cBw+1)/2
r (r3+262 M)2 + F3w+l
_ Mr2@3r34282M)  3c(w+D)/2”
(r3+282 M)Z F3w+l

L=

(28)

y —8mn?
And the time-like particles’ energy on circular orbits is

2 2Mr? c
(V—SM —m—m>

Eir==% .
\/ _8anl_ MG M) _ 3cwtD/
Y n (r3+2 g2 M)2 r3w+l

(29)

From the energy expression (29), it can be seen that at spa-
tial infinity (r — 00), the energy of the particles approaches

E+ — £./y — 8wn?. Therefore, the maximum energy of
the particles is given by Ef** = +,/y — 87 n? < 1, which
depends on the Finslerian geometry parameter 0 < y < 1
and the energy scale parameter 7.

From the expressions given in Egs. (28)—(29), we observe
that the time-like particle angular momentum and energy
in circular orbits are influenced by several factors. These
include the Finslerian parameter y, the energy scale of sym-
metry breaking 1, the Hayward-like parameter ¢, and the QF
parameters (c, w).

In Fig. 8, we illustrate the behavior of the angular momen-
tum of time-like particles on the circular orbits in the equato-
rial plane under the influence of the gravitational field, vary-
ing different parameters of the space-time geometry. In the
top panel, we show that increasing the Finslerian parameter
from y = 0.6 but less than unity, while keeping the energy
scale parameter n”> = 0.1 and the Hayward-like parameter
& = 0.2 fixed, results in a decrease in the angular momentum.
In contrast, the middle panel displays the opposite trend: the
angular momentum increases as the energy scale parameter
n is raised from 0.1, while the Finslerian parameter y = 0.9
and the Hyaward-like parameter ¢ = 0.2 are kept fixed. In
the bottom panel, we observe a similar trend: the angular
momentum of the time-like particle increases as both the
energy scale parameter n and the Hayward-like parameter ¢
increase, while keeping the Finslerian parameter y = 0.9
fixed. Together, these panels illustrate the interdependencies
between the Finslerian parameter y, the energy scale 7,
and the Hayward-like parameter ¢ in illustrating the angu-
lar momentum of time-like particles on circular orbits in this
specific space-time geometry.

In Fig. 9, we illustrate the behavior of time-like particles
energy on the circular orbits in the equatorial plane under the
influence of the gravitational field, varying different param-
eters of the space-time geometry. In the top panel, we show
that increasing the Finslerian parameter from y = 0.6 but
less than unity, while keeping the energy scale parameter
n*> = 0.1 and the Hayward-like parameter ¢ = 0.2 fixed,
results in an increases in energy. In contrast, the middle
panel displays opposite trend: the energy decreases as the
energy scale parameter 7 is raised, while keeping the Fins-
lerian parameter y = 0.9 and the Hyaward-like parameter
e = 0.2 fixed. In the bottom panel, we observe the simi-
lar trend: energy of the time-like particle decreases as both
the energy scale parameter (1) and the Hayward-like param-
eter (&) increases, while keeping the Finslerian parameter
y = 0.9 fixed. Together, these panels illustrate the inter-
dependencies between the Finslerian parameter y, the energy
scale 2, and the Hayward-like parameter ¢ in illustrating the
energy of time-like particles on circular orbits in this specific
space-time geometry.

InFig. 10, we present a comparison of the angular momen-
tum (L) and energy (E) of time-like particles under the influ-
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Fig. 9 The behavior of particles energy E(r) as a function of r for
various values of the Finslerian parameter y, the GM parameter n, and
Hayward-like parameter ¢. Here, we set M = 1, ¢=0.002, and w=-2/3

ence of the gravitational field produced by BH space-times
with a QF and GM, both in Riemann and Finslerian geome-
tries. We observe that the presence of the Finslerian param-
eter y and the energy scale parameter 1 together increase
the angular momentum, whereas the energy of the particles
decreases compared to the Riemann geometry, both with and
without GM.

Now, we determine the angular velocity of time-like par-
ticles’ on circular orbits in the equatorial plane. It is defined
by [82]

cBw+1)/2
73 (w+1)

Fr) \/M(r3 — 482 M) 0

(r3 + 262 M)?

which is similar to the expression for Hayward-like BH with

QF.
Finally, we determine the stability of the circular orbits
in the equatorial plane. This stability is determine by the
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Fig. 10 A comparison of L(r) in a and E(r) in b as a function of r
for different BHs. Here, we set M = 1, ¢ = 0.002, and w = —2/3.
Hayward BH surrounded by QF: y = 1, ¢ = 0.2; Hayward BH with
GM surrounded by QF: y = 1, ¢ = 0.2, r]2 = 0.1; FHBH with GM
surrounded by QF: y = 0.9, = 0.2, > = 0.1

Lyapunov exponent as [82],

/ 2 17 _3F()F'(r)
- \/2<f O - FOFIe - FEE0

2

Using the metric function F(r) given in Eq. (4), we find

[(2Mr(r3 — 482 M)
AL =

c(1+3w)>2
(3 + 262 M)?

r2t3w

2Mr(P—42m (143w 2Mr?
3 (M + GR) (y — 8 n? - UL - )
2r

+1 AM (=143 2 M +4e*M?)  cQ2+9w) (1 +w)

2 (r3+282 M)3 73 (+w)

2 M r? c 12
2

X()’_gﬂn _,3+2£2M_r3w+1>] : (32)

From expression given in Eq. (32), we observe that the
Lyapunov exponent for circular time-like orbits is influenced
by several factors. These include the Finslerian parameter y,
the energy-scale of symmetry breaking 7, the Hayward-like
parameter ¢, and the QF parameters (c, w).

In Fig. 11, we illustrate the behavior of the Lyapunov
exponent to check the stable or unstable circular orbits in the
equatorial plane under the influence of the gravitational field,
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Fig. 11 The behavior of the Lyapunov exponent A;, as a function of
r for various values of Finslerian parameter y, energy scale parameter
n, and Hayward-like parameter €. Here, we set M = 1, ¢ = 0.02, and
w=-2/3
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Fig. 12 A comparison of the Lyapunov exponent A as a function of
r for different BHs. Here, we set M = 1, ¢ = 0.02, and w = —2/3.
Hayward BH surrounded by QF: y = 1, ¢ = 0.2; Hayward BH with
GM surrounded by QF: y = 1, ¢ = 0.2, n> = 0.2; FHBH with GM
surrounded by QF: y = 0.9, & = 0.25, > = 0.15

varying different parameters of the space-time geometry. In
the top panel, we show that increasing the Finslerian param-
eter from y = 0.65 but less than unity and the energy scale
from 5> = 0.1, while keeping the Hayward-like parameter
e = 0.2 fixed, results in an increases in positive value of
the Lyapunov exponent. In contrast, the middle panel dis-
plays opposite trend: positive value of the Lyapunov expo-
nent decreases as increases the Finslerian parameter y and
the Hayward-like parameter ¢, while keeping the energy scale
parameter > = 0.1 fixed. In the bottom panel, we observe
that the positive value of the Lyapunov exponent decreases
as both the energy scale parameter (1) and the Hayward-
like parameter (¢) increases, while keeping the Finslerian
parameter y = 0.9 fixed. Together, these panels illustrate
the inter-dependencies between the Finslerian parameter y,
the energy scale %, and the Hayward-like parameter ¢ in
illustrating the positive value of the Lyapunov exponent in
this specific space-time geometry.

InFig. 12, we present a comparison of the Lyapunov expo-
nent in Riemann and Finslerian geometries. We observe that
the presence of the Finslerian parameter y and the energy
scale parameter 1 together decreases the positive value of the
Lyapunov exponent of circular time-like orbits compared to
the Riemann geometry, both with and without GM. In sum-
mery, from Fig. 12, it is clear that circular time-like orbits
for FHBH with GM surrounded by QF have less instability
compared to Riemann geometry.

4 Scalar perturbations: the massless Klein—Gordon
equation

In this section, we investigate the dynamics of a massless
scalar field in the background of the selected BH solution,
specifically focusing on FHBH with a GM surrounded by
a QF. We begin by explicitly deriving the massless Klein—
Gordon equation, which governs the evolution of the scalar
field in the given space-time geometry. Our analysis empha-
sizes how the various parameters intrinsic to the specific BH
solution, such as the Finslerain parameter, GM, and QF, influ-
ence the behavior of the scalar perturbative potential.

Scalar perturbations, in the context of BH space-times,
are crucial for understanding BH stability, and the possible
existence of superradiant modes. These perturbations have
been widely studied in various BH solutions in GR, where
they provide important insights into the nature of BH sta-
bility and the propagation of fields in curved space-time.
For instance, scalar field perturbations have been analyzed
in Schwarzschild, Kerr, and Reissner—Nordstrom BHs, along
with other BHs solutions in GR and modified gravity theories
(see, e.g., Refs. [30-33,83], and other related works).
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To proceed for the scalar perturbations, we perform the 20¢ _ »;=0.6
following coordinate change (called tortoise coordinate) 15F — y=07
dr 10F — y=0.8
dr, = 33 b =0.9
YT o) 59 © '

into the line-element Eq. (1) along with 6 = 6/ /v results
(finally removing tilde)

ds* = F(ry) {(—dt*4+dr2}+C*(r,) d0*+D?(r,) sin® 6 d¢p?,
(34)

where
C*(ry) =r%/y, D*(ry) =r. (35)

Let us consider the following wave form

D(t,ry, 0, ¢) =exp(iwt) exp(imp) Y(O) Y (rs)/r«, (36)

where o is (possibly complex) temporal frequency in the
Fourier domain [84], m is the magnetic quantum number,
Y(60) is the angular solution, and 1 () is a propagating scalar
field in the candidate space-time.

The massless scalar field wave equation is described by
the Klein—Gordon equation as follows:

Weri [0, (V=g g"" 3v) @] =0, (37

9

where gM" is the inverse of the covariant metric tensor
guv» & 18 the determinant of the covariant metric tensor,
g = det(gyy), 9, is the partial derivative, and @ is the scalar
field function.

Using the metric (34) and the wave form (36) into the
wave equation (38) and after simplification, we find the
Schrodinger-like equation

821”(”*)

2
ors

+ (02 = V) v =0, (38)
where the scalar perturbative potential ) is given by

)\.2 /
V=]—'(_2—|-£>
r

r

5 2Mr? c
=|:7/—87t77 _r3+282M_r3w+1]
A2 2M@P—4e2M) cGBw+1)
|:r_2+ (r3+2&2M)2 73 w+1D) i| (39)

Here A2 is the eigenvalue of the following angular equation
given by

2
[ v_d (me i) _ ’"—] V(O) = —32Y(0). (40)

sin@ do sin? @
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Fig. 13 The behavior of the scalar perturbative potential V' as a func-
tion of r for various values of Finslerian parameter y, energy scale
parameter 7, and Hayward-like parameter €. Here, we set M = 1,
c=0.02,w=-2/3,andk =0

After some straight forward calculation, we find the eigen-
value A2 as,

A= (Iml+kyy) {Iml + &+ 1Dy} (k=0,1,2,..).
41)

Noted that for y = 1, we will get back the well-known result
32 = (im| k) (m|+k+1) =€+ 1).

From the expression given in Eq. (39), we observe that the
scalar perturbative potential is influenced by several factors.
These include the Finslerian parameter y, the energy scale
of symmetry breaking n, the Hayward-like parameter ¢, and
the QF parameters (c, w).

In Fig. 13, we illustrate the behavior of the scalar per-
turbative potential as we vary different parameters of the
space-time geometry, including the Finslerian parameter y,
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Fig. 14 A comparison of the scalar perturbative potential V as a func-
tion of r for different BHs. Here, we set M = 1, ¢ = 0.02, w = —2/3
and k = 0. Hayward BH surrounded by QF: y = 1, ¢ = 0.2; Hayward
BH with GM surrounded by QF: y = 1, ¢ = 0.2, n> = 0.2; FHBH
with GM surrounded by QF: y = 0.9, ¢ = 0.25, n?> = 0.15

the energy scale n, and the Hayward-like parameter ¢, for a
particular state with w = —2/3 and ¢ = 0.02 fixed. Each
panel emphasizes distinct trends in the scalar potential. In
Fig. 14, we provide a comparison of the scalar potential for
BHs in both Riemann and Finslerian geometries.

4.1 Transmission and reflection probability

In this part we will investigate the transmission and reflection
coefficients of the FHBH with GM surrounded by QF using
the semi-analytic method. This method provides a general
rigorous bound in the transmission and reflection probabili-
ties for one-dimensional potential scattering [85-87]. Based
on Refs. [32,85-88], the lower bound of the greybody factor
is given by

+00
T(w) > sec h? (/ pdr*) , (42)
and
+00
R(w) < tan h? ( f ggdr*> , (43)

where g is defined as

N2 2 _ - — H2)2
6O:\/(H) +(w2H Vett H)’ (44)
where H is a positive function satisfying H(r,) > 0 and
H (400) = H(—00) = w, and V¢ is the effective potential
for null geodesics given in Eq. (9).

To obtain the transmission and reflection coefficients we
will consider the scalar field potential (39) corresponds to
the state parameter of the quintessence matter w = —2/3.
Without losing generality, we can set H 2 = w?* — Vgrin Eq.
(44). Therefore, the transmission and reflection coefficients

become
1 +oo H/

T(w) > sec h? (-[ ‘— dr*>. (45)
2 ) o | H

And
1 +oo H/

R(w) < tan h? (- / — dr*). (46)
2 ) |H

The above integrand results sec h? <1n (%)), thus to

avoid divergence behaviors we split the function H into three
ranges of 7y, —00 < Fy < I'Vpuos My < Ts < T'Vyy, and
v < T+ < 00. Hence, the transmission and reflection
probabilities become [88]

4o’ (0)2 - Vpeak)

T(w) > , 47)
(2 w? — Vpeak)2
and
V2
R(w) < pedk (48)

(2 w? — Vpeak)2 ’

where Vpeak is the peak of the effective potential Vet.

Now we generate the Fig. 15 to investigate the influence
of the Finslerian parameter y on both the transmission and
reflection probabilities. The figure shows that as y increases,
transmission probabilities decrease. Conversely, the param-
eter that decreases the transmission probability is expected
to increase the reflection probability, as shown in the bottom
panel of Fig. 15.

5 QNMs of FHBH with QF and GM

In this section, we calculate the QNMs spectrum of the scalar
field discussed earlier (39), corresponding to various state
parameters of the QF: w = —1/3, —2/3. We employ the
third-order WKB approximation [89,90], using higher values
of m, as the inaccuracy associated with the WKB technique
decreases significantly with increasing m. Tables 3 and 4
show the dependence of the QNM frequencies on the param-
eters ¢ and y for the aforementioned state parameters, with
GM parameter 1 fixed. We also investigate the QNMs for
the index m = 2 and analyze the results. The behavior of
the QNM frequencies demonstrates how space-time pertur-
bations evolve in the presence of FHBH immersed in a QF
and influenced by the GM.

The real component of QNMs frequency, Re(w), deter-
mines the oscillation frequency of perturbations. For both w
values, Re(w) drops as c increases (panel (a) in Fig. 16). This
normally indicates that the frequency of the perturbations’
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Table 3 The QNM of the FHBH for specific choices of ¢

(m=L,A=2M=1,1=05=05,y =0.5)

w=-2/3

c w=—1/3

0 0.058224 — 0.0167487i
0.001 0.057879 — 0.0166196i
0.002 0.057535 — 0.0164909i
0.003 0.057191 — 0.0163628i
0.004 0.056848 — 0.016235i
0.005 0.056506 — 0.0161078i
0.006 0.0561648 — 0.015981i
0.007 0.0558238 — 0.015854i
0.008 0.0554835 — 0.015728i

0.058224 — 0.0167487i

0.0539395 — 0.0151935i
0.0494067 — 0.0135946i
0.0445578 — 0.0119411i
0.0392858 — 0.0102155i
0.0334049 — 0.0083867i
0.0265324 — 0.0063884i
0.0175689 — 0.0040180:
0.0017858 — 0.0083424i

Table 4 The QNM of the FHBH for specific choices of y

y w=-1/3 w=-2/3

0.5 0.0565063 — 0.0161078i 0.0334049 — 0.0083867i
0.6 0.0936729 — 0.031087i 0.0769605 — 0.0243262i
0.7 0.135932 — 0.0504144i 0.122428 — 0.0442936i
0.8 0.182282 — 0.0738318i 0.170947 — 0.0682509i
0.9 0.231985 — 0.101163i 0.222285 — 0.0960624i

1

0.284501 — 0.132333i

0.276106 — 0.127666i

Table 5 The QNM of the FHBH for specific choices of g

g w=-1/3 w=-2/3

0 0.0565014 — 0.016108i 0.0334016 — 0.00838674i
0.1 0.0565014 — 0.016108i 0.0334016 — 0.00838674i
0.2 0.0565017 — 0.016108i 0.0334018 — 0.00838674i
0.3 0.0565025 — 0.016108i 0.0334023 — 0.00838673i
0.4 0.0565039 — 0.0161079i 0.0334033 — 0.00838672i
0.5 0.0565063 — 0.0161078i 0.0334049 — 0.0083867i
0.6 0.0565099 — 0.0161077i 0.0334072 — 0.00838668i
0.7 0.056515 — 0.0161074i 0.0334106 — 0.00838664i
0.8 0.0565217 — 0.0161071i 0.033415 — 0.00838658i
0.9 0.0565303 — 0.0161068i 0.0334207 — 0.00838651i

1

0.056541 — 0.0161063i

0.0334278 — 0.00838642i

oscillations decreases as the intensity of the QF surround-
ing it increases. The greater Re(w) for w = —1/3 compared
to w = —2/3 indicates a more oscillatory character in the
former condition.

Im(w), the imaginary part of the QNM frequency, deter-
mines the damping of perturbations and thus the rate of oscil-
lation decay. Im(w) becomes less negative for both w values
(w = —1/3,—-2/3) as c increases (panel (b) in Fig. 16),
implying that a higher intensity of the QF will result in a
slower decay of the perturbations. This observed tendency
indicates that with increasing values of ¢, the BH space-time
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becomes more “stable” in the sense that perturbations endure
for a longer time.

On the other hand, for both w values (w = —1/3, —2/3),
Re(w) increases as y increases (panel (a) in Fig. 17). Im(w)
becomes more negative as y increases (panel (b) in Fig. 17),
implying that a higher values of y will result in a faster decay
of the perturbations.

Finally, for both w values (w = —1/3, —2/3), Re(w)
marginally increases as g grows (panel (a) in Fig. 18) while
Im(w) becomes less negative as g increases (panel (b) in Fig.
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18), signaling that greater values of g will result in a slower
decay of the perturbations.

6 Concluding remarks

In this study, we investigated the geodesic structure and
scalar perturbations of a Finslerian Hayward-like black hole
immersed in a QF, featuring a GM. Our analysis focused
on understanding the influence of the Finslerian parameter
y, the QF normalization ¢ for a specific state parameter w,
the Hayward-like parameter ¢, and the GM parameter 1 on
the space-time geometry, motion of test particles, and the
dynamics of scalar field perturbations.

We first introduced the space-time of a FHBH surrounded
by a QF with a GM. The line element, given in Eq. (1),
generalizes the known Finslerian Hayward-like metric with
QF by incorporating the symmetry-breaking energy scale, or
GM parameter 1. The function F (r) was analyzed in various
cases, showing distinct horizon structures depending on the
values of y, c, €, and . The metric structure was depicted in
Figs. 1 and 2, illustrating the effect of different parameters
on the existence and number of horizons.

We then explored the geodesic motion of both massless
and massive test particles in this modified background. By
deriving the Lagrangian density function given in Eq. (4), we
obtained the conserved energy and angular momentum rela-
tions in Eq. (6). The effective potential for geodesic motion,
presented in Eq. (8), demonstrated significant deviations
from the conventional Hayward-like BH due to the Finslerian
parameter, QF and GM. Our numerical and graphical anal-
yses (Figs. 3, 4, 5, 6) showed how these parameters altered
the motion of photon particles, affecting the location of pho-
ton sphere, dynamics of photon particles, trajectory equation
etc. The radius of photon sphere rps, which characterizes
the circular trajectories of photons, was computed numeri-
cally and tabulated in Tables 1 and 2. Our results confirmed
that the location of the photon sphere changes significantly
with varying y and ¢ keeping fixed the symmetry-breaking
energy scale n #% 0. For time-like geodesics, we examined
the stability of circular orbits and computed the Lyapunov
exponent Ay in Eq. (32). Figures 11 and 12 illustrated how
Ar varies with different parameters of BH, indicating that
Finslerian modification enhances orbital stability compared
to standard Hayward-like and Schwarzschild BHs. Addition-
ally, the angular momentum and energy of time-like particles
on circular orbits were derived in Eqgs. (28) and (29), respec-
tively, and their behavior was depicted in Figs. 8 and 9.

To analyze wave dynamics in the background of FHBH,
we studied the massless scalar field governed by the Klein—
Gordon equation (37). Using the tortoise coordinate transfor-
mation (33), we obtained the Schrodinger-like wave equation
(38) with the effective potential V(r) given in Eq. (39). The

@ Springer

behavior of the scalar potential was examined in Figs. 13 and
14, showing its dependence on y, 1, and ¢. The eigenvalue
equation for the angular part of the wave function was solved,
leading to the expression for A% in Eq. (41). Furthermore,
we computed the transmission and reflection probabilities
using the WKB approximation, deriving lower bounds for
the greybody factors in Egs. (47) and (48) by employing the
effective potential Vg for null geodesics given in Eq. (9).
Figure 15 illustrated how the Finslerian parameter affects
the transmission and reflection coefficients, demonstrating
that larger values of y increase the reflectivity of the BH. We
also computed QNM frequencies using the third-order WKB
method [89]. Our numerical results, summarized in Tables 3,
4, and 5, showed that increasing the QF parameter ¢ reduced
the real part of the QNM frequency while also decreasing
the damping rate. The Finslerian modification was found to
significantly alter the QNM spectrum, suggesting potential
observational signatures.

In summary, our findings highlighted the impact of Fins-
lerian modifications on geodesic motion, stability of circular
orbits, and wave dynamics in the presence of a GM and a
QF. The results provide insights into the rich phenomenology
of modified gravity theories incorporating non-Riemannian
geometries. For future research, it would be valuable to
extend this study to include rotating FHBHs to investigate
the interplay between Finslerian modifications and frame-
dragging effects. Additionally, an exploration of the shadow
cast by such BHs in the presence of an accretion disk could
provide further observational constraints on the Finslerian
parameters. Another promising direction is the study of
energy extraction mechanisms such as the Penrose process
and superradiance in this modified space-time [91-94]. Ulti-
mately, exploring higher-dimensional extensions and embed-
ding the Finslerian BH solution within string-theory-inspired
gravity models may yield a profound theoretical understand-

ing.
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