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Abstract Electric and magnetic moment distributions are
presenting by form factors (FF)s. Noncommutative space-
time (NCST) includes an additional Lorentz index which
are effecting on FFs. In this content we investigate electron-
proton elastic scattering to impose the noncommutative effect
on FFs and to obtain their physical meaning. Two Rosenbluth
and polarization methods are utilized in NCST. The second
method is not affected by NCST. When we resort to polariza-
tion method, the ratio of electric form factor to magnetic form
factor in NCST is identical to the one in normal space time.
This indicates the priority of polarization method to mea-
sure experimentally the concerned ratio as is expecting. On
the other hand, the pure NC effect makes to appear an extra
ratio, denoted by RNC . If we let the variation of this quan-
tity to cover the difference between the experimental results
for Resonbluth and polarization ratio then the accepted lower
limit of �NC as NC scale is achieved which is corresponding
to 180◦ for the scattering angle.

1 Introduction

Predictions of the current models for the electromagnetic
interaction of electron with the proton, provide the required
motivation to perform the concerned electron-nucleon scat-
tering experiments.

A crucial step in scattering experiments is to assume the
charge on the fixed scattering center to be distributed over a
limited but finite region of space. Then, one can deal with the
electric form factor of nucleon which is in fact the Fourier
transform of its charge distribution. The charge distribution
involves one or more parameters, related to the spatial extend
over which the charge is distributed, giving rise to well-
defined scales in the form factor. The electric form factor may
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be approximated such that to yield us the root mean square
radius of the charge distribution. Therefore, it is possible
to parameterize the form factor by a dipole function which
involves a free parameter. This parameter can be extracted
by fitting the available data and then the radius of charge
distribution would be determined.

In addition to electric charge form factor, for the fermion
target, we would get magnetic form factor which can be
casted in terms of the magnetic moment of an extensive tar-
get. In an scattering processes of a charged particle off the
nucleon, the fermion current of the target, using the Gor-
don decomposition identity, can be expressed in terms of the
magnetic moment of target that is accompanied by a form
factor if the target is not a point like particle. It is obvious
that at the limit of low transferred momentum, the numerical
amount for both electric and magnetic moments approaches
to 1 and the target seems a point like.

In this connection, it was Rosenbluth who first predicted
that the magnetic moment of the proton is affected and vary-
ing outstandingly in electron scattering off the nucleon if the
energy of electron beam is changing [1]. The experiments
which have been done by High Energy Physics Laboratory
(HEPL) at Stanford in fifth decade confirmed that the proton
is not a point like particle and has an internal structure [2].
In fact, by data analysing of the electron-proton scattering, a
charge radius for proton was reported to indicate that proton
has a finite size [3]. An amount for proton radius has been
reported recently [4,5] which is different with respect to [3]
and makes a change in theoretical view to model the nucleon
structure. An updated result on proton radius can be found
in [6] which is based on magnetic-spectrometer-free method
along with a windowless hydrogen gas target and is in agree-
ment with the value found by two previous muonic hydrogen
experiments [7,8].

On the other hand, some experiments at Jefferson Lab
(JLab) have been done which were based on the double
polarization method and new data for GEp/GMp as the
ratio for proton’s electric to magnetic form factor at various
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squared transferred momentum, Q2, up to 5.6 GeV2 have
been reported [9,10]. Illustrating these data indicate a dras-
tic difference with respect to the form factor results, arising
out of the cross sections data where the Rosenbluth separa-
tion method is used to analyse them [11–14]. The difference
between the theoretical results and also the reported experi-
mental data of these two methods for the ratio of form factors,
makes the required motivation to do a theoretical attempt to
reduce this difference.

There are some methods trying to suppress the discrep-
ancy between Resonbluth and polarization methods. The
important one is the two photon exchange model [15,16].
But recent investigations indicate that this model has not
been confirmed definitely from experimental point of view.
More details of experimental considerations of this method
can be found in [17,18]. Therefore, up to now there is not
any absolute and definite method to resolve the discrepancy.
Consequently, we get an opportunity to try other methods
like the NCST.

In this article we consider the form factor results obtained
with the cross sections data using the Rosenbluth separation
method. As we referred above, comparison these results with
the data from double polarization experiments, specifically
at energy scale Q2 ≥ 1 GeV 2 indicates a drastically differ-
ence [19]. Our idea to resolve this discrepancy is to recalcu-
late the Rosenbluth cross section in non-commutative space
time (NCST) which we follow it in this article. As a com-
plementary task, we also recalculate the polarization method
in NCST, however, the outcoming result does not indicate
any different with respect to the result of normal space time.
The consequence which we get is that employing NCST on
Rosenbluth cross section provides some parameters which
by adjusting them we may reduce the discrepancy between
the results of these two methods. This is a good sign to indi-
cate the advantage of NCST in analysing the electromagnetic
form factors. One of these parameters is the noncommuta-
tive scale (�NC ) which we found it to be consistence with
the reported value for this scale [20]. Many attempts have
been done to determine the lower bound for this scale. We
may refer to [21,22] where the NC effect is considered for
Drell–Yan process. The explored scale for this case is such
as � ≥ 0.4 TeV.

We note that NCST can be considered to analysis the elec-
tric and magnetic form factors which are occurred at low
energy scales. It is also applicable in many phenomena at
low energy scales including DIS processes which we may
refer to [21,22]. In this regard, one can resort also to [23]
that is related to Lamb shift effect in hydrogen atom and
in connection to muon magnetic moment, it is referred to
[24]. In an argument to employ the NCST for the atomic
clock, one can see [25]. There are as well some references
which are justifying to utilize NCST even at lower energy
scales such as the electroweak and also the Compton scatter-

ing scale [26,27]. Additionally the NCST effects have been
investigated in various phenomenological aspects and con-
sequently different bounds on noncommutative scale have
been established [28–30] (for a set of references see [20,31]
and references therein).

The organization of this paper is as it follows. In Sect. 2,
we give a brief review on properties of NCST. Section 3 is
devoted to investigate the form factors in Resonbluth and
polarization methods. We deal with details in Sect. 4 how
to employ the NCST effect in the two mentioned methods.
Section 5 is allocated to the results and discussions. Finally,
we give our conclusion in Sect. 6. Details of required and
related computations are presented in the appendix.

2 A brief review on noncommutative space-time

The motivation to consider NCST backs to the noncommu-
tative field theory in string theory where it has been shown
that in the presence of a constant background field, the end
points of an open string have noncommutative space-time
properties [32,33]. It should be noted that the energy scale
of NCST is not the one of the string theory. In fact, the non-
commutative filed theory is considered as an effective field
theory whose energy scale is the low limit of energy scale in
string theory. Therefore, NCST would be applicable to anal-
ysis the issue of electric and magnetic from factors which we
do it in the following sections.

Noncommutative theory leads to commutation relation
between space-time coordinates as it follows [34,35]:

[ x̂μ , x̂ν] = iθμν, (1)

where hatted quantities are hermitian operators and θμν ,
is real, constant and asymmetry tensor. Equation (1) comes
from the string theory through the Weyl–Moyal star product
[34–36]:

( f ∗ g)(x) = exp

(
i

2
θμν∂ y

μ ∂ zν

)
f (y) g (z) |y=z=x

= f (x) g (x) + i

2
θμν

(
∂μ f (x)

)
(∂ν g (x))

+O
(
θ2

)
. (2)

The Weyl–Moyal star product realization has been provided
the required mathematical tools to construct the quantized
gauge theories which can be used to perform the perturbative
calculations in quantum chromodynamic [37].

The noncommutative relation, Eq. (1), leads to following
uncertainty between the different coordinates[38]

�xμ�xν ≥ 1

2

∣∣θμν
∣∣ . (3)
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When the gauge field theories are written in NCST, then the
vertices of the standard model are modified by a Lorentz
object as noncommutative tensor[39,40]. It has been shown
that noncommutative field theories are not unitary for θμ0 �=
0. Therefore, for observable measurements the proper choice
is such that θμ0 = 0 [41]. Interested readers can obtain more
information about NCST from the cited references of this
section.

3 Analysing proton form factors in Rosenbluth and
polarization methods

The electromagnetic form factors are crucial tools to get the
sufficient knowledge about nucleon structure and to obtain
precise and clear insight with respect to it. They play an
important role in subatomic physics since they establish the
most convenient link between experimental observation and
theoretical analysis in this field. They describe internal struc-
ture of the nucleons related to electric charge and magneti-
zation distributions. In the electron-proton elastic scattering,
proton is not a point like (see Fig. 1) and its electromagnetic
current is described by independent Lorentz objects, such
that [42]:

J proton
μ = ū(p′)[GM (Q2)γμ

+GE (Q2) − GM (Q2)

2M(1 + τ)
(p′

μ + pμ)]u(p), (4)

where M and Q2 = −q2 are proton mass and squared
transferred momentum by virtual photon, respectively. With

τ = Q2

4M2 , the Sachs electric and magnetic form factors are

defined as linear combinations of F1(Q2) (Dirac form factor)
and F2(Q2) (Pauli form factor) and are given respectively by
[42]:

GE (Q2) = F1(Q
2) − τ F2(Q

2), (5)

GM (Q2) = F1(Q
2) + F2(Q

2). (6)

There are two methods to determine the proton form fac-
tors. In the first one that is called Rosenbluth separation
method, the unpolarized electron is used to detect proton’s
structure. For this purpose, it is needed initially to introduce

Fig. 1 Typical schematic of Feynman diagram for electron-proton
elastic scattering. Bubbled vertex indicates proton target

Mott cross section for point like particle as it follows [43,44]:

(
dσ

d


)
Mott

= α2cos2 ϕ
2

4E2sin4 ϕ
2

, (7)

where E and ϕ are incident energy and scattering angle,
respectively. Then Rosenbluth cross section in the one-
photon exchange approximation reads [1]

dσ

d

=

(
dσ

d


)
Mott

1

(1 + τ)
[G2

E + τ

ε
G2

M ], (8)

where ε = (
1 + 2(1 + τ)tan2 ϕ

2

)−1
is representing polariza-

tion of the virtual photon. Consequently, the reduced cross
section can be defined by:

σred = dσ

d


ε(1 + τ)( dσ
d


)
Mott

= εG2
E + τG2

M . (9)

The G2
E as slope and τG2

M as intercept in Eq. (9) would be
determined by fitting the measured cross section at various
scattering angle ϕ with fixed value for Q2. In continuation,
experimental data for R = GE

GM
[45] can be reproduced by a

polynomial fit as it follows [16]:

μp R
exp
Rosenbluth = 1 − 0.0762 Q2 + 0.004896 Q4

+0.001298 Q6, (10)

where μp is the proton magnetic moment. Some experimen-
tal data for Rexp

Rosenbluth can be found in Refs. [13],[14] and
[46].

As a second method to determine the proton form fac-
tors, we can resort to the polarization technique. Based on
new experimental set up, the recoiled polarization technique
has been employed to obtain more reliable measurements
for GE and GM . When the scattering electron is longitudi-
nally polarized, i.e., its polarization vector is parallel to the
momentum of the nucleon, the polarization vector of recoiled
proton would be in the scattering plane. The transverse and
longitudinal polarization of recoiled proton are given by [47]

I0PT = −2
√

τ(1 + τ)GEGM tan
ϕ

2
, (11)

I0PL = E + E ′

M

√
τ(1 + τ)G2

M tan2 ϕ

2
, (12)

where I0 = G2
E + τ

ε
G2

M . Performing the ratio of polariza-
tions, one obtains

GE

GM
= − PT

PL

E + E ′

2M
tan

ϕ

2
. (13)
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Experimental data for this ratio [48,49] can be reproduced
by the following polynomial fit [16]:

μp R
exp
Polari zation = 1 − 0.1306 Q2 + 0.004174 Q4

+0.000752 Q6. (14)

Numerical investigation of Eqs. (10) and (14) reveals con-
siderable discrepancy between them which becomes more by
increasing the Q2 values (see Fig. 2). In the following sec-
tion we are using the noncommutative effect to find a way to
resolve this discrepancy.

4 Noncommutative proton form factor

As we referred in Sect. 2 , NCST builds an extra Lorentz
object, θμν , and it can be added to proton current through its
vertex which yield us modified form factors. The insertion
of this tensor to the leptonic vertex makes also correction on
the ordinary form factors of proton but it would be absorbed
effectively into the modified form factors. So the final result
is such as to consider just the NCST correction on hadronic
current.

Here we present the results for FFs in NCST based on the
two mentioned methods.

4.1 Rosenbluth separation method

In this method, Eq. (4) would be modified as it follows (see
the Appendix):

J proton
μ = ū(p′)

[
G̃Mγμ + G̃E − G̃M

2M(1 + τ)
(p′

μ + pμ)

+2MGNC qαθμα

]
u(p), (15)

where GNC , G̃E and G̃M are noncommutative, electric and
magnetic form factors in NCST, respectively. The last two
form factors, in addition to q2, depends on the other inde-
pendent scalars which are made from θ tensor such as q.θ.p.
As noncommutative portion tends to zero, we recover normal
form factors as they follow:

G̃E (Q2, θ) → GE (Q2),

G̃M (Q2, θ) → GM (Q2).
(16)

The process to obtain the scattering cross section is lengthy
but it is straightly calculable. Details of calculations is
inclosed in the Appendix. Considering Eq. (47) of Appendix,
one can define reduced cross section as it follows

σred = εG̃2
E + τ G̃2

M + 2M4G2
NC |θ |2τ(1 + τ)(3 + 2τ − ε).

(17)

By defining R̃ = G̃E

G̃M
and RNC = GNC

G̃M
, Eq. (17) can be

written as it follows:

σred = G̃2
M

×
[
τ + ε

(
R̃2 + 2R2

NCM
4|θ |2τ(1 + τ)

(
3 + 2τ − ε

ε

))]
.

(18)

Comparing Eq. (18) with Eq. (9) and considering the defini-
tion R = GE

GM
, one will arrive at

R2
Rosenbluth = R̃2 + 2R2

NCM
4|θ |2τ(1 + τ)

(
3 + 2τ − ε

ε

)
.

(19)

4.2 Polarization method

Now we consider the proton form factor ratio in NCST but
based on the polarization method. In this regard, we investi-
gate separately each component of proton current in NCST.
The timelike component of the Eq. (15) can be written as:

J 0 = ū(p′)
[
G̃Mγ 0 + G̃E − G̃M

2M(1 + τ)
(p + p′)0

+2MGNC qαθ0α

]
u(p). (20)

In this case, the noncommutative term would be vanished
due to the property that θ0α = 0 [41]. Hence, we have
formal result for timelike component. The calculations of
spacelike component in NCST is straightforward (for details
see the Appendix). By substituting Eq. (61) into Eq. (60) of
Appendix, proton’s form factor ratio in NCST is obtained
and we would get:

− E + E ′

2M

PT
PL

tan
ϕ

2
= G̃E

G̃M
. (21)

Comparing Eq. (21) with Eq. (13) will lead to the following
result:

Rpolari zation = R̃. (22)

5 Results and discussions

Noncommutative proton form factor has been evaluated, con-
sidering the Rosenbluth and polarization methods. We sup-
pose that the ratio of form factor in NCST (R̃) is given by
identical expression in these two methods. Therefore by com-
bining Eq. (19) with Eq. (22) we find that:
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Fig. 2 The ratio of electric and magnetic form factor in Rosenbluth and
polarization methods. By slight changing the scattering angle around
ϕ ∼ 180◦ the μp RNC would reproduce the green region. The experi-
mental data in Rosenbluth and polarization methods are quoted respec-
tively from [13,14,45,46] and [9,10,48–51]

μp RNC = �2
NC

M2

√
1

2τ(1+τ)

(
ε

3+2τ − ε

) [
μ2

p R
2
Rosenbluth − μ2

p R
2
polari zation

]
(23)

The left hand side of Eq. (23) is again a ratio of form factors
but is purely arisen from NC effect (see the Appendix). One
can find that this quantity depended on �NC as noncommuta-
tive scale. Lower limit of this scale, reported from scattering
experiments is about 1 TeV [20]. We plot Fig. 2 such as the
blank region between the solid and dashed curves of polar-
ization and Rosenbluth methods is filled by varying μp RNC .
For this purpose, we fix �NC at 1 TeV, corresponding to
the acceptable reported value [20,21,31] and eventually take
ε ∼ 10−11 that is related to ϕ ∼ 180◦ as scattering angle. By
slight changing this angle around ∼ 180◦, the blank region in
Fig. 2 is covered which is indicated by green color. Choosing
ε ∼ 10−11 and in continuation ϕ ∼ 180◦ leads to impor-
tant result. To detect the effect of NCST, we need to search
and examine the backward scattering region(ϕ ∼ 180◦). It
is a reason for hard detecting the effect of NCST in per-
formed experiments. In other words, in order to detect the
NCST effect experimentally we should look for this effect
in scattering angle around 180◦ which is hard to adjust the
experimental set up in the backward angle but eventually it
is possible to do it.

Now we can say briefly that the RNC can approach to
both the experimental data for polarization and Rosenblouth
methods if we take �NC meets its acceptable lower limit and
to let the scattering angle to vary about 180◦ with respect to
incident beam in scattering experiments. The variation of ε

versus the transferred momentum is too small as can be seen
in Fig. 3. Nonetheless, as we told before, we can change
it slightly in order the μp RNC to cover the blank region
between Rosenbluth and polarization data . Due to small

Fig. 3 Scattering angle verses transferred momentum (Q2) in NCST,
taking �NC = 1 TeV and ε = 10−11, occurred at ϕ ∼ 180◦. As can be
seen the scattered angle does not depend strongly on Q2

variation of ε with respect to Q2, the scattering angle does
not also depend strongly on the transferred momentum of
exchanged photon. If one is looking for NCST effect, as we
refereed above, it would be occurred in the backward region.
Therefore, this region should be investigated seriously and
with precise attention. We should mention that the small vari-
ations of backward scattering angle with respect to Q2 values
does not mean that the NCST effect is tiny. It just indicates,
as we said before, that the backward angle where the NCST
effect should be observed there, does not depend dominantly
on transferred momentum.

In connection to the NC effect, the following inference
would also be catched. We assume that particles have the
NC form factor and now we can also suppose that particles
also contain spherical NC covering with radius rNC . Then
Eq. (3) induces a minimal area, i.e., 2s 	 |θμν | = 1

�2 [20].

Considering the spherical surface relation (s = 4πr2
NC ) and

substituting NC scale there, we would get

�NC = 0.28

rNC
. (24)

Since we do not have yet evidence for NCST up to quark’s
size, therefore lower size for NCST would be such as rNC ≤
10−19 m, corresponding to the predicted size for quarks.
Substituting this numerical bound in Eq. (24) we achieve
� ≥ 400 GeV that is in agreement with other NC scale
bounds, obtained through scattering process [20].
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6 Conclusion

One of the essential ingredient which can be used to reveal
us the internal structure of nucleon is the electric and mag-
netic form factors. Since the first scattering experiments of
electron beam off the nucleon in fifth decade of the twenty
century, many data have been collected which confirm that
the nucleon is not point like charge. By analysing the data,
one can attribute to nucleon a charge distribution and follow-
ing that magnetic moment of nucleon would get an anomaly
value.

In this regard, primarily attempts have been done by
Rosenbluth which provide us analytical result for the ratio of
electric to magnetic form factors, R = GE

GM
. Following that,

the concerned data can be extracted for this ratio from pro-
portional experiment. After then, new theoretical method is
demonstrated to determine the proton form factors which is
based on the polarization technique in which the longitudinal
and transverse polarizations of electron beam are taken into
account.

Theoretical results and experimental data for the con-
cerned ratio are drastically different in these two methods
which demand to find a way to control this discrepancy or
to reduce it. One of the solution way is to consider the form
factors in NCST. This is what we did in this article. The result
for R ratio in polarization method is not affected in NCST but
the Rosenbluth one would be changed. This indicates the pri-
ority of polarization method with respect to the other method
to investigate the proton form factor. Comparison the results
of the two methods in NCST will yield us a quantity which
is particular to NCST and is denoted in this article by RNC

which involves some quantities like noncommutative scale
�NC and scattering angle ϕ. By keeping the �NC scale to
the accepted and reported value from DIS experiment, one
is needed to take the scattering angle around 180◦. By slight
changing this angle and plotting the result for RNC , we can
cover the blank region between the plots of Rosenbluth and
polarization methods which is depicted by green color in
Fig. 2. Therefore, �NC resulted from noncommutative com-
putations, is a quantity which can control the discrepancy
between the results of two mention methods and in fact pro-
vide us a way to move from a region around polarization
method to Rosenbluth one and makes a link between these
two methods in order to adapt them with each other .

Illustrating the discrepancy of the two mentioned method
can also be done by considering other effect like Lorantz
violation which we hope to report on this issue in future.
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Appendix

Rosenbluth formula in NCST:
Cross section for elastic electron-proton scattering in the

laboratory frame is given by [43,52]

dσ

d

= |M|2

64π2M2

(
E ′

E

)2

, (25)

where E and E ′ are the energy of incident and scattered
electrons (see Fig. 1).The invariant amplitude is obtained,
contracting leptonic tensor with hadronic one:

|M|2 = e4

q4 L
μνWμν. (26)

Leptonic tensor is already calculated and given by [20,43,52]

Lμν = 2{kμk′ν + kνk′μ − gμν(k.k′ − m2)}. (27)

For hadronic tensor one can write Wμν = Jμ J †
ν where

transition current for proton is given by [43]:

J proton
μ = ū(p′)�μu(p). (28)

Here �μ is Lorentz vector and performs the required Lorentz
object. In NCST the proton vertex factor involves extra
Lorentz objects with respect to normal space-time such that
[53]:

�μ = A γμ + B p′
μ + C pμ + i D p′νσμν + i E pνσμν

+F p′νθμν + G pνθμν. (29)

In the above equation the last two terms are due to NCST.
Now if we employ current conservation equation, qμ Jμ =
0 and considering the improved transition current, we find
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that B = C , D = −E , F = −G. Taking also Gordon
decomposition relation [43], we will get:

J proton
μ = ū(p′)

[
(F̃1 + F̃2) γμ − F̃2

2M
(p′

μ + pμ)

+2MF4 q
αθμα

]
u(p). (30)

Using the definition of Sachs form factors, given by Eqs. (5)
and (6) and considering GNC = F4 then Eq. (30) can be
rewritten as it follows:

J proton
μ = ū(p′)

[
G̃Mγμ + G̃E − G̃M

2M(1 + τ)
(p′

μ + pμ)

+2MGNC qαθμα

]
u(p). (31)

We should multiply Eq. (31) with its complex conjugate to
obtain the hadronic tensor. Then averaging and summing over
initial and final spins and considering Casimir’s trick [20] will
lead us to:

Wμν = 1

2
Tr

[
( �p + M)

{
G̃M γμ + G̃E − G̃M

2M(1 + τ)
(p′

μ + pμ)

}

×( �p′ + M)

{
G̃M γν + G̃E − G̃M

2M(1 + τ)
(p′

ν + pν)

}]

+1

2
Tr

[
( �p + M)

{
G̃M γμ+ G̃E−G̃M

2M(1 + τ)
(p′

μ+ pμ)

}

×( �p′ + M){ 2MGNC qβθνβ}
]

+ 1

2
Tr

×
[
( �p + M){2MGNC qαθμα}( �p′ + M)

×
{
G̃M γν + G̃E − G̃M

2M(1 + τ)
(p′

ν + pν)

}]

+1

2
Tr [( �p + M){2MGNC qαθμα}

×( �p′ + M){ 2MGNC qβθνβ}]. (32)

This equation have three contributions with respect to non-
commutative tensor, θμν . The first term is zeroth order of θ

that is in fact the normal form of hadronic tensor. By contract-
ing leptonic tensor, given by Eq. (27), with first contribution
of the hadronic tensor in above, we will get the mean square
invariant amplitude like the one in normal case [43]

|M0|2 = e4

q2 4M2Q2

[
G̃2

E + τ G̃2
M

1 + τ
cot2 ϕ

2
+ 2τ G̃2

M

]
.

(33)

As can be seen the second and third term in Eq. (32) are
linear with respect to θ . Using trace theorems and doing

straightforward calculations we reach to below result from
the θ linear contribution of hadronic tensor in Eq. (32):

W 1
μν(θ) = +4M2GNCG̃E [(θ.q)ν(pμ + p′

μ)

+(θ.q)μ(pν + p′
ν)], (34)

where (θ.q)μ = θμαqα . Also, we could simplify it more by

taking into account the scalar product p.p′ = M2(1 − q2

2M2 )

in the laboratory frame. Now by contracting it with leptonic
tensor, Eq. (27), we find that

|M1(θ)|2 = e4

q4 16M2GNCG̃E {+(k′.θ.q)(k.p + k.p′)

+(k.θ.q)(k′.p + k′.p′)
−(k.k′)(p.θ.q + p′.θ.q)}, (35)

where we neglected the electron’s mass, m. By replacing
q = k − k′ = p′ − p (see Fig. 1) into above equation, using
Eq. (1) and considering the momentum of initial proton in
the laboratory frame, p ≡ (M, 0), we arrive at:

|M1(θ)|2 = e4

q4 32M2GNCG̃E (k′.θ.k)(k.p + k′.p). (36)

Finally, we carry out the fourth term in Eq. (32) that is of
second order with respect to θ2. The similar calculations can
be repeated for this part of hadronic tensor which lead us to

W 2
μν(θ

2) = 2M2G2
NC

(
Tr [�p �p′] + M2Tr [1]

)
qαθμαq

βθνβ

= 2M2G2
NC

(
4(p.p′) + 4M2

)
qαθμαq

βθνβ

= 8M4G2
NC

(
p.p′

M2 + 1

)
qαθμαq

βθνβ. (37)

Using again p.p′ = M2(1 − q2

2M2 ) we will get

W 2
μν(θ

2) = 16M4G2
NC (1 + τ) qαθμαq

βθνβ. (38)

By contracting Eq. (38) to the leptonic tensor, Eq. (27), the
mean square invariant amplitude would be obtained as it fol-
lows

∣∣M2(θ2)
∣∣2 = e4

q4 32M4G2
NC (1 + τ){2(k.θ.q)(k′.θ.q)

+(k.k′)(q.θ.θ.q)}. (39)

Now to simplify the above equation, by taking α, β and γ as
angles between k, k′, k× k′ and θ direction, respectively, in
the laboratory frame we will get [20]:

k. θ. θ. k = E2|θ |2sin2α, (40)

k′. θ. θ. k′ = E ′2|θ |2sin2β, (41)

k. θ. θ. k′ = E E ′|θ |2(cos ϕ − cos β cos α), (42)

k. θ. k′ = E E ′|θ | sin ϕ cos γ. (43)
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Then by taking the average over α, β and γ , Eq. (36) will be
vanished and does not have contribution to total mean square
invariant amplitude, therefore Eq. (39) is simplified to:

∣∣M2(θ2)
∣∣2 = e4

q4 16M4G2
NC (1 + τ)Q2|θ |2

×
[
EE ′ + Q2

2
(1 + τ)

]
. (44)

Summing Eqs. (33) and (44), the total mean squared invariant
would be gained as in below:

|Mtot |2 = |M0|2 + ∣∣M2(θ2)
∣∣2

= e4

q2 4M2Q2

[
G̃2

E + τ G̃2
M

1 + τ
cot2 ϕ

2
+ 2τ G̃2

M

+4M2G2
NC (1 + τ)|θ |2(EE ′ + Q2

2
(1 + τ) )

]
.

(45)

Then replacing Eq. (45) into Eq. (25) and doing some manip-
ulations we find that:

dσ

d

= α2

4E2sin4 ϕ
2

E ′

E
cos2 ϕ

2

×
[
G̃2

E + τ G̃2
M

1 + τ
+ 2τ G̃2

M tan2 ϕ

2
+ 4M2G2

NC (1 + τ)|θ |2

×
(
EE ′ + Q2

2
(1 + τ)

)
tan2 ϕ

2

]
. (46)

By defining ε = (
1 + 2(1 + τ)tan2 ϕ

2

)−1
and using Eq. (7)

the final result would be:

dσ

d

=

(
dσ

d


)
Mott

1

(1 + τ)ε

[
εG̃2

E + τ G̃2
M

+2M4G2
NC |θ |2τ(1 + τ)(3 + 2τ − ε )

]
(47)

Polarization method in NCST
Starting point is Eq. (31) that has been written in NCST. In
the following we are going to investigate the timelike and
spacelike components of θμν separately. First we consider
timelike component and using θ0α = 0. Consequently the
proton’s current is converted to the normal one. Thus, using
Dirac spinors for initial and final proton states, one can write

u(p) = √
E + M

(
χ

σ .p
E+M χ

)
, (48)

u†(p′) = √
E ′ + M

(
χ†′ σ .p ′

E ′+M χ†′ )
, (49)

where the methodology of Ref. [52] has been used. Here σ

is representing the Pauli matrices which are satisfying the
identity (σ .p)2 = p2.

Considering the incoming and outgoing momentum of
proton in the Breit frame which have just the z compo-

nent such that pμ =
(
M

√
1 + τ , 0, 0,− Q

2

)
and p ′μ =(

M
√

1 + τ , 0, 0,
Q
2

)
, we will arrive at:

J 0 = (E + M)

[
G̃M

(
1 − p 2

(E + M)2

)

+ G̃E − G̃M√
1 + τ

(
1 + p 2

(E + M)2

)]
χ†′

χ, (50)

In the Breit frame one can deduce p ′ = −p and E = E ′ =
M

√
1 + τ which help us to simplify Eq. (50) as it follows:

J 0 = 2MG̃Eχ†′
χ. (51)

For spacelike component one can write

Jk = ū(p′)[G̃Mγ k + 2MGNC qαθkα]u(p). (52)

On the other hand using θi j = 1
2εi jkθk , the following identity

would be obtained

qαθkα = −qiθ
ki = −qi

(
1

2
εik jθ j

)
= −1

2
ε j ikθ j qi

= −1

2
θ × q = 1

2
q × θ . (53)

After some manipulations, Eq. (52) is simplified as it follows:

J = 2i G̃Mχ†′
p× σχ + 2M2GNC q× θ

√
1 + τχ†′

χ. (54)

Presenting the components of θ as θ = |θ | (sin η cos λ,

sin η sin λ, cos η) and considering the four vector q in Berit
frame such that qμ = (0, 0, 0, Q) then we can write

p × σ = (0, 0,−Q

2
) × (σx , σy, σz) = Q

2
σy x̂ − Q

2
σx ŷ,

(55)

q × θ = (0, 0, Q) × (θ1, θ2, θ3) = −Qθ2 x̂ + Qθ1 ŷ. (56)

Then Jμ in the matrix form would be appeared as:

Jμ =

⎛
⎜⎜⎜⎝

2MG̃Eχ ′†χ
+i QG̃Mχ ′†σyχ − 2M2Qθ2GNC

√
1 + τ χ ′†χ

−i QG̃Mχ ′†σxχ + 2M2Qθ1GNC
√

1 + τ χ ′†χ
0

⎞
⎟⎟⎟⎠.

(57)

Multiplying Jμ, Eq. (57), with its complex conjugate and
using completeness relation

∑
s

χχ† = 1 and averaging over
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initial spin state, η and λ, we can write the hadronic tensor
as Wμν = Wμν

A + Wμν
S where:

Wμν
A = 1

2

⎛
⎜⎜⎜⎝

0 −2iMQG̃E G̃Mχ ′†σyχ
′ 2iMQG̃E G̃Mχ ′†σxχ ′ 0

2iMQG̃E G̃Mχ ′†σyχ
′ 0 i Q2G̃2

Mχ ′†σzχ ′ 0
−2iMQG̃E G̃Mχ ′†σxχ ′ −i Q2G̃2

Mχ ′†σzχ ′ 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , (58)

and following that

Wμν
S = 1

2

⎛
⎜⎜⎝

4M2G̃2
E 0 0 0

0 Q2G̃2
M + L2Q2G2

NC 0 0
0 0 Q2G̃2

M + L2Q2G2
NC 0

0 0 0 0

⎞
⎟⎟⎠ , (59)

where L2 = M4|θ |2(1 + τ). Explicitly, Eq. (58) shows that
noncommutative contributions drop out from calculations,
while for finding transverse and longitudinal polarization
(PT , PL ) ratio we need to investigate LA

μνW
μν
A in x̂ and ẑ-

direction, respectively. Therefore, by contraction LA
μν (that

obtained in Ref. [52]) with Eq. (58) and evaluate it in the x̂
and ẑ-direction and takeing the trace from arisen result, we
will arrive at

PT
PL

= L A
μνW

μν
A (x̂)

L A
μνW

μν
A (ẑ)

= − G̃E

G̃M

2M

Q
cos

ϕB

2
, (60)

where ϕB is the scattering angle in the Breit frame. Finally if
we utilize the relation between scattering angle in the Breit
and laboratory frame, we will get for ϕB the following result

cos
ϕB

2
= 1

tan ϕ
2

Q

E + E ′ =
√

2ε

1 + ε
. (61)

Using Eq. (61) to substitute ϕB in Eq. (60) in terms of ϕ we
will get Eq. (13).
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