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Abstract
We describe a novel technique to determine absolute nuclear radii of high-Z nuclides. Utilizing
accurate theoretical atomic structure calculations together with precise measurements of extreme
ultraviolet transitions in highly charged ions this method allows for precise determinations of
absolute nuclear charge radii based upon the well-known nuclear radii of their neighboring
elements. This method can work for elements without stable isotopes, and its accuracy may be
competitive with current methods (electron scattering and muonic x-ray spectroscopy).
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1. Introduction to nuclear charge radius
measurements

The distribution of charge and its radius in an atomic nucleus
are some of the most studied fundamental properties of the
atom since the days of Rutherford. An accurate determination
of these properties and knowledge of how they evolve across
the periodic table and isotopic chains are a major interest in
nuclear physics, atomic physics, and searches for physics bey-
ond the Standard Model (see e.g. [1–3]). The nuclear charge
radius is typically reported as the root mean square (RMS)
⟨r2⟩1/2 of the charge distribution [4].

1.1. Absolute RMS charge radii and their determination

One of the conventional methods that allows for absolute nuc-
lear charge radius measurements in high-Z elements is muonic
x-ray spectroscopy [5–7]. This method investigates the energy
levels of an orbiting muon captured by an atomic system
to form an exotic atom. Measured low-lying hydrogen-like
transition energies are compared to accurate muonic-atomic
structure calculations based on an assumed charge distribu-
tion, such as a Fermi distribution, and other parameters (e.g.
deformation factors). Due to the largemass of themuon, which
is 207 times heavier than the electron, the muon and nuclear
wavefunctions strongly overlap making muonic atoms a very
sensitive system to probe the nucleus in comparison to nor-
mal atoms with electrons. The most difficult component that
needs to be treated in their theoretical analysis, and limits the
accuracy of nuclear charge radii extracted from muonic atom
spectroscopic measurement, is the nuclear polarization correc-
tion, which is nuclear-structure dependent. It originates from
the electromagnetic interaction between the muon and nuc-
leus exciting the system into virtual states resulting in a shift
of the muon binding energies. This correction can be evalu-
ated from different theoretical approaches [8]. Due to inad-
equate knowledge of nuclear-excited states, the uncertainty of
the calculation of the nuclear polarization limits the accuracy
of the method. Despite that, charge-radius values with a rel-
ative accuracy as low as 0.02% can be obtained for spherical
nuclei such as 208Pb.

Another conventional method for measuring absolute nuc-
lear charge radii in high-Z elements is elastic electron
scattering [6, 8–10]. This method consists of observing
scattered electrons giving insight into the underlying charge
distribution from amodel-independent approach [11]. In using
elastic electron scattering, the measured quantity is the dif-
ferential cross section for high-energy electrons scattering
through an angle from a target detected within a solid angle.
In non-relativistic (spin-less) scattering theory and within the
framework of the first Born approximation, the incoming elec-
tron beam can be represented as a plane wave. The outgoing
spherical waves are created at all points of the scattering poten-
tial. The differential cross section can then be described as the
product of a point-like scattering cross section and the square
of a form factor, which is the Fourier transform of the charge
distribution. Nuclei and electrons have spins leading to more
complex form factors which can be interpreted as electric and

magnetic distributions in the relativistic theory. In both theor-
ies, the charge radius can be obtained from the form factors in
the limit of extrapolation of very lowmomentum transfer. This
method can be affected by inelastic components, which have to
be carefully excluded. Electron scattering allows for a determ-
ination of the radial charge distribution, unlike other methods
which only provide integral quantities such as the RMS radius
and higher moments of charge distribution.

Both, muonic x-ray spectroscopy and elastic electron scat-
tering, have been extremely successful methods. They have
provided the majority of the absolute nuclear charge radii
measured in stable isotopes for over 5 decades. In addi-
tion to the need for producing sufficient quantities of muons
and generating high-energy electrons, the necessity of macro-
scopic amounts of target material has limited their applicabil-
ity to short-lived radioactive isotopes. However, recent devel-
opments have shown that muonic x-ray spectroscopy [13, 14]
and elastic electron scattering can be performed with high
precision on limited target quantities. In particular, the new
SCRIT ion trap facility [15], dedicated to electron scattering
on radioactive isotopes, expects to perform measurements on
as low as 108 ions.

1.2. RMS charge radius differences

Apart from absolute nuclear charge radius determination,
methods for relative difference measurements between iso-
topes of the same element are also available. A frequently
utilized method is the Kα isotope shift [6, 12]. This method
determines the difference in nuclear charge radii by measuring
the isotope shift of an element in theKα inner shell transitions.
Another method is based on similar ideas, called an optical
isotope shift [16, 17], which measures the isotope shift for a
particular element using an optically accessible valence level
transition.

In both of these main methods for nuclear charge radii dif-
ferences, the shift in measured energy can be attributed to two
main sources: the mass shift (MS, due to the difference in the
nuclear masses in a set of isotopes) and the field shift (FS,
due to the difference in nuclear charge distributions). These
methods can provide highly precise experimental results with
the major difficulty arising from the theoretical calculations of
complex electronic structure and the need for approximations
to include quantum electrodynamics (QED) effects [18].

1.3. Measurements involving highly charged ions

X-ray spectroscopy of few-electron uranium ions has been
proven in the past to be sensitive to nuclear size, specifically
to the mean square radius difference between 235U and 238U
isotopes [20]. Other methods including dielectronic recom-
bination have also been investigated for RMS nuclear charge
determination using highly charged ions [21, 22], but neither
of these methods gained major traction due to the scarcity
of the charge states required to perform these studies [19].
Dielectronic recombinationmeasurements of [22] used Li-like
Nd by measuring the 2s− 2p1/2 and 2s− 2p3/2 transitions.
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Figure 1. (Left) Plot of transition energies from Z = 20 to Z = 92, with Na-like D1 3s 2S1/2 → 3p 2P1/2 [23] (red solid), Na-like D2
3s 2S1/2 → 3p 2P3/2 [23] (red dashed), Li-like 1s

22s 2S1/2 → 1s22p 2P1/2 [24] (blue solid), Li-like 1s
22s 2S1/2 → 1s22p 2P3/2 [24] (blue

dashed), H-like 1s 2S1/2 → 2p 2P1/2 [25] (green solid), and H-like 1s
2S1/2 → 2p 2P3/2 [25] (green dashed). The shaded blue region indicates

EUV range (3–30 nm). (Right) Plot of ionization potential necessary to create Na-like (red), Li-like (blue) and H-like (green) ions. The
shaded blue region indicates the typical range of optimum electron beam energies used to generate highly charged ions [26]).

Comparison with QED calculations allowed to determine the
isotope shift between 142Nd and 150Nd.

Recently, Silwal et al [27] demonstrated a new method for
measuring the mean-square difference of nuclear charge radii
of isotopes based on extreme-ultraviolet spectroscopy of Na-
like highly charged ions. This method extracts nuclear radii by
comparing accurate atomic structure calculations with the pre-
cise wavelengths measured for the ground state electric dipole
transitions in Na-like charge states. The nuclear charge radii
differences between 124Xe and 136Xe isotopes were determ-
ined in this first demonstration. An extension to this method
was made in [28] by using other simple highly charged atomic
systems such as Mg-like and Al-like to reduce the uncertainty
in the mean-square difference of the nuclear charge radii of Xe
isotopes reported in [27].

The choice for the charge states of ions was due to their
highly calculable valence electron configurations (the trans-
itions observed are located in an experimentally convenient
portion of the electromagnetic spectrum) and the 3 s valence
electron in highly charged ions has significant wavefunction
overlap with the nucleus, making them excellent candidates
for nuclear probes. Applying highly charged ions in isotope
shift measurements allows for competitive mean-square dif-
ferences in nuclear charge radii produced through optical and
Kα isotope shift measurements.

1.4. Absolute measurement based on Na-like ions

The main idea behind the current proposal to use Na-like ions
for determining absolute nuclear charge radii for isotopes of
high-Z elements is to use a reference isotope with a well-
known nuclear radius and extend the Na-like isotope shift
method of [27, 28] to line shifts between nearby elements.
Bymeasuring the difference in Na-like D1 3s 2S1/2 → 3p 2P1/2

transition energies for these elements, and using highly accur-
ate atomic structure theory to calculate the same difference, it
is possible to determine the absolute nuclear charge radius of
the second isotope.

Na-like systems are favorable from two different points of
view for this measurement. The first is their highly calculable

electronic structure [23], similar to Li-like [29] and H-like
[30], one-electron or quasi one-electron systems. Calculations
for these atomic systems are highly accurate compared to their
many-valence electron counterparts. From the energies of the
main spectral lines in these systems, plotted in figure 1, one
can see that the energies of the Na-like D1 transitions reside
in the blue-shaded region, which is the easily accessible EUV
range using precise standard spectroscopic methods. Li-like
and H-like ions would further reduce theoretical uncertainties,
however the production of these systems are difficult in cur-
rent EBIT devices and the transition energies are in the x-ray
range.

In the following, we introduce the major concepts and
assumptions of this technique for absolute nuclear charge
radius determination and will look into the main sources of
uncertainties one needs to consider in carrying out such an
experiment.

2. Concept of the measurement

Let us assume that a reference nuclide A has a literature-
recommended nuclear charge radius of RA =

√
⟨R2⟩A with

a small literature-recommended uncertainty ∆RA (e.g. from
[4]). Our goal is to determine the nuclear charge radius RB of a
nuclide B of interest with an uncertainty of∆RB by accurately
measuring the separation of the Na-like D1 transition energies
between the nuclides of A and B. One of the strengths of this
technique is that the two Na-like ions can be isotopes of differ-
ent elements as long as one can accurately measure the energy
separation of the two lines, and accurate theoretical calcula-
tions are available for the sensitivity of the line energies on
small changes of the nuclear radius.

For small nuclear radius-dependent changes we can assume
that the change in the line energy is linearly dependent on the
change in the nuclear charge radius, δE∝ δR. This assump-
tion is based on the idea that for high-Z systems the the-
oretical energy shift is mainly determined by the field shift
as δE= Fδ⟨R2⟩, where F is the so-called field shift coeffi-
cient known from isotope shift determinations [27, 28]. If
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the nuclear radius we choose for the calculations is close to
the real value we are trying to determine from our measure-
ment, then δ⟨R2⟩ ≡ (R+ δR)2 −R2 can be approximated by
2RδR, and the field shift coefficient by F= S/(2R). This gives
δE= SδR, expressing the linear proportionality between the
two quantities.
S is the so-called nuclear sensitivity coefficient introduced

before in [23] where Na-like D1 and D2 line energies have
been compiled and calculated. By definition, the S nuclear
sensitivity coefficient tells how much the transition energy
changes with a slight δR change of the nuclear charge radius
used in the calculations, typically in units of cm−1 fm−1.

S≡ E(R+ δR)−E(R)
δR

, δR≪ R. (1)

For nuclide B for which, based on our previous assumption,
the nuclear charge radius is not as accurately known, the real
energy EB(RB) can be expressed as a first-order correction to
a theoretical transition energy EB(RB0), calculated assuming a
nuclear charge radius RB0, the literature-recommended value
for example from [4]. We note that the chosen value does not
need to be any special number, the only importance is that it
is close to the real value to be determined so that our linear
approximations are valid. Hence

EB (RB) = EB (RB0)+ SBδRB , (2)

where

δRB = RB−RB0 . (3)

Here, RB is the true value that we intend to determine from
the experiment. Since for nuclide A, the real value of the nuc-
lear charge radius is assumed to be very close to the literature-
recommended radius used in the atomic structure calculations
(RA = RA0), in other words, RA is accurately known, we can
claim that

EA (RA) = EA (RA0) . (4)

The difference between EB(RB) and EA(RA) is the experi-
mentally measured difference of EMAB ≡ EB(RB)−EA(RA), and
with this

δRB =
1
SB

(
EMAB+EA (RA)−EB (RB0)

)
. (5)

Here, δRB represents the correction we need to make to the
assumed RB0 nuclear charge radius for the calculated differ-
ence in the line energies to agree with the experimental meas-
urement. The different theoretical and experimental contribu-
tions to its uncertainty determine the accuracy of the technique
based on these ideas.

3. Atomic structure theories

One of the cornerstones of this method is the achiev-
able accuracy of atomic structure calculations for Na-like

Figure 2. Nuclear sensitivity ratios of SZ/SZ+N where N ranges
from 1 to 6 in this example to estimate the uncertainty contribution
from the reference nuclide’s RMS nuclear charge radius uncertainty.
Nuclear sensitivity coefficient values are obtained from [23].

systems. Theoretical methods that have the required the-
oretical accuracy for evaluating Na-like systems are the
relativistic many-body perturbation theory (RMBPT) with
added quantum electrodynamic (QED) contributions [23, 31,
32], multi-configurational Dirac-Hartree-Fock method typic-
ally performed in the code GRASP [33], and the S-matrix
formulation [34]. There are other sufficient methods, but here
we will only discuss the three mentioned.

State-of-the-art Relativistic Many-Body Perturbation
framework calculations have been performed in [31]. Their
study focuses on calculating energies of 3 s, 3p1/2, and 3p3/2
states in Na-like ions with nuclear charges ranging from Z
= 11 to 92. Employing relativistic many-body perturbation
theory based on Dirac-Fock wave functions, the calculations
include second- and third-order Coulomb correlation correc-
tions, first-order corrections for transverse photon exchange,
Breit interaction, as well as finite nuclear size, reduced mass,
and mass-polarization corrections. Notably, QED corrections
like electron self-energy and vacuum polarization are excluded
but later included in follow-up publications [23, 32].

The multi-configuration Dirac-Hatree-Fock (MCDHF)
method (e.g. [33]) is a universal relativistic approach to calcu-
lation of atomic wavefunctions that is based on a variational
theory. Electron correlations are included by expanding the
atomic state functions (ASF) in a linear combination of vari-
ationally determined configuration state functions (CSF) to
describe the eigenfunctions of parity and angular momentum.
The radial part of the one-electron orbitals and the expan-
sion coefficients for CSFs are obtained in the relativistic self-
consistent field procedure, and are normally followed by a
relativistic configuration interaction calculation. The MCHDF
applications typically include other relativistic (Breit) and
QED corrections for multi-electron systems.

The S-matrix calculations for the Na-like isoelec-
tronic sequence were reported in [34]. This fully relativ-
istic QED-based method makes use of a modified Furry
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representation with account of higher-order Feynmann dia-
grams and the Kohn–Sham potential used as a local potential
for the Hamiltonian. In this approach, a complete description
of the contribution to energy levels of all Feynman diagrams
involving one and two photons is achieved, and the effects
of three-photon exchanges are modeled by the third-order
MBPT results. Additionally, one- and two-electron nuclear
recoil corrections are included as well.

4. Experimental approach

One of the main experimental requirements for this method is
the spectroscopy of highly ionized charge states of heavy ele-
ments in the Na-like isoelectronic sequence. There are several
methods to produce low-density plasmas that can ionize high-
Z elements to the desired Na-like isoelectronic sequence, such
as electron beam ion traps (EBIT) and sources (EBIS), electron
cyclotron resonances ion sources (ECRIS), accelerated beam
basedmethods, tokamaks, and other laboratory plasma devices
[36–39]. The electron beam ion trap is unique by providing the
advantage of producing and trapping a narrow range of charge
states [40], whereas other plasma sources can still provide
charge states comparable to the EBIT but over a much broader
range [41]. From here on, we will focus on the application of
EBITs for this new type of measurement.

4.1. Electron beam ion trap

Due to its slit-like (narrow and long) plasma source, EBITs
are especially suited for these measurements. Their highly
tunable plasma environment allows for a precise selection of
charge states across the periodic table. The EBIT is a small-
scale laboratory device that utilizes a high-energy beam of
electrons to ionize atomic species to desired charge states
through electron-impact ionization and excite atomic trans-
itions of ions of these charge states. Other interactions such
as dielectronic recombination, radiative recombination, and
charge exchange also occur inside the EBIT trap, contributing
to the dynamic evolution of the charge state distribution and
the observable transitions. With accelerating potentials for the
electrons (reaching energies up to 30 kV in mid-scale EBIT
devices), all of the Na-like charge states of the periodic table
should be accessible in these devices. Figure 1 shows the ion-
ization potentials of Mg-like charge states as a function of the
nuclear charge necessary for producing Na-like ions of those
elements. Further details about EBIT devices can be found in
[42].

4.2. EUV spectroscopy of Na-like ions

The Na-like D1 transition, 3s 2S1/2 − 3p 2P1/2, lies in the
extreme ultra-violet (EUV) range, see figure 1 for high-Z
elements. High-resolution spectroscopic techniques are read-
ily available for these wavelengths, and the investigation of
the EUV region has produced many publications by the EBIT
community [23, 43–45].

The flat field grazing incidence EUV spectrometer at NIST
for example is ideally suited for the detection of Na-like D1

lines in the high-Z region of our current interest and there-
fore can serve as a good example to explore the different
experimental considerations and the uncertainties to be taken
into account in designing future nuclear charge radii meas-
urements. Blagojevic et al [46] gave a detailed description of
the design of the highly efficient EUV spectrometer at NIST,
which includes a parabolic mirror to increase the solid angle
of the detection.

The detector of choice for the National Institute of
Standards and Technology (NIST) instrument is a back-
illuminated liquid nitrogen-cooled charge-coupled device
(CCD), which has an array of 512 × 2048 pixels with 13.6
micrometer × 13.6 micrometer size each, which is generally
the state-of-the-art in this instrumentation (figure 2). The spa-
tial dimensions of a pixel are an important consideration in
these measurements because to be sensitive to the nuclear
charge radii affected shift, the line separations are expected to
be determined to a fraction of a pixel precision. In the case of
Roshani et al [28], for example, the measured isotope shift was
about a hundredth of a pixel. D1 line shifts of neighboring ele-
ments extend to several pixels, but the requirements for experi-
mental precision are similar to the isotope shift determinations.

Because of the larger line separation, the precise calibra-
tion of these instruments becomes highly important. The cal-
ibration function for the NIST device is generally well approx-
imated by a third-order polynomial [47–49], where the coef-
ficients of this calibration polynomial can be found through
least-squares minimization. The dependent variables in the fit-
ting are assigned to the known wavelengths of the calibra-
tion lines with their small literature uncertainty. The independ-
ent variable is the line center found through standard curve
fitting with an appropriate peak-like function. It can be for
example a Gaussian if instrumental width is the limiting factor
with the associated statistical uncertainty from the curve fitting
procedure.

The one-σ confidence band of the calibration polynomial
is generally referred to as the calibration uncertainty of the
measurement at every particular wavelength and is associ-
ated with the covariance matrix of the fitted parameters of the
calibration function. An additional source of potential uncer-
tainty, denoted as the systematic uncertainty, should also be
considered to be added as a scalar value in quadrature to all
dependent variable uncertainties. The source and value of the
systematic uncertainty are generally difficult to determine,
and an often-used procedure is an iteration with a gradually
increased value until the condition of χ2

reduced = 1 is satisfied
for the calibration polynomial fit.

5. Considerations about the attainable accuracy

From equation (5), the uncertainty of the measured correction
δRB to the nuclear charge radius with respect to the theoretic-
ally assumed one can be expressed as

∆(δRB)

=

√
(SA∆RA)

2

S2B
+

(|∆[EA (RA0)− EB (RB0)] |)2

S2B
+

(∆EMAB)
2

S2B
+(δRB)

2

(
∆SB

SB

)2

,

(6)
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Figure 3. Theoretical uncertainty from nuclear and non-nuclear
(including QED effects) contributions in a set of RMBPT
calculations of the Na-like isoelectronic sequence [23]. Corrections
to transition energies and uncertainties were made using up-to-date
nuclear data [4] and natural isotope abundance ratios [35].

which has 4 main contributions, discussed in the next four
sections.

5.1. Uncertainty of the reference element A nuclear charge
radius

The first contribution is due to the uncertainty ∆RA in the
nuclear charge radius of the reference nuclide A. This con-
tribution comes from using a reference nuclide’s well-known
absolute nuclear charge radius to extract an improved abso-
lute value for the measured element, ultimately limiting the
extracted uncertainty. The nuclear sensitivity coefficient for
an element of atomic number Z can be estimated with a
polynomial fit (equation (10)) of the nuclear sensitivity coef-
ficients as a function of Z using the values tabulated in
[23]. The ratio of the nuclear sensitivity coefficients between
the reference nuclide and measured nuclide can be seen in
figure 3.

5.2. Uncertainty of the difference of theoretical transition
energies

The second term in equation (6) involves the uncertainty in
the difference of theoretical transition energies. Note that the
uncertainty here is∆[EA(RA0)−EB(RB0)], which is the theor-
etical uncertainty assuming the nuclear sizes have the values
RA0 and RB0 used in the calculation. Now, the non-nuclear-size
contribution to the atomic structure calculations for the trans-
ition energies is a smooth function of Z, and if one controls
the purely numerical errors in the calculation to be negligible,
the dominant uncertainty in the non-nuclear-size contribution
arises from the omitted many-body and QED terms, which
are also a smooth function of Z. (Apart from the nuclear size
effect, the nuclear terms also include the nuclear recoil or
mass effect, which in principle introduces small irregularities

as a function of Z, but is a very small effect.) Therefore, this
theoretical uncertainty term should be treated like a systematic
uncertainty and taken to be equal to the difference of the indi-
vidual non-nuclear uncertainties, ∆[EA(RA0)−EB(RB0)] =
∆EA(RA0)−∆EB(RB0). Using this approach to the theoret-
ical uncertainty, rather than adding the individual theoret-
ical errors ∆EA(RA0) and ∆EB(RB0) in quadrature, gives an
overall reduction of the theoretical contributions to the uncer-
tainty, which is ultimately limited by the uncertainty in the
reference nuclear charge radius and experimental difference
uncertainty. The nuclear and non-nuclear theoretical uncer-
tainties, as estimated in [23], can be seen in figure 4 for the
D1 transition as a function of Z. The uncertainty in hyper-
fine structure should be evaluated explicitly in this term as
well.

5.3. Uncertainty of the difference in experimentally
determined transition energies

This contribution comes from the uncertainty in the exper-
imentally determined difference of transition energies. It
includes statistical and calibration uncertainties with the lat-
ter generally also including a systematic uncertainty compon-
ent. The statistical and calibration uncertainties are determ-
ined by the number of collected photons used to extract
the line centers of the Na-like transitions and calibra-
tion lines respectively, along with the instrumental resolu-
tion σ at the energy of the measured or calibration line.
Details of the uncertainty components of the measurements
and the preferable methods to experimentally determine the
energy separations are included in the appendix (section A).
Contributions in the experimental uncertainty are added in
quadrature.

5.4. Relative uncertainty of the nuclear sensitivity coefficient
of the element to be measured

The final contribution is due to uncertainty in the nuclear sens-
itivity coefficient, which stems principally from the nuclear-
model dependence. Suppose one considers the fluctuations
in the change of transition energy δEB = SBδRB, for constant
δRB, given by a large set of possible changes in the nuclear
charge density, which is not necessarily assumed to be a uni-
form sphere, but can also include density changes localized
around the nuclear surface or related to nuclear deformations,
for example. By doing this, we find fluctuations in the inferred
value of SB at the few percent level. As an approximate rule,
these fluctuations can be taken to be approximately one-half
the total effect of the higher nuclear moments δ⟨r4⟩ and δ⟨r6⟩
in the Seltzer moment [50] for Z⩾ 60. This uncertainty also
contains estimations on uncertainties due to deformation, and
nuclear polarization based on previous studies of Li-like ions.
The final uncertainty of the extracted nuclear charge radius
correction should use the proper tabulated values given in [23]
or other theoretical works and the most up-to-date atomic and
nuclear data [4] and not those given in the polynomial fit listed
in this article.
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Figure 4. EUV spectrometer setup at the NIST EBIT.

6. Summary

Currently, there exist only a handful of methods for abso-
lute nuclear charge radius determination which have been
extensively explored in the last few decades. These methods,
while shown to be successful where applicable, have various
limitations. We introduce a new method for determining the
absolute nuclear charge radii of high-Z elements based on
standard spectroscopy methods of atomic physics combined
with highly accurate atomic structure calculations. This new
method has the ability to be applied to two different nuc-
lides, providing flexibility with the choice of reference ele-
ment based on available nuclear data and availability of the
nuclide. With these estimations, it is evident that the achiev-
able uncertainties of this method have the potential to be sens-
itive enough to support tests of physics beyond the Standard
Model with isotopes that currently have no measured absolute
nuclear charge radius. Other simple electronic systems such
as Mg-like and Al-like can also be used given their transitions
lie in the EUV spectroscopic region, and their uncertainties in
electronic structure calculations are competitive with Na-like
as discussed here.
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Appendix

A.1. Determining ∆EMAB experimental D1 separation
uncertainty

There are two approaches that allow the determination of the
EMAB energy separation of the D1 lines of interest. The precise
measurement of the absolute positions of both lines and taking
the difference or the measurement of the separation directly.
The choice between the two approaches depends on the sep-
aration of the two D1 lines and the precision of the calibration
one can achieve in an experiment.

The energy separation to first order depends on atomic
number, so for nuclides of the same or neighboring elements
the separation could be small. In this case the uncertainty that
comes from measuring the D1 line separation by subtraction
of the absolute energy positions, EMAB = EMB −EMA , carry sev-
eral uncertainty components

∆EMAB =
√
∆E2

A,stat +∆E2
A,cal +∆E2

B,stat +∆E2
B,cal, (7)

that can generally result in a large overall uncertainty for the
measurement. This is because evenwith high statistics determ-
inations of the positions of the D1 transitions, the uncertainty
in equation (7) is generally dominated by the uncertainty of the
absolute calibration. The latter can have a statistical compon-
ent that can be reduced by collecting more calibration data, but
can also have a systematic one that is mainly due to the fact that
the overall calibration function is only an approximation and

7
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Figure 5. Nuclear sensitivity coefficients, S, over the Na-like
isoelectronic sequence taken from [23] fitted with a polynomial for
estimation. Coefficients found through least-squares minimization
can be found in equation (10).

generally covers a large energy range. The systematic com-
ponent of the calibration uncertainty is difficult to reduce and
therefore in most cases limits the overall uncertainty of the
measurement.

At small separations therefore it might be beneficial to
determine the energy difference directly from many inde-
pendent measurements of the separation itself as EMAB = (EB−
EA)M. In this case the pixel separation on the CCD chip can
be directly turned into an energy separation using the dis-
persion function. The dispersion function, which is the first
derivative of the calibration function, has a smaller system-
atic component as it expresses the local variation of the cal-
ibration as opposed to representing the full energy range
measured.

∆EMAB =
√
∆(EA−EB)stat

2
+∆EAB,Cal

2. (8)

For larger D1 energy separations, when the lines originate
from different elements that might not even be neighbors in
Z, the uncertainty determined from the local dispersion func-
tion accumulates over the distance of the lines and becomes
comparable or larger than the systematic uncertainty in the
absolute separation measurement of equation (7). The term
∆(EA−EB) is the residual statistical distribution of the meas-
ured lines over time, which is equivalent to the instrumental
resolution once systematic time drifts are corrected.

As customary [51], in count rate limited measurements the
statistical uncertainty of a line position determination can be
estimated from the count rate, Ṅ, of the transition and the data
acquisition time, t, as

∆E=
σ√
Ṅt

, (9)

where σ is the half-width of the spectral line. Knowing the
estimated count rates allows for determining the time required
to take D1 and calibration spectra.

Figure 6. Generalized diffraction spectroscopic setup, used to
parameterize predicted pixel separation of Na-like D1 transitions
between two elements. All units are assumed to be in SI units.

A.2. Formula for the approximate scaling of the nuclear
sensitivity coefficient with Z

Nuclear sensitivity coefficients have been calculated in [23]
over the full Na-like isoelectronic sequence. In some cases,
experimental design can benefit from a simple Z atomic num-
ber scaling of the coefficients that are represented in blue dots
on figure 5. We found that a polynomial function can be used
to approximate such a scaling, with parameters included in
equation (10).

S(Z) =−5160+ 818Z− 51.3Z2 + 1.64Z3 − 2.83× 10−2Z4

+ 2.54× 10−4Z5 − 9.44× 10−7Z6 (cm−1
/fm).

(10)

A.3. Estimating the pixel separation of the measured D1 lines
for optical system design

Application of the general diffraction grating equation one
can parameterize the linear separation, x, between the Na-
like D1 lines on the CCD detector surface of the EUV spec-
trometer. Figure 6 shows the parameters that characterize
the dimensions of the setup. These include the β incident
angle of the incoming rays, the L perpendicular distance
between the grating and the CCD, the d diffraction groove
spacing (in nm/groove), and m the diffraction order. The

8
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λ(Z) atomic number dependent wavelength of the Na-like
D1 lines can be approximated by a polynomial whose coef-
ficients can be determined from a least-squares fit of the
transition wavelengths calculated from the energies listed in
[23].

λ(Z) =−5.29+
1072
Z

− 12050
Z2

+
315000
Z3

[nm] . (11)

With these the general diffraction equation is given as

d(sin(θ)− sin(β)) = mλ. (12)

The angle of diffraction θ can be solved simply by

θ = arcsin

(
sin(β)− mλ(Z)

d

)
[degrees]. (13)

Using basic trigonometry and applying the law of cosines, one
can solve for the distance, δx, (in meters) the two Na-like D1
lines of interest will have on the CCD plane. The separation
in pixels can be achieved by properly converting the distance
using the dimensions of the pixel.

δx(L,β,m,d,Z) =
L

sin(θ1) sin(θ2)

×
√

sin2 (θ2)+ sin2 (θ1)− 2sin(θ1) sin(θ2) sin(θ2 − θ1) [m].

(14)
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