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Abstract—The numerical integration of expressions containing 
strong singularities or strong near-singularities has long been a 
challenging problem in the electromagnetics community. Much 
attention has been paid to this problem, as strong  𝟏𝟏/𝑹𝑹𝟐𝟐 
singularities routinely appear when implementing electromagnetic 
simulation techniques like the Method of Moments (MoM). To 
date, several techniques, from singularity extraction to singularity 
cancellation, have been employed to deal with problems that 
require the evaluation of 2D strongly-singular integrals. However, 
no single technique has been proposed that can deal with both 
strong singularities and strong near-singularities in a fully-
numerical manner for arbitrary 2D domains. Moreover, it has been 
claimed that the Helmholtz-type strongly singular integral found in 
the MoM is convergent in a principal value sense, but this 
convergence value has yet to be proven mathematically. In this 
work, we will conduct the convergence proof and introduce a 
“polar scaling” change of variables method that may be used to 
evaluate Helmholtz integrals with both strong and weak 
singularities/near-singularities. The technique is fully-numerical 
and can in principle be applied to any planar or curved polygon 
and any non-singular basis function. We will also provide 
numerical results showing useful convergence behavior for 
integrals involving both exact and near-singularities. 

Index Terms—Integral Equations, Method of Moments, 
Numerical Simulation.  

I. INTRODUCTION

T is well known that the method of moments (MoM) 
technique, a popular method for solving electromagnetic 

integral equations, requires the numerical evaluation of several 
integrals containing the Green’s function of the inhomogeneous 
electromagnetic Helmholtz Equation. This Green’s function is 
represented as: 

𝐺𝐺(𝑥⃗𝑥,  𝑥⃗𝑥′) =
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
,  (1.1) 

where 𝑘𝑘 is the wavenumber and 
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where the primed coordinates denote the position of an 
electromagnetic current source and the unprimed coordinates 
denote the observation point. Since the field solution is often 
desired everywhere within a computational domain, 
computation for values of 𝑅𝑅 approaching 0 are necessary, 
leading to the task of evaluating integrals with integrands that 
contain singularities. One such integral that is often invoked is 
the following surface integral: 

∇ × �𝑵𝑵��⃗ (𝑥⃑𝑥′)
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
𝑑𝑑𝑆𝑆′

= �
−𝑅𝑅�⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝑅𝑅3
× 𝑵𝑵��⃗ (𝑥⃑𝑥′)𝑑𝑑𝑆𝑆′, (1.3) 

where 𝑵𝑵��⃗ (𝑥⃑𝑥′) is a basis function used to approximate a portion 
of the current source over the surface and 𝑅𝑅�⃗  is 𝑥⃗𝑥 − 𝑥⃗𝑥′. Other 
integrals are involved in the MoM process, but this one is of 
particular interest, as it contains what is termed a “strong” 
singularity, i.e., a 1/𝑅𝑅2 singularity. This type of integral is often 
treated with the singularity extraction technique, which divides 
the integral into two, one regular and one singular, and solves 
the new singular integral analytically [1]-[5]. While powerful 
and common, this technique is limited in that the analytical 
integral is not general, and a new formulation must be developed 
for differing integration domains or basis functions. An equally 
accurate technique that is more versatile without creating 
substantially more computational work would therefore have 
greater utility. Another technique that has been used to treat 
Helmholtz integral singularities is the singularity cancellation 
technique, where the integrand is transformed with a change of 
variables into an expression that no longer contains the 
singularity, as it is cancelled with the Jacobian [2],[5]-[13]. 
However, the strong singularity resists cancellation with this 
method alone and in fact, to the author’s knowledge, 
cancellation schemes have only been achieved for the above 
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type of integral (with a strong singularity) when it is near-
singular, not exactly singular, as the transformations detailed in 
the works above show diverging or undefined integral limits 
when the singular point is exactly within the integration source 
domain. However, several of the near-singularity papers, 
namely [8] and [9], imply or claim that the exact singularity case 
is tractable, as the integrand converges to a principal value, and 
that only the near-singular case is especially challenging. While 
this principal value claim is true, a proof of the claim for the 
integral of interest does not appear to have been presented in the 
literature before now. To be more specific, exactly singular 
Cauchy Principal Value (CPV) integrals have been investigated 
in the broader mathematical physics community (e.g., [14]-
[15]), but to the author’s knowledge, an explicit expression for 
the principal value of eqn. (1.3) has not been given in the context 
of the electromagnetic MoM for an arbitrary non-singular basis 
function, even though the principal value has been claimed to 
exist. The reference that is often used to support this claim, [7], 
is a referral to a conference presentation where it is unclear if the 
claim was proved theoretically, as only the abstract is readily 
available. It is true that the foundational nature of the work 
presented in [7] and extensions thereof is not majorly impacted 
by this missing information. Nevertheless, there appears to be a 
gap in the development of the theory in this section of the field. 
This gap will be remedied here. It should be noted that the 
technique detailed in a recent work, [16], treats both near and 
exact singularities under the same umbrella by combining 
singularity extraction with singularity cancellation, but this is 
subject to the same analytical result limitation as the singularity 
extraction method alone.  

It should also be noted that there exists a class of techniques 
designed to comprehensibly treat 4D Galerkin integrals 
commonly found in the MFIE formulation, one of which takes 
following form: 
 

�𝑵𝑵𝑚𝑚��������⃗ (𝑥𝑥��⃗ ) ∙ �
−𝑅𝑅�⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝑅𝑅3 × 𝑵𝑵𝑛𝑛�����⃗ (𝑥𝑥′)𝑑𝑑𝑆𝑆′𝑑𝑑𝑑𝑑
 

𝑆𝑆′
,

 

𝑆𝑆

     (1.4) 

 
where 𝑆𝑆 is an evaluation domain and 𝑆𝑆′ is a source domain [17]-
[19]. These methods smoothen the entire 4D kernal by breaking 
the integral into a sum of contour integrals using non-trivial 
algebraic manipulations and the Divergence Theorem. On the 
other hand, the methods discussed thus far, as well as the method 
presented herein, focus exclusively on accurately evaluating the 
inner 2D strongly singular integral rather than regularizing the 
entire 4D kernal. As it happens, and as stated in [17]-[19], a 
strong motivating element in the development of the 4D-centric 
summation methods is that accurate evaluation of the inner 2D 
integral does not imply a smooth 4D kernal and higher accuracy 
can be achieved for the full 4D integral if it is treated as a whole. 
However, these methods have not seen popular use as of yet due 
to the implementation differences between them and existing 
MoM formulations, as stated in [16]. Because of this, we will 
proceed with this work focusing exclusively on the strongly 
singular 2D integral, as its isolated evaluation is still relevant to 
the community. 

 Furthermore, the author has identified an opportunity to 
extend the integration of eqn. (1.3) to polygons with an arbitrary 
number of edges with one universal standard procedure. A 
formulation that treats all shapes of this type with the same 
sequence of variable transformations, regardless of basis 
function and shape type, presents substantial utility to any 
platform designed with generality in mind. Using this as a 
motivation, we will develop a general polar transformation 
(termed “polar scaling”), mathematically prove that it cancels 
the strong singularity in the eqn. (1.3) integral, and then connect 
it to an N-sided  polygon. We will also detail how the method 
can be applied to near-singularities, creating a versatile solution 
for the type of surface integration considered here. The paper 
will be organized as follows: Section II. will detail the general 
polar regularization, Section III. will discuss an equally general 
coordinate renormalization procedure, Section IV. will describe 
how to complete the polar transformation once a particular shape 
is chosen, Section V. will discuss near-singularity treatment, and 
Section VI. will demonstrate a numerical example. 

II. POLAR SCALING REGULARIZATION 
As alluded to in Section I, the polar transformation that will be 
executed below does not cancel the strong singularity in the 
conventional manner. However, it will be shown that the 
transformation used here will result in an integrand that is finite 
at all points within the integration domain, including the strong 
singularity. That is, the transformed integrand will have a limit 
that exists as the observation point approaches the source point. 
We will now formulate this transformation. 

Without loss of generality, for a two-dimensional domain 
described in finite (𝑢𝑢, 𝑣𝑣) coordinates, let us define the following 
transformation to polar coordinates:  

 
 Fig. 1.   Arbitrary polygon described in (𝑢𝑢, 𝑣𝑣) coordinate system.  
 

𝑢𝑢 = 𝜌𝜌𝜌𝜌(𝜑𝜑) + 𝑢𝑢0,                          (2.1𝑎𝑎) 
 

𝑣𝑣 = 𝜌𝜌𝜌𝜌(𝜑𝜑) tan𝜑𝜑 + 𝑣𝑣0,                    (2.1𝑏𝑏) 
with 
 

𝑥⃗𝑥 = 𝑐𝑐 + 𝑢𝑢𝑢𝑢� + 𝑣𝑣𝑣𝑣� + ℎ�⃗ ,                         (2.1𝑐𝑐) 
 

𝑥⃗𝑥′ = 𝑐𝑐 + 𝑢𝑢′𝑢𝑢� + 𝑣𝑣′𝑣𝑣� ,                           (2.1𝑑𝑑) 
 

where 𝑓𝑓(𝜑𝜑) is some continuous angular function with 
|𝑓𝑓(𝜑𝜑)|, |𝑓𝑓(𝜑𝜑) tan𝜑𝜑|  < ∞ for all 𝜑𝜑, 𝑐𝑐 is the source domain 
centroid, 𝑢𝑢�  and 𝑣𝑣� are orthogonal, but otherwise arbitrary normal 
vectors, and (𝑢𝑢0,𝑣𝑣0) is the position of the observation point if it 
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is within the source domain, or the projection of the observation 
point onto the source domain if the observation point is not 
within the source domain. ℎ�⃗  applies to the case where the 
observation point is not within the source domain and represents 
the vector between the observation point and its source domain 
projection (ℎ�⃗  is merely the 0 vector if the observation point lies 
within the source domain). �ℎ�⃗ � is the shortest distance between 
the observation point and any point in the source domain. Note 
that 𝜌𝜌 is real and 0 ≤ 𝜌𝜌 ≤ 1. 𝑢𝑢�  and 𝑣𝑣� potential definitions will 
be discussed in Section IV. Fig. 1 illustrates this coordinate 
system, but 𝜌𝜌 is omitted as its calculation will also be discussed 
in Section IV; we do not need its mathematical definition to 
show regularization as will become clear below. The Jacobian 
for the change of variables from the (𝑢𝑢, 𝑣𝑣) domain to the (𝜌𝜌,𝜑𝜑) 
domain is 
 

�𝐽𝐽𝜌𝜌𝜌𝜌� = 𝜌𝜌𝑓𝑓(𝜑𝜑)2 sec2 𝜑𝜑 .                         (2.2) 
 
We may substitute these transformations into our expression for 
𝑅𝑅, resulting in the following: 
 

𝑅𝑅 = �� �
𝑢𝑢𝑛𝑛��𝜌𝜌𝜌𝜌(𝜑𝜑) − 𝜌𝜌′𝑓𝑓(𝜑𝜑′)�

+𝑣𝑣𝑛𝑛�(𝜌𝜌𝜌𝜌(𝜑𝜑) tan𝜑𝜑 − 𝜌𝜌′ 𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′) + ℎℎ𝑛𝑛�
�
2𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

. (2.3) 

 
We stipulate that (𝑢𝑢0,𝑣𝑣0) is the transformed observation point 
or projection, so 𝜌𝜌 is 0. As such, eqn. (2.3) becomes 
 

𝑅𝑅 = ���𝑢𝑢𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′) + 𝑣𝑣𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′ − ℎℎ𝑛𝑛��
2

𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

, (2.4) 

 

where ℎ = �ℎ�⃗ � and ℎ� is the unit vector in the direction of ℎ�⃗ . Note 
that we factored out -1 to reorient the signs in the expression. 
Let us now use the transformations executed thus far to 
manipulate the strongly singular Helmholtz integral described in 
eqn. (1.3): 
 

�
−𝑅𝑅�⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝑅𝑅3
× 𝑵𝑵��⃗ (𝑥⃑𝑥′)𝑑𝑑𝑆𝑆′ 

= �
−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑘𝑘𝑘𝑘)

4𝜋𝜋𝑅𝑅3
 

∗ �
(𝑥𝑥 − 𝑥𝑥′)�𝑁𝑁𝑦𝑦(𝑥⃑𝑥′)𝑧̂𝑧 − 𝑁𝑁𝑧𝑧(𝑥⃑𝑥′)𝑦𝑦��

+(𝑦𝑦 − 𝑦𝑦′)(𝑁𝑁𝑧𝑧(𝑥⃑𝑥′)𝑥𝑥� − 𝑁𝑁𝑥𝑥(𝑥⃑𝑥′)𝑧̂𝑧)
+(𝑧𝑧 − 𝑧𝑧′)�𝑁𝑁𝑥𝑥(𝑥⃑𝑥′)𝑦𝑦� − 𝑁𝑁𝑦𝑦(𝑥⃑𝑥′)𝑥𝑥��

�𝑑𝑑𝑆𝑆′ (2.5) 

 
Let us consider only the first term in the brackets for now, 
leading to the following integral: 
 

�
−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝑅𝑅3
�(𝑥𝑥 − 𝑥𝑥′)�𝑁𝑁𝑦𝑦(𝑥⃑𝑥′)𝑧̂𝑧

− 𝑁𝑁𝑧𝑧(𝑥⃑𝑥′)𝑦𝑦���𝑑𝑑𝑆𝑆′                                         (2.6) 
 

Further, let 
 

𝑁𝑁𝑦𝑦𝑦𝑦 ≡  �𝑁𝑁𝑦𝑦(𝑥⃑𝑥′)𝑧̂𝑧 − 𝑁𝑁𝑧𝑧(𝑥⃑𝑥′)𝑦𝑦��                       (2.7) 
 
Substituting the coordinate transformations into eqn. (2.6), we 
obtain 
 

�
−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝜋𝜋3
�(𝑥𝑥 − 𝑥𝑥′)�𝑁𝑁𝑦𝑦(𝑥⃑𝑥′)𝑧̂𝑧 − 𝑁𝑁𝑧𝑧(𝑥⃑𝑥′)𝑦𝑦���𝑑𝑑𝑆𝑆′ 

 

= ��
−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝜋𝜋3
{[𝑢𝑢𝑥𝑥�(𝑢𝑢 − 𝑢𝑢′) + 𝑣𝑣𝑥𝑥�(𝑣𝑣 − 𝑣𝑣′) + ℎℎ𝑥𝑥�] 

∗ 𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′)}�𝐽𝐽𝜌𝜌′𝜑𝜑′�𝑑𝑑𝜌𝜌′𝑑𝑑𝜑𝜑′ 
 
 

= ��
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)

4𝜋𝜋𝜋𝜋3
 

 
∗ {�𝑢𝑢𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′) + 𝑣𝑣𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′) tan𝜑𝜑′ − ℎℎ𝑥𝑥�]𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′)� 

 
∗ 𝜌𝜌′𝑓𝑓(𝜑𝜑′)2 sec2 𝜑𝜑′ 𝑑𝑑𝜌𝜌′𝑑𝑑𝜑𝜑′                 (2.8) 

 
Note that the negative sign in front of the exponential was 
absorbed into the expression in the square brackets. Also note 
that the 𝜌𝜌′ bounds are 0 and 1, whereas the 𝜑𝜑′ bounds are 0 and 
2𝜋𝜋. These details will be more closely described later on when 
we specify the computation of 𝜌𝜌 and 𝑓𝑓(𝜑𝜑). Substituting eqn. 
(2.4) into eqn. (2.8) and splitting the expression into two 
integrals, we arrive at the following result: 
 

��
𝑒𝑒−𝑗𝑗𝑗𝑗

�∑ �𝑢𝑢𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′)+𝑣𝑣𝑛𝑛� 𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′−ℎℎ𝑛𝑛��
2𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛   

4𝜋𝜋 ��∑ �𝑢𝑢𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′) + 𝑣𝑣𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′ − ℎℎ𝑛𝑛��
2𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛 �
3 

 

∗ �
𝑢𝑢𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′)

+𝑣𝑣𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′

−ℎℎ𝑥𝑥�
�𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′)𝜌𝜌′𝑓𝑓(𝜑𝜑)2sec2 𝜑𝜑′ 𝑑𝑑𝜌𝜌′𝑑𝑑𝜑𝜑′     

 

+ ��
𝑗𝑗𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗

�∑ �𝑢𝑢𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′)+𝑣𝑣𝑛𝑛� 𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′−ℎℎ𝑛𝑛��
2𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

4𝜋𝜋∑ �𝑢𝑢𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′) + 𝑣𝑣𝑛𝑛�𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′ − ℎℎ𝑛𝑛��
2𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

 

 

∗ �
𝑢𝑢𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′)

+𝑣𝑣𝑥𝑥�𝜌𝜌′𝑓𝑓(𝜑𝜑′)tan𝜑𝜑′

−ℎℎ𝑥𝑥�
�𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′)𝜌𝜌′𝑓𝑓(𝜑𝜑′)2sec2 𝜑𝜑′ 𝑑𝑑𝜌𝜌′𝑑𝑑𝜑𝜑′  (2.9) 

 
Since the second integral in eqn. (2.9) was weakly singular in its 
original form, its singularity is cancelled by the polar 
transformation for ℎ = 0 (𝜌𝜌′ terms cancel under this 
circumstance). Note that since 𝑓𝑓(𝜑𝜑′), as a stipulation of the 
transformation, is defined in such a way that |𝑓𝑓(𝜑𝜑′) tan𝜑𝜑′|  <
∞, |𝑓𝑓(𝜑𝜑′) sec𝜑𝜑′|  < ∞ as well, so the integrand of the second 
integral cannot have a 𝜑𝜑′ singularity associated with it for a non-
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singular 𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′). The numerical stability of this integral, 
then, is dependent on the variational stability of 𝑓𝑓(𝜑𝜑′), which, 
as we will define in Section IV, is dependent on the polygon 
shape. The focus of this work is on management of the 1/𝑅𝑅2 
strong singularity displayed in eqn. (1.3), so an exhaustive 
analysis of the stability of this ancillary integral is beyond the 
scope of this paper. However, this angular integrand will be 
shown in Section VI to be well-behaved for the examples 
discussed therein, which are representative of typical scenarios 
found in electromagnetic MoM problems. As such, the second 
integral may be evaluated numerically using standard quadrature 
rules such as the well-known Gauss-Legendre method.  

The first integral, in fact, is also convergent despite the 
integrand’s 𝜌𝜌′ = 0,ℎ = 0 singularity, but the justification of this 
claim is more involved. To show that the first integral is regular, 
we will examine its behavior as 𝜌𝜌′ → 0 for ℎ = 0 (the 
observation point is in the source domain). When ℎ = 0, the first 
eqn. (2.9) integral simplifies to the following expression: 
  

�
∫ 𝐼𝐼𝑥𝑥(𝜌𝜌′,𝜑𝜑′)𝑑𝑑𝜑𝜑′

4𝜋𝜋𝜋𝜋′
𝑑𝑑𝜌𝜌′,                       (2.10) 

 
with 

𝐼𝐼𝑥𝑥(𝜌𝜌′,𝜑𝜑′) ≡ sgn(cos𝜑𝜑′)
𝑒𝑒−𝑗𝑗𝑗𝑗𝜌𝜌

′𝑓𝑓(𝜑𝜑′)�∑ (𝑢𝑢𝑛𝑛�+𝑣𝑣𝑛𝑛� tan𝜑𝜑′)2𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑛𝑛

�∑ (𝑢𝑢𝑛𝑛� + 𝑣𝑣𝑛𝑛� tan𝜑𝜑′)2𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑛𝑛 �

3
2

 

 
∗ {�𝑢𝑢𝑥𝑥� + 𝑣𝑣𝑥𝑥� tan𝜑𝜑′]𝑁𝑁𝑦𝑦𝑦𝑦(𝜌𝜌′,𝜑𝜑′)� sec2 𝜑𝜑′ .      (2.11) 

 
Note that the cancellations from the simplification yield an 
expression that includes sgn(f(𝜑𝜑′)).  Here, we have replaced 
the signum argument with cos𝜑𝜑′ since sgn(cos𝜑𝜑′) and 
sgn(f(𝜑𝜑′)) are equal. This is apparent by consulting Fig. 1. 
When −𝜋𝜋

2
< 𝜑𝜑′ < 𝜋𝜋

2
, 𝑢𝑢′ > 𝑢𝑢0, so sgn�𝑓𝑓(𝜑𝜑′)� must be positive. 

The opposite is true when 𝜋𝜋
2

< 𝜑𝜑′ < 3𝜋𝜋
2

. 
From here, we wish to take the limit of eqn. (2.11) as 𝜌𝜌′ → 0, 

where the integrand appears to diverge. If the limit exists, 
however, the integral is regular. To prove that the limit is indeed 
finite, we notice that if lim

𝜌𝜌′→0
∫ 𝐼𝐼(𝜌𝜌′,𝜑𝜑′)𝑑𝑑𝜑𝜑′ = 0, the 𝜌𝜌′ integrand 

in eqn. (2.10) is a L’Hopital indeterminant. When 𝜌𝜌′ = 0, 
𝐼𝐼𝑥𝑥(𝜌𝜌′,𝜑𝜑′) becomes 
 

𝐼𝐼𝑥𝑥(0,𝜑𝜑′) =  
sgn(cos𝜑𝜑′)

�∑ (𝑢𝑢𝑛𝑛� + 𝑣𝑣𝑛𝑛� tan𝜑𝜑′)2𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑛𝑛 �

3
2
 

 
∗ [𝑢𝑢𝑥𝑥� + 𝑣𝑣𝑥𝑥� tan𝜑𝜑′]𝑁𝑁𝑦𝑦𝑦𝑦(0,𝜑𝜑′) sec2 𝜑𝜑′ .       (2.12) 

 
Note that when 𝜌𝜌′ = 0, 𝑁𝑁𝑦𝑦𝑦𝑦 is no longer a function of 𝜑𝜑′. We 
now represent the numerator integral of eqn. (2.11), in a 
principal value sense, as follows: 
 

� 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

2𝜋𝜋

0

 

=  lim
𝜖𝜖→0

� 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

𝜋𝜋
2−𝜖𝜖

−𝜋𝜋2+𝜖𝜖

+ � 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

3𝜋𝜋
2 −𝜖𝜖

𝜋𝜋
2+𝜖𝜖

. (2.13) 

 
The bounds are chosen to coincide with the divergent points in 
the tangent and secant functions in the integrand. Using the same 
tangent-secant limit arguments as those used for the second 
integral of eqn. (2.9), we see that 𝐼𝐼(0,𝜑𝜑′) does not diverge at the 
integral bounds as 𝜖𝜖 → 0. Also note that for the first integral in 
eqn. (2.13), sgn(cos𝜑𝜑′) = 1, whereas sgn(cos𝜑𝜑′) = −1 in the 
second integral. We also notice that for 𝜑𝜑′ ≠ 𝑝𝑝𝑝𝑝

2
 for some odd 

integer 𝑝𝑝,  
 

tan(𝜑𝜑′ + 𝜋𝜋) = tan𝜑𝜑′ ,                     (2.14𝑎𝑎) 
 

sec2(𝜑𝜑′ + 𝜋𝜋) = sec2 𝜑𝜑′ .                   (2.14𝑏𝑏) 
 
Since the intervals of the two integrals in eqn. (2.13) are offset 
by 𝜋𝜋, it is clear that 
 

��lim
𝜖𝜖→0

� 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

𝜋𝜋
2−𝜖𝜖

−𝜋𝜋2+𝜖𝜖

�� = ��lim𝜖𝜖→0 � 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

3𝜋𝜋
2 −𝜖𝜖

𝜋𝜋
2+𝜖𝜖

�� . (2.15) 

 
Therefore,  

lim
𝜖𝜖→0

� 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

𝜋𝜋
2−𝜖𝜖

−𝜋𝜋2+𝜖𝜖

+ � 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

3𝜋𝜋
2 −𝜖𝜖

𝜋𝜋
2+𝜖𝜖

  

 

= lim
𝜖𝜖→0

� 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′

𝜋𝜋
2−𝜖𝜖

−𝜋𝜋2+𝜖𝜖

− � 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′ = 0.        (2.16)

𝜋𝜋
2−𝜖𝜖

−𝜋𝜋2+𝜖𝜖

 

 
The limit in eqn. (2.10), then, is indeed a L’Hopital 
indeterminant, and thus may be evaluated via L’Hopital’s rule. 
Differentiating the numerator and denominator of eqn. (2.10) 
with respect to 𝜌𝜌′, we can take the limit of eqn. (2.10) as follows: 

lim
𝜌𝜌′→0

∫ 𝐼𝐼𝑥𝑥(𝜌𝜌′,𝜑𝜑′)𝑑𝑑𝜑𝜑′

4𝜋𝜋𝜌𝜌′
 

 

=
1

4𝜋𝜋
�−𝑗𝑗𝑗𝑗𝑗𝑗(𝜑𝜑′)��(𝑢𝑢𝑛𝑛� + 𝑣𝑣𝑛𝑛� tan𝜑𝜑′)2

𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

 𝐼𝐼𝑥𝑥(0,𝜑𝜑′)𝑑𝑑𝜑𝜑′, (2.17) 

 
In which the 𝜌𝜌′ = 0 singularity has been eliminated. This 
analysis shows that the polar mapping defined in eqn. (2.1) 
reveals that the strong singularity of the Helmholtz integral is a 
“false” singularity, one that does not truly cause the integrand 𝜌𝜌′ 
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to diverge. As such, both integrals of eqn. (2.9) may be evaluated 
numerically, using conventional quadrature rules without the 
need for singularity extraction. In fact, examining eqn. (2.9), we 
find that the limit integral in eqn. (2.17), when 𝜌𝜌′ = 0, is exactly 
equal to the second 𝜑𝜑′ integral in eqn. (2.9) in magnitude and 
opposite in sign. This means that at the 𝜌𝜌′ = 0 point, the total 
integrand is null, i.e., the 𝜌𝜌′ = 0 point contributes nothing to the 
integral. This is also trivially true if 𝜌𝜌′ = 0 and ℎ ≠ 0. Identical 
arguments may be made to evaluate the second and third terms 
of eqn. (2.5). Note that the transformation described in this 
section is applicable to any 2D  shape. This is a powerful result 
since, as far as 2D  shapes are concerned, it allows for a  
technique that can handle both exact and near strong 
singularities with the same transformation, simplifying code 
implementations. It should be noted that weakly singular 1/𝑅𝑅 
Helmholtz integrals also have their singularities cancelled with 
this transformation, much like the second integral in eqn. (2.9). 
This means that the formulation is also open to problems 
involving 1/𝑅𝑅 potential integrals. In the next section, we will 
explain the method of moving the polygon definition to the 
(𝑢𝑢, 𝑣𝑣) space. 

III. (𝑢𝑢, 𝑣𝑣) TRANSFORMATION 
Consider a polygon defined in Cartesian space by 𝑁𝑁 arbitrary 

points 𝑥𝑥1���⃗ ,  𝑥𝑥2����⃗ , … and 𝑥𝑥𝑛𝑛����⃗  defined as 
 

𝑥𝑥𝑛𝑛����⃗ = �𝑥𝑥𝑛𝑛𝑛𝑛, 𝑥𝑥𝑛𝑛𝑛𝑛, 𝑥𝑥𝑛𝑛𝑛𝑛�, 𝑛𝑛 = 1, 2, …  𝑁𝑁.              (3.1)  
 

We will execute an unscaled change of basis to represent the 
points within the polygon in terms of two orthogonal vectors that 
are in-plane with the polygon surface. The exact choice of basis 
is somewhat arbitrary, and many definitions are available. Here, 
we will choose the unit vector pointing from the polygon 
centroid 𝑐𝑐 to the vertex 𝑥𝑥2����⃗  as our first basis vector, which will 
establish the 𝑣𝑣� direction (note, as shown in Fig. 1, the convention 
for this work is to label the lower left vertex of the polygon as 
𝑥𝑥1���⃗  and increase the vertex numbering in the clockwise 
direction). 𝑐𝑐 may be easily computed as 

 

𝑐𝑐 = 1
𝑁𝑁
�
∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 ,  

∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 ,  
∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1

� .                              (3.2)  

 
With this convention, 𝑣𝑣� may be explicitly computed as 
 

𝑣𝑣� =
𝑥𝑥2����⃗ − 𝑐𝑐

|𝑥𝑥2����⃗ − 𝑐𝑐| .                                   (3.3) 

 
Using the unit vector pointing from 𝑥𝑥1���⃗  to 𝑥𝑥2����⃗ , which we will label 
as 𝑙𝑙21� , we may develop an orthogonal vector to 𝑣𝑣�, which we will 
term 𝑢𝑢� : 
 

𝑢𝑢� =
𝑣𝑣� × 𝑙𝑙21� × 𝑣𝑣�
�𝑣𝑣� × 𝑙𝑙21� × 𝑣𝑣��

=
𝑙𝑙21� − 𝑣𝑣��𝑣𝑣� ∙ 𝑙𝑙21��
�𝑙𝑙21� − 𝑣𝑣��𝑣𝑣� ∙ 𝑙𝑙21���

,             (3.4) 

where the BAC-CAB vector triple product identity has been 

used. Note that any in-plane vector that is not parallel to 𝑣𝑣� may 
be used in place of  𝑙𝑙21�  and the resulting vector will be the same 
after normalization. We now represent each point within the 
polygon via the following function: 
 

𝑥⃑𝑥′ = 𝑐𝑐 + 𝑢𝑢′𝑢𝑢� + 𝑣𝑣′𝑣𝑣�,                            (3.5) 
 
where 𝑢𝑢′ and 𝑣𝑣′ are constants. To find the constants that 
correspond to the point of interest 𝑥𝑥′���⃑ , we use individual 
components of eqn. (2.5) to create a system of equations, which 
may be represented in matrix form as below: 
 

�
𝑢𝑢𝑥𝑥� 𝑣𝑣𝑥𝑥�
𝑢𝑢𝑦𝑦� 𝑣𝑣𝑦𝑦�

� �𝑢𝑢′
𝑣𝑣′
� = �

(𝑥⃑𝑥′ − 𝑐𝑐)𝑥𝑥
(𝑥⃑𝑥′ − 𝑐𝑐)𝑦𝑦

� .                (3.6) 

 
Solving this matrix equation yields the unknown constants. Note 
that since all the points in the polygon are coplanar, each pair of 
two components can only correspond to one potential third 
coordinate while remaining in-plane, so only two of the 
components of eqn. (3.4) need to be invoked to find the 
unknown constants (here the 𝑥𝑥 and 𝑦𝑦 components are used). 
Note also that our differential element 𝑑𝑑𝑑𝑑′ is now 𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′. Since 
the Euclidean distances between points in our new basis and the 
original Cartesian basis are identical, no scaling factors are 
needed to execute the change of variables. We are now prepared 
to execute the polar mapping for polygons. This will be done in 
the next section. 

IV. POLYGON POLAR COORDINATES 
Here, we will demonstrate an example of how to execute the 

polar mapping described in the previous sections for arbitrary 
polygons with straight edges. Note that as long as the edges are 
straight, the following procedure will be the same regardless of 
whether or not the polygon has concave or convex sections. The 
polar coordinates 𝜌𝜌′ and 𝜑𝜑′ are defined in relation to the point 
(𝑢𝑢0,𝑣𝑣0) and the polygon vertices. From Fig. 1, it is clear that 𝜑𝜑′ 
is defined by the direction of the vector pointing from (𝑢𝑢0,𝑣𝑣0) 
to (𝑢𝑢′, 𝑣𝑣′). 𝜌𝜌′, in our formulation, will refer to an inner polygon 
scaling factor that corresponds to the dimensions of a similar 
polygon to the polygon under consideration (note that the term 
“similar” is meant in the mathematical geometric sense). This 
similar polygon will be termed the “scaled” polygon. The scaled 
polygon has an edge that intersects with (𝑢𝑢′,𝑣𝑣′) and vertices that 
lie on the lines drawn between (𝑢𝑢0,𝑣𝑣0) and the vertices of the 
larger polygon, which we will term the “base” polygon. Fig. 2 
illustrates this scaling concept. When 𝜌𝜌′ = 1, (𝑢𝑢′, 𝑣𝑣′) lies on the 
base polygon boundary. Note that this representation of  𝜌𝜌′ is 
quite similar to the formulation of the 𝑦𝑦′  variable discussed in 
[20], though the second variable used in that work, 𝑥𝑥′, is linear 
instead of the polar variable 𝜑𝜑′ used here, which, again, is 
necessary for the strong singularity cancellation proof discussed 
herein. We now define vertex vectors: 

 
𝑤𝑤𝑛𝑛�����⃗ = 𝑝𝑝𝑛𝑛����⃗ − (𝑢𝑢0,𝑣𝑣0),      𝑛𝑛 = 1, 2, …  𝑁𝑁.                 (4.1) 
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Fig. 2.  Polygon scaling. The black polygon is the base polygon and the dashed 
blue polygon is the scaled polygon. The scaled polygon vertices lie on the red 
dashed lines connecting (𝑢𝑢0, 𝑣𝑣0) to the base polygon vertices and the scaled 
polygon edges are parallel to the base polygon edges. (𝑢𝑢′,𝑣𝑣′) lies on a scaled 
polygon edge and 𝜌𝜌′ is determined by how large the scaled polygon must be for 
its boundary to intersect with (𝑢𝑢′,𝑣𝑣′). 
 
where 𝑝𝑝𝑛𝑛����⃗  denotes the (𝑢𝑢, 𝑣𝑣) coordinates of vertex n. These 
vectors will be used to determine the scaling of the similar 
polygon, and thus, 𝜌𝜌′. For some (𝑢𝑢′, 𝑣𝑣′) that we wish to map, we 
first must determine which edge the similar polygon will 
intersect the point with. We may do this by simply computing 
𝜑𝜑′ via 

 

𝜑𝜑′ = tan−1
𝑣𝑣′ − 𝑣𝑣0
𝑢𝑢′ − 𝑢𝑢0

.                           (4.2) 

 
We also define vertex 𝜑𝜑′ values as 

 
𝜑𝜑′𝑛𝑛 = tan−1

𝑤𝑤𝑛𝑛𝑛𝑛
𝑤𝑤𝑛𝑛𝑛𝑛

, 𝑛𝑛 = 1, 2, …  𝑁𝑁.     (4.3) 

where 𝑤𝑤𝑛𝑛𝑛𝑛 denotes the p-component of 𝑤𝑤𝑛𝑛�����⃗ . If 𝜑𝜑′𝑛𝑛+1 ≤ 𝜑𝜑′ < 𝜑𝜑′𝑛𝑛 
the point is on edge 𝑒𝑒(𝑛𝑛+1)𝑛𝑛. We will term the edge that 
corresponds to the 𝜑𝜑′ value as the “active” edge. Note that if  
(𝑢𝑢0,𝑣𝑣0) lies on a vertex, one of the vertex vectors will be 0 and 
its inverse tangent computation will be undefined. If 𝜑𝜑′ is within 
an interval with an undefined bound, this undefined bound is 
replaced by the next defined bound in the sequence counting 
down from N to 1 and circling back to N. For example, for 𝑁𝑁 =
3, if the undefined bound is 𝜑𝜑′3, we set 𝜑𝜑′3 = 𝜑𝜑′2 instead. If the 
undefined bound is 𝜑𝜑′2, we set 𝜑𝜑′2 = 𝜑𝜑′1. Finally, if the 
undefined bound is 𝜑𝜑′1, we set 𝜑𝜑′1 = 𝜑𝜑′3. This effectively 
merges two potential active edges together. As we will see 
below, both of the merged active edges are treated identically 
regarding the numerical integration operation.  Once the active 
edge is known, we may use the vertex vectors to determine the 
intersection. 
For a straight edge 𝑒𝑒𝑖𝑖𝑖𝑖, let 

 
(𝑢𝑢′, 𝑣𝑣′) = (𝑢𝑢0,𝑣𝑣0) + 𝜌𝜌′𝑤𝑤𝚥𝚥����⃗ + 𝛽𝛽𝜌𝜌′�𝑤𝑤𝚤𝚤����⃗ − 𝑤𝑤𝚥𝚥����⃗ �,         (4.4) 

 
and let 
 

𝑤𝑤𝚤𝚤𝚤𝚤�����⃗ = 𝑤𝑤𝚤𝚤����⃗ − 𝑤𝑤𝚥𝚥����⃗ = 𝑝𝑝𝚤𝚤���⃗ − 𝑝𝑝𝚥𝚥���⃗ ,                                (4.5) 
 
where 𝛽𝛽 is some constant. Note that the 𝑖𝑖-𝑗𝑗 indexing assumes 
clockwise vertex increment, so starting at vertex 1 for 𝑁𝑁 = 3, 

the edges are 𝑒𝑒21, 𝑒𝑒32, and 𝑒𝑒13. Qualitatively, this operation 
shifts the observation point to the jth vertex of the scaled polygon 
that intersects with the source point and then moves along 𝑒𝑒𝑖𝑖𝑖𝑖 of 
the scaled polygon until the source point is reached. This gives 
us two equations, one composed of 𝑢𝑢 coordinates and one 
composed of 𝑣𝑣 coordinates. By substitution, it is straightforward 
to eliminate 𝛽𝛽 and show that  

 

𝜌𝜌′ =
𝑤𝑤𝑖𝑖𝑗𝑗𝑗𝑗(𝑣𝑣′ − 𝑣𝑣0) − 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢′ − 𝑢𝑢0)

𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
,           (4.6) 

 
where the 𝑢𝑢 and 𝑣𝑣 subscripts denote the 𝑢𝑢 and 𝑣𝑣 components of 
the vectors. Note that when 𝜌𝜌′ = 1, the source point always lies 
on the polygon perimeter. Using eqn. (4.2), we may represent 𝑢𝑢′ 
in terms of 𝜌𝜌′ as 
 

𝑢𝑢′ = 𝜌𝜌′
𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 tan𝜑𝜑′ − 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑢𝑢0.                (4.7) 

 
From our definition in eqn. (2.1), this implies the azimuth 
function 𝑓𝑓(𝜑𝜑′) is 
 

𝑓𝑓(𝜑𝜑′) =
𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 tan𝜑𝜑′ − 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

.                     (4.8) 

 
This function encodes the varying Euclidean distance 
between (𝑢𝑢0,𝑣𝑣0) and the source point as the scaled polygon 
edge is traversed, allowing for the transformation to be 
standardized across all polygon shapes under a single 
formulation. While we are effectively breaking the polygon into 
𝑁𝑁 sub-triangles, similarly to other polar formulations, it is the 
consideration of each scaled polygon as its own unified shape 
with constant “radius” 𝜌𝜌′ that differentiates the proposed 
scheme. This thinking ultimately facilitates 0 to 2𝜋𝜋 angular 
extent crucial to the proof of convergent exact strong singularity 
presented in the previous section. As we will see in Section VI, 
the azimuth function combined with the rest of the integrands of 
the polar scaling formulation exhibit an angular dependence that 
is smooth enough to be tractable using Gaussian quadrature rules 
for the 𝜑𝜑′ integration. The number of necessary sample points 
will be discussed in Section VI. We also see that the function 
𝑓𝑓(𝜑𝜑′) defined in this way is indeed bounded for all 𝜑𝜑′. To 
understand why, we consider whether or not the denominator of 
eq. (4.8), 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 tan𝜑𝜑′ − 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖, can ever be 0. The first way this 
could happen is if both 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 could be zero at the same 
time, but this is a trivial case where the active edge has a length 
of 0 and thus would not contribute to the integration or polygon 
definition. The second way the denominator could be zero is if  
tan𝜑𝜑′ = 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖/𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 for some 𝜑𝜑′ between 𝜑𝜑′𝑖𝑖 and 𝜑𝜑′𝑗𝑗 as defined 
by eqn. (4.3). However, for a polygon interior/exterior (𝑢𝑢0,𝑣𝑣0), 
this is not possible for the values of 𝜑𝜑′ defined by the edge 
vertices, as, if tan𝜑𝜑′ = 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖/𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖, then the vector pointing from 
(𝑢𝑢0,𝑣𝑣0) to the point on the active edge would have to be parallel 
to the active edge itself. This is only possible if (𝑢𝑢0,𝑣𝑣0) lies on 
an edge or vertex, which are special cases that will be discussed 
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in the following paragraph. 
If (𝑢𝑢0,𝑣𝑣0) lies on an edge or vertex of the base polygon and 

𝜑𝜑′ is such that the active edge of the scaled polygon overlaps 
entirely with the base polygon boundary, 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 for 
all 𝜑𝜑′ in that interval, and thus, (𝑢𝑢′, 𝑣𝑣′) = (𝑢𝑢0,𝑣𝑣0) since 𝑓𝑓(𝜑𝜑′) =
0 nominaly. To show that this is the case, consider (𝑢𝑢0,𝑣𝑣0) lying 
on an arbitrary edge/vertex. Again, if this is the case, then every 
point on one or two of the scaled polygon edges overlaps with 
the base polygon boundary (one if the source point is on a base 
polygon edge and not a vertex, and two if it’s on a vertex). Let 
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 be the base polygon edge that overlaps with one of the 
scaled polygon edges. Given the overlap, it is clear that 
𝑒𝑒𝚤𝚤𝚤𝚤𝚤𝚤������⃗ × 𝑤𝑤𝚤𝚤����⃗ = 𝑒𝑒𝚤𝚤𝚤𝚤𝚤𝚤������⃗ × 𝑤𝑤𝚥𝚥����⃗ = 0 (note 𝑒𝑒𝚤𝚤𝚤𝚤𝚤𝚤������⃗  is the vector between 
vertex 𝑖𝑖 and vertex 𝑗𝑗). Therefore, we may state that for some 
constant 𝛼𝛼, 𝑤𝑤𝚤𝚤����⃗ = 𝛼𝛼𝑤𝑤𝚥𝚥����⃗ , meaning that 𝑤𝑤𝚤𝚤𝚤𝚤�����⃗ = (𝛼𝛼 − 1)𝑤𝑤𝚥𝚥����⃗ . Since 
(𝛼𝛼 − 1) is scalar, it is clear then that 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑢𝑢 = 𝑤𝑤𝑗𝑗𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 for this 
case. However,  𝜌𝜌′ is not necessarily equal to 0, depending on 
the size of the scaled polygon under consideration. Note that 
eqn. (4.6) cannot be used in this case to determine 𝜌𝜌′ since direct 
evaluation yields an indeterminant. Since our objective is 
numerical integration, however, we may simply assert 𝜌𝜌′ values 
during the evaluation process, so the potential ambiguity is not 
a problem. This leads us back to the case where tan𝜑𝜑′ =
𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖/𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖, which is made moot by the fact that the numerator of 
eqn. (4.8) is 0 on the active edge if (𝑢𝑢0,𝑣𝑣0) lies on an edge or 
vertex. Technically, the evaluation of eqn. (4.8) at the upper 
bound of 𝜑𝜑′ for such an active edge yields a 0/0 indeterminant. 
However, we may assert that the function 𝑓𝑓(𝜑𝜑′) be continuous 
within the bounds of an active edge without affecting the end 
result of the integration since this indeterminacy only occurs at 
single points that, alone, give infinitesimally small 
contributions. As such, 𝑓𝑓(𝜑𝜑′) is bounded under our definitions. 

In any case, a 𝑓𝑓(𝜑𝜑′) equal to 0 does not change the analysis 
(it merely causes the integrand exponential and the 𝜌𝜌′ = 0 limit 
integrand to vanish), and thus, edge/vertex observation points do 
not require special treatment other than the active edge merging 
described above if the observation point is a vertex. 

In the next section, we will extend the above formulation to 
curvilinear shapes. 

V. CURVILINEAR EXTENSION 
We now consider an Mth-order curvilinear polygon defined by 

N*M nodes, where N is the number of polygon vertices. In order 
to treat this polygon with the polar scaling technique, we first 
need to map its surface to that of a planar polygon. The planar 
polygon we will choose will be the one created by the curvilinear 
polygon’s vertices connected by straight edges. Further, we will 
define the planar polygon in (𝑢𝑢′, 𝑣𝑣′) space so that we may apply 
the polar transformation immediately after the initial mapping. 

 
Fig. 3.  Scheme for mapping curvilinear shape to planar version so polar scaling 
may be applied. 
 
This mapping choice is illustrated in Fig. 3. Let 𝑟𝑟′ be some point 
on the curvilinear polygon in Cartesian space. With this in mind, 
we define the following polynomial mapping function: 

 

𝑟𝑟′ = ��𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗(𝑣𝑣′ − 𝑣𝑣0)𝑗𝑗
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

,              (5.1) 

where 𝑏𝑏𝚤𝚤𝚤𝚤����⃗  are vector-valued expansion coefficients and 𝑢𝑢, 𝑣𝑣 are 
defined on the planar polygon as per Section III. The nodes on 
the curvilinear polygon are mapped to known locations on the 
planar version. For example, in the case of an M = 2 (quadratic) 
triangular curvilinear shape, the definition nodes would be 
placed at the polygon vertices as well as the midpoints of the 
polygon edges, 6 points in total. On the planar polygon, these 
nodes would still map to the planar shape vertices and edge 
midpoints. Since every point has 3 vector components, we have 
18 equations and 18 unknowns (each of the 6 unknown vector 
coefficients has 3 components as well). This system of equations 
may be easily solved with well-known matrix techniques. A 
similar procedure applies to any value of M. 
 Once the coefficients are known, we may compute the 
Jacobian for the transformation from the curvilinear polygon to 
the planar version. For each point 𝑟𝑟′ on the curvilinear polygon 
surface, we define a local differential surface element 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
where 𝛼𝛼 and 𝛽𝛽 are local area coordinates each with their own 
associated orthogonal unit vectors 𝛼𝛼� and 𝛽̂𝛽, which are tangent to 
the curvilinear polygon surface at each 𝑟𝑟′��⃗ . Then, the Jacobian 
would be evaluated as 
 

𝐽𝐽𝑐𝑐(𝑢𝑢′,𝑣𝑣′) = �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣′

� .                               (5.2) 

 
Since 𝛼𝛼� and 𝛽̂𝛽 need only be orthogonal and tangent to the 
polygon surface and are otherwise arbitrary, we may utilize the 
orthogonality of the (𝑢𝑢′, 𝑣𝑣′) space formulation. Namely, we may 
define 𝛼𝛼� as the unit vector pointing in the direction of 𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕′
 and 𝛽̂𝛽 

as the unit vector pointing in the direction of  𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

. Then we may 
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represent the local differentials 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 as follows: 
 

𝑑𝑑𝑑𝑑 = �
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

� 𝑑𝑑𝑑𝑑′,                              (5.3𝑎𝑎) 

 

𝑑𝑑𝑑𝑑 = �
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

� 𝑑𝑑𝑑𝑑′,                              (5.3𝑏𝑏) 

 
which immediately give 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕′
 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕′
. Note that with this 

definition, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′

= 0 due to the orthogonality of 𝑢𝑢�  and 𝑣𝑣� (as 
such, the total and partial derivatives are equal). Therefore, 
 

𝐽𝐽𝑐𝑐(𝑢𝑢′, 𝑣𝑣′) = �
𝜕𝜕𝑟𝑟′
𝜕𝜕𝜕𝜕′

� �
𝜕𝜕𝑟𝑟′
𝜕𝜕𝜕𝜕′

� 

 

= ���(𝑖𝑖 − 𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗−1(𝑣𝑣′ − 𝑣𝑣0)𝑗𝑗
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

� 

∗ ���(𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗(𝑣𝑣′ − 𝑣𝑣0)𝑗𝑗−1
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

� .           (5.4) 

 
With this mapping, we may now execute the polar scaling 
transformation on the planar polygon. Doing this, 𝑅𝑅 from eqn. 
1.3 and the curvilinear mapping Jacobian become 
 

𝑅𝑅 =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

�

⎝

⎜
⎛���𝑏𝑏𝚤𝚤𝚤𝚤𝚤𝚤�������⃗ �𝜌𝜌′𝑓𝑓(𝜑𝜑′)�𝑖𝑖−𝑗𝑗(𝜌𝜌′𝑓𝑓(𝜑𝜑′) tan𝜑𝜑′)𝑗𝑗�

𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

−𝑏𝑏00𝑛𝑛��������⃗ − ℎℎ𝑛𝑛� ⎠

⎟
⎞

2

𝑥𝑥,𝑦𝑦,𝑧𝑧

𝑛𝑛

, (5.5) 

 
 
 

𝐽𝐽𝑐𝑐(𝜌𝜌′,𝜑𝜑′) = 

���(𝑖𝑖 − 𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝜌𝜌′𝑓𝑓(𝜑𝜑′))𝑖𝑖−𝑗𝑗−1(𝜌𝜌′𝑓𝑓(𝜑𝜑′) tan𝜑𝜑′)𝑗𝑗
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

� 

 

∗ ���(𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ �𝜌𝜌′𝑓𝑓(𝜑𝜑′)�𝑖𝑖−𝑗𝑗(𝜌𝜌′𝑓𝑓(𝜑𝜑′) tan𝜑𝜑′)𝑗𝑗−1
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

� .      (5.6) 

 
 
where 𝑏𝑏𝚤𝚤𝚤𝚤𝚤𝚤�������⃗  is the 𝑛𝑛-component of the 𝑖𝑖𝑖𝑖 vector coefficient and 
ℎℎ𝑛𝑛� has the same definition as in Section II. Note that 𝑏𝑏00𝑛𝑛��������⃗  is 
subtracted in eqn. (5.5) since, when 𝑖𝑖 = 𝑗𝑗 = 0, 𝑟𝑟 is not 0, but 
𝑏𝑏00𝑥𝑥��������⃗ 𝑥𝑥� + 𝑏𝑏00𝑦𝑦��������⃗ 𝑦𝑦� + 𝑏𝑏00𝑧𝑧��������⃗ 𝑧̂𝑧  since 00 = 1. These expressions may 
be readily substituted into eqn. (2.5) to obtain equations 
analogous to eqn. (2.9).  

Of course, the question now arises whether the regularization 
shown in Section II persists under the curvilinear transformation 
now that the integrand contains higher-order polynomials in 𝜌𝜌′. 
In fact, the arguments made to justify the regularization claim in 
Section II can still be applied in the curvilinear regime. That is, 
even with the curvilinear transformation applied, the integrand 

still vanishes if ℎ and 𝜌𝜌′ are 0. To see this, we observe that when 
𝜌𝜌′ is small, 1 ≫ 𝜌𝜌′ ≫ 𝜌𝜌′2 ≫ ⋯𝜌𝜌′𝑀𝑀. The effect of this is that as 
𝜌𝜌′ → 0, the discriminant of 𝑅𝑅 collapses to a linear function of 𝜌𝜌′ 
and 𝐽𝐽𝑐𝑐(𝜌𝜌′,𝜑𝜑′) collapses to a constant, which means the integral 
takes the form of eqn. (2.9) and is thus subject to the same 
regularization argument as used in Section II when 𝜌𝜌′ → 0. 
Another way of thinking about this is that when 𝜌𝜌′ → 0, the 
scaled curvilinear polygon that maps to the scaled planar version 
becomes more and more planar in and of itself and in fact is 
exactly planar in the limit. This argument is functionally 
identical to the argument made in [16] to apply singularity 
extraction to curvilinear elements. As such, if the integrand 
vanishes in the planar case, it vanishes in the curvilinear case as 
well. 

One more element of the curvilinear case that needs to be 
addressed is how the integrand may be computed as 𝑓𝑓(𝜑𝜑′) 
approaches 0 on the flat triangle that the curved shape is mapped 
to in the exact singularity case. The 𝑓𝑓(𝜑𝜑′) cancellations that 
naturally occur when ℎ = 0 (see eqn. 2.9) are not as obviously 
obtained for higher order shapes. However, since 𝑅𝑅 is a 
polynomial in 𝑓𝑓(𝜑𝜑′) as well as 𝜌𝜌′, we may repeat the arguments 
above to define their behavior as 𝑓𝑓(𝜑𝜑′) becomes small. That is, 
under the above conditions, the only terms that will persist in the 
sum described in eqn. (5.5) are the terms that are first-order 
(linear) in 𝑓𝑓(𝜑𝜑′). All higher degree terms will be ≪ the first-
order terms when 𝑓𝑓(𝜑𝜑′) is small. Under this condition, the 
necessary cancellations occur and the integrand may be 
computed without issue. Note that the only terms that persist in 
the 𝐽𝐽𝑐𝑐 expression are the constant terms in the sums; 𝐽𝐽𝑐𝑐 does not 
participate in these cancellations. 

This now constitutes everything needed to evaluate the 
strongly singular integral over an arbitrary polygon. In the 
following sections, we will discuss some near-singularity 
strategies and show example computations of the eqn. (2.5) 
integral using the above formulation. 

VI. NEAR-SINGULARITY TREATMENT 
For the above formulation, special care must be taken if the 

observation point is close to the source domain, but not lying 
exactly on it, thus creating a near-singularity. Under this 
circumstance, the integral computation can become unwieldy 
near the projected observation point, and a peak in the 𝜌𝜌′  
integrand near 𝜌𝜌′ = 0  is observed, similarly to the phenomenon 
highlighted in [9] that motivates focused treatment of near-
singular cases. During our analysis, this was empirically found 
to occur, with varying intensities, when the length of the vector 
connecting the observation point and its projection is between 
~10-16 and 10-1. Below this range, machine precision limitations 
impact accuracy too strongly. Above it, the spike fails to develop 
appreciably. To ensure accurate integration when the peak is 
present, we break the radial integral into several logarithmic 𝜌𝜌′ 
intervals. The first interval is [0, 10�ℎ�⃗ �], the second is from 
[10�ℎ�⃗ �, 100�ℎ�⃗ �], and so on until 10𝑁𝑁�ℎ�⃗ � exceeds 0.1. Then, the 
rest of the integral is computed on the interval [10𝑁𝑁�ℎ�⃗ �, 1]. This 
is similar in style to the “ℎ-refinement” technique discussed in 
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[9], only involving far fewer sample points. The distance from 
𝜌𝜌′ = 0 that the spike’s maximum value occurs is proportional to 
�ℎ�⃗ �, and this interval technique was empirically found to capture 
the dynamics of the spike well. Smaller interval divisions are 
possible, but were not found to increase evaluation accuracy 
substantially. The 𝜌𝜌′ integral on each interval is computed using 
the above formulation and Gaussian quadrature rules, as 
reducing the interval size creates smooth integrands in 𝜌𝜌′. In this 
way, the scaled polar formulation may be used in a general 
manner, even when near-singularities are involved. In the next 
sections, we will demonstrate the results when applying this 
technique to example domains. 

VII. FLAT TRIANGLE NUMERICAL EXAMPLE 
To demonstrate polar scaling integrand computation, we will 

consider the preliminary results arising from a flat triangular 
integration domain along with associated RWG basis functions 
[21]. These basis functions are defined for triangle pairs where 
one edge is shared between the triangles. As described in [21], 
for each shared edge, one triangle is the ”+” triangle and one is 
the “–“ triangle. Nominally, all of the edges of both triangles are 
taken to be interior to the greater domain that the triangles are 
partially discretizing, meaning that there are three basis 
functions to evaluate (see eqn. (9) of [21]). Consider a + triangle 
with vertices 𝑥𝑥1���⃗ ,  𝑥𝑥2����⃗ , and 𝑥𝑥3����⃗   in Cartesian coordinates as before. 
Similarly to above, we may form edge vectors defined as 

 
𝑙𝑙21�����⃗ =  𝑥𝑥2����⃗ − 𝑥𝑥1,����⃗                               (7.1𝑎𝑎) 

 
𝑙𝑙32�����⃗ =  𝑥𝑥3����⃗ − 𝑥𝑥2,�����⃗                               (7.1𝑏𝑏) 

 
𝑙𝑙13����⃗ =  𝑥𝑥1���⃗ − 𝑥𝑥3,�����⃗                               (7.1𝑐𝑐) 

 
and compute the triangle area as 
 

𝐴𝐴 =
1
2
�𝑙𝑙13����⃗ × 𝑙𝑙21�����⃗ �.                                 (7.2) 

 
From here, we define the three RWG basis functions as 
 

𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � =  
�𝑙𝑙32�����⃗ �
2𝐴𝐴

�𝑥𝑥′���⃗ − 𝑥𝑥1���⃗ �,                         (7.3𝑎𝑎) 

𝑵𝑵��⃗ 𝟐𝟐�𝑥𝑥′���⃗ � =  
�𝑙𝑙13����⃗ �
2𝐴𝐴

�𝑥𝑥′���⃗ − 𝑥𝑥2����⃗ �,                         (7.3𝑏𝑏) 

𝑵𝑵��⃗ 𝟑𝟑�𝑥𝑥′���⃗ � =  
�𝑙𝑙21�����⃗ �
2𝐴𝐴

�𝑥𝑥′���⃗ − 𝑥𝑥3����⃗ �,                         (7.3𝑐𝑐) 

 
where some 𝑥𝑥′���⃗  lies within the triangle. Moving forward, we will 
focus only on 𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � to represent the behavior of the presented 
technique, which will yield similar results to those of the other 
basis functions so long as the triangle’s aspect ratio is 
sufficiently small. With this basis function, we may now 
evaluate eqn. (2.5). As shown in the previous sections, this 
integral, once transformed, consists of a double integral in 𝜌𝜌′-𝜑𝜑′ 
space. Since the integral is singularity-free, as proved 

previously, it may be evaluated using one’s desired choice of 
quadrature rules. We will choose a randomly-generated set of 
nodes for this exercise with vertices defined as follows: 
 

𝑥𝑥1���⃗ = �
−0.055150912124496,
−0.032925442868474,
−0.007552809614046

� ,                  (7.4𝑎𝑎) 

 

𝑥𝑥2����⃗ = �
−0.034866643220522,
  0.053104972071870,
0.053618399105443

� ,                  (7.4𝑏𝑏) 

 

𝑥𝑥3����⃗ = �
−0.012439806138843,
  0.022306317839023,

  −0.060172988424358
� ,                  (7.4𝑐𝑐) 

 
Note that the vertices have been scaled such that the maximum 
triangle side-length is ~λ/5 at 500 MHz. Note that it was found 
that scaling the triangle between λ and λ/1000 did not affect the 
results given below, so the λ/5 scaling will be maintained 
throughout the following analysis. Here, we will largely mimic 
the example analysis demonstrated in [16] since that work also 
presents a technique to handle both near and exact singularities 
with the same method, as noted in Section I of this paper 
(though, again, the method presented in [16] requires non-
general analytical treatment). In [16], 4 cases for planar triangles 
are discussed; one with the observation point placed on the 
triangle centroid, one with the point offset from the centroid by 
a distance of λ/100 in the direction normal to the triangle plane, 
one with the point placed on a triangle edge (we select the 
midpoint of 𝑒𝑒32 edge here), and one offset from the edge point 
by λ/100 in a plane-normal direction. Note that the triangle in 
[16] was also scaled to λ/5, though its exact vertex definition is 
not listed. Following the polar scaling procedures described 
above, we may evaluate eqn. (2.5). Here, for demonstrative 
purposes, we will compute the 𝜑𝜑′ integral first and plot the 
resulting 𝜌𝜌′ integrand as a function of 𝜌𝜌′ to show that it is finite 
and continuous when 𝜌𝜌′ = 0.  That is, we may represent the 
integral we wish to evaluate as  

 

�� 𝐼𝐼′(𝜌𝜌′,𝜑𝜑′)𝑑𝑑𝜑𝜑′𝑑𝑑𝜌𝜌′
2𝜋𝜋

0

1

0

,                          (7.5) 

 
and we will plot the function 
 

𝑔𝑔(𝜌𝜌′) = � 𝐼𝐼′(𝜌𝜌′,𝜑𝜑′)𝑑𝑑𝜑𝜑′          
2𝜋𝜋

0

               (7.6) 

 
to show integrand existence and continuity for all 𝜌𝜌′ values. 
Note that 𝐼𝐼′(𝜌𝜌′,𝜑𝜑′) may be found by following procedures 
similar to those outlined in eqns. (2.5)-(2.9), only for all the 
terms in the eqn. (2.5) brackets. Doing this, we obtain the 
integrand functions shown in Fig. 4 for the 𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � basis 
functions when the observation point is placed at the centroid 
with and without the offset, respectively. Fig. 4 also shows the 
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real part of the integrand when the offset is λ/10000 in order to 
better demonstrate the peak property discussed in the previous 
section (note the imaginary part does not display a similar peak). 
As shown by these plots, the 𝜌𝜌′ integrands for an observation 
point lying on the source domain are indeed smooth and 
continuous for all values of 𝜌𝜌′ including 𝜌𝜌′ = 0, where the 
integrand vanishes. For all of these integrand plots, the 𝑔𝑔(𝜌𝜌′) 
values were computed using Gaussian quadrature rules with 101 
sample points per active edge (303 points in total for the full 
angular integral; note that this number of points will change 
during convergence studies, as will be detailed below). In 
addition, we will plot 𝑓𝑓(𝜑𝜑′) (see eqn. (4.8)) as well as the 
following expression: 
 

𝑔𝑔(𝜑𝜑′) = 𝐼𝐼′(1,𝜑𝜑′) .                           (7.7) 
 
Note that 𝜌𝜌′ is set to 1 in eqn. (7.7), but the choice of 𝜌𝜌′ does not 
affect the macroscopic behavior of the expression in terms of 
smoothness. The plots for these two functions confirm the claim 
that the angular portions of the transformed integrals do not 
behave in a manner that would introduce numerical issues. Note 
that the triangle vertices are located approximately at 𝜑𝜑′ = -44°, 
88°, and 214°. As Fig. 5 illustrates, the angular functions exhibit 
piecewise behavior in the intervals between these points. The 
piecewise functions share the same values at the intersections 
between the intervals, though the derivatives are not necessarily 
continuous at these points. This is not an issue, though, as each 
interval receives its own integral in the full evaluation, so 
derivative continuity is not required at the vertices. Within the 
intervals, Fig. 5 shows sufficient smoothness for efficient 
numerical integration. 

To examine the convergence dynamics, we plot the 
asymptotic behavior of the integral evaluations as the number of 
Gaussian quadrature sample points is increased. This will be 
done for the 4 cases described above. For simplicity, we will 
keep the number of sample points the same for both the angular 
and radial integrals, though this is not required. Figs. 6-7 
demonstrate the convergence for the integral evaluation. The 
plots show the number of correct significant digits past the 
decimal point compared to a reference value obtained from 
using 101 sample points per integral. That is, we plot the value 
𝐷𝐷 defined as 

 

𝐷𝐷(𝑁𝑁) = 𝑎𝑎𝑎𝑎𝑎𝑎 �− 𝑙𝑙𝑙𝑙𝑙𝑙 �
|𝐼𝐼𝑁𝑁 − 𝐼𝐼101|

|𝐼𝐼101| + 1 × 10−16�� ,  (7.8) 

 
where 𝐼𝐼𝑁𝑁 is a component (x, y, or z) of the of the integral 
evaluation using 𝑁𝑁 sample points, 𝐼𝐼101 is the evaluation of that 
component for 101 sample points, and  1 × 10−16 is 
added to ensure the number of digits does not exceed machine 
precision. The number of digits for each component is then  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.   𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � 𝜌𝜌′ integrand real part (a) and imaginary part (b) for centroid 
exact singularity. (c) shows the real part delta-function-like behavior of the real 
part of the integrand for the case of a λ/10000 near-singularity. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.   𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � integrand 𝑔𝑔(𝜑𝜑′) real part (a) and imaginary part (b), as well as 
𝑓𝑓(𝜑𝜑′) for the triangle under study (c). 
 
averaged across all vector components and all three basis 
functions to represent the overall number of correct digits. The 
convergence curves are then compared to results obtained in 
[16] for a similar triangle. The two additional curves shown on 
each plot are the results for the integral evaluated using the 
method proposed in [16], termed “RA-1”, and conventional 
singularity extraction (subtraction), termed “SS”. Note that, as 
alluded to in the introduction of this paper, the ”RA-1” method  

 
(a) 

 
(b) 

Fig. 6.   Convergence results vs. base sample points for a flat triangle with 
centroid evaluation point exact singularity (a) near-singularity (b). 
 
of [16] combines singularity extraction with a singularity 
cancellation technique to create a method that can handle both 
exact and near singularities. In this sense, the RA-1 method is 
not fully numerical like the technique presented in this work. 
Nevertheless, the RA-1 is indeed quite powerful and state-of-
the-art, so comparison between it and the proposed method is 
demonstrative. Note that [16] also contains near-singularity 
convergence results for integrals evaluated using singularity 
cancellation (“SC”) alone. However, since those curves do not 
outperform the RA-1 curves and do not apply to exact 
singularities, the SC results are not shown here. Note also that 
in [16], the convergence results are split between the normal and 
tangential components of the integral result. For each case 
presented here, the component that displayed superior (faster) 
convergence was selected for comparison so as not to 
shortchange the results of the previous works. Fig. 8 also shows 
the convergence results of this work only all on the same plot 
for comparison. 

The actual 101 point evaluated reference values of these test 
integrals are listed in Table I for the 𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ � basis function. Note 
the total number of Gaussian quadrature evaluations for both the 
angular and radial integrals is 3𝑁𝑁2 for the exact singularities (N 
points for the angular integral and N points for  
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(a) 

 
(b) 

Fig. 7.   Convergence results for flat triangle with edge midpoint evaluation point 
exact singularity (a) near-singularity (b). 

 

 
Fig. 8.   Comparison of flat triangle convergence for all investigated cases 
evaluated using the polar scaling technique. 
 
the radial integral per edge) and 9𝑁𝑁2 for the near-singularities 
since 3 intervals are used for the near-singularity. We will refer 
to the value 𝑁𝑁 as the number of “base” sample points going 
forward. For the centroid singularities, the precision of the 
proposed method saturates by ~20-30 base sample points with 
saturation values very close to machine precision. The centroid 

singularity convergence rate of the proposed technique indeed 
compares quite favorably to that exhibited by the RA-1 method 
and outperforms the SS results for moderate to high precision. 
For the edge singularities, saturation occurs by ~20-30 base 
sample points as well, with a somewhat slower convergence rate 
than the RA-1 counterpart while still showing superior 
convergence to the SS method beginning at ~10 sample points. 
Even so, the convergence rate of the proposed technique is not 
slower than RA-1 by a major amount and is still competitive. 
Note that the saturation precision of the proposed method 
appears to be 14-15 digits for all cases as opposed to the 16 digit 
machine precision, but this is not taken as a strong detriment for 
any practical application, as the difference of 1 or 2 digits will 
certainly be overwhelmed by error introduced by other factors 
of a full-wave simulation such as the geometric fidelity of the 
model. 

To continue our analysis, we will examine the convergence 
effects of deforming the triangle to reduce its quality. To 
quantify the quality of the triangle, we will use the following 
Figure of Merit (FoM) similar to that proposed in [22]: 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 4√3
𝐴𝐴

��𝑙𝑙21�����⃗ �
2

+ �𝑙𝑙32�����⃗ �
2

+ �𝑙𝑙13����⃗ �
2

,                (7.9) 

 
where the variables are defined as in eqn. (7.1) and eqn. (7.2). 
To deform the triangle, we will take 𝑥𝑥1���⃗  and move it toward the 
edge connecting 𝑥𝑥2����⃗  and 𝑥𝑥3����⃗  (𝑒𝑒32) along the line connecting 𝑥𝑥1���⃗  
and its projection onto edge 𝑒𝑒32, making the triangle thinner and 
thinner. We will then represent the convergence rate by tracking 
the amount of correct digits obtained for 10 base sample point 
integral evaluations. Fig. 9 shows this result. Note that the 
highest FoM shown corresponds to the nominal triangle with no 
movement of 𝑥𝑥1���⃗ . As the figure demonstrates, the convergence 
rate does indeed degrade as the triangle quality is reduced, 
taking a somewhat linear degradation. This result is not 
unexpected, as lower-quality triangles typically lead to a marked 
reduction in numerical tractability for such problems as those 
investigation here. Still, the convergence variation shown in Fig. 
9 does not indicate any major weaknesses of the formulation 
presented in this work.  

Finally, we will investigate the convergence dynamics of 
changing a near-singularity’s position relative to the triangle 
interior. To do this, we will place the near-singularity at a 
distance of λ/100 away from the midpoint of 𝑒𝑒32 and rotate its 
position about the 𝑒𝑒32 axis. Fig. 10 shows this process. For edge 
rotation angles between 0° and 90°, the near-singularity is 
positioned above the triangle interior, making its projection 
within  interior to the triangle as well. Meanwhile, when the 
angle is between 90° and 180°, the projection lies exclusively on 
the triangle edge. The effect of the positioning on the 
convergence rate is again evaluated by looking at the number of 
correct digits using 10 base sample points. Fig. 11 indicates that 
the convergence rate increases markedly once the projection of 
the evaluation point is on the edge of the triangle, though there 
is no angle for which the convergence rate is compromised to 
the point of un-usability. 
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Fig. 9.   10 sample point convergence as a function of triangle FoM. 

 
 

Fig. 10.   Rotation of near-singularity about the 𝑒𝑒32 axis. 
 

 
Fig. 11.   Convergence rate of the near-singularity as a function of the rotation 
angle about the 𝑒𝑒32 axis. 
 
This is interesting, as it shows that the proposed technique 
prefers the projection of the evaluation point to lie outside the 
triangle interior, at least when the evaluation point is near the 
edge. The exact reason for this is not clear, but warrants further 
investigation in the future. 
 This concludes the analysis for the case of a flat triangle. In 
the next section, the analysis will be repeated for a quadratic 
curvilinear version of similar scale. 

VIII. CURVILINEAR TRIANGLE NUMERICAL EXAMPLE 
To define our curvilinear triangle to investigate, we start with 

the vertices defined in eqn. (7.4). We will call these vertices the 
“base nodes”. We then define 3 additional nodes by starting at 
the midpoints of the straight edges connecting the vertices and 
then moving those points a distance of λ/50 in the direction 
normal to the plane of the triangle defined in the previous 
section, creating curvature. We define this λ/50 value as the 
“curvature height” (we will use this definition later for triangle 
deformation tests). Using these 6 points, we apply the mapping 
procedure discussed in Section V to define a projected flat 
triangle in (𝑢𝑢′, 𝑣𝑣′) space and conduct the polar scaling 
integration. For our basis functions, we use RWG-like basis 
functions created using the (𝑢𝑢′, 𝑣𝑣′) mapping formalism 
developed here. These basis functions retain the rooftop quality 
of the conventional RWG basis functions as well as the 
divergence-conforming characteristic. The detailed explanation 
of the basis function development is presented in Appendix A. 
Note that for this analysis, the functions were scaled based on 
Euclidean distance rather than arc length (see Appendix A). 
Here, we run the same convergence experiments as were 
presented in the previous section, again comparing the results to 
those shown in [16]. The 𝑪𝑪��⃗ 𝟏𝟏�𝑟𝑟′���⃗ � basis function evaluations for 
these experiments are given in Table II. It should be noted that 
the exact node positions for the triangles analyzed in [16] are not 
given and that different edges appear to be used for the near and 
exact singularity results (see Figs. 12 and 13 of [16]), but it is 
assumed based on the results that the dimensions and curvature 
are comparable. In Figs. 12-14, the convergence results are 
given for the same evaluation point placements as in the 
previous section. Examining these results, we see that the 
proposed technique vastly outperforms the SS method and 
moderate and high precision for all cases. It is also seen that, 
interestingly, the proposed technique shows consistently better 
convergence than the RA-1 method at moderate precision, but 
then is passed as both methods approach saturation. A possible 
reason for this could be due to the presented curvilinear 
formulation. As detailed in Section V, a mapping is conducted 
by solving a matrix equation based on the number of given nodes 
to find polynomial mapping coefficients. These coefficients, by 
necessity, only approximate the mapping for the entire shape, 
with more coefficients providing a more accurate mapping. As 
more points are used in the integral evaluation, any error 
introduced by the finite resolution of the mapping can impact, 
but not destroy, the precision values when such values become 
extreme. On the other hand, the curvilinear formulation used in 
[16] appears to rely on area coordinates defined using Lagrange 
Interpolation Functions [23], which increase the complexity of 
the mapping but offer higher-quality interpolation. This could 
be the source of the convergence differences. Perhaps the polar 
scaling curvilinear extension can be revisited using Lagrange 
Interpolation Functions, but this will be reserved for future 
work. In any case, the convergence rate of the proposed 
technique is fast enough to justify its consideration in 
comparison to the RA-1 technique, recalling that the latter 
method is not general since it requires analytical treatment. 
Next, we will deform the triangle formed from the base nodes 
(which also forms the flat projected triangle in our curvilinear 
formulation; see Fig. 3) in the exact same manner  
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(a) 

 
(b) 

Fig. 12.   Convergence results vs. base sample points for a curvilinear triangle 
with centroid evaluation point exact singularity (a) near-singularity (b). 
 
as the triangle in the previous section and investigate the 
convergence effects as a function of the projected triangle FoM 
defined by eqn. (7.9). The results of this are shown in Fig. 15. 
As before, reducing the quality of the base triangle negatively 
impacts the convergence rate of the integration, but again, the 
formulation appears to be robust enough to not be debilitated 
rapidly when the triangle quality reduces. 
 Finally, we will examine the convergence effects of 
increasing the triangle curvature while keeping the base triangle 
constant at is nominal shape. To do this, we will sweep the 
curvature height between λ/50 and λ/5. The results of this study 
are given in Fig. 16. As expected, increasing the curvature 
decreases the convergence rate, which is likely due to the 
weakening of the mapping approximation as the curvature 
becomes more extreme. Nevertheless, again, high deformation 
does not render the proposed technique un-usable, as the 
convergence, while degraded, is not invalidated. 

IX. CONCLUSION 
In this work, we have demonstrated a powerful polar 
transformation technique that eliminates the strong singularity 
found in common Helmholtz surface integrals used in MoM 
formulations regardless of observation point position. The 
technique is applicable to any non-singular basis function and  

 
(a) 

 
(b) 

Fig. 13.   Convergence results vs. base sample points for a curvilinear triangle 
with edge evaluation point exact singularity (a) near-singularity (b). 

 

 
Fig. 14.  Comparison of curved triangle convergence for all investigated cases 
evaluated using the polar scaling technique. 
 
straight-edged planar or curvilinear shape, making it highly 
versatile compared to singularity extraction techniques, which 
require a new analytical integral to be evaluated for each type of 
shape and basis function. Moreover, the polar scaling formalism 
is intrinsically open to extension to higher order surfaces and 
more sophisticated edge geometries. Furthermore,  
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Fig. 15.  10 sample point convergence as a function of projected triangle 
FoM. 

 
Fig. 16.  10 sample point convergence as a function of curvature height. 
 
this work mathematically proves that the Helmholtz strongly 
singular integral is convergent and specifies the explicit 
principal value of the integrand at the singularity, whereas no 
such evaluation has been made readily available in the literature 
for this case before now. The technique of this work also has 
been shown to achieve precision on par with similar methods 
while offering greater generality. As such, the technique 
proposed here represents a powerful method for evaluating 
Helmholtz integrals over 2D straight/curved domains. 

APPENDIX A: CURVILINEAR TRIANGLE RWG BASIS FUNCTIONS 
For this work, RWG-like basis functions were developed for 
curvilinear triangular shapes of arbitrary order. These basis 
functions were designed with the following properties in mind: 
 

1. Like the conventional planar RWG basis function, each 
curvilinear function must have a “rooftop-like” profile 
with respect to a shared edge between two curvilinear 
triangles, with the functions reaching their maximum 
values at the shared edge. 

2. The functions must be tangential to the curvilinear 
shape’s surface at all points in the shape domain. 

 

 

 
3. At the shared edge between the curvilinear shapes, the 

basis function component normal to the shared edge  
contour must be continuous between the + and – 
triangles. 

 
To create functions with these properties, we will make use of 
the (𝑢𝑢′, 𝑣𝑣′) mapping outlined in Section V. Consider a + 
curvilinear triangle with three basis functions 𝑪𝑪��⃗ 𝟏𝟏�𝑟𝑟′���⃗ �, 𝑪𝑪��⃗ 𝟐𝟐�𝑟𝑟′���⃗ �, 
and 𝑪𝑪��⃗ 𝟑𝟑�𝑟𝑟′���⃗ �, each corresponding to a vertex and shared edge with 
a – triangle. We will consider only 𝑪𝑪��⃗ 𝟏𝟏�𝑟𝑟′���⃗ � moving forward, as 
the analysis is identical for the other two functions. This function 
will correspond to vertex 1 of the shape. The curvilinear triangle 
may be mapped to a planar version in (𝑢𝑢′, 𝑣𝑣′) space as per the 
procedure in Section V. Using this mapping, we may define a 
unique contour on the curvilinear shape that extends from the 
vertex of choice to the point where the basis function is being 
evaluated. This contour will be defined as the curvilinear 
contour that contains every point on the straight line from the 
vertex to the evaluation point in (𝑢𝑢′, 𝑣𝑣′) space, as illustrated in 
Fig. A1. We will label this contour 𝑙𝑙𝑎𝑎���⃗ , where �𝑙𝑙𝑎𝑎���⃗  � is the arc 
length of the contour and the  

TABLE I 
𝑵𝑵��⃗ 𝟏𝟏�𝑥𝑥′���⃗ �  FLAT TRIANGLE INTEGRAL RESULTS 

Position Exact Singularity Near
− Singularity 

   

Centroid (0.000161203717652 
−  0.000002251673733𝑗𝑗)𝑥𝑥�
+ (−0.000075040899677 
+  0.000001048162072𝑗𝑗)𝑦𝑦�
+ (0.000052081694088 
−  0.000000727470707𝑗𝑗)𝑧̂𝑧 

 

(−0.074835904131704 
+  0.000153651741319𝑗𝑗)𝑥𝑥�
+ (0.017387341770886 
−  0.000036335312426𝑗𝑗)𝑦𝑦�
+ (0.274792700073766 
−  0.000537141740016𝑗𝑗)𝑧̂𝑧 

 
Edge (−0.0006852559009511

+  0.000005088303876𝑗𝑗)𝑥𝑥�
+ (0.000318989041105 
−  0.000002368623418𝑗𝑗)𝑦𝑦�
+ (−0.000221392463681 
+  0.000001643929121𝑗𝑗)𝑧̂𝑧 

 
 

(−0.103568200417083 
+  0.000160767847553𝑗𝑗)𝑥𝑥�
+ (0.030794257217944 
−  0.000038938318873𝑗𝑗)𝑦𝑦�
+ (0.182176162745084 
−  0.000532913386629𝑗𝑗)𝑧̂𝑧 

 

  
 
 

 
 

 

TABLE II 
𝑪𝑪��⃗ 𝟏𝟏�𝑥𝑥′���⃗ �  CURVILINEAR TRIANGLE INTEGRAL RESULTS 

Position Exact Singularity Near
− Singularity 

   

Centroid (−0.004444190995035 
+  0.000004051669403𝑗𝑗)𝑥𝑥�
+ (−0.011236180468949 
+  0.000000349778635𝑗𝑗)𝑦𝑦�
+ (−0.009476922031595 
−  0.000002531356276𝑗𝑗)𝑧̂𝑧 

 

(−0.074518090511891 
+  0.000164855959553𝑗𝑗)𝑥𝑥�
+ (0.010192675190397 
−  0.000037584862160𝑗𝑗)𝑦𝑦�
+ (0.256426576930666 
−  0.000554916795460𝑗𝑗)𝑧̂𝑧 

 
Edge (−0.008717979624414 

+  0.000013887597464𝑗𝑗)𝑥𝑥�
+ (−0.004123591155202 
−  0.000006713955664𝑗𝑗)𝑦𝑦�
+ (−0.003971112418414 
−  0.000002366391620𝑗𝑗)𝑧̂𝑧 

 
 

(−0.116416533969791 
+  0.000174539936228𝑗𝑗)𝑥𝑥�
+ (0.045983443106824 
−  0.000043818344172𝑗𝑗)𝑦𝑦�
+ (0.212494211465247 
−  0.000553096661029𝑗𝑗)𝑧̂𝑧 
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Fig. A1.  𝑙𝑙𝑎𝑎���⃗  contour on the curvilinear shape and mapped linear contour on 
projected shape. 
 

direction of 𝑙𝑙𝑎𝑎���⃗  is the direction the contour is pointing in at the 
basis function evaluation point. Let (𝑢𝑢0′,𝑣𝑣0′) be the basis 
function evaluation point in (𝑢𝑢′,𝑣𝑣′) space. Then the line 
connecting the vertex 1 point (𝑢𝑢1,𝑣𝑣1) and the evaluation point 
in (𝑢𝑢′, 𝑣𝑣′) space is: 
 

𝑣𝑣′ = 𝑚𝑚0(𝑢𝑢′ − 𝑢𝑢1) + 𝑣𝑣1,                    (𝐴𝐴. 1𝑎𝑎) 
with 
 

𝑚𝑚0 =
(𝑣𝑣0′ − 𝑣𝑣1)
(𝑢𝑢0′ − 𝑢𝑢1).                             (𝐴𝐴. 1𝑏𝑏) 

 
At every point 𝑟𝑟′���⃗  on the curvilinear contour defined by this line, 
we observe, using the notation defined in Section V, 
 

𝑑𝑑𝑟𝑟′���⃗ =
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

𝑑𝑑𝑢𝑢′ +
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

𝑑𝑑𝑣𝑣′ = �
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

+
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

𝑑𝑑𝑑𝑑′
𝑑𝑑𝑑𝑑′

� 𝑑𝑑𝑢𝑢′. (𝐴𝐴. 2𝑎𝑎) 

 
As such, the arc length �𝑙𝑙𝑎𝑎���⃗  � may be computed as 
 

�𝑙𝑙𝑎𝑎���⃗  � = � ��
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′ +

𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕′

𝑑𝑑𝑑𝑑′
𝑑𝑑𝑑𝑑′�� 𝑑𝑑𝑑𝑑′

𝑢𝑢0′

𝑢𝑢1

 

= �
�

�
��(𝑖𝑖 − 𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗−1[𝑚𝑚0(𝑢𝑢′ − 𝑢𝑢1) + 𝑣𝑣1 − 𝑣𝑣0]𝑗𝑗

𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

+𝑚𝑚0��(𝑗𝑗)𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗[𝑚𝑚0(𝑢𝑢′ − 𝑢𝑢1) + 𝑣𝑣1 − 𝑣𝑣0]𝑗𝑗−1
𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

�

�
𝑑𝑑𝑑𝑑′

𝑢𝑢0′

𝑢𝑢1

 (𝐴𝐴. 3)     

 
Where eqn. (5.1) has been substituted in ad differentiated. This 
integral may be easily integrated numerically. Meanwhile, the 
direction of 𝑙𝑙𝑎𝑎���⃗  is the unit vector pointing in the direction of 𝑑𝑑𝑟𝑟

𝑑𝑑𝑑𝑑′
 

at the evaluation point, which, after some algebraic 
manipulations, leads to 
 

𝑙𝑙𝑎𝑎� =
𝐷𝐷��⃗

�𝐷𝐷��⃗ �
,                                    (𝐴𝐴. 4𝑎𝑎) 

 

𝐷𝐷��⃗ = �� 𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢0′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗−1[𝑚𝑚0(𝑢𝑢0′ − 𝑢𝑢1) + 𝑣𝑣1 − 𝑣𝑣0]𝑗𝑗−1

∗ [(𝑖𝑖 − 𝑗𝑗)(𝑚𝑚0(𝑢𝑢0′ − 𝑢𝑢1) + 𝑣𝑣1 − 𝑣𝑣0) + 𝑚𝑚0𝑗𝑗(𝑢𝑢0
′ − 𝑢𝑢0)]

𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

. (𝐴𝐴. 4𝑏𝑏) 

If we use 𝑙𝑙𝑎𝑎���⃗   to scale our basis function, properties 1 and 2 above 
will be satisfied, given that the magnitude of this vector 
increases from 0 as the contour running from the vertex to the 
shared edge is approached and its direction is tangential to the 
curvilinear shape by definition. To satisfy the third property, we 
must find the component of 𝑙𝑙𝑎𝑎���⃗   that is normal to the shared  
edge contour at all points on the edge and normalize the basis 
function by this value. Since the shared edge is defined by the 
line connecting (𝑢𝑢2,𝑣𝑣2) and (𝑢𝑢3,𝑣𝑣3) in (𝑢𝑢′, 𝑣𝑣′) space, we may 
define the shared edge contour according to the line 
 

𝑣𝑣𝑒𝑒′ = 𝑚𝑚𝑒𝑒(𝑢𝑢𝑒𝑒′ − 𝑢𝑢2) + 𝑣𝑣2,                     (𝐴𝐴. 5𝑎𝑎) 
 
with 
 

𝑚𝑚𝑒𝑒 =
(𝑣𝑣3 − 𝑣𝑣2)
(𝑢𝑢3 − 𝑢𝑢2).                             (𝐴𝐴. 5𝑏𝑏) 

 
Using the same analysis as above, we may represent the vector 
parallel to the edge contour at any point on the edge as 
 

𝑒̂𝑒 =
𝐸𝐸�⃗

�𝐸𝐸�⃗ �
,                                    (𝐴𝐴. 6𝑎𝑎) 

 

𝐸𝐸�⃗ = �� 𝑏𝑏𝚤𝚤𝚤𝚤����⃗ (𝑢𝑢𝑒𝑒
′ − 𝑢𝑢0)𝑖𝑖−𝑗𝑗−1[𝑚𝑚𝑒𝑒(𝑢𝑢𝑒𝑒′ − 𝑢𝑢2) + 𝑣𝑣2 − 𝑣𝑣0]𝑗𝑗−1

∗ [(𝑖𝑖 − 𝑗𝑗)(𝑚𝑚𝑒𝑒(𝑢𝑢𝑒𝑒′ − 𝑢𝑢2) + 𝑣𝑣2 − 𝑣𝑣0) + 𝑚𝑚𝑒𝑒𝑗𝑗(𝑢𝑢𝑒𝑒
′ − 𝑢𝑢0)]

𝑖𝑖

𝑗𝑗=0

 𝑀𝑀

𝑖𝑖=0

. (𝐴𝐴. 6𝑏𝑏) 

 

For any contour represented by 𝑙𝑙𝑎𝑎���⃗   that intersects with the shared 
edge, the dot product of 𝑙𝑙𝑎𝑎�  and the local in-plane edge normal 
vector is equal to the cosine of the angle between 𝑙𝑙𝑎𝑎�  and the edge 
normal vector, which is equal to the sine of the angle between 𝑙𝑙𝑎𝑎�  
and the edge tangent vector 𝑒̂𝑒. Therefore, at the edge point, the 
edge normal component of 𝑙𝑙𝑎𝑎���⃗   is 
 

𝑙𝑙𝑎𝑎⊥�����⃗ = �𝑙𝑙𝑎𝑎���⃗  ��𝑙𝑙𝑎𝑎� × 𝑒̂𝑒�.                             (𝐴𝐴. 7) 
 
For each (𝑢𝑢0′,𝑣𝑣0′), there is only one line that connects vertex 1 
and the evaluation point that intersects with the shared edge. To 
find the point (𝑢𝑢𝑎𝑎𝑎𝑎′,𝑣𝑣𝑎𝑎𝑎𝑎′) where this occurs, we merely develop 
the following system of equations from the expressions for the 
evaluation and edge lines in (𝑢𝑢′, 𝑣𝑣′) space: 
 

�−𝑚𝑚0 1
−𝑚𝑚𝑒𝑒 1� �

𝑢𝑢𝑎𝑎𝑎𝑎′
𝑣𝑣𝑎𝑎𝑎𝑎′

� = �
𝑣𝑣1 − 𝑚𝑚0𝑢𝑢1
𝑣𝑣2 − 𝑚𝑚𝑒𝑒𝑢𝑢2� ,                  (𝐴𝐴. 8) 

 
which has the solution 
 
 

�𝑢𝑢𝑎𝑎𝑎𝑎′𝑣𝑣𝑎𝑎𝑎𝑎′
� =

1
𝑚𝑚𝑒𝑒 − 𝑚𝑚0

�
𝑣𝑣1 − 𝑣𝑣2 − 𝑚𝑚0𝑢𝑢1 + 𝑚𝑚𝑒𝑒𝑢𝑢2

𝑚𝑚𝑒𝑒𝑣𝑣1 − 𝑚𝑚0𝑣𝑣2 + 𝑚𝑚0𝑚𝑚𝑒𝑒(𝑢𝑢2 − 𝑢𝑢1)� .  (𝐴𝐴. 9) 

 
With this, we finally arrive at the curvilinear RWG basis 
function: 
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𝑪𝑪��⃗ 𝟏𝟏�𝑟𝑟′���⃗ � =
𝑙𝑙𝑎𝑎���⃗  

�𝑙𝑙𝑎𝑎𝑎𝑎�����⃗  ��𝑙𝑙𝑎𝑎𝑎𝑎� × 𝑒𝑒𝑎𝑎𝑎𝑎� �
,                    (𝐴𝐴. 10) 

 
where the quantities in the denominator are the values of eqn. 
(A.3), eqn. (A.4), and eqn. (A.6) evaluated at the point 
(𝑢𝑢𝑎𝑎𝑎𝑎′,𝑣𝑣𝑎𝑎𝑎𝑎′) solved in eqn. (A.9) and 𝑙𝑙𝑎𝑎���⃗  is evaluated as per the 
procedure outlined above for an evaluation point (𝑢𝑢0′,𝑣𝑣0′) in 
(𝑢𝑢′, 𝑣𝑣′) space. The normalization in the denominator guarantees 
that the normal component will always have a magnitude of 1 at 
the shared edge, asserting the property 3 continuity. 𝑪𝑪��⃗ 𝟐𝟐�𝑟𝑟′���⃗ � and 
𝑪𝑪��⃗ 𝟑𝟑�𝑟𝑟′���⃗ � may be formed using identical methods for the other two 
sets of vertices and shared edges. The basis function for a – 
triangle is merely eqn. (A.10) with a negative sign and quantities 
defined by the – triangle vertex in (𝑢𝑢′, 𝑣𝑣′) space opposite the 
shared edge. 
 Alternatively, 𝑪𝑪��⃗ 𝒏𝒏�𝑟𝑟′���⃗ � may be scaled according to the 
Euclidean distance from the evaluation point to the relevant 
vertex on the mapped planar triangle. That is, for the basis 
function extending from vertex 1, �𝑙𝑙𝑎𝑎���⃗  � would be equal to the 
length of the vector connecting (𝑢𝑢1,𝑣𝑣1) and (𝑢𝑢0′,𝑣𝑣0′) in (𝑢𝑢′, 𝑣𝑣′) 
space. Formulating the basis functions this way eliminates the 
need to compute an arc length integral for each evaluation while 
maintaining the rooftop-like quality and normal component 
continuity on shared edges. The drawback is that the basis 
function no longer increases in magnitude uniformly along the 
contour connecting the vertex to the evaluation point on the 
curvilinear shape. However, for triangles of sufficiently-low 
curvature, the effect of this should not be stark. Full 
understanding of such curvature limitations would require 
comparisons of full-wave integration results using both function 
types and is beyond the scope of this work. 
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