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A Polar Scaling Technique for the
Regularization of Strongly Singular and
Strongly Near-Singular Helmholtz Surface
Integrals Evaluated over 2D Domains

Brian J. Vaughn

Abstract—The numerical integration of expressions containing
strong singularities or strong near-singularities has long been a
challenging problem in the electromagnetics community. Much
attention has been paid to this problem, as strong 1/R?
singularities routinely appear when implementing electromagnetic
simulation techniques like the Method of Moments (MoM). To
date, several techniques, from singularity extraction to singularity
cancellation, have been employed to deal with problems that
require the evaluation of 2D strongly-singular integrals. However,
no single technique has been proposed that can deal with both
strong singularities and strong near-singularities in a fully-
numerical manner for arbitrary 2D domains. Moreover, it has been
claimed that the Helmholtz-type strongly singular integral found in
the MoM is convergent in a principal value sense, but this
convergence value has yet to be proven mathematically. In this
work, we will conduct the convergence proof and introduce a
“polar scaling” change of variables method that may be used to
evaluate Helmholtz integrals with both strong and weak
singularities/near-singularities. The technique is fully-numerical
and can in principle be applied to any planar or curved polygon
and any non-singular basis function. We will also provide
numerical results showing useful convergence behavior for
integrals involving both exact and near-singularities.

Index Terms—Integral Equations,
Numerical Simulation.

Method of Moments,

I. INTRODUCTION

T is well known that the method of moments (MoM)

technique, a popular method for solving electromagnetic
integral equations, requires the numerical evaluation of several
integrals containing the Green’s function of the inhomogeneous
electromagnetic Helmholtz Equation. This Green’s function is
represented as:

G& %) = (1.1)

where k is the wavenumber and
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where the primed coordinates denote the position of an
electromagnetic current source and the unprimed coordinates
denote the observation point. Since the field solution is often
desired everywhere within a computational domain,
computation for values of R approaching 0 are necessary,
leading to the task of evaluating integrals with integrands that
contain singularities. One such integral that is often invoked is
the following surface integral:
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where N(&') is a basis function used to approximate a portion
of the current source over the surface and R is ¥ — ¥'. Other
integrals are involved in the MoM process, but this one is of
particular interest, as it contains what is termed a “strong”
singularity, i.e., a 1/R? singularity. This type of integral is often
treated with the singularity extraction technique, which divides
the integral into two, one regular and one singular, and solves
the new singular integral analytically [1]-[5]. While powerful
and common, this technique is limited in that the analytical
integral is not general, and a new formulation must be developed
for differing integration domains or basis functions. An equally
accurate technique that is more versatile without creating
substantially more computational work would therefore have
greater utility. Another technique that has been used to treat
Helmbholtz integral singularities is the singularity cancellation
technique, where the integrand is transformed with a change of
variables into an expression that no longer contains the
singularity, as it is cancelled with the Jacobian [2],[5]-[13].
However, the strong singularity resists cancellation with this
method alone and in fact, to the author’s knowledge,
cancellation schemes have only been achieved for the above

B. J. Vaughn is with Fermi National Accelerator Laboratory, Batavia, IL,
60510, USA (e-mail: bvaughn@fnal.gov).



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

type of integral (with a strong singularity) when it is near-
singular, not exactly singular, as the transformations detailed in
the works above show diverging or undefined integral limits
when the singular point is exactly within the integration source
domain. However, several of the near-singularity papers,
namely [8] and [9], imply or claim that the exact singularity case
is tractable, as the integrand converges to a principal value, and
that only the near-singular case is especially challenging. While
this principal value claim is true, a proof of the claim for the
integral of interest does not appear to have been presented in the
literature before now. To be more specific, exactly singular
Cauchy Principal Value (CPV) integrals have been investigated
in the broader mathematical physics community (e.g., [14]-
[15]), but to the author’s knowledge, an explicit expression for
the principal value of eqn. (1.3) has not been given in the context
of the electromagnetic MoM for an arbitrary non-singular basis
function, even though the principal value has been claimed to
exist. The reference that is often used to support this claim, [7],
is a referral to a conference presentation where it is unclear if the
claim was proved theoretically, as only the abstract is readily
available. It is true that the foundational nature of the work
presented in [7] and extensions thereof is not majorly impacted
by this missing information. Nevertheless, there appears to be a
gap in the development of the theory in this section of the field.
This gap will be remedied here. It should be noted that the
technique detailed in a recent work, [16], treats both near and
exact singularities under the same umbrella by combining
singularity extraction with singularity cancellation, but this is
subject to the same analytical result limitation as the singularity
extraction method alone.

It should also be noted that there exists a class of techniques
designed to comprehensibly treat 4D Galerkin integrals
commonly found in the MFIE formulation, one of which takes
following form:

(1.4)
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where S is an evaluation domain and S’ is a source domain [17]-
[19]. These methods smoothen the entire 4D kernal by breaking
the integral into a sum of contour integrals using non-trivial
algebraic manipulations and the Divergence Theorem. On the
other hand, the methods discussed thus far, as well as the method
presented herein, focus exclusively on accurately evaluating the
inner 2D strongly singular integral rather than regularizing the
entire 4D kernal. As it happens, and as stated in [17]-[19], a
strong motivating element in the development of the 4D-centric
summation methods is that accurate evaluation of the inner 2D
integral does not imply a smooth 4D kernal and higher accuracy
can be achieved for the full 4D integral if it is treated as a whole.
However, these methods have not seen popular use as of yet due
to the implementation differences between them and existing
MoM formulations, as stated in [16]. Because of this, we will
proceed with this work focusing exclusively on the strongly
singular 2D integral, as its isolated evaluation is still relevant to
the community.

Furthermore, the author has identified an opportunity to
extend the integration of eqn. (1.3) to polygons with an arbitrary
number of edges with one universal standard procedure. A
formulation that treats all shapes of this type with the same
sequence of variable transformations, regardless of basis
function and shape type, presents substantial utility to any
platform designed with generality in mind. Using this as a
motivation, we will develop a general polar transformation
(termed “polar scaling”), mathematically prove that it cancels
the strong singularity in the eqn. (1.3) integral, and then connect
it to an N-sided polygon. We will also detail how the method
can be applied to near-singularities, creating a versatile solution
for the type of surface integration considered here. The paper
will be organized as follows: Section II. will detail the general
polar regularization, Section III. will discuss an equally general
coordinate renormalization procedure, Section I'V. will describe
how to complete the polar transformation once a particular shape
is chosen, Section V. will discuss near-singularity treatment, and
Section VI. will demonstrate a numerical example.

II. POLAR SCALING REGULARIZATION

As alluded to in Section I, the polar transformation that will be
executed below does not cancel the strong singularity in the
conventional manner. However, it will be shown that the
transformation used here will result in an integrand that is finite
at all points within the integration domain, including the strong
singularity. That is, the transformed integrand will have a limit
that exists as the observation point approaches the source point.
We will now formulate this transformation.

Without loss of generality, for a two-dimensional domain
described in finite (u, v) coordinates, let us define the following
transformation to polar coordinates:
pltultv,0+h
Vi

X5 e —

D

Fig. 1. Arbitrary polygon described in (u, v) coordinate system.

u=pf(p) + uy, (2.1a)
v=pf(p)tang + v,, (2.1b)

with
X=C¢+ull+vd+h, (2.1¢0)
X=c+ua+v'v, (2.1d)

where f(@) is some continuous angular function with
lf (@), |f (@) tanp| < oo for all @, ¢ is the source domain
centroid, @ and ¥ are orthogonal, but otherwise arbitrary normal
vectors, and (uy, V) is the position of the observation point if it
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is within the source domain, or the projection of the observation
point onto the source domain if the observation point is not

within the source domain. h applies to the case where the
observation point is not within the source domain and represents
the vector between the observation point and its source domain
projection (ﬁ is merely the 0 vector if the observation point lies
within the source domain). |i_{| is the shortest distance between
the observation point and any point in the source domain. Note
that p is real and 0 < p < 1. i and ¥ potential definitions will
be discussed in Section IV. Fig. 1 illustrates this coordinate
system, but p is omitted as its calculation will also be discussed
in Section IV; we do not need its mathematical definition to
show regularization as will become clear below. The Jacobian
for the change of variables from the (u, v) domain to the (p, )
domain is

Upo| = pf(@)? sec? g. 2.2)

We may substitute these transformations into our expression for
R, resulting in the following:

XY,z

T, (pf (@) — p'f(@")

2
R= 1.3
Z {+ﬁ;(pf(<p) tang — p' f(p"tan ") + hhn} @3

We stipulate that (ug, vy) is the transformed observation point
or projection, so p is 0. As such, eqn. (2.3) becomes

XY,z

D (@A @)+ Tp'flgNtan @’ - b’ 2.4)

where h = |7l| and R is the unit vector in the direction of . Note
that we factored out -1 to reorient the signs in the expression.
Let us now use the transformations executed thus far to
manipulate the strongly singular Helmholtz integral described in
eqn. (1.3):

_Ro—JkR ;
3 f —eJkR(1 + jkR)
47 R3
(x — x)(Ny ()2 — N,(Z)9)
4+ — IV, (E)R — Ne(3)2) { dS' (2.5)
+(z - z’)(Nx(a?’)y — Ny(a?’)a?)

Let us consider only the first term in the brackets for now,
leading to the following integral:

—eJkR(1 + jkR)
f 47R3 (G-
— N,(x")9)}ds’

x")(N, (x")z
(2.6)

Further, let

Ny, = (N,(x)2 — N,(x)9) .7)

Substituting the coordinate transformations into eqn. (2.6), we
obtain

—e JRR(1 + jkR
f ¢ IR (e 2Ny )2~ N, Z)9) )

-/J

—e J*R(1 + jkR)
41tR3
Ny, (0", @' prpi|dp’ dg’

e

* {[uxp’f((p ) + @P’f(q’)tanq’ - hh ] yz(p () )}

([ (=) + 7;(v — v') + hi]

e JkR(1 + jkR)
47R3

xp'f(@")? sec? ' dp'de’ (2.8)
Note that the negative sign in front of the exponential was
absorbed into the expression in the square brackets. Also note
that the p’ bounds are 0 and 1, whereas the ¢’ bounds are 0 and
2m. These details will be more closely described later on when
we specify the computation of p and f(¢). Substituting eqn.
(2.4) into eqn. (2.8) and splitting the expression into two
integrals, we arrive at the following result:

e—fk\/ziy

4m [\/ YV (' (9" + Ty p'f (@)tan @' — hhry,)’

(@npr f (9" 40 prf (pr)tan gr—hiy)

3

wep'f(")
* [+7x p'f(¢")tan ¢’
_ha

Ny, (p",@")p'f(@)?sec? @' dp'de’

}kJZny (@npr f (") +5m pr f (91)tan gr—hiy)”

jf4n2"yz(zfnp’f(<p)+vnp 'f(¢"tan @' — hh,)*

wp'f (")
* |+, p'f(@ )tan ¢’
—hf/l;

Ny, (', @")p'f(@")*sec® o' dp'de’ (2.9)

Since the second integral in eqn. (2.9) was weakly singular in its
original form, its singularity is cancelled by the polar
transformation for h=0 (p’ terms cancel under this
circumstance). Note that since f(¢"), as a stipulation of the
transformation, is defined in such a way that |f(¢') tan¢'| <
oo, |f(p") secp’| < o as well, so the integrand of the second
integral cannot have a ¢’ singularity associated with it for a non-
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singular N,,(p', ¢"). The numerical stability of this integral,
then, is dependent on the variational stability of f(¢"), which,
as we will define in Section IV, is dependent on the polygon
shape. The focus of this work is on management of the 1/R?
strong singularity displayed in eqn. (1.3), so an exhaustive
analysis of the stability of this ancillary integral is beyond the
scope of this paper. However, this angular integrand will be
shown in Section VI to be well-behaved for the examples
discussed therein, which are representative of typical scenarios
found in electromagnetic MoM problems. As such, the second
integral may be evaluated numerically using standard quadrature
rules such as the well-known Gauss-Legendre method.

The first integral, in fact, is also convergent despite the
integrand’s p’ = 0, h = 0 singularity, but the justification of this
claim is more involved. To show that the first integral is regular,
we will examine its behavior as p’ > 0 for h =0 (the
observation point is in the source domain). When h = 0, the first
eqn. (2.9) integral simplifies to the following expression:

[ L Hde'
f iy (2.10)

with

ke £ S+ tam )2

L:(p', ") = sgn(cos ¢") 3
[S52(@ + B tan )22
«{[@; + Ty tan @'IN,,(p", @)} sec? @', (2.11)
Note that the cancellations from the simplification yield an
expression that includes sgn(f(¢")). Here, we have replaced
the signum argument with cos¢@’ since sgn(cos¢@’') and
sgn(f(¢")) are equal. This is apparent by consulting Fig. 1.
When —g <@'< %5 u' > uy, so sgn(f(¢")) must be positive.
The opposite is true wheng <¢@'< 37”

From here, we wish to take the limit of eqn. (2.11) as p’ - 0,
where the integrand appears to diverge. If the limit exists,

however, the integral is regular. To prove that the limit is indeed
finite, we notice that if lim0 [1(p',¢")de' =0, the p’ integrand
pl—)

in eqn. (2.10) is a L’Hopital indeterminant. When p’ =0,
L.(p', ¢") becomes

sgn(cos ¢")

3
(X7 (i + 7, tan ¢)?]?

L,(0,9") =

* [uy + Uy tan @'IN,, (0,9 ) sec? ', (2.12)
Note that when p’ = 0, N,,, is no longer a function of ¢'. We
now represent the numerator integral of eqn. (2.11), in a
principal value sense, as follows:

2

f L,(0,9")do'

0

3
=-€

Z-e
2

2
=leirré J-Ix(O,go’)dcp’+f L.(0,¢"Nde'.(2.13)
v

T
S+e

—S+€ >

2
The bounds are chosen to coincide with the divergent points in
the tangent and secant functions in the integrand. Using the same
tangent-secant limit arguments as those used for the second
integral of eqn. (2.9), we see that 1(0, ¢") does not diverge at the
integral bounds as € — 0. Also note that for the first integral in
eqn. (2.13), sgn(cos ") = 1, whereas sgn(cos ¢') = —1 in the
second integral. We also notice that for ¢’ # % for some odd
integer p,

tan(e' + ) = tan¢’, (2.14a)
sec?(¢' +m) =sec?¢’. (2.14b)

Since the intervals of the two integrals in eqn. (2.13) are offset
by m, it is clear that

s f 3
7€ 2€
lirrg f L.(0,9"Ndo'| = lirr(}f L.(0,9"dg'|.(2.15)
€ €
—S+e T+e
Therefore,
T 3
E—E 7_6
i [ KO0+ [ L0.¢)de
—S+e T+e
m_, T,

2 2

= 1ir% f L.(0,p"dp' — J- L(0,p")de' =0. (2.16)
€E—
—S+e —S+e
The limit in eqn. (2.10), then, is indeed a L’Hopital
indeterminant, and thus may be evaluated via L’Hopital’s rule.
Differentiating the numerator and denominator of eqn. (2.10)
with respect to p’, we can take the limit of eqn. (2.10) as follows:

lim L', @) do'
p'-0 4mp’

XY,z

1
= Ef —jkf(@") Z(ﬂ; + Ty tan @")2 1,(0,9")dg’, (2.17)
n

In which the p’ =0 singularity has been eliminated. This
analysis shows that the polar mapping defined in eqn. (2.1)
reveals that the strong singularity of the Helmholtz integral is a
“false” singularity, one that does not truly cause the integrand p’
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to diverge. As such, both integrals of eqn. (2.9) may be evaluated
numerically, using conventional quadrature rules without the
need for singularity extraction. In fact, examining eqn. (2.9), we
find that the limit integral in eqn. (2.17), when p’ = 0, is exactly
equal to the second ¢’ integral in eqn. (2.9) in magnitude and
opposite in sign. This means that at the p’ = 0 point, the total
integrand is null, i.e., the p' = 0 point contributes nothing to the
integral. This is also trivially true if p’ = 0 and h # 0. Identical
arguments may be made to evaluate the second and third terms
of eqn. (2.5). Note that the transformation described in this
section is applicable to any 2D shape. This is a powerful result
since, as far as 2D shapes are concerned, it allows for a
technique that can handle both exact and near strong
singularities with the same transformation, simplifying code
implementations. It should be noted that weakly singular 1/R
Helmbholtz integrals also have their singularities cancelled with
this transformation, much like the second integral in eqn. (2.9).
This means that the formulation is also open to problems
involving 1/R potential integrals. In the next section, we will
explain the method of moving the polygon definition to the
(u, v) space.

III. (u,v) TRANSFORMATION

Consider a polygon defined in Cartesian space by N arbitrary
points X7, X, ... and X, defined as
Xn = (Xnx Xny, Xnz), n=1,2,.. N. (3.1)
We will execute an unscaled change of basis to represent the
points within the polygon in terms of two orthogonal vectors that
are in-plane with the polygon surface. The exact choice of basis
is somewhat arbitrary, and many definitions are available. Here,
we will choose the unit vector pointing from the polygon
centroid € to the vertex X, as our first basis vector, which will
establish the ¥ direction (note, as shown in Fig. 1, the convention
for this work is to label the lower left vertex of the polygon as
X; and increase the vertex numbering in the clockwise
direction). ¢ may be easily computed as
g:l Xnx »
¢ = % 211\1/=1 Xny»

Z¥=1 Xnz

(3.2)

With this convention, ¥ may be explicitly computed as

— >
xZ_C

b= (3.3)

= al
Using the unit vector pointing from X; to X,, which we will label

as [,,, we may develop an orthogonal vector to ©, which we will
term 4:

DXLy XD Ly —0(0 1)

[ox Ly xd| |G—2(9-5,)|
where the BAC-CAB vector triple product identity has been

o= (3.4)

used. Note that any in-plane vector that is not parallel to ¥ may
be used in place of [, and the resulting vector will be the same
after normalization. We now represent each point within the
polygon via the following function:

=

x'=Cc+ui+ v, (3.5)

where u’' and v’ are constants. To find the constants that

correspond to the point of interest x', we use individual
components of eqn. (2.5) to create a system of equations, which
may be represented in matrix form as below:

/; ! (_\,__))X
el-16 5]

(3? - E)y

Solving this matrix equation yields the unknown constants. Note
that since all the points in the polygon are coplanar, each pair of
two components can only correspond to one potential third
coordinate while remaining in-plane, so only two of the
components of eqn. (3.4) need to be invoked to find the
unknown constants (here the x and y components are used).
Note also that our differential element dS’ is now du'dv’. Since
the Euclidean distances between points in our new basis and the
original Cartesian basis are identical, no scaling factors are
needed to execute the change of variables. We are now prepared
to execute the polar mapping for polygons. This will be done in
the next section.

["‘A" (3.6)

Uy

Iv.

Here, we will demonstrate an example of how to execute the
polar mapping described in the previous sections for arbitrary
polygons with straight edges. Note that as long as the edges are
straight, the following procedure will be the same regardless of
whether or not the polygon has concave or convex sections. The
polar coordinates p’ and ¢ are defined in relation to the point
(ug, o) and the polygon vertices. From Fig. 1, it is clear that ¢’
is defined by the direction of the vector pointing from (u, V)
to (u,v"). p’, in our formulation, will refer to an inner polygon
scaling factor that corresponds to the dimensions of a similar
polygon to the polygon under consideration (note that the term
“similar” is meant in the mathematical geometric sense). This
similar polygon will be termed the “scaled” polygon. The scaled
polygon has an edge that intersects with (u’, v") and vertices that
lie on the lines drawn between (uy, vo) and the vertices of the
larger polygon, which we will term the “base” polygon. Fig. 2
illustrates this scaling concept. When p’ = 1, (u/, v") lies on the
base polygon boundary. Note that this representation of p' is
quite similar to the formulation of the y’ variable discussed in
[20], though the second variable used in that work, x’, is linear
instead of the polar variable ¢’ used here, which, again, is
necessary for the strong singularity cancellation proof discussed
herein. We now define vertex vectors:

POLYGON POLAR COORDINATES

Wn =Dy — (Uo, 1), n=12,..N. (4.1)
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Fig. 2. Polygon scaling. The black polygon is the base polygon and the dashed
blue polygon is the scaled polygon. The scaled polygon vertices lie on the red
dashed lines connecting (u,, v,) to the base polygon vertices and the scaled
polygon edges are parallel to the base polygon edges. (u',v") lies on a scaled
polygon edge and p’ is determined by how large the scaled polygon must be for
its boundary to intersect with (u', v").

where p,, denotes the (u,v) coordinates of vertex n. These
vectors will be used to determine the scaling of the similar
polygon, and thus, p’. For some (u’, v") that we wish to map, we
first must determine which edge the similar polygon will
intersect the point with. We may do this by simply computing
@' via

/= tan1 2% (4.2)
=tan~ ! ———. .
¢ u' —u,
We also define vertex ¢’ values as
w,
¢ p=tan 1=, n=12.N (43)
nu

where wy,,, denotes the p-component of wy,. If @', 41 < @' < @',
the point is on edge ewmy1),- We will term the edge that
corresponds to the ¢’ value as the “active” edge. Note that if
(ug, vp) lies on a vertex, one of the vertex vectors will be 0 and
its inverse tangent computation will be undefined. If ¢ is within
an interval with an undefined bound, this undefined bound is
replaced by the next defined bound in the sequence counting
down from N to 1 and circling back to N. For example, for N =
3, if the undefined bound is @', we set @'; = @', instead. If the
undefined bound is ¢',, we set @', = ¢';. Finally, if the
undefined bound is @'y, we set @'; = @';. This effectively
merges two potential active edges together. As we will see
below, both of the merged active edges are treated identically
regarding the numerical integration operation. Once the active
edge is known, we may use the vertex vectors to determine the
intersection.

For a straight edge e, let

W, v) = (u,vo) + p'w + Bp' (W, —w;),  (44)
and let
W, =W, —w, =p,—p,, (4.5)

where 8 is some constant. Note that the i-j indexing assumes
clockwise vertex increment, so starting at vertex 1 for N = 3,

the edges are ey, e3,, and e;3. Qualitatively, this operation
shifts the observation point to the j* vertex of the scaled polygon
that intersects with the source point and then moves along e;; of
the scaled polygon until the source point is reached. This gives
us two equations, one composed of u coordinates and one
composed of v coordinates. By substitution, it is straightforward
to eliminate § and show that

. Wiju(”' — V) — Wijv(u' —Up)
WiyWiju — WjuWijp

) (4.6)

where the u and v subscripts denote the u and v components of
the vectors. Note that when p’ = 1, the source point always lies
on the polygon perimeter. Using eqn. (4.2), we may represent u’
in terms of p’ as

, , WivrWiju — Wiy Wijy

u =p 7 +u0.
Wl-jutarl(p _Wijv

(4.7)

From our definition in eqn. (2.1), this implies the azimuth
function f(¢") is

_ WipWijy — WiuWijy

fle") (4.8)

[
Wiju tan Q — Wijv

This function encodes the varying FEuclidean distance
between (ug, vy) and the source point as the scaled polygon
edge is traversed, allowing for the transformation to be
standardized across all polygon shapes under a single
formulation. While we are effectively breaking the polygon into
N sub-triangles, similarly to other polar formulations, it is the
consideration of each scaled polygon as its own unified shape
with constant “radius” p’ that differentiates the proposed
scheme. This thinking ultimately facilitates 0 to 2w angular
extent crucial to the proof of convergent exact strong singularity
presented in the previous section. As we will see in Section VI,
the azimuth function combined with the rest of the integrands of
the polar scaling formulation exhibit an angular dependence that
is smooth enough to be tractable using Gaussian quadrature rules
for the ¢’ integration. The number of necessary sample points
will be discussed in Section VI. We also see that the function
f (") defined in this way is indeed bounded for all ¢'. To
understand why, we consider whether or not the denominator of
eq. (4.8), wij, tan @’ — w;j,,, can ever be 0. The first way this
could happen is if both w;j,, and w;;;, could be zero at the same
time, but this is a trivial case where the active edge has a length
of 0 and thus would not contribute to the integration or polygon
definition. The second way the denominator could be zero is if
tan @' = wj,,/W;j, for some ¢’ between ¢’; and ¢'; as defined
by eqn. (4.3). However, for a polygon interior/exterior (ug, vy),
this is not possible for the values of ¢’ defined by the edge
vertices, as, if tan ¢’ = w;j,,/w; j,,, then the vector pointing from
(ug, vg) to the point on the active edge would have to be parallel
to the active edge itself. This is only possible if (ug, vy) lies on
an edge or vertex, which are special cases that will be discussed
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in the following paragraph.

If (uy, vy) lies on an edge or vertex of the base polygon and
@' is such that the active edge of the scaled polygon overlaps
entirely with the base polygon boundary, wj, w;j,, = wj, w;j,, for
all ¢ in that interval, and thus, (u’, v") = (ug, Vo) since f (') =
0 nominaly. To show that this is the case, consider (uy, vy) lying
on an arbitrary edge/vertex. Again, if this is the case, then every
point on one or two of the scaled polygon edges overlaps with
the base polygon boundary (one if the source point is on a base
polygon edge and not a vertex, and two if it’s on a vertex). Let
e;jp be the base polygon edge that overlaps with one of the
scaled polygon edges. Given the overlap, it is clear that
e, XW, =e,, Xxw, =0 (note e,, is the vector between
vertex { and vertex j). Therefore, we may state that for some
constant @, W, = aw,, meaning that w,; = (a — 1)w;. Since
(a — 1) is scalar, it is clear then that wj, w;j,, = wj,w;j,, for this
case. However, p’ is not necessarily equal to 0, depending on
the size of the scaled polygon under consideration. Note that
eqn. (4.6) cannot be used in this case to determine p’ since direct
evaluation yields an indeterminant. Since our objective is
numerical integration, however, we may simply assert p’ values
during the evaluation process, so the potential ambiguity is not
a problem. This leads us back to the case where tan¢' =
Wijy/Wijy, Which is made moot by the fact that the numerator of
eqn. (4.8) is 0 on the active edge if (uy, vy) lies on an edge or
vertex. Technically, the evaluation of eqn. (4.8) at the upper
bound of ¢’ for such an active edge yields a 0/0 indeterminant.
However, we may assert that the function f(¢") be continuous
within the bounds of an active edge without affecting the end
result of the integration since this indeterminacy only occurs at
single points that, alone, give infinitesimally small
contributions. As such, f(¢") is bounded under our definitions.

In any case, a f(¢") equal to 0 does not change the analysis
(it merely causes the integrand exponential and the p’ = 0 limit
integrand to vanish), and thus, edge/vertex observation points do
not require special treatment other than the active edge merging
described above if the observation point is a vertex.

In the next section, we will extend the above formulation to
curvilinear shapes.

V. CURVILINEAR EXTENSION

We now consider an M"-order curvilinear polygon defined by
N*M nodes, where N is the number of polygon vertices. In order
to treat this polygon with the polar scaling technique, we first
need to map its surface to that of a planar polygon. The planar
polygon we will choose will be the one created by the curvilinear
polygon’s vertices connected by straight edges. Further, we will
define the planar polygon in (1, v") space so that we may apply
the polar transformation immediately after the initial mapping.

X2

Curvilinear Shape

Fig. 3. Scheme for mapping curvilinear shape to planar version so polar scaling
may be applied.

This mapping choice is illustrated in Fig. 3. Let #' be some point
on the curvilinear polygon in Cartesian space. With this in mind,
we define the following polynomial mapping function:

M i
= By — ug) I~ v,

i=0 j=0

(5.1)

where bTJ are vector-valued expansion coefficients and u, v are
defined on the planar polygon as per Section III. The nodes on
the curvilinear polygon are mapped to known locations on the
planar version. For example, in the case of an M = 2 (quadratic)
triangular curvilinear shape, the definition nodes would be
placed at the polygon vertices as well as the midpoints of the
polygon edges, 6 points in total. On the planar polygon, these
nodes would still map to the planar shape vertices and edge
midpoints. Since every point has 3 vector components, we have
18 equations and 18 unknowns (each of the 6 unknown vector
coefficients has 3 components as well). This system of equations
may be easily solved with well-known matrix techniques. A
similar procedure applies to any value of M.

Once the coefficients are known, we may compute the
Jacobian for the transformation from the curvilinear polygon to
the planar version. For each point 7’ on the curvilinear polygon
surface, we define a local differential surface element dadf,
where @ and f are local area coordinates each with their own
associated orthogonal unit vectors @ and 8, which are tangent to

the curvilinear polygon surface at each r'. Then, the Jacobian

would be evaluated as

da Oa
Jou,v') = ‘g’lg g’é : (5.2)
o' v

Since @ and f need only be orthogonal and tangent to the
polygon surface and are otherwise arbitrary, we may utilize the
orthogonality of the (u’, v") space formulation. Namely, we may

o . T o or 5
define & as the unit vector pointing in the direction of a—:, and 8

. s N or
as the unit vector pointing in the direction of a—:’. Then we may
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represent the local differentials da and df as follows:

da = —? du’ 5.3a
ou' ’ ( ' )
v ’ ( ' )

which immediately give % and %, Note that with this

definition, a_ = % = 0 due to the orthogonality of i and ¥ (as

such, the total and partial derivatives are equal). Therefore,

o7’
o’

o7’
o'

Je @', v =

M i
=2, 2 — Dby @ = o) W' = v)!
i=0 j=0

M

ZZ Dby @ = ug)! I (v' = vg)/ !

i=0 j=0

(5.4)

With this mapping, we may now execute the polar scaling
transformation on the planar polygon. Doing this, R from eqn.
1.3 and the curvilinear mapping Jacobian become

i ( fz [une'F () ™ (' (@) tam g’ )1]\

Rz\J KlO}O ) (5.5)

_bOOn hhn
Jc(p'@') =
M i
Z Z(l‘ — Dby, (' f(@")) 710" f (") tan @)
i=0 j=0

(5.6)

M i
D2 by (' £ @) 0 g an @y,
i=0

=0 j=0

where b, is the n-component of the ij vector coefficient and

hh,, has the same definition as in Section II. Note that m is
subtracted in eqn. (5.5) since, wheni = j = 0, # is not 0, but
mﬁ + m& + KOZ)ZA since 0° = 1. These expressions may
be readily substituted into eqn. (2.5) to obtain equations
analogous to eqn. (2.9).

Of course, the question now arises whether the regularization
shown in Section II persists under the curvilinear transformation
now that the integrand contains higher-order polynomials in p’.
In fact, the arguments made to justify the regularization claim in
Section II can still be applied in the curvilinear regime. That is,
even with the curvilinear transformation applied, the integrand

still vanishes if h and p' are 0. To see this, we observe that when

p'is small, 1 > p’ > p'? > - p’_ The effect of this is that as
p' — 0, the discriminant of R collapses to a linear function of p’
and J.(p', ") collapses to a constant, which means the integral
takes the form of eqn. (2.9) and is thus subject to the same
regularization argument as used in Section II when p’ — 0.
Another way of thinking about this is that when p' — 0, the
scaled curvilinear polygon that maps to the scaled planar version
becomes more and more planar in and of itself and in fact is
exactly planar in the limit. This argument is functionally
identical to the argument made in [16] to apply singularity
extraction to curvilinear elements. As such, if the integrand
vanishes in the planar case, it vanishes in the curvilinear case as
well.

One more element of the curvilinear case that needs to be
addressed is how the integrand may be computed as f(¢")
approaches 0 on the flat triangle that the curved shape is mapped
to in the exact singularity case. The f(¢') cancellations that
naturally occur when h = 0 (see eqn. 2.9) are not as obviously
obtained for higher order shapes. However, since R is a
polynomial in f(¢") as well as p’, we may repeat the arguments
above to define their behavior as f(¢") becomes small. That is,
under the above conditions, the only terms that will persist in the
sum described in eqn. (5.5) are the terms that are first-order
(linear) in f(¢p'). All higher degree terms will be <« the first-
order terms when f(¢") is small. Under this condition, the
necessary cancellations occur and the integrand may be
computed without issue. Note that the only terms that persist in
the J,. expression are the constant terms in the sums; J. does not
participate in these cancellations.

This now constitutes everything needed to evaluate the
strongly singular integral over an arbitrary polygon. In the
following sections, we will discuss some near-singularity
strategies and show example computations of the eqn. (2.5)
integral using the above formulation.

VL

For the above formulation, special care must be taken if the
observation point is close to the source domain, but not lying
exactly on it, thus creating a near-singularity. Under this
circumstance, the integral computation can become unwieldy
near the projected observation point, and a peak in the p’
integrand near p’ = 0 is observed, similarly to the phenomenon
highlighted in [9] that motivates focused treatment of near-
singular cases. During our analysis, this was empirically found
to occur, with varying intensities, when the length of the vector
connecting the observation point and its projection is between
~1071% and 10°!. Below this range, machine precision limitations
impact accuracy too strongly. Above it, the spike fails to develop
appreciably. To ensure accurate integration when the peak is
present, we break the radial integral into several logarithmic p’

NEAR-SINGULARITY TREATMENT

intervals. The first interval is [0, 10|E|], the second is from
[10|ﬁ|, 100|E|], and so on until 10N|H| exceeds 0.1. Then, the

rest of the integral is computed on the interval [10Y |fl|, 1]. This
is similar in style to the “h-refinement” technique discussed in
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[9], only involving far fewer sample points. The distance from
p' = 0 that the spike’s maximum value occurs is proportional to
|H , and this interval technique was empirically found to capture
the dynamics of the spike well. Smaller interval divisions are
possible, but were not found to increase evaluation accuracy
substantially. The p’ integral on each interval is computed using
the above formulation and Gaussian quadrature rules, as
reducing the interval size creates smooth integrands in p’. In this
way, the scaled polar formulation may be used in a general
manner, even when near-singularities are involved. In the next
sections, we will demonstrate the results when applying this
technique to example domains.

VII. FLAT TRIANGLE NUMERICAL EXAMPLE

To demonstrate polar scaling integrand computation, we will
consider the preliminary results arising from a flat triangular
integration domain along with associated RWG basis functions
[21]. These basis functions are defined for triangle pairs where
one edge is shared between the triangles. As described in [21],
for each shared edge, one triangle is the ”+” triangle and one is
the “—* triangle. Nominally, all of the edges of both triangles are
taken to be interior to the greater domain that the triangles are
partially discretizing, meaning that there are three basis
functions to evaluate (see eqn. (9) of [21]). Consider a + triangle
with vertices X7, X5, and x5 in Cartesian coordinates as before.
Similarly to above, we may form edge vectors defined as

Ly = % — %, (7.1a)
Iy = %3 — Xy, (7.1b)
Ls=% -7, (7.1¢)

and compute the triangle area as
1,— —
A=5 |Lis X L. (7.2)

From here, we define the three RWG basis functions as

SR o S
N,(x") = —|2ifl|(x’—x1 : (7.3a)
— — l—) — —
Nz(x’) = %(x’ —xz), (7.3b)
—_— —. l—) — —
N3(x') = %(X’ -%3), (7.3¢c)

where some x’ lies within the triangle. Moving forward, we will
focus only on ﬁl (7) to represent the behavior of the presented
technique, which will yield similar results to those of the other
basis functions so long as the triangle’s aspect ratio is
sufficiently small. With this basis function, we may now
evaluate eqn. (2.5). As shown in the previous sections, this
integral, once transformed, consists of a double integral in p’-¢’
space. Since the integral is singularity-free, as proved

previously, it may be evaluated using one’s desired choice of
quadrature rules. We will choose a randomly-generated set of
nodes for this exercise with vertices defined as follows:

[—0.055150912124496,]
= [—0.032925442868474,|,
| —0.007552809614046

(7.4a)

8
S
I

[—0.034866643220522,]
0.053104972071870, |,
| 0.053618399105443 |

(7.4b)

Sl
I

—0.012439806138843, ]
0.022306317839023, |,
—0.060172988424358

—

X3 = (7.4¢)

Note that the vertices have been scaled such that the maximum
triangle side-length is ~A/5 at 500 MHz. Note that it was found
that scaling the triangle between A and A/1000 did not affect the
results given below, so the A/5 scaling will be maintained
throughout the following analysis. Here, we will largely mimic
the example analysis demonstrated in [16] since that work also
presents a technique to handle both near and exact singularities
with the same method, as noted in Section I of this paper
(though, again, the method presented in [16] requires non-
general analytical treatment). In [16], 4 cases for planar triangles
are discussed; one with the observation point placed on the
triangle centroid, one with the point offset from the centroid by
a distance of /100 in the direction normal to the triangle plane,
one with the point placed on a triangle edge (we select the
midpoint of e;, edge here), and one offset from the edge point
by A/100 in a plane-normal direction. Note that the triangle in
[16] was also scaled to A/5, though its exact vertex definition is
not listed. Following the polar scaling procedures described
above, we may evaluate eqn. (2.5). Here, for demonstrative
purposes, we will compute the ¢’ integral first and plot the
resulting p’ integrand as a function of p’ to show that it is finite
and continuous when p’ = 0. That is, we may represent the
integral we wish to evaluate as

12w
[ [ re.onapap, (75)
00
and we will plot the function
27
90" = [ 16 00de (7.6)

0

to show integrand existence and continuity for all p’ values.
Note that I'(p’, ¢') may be found by following procedures
similar to those outlined in eqns. (2.5)-(2.9), only for all the
terms in the eqn. (2.5) brackets. Doing this, we obtain the
integrand functions shown in Fig. 4 for the ﬁl(?) basis
functions when the observation point is placed at the centroid
with and without the offset, respectively. Fig. 4 also shows the
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real part of the integrand when the offset is 2/10000 in order to
better demonstrate the peak property discussed in the previous
section (note the imaginary part does not display a similar peak).
As shown by these plots, the p' integrands for an observation
point lying on the source domain are indeed smooth and
continuous for all values of p’ including p’ = 0, where the
integrand vanishes. For all of these integrand plots, the g(p)
values were computed using Gaussian quadrature rules with 101
sample points per active edge (303 points in total for the full
angular integral; note that this number of points will change
during convergence studies, as will be detailed below). In
addition, we will plot f(¢") (see eqn. (4.8)) as well as the
following expression:

g@) =11, ¢"). (7.7)
Note that p’ is set to 1 in eqn. (7.7), but the choice of p’ does not
affect the macroscopic behavior of the expression in terms of
smoothness. The plots for these two functions confirm the claim
that the angular portions of the transformed integrals do not
behave in a manner that would introduce numerical issues. Note
that the triangle vertices are located approximately at ¢’ = -44°,
88°, and 214°. As Fig. 5 illustrates, the angular functions exhibit
piecewise behavior in the intervals between these points. The
piecewise functions share the same values at the intersections
between the intervals, though the derivatives are not necessarily
continuous at these points. This is not an issue, though, as each
interval receives its own integral in the full evaluation, so
derivative continuity is not required at the vertices. Within the
intervals, Fig. 5 shows sufficient smoothness for efficient
numerical integration.

To examine the convergence dynamics, we plot the
asymptotic behavior of the integral evaluations as the number of
Gaussian quadrature sample points is increased. This will be
done for the 4 cases described above. For simplicity, we will
keep the number of sample points the same for both the angular
and radial integrals, though this is not required. Figs. 6-7
demonstrate the convergence for the integral evaluation. The
plots show the number of correct significant digits past the
decimal point compared to a reference value obtained from
using 101 sample points per integral. That is, we plot the value
D defined as

Iy = Lol

D(N) = avg <— log( +1x 10‘16>>, (7.8)

7301

where Iy is a component (X, y, or z) of the of the integral
evaluation using N sample points, /14, is the evaluation of that
component for 101 sample points, and 1 X 10716 is

added to ensure the number of digits does not exceed machine
precision. The number of digits for each component is then
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Fig. 4. ﬁl (?) p' integrand real part (a) and imaginary part (b) for centroid
exact singularity. (c) shows the real part delta-function-like behavior of the real
part of the integrand for the case of a /10000 near-singularity.
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Fig.5. Ni (?) integrand g(¢") real part (a) and imaginary part (b), as well as
f(@") for the triangle under study (c).

averaged across all vector components and all three basis
functions to represent the overall number of correct digits. The
convergence curves are then compared to results obtained in
[16] for a similar triangle. The two additional curves shown on
each plot are the results for the integral evaluated using the
method proposed in [16], termed “RA-1”, and conventional
singularity extraction (subtraction), termed “SS”. Note that, as
alluded to in the introduction of this paper, the "RA-1" method

Flat Centroid Exact Singularity Convergence vs. Number of Sample Points
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Fig. 6. Convergence results vs. base sample points for a flat triangle with
centroid evaluation point exact singularity (a) near-singularity (b).

of [16] combines singularity extraction with a singularity
cancellation technique to create a method that can handle both
exact and near singularities. In this sense, the RA-1 method is
not fully numerical like the technique presented in this work.
Nevertheless, the RA-1 is indeed quite powerful and state-of-
the-art, so comparison between it and the proposed method is
demonstrative. Note that [16] also contains near-singularity
convergence results for integrals evaluated using singularity
cancellation (“SC”) alone. However, since those curves do not
outperform the RA-1 curves and do not apply to exact
singularities, the SC results are not shown here. Note also that
in [16], the convergence results are split between the normal and
tangential components of the integral result. For each case
presented here, the component that displayed superior (faster)
convergence was selected for comparison so as not to
shortchange the results of the previous works. Fig. 8 also shows
the convergence results of this work only all on the same plot
for comparison.

The actual 101 point evaluated reference values of these test
integrals are listed in Table I for the ﬁl (?) basis function. Note
the total number of Gaussian quadrature evaluations for both the
angular and radial integrals is 3N? for the exact singularities (N
points for the angular integral and N points for
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Flat Edge Exact Singularity Convergence vs. Number of Sample Points
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Fig.7. Convergence results for flat triangle with edge midpoint evaluation point
exact singularity (a) near-singularity (b).

Flat Triangle Convergence Comparison vs. Number of Sample Points
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Fig. 8. Comparison of flat triangle convergence for all investigated cases
evaluated using the polar scaling technique.

the radial integral per edge) and 9N? for the near-singularities
since 3 intervals are used for the near-singularity. We will refer
to the value N as the number of “base” sample points going
forward. For the centroid singularities, the precision of the
proposed method saturates by ~20-30 base sample points with
saturation values very close to machine precision. The centroid

singularity convergence rate of the proposed technique indeed
compares quite favorably to that exhibited by the RA-1 method
and outperforms the SS results for moderate to high precision.
For the edge singularities, saturation occurs by ~20-30 base
sample points as well, with a somewhat slower convergence rate
than the RA-1 counterpart while still showing superior
convergence to the SS method beginning at ~10 sample points.
Even so, the convergence rate of the proposed technique is not
slower than RA-1 by a major amount and is still competitive.
Note that the saturation precision of the proposed method
appears to be 14-15 digits for all cases as opposed to the 16 digit
machine precision, but this is not taken as a strong detriment for
any practical application, as the difference of 1 or 2 digits will
certainly be overwhelmed by error introduced by other factors
of a full-wave simulation such as the geometric fidelity of the
model.

To continue our analysis, we will examine the convergence
effects of deforming the triangle to reduce its quality. To
quantify the quality of the triangle, we will use the following
Figure of Merit (FoM) similar to that proposed in [22]:

A

FOM=4\/§ )
— 2 —2 —2
\/|121| + [l + |Lis]

(7.9)

where the variables are defined as in eqn. (7.1) and eqn. (7.2).
To deform the triangle, we will take x; and move it toward the
edge connecting x, and X3 (es,) along the line connecting X7
and its projection onto edge e;,, making the triangle thinner and
thinner. We will then represent the convergence rate by tracking
the amount of correct digits obtained for 10 base sample point
integral evaluations. Fig. 9 shows this result. Note that the
highest FoM shown corresponds to the nominal triangle with no
movement of x;. As the figure demonstrates, the convergence
rate does indeed degrade as the triangle quality is reduced,
taking a somewhat linear degradation. This result is not
unexpected, as lower-quality triangles typically lead to a marked
reduction in numerical tractability for such problems as those
investigation here. Still, the convergence variation shown in Fig.
9 does not indicate any major weaknesses of the formulation
presented in this work.

Finally, we will investigate the convergence dynamics of
changing a near-singularity’s position relative to the triangle
interior. To do this, we will place the near-singularity at a
distance of /100 away from the midpoint of e3, and rotate its
position about the e5, axis. Fig. 10 shows this process. For edge
rotation angles between 0° and 90°, the near-singularity is
positioned above the triangle interior, making its projection
within interior to the triangle as well. Meanwhile, when the
angle is between 90° and 180°, the projection lies exclusively on
the triangle edge. The effect of the positioning on the
convergence rate is again evaluated by looking at the number of
correct digits using 10 base sample points. Fig. 11 indicates that
the convergence rate increases markedly once the projection of
the evaluation point is on the edge of the triangle, though there
is no angle for which the convergence rate is compromised to
the point of un-usability.
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This is interesting, as it shows that the proposed technique
prefers the projection of the evaluation point to lie outside the
triangle interior, at least when the evaluation point is near the
edge. The exact reason for this is not clear, but warrants further
investigation in the future.

This concludes the analysis for the case of a flat triangle. In
the next section, the analysis will be repeated for a quadratic
curvilinear version of similar scale.

VIII. CURVILINEAR TRIANGLE NUMERICAL EXAMPLE

To define our curvilinear triangle to investigate, we start with
the vertices defined in eqn. (7.4). We will call these vertices the
“base nodes”. We then define 3 additional nodes by starting at
the midpoints of the straight edges connecting the vertices and
then moving those points a distance of A/50 in the direction
normal to the plane of the triangle defined in the previous
section, creating curvature. We define this A/50 value as the
“curvature height” (we will use this definition later for triangle
deformation tests). Using these 6 points, we apply the mapping
procedure discussed in Section V to define a projected flat
triangle in (u',v") space and conduct the polar scaling
integration. For our basis functions, we use RWG-like basis
functions created using the (u’,v") mapping formalism
developed here. These basis functions retain the rooftop quality
of the conventional RWG basis functions as well as the
divergence-conforming characteristic. The detailed explanation
of the basis function development is presented in Appendix A.
Note that for this analysis, the functions were scaled based on
Euclidean distance rather than arc length (see Appendix A).
Here, we run the same convergence experiments as were
presented in the previous section, again comparing the results to
those shown in [16]. The 61 (7) basis function evaluations for
these experiments are given in Table II. It should be noted that
the exact node positions for the triangles analyzed in [16] are not
given and that different edges appear to be used for the near and
exact singularity results (see Figs. 12 and 13 of [16]), but it is
assumed based on the results that the dimensions and curvature
are comparable. In Figs. 12-14, the convergence results are
given for the same evaluation point placements as in the
previous section. Examining these results, we see that the
proposed technique vastly outperforms the SS method and
moderate and high precision for all cases. It is also seen that,
interestingly, the proposed technique shows consistently better
convergence than the RA-1 method at moderate precision, but
then is passed as both methods approach saturation. A possible
reason for this could be due to the presented curvilinear
formulation. As detailed in Section V, a mapping is conducted
by solving a matrix equation based on the number of given nodes
to find polynomial mapping coefficients. These coefficients, by
necessity, only approximate the mapping for the entire shape,
with more coefficients providing a more accurate mapping. As
more points are used in the integral evaluation, any error
introduced by the finite resolution of the mapping can impact,
but not destroy, the precision values when such values become
extreme. On the other hand, the curvilinear formulation used in
[16] appears to rely on area coordinates defined using Lagrange
Interpolation Functions [23], which increase the complexity of
the mapping but offer higher-quality interpolation. This could
be the source of the convergence differences. Perhaps the polar
scaling curvilinear extension can be revisited using Lagrange
Interpolation Functions, but this will be reserved for future
work. In any case, the convergence rate of the proposed
technique is fast enough to justify its consideration in
comparison to the RA-1 technique, recalling that the latter
method is not general since it requires analytical treatment.
Next, we will deform the triangle formed from the base nodes
(which also forms the flat projected triangle in our curvilinear
formulation; see Fig. 3) in the exact same manner
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Fig. 12. Convergence results vs. base sample points for a curvilinear triangle
with centroid evaluation point exact singularity (a) near-singularity (b).

as the triangle in the previous section and investigate the
convergence effects as a function of the projected triangle FoM
defined by eqn. (7.9). The results of this are shown in Fig. 15.
As before, reducing the quality of the base triangle negatively
impacts the convergence rate of the integration, but again, the
formulation appears to be robust enough to not be debilitated
rapidly when the triangle quality reduces.

Finally, we will examine the convergence effects of
increasing the triangle curvature while keeping the base triangle
constant at is nominal shape. To do this, we will sweep the
curvature height between A/50 and A/5. The results of this study
are given in Fig. 16. As expected, increasing the curvature
decreases the convergence rate, which is likely due to the
weakening of the mapping approximation as the curvature
becomes more extreme. Nevertheless, again, high deformation
does not render the proposed technique un-usable, as the
convergence, while degraded, is not invalidated.

IX. CONCLUSION

In this work, we have demonstrated a powerful polar
transformation technique that eliminates the strong singularity
found in common Helmholtz surface integrals used in MoM
formulations regardless of observation point position. The
technique is applicable to any non-singular basis function and
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Curved Triangle Convergence Comparison vs. Number of Sample Points

16 - —°Centroid Exact 1
—=—Centroid Near
Edge Exact
14 ——Edge Near

=
N
T

=
o
T

# of Correct Significant Digits

102

10
Sample Points
Comparison of curved triangle convergence for all investigated cases
evaluated using the polar scaling technique.

Fig. 14.

straight-edged planar or curvilinear shape, making it highly
versatile compared to singularity extraction techniques, which
require a new analytical integral to be evaluated for each type of
shape and basis function. Moreover, the polar scaling formalism
is intrinsically open to extension to higher order surfaces and
more sophisticated edge geometries. Furthermore,
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this work mathematically proves that the Helmholtz strongly
singular integral is convergent and specifies the explicit
principal value of the integrand at the singularity, whereas no
such evaluation has been made readily available in the literature
for this case before now. The technique of this work also has
been shown to achieve precision on par with similar methods
while offering greater generality. As such, the technique
proposed here represents a powerful method for evaluating
Helmbholtz integrals over 2D straight/curved domains.

APPENDIX A: CURVILINEAR TRIANGLE RWG BASIS FUNCTIONS

For this work, RWG-like basis functions were developed for
curvilinear triangular shapes of arbitrary order. These basis
functions were designed with the following properties in mind:

1. Like the conventional planar RWG basis function, each
curvilinear function must have a “rooftop-like” profile
with respect to a shared edge between two curvilinear
triangles, with the functions reaching their maximum
values at the shared edge.

2. The functions must be tangential to the curvilinear
shape’s surface at all points in the shape domain.

15
TABLEI
N, (%) FLAT TRIANGLE INTEGRAL RESULTS
- . . Near
Position Exact Singularity — Singularity
Centroid  (0.000161203717652 (—0.074835904131704
— 0.000002251673733j)X + 0.000153651741319j))%
+ (—0.000075040899677  + (0.017387341770886
+ 0.000001048162072j) — 0.000036335312426§)y
+(0.000052081694088 +(0.274792700073766
— 0.000000727470707j)z — 0.000537141740016j)2
Edge (—0.0006852559009511 (—0.103568200417083
+ 0.000005088303876j)% + 0.000160767847553j)%
+(0.000318989041105 + (0.030794257217944
— 0.000002368623418j)y — 0.000038938318873j)y
+(—0.000221392463681 +(0.182176162745084
+ 0.000001643929121j)Z — 0.000532913386629j)2
TABLE II
[ (7) CURVILINEAR TRIANGLE INTEGRAL RESULTS
. . . Near
Position Exact Singularity — Singularity
Centroid  (—0.004444190995035 (—0.074518090511891
+ 0.000004051669403j)% + 0.000164855959553j)%
+(—0.011236180468949  + (0.010192675190397
+ 0.000000349778635j)y — 0.000037584862160j)§
+(—0.009476922031595  + (0.256426576930666
— 0.000002531356276j)2 — 0.000554916795460j)2
Edge (—0.008717979624414 (—0.116416533969791

+ 0.000013887597464j)%
+(—0.004123591155202
— 0.000006713955664))9
+(—0.003971112418414
— 0.000002366391620j)2

+ 0.000174539936228j)%
+ (0.045983443106824
— 0.000043818344172j)y
+(0.212494211465247
— 0.000553096661029j)2

3. At the shared edge between the curvilinear shapes, the
basis function component normal to the shared edge
contour must be continuous between the + and —
triangles.

To create functions with these properties, we will make use of
the (u',v") mapping outlined in Section V. Consider a +

curvilinear triangle with three basis functions 61 (?7), 62 (7),
and ?3 (7), each corresponding to a vertex and shared edge with

a — triangle. We will consider only Z')l (77) moving forward, as
the analysis is identical for the other two functions. This function
will correspond to vertex 1 of the shape. The curvilinear triangle
may be mapped to a planar version in (v, v") space as per the
procedure in Section V. Using this mapping, we may define a
unique contour on the curvilinear shape that extends from the
vertex of choice to the point where the basis function is being
evaluated. This contour will be defined as the curvilinear
contour that contains every point on the straight line from the
vertex to the evaluation point in (u', v") space, as illustrated in
Fig. Al. We will label this contour Z, where |E| is the arc
length of the contour and the
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projected shape.

direction of Z is the direction the contour is pointing in at the
basis function evaluation point. Let (uy’,v,") be the basis
function evaluation point in (u’,v") space. Then the line
connecting the vertex 1 point (u,,v;) and the evaluation point
in (u', v") space is:

v =mou' —uy) + vy, (A.-1a)
with
(vo" — 1)
=— A.1b
™= Gy —w) (10)

At every point 77 on the curvilinear contour defined by this line,
we observe, using the notation defined in Section V,

or <6r o7 dv
dv' =

5 3 du >du (A.2a)

As such, the arc length |E | may be computed as

ar or dv'
617 du’
w' | Y= by @ = ug) T e = ) + vy = vl

_ i=0 j=0
- M
Uy
my

i=0 j=0

I

d 4

|l|—

du' (A.3)

(Nby (W' = u) [me(u’ —uy) + vy — v}/

i

Where eqn. (5.1) has been substituted in ad differentiated. This
integral may be easily integrated numerically. Meanwhile, the

o - . . S N dr
direction of [, is the unit vector pointing in the direction of d—:,

at the evaluation point, which, after some algebraic
manipulations, leads to
I, D (A.4a)
= —, .4a
D]

e izl: E(lfo’ = ug) T mo(uo” = up) + vy — Vo’]jf1 .(A.4b)
i [G = Nme(ue’ —uy) +v1 — 1) + moj(Us’ — up)l

If we use Z to scale our basis function, properties 1 and 2 above

will be satisfied, given that the magnitude of this vector

increases from 0 as the contour running from the vertex to the

shared edge is approached and its direction is tangential to the

curvilinear shape by definition. To satisfy the third property, we

must find the component of [, that is normal to the shared
edge contour at all points on the edge and normalize the basis
function by this value. Since the shared edge is defined by the
line connecting (u,, v,) and (us, v3) in (u',v") space, we may
define the shared edge contour according to the line

v =my(u, —uy) + vy, (A.5a)
with
(v3 — ;)
m, = ——=. A.5b
* " ) (4:50)

Using the same analysis as above, we may represent the vector
parallel to the edge contour at any point on the edge as

>
I
| =

(A.6a)

=0

5 iz e R L
e [ = Dme(ue’ = uz) + vz = vo) + mej (U’ — Up)]
For any contour represented by Z that intersects with the shared
edge, the dot product of [, and the local in-plane edge normal
vector is equal to the cosine of the angle between [, and the edge
normal vector, which is equal to the sine of the angle between I,
and the edge tangent vector é. Therefore, at the edge point, the
edge normal component of Z is

lor = e |G x &]. (4.7)
For each (u,’,vy"), there is only one line that connects vertex 1
and the evaluation point that intersects with the shared edge. To
find the point (ugz.', v4.") where this occurs, we merely develop
the following system of equations from the expressions for the
evaluation and edge lines in (u', v") space:

—-my  1][uge'] _ [V1 — Moy
[_me 1] [vae’] - [UZ — meuZ]’ (A8)
which has the solution
[uae]_—[ V1 — Uy — MoUy + MU, ] (A 9)
Vee'l  m, —mg IMevy — Moy + meme (U, —ug) " M

With this, we finally arrive at the curvilinear RWG basis
function:
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N () P (4.10)
|lae ||lae ><eae'

where the quantities in the denominator are the values of eqn.
(A.3), eqn. (A4), and eqn. (A.6) evaluated at the point
(Uge', Vae!) solved in eqn. (A.9) and 1, is evaluated as per the
procedure outlined above for an evaluation point (u,’,v,") in
(u',v") space. The normalization in the denominator guarantees
that the normal component will always have a magnitude of 1 at
the shared edge, asserting the property 3 continuity. fz (7) and
E3 (7) may be formed using identical methods for the other two
sets of vertices and shared edges. The basis function for a —
triangle is merely eqn. (A.10) with a negative sign and quantities
defined by the — triangle vertex in (u',v") space opposite the
shared edge.

Alternatively, fn (7) may be scaled according to the
Euclidean distance from the evaluation point to the relevant
vertex on the mapped planar triangle. That is, for the basis

function extending from vertex 1, z| would be equal to the
length of the vector connecting (u,, v;) and (uy’, v,") in (W, v")
space. Formulating the basis functions this way eliminates the
need to compute an arc length integral for each evaluation while
maintaining the rooftop-like quality and normal component
continuity on shared edges. The drawback is that the basis
function no longer increases in magnitude uniformly along the
contour connecting the vertex to the evaluation point on the
curvilinear shape. However, for triangles of sufficiently-low
curvature, the effect of this should not be stark. Full
understanding of such curvature limitations would require
comparisons of full-wave integration results using both function
types and is beyond the scope of this work.
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