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1. Introduction 
The difficulties arising in the design of the rf system for a factory-type storage 

ring lie mainly in two areas. First, a gap in the circulating beam current (on the 
order of 5% of the ring circumference) is required for ion clearing. Because of 
the high beam loading current, this gap produces a strong transient variation 
in the rf cavity voltage, which can in turn lead to a significant shift in the 
synchronous phases between bunches on either side of the gap. This phase shift 
would produce an unacceptable shift in the collision point, unless compensated 
by a corresponding shift in the bunch phases in the other ring. In order to 
work out the details of this compensation, the transient beams loading effects 
produced by the gap must be calculated quite carefully. A major goal of this 
chapter is to provide the insight and the basic analytic tools necessary for this 
analysis. 

The second major problem for the fundamental mode rf design is also 
a consequence of the high average current (and the consequent large 
number of bunches) needed for a storage ring particle factory: longitudinal 
multibunch beam instabilities at sideband frequencies within the passband of 
the accelerating mode. These instabilities can be damped by an appropriate 
feedback system, as discussed elsewhere in these pr0ceedings.i However, 
as background for this problem, we need to understand the phase and 
amplitude variations produced in the cavity voltage when the bunches undergo 
small-amplitude synchrotron oscillations. In the final section, the cavity voltage 
variation induced by such oscillations is calculated and applied to compute the 
Robinson damping time. 

The emphasis throughout this chapter will be to provide a thorough 
understanding of beam loading effects. To this end, we begin in the next section 
with a calculation of the voltage induced in a cavity by a single point charge 
passing through it. The result will be a Green’s function for beam loading 
problems. Once the solution for a point charge is known, the beam-induced 
voltage for a bunch with arbitrary longitudinal charge density profile, or for a 
train of such bunches, can then be constructed by an appropriate superposition. 

‘Work supported by Department of Energy contract DE-AC03-76SF00515. .- 
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2. Beam Loading by a Single Bunch 
The derivation in this section relies on three basic assumptions. First, conservation 

of energy applies to the interaction between a moving charged particle and the fields 
in a cavity or accelerating structure. Second, we assume that superposition applies; 
that is, the net cavity field can be constructed as a vector (phasor) sum of component 
fields. Usually, this phasor is viewed in a reference frame rotating at either the cavity 
resonant frequency, or if there is an external generator driving the cavity, at the rf 
drive frequency. The third basic assumption is that the cavity fields are those for 
a single nondegenerate cavity mode which is orthogonal to all other modes. Thus 
a charge passing through a cavity independently deposits energy in each mode with 
which it can interact. We assume the conductivity of the cavity walls is sufficiently 
high so there is no significant coupling (overlap in impedance) with any other mode. 
We consider only the case of highly relativistic charged particles moving close to the 
speed of light. This has two consequences. First, the particle cannot change its 
velocity in response to beam-induced or generator-produced cavity fields. This allows 
a train of such particles to be modelled as a current generator in an equivalent circuit 
analysis of a beam-loaded cavity. Second, the cavity fields, summed over all cavity 
modes, must obey causality; that is, there is no net induced field ahead of a relativistic 
particle. This point will deserve further comment. 

2.1 The Voltage and Energy Induced in a Cavity by a Point Charge 

Assume that a charged particle moves through a cavity along the z-axis. In a given 
mode, the field at any point E,(z) is related to the energy U stored in the mode by 

Es(z) = a(%) u”2 . 

A change in mode energy dU will produce a field change 

(2.1.1) 

dE,(z) = 2 dU . 
z 

On the other hand, a charge q moving through distance dr will lose energy 

dU, = -qE,d, . 
This energy must go into energy stored in the cavity fields. The fields in this particular 
mode must then increase everywhere in the cavity during time dt = dt/c, even ahead 
of a particle moving at v N c. Causality does not apply to the cavity fields for a 
single mode, but it must of course be satisfied by a superposition of all modes. This 
is insured by the structure of Maxw!J’s equations, together with the cavity boundary 
conditions. By conservation of energy, dU (mode) = dU, (lost by charge), giving 

dE,(z) = -; qa’(r) dt . (2.1.2) 

This is the differential element of field induced by a charge in moving distance dx 
in the cavity. The minus sign indicates that the induced field opposes the motion of 
the charge. To calculate the net induced field, we must integrate the motion of the 
charge across the cavity, taking account of the fact that earlier induced differential 
field elements are rotating in phasor space according to eJuot, where we is the resonant 
frequency of the cavity. Calculating the net induced field at any time as the charge 
crosses the cavity is then a matter of adding up all of the field elements induced at 
earlier times. For convenience we choose a reference position E = 0 at the entrance 
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to the cavity, where E*(O) i ED and o(0) s CWJ. Then, assuming the position of the 
charge is given by z = ct, the change in field at the reference position during time dt is 

dEo (t) = [ao/4z)ldE,(z) = -; qc[aoa(ct)] dt . 

Using complex (phasor) notation, where a phasor quantity is denoted by a tilde, a 
field element induced at t’ will ring as a function of time according to 

Eo(t) = dEo(t’) eh(t-t’) . (2.1.3) 
The net field at I = 0 at the time the charge exits from the cavity at z = L and 
t = L/c is then obtained as the superposition of all the differential field elements 
induced at earlier times, taking into account their proper phases: 

L 

gob (t = L/c) = -;qcro 
I 

a(%‘) e jko(L-2’) dz’ , (2.1.4) 

where ke = WO/C and the subscript b indicates the beam-induced value. Note that i&b 
is proportional to the charge times a factor that depends only on the geometry of the 
cavity mode, and not on the field amplitude. It will be useful to define a quantity k~, 
called the loss parameter for reasons which will become apparent, which depends on 
the mode configuration: 

ki E 
v. p v2 
-=z* 4u 

(2.1.5) 

Here 7 is the cavity voltage (and v* the complex conjugate) seen by a test charge 
moving across the cavity according to z = c(t - to) with Er(z, t) = E,(z) eJwot. The 
voltage seen in a frame of reference traveling with the particle is then 

L 

pi ejwOtO 

I 

E,(%‘) ej~O”dz’. = VehtOte ; 

v s Iiq =$2 +sy ; tan9 = S/C ; (2.1.6) 

L L 

C= 
I 

E,(z) cos koz dz ; s = 
I 

E,(z) sin koz dz . 

0 0 

It is often convenient to define a reference plane at zr I B/ko, such that the voltage 
gain of a test charge (electron) is given by v = VeJWotr, where t, is the time at 
which the charge crosses the reference plane. Using the above definitions, together 
with Eq. (2.1.1) in Eq. (2.1.4) to eliminate o(z) and (~0, the beam-induced voltage 
becomes _ 

vb = jkoL?/v] , vb = lvbl = 2kLq. (2.1.7) 

The quantity in brackets gives the phase of the beam-induced voltage with respect to 
the voltage defined by Eq. (2.1.6). 

The voltage induced by a charge, as given by Eq. (2.1.7), is independent of any 
prior voltage present in the cavity. This is true because in equating dU (mode) to 
dU, (lost by the charge) to obtain the differential beam-induced field element given by 
Eq. (2.1.2), both sides were proportional to the pre-existing field E,, which therefore 
drops out of the final expression. The stored energy remaining in the cavity after the 
exit of the inducing charge must in general be calculated by first taking the vector 
(phasor) sum of the beam-induced voltage and any pre-existing voltage, and then 
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Figure 2.2.1. Differential superposition for two cases: (A) a mode in 
which E, decreases along the particle trajectory; (B) a mode with 
constant E, along the particle trajectory. In both cases, the field 
(for given stored energy) is assumed to be the same at I = L. 

calculating the energy using Eq. (2.1.5). If there is no pre-existing cavity excitation, 
then the beam induced energy is given by combining Eqs. (2.1.5) and (2.1.7) to obtain 

VZ 
Ub = -L = ktqZ ; 

4kt 
(2.1.8) 

hence the name loss parameter for the quantity kt. The effective voltage V, “seen” 
by the charge is the voltage necessary to extract energy ub, or 

v, = &,/q = ktq . (2.1.9) 
This is just one-half of the induced voltage left behind in the cavity. This result is 
sometimes called the Fundamental Theorem of Beam Loading. Crudely stated, the 
charge does not experience any retarding voltage as it starts to cross the cavity, while 
it sees the full induced voltage as it leaves the cavity. On the average, it might then 
be expected to see one-half of the final induced voltage. 

2.2 Differential Superposition 
Figure 2.2.1 shows the geometry of the superposition of the beam induced differential 
field elements for two cases. Case A shows an example in which the field function o(z) 
in Eq. (2.1.1) decreases with z, while case B is for a mode with a uniform electric field 
along the particle trajectory. The induced field elements are shown at time tt = L/C, 
just as the particle leaves the cavity. Therefore the last induced field element lies 
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along the negative real axis of the phasor diagram. Following Eq. (2.1.3), an earlier 
field element induced at time t = t’ will have rotated in phasor space by an angle 
wc (tt - t’). The first field element induced at t’ = 0 will have rotated by an angle (the 
transit angle) 6’~ = woL/c. For the case of constant E,, it is seen that the reduction 
in the induced field due to the fact that the particle takes a finite time to cross the 
cavity, as compared to the induced field for a charge of infinite velocity, is just the 
ratio of the chord length to the arc length shown in the diagram: 

T ;;” x---c 2R sin (&/2) = sin (&r/2) 
T R@T ‘9T/2 ' 

where T is just the usual transit angle factor. The phase of the net beam-induced field 
is seen to be rotated by an angle &r/2 with respect to the final induced element. This 
is also the phase of the field induced at the center (symmetry plane) of the cavity. 

2.3 Bunch Form Factor 
The voltage induced by an arbitrary charge distribution can be related to the charge 
induced by a point charge using a bunch form factor. The voltage at time t induced 
at time t’ by a charge element dq = I(d)&’ is 

Z(t) = -2kr I(t) ,Mt-t’) dt’ , 

The total voltage induced by the charge distribution can be set equal to that induced 
by a point charge, reduced by a factor Fb and located at time to (or at phase wto = q5), 

00 

P(t) = -2kt 
I 

I(t’) ,Mt-4 dt’ = -2q kL Fb ejcwt-‘) . 

-00 
Solving for Fb and 4, 

Fb E= (c$+ c;)” ; tan4 = 5 
cs ’ 

(2.3.1) 

where C’S and CA are the symmetric and antisymmetric integrals 
00 00 c* = 1 Q J I(d) co9 wt’ tit’ ; CA = ; J I(i) sin wt’ dt’ , 

-co --oo 

If a charge distribution having a time-width which is not negligible compared to the 
rf period is accelerated across a cavity, the average energy gain per electron in the 
bunch is reduced by the same form factor. If VO ejWt is the energy gain by a point 
particle crossing the cavity, then the charge-weighted average energy gain is 

03 

Fa;.,. = 3 J IlO &t-t’) dt’ q = &Fb ej(wr-+) , (2.3.2) 

-03 
where Fb and 4 are again given by r:q. (2.3.1). It is important to note that, for any 
charge distribution, both the average accelerating voltage and the net beam-induced 
voltage are reduced by exactly the same factor with respect to a point charge. The 
position (phase) of an effective point charge which replaces the distribution is also the 
same. 

Some useful bunch form factors are: 

Fb(Gaussian) = e 
-w,2u:/2 

Fb(rectangular) = 
sin(wu ??t,/2; 

woTb/2 ’ 
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where ot is the rms bunch length (G aussian) and Tb is the full bunch width 
(rectangular). 

2.4 Summary Comments on Single Bunch Beam Loading 

In this section we have tried to give a reasonably thorough understanding of the 
physics underlying the voltage induced in a cavity by a single bunch. If we add the 
fact that this voltage will decay as a function of time according to e-‘jTF, where 
TF = ~QL/WO is the loaded cavity filling time, then we have a Green’s function for 
calculating any beam loading problem. The voltage induced by a train of bunches 
with arbitrary charges and spacing is then calculated by superposition. In the general 
case, of course, the voltage produced by an external generator must be included by a 
further superposition. In a storage ring, a strong constraint is added by the fact that, 
after initial damping, the bunches adjust their phases with respect to the net cavity 
voltage in a way such that each of the bunches gains the same energy (to make up for 
synchrotron radiation and impedance losses). This can add considerable complexity to 
beam loading calculations when bunch charges or bucket spacings are not equal-for 
example, when there is a gap in the circulating beam. 

3. Beam-Loading by a Train of Equally Spaced Bunches 
3.1. Beam-Induced Voltage for Small Bunch Spacing 

Using the definition of cavity voltage in Eq. (2.1.6), we can now define a cavity shunt 
impedance R in terms of the power PC dissipated in the cavity walls, R I V2/2Pc. 
We assume the usual definitions for the Q’s of the unloaded cavity, Q  E woU/Pe, and 
loaded cavity, QL E Q/(1 + p). Here p 3 P,/P, is the usual coupling coefficient for a 
coupling aperture or loop, such that P. is the power emitted from the aperture into a 
matched load when there is no incoming rf wave from an external source. Taking the 
bunch spacing as ATb, we have the following relations and definitions: 

V2 wg R kLi-=- - ; 
0 

V2 
4U 2 Q awoU; 

ri!s 
Tf 

; 

~QL Tf = wg = 2Q 
wo(l +P) ; 

VbO IoATb = $$*T , 

(3.1.1) 
where 10 = q/ATb is the dc current assuming equal bunch spacing. For a bunch 
current distribution of non-negligible time width, both V and VW must be reduced 
by the bunch form factor, as discussed in Sec. 2.3. A time reference is chosen such 
that the voltage VW induced by each of the bunches (assumed to be equally spaced) 
passing through the cavity lies along the negative real axis, following the convention in 
Sec. 2.3. We now assume that the bunch spacing is related to an rf frequency w, which 
may be different from the cavity resonant frequency wu, such that wATb = 2rb, where 
b is an integer (the number of rf wavelengths between bunches). Between successive 
bunches, the induced cavity voltage slips in phase (relative to a phasor coordinate 
frame rotating as eJwt) by an amount 

6 = (wo - w) ATb 

and decays in length by a factor e-‘. The process of the build-up of the net beam 
induced voltage is illustrated in Fig. 3.1.1, shown after a large number of bunches 
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have passed through the cavity. The net induced voltages just before and just after 
the bunch arrival time are denoted by vb- and Vd) where 

vb+ = -VW (1 + e-+ ej’e $ e-22 e2js + . . .) = 1 -->cja . 

Taking the limit ATb/TF 4 0, such that r, 6 < 1, 

tit,&?,*- - 4 

(3.1.2) 

v+ f? prvb -* -VW. r+j6 2IoR 
b , ba, b - = -- c08t+hj~ 

r2 + 62 l+P 

tan+ = $ = (w0 - w)Tf = Z(wo -w) . 

We see that $ is just the usual tuning angle, which gives the variation in the phase of 
the beam-induced cavity voltage as the cavity is tuned off resonance. The magnitude 
of the induced voltage varies as COB 4, and therefore the tip of the phasor representing 
vb follows a circle with diameter 21011/(1 + p) in phasor space as 11, is varied, as 
shown in Fig. 3.1.2. As is customary in complex notation, positive II, is defined in the 
counter-clockwise direction. 

If the series in Eq, (3.1.2) is summed to the nth term, 

V$(n) = - 
VW (1 - e--nr ejns) 

1 --e-T ej6 * 

Again let 6, r + 0 and approximate n by t/ATb = t/rT,. The above expression then 
becomes 

2IoR 
A(t) = -- -t/TF(l-j tan $) 

l-rP 
co8 11, ej’ [l - e 1 * (3.1.3) 

It is easy to show that transient variation of vb(t), represented by the quantity in 
brackets, follows a logarithmic or eqdi-angular spiral (for example, see Ref. 2, Sec. 7.1). 
This is illustrated in Fig. 3.1.2, where a difference vector vd(t) has been defined which 
connects ?s(t) to &(oo). The tangent to the transient path followed by vb always 
makes angle (I with respect to -v,, which shrinks in time as Vd(0)e’“/TF and rotates 
at a constant angular rate given by ejctlTF) tanti = e3(wo-w)t. 

3.2 Relation to a Parallel-Resonant Equivalent Circuit 

The result in Eq. (3.13) has been derived from basic principles, such as conservation 
of energy and superposition, with no reference to an equivalent circuit. However, 
this result is exactly what would be expected for the voltage induced by a current 
generator with rf current Tb = -210 across a parallel resonant circuit with shunt 
resistance R, shunt capacitance l/C = wc(R/Q) = 4kt, shunt inductance w,‘(R/Q), 
and shunt resistance R//3 to represent loading by the coupling network and external 
transmission line (assumed to be matched looking toward the generator; see Ref. 2, 
Sec. 3.5). Summarizing the results in the previous section, we have in the steady- 
state limit for the beam-induced voltage, 

vb = -I&. cos$ ej+ , Vbr 
IbR 

= rvm = - = 
2IoR 

l+P I+p’ 
(3.2.1) 

where Vb is the magnitude of vb at cavity resonance. 
A current generator Ig can now be added to represent an external rf source driving 

the cavity. The rf power of the source is then identified as the available power from 
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Figure 3.1.1. Diagram showing the buildup of the beam-induced 
voltage in a cavity by a train of equally-spaced bunches. 
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Figure 3.1.2. Diagram showing that the transient buildup of the 
beam-induced voltage i&(t), f 11 o ows an equi-angular spiral (solid 
curve), where angle p(t) = (WO - w)t = (t/TF) tan 1(, and Va(t) = 

vb(m) e --t/b . The steady-state beam-induced voltage, vb(oo), 
follows a circle as cavity tuning is varied (dashed curve). 
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the generator, Pg = IzR/Sp (see, for example, the discussion in Ref. 2, Sec. 3.5). The 
voltage produced across the circuit is then 

%  = v,, cos + ej$ , . (2RPg)“’ . (3.2.2) 

Again note that if the bunch length is not small compared to the rf wavelength, both 
10 and IO must be multiplied by the bunch form factor. From the form of Eq. (3.2.2), 
the tip of the phasor & also traces out a circle as the tuning angle II, is varied, as 
shown for vb in Fig. 3.1.2. If a step change is made in the driving generator voltage, 
&o(t) also approaches a new steady-state value, vs(oo), along an equi-angular spiral. 
That is, the difference vector Vd(t) I vg(t) - vs(oo) shrinks in magnitude as e-‘iTF 
and rotates in phase as e j(wo-w)t, in the same manner as vd(t) in Fig. 3.1.2. 

3.3 Bunch Spacing Comparable to the Cavity Filling Time 

For a factory-type storage ring with a large number of bunches, the bunch spacing in 
time will be very small compared to the cavity filling time. There may, however, be 
occasion to calculate beam loading effects with only a few bunches in the ring (as is 
the case for most rings for high energy particle physics). The approximation r + 0, 
and vbt kc vb- cannot now be made. According to the Fundamental Theorem of 
Beam Loading, each bunch will experience the net voltage induced in the cavity by all 
bunches that have previously pass through it, Fb-, plus one-half of its own single-bunch 
induced voltage, -~VW. This is the voltage A, shown in Fig. 3.1.1. From Eq. (3.1.2), 

1 1 
= - vm [ 1 _ e-lej6 -- 1 = 2 -%I (FR t jFI) , 

(3.2.3) 

FR = 
1 - e--27 r-b0 I 

2(1 - 2e-r cos6+e-sr) - - r2 $ 62 

F’=(1-2 
e-’ sin6 7-O 6 

e-7 cot3 6 + e-27) - - * r2 + 62 

The quantities FR and FI give the steady-state values of the real and imaginary parts 
of the beam-induced voltage after an infinite succession of charges have passed through 
the cavity, as compared with the voltage induced by a single passage of the charge. 
The quantity 

~FR = %[vba] / -iVm 

is sometimes called the resonance function, since it gives the net retarding voltage seen 
by a charge passing through a cavity with a resonant build-up of the beam-induced 
voltage, as compared to the voltage seen on a single passage. The resonance function 
is plotted and discussed in Ref. 2, Sec. 6.5. 

In the limit of small r, using VW = rvbr and 6 = r tan $, Eq. (3.2.3) approaches 

Gb:bo -+ -fir [rFR + jrFr] = -Vbr cos$ ej’ 

rFR -+ cos2 4 ; rFI --) cost+5 sin* . 
(3.2.4) 
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4. Steady-State Beam Loading 
in a Storage Ring RF System 

4.1 Basic Phasor Diagram 
In the previous sections the beam-induced voltage in a resonant cavity was derived 
from first principles, without an external rf generator. In this case, it is reasonable 
to choose a reference phase such that the beam-induced voltage at resonance lies 
along the negative real axis. We will follow this same conventions in drawing phasor 
diagrams for the general case in which an rf generator voltage component is present. 
This is at variance with the notation often used, which places the net cavity voltage 
along the positive real axis. There is not space here for a full discussion of the relative 
advantage and disadvantages of these alternative choices of a phasor reference frame. 
As a minimum, the reader will gain perspective by learning to view storage ring beam 
loading problems from a different vantage point. 

343 2521Al 

Figure 4.1.1. Diagram showing vector addition of generator and beam 
loading voltages in an RF cavity. 

Figure 4.1.1 shows the basic phasor diagram in which the net cavity voltage, ?& is 
obtained from the superposition of V, and vb, as viewed in a reference frame rotating 
as eJwr, where w is the rf frequency and ws the cavity resonant frequency. The beam 
current phasor lies along the positive real axis. The projection on this axis of the cavity 
voltage, lying at the synchronous phase angle 4, gives the accelerating component 
of the voltage. The generator current, which is colinear with the generator-induced 
voltage at resonance, vs’,,, lies at an angle B with respect to the real axis (and with 
respect to the beam current, Ib), As the cavity is tuned from resonance by a positive 
value of wg -w, both vs and ?b rotate in the counter-clockwise direction through angle 
$, where tan4 = 2Q,5(wc - w)/w. It is also assumed that QL is relatively large . 

From the diagram in Fig. 4.1.1, the real (accelerating) and imaginary components 
of the net cavity voltage V, are 

VA =vc COS 4 = k-g, CO8 $ CO8 (0 + $) - Vbr COs2 $ , 

VI =vc sin 4 = vsF co6 4 sin (6 $ 4) - vbr co6 4 sin $ . 
(4.1.1) 

By eliminating (6 + 4) from these two expressions (transfer the Vbr components to 
the other sides of the equations, square, and add), then substituting for V,, and I& 
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using Eqs. (3.2.1) and (3.2.2), we obtain the required generator power in terms of Vc 
and d for a given cavity tuning $ and coupling /3, 

v: (1$P2) 1 
po = 2R'-'--- 

2IoR 
2 

4P CO82 tj + vc(l + p) ax2 4 1 \ I 
+ 

210R 
vC(l+p) cos$ sin+ . 

(4.1.2) 

Angle 0 is now fixed, and can be obtained, if desired, from either -of Eqs. (4.1.1). 
In the general case when the bunch spacing is not small compared to the cavity 
filling time, the generator power can be obtained by substituting TFR and TFI for the 
factors cos2 4 and cos 4 sin 4 inside the brackets in Eq. (4.1.2), where FR and FI are 
given by Eq. (3.2.3); see Ref. 2, Sec. 6.4, for details. 

4.2 Tuning Adjusted for Real Beam-Loaded Cavity Impedance 
The reflected voltage from a beam-loaded cavity will look real (that is, it will have the 
same phase as the voltage reflected from the cavity at resonance without a beam) if 
the net cavity voltage E is colinear with vg:,r (and therefore with &). From Fig. 4.1.1, 
this implies that 19 = 4. Using this condition, and applying the law of sines to the 
phasor triangle in Fig. 4.1.1, 

vb vbr co8 ti 

E’= v, = 

sin(4 -0 - ti,) = 

sin e 

sin40 ; 

sin 4 
v7 (4.2.1) 

tan *O = -F sinqj , 

c 

By differentiating Eq. (4.1.2) with respect to $, we find that 1c, = $0 is also the 
condition for minimum generator power (and hence minimum power reflected from 
the cavity); Substituting for $ in Eq. (4.1.2) using the condition in Eq. (4.2.1), we 
have at optimum cavity tuning, 

V PO = ve + vb, CO8 t$ , (1 + P)’ v,‘ro PO0 = - . - , 
48 2R 

(4.2.2) 

By differentiating Pgo with respect to p, we find the value of cavity coupling which 
minimizes the generator power: 

PO 
2&R cosqi 

=l+ v 
f 

= 1+$, (4.2.3) 
e 

where pb = IOVc COB 4. Using Pg = 
it is easy to show that P, 

&, + PC + Pr, where Pr is the reflected power, 
= 0 if Eq. (4.2.3) is satisfied. If it is not, but if the cavity 

tuning is optimum according to Eq. (4.2-l), then the reflected power is 

8 = (P-Po)2 . 
c 4P 

(4.2.4) 

As a practical example, consider the PEP-II B-Factory rf system design with 
parameters3 for the 9 GeV high energy ring (values are per cavity assuming 20 
cavities): 

K = 0.925 MV , lo = 1.5 A , R = 3.5 MO , 

VA = K +~OZhc.m k! 0.192 MV , 4 = cos-1 VA/& = 78.0° , 

PC = V32R = 122 kW , Pb = IoVa = 288 kW , 
Here V., = 0.18 MV per cavity is the loss to synchrotron radiation, and &,om x 9 ks2 
allows for losses to higher modes in the rf cavity and to the real part of the per cavity 
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Figure 4.2.1. Phasor relationships for voltages in a PEP-II RF cavity 
at optimum tuning (7s colinear with %) and coupling (no reflected 
power). 

share of the impedance of all other vacuum chamber components. The circulating 
current 10 is set by the luminosity requirement, while the cavity voltage is set by 
bunch length and beam stability requirements, consistent with a reasonable klystron 
power. At optimum tuning and coupling, using (in order) Eqs. (4.2.3), (3.2.1), (4.2.2), 
and (4.2.1), 

/?o = 3.36 , Vbr = 2.41 MV , V,, = 1.425 MV , Ps = 410 kW , 

$0 = -68.6O ) v, = vbr costjo = 0.88 MV , v, = v,, co8 $0 = 0.52 MV . 
As a consistency check, note that the calculated generator power is just equal to the 
sum of the cavity wall losses and the power transferred to the beam, indicating that 
there is no reflected power at optimum coupling and tuning. In practice, the cavity 
coupling is often adjusted to be slightly greater than that given by Eq. (4.2.3), in order 
to make the rf system somewhat less sensitive to beam loading effects. For example, 
the cavity coupling might be set at p = 4.0 in the preceding example, rather than at 
3.36. From Eq. (4.2.4), this increases the required generator power by 0.8% or 3 kW 
(the amount of the reflected power), but reduces Vbr by 13% to 2.10 MV. 

The phasor relationships in the example given above are plotted in Fig. 4.2.1. 
Note that if a klystron fails, the power dissipation in the cavity walls falls to 
(0.88/0.925)2 x 122 kW = 110 kW, while a reverse power pPc = 370 kW is emitted 
from the cavity. If the beam should dump, but the klystron remain on, the power 
dissipated in the cavity is (0.52/0.925)’ x 122 kW = 40 kW, with a reflected power 
that is also equal to 370 kW. It is not a coincidence that this is exactly equal to 
the reverse power for the case of klystron failure. At optimum tuning and coupling, 
the wave emitted through the coupling aperture (or loop) by the beam-induced 
voltage component must exactly cancel the reflected wave due to the generator voltage 
component. 
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Figure 5.1.1. Phasor geometry for the case of a beam with a gap 
where r, < 1, Q > 1. 

5. Beam Loading by a Circulating Beam with a Gap 
5.1 Revolution Time TO Large Compared to the Cavity Filling Time 
We first assume that the gap time, A?‘,, is small compared to the cavity filling time, 
TF, such that r, E AT,/Tf ( 1. The basic assumption in this section is that the 
beam time, Tb = TO - AT,, is large compared to the cavity filling time such that 
rb E Tb/TF ) 1. This insures that the beam-induced voltage recovers very closely to 
its steady-state value after the passage of the gap. If this assumption is not met, the 
problem becomes considerably more complex and will be treated in Sec. 5.2. We will, 
however, be able to treat the more general case r, cz 1 later in this section, as long as 
the restriction Q W 1 is kept. 

The phasor geometry for the case rs < l,~, > 1 is shown in Fig. 5.1.1. Here & 
and E are the steady-state values of the beam-loading and cavity voltages before the 
arrival of the gap, assumed to occur at time t = 0. A simple way to compute the 
voltage change AV is to assume that the actual ring current is continuous, but that a 
current of opposite sign, -lo, is turned on at 2 = 0 for a time AT,. The beam-induced 
voltage then must be along the positive real axis, as shown in Fig. 5.1.1, with a 
magnitude given by 

AV = 2krq = w(R/Q)I;AT, = &,rrg 

I; = IO [To/(To - AT,)] = IO (1 + AT,/To) . 
(5.1.1) 

As before, Vbr and AV must be reduced by the bunch form factor, Fb in Eq. (2.3.1), 
in the case of long bunches. The magnitude of AV can be calculated in a second way, 
since we know that it is the beginning of the logarithmic spiral, shown by the dashed 
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line in Fig. 5.1.1, which eventually would end at the tip of the phasor vg if the beam 
were not turned back on. Thus, according to the discussion following Eq. (3.1.3), 

v; = vb:,c -rgej(wO-w)t , vd = vb emrg # vb (1 - rg) ; (5.1.2~) 

P = (wo - w) AT, = r,tan$. (5.1.21) 

Applying the law of cosines to the triangle AV, vb, vld: 

AV = Vb [ (1 + e-2rg) - 2ewrg co8 (r, tan$)] 1’2 . (5.1.3) 
Expanding assuming small r,, this reduces to AV k( Vbrrs, in agreement with 
Eq. (5.1.1). Now apply the law of cosines to compute Vi in the phasor triangle 
AV, v=, 7: in Fig. 5.1.1: 

Vi = [I': + (AV)’ + 2v,AV cos d] 1’2 (5.1.4a) 

w V, [l + (AV/VJ COST] . (5.1.4b) 
The law of sines gives angle (Y in the same triangle: 

sino = (AV/VC) sin $ , (5.1.5a) 

cy sx (AV/&) sin4 . (5.1.5b) 
The shift in-beam phase across the gap, measured in a reference frame provided by 
the external rf generator (see Fig. 5.1.1), is 

A8 = a+ (d’- 4) , (5.1.6) 
where, using Eq. (5.1.4b), 

CO8 4’ = vj4/v; F* cosd [l - (AVIV,) cosd] , (5.1.7) 
Using the trigonometric expression for [cos 4’ - 
in bunch phase given by Eq. (5.1.6) is 

cos 41 to expand Eq. (5.1.7), the shift 

A9 63 + sin 4 + -tan4 , 
e K 

tan2d+2+ cosd 
112 

(5.1.8) 
e ) 1 

where the term in brackets is the change in synchronous phase, $‘- 4. For d near 90°, 
4’ k: 4 and A$ R (Y z AV/K. For 4 near zero, cy k: 0 and Ad k: 4l-4 B (2AV/Vc)li2. 

It is now easy to lift the restriction rs < 1, although we will not be able to write an 
explicit expression for Ae. In Fig. 5.1.1, G  is now a phasor which no longer lies in 
the positive real direction, but instead has its tip anywhere along the dashed spiral. 
Equation (5.1.3) can be used to find its magnitude. The angle between G and vb 
will no longer be +, but something less, $ - 6 (see Fig. 5.1.2). This angle can be 
computed using the law of sines: 

sin (4 - 6) = (Vd/AV) sinp = [Vbe-“‘/AV] sin(r, tan@) . 

Equation (5.1.4a) can now be used to compute I$', replacing 4 by 4 + 6. 
Equation (5.15a) is then used to compute angle (Y, again replacing 4 by 4 + 6. Angle 
4’ is obtained as 4’ = cos-1 (VA/&'). 

As a numerical example, consider the case of the PEP-II B factory with a 5% gap in 
the circulating beam. For PEP-II, some relevant rf parameters are3: rf frequency, 476 
MHz; TO = 7.34 x lOme set; loss parameter kt = (w/2)(R/Q) x 1.74xlO”V/C; loaded 
cavity Q, QL x 6,700 for a cavity coupling coefficient of 3.5. Thus the filling time is 
~QL/w x 4.5 x 10S6 set, and r, k: 0.08,sb k: 1.6. We see that the basic assumption 
of this section, n >> 1, is not very well met. If we proceed anyway to compute As, 
Eq. (5.1.3) gives AV # 0.19 MV for a circulating current of 1.5A. For a synchronous 
phase angle of 78” and a cavity voltage of 0.925 MV, Eq. (5.1.8) gives Ati = 12”. 
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Figure 5.1.2. Phasor geometry for a beam with a gap with arbitrary 
r, and Q,. 

5.2. Gap with Arbitrary Values of rg and Tb 

Figure 5.1.2 shows the phasor geometry for the case of a beam gap where both the 
gap time and beam time are of arbitrary length with respect to the cavity filling time. 
The basic phasor reference frame is again chosen so that the phase of the last bunch 
before the gap begins, at time t = 0, lies along the positive real axis. During time 
0 < t/Tf < rs the beam-induced voirage component progresses along the logarithmic 
spiral vb(tg), shown by the dashed curve, starting at vbV at t = 0 and ending at vbt 
at t/T1 = r,. During time r, < t/TF < r, $ r-t,, the phasor & travels along the 
dot-dashed curve, driven by a current IA = Ioro/rt,, where rs I To/TF = rb + r,. At 
time t = To, the phasor is exactly back at vbW. If the current were to continue, instead 
of the gap arriving again at t = TO, the tip of the phasor would continue along the 
dot-dashed curve %(tb) to the steady-state position, vbm. 

The transient beam loading problem would be relatively simple if we were dealing 
with a standing-wave linac cavity, driven by an incoming beam with a periodic gap, 
From Fig. 7, we could in this case write the following phasor relation: 

vb+ = c- b e-+’ eja I FgFbB , (5.2.1) 
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where rs and p = r, tan+ are known. Similarly, 
g- = Et e-rb &i E pb g+ , (5.2.2) 

where n and y = Q, tan 4 are also known. We also have 

g,- = &= + g- = VbW $. :bg+ , &+ = Vbb” + ii+ = F&- , 

where vbb” is known from Eq. (3.2.1). Eliminating Et from these two equation and 
solving for Vb-, 

Expressions for the cavity voltage phasors before and after the gap can now be written 
in terms of known quantities as 

vc- = VQ + g,- = vg + iii&- , v: = vg + v$ = vg +~~&= . (5.2.4) 

Since the timing of the bunches is set by an external generator (the injector) in the 
case of a linac, the bunch phase &, stays constant. The bunches before and after the 
gap therefore see different accelerating voltages, given by the real parts of FcB and @. 

In the case of a storage ring with standing-wave cavities, the situation is more 
complex because the bunch phases will adjust themselves, on a time scale on the 
order of the damping time, to pick up a constant accelerating voltage (the synchronous 
energy gain). Thus the reference phase at the end of the gap must rotate through 
angle A8, in Fig. 5.1.2. During the beam-on time, angle y in Fig. 5.1.2 must change 
to take this into account: 

y = rb tan $J - A@ . (5.2.5) 

Thus ?b in. Eq. (5.2.2), x in Eqs.. (5.2.3) and consequently both vc- and v$ in 
Eqs. (5.2.4) are functions of A0. On the other hand, if v#- and v,,’ are given, the 
value of A0 is readily calculated: 

ae =*+~+-f#J-, (5.2.6) 

4+ = cos-l (VA@) , I$- = cos-l (VJVJ , 

ff = tan -’ km (V,,) /We (VL)] -tan-’ [Sm (V>) /We (V:)] . 

Thus A0 must be calculated by a self-consistent procedure: assume values for A8 in 
Eq. (5.2.5), then carry through the preceding calculation for Vet and Vcm until the 
value for At9 in Eq. (5.2.6) is in agreement with the initial assumed value. 

We see, even in the simple case of a gap in a beam with bunches of equal charge, 
that just the calculation of the bunch phase shift across the gap has become quite 
complicated. If further information is desired, for example the phase positions of 
other bunches, or perhaps the effects due to unequal bunch charges, it would be 
difficult, or at least very awkward, to carry out the calculation analytically. It 
might then be best to resort to a simulation, in which the phase and energy of 
each bunch is tracked turn by turn. Such a program would show all the features of 
the longitudinal bunch dynamics, such as phase oscillations after injection, Robinson 
damping of these oscillations, and variations in the cavity voltage due to transient 
beam loading. A tracking program of this type has been written for the SLC damping 
ring to show transient effects at injection, and to determine the optimum injection 
phase and energy.’ 
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5.3 Cures for the Gap-Induced Phase Shift 
One obvious way to reduce the effect of a gap-induced phase shift on the longitudinal 
position of the collision point is to put a similar gap in the counter-rotating low-energy 
beam. However, the beam current, cavity voltage and synchronous phase angle are 
slightly different for the PEP-II low energy beam3: 10 = 2.15A, V, = 0.95MV,4, = 
80.5’, Pb = 335 kW. Using Eq. (4.2.3), the optimum cavity coupling coefficient is 
p = 3.6 for PC = 129 kW, giving rs = .084 for Qo = 3.0 x 10’. From Eq. (3.2.1), 
vbr = 3.27 MV and from Eq. (4.2.1) the optimum tuning angle is -73.6’. Then 
vb = vbr coati = 0.95 MV, and Eq. (5.1.3) now gives AV = 0.26 MV. Finally, 
Eq. (5.1.8) gives AB = 16’. Since the high-energy beam has a phase shift of 12’, 
a residual phase shift of 4’ remains. This is still large enough to produce a shift in the 
position of the collision point of 7 mm for X,f = 63 cm. This a substantial fraction of 
the bunch length, ur = 10 mm. This residual phase shift can be eliminated entirely if 
the current is reduced to 25% in the gap in the low-energy beam, instead of to zero. 

Another possibility remains for reducing the residual phase shift across the beam 
gap. It is clear that if the rf generator voltage component ?s in Fig. 4.2.1 is jumped 
in phase and amplitude such that Es = -- Vb, then the transient effect of the gap is 
completely eliminated. However, this would require an increase in klystron power by 
a factor of (V&,)’ = (.925/.52)2 = 3.2, which is clearly not practical. However, we 
should calculate how much of a reduction in the gap phase shift can be obtained by 
a jump in klystron phase alone. Suppose the phase is shifted such that vi = vs& at 
the beginning of the gap, where q is a counter-clockwise rotation of ?s in Fig. 5.1.1. 
We will not give all the details, but will only outline the calculation here. First a 
difference phasor b is defined such that vs’+ 5 = vC, where the angle between vi and 
c is 7) - 141, where we assume E is colinear with Ebr. The law of cosines is used to 
calculate the magnitude of b. During the gap period, the phasor b rotates through 
angle rs tan+ to position s,‘, where D’ = De’+g. The third side of this second 
phasor triangle is G, which is calculated by the law of cosines. The angle opposite 
E’, call it $‘, can now be computed by the law of sines. We will also need the angle 
opposite vi in the first phasor triangle, call it y, where y can also be computed using 
the sine law. Now establish a third phasor triangle, vC,, vi:‘, E. The angle between vC 
and E, call it 6, is given by 6 = $’ - y. V,’ ’ 1s now calculated by the cosine law, and 
angle (Y opposite z by the sine law. Angle 4’ is now given by cosB1(V~/V:), and 
the gap phase shift by A0 = CY + 4’ - 4. Applying this procedure to the parameters 
of the PEP-II high energy ring, we calculate that the gap can be reduced to about 3’ 
for 7 z loo’, with AV = 0.12 MV an.d Vi = 0.83 MV. This is a reduction by a factor 
of four from the 12’ phase shift without the jump in generator phase. If a similar 
phase jump is carried out for the low energy beam, the residual phase error would 
be reduced from 4’ to about lo. This produces a collision point shift of about 0.20,, 
which may be acceptable. 

Finally, feedback can also be used to reduce the transient effects due to the gap (see 
Ref. 1). 

6. Phase Stability and Phase Oscillations 
6.1 Phase Stability 
In an electron storage ring it is well known that, to be stable against phase 
perturbations, a particle must have a synchronous phase on the time-falling part of the 
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rf wave. For example, a particle having too much energy compared to a synchronous 
particle will follow a longer path and will therefore receive less energy from the rf cavity 
on the next revolution. A particle that arrives at the rf cavity too early compared to a 
synchronous particle will get more than the synchronous energy gain, will consequently 
take a longer path and will arrive back at the cavity closer to the synchronous passage 
time. Using VA = V, cos[w(t - t.) + $d], th e condition dVA/dt < 0, evaluated at 
t = t,, leads to (-wK sin$,) < 0, or sind. > 0. Of course, 4. must also be less 
than n/2 if VA is to be positive. At high current, where the beam-induced voltage 
component is large, the situation is more complicated. As the arrival time varies due 
to phase oscillations, the beam-induced voltage component moves with the bunch and 
hence cannot contribute to phase stability; only the generator voltage component can 
provide a restoring force against phase perturbations. From Fig. 4.1.1 we see that 
the phase of the generator voltage component with respect to the beam is B + $, and 
hence the condition dV,ldt < 0 at t = t, leads to sin(8 + $) > 0, or from Eq. (4.1.1), 

2vc sin f$ $ Vbr sin 2$ > 0 . (6.1.1) 
This is the condition for the high-current limit on phase stability first derived by 
Robinson. Robinson’s derivation involved setting up a set of linear equations in terms 
of slow (compared to the rf frequency) perturbations to the variables of the system. 
He then applied Routh’s criterion to the determinant of the coefficients to test for 
exponentially growing solutions. However, the result is completely equivalent to the 
simple condition dV,/dt < 0, which leads directly to Eq. (6.1.1) using the geometry 
of the basic phasor diagram in Fig. 4.1.1. If the cavity tuning is adjusted to make the 
beam-loaded cavity voltage look real, then Eq. (5.1.1), together with Eq. (4.2.1) gives 

v, > &,r CO8 ‘$ . (6.1.2) 
If the cavity coupling is also optimized according to Eq. (4.2.3), then Vbr cos$ = 
K(P0 - 1)/(/30 + 1) and the condition in Eq. (6.1.2) is always satisfied. 

6.2.Phase Oscillations 
There is not space here for a complete derivation from first principles of the damping 
time for phase oscillations. A derivation emphasizing the time-domain behavior of 
phasor quantities subject to small perturbations is given in Ref. 2, Sec. 4.2. A more 
traditional derivation is given in, for example, Ref. 5. The result for the growth rate 
(inverse of the damping time) of the oscillation is 

1 Vbr w# CII 

ii = v, * [l t (< t 11)2] [I t (( - G921 ’ 
(6.2.1) 

where E = tan 4 = (ws - w) T/ and 1 = w,?‘F. The synchrotron oscillation frequency 
is given by 

w* = 
[ 

amwVc ain4 Ii2 
To Eo 1 , (6.2.2) 

where EO is the beam energy in volts and cy m  is the momentum compaction factor. 
From Eq. (6.2.1) we see that the oscillations are damped if tan4 is negative; that is, 
if the rf frequency is greater than the cavity resonant frequency. This is the case if $ 
is optimized according to Eq. (4.2.1) to produce a real beam-loaded cavity reflection 
coefficient. The damping rate given by Eq. (6.2.1) vanishes if either t or 71 approaches 
zero or infinity. For small 7, the function on the right-hand side of Eq. (6.2.1) has 
a maximum value of 0.32 1 for < = 0.58 ($ = 30’). For large r], the function has a 
maximum value of 0.25 for < z 71. Equation (6.2.1) can also be used to calculate the 
growth or damping rate of the coupled-bunch longitudinal instability due to a higher 
mode in the rf cavity or to a resonance in another vacuum chamber component. In 
this case, the growth or damping rate given by Eq. (6.2.1) must be multiplied by the 
ratio of the mode frequency to the frequency of the accelerating mode. 
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The physical origin of this damping (Robinson damping) can be traced to the 
inertia of the stored energy in the rf cavities. Because of the finite filling time, the 
beam-induced voltage cannot follow changes in the beam current instantaneously. 
A phase difference between the induced voltage and the driving current oscillation 
appears, which in turn leads to an energy interchange between the oscillation and 
the cavity fields. A similar effect is seen in other physical systems, for example, the 
excitation of mechanical oscillations is the walls of a superconducting cavity.’ 
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