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1. Introduction

The difficulties arising in the design of the rf system for a factory-type storage
ring lie mainly in two areas. First, a gap in the circulating beam current (on the
order of 5% of the ring circumference) is required for ion clearing. Because of
the high beam loading current, this gap produces a strong transient variation
in the rf cavity voltage, which can in turn lead to a significant shift in the
synchronous phases between bunches on either side of the gap. This phase shift
would produce an unacceptable shift in the collision point, unless compensated
by a corresponding shift in the bunch phases in the other ring. In order to
work out the details of this compensation, the transient beams loading effects
produced by the gap must be calculated quite carefully. A major goal of this
chapter is to provide the insight and the basic analytic tools necessary for this
analysis.

The second major problem for the fundamental mode rf design is also
a consequence of the high average current (and the consequent large
number of bunches) needed for a storage ring particle factory: longitudinal
multibunch beam instabilities at sideband frequencies within the passband of
the accelerating mode. These instabilities can be damped by an appropriate
feedback system, as discussed elsewhere in these proceedings.! However,
as background for this problem, we need to understand the phase and
amplitude variations produced in the cavity voltage when the bunches undergo
small-amplitude synchrotron oscillations. In the final section, the cavity voltage
variation induced by such oscillations is calculated and applied to compute the
Robinson damping time.

The emphasis throughout this chapter will be to provide a thorough
understanding of beam loading effects. To this end, we begin in the next section
with a calculation of the voltage induced in a cavity by a single point charge
passing through it. The result will be a Green’s function for beam loading
problems. Once the solution for a point charge is known, the beam-induced
voltage for a bunch with arbitrary longitudinal charge density profile, or for a
train of such bunches, can then be constructed by an appropriate superposition.
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2. Beam Loading by a Single Bunch

The derivation in this section relies on three basic assumptions. First, conservation

of energy applies to the interaction between a moving charged particle and the fields
in a cavity or accelerating structure. Second, we assume that superposition applies;
that is, the net cavity field can be constructed as a vector (phasor) sum of component
fields. Usually, this phasor is viewed in a reference frame rotating at either the cavity
resonant frequency, or if there is an external generator driving the cavity, at the rf
drive frequency. The third basic assumption is that the cavity fields are those for
a single nondegenerate cavity mode which is orthogonal to all other modes. Thus
a charge passing through a cavity independently deposits energy in each mode with
which it can interact. We assume the conductivity of the cavity walls is sufficiently
high so there is no significant coupling (overlap in impedance) with any other mode.
We consider only the case of highly relativistic charged particles moving close to the
speed of light. This has two consequences. First, the particle cannot change its
velocity in response to beam-induced or generator-produced cavity fields. This allows
a train of such particles to be modelled as a current generator in an equivalent circuit
analysis of a beam-loaded cavity. Second, the cavity fields, summed over all cavity
modes, must obey causality; that is, there is no net induced field ahead of a relativistic
particle. This point will deserve further comment.

2.1 The Voltage and Energy Induced in a Cavity by a Point Charge

Assume that a charged particle moves through a cavity along the z-axis. In a given
mode, the field at any point E,(2) is related to the energy U stored in the mode by

E.(2) = a(2) U2, (2.1.1)
A change in mode energy dU will produce a field change

dE(r) = 28 gy

2E,
On the other hand, a charge ¢ moving through distance dz will lose energy
dUy = —¢E.d, .

This energy must go into energy stored in the cavity fields. The fields in this particular
mode must then increase everywhere in the cavity during time dt = dz/c, even ahead
of a particle moving at v & ¢. Causality does not apply to the cavity fields for a
single mode, but it must of course be satisfied by a superposition of all modes. This
is insured by the structure of Maxw«l’s equations, together with the cavity boundary
conditions. By conservation of energy, dU (mode) = dU, (lost by charge), giving

dE,(2) = —-;— go?(z) dz . (2.1.2)

This is the differential element of field induced by a charge in moving distance dz
in the cavity, The minus sign indicates that the induced field opposes the motion of
the charge. To calculate the net induced field, we must integrate the motion of the
charge across the cavity, taking account of the fact that earlier induced differential
field elements are rotating in phasor space according to e/“°*, where wy is the resonant
frequency of the cavity. Calculating the net induced field at any time as the charge
crosses the cavity is then a matter of adding up all of the field elements induced at
earlier times. For convenience we choose a reference position z = 0 at the entrance
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to the cavity, where E,(0) = E; and o(0) = ap. Then, assuming the position of the
charge is given by z = ct, the change in field at the reference position during time dt is

dEo(t) = lao/a(2)]dEs(z) = _% g [aoa(ct)] dt .

Using complex (phasor) notation, where a phasor quantity is denoted by a tilde, a
field element induced at ' will ring as a function of time according to

dBo(t) = dEo(t') e?«ott=*) (2.1.3)
The net field at z = 0 at the time the charge exits from the cavity at z = L and
t = L/c is then obtained as the superposition of all the differential field elements

induced at earlier times, taking into account their proper phases:
L

Ew(t = Lfc) = —%qao/a(z') eko(L=2") gyt | (2.1.4)
0

where ko = wo/c and the subscript b indicates the beam-induced value. Note that Eos
is proportional to the charge times a factor that depends only on the geometry of the
cavity mode, and not on the field amplitude. It will be useful to define a quantity k,,
called the loss parameter for reasons which will become apparent, which depends on
the mode configuration: .
v.v* v?
= -— . 2.1.5

40U 4U ( )
Here V is the cavity voltage {(and V* the complex conjugate) seen by a test charge
moving across the cavity according to z = c(t — to) with Ey(z,t) = E.(z)e’“°*, The
voltage seen in a frame of reference traveling with the particle is then

sz

L
V = ej“°'°/E,(z') ko' gy = Velvwtote
0
V = IV| = (02 +S2)1/2 ; tanf = S/C ; (2.1.6)

L L
C = /E‘,(z) coskoz dz ; S = /E,(z) sinkoz dz .
0 o

It is often convenient to define a reference plane at 2z, = 8/kq, such that the voltage
gain of a test charge (electron) is given by V = Ve, where t, is the time at
which the charge crosses the reference plane. Using the above definitions, together
with Eq. (2.1.1) in Eq. (2.1.4) to eliminate a(z) and ao, the beam-induced voltage
becomes - o .

Vb = —2qu [eJkoLV‘/V] ) Vb = |‘/b

= 2keq . (2.1.7)

The quantity in brackets gives the phase of the beam-induced voltage with respect to
the voltage defined by Eq. (2.1.6).

The voltage induced by a charge, as given by Eq. (2.1.7), is independent of any
prior voltage present in the cavity. This is true because in equating dU (mode) to
dU, (lost by the charge) to obtain the differential beam-induced field element given by
Eq. (2.1.2), both sides were proportional to the pre-existing field E,, which therefore
drops out of the final expression. The stored energy remaining in the cavity after the
exit of the inducing charge must in general be calculated by first taking the vector
(phasor) sum of the beam-induced voltage and any pre-existing voltage, and then
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Figure 2.2.1. Differential superposition for two cases: (A) a mode in
which E, decreases along the particle trajectory; (B) a mode with
constant E, along the particle trajectory. In both cases, the field
(for given stored energy) is assumed to be the same at z = L.

calculating the energy using Eq. (2.1.5). If there is no pre-existing cavity excitation,
then the beam induced energy is given by combining Eqs. (2.1.5) and (2.1.7) to obtain
2

=Y _ 2,
Uy = vl ke ; (2.1.8)

hence the name loss parameter for the quantity k,. The effective voltage V, “seen”
by the charge is the voltage necessary to extract energy Us, or

Vo = Us/g=keg. (2.1.9)
This is just one-half of the induced voltage left behind in the cavity. This result is
sometimes called the Fundamental Theorem of Beam Loading. Crudely stated, the
charge does not experience any retarding voltage as it starts to cross the cavity, while
it sees the full induced voltage as it leaves the cavity. On the average, it might then
be expected to see one-half of the final induced voltage.

2.2 Differential Superposition

Figure 2.2.1 shows the geometry of the superposition of the beam induced differential
field elements for two cases. Case A shows an example in which the field function a(z)
in Eq. (2.1.1) decreases with 2, while case B is for a mode with a uniform electric field
along the particle trajectory. The induced field elements are shown at time #; = L/C,
just as the particle leaves the cavity. Therefore the last induced field element lies

4



along the negative real axis of the phasor diagram. Followmg Eq. (2.1.3), an earlier
field element induced at time ¢t = t' will have rotated in phasor space by an angle
wo(te—t'). The first field element induced at ¢’ = 0 will have rotated by an angle (the
transit angle) fr = woL/c. For the case of constant E,, it is seen that the reduction
in the induced field due to the fact that the particle takes a finite time to cross the
cavity, as compared to the induced field for a charge of infinite velocity, is just the
ratio of the chord length to the arc length shown in the diagram:

T - Eog _ 2R sin (01'/2) _ sin (01*/2)
- Rér - Rér - HT/Z ’
where T is just the usual transit angle factor. The phase of the net beam-induced field

is seen to be rotated by an angle 6r/2 with respect to the final induced element. This
is also the phase of the field induced at the center (symmetry plane) of the cavity.

2.3 Bunch Form Factor

The voltage induced by an arbitrary charge distribution can be related to the charge
induced by a point charge using a bunch form factor. The voltage at time ¢ induced
at time ¢’ by a charge element dg = I(¢')dt' is

dV(t) = —2k, I(t') 2“0 g’

The total voltage induced by the charge distribution can be set equal to that induced
by a point charge, reduced by a factor Fy and located at time #o (or at phase wio = ¢),

o0
V() = -2k, / I(t) 0= @' = _2qk, Fy @9
Solving for F» and ¢,
Fo = (C3+C%2);  tang = & (2.3.1)
where Cs and C4 are the symmetric and antisymmetric integrals
oo o0
Cs = % / I(t'ycoswt' dt’ ; Ca = % / I(t") sinwt' dt’

If a charge distribution having a time-width which is not negligible compared to the
rf period is accelerated across a cavity, the average energy gain per electron in the
bunch is reduced by the same form factor. If V; e’“’ is the energy gain by a point
particle crossing the cavity, then the charge-weighted average energy gain is
oo
Vive = % I(t') &40 gt = Vo F, SWt=9) (2.3.2)
—00
where Fj and ¢ are again given by tiq. (2.3.1). It is important to note that, for any
charge distribution, both the average accelerating voltage and the net beam-induced
voltage are reduced by exactly the same factor with respect to a point charge. The

position (phase) of an effective point charge which replaces the distribution is also the
same.

Some useful bunch form factors are:

- 2
Fy,(Gaussian) = e wiol/
Fy(rectangular) = ?%_%2_),
o1



where o is the rms bunch length (Gaussian) and T, is the full bunch width
(rectangular).

2.4 Summary Comments on Single Bunch Beam Loading

In this section we have tried to give a reasonably thorough understanding of the
physics underlying the voltage induced in a cavity by a single bunch. If we add the
fact that this voltage will decay as a function of time according to e™*/TF  where
Tr = 2Qr/wo is the loaded cavity filling time, then we have a Green’s function for
calculating any beam loading problem. The voltage induced by a train of bunches
with arbitrary charges and spacing is then calculated by superposition. In the general
case, of course, the voltage produced by an external generator must be included by a
further superposition. In a storage ring, a strong constraint is added by the fact that,
after initial damping, the bunches adjust their phases with respect to the net cavity
voltage in a way such that each of the bunches gains the same energy (to make up for
synchrotron radiation and impedance losses). This can add considerable complexity to
beam loading calculations when bunch charges or bucket spacings are not equal—for
example, when there is a gap in the circulating beam.

3. Beam Loading by a Train of Equally Spaced Bunches
3.1. Beam-Induced Voltage for Small Bunch Spacing

Using the definition of cavity voltage in Eq. (2.1.6), we can now define a cavity shunt
impedance R in terms of the power P. dissipated in the cavity walls, R = V?/2P..
We assume the usual definitions for the Q’s of the unloaded cavity, @ = woU/ P, and
loaded cavity, Q1 = Q/(1+ 8). Here f = P,/ P, is the usual coupling coefficient for a
coupling aperture or loop, such that P. is the power emitted from the aperture into a
matched load when there is no incoming rf wave from an external source. Taking the
bunch spacing as AT}, we have the following relations and definitions:

gz V2 _w(RY R _ V2 _ AT

tE 4w T 2 \qQ)’ Q 2wl =Ty

2Qt 2Q . R 2R
T = = ; Vo = 2k = — | L AT, = ’ ’
! wo w1 +A) 50 g wo (Q) (YAVS 1+3 T

(3.1.1)
where Io = ¢/ATy is the dc current assuming equal bunch spacing. For a bunch
current distribution of non-negligible time width, both V' and Vi must be reduced
by the bunch form factor, as discussed in Sec. 2.3. A time reference is chosen such
that the voltage Vio induced by each of the bunches (assumed to be equally spaced)
passing through the cavity lies along the negative real axis, following the convention in
Sec. 2.3. We now assume that the bunch spacing is related to an rf frequency w, which
may be different from the cavity resonant frequency wo, such that wAT, = 2xb, where
b is an integer (the number of rf wavelengths between bunches). Between successive
bunches, the induced cavity voltage slips in phase (relative to a phasor coordinate
frame rotating as €’“*) by an amount

§ = (wo —w) AT,

and decays in length by a factor e~". The process of the build-up of the net beam
induced voltage is illustrated in Fig. 3.1.1, shown after a large number of bunches
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have passed through the cavity. The net induced voltages just before and just after
the bunch arrival time are denoted by V,~ and V,* where
—Vio

1—e-7 e’

IA/"b"' = -Vio (1+e" ele+e7?" e”&+...) = (3.1.2)

Taking the limit AT,/Tr — 0, such that r,§ € 1,
¥ Ya b — ¢

f;b+si7ba,‘7b_5% — —VbO' T+J6 _ 2IOR

A
TrE T T v

O

tany = ;= (wo—w)Tf=—2—u?o—L(wo—w)

We see that ¢ is just the usual tuning angle, which gives the variation in the phase of
the beam-induced cavity voltage as the cavity is tuned off resonance. The magnitude
of the induced voltage varies as cos 9, and therefore the tip of the phasor representing
¥, follows a circle with diameter 2I0R/(1 + B) in phasor space as ¥ is varied, as
shown in Fig. 3.1.2. As is customary in complex notation, positive ¢ is defined in the
counter-clockwise direction.

If the series in Eq. (3.1.2) is summed to the n** term,

Vo (1 -~ e;nd)
1—e-7 3t
Again let 6,7 — 0 and approximate n by t/AT, = t/rTy. The above expression then
becomes
2IbR

1+8
It is easy to show that transient variation of Vb(t), represented by the quantity in
brackets, follows a logarithmic or equi-angular spiral (for example see Ref. 2, Sec. 7.1).
This is illustrated in Fig. 3.1.2, where a difference vector Vd(t) has been defined which
connects Vb(\‘,) to V3(c0). The tangent to the transient path followed by V4 always
makes angle ¢ with respect to —Va, which shrinks in time as Va(0)e~t/TF and rotates
at a constant angular rate given by e/(*/TF) tan¥ = gi(wo=w)t,

Vb+ (n) = -

%) = - costp eV [1 — ¢/ Tr1-itand)] (3.1.3)

3.2 Relation to a Parallel-Resonant Equivalent Circuit

The result in Eq. (3.13) has been derived from basic principles, such as conservation
of energy and superposition, with no reference to an equivalent circuit. However,
this result is exactly what would be expected for the voltage induced by a current
generator with rf current ﬂ = —2I, across a parallel resonant circuit with shunt
resistance R, shunt capacitance 1/C = wo(R/Q) = 4k, shunt inductance wy ' (R/Q),
and shunt resistance R/ to represent loading by the coupling network and external
transmission line (assumed to be matched looking toward the generator; see Ref. 2,
Sec. 3.5). Summarizing the results in the previous section, we have in the steady-
state limit for the beam-induced voltage,

~ ; IR 2ILR
W= -V 2Ad Vir = Vo = =
b br cosyp eV, br = TVio 1+ 4 Ty
where Vi, is the magnitude of ¥ at cavity resonance.
A current generator I, can now be added to represent an external rf source driving
the cavity. The rf power of the source is then identified as the available power from

7
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Figure 3.1.1. Diagram showing the buildup of the beam-induced
voltage in a cavity by a train of equally-spaced bunches.
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Figure 3.1.2. Diagram showing that the transient buildup of the
beam-induced voltage ﬁ,(t), follows an equi-angular spiral (solid
curve), where angle (1) = (wo — w)t = (t/Tr)tany and Va(t) =
Vo(oo) e~*/TF.  The steady-state beam-induced voltage, Va(c0),
follows a circle as cavity tuning is varied (dashed curve).
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the generator, Py = I: R/88 (see, for example, the discussion in Ref. 2, Sec. 3.5). The
voltage produced across the circuit is then

~ ; I,R _ 2872
Vo = Vgr cosyp &Y, Vo = ﬁﬁ= ﬁ—ﬂ-(mP,)”’ . (3.2.2)

Again note that if the bunch length is not small compared to the rf wavelength, both
Iy and I; must be multiplied by the bunch form factor. From the form of Eq. (3.2.2),
the tip of the phasor ‘79 also traces out a circle as the tuning angle ¢ is varied, as
shown for V; in Fig. 3.1.2. If a step change is made in the driving generator voltage,
‘7,(1) also approaches a new steady-state value, 17,,(00), along an equi-angular spiral.
That is, the difference vector 1’2,(:) = V,(t) - 1‘7,(00) shrinks in magnitude as e~*/7F

—w)t

and rotates in phase as e(“°~“)* in the same manner as Vd(t) in Fig. 3.1.2.

3.3 Bunch Spacing Comparable to the Cavity Filling Time

For a factory-type storage ring with a large number of bunches, the bunch spacing in
time will be very small compared to the cavity filling time. There may, however, be
occasion to calculate beam loading effects with only a few bunches in the ring (as is
the case for most rings for high energy particle physics). The approximation r — 0,
and V; ~ 17,,' cannot now be made. According to the Fundamental Theorem of
Beam Loading, each bunch will experience the net voltage induced in the cavity by all
bunches that have previously pass through it, ‘7,,", plus one-half of its own single-bunch

induced voltage, —3Vso. This is the voltage Vha shown in Fig. 3.1.1. From Eq. (3.1.2),
~ ~- 1 ~ 1
Vea =V, — EVbo =V + EVbo

I 1 (3.2.3)

=—Vw T=e=7ei® " 3 =~V (FR+JjFI) ,
F _ 1—'6_2' 1_-:9 T
R T2(1—2e"7 cosb+ e-27) T2 4 62
-r
Fr = e~ " siné r=0 §

(1 —2e=7 cosé +e-37) T Ry

The quantities Fr and Fy give the steady-state values of the real and imaginary parts
of the beam-induced voltage after an infinite succession of charges have passed through
the cavity, as compared with the voltage induced by a single passage of the charge.
The quantity

2P = Relfia] | ~1Vho
is sometimes called the resonance function, since it gives the net retarding voltage seen
by a charge passing through a cavity with a resonant build-up of the beam-induced

voltage, as compared to the voltage seen on a single passage. The resonance function
is plotted and discussed in Ref. 2, Sec. 6.5.

In the limit of small r, using Vio = rVr and § = 7 tan ¢, Eq. (3.2.3) approaches
Via — =Vir[rFr+jrF1] = Vb cospe’¥

3.2.4
rFrp — cosz¢; tFr — cosy siny . ( )
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4. Steady—State Beam Loading
in a Storage Ring RF System

4.1 Basic Phasor Diagram

In the previous sections the beam-induced voltage in a resonant cavity was derived
from first principles, without an external rf generator. In this case, it is reasonable
to choose a reference phase such that the beam-induced voltage at resonance lies
along the negative real axis. We will follow this same conventions in drawing phasor
diagrams for the general case in which an rf generator voltage component is present.
This is at variance with the notation often used, which places the net cavity voltage
along the positive real axis. There is not space here for a full discussion of the relative
advantage and disadvantages of these alternative choices of a phasor reference frame.
As a minimum, the reader will gain perspective by learning to view storage ring beam
loading problems from a different vantage point.

:
|
I_l i~
g - - > |
N L— 0 Va °

3-83 2521A1

Figure 4.1.1. Diagram showing vector addition of generator and beam
loading voltages in an RF cavity.

Figure 4.1.1 shows the basic phasgr diagram in which the net cavity voltage, 17.;, is
obtained from the superposition of Vj and V), as viewed in a reference frame rotating
as e?“t, where w is the rf frequency and wo the cavity resonant frequency. The beam
current phasor lies along the positive real axis. The projection on this axis of the cavity
voltage, lying at the synchronous phase angle ¢, gives the accelerating component
of the voltage. The generator current, which is colinear with the generator-induced

voltage at resonance, V., lies at an angle 8 with respect to the real axis (and with
respect to the beam current, Ip). As the cavity is tuned from resonance by a positive

value of wp —w, both \79 and ¥, rotate in the counter-clockwise direction through angle
%, where tany = 2Qr{wo — w)/w. It is also assumed that Q is relatively large .
From the diagram in Fig. 4.1.1, the real (accelerating) and imaginary components

of the net cavity voltage V. are
Va =V. cos¢ =V, cosyp cos (6 + %) — Vir cos’ ¢,
Vi =V, sing = Vyr cos® sin(f + ¥) — Vir cos¥ siny .

By eliminating (4 + ¢) from these two expressions (transfer the V3, components to
the other sides of the equations, square, and add), then substituting for V. and Vi

10
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using Eqgs. (3.2.1) and (3.2.2), we obtain the required generator power in terms of V;
and ¢ for a given cavity tuning ¢ and coupling 3,

2
Pg - V_cz.(ljz_). 1 {[COS¢+M COSz’lb]

2R 48 cos? ¢ Ve(148)
. (4.1.2)
+ [sm¢+ 2Lk cosy sin 1/)]
V.0 +8)

Angle 0 is now fixed, and can be obtained, if desired, from either of Egs. (4.1.1).
In the general case when the bunch spacing is not sma.ll compared to the cavity
filling tlme the generator power can be obtained by substituting 7 Fr and 7 F; for the
factors cos® 1) and cos 4 sin ¢ inside the brackets in Eq. (4.1.2), where Fg and Fr are
given by Eq. (3.2.3); see Ref. 2, Sec. 6.4, for details.

4.2 Tuning Adjusted for Real Beam-Loaded Cavity Impedance

The reflected voltage from a beam-loaded cavity will look real (that is, it will have the
same phase as the voltage reflected from the cavity at resonance without a beam) if

the net cavity voltage V. is colinear with ‘7,, (and therefore with Tg) From Fig. 4.1.1,
this implies that § = ¢. Using this condition, and applying the law of sines to the
phasor triangle in Fig. 4.1.1,

E _ Vir cosy - sin(¢ —8—-9) _ _singo

V. Ve sin @ = sing '

(4.2.1)

br
Ve
By differentiating Eq. (4.1.2) with respect to ¥, we find that ¥y = ¢ is also the
condition for minimum genera.tor power (and hence minimum power reflected from
the cavity). Substituting for ¢ in Eq. (4.1.2) using the condition in Eq. (4.2.1), we
have at optimum cavity tuning,

tanyo = — sing .

(1 + ,3)2 VgrO

Y, >R (4.2.2)
By differentiating Py with respect to 8, we find the value of cavity coupling which
minimizes the generator power:

Vero = Vo4 Vir cosg Py =

_ 2IoR cos ¢
Bo =1+ 7 = 1+Pc ) (4.2.3)

where P, = IoV. cos¢. Using P; = P, + P. + Py, where P, is the reflected power,
it is easy to show that P, = 0 if Eq. (4.2.3) is satisfied. If it is not, but if the cavity
tuning is optimum according to Eq. (4.2.1), then the reflected power is

_r = (8- ﬂo)z
P, 43
As a pra.ctlcal example, consider the PEP-II B-Factory if system desxgn with

parameters® for the 9 GeV high energy ring (values are per cavity assuming 20
cavities):

(4.2.4)

Ve =0925MV, Ib =15A, R = 35MQ,
Va =Vi+I0Zhom 20192 MV, ¢ = cos™' Va/V.=78.0°,
=V2/2R=122kW, P, = I)Va =288 kW .

Here V, = 0.18 MV per cavity is the loss to synchrotron radiation, and Znom & 9 k2
allows for losses to higher modes in the rf cavity and to the real part of the per cavity

11



Im) A AV, (orTy)
/I
!

g !

g \
1\
I \
P
Lo
roN
! \
: \

vb | \\
V| \
i \
I \\
Yo \

WO ¢ ] VQ \

: > 1o
735545 3-93 Va Re (V)

Figure 4.2.1. Phasor relationships for voltages in a PEP-II RF cavity
at optimum tuning (I, colinear with V.) and coupling (no reflected
power).

share of the impedance of all other vacuum chamber components. The circulating
current Io is set by the luminosity requirement, while the cavity voltage is set by
bunch length and beam stability requirements, consistent with a reasonable klystron
power. At optimum tuning and coupling, using (in order) Eqgs. (4.2.3), (3.2.1), (4.2.2),
and (4.2.1),

Bo = 336, Vi = 241MV, V,, = 1425MV, P, = 410 kW,

o = —68.6°, Vo = Viecostpo =0.88 MV, V; = Vi cosgpg =0.52 MV .

As a consistency check, note that the calculated generator power is just equal to the
sum of the cavity wall losses and the power transferred to the beam, indicating that
there is no reflected power at optimum coupling and tuning. In practice, the cavity
coupling is often adjusted to be slightly greater than that given by Eq. (4.2.3), in order
to make the rf system somewhat less sensitive to beam loading effects. For example,
the cavity coupling might be set at § = 4.0 in the preceding example, rather than at
3.36. From Eq. (4.2.4), this increases the required generator power by 0.8% or 3 kW
(the amount of the reflected power), but reduces Vi, by 13% to 2.10 MV,

The phasor relationships in the example given above are plotted in Fig. 4.2.1.
Note that if a klystron fails, the power dissipation in the cavity walls falls to
(0.88/0.925)% x 122 kW = 110 kW, while a reverse power 3P, = 370 kW is emitted
from the cavity. If the beam should dump, but the klystron remain on, the power
dissipated in the cavity is (0.52/0.925)% x'122 kW = 40 kW, with a reflected power
that is also equal to 370 kW. It is not a coincidence that this is exactly equal to
the reverse power for the case of klystron failure. At optimum tuning and coupling,
the wave emitted through the coupling aperture (or loop) by the beam-induced
voltage component must exactly cancel the reflected wave due to the generator voltage
component.
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Figure 5.1.1. Phasor geometry for the case of a beam with a gap
where r; £ 1,7 > 1.

5. Beam Loading by a Circulating Beam with a Gap

5.1 Revolution Time Ty Large Compared to the Cavity Filling Time

We first assume that the gap time, AT}, is small compared to the cavity filling time,
TF, such that 7y = ATy/Ty € 1. The basic assumption in this section is that the
beam time, T, = Top — AT}, is large compared to the cavity filling time such that
7o = Tp/Tr 3» 1. This insures that the beam-induced voltage recovers very closely to
its steady-state value after the passage of the gap. If this assumption is not met, the
problem becomes considerably more complex and will be treated in Sec. 5.2. We will,
however, be able to treat the more general case r;, & 1 later in this section, as long as
the restriction m » 1 is kept.

The phasor geometry for the case 7y € 1,75 3 1 is shown in Fig. 5.1.1. Here Vs
and V. are the steady-state values of the beam-loading and cavity voltages before the
arrival of the gap, assumed to occur at time ¢ = 0. A simple way to compute the
voltage change AV is to assume that the actual ring current is continuous, but that a
current of opposite sign, —Io, is turned on at ¢t = 0 for a time AT,. The beam-induced
voltage then must be along the positive real axis, as shown in Fig. 5.1.1, with a
magnitude given by

AV = 2k = w(R/QIAT, = Vier,
I I [To/ (To — ATy)] = I (1 + AT,/To) .

As before, Vir and AV must be reduced by the bunch form factor, F in Eq. (2.3.1),
in the case of long bunches. The magnitude of AV can be calculated in a second way,
since we know that it is the beginning of the logarithmic spiral, shown by the dashed

13
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line in Fig. 5.1.1, which eventually would end at the tip of the phasor 17, if the beam
were not turned back on. Thus, according to the discussion following Eq. (3.1.3),

Vi = T emmaeilwo—u)t Vi=WVoe V(-1 ; (5.1.2a)
B = (wo—w)AT, = rytany . (5.1.2b)

Applying the law of cosines to the triangle AV, i7.,, ‘7,,’ :
AV =V, ((1 + e"zr") —2¢”7 cos(ry tan 11))] vz (5.1.3)

Expanding assuming small r,, this reduces to AV ~ Vi1, in agreement with
Eq. (5.1.1). Now apply the law of cosines to compute V, in the phasor triangle

AV, V.,V in Fig. 5.1.1:

V. = [V2+(AV)? +2V.AV cosg)'? (5.1.4a)
~ V.[1+4(AV/V.) cosg] . (5.1.4b)
The law of sines gives angle o in the same triangle:
sine = (AV/VCI) sing , (5.1.5a)
a = (AV/V.) sing . (5.1.5b)

The shift in-beam phase across the gap, measured in a reference frame provided by
the external rf generator (see Fig. 5.1.1), is

A6 = a+(¢'-¢) , (5.1.6)

where, using Eq. (5.1.4b),
cos¢’ = Va/V! = cos¢[l — (AV/V.) cos @] . (5.1.7)
Using the trigonometric expression for [cos ¢’ — cos ¢] to expand Eq. (5.1.7), the shift
in bunch phase given by Eq. (5.1.6) is

AV AV 1/2
V. A cos¢) —tan¢] , (5.1.8)

where the term in brackets is the change in synchronous phase, ¢’ — ¢. For ¢ near 90°,
¢’ ~ ¢ and Ad ~ a & AV/V,. For ¢ near zero, a = 0 and Ad = ¢'—¢ ~ (ZAV/Vc)ln.

It is now easy to lift the restriction 7, € 1, although we will not be able to write an
explicit expression for Ad. In Fig. 5.1.1, AV is now a phasor which no longer lies in
the positive real direction, but instead has its tip anywhere along the dashed spiral.
Equation (5.1.3) can be used to find its magnitude. The angle between AV and ¥,

will no longer be 4, but something less, ¢ — § (see Fig. 5.1.2). This angle can be
computed using the law of sines:

sin (¥ —8) = (V,/AV) sinB = [Vse™™7/AV] sin(r, tany) .
Equation (5.1.4a) can now be used to compute V!, replacing ¢ by ¢ + 6.
Equation (5.15a) is then used to compute angle o, again replacing ¢ by ¢ + 6. Angle
¢’ is obtained as ¢’ = cos™! (Va4/V{).

As a numerical example, consider the case of the PEP-II B factory with a 5% gap in
the circulating beam. For PEP-II, some relevant rf parameters are®: rf frequency, 476
MHz; Ty = 7.34x107° sec; loss parameter k¢ = (w/2)(R/Q) = 1.74x 10'1V/C; loaded
cavity Q,Qr & 6,700 for a cavity coupling coefficient of 3.5. Thus the filling time is
2Qr/w =~ 4.5 x 107° sec, and Tg =~ 0.08, 7, a2 1.6. We see that the basic assumption
of this section, m >> 1, is not very well met. If we proceed anyway to compute A6,
Eq. (5.1.3) gives AV ~ 0.19 MV for a circulating current of 1.5A. For a synchronous
phase angle of 78° and a cavity voltage of 0.925 MV, Eq. (5.1.8) gives Af = 12°,

14

A 2Y sing + [(tan’¢+2



393

7385A7
Figure 5.1.2. Phasor geometry for a beam with a gap with arbitrary
Tg and 7.

5.2. Gap with Arbitrary Values of r, and r,

Figure 5.1.2 shows the phasor geometry for the case of a beam gap where both the
gap time and beam time are of arbitrary length with respect to the cavity filling time.
The basic phasor reference frame is again chosen so that the phase of the last bunch
before the gap begins, at time t = 0, lies along the positive real axis. During time
0 < t/Ty < 74 the beam-induced vcitage component progresses along the logarithmic
spiral Vb(tg), shown by the dashed curve, starting at ‘7,," at ¢ = 0 and ending at 175‘*’

at t/Ty = 7. During time 1y < t/Tr < 7, + 7, the phasor Vs travels along the
dot-dashed curve, driven by a current Ig = Ioto/7s, where 70 = Ty /Tr = 15 + 15, At
time ¢ = Ty, the phasor is exactly back at ‘75'. If the current were to continue, instead
of the gap arriving again at t = T, the tip of the phasor would continue along the
dot-dashed curve ﬁ,(te,) to the steady-state position, ‘7:’.

The transient beam loading problem would be relatively simple if we were dealing
with a standing-wave linac cavity, driven by an incoming beam with a periodic gap.
From Fig. 7, we could in this case write the following phasor relation:

V=V, e ef = TV, (5.2.1)
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where 7, and 8 = r, tan ¢ are known. Similarly,

B~ =Bte ™ =T, Bt (5.2.2)
where m, and ¥ = 1, tan ¢ are also known. We also have
Vo = B 4B = R4 AB, T = 4B = B0

where 17: is known from Eq. (3.2.1). Eliminating B* from these two equation and
solving for V7,

Vo= [.l:_l] = AW, U =0 = ALW . (529)

Expressions for the cavity voltage phasors before and after the gap can now be written
in terms of known quantities as

Vo = Vo+ Ve = VAV, U = V40t = V,+ AT . (5.2.4)
Since the timing of the bunches is set by an external generator (the injector) in the
case of a linac, the bunch phase T stays constant. The bunches before and after the
gap therefore see different accelerating voltages, given by the real parts of 17; and Vc*'.

In the case of a storage ring with standing-wave cavities, the situation is more
complex because the bunch phases will adjust themselves, on a time scale on the
order of the damping time, to pick up a constant accelerating voltage (the synchronous
energy gain). Thus the reference phase at the end of the gap must rotate through
angle A4, in Fig. 5.1.2. During the beam-on time, angle v in Fig. 5.1.2 must change

to take this into account:
vy=1, tany — AF . (5.2.5)

Thus 7} in Eq. (5.2.2), A in Egs.. (5.2.3) and consequently both V,~ and Vc'* in
Eqs. (5.2.4) are functions of Af. On the other hand, if V. and V' are given, the
value of A is readily calculated:

A =a+¢T -9, (5.2.6)
¢* = cos™? (VA/VJ) , ¢~ = cos? (VA/V;) ,

™ [om (%) /Re (7)] - van™ [om (%) /e (7)]

Thus A6 must be calculated by a self-consistent procedure: assume values for A8 in
Eq. (5.2.5), then carry through the preceding calculation for V' and V.~ until the
value for A6 in Eq. (5.2.6) is in agreement with the initial assumed value.

We see, even in the simple case of a gap in a beam with bunches of equal charge,
that just the calculation of the bunch phase shift across the gap has become quite
complicated. If further information is desired, for example the phase positions of
other bunches, or perhaps the effects due to unequal bunch charges, it would be
difficult, or at least very awkward, to carry out the calculation analytically. It
might then be best to resort to a simulation, in which the phase and energy of
each bunch is tracked turn by turn. Such a program would show all the features of
the longitudinal bunch dynamics, such as phase oscillations after injection, Robinson
damping of these oscillations, and variations in the cavity voltage due to transient
beam loading. A tracking program of this type has been written for the SLC damping
ring to show transient effects at injection, and to determine the optimum injection
phase and energy.

[+
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5.3 Cures for the Gap-Induced Phase Shift

One obvious way to reduce the effect of a gap-induced phase shift on the longitudinal
position of the collision point is to put a similar gap in the counter-rotating low-energy
beam. However, the beam current, cavity voltage and synchronous phase angle are
slightly different for the PEP-II low energy beam®: Ip = 2.15A, V. = 0.95MV, ¢, =
80.5°, P, = 335 kW. Using Eq. (4.2.3), the optimum cavity coupling coefficient is
B = 3.6 for P. = 129 kW, giving 7, = .084 for Qo = 3.0 x 10*. From Eq. (3.2.1),
Vir = 3.27 MV and from Eq. (4.2.1) the optimum tuning angle is —73.6°. Then
Vo = Vircosy = 0.95 MV, and Eq. (5.1.3) now gives AV = 0.26 MV. Finally,
Eq. (5.1.8) gives A = 16°. Since the high-energy beam has a phase shift of 12°,
a residual phase shift of 4° remains. This is still large enough to produce a shift in the
position of the collision point of 7 mm for A,y = 63 cm. This a substantial fraction of
the bunch length, ¢, = 10 mm. This residual phase shift can be eliminated entirely if
the current is reduced to 25% in the gap in the low-energy beam, instead of to zero.

Another possibility remains for reducing the residual phase shift across the beam
gap. It is clear that if the rf generator voltage component V, in Fig. 4.2.1 is jumped

in phase and amplitude such that ZV, = —‘75, then the transient effect of the gap is
completely eliminated. However, this would require an increase in klystron power by
a factor of (V./V,)? = (.925/.52)* = 3.2, which is clearly not practical. However, we
should calculate how much of a reduction in the gap phase shift can be obtained by
a jump in klystron phase alone. Suppose the phase is shifted such that 17,' = V,ej 7 at
the beginning of the gap, where 5 is a counter-clockwise rotation of ‘79 in Fig. 5.1.1.
We will not give all the details, but will only outline the calculation here. First a
difference phasor D is defined such that ‘7,'+ D= Vc, where the angle between V,’ and
V.is n — ||, where we assume V. is colinear with ¥4,. The law of cosines is used to
calculate the magnitude of D. During the gap period, the phasor D rotates through
angle 7, tant to position D , where D" = De~", The third side of this second
phasor triangle is ZV, which is calculated by the law of cosines. The angle opposite
D', call it ¢, can now be computed by the law of sines. We will also need the angle
opposite 17,’ in the first phasor triangle, call it 4, where 4 can also be computed using
the sine law. Now establish a third phasor triangle, 175, Vc' , AV. The angle between V.
and Z‘-;, call it §, is given by 6§ = ¢’ — 4. V/ is now calculated by the cosine law, and
angle o opposite ING by the sine law. Angle ¢’ is now given by cos™!(V4/V{), and
the gap phase shift by A = o + ¢’ — ¢. Applying this procedure to the parameters
of the PEP-II high energy ring, we calculate that the gap can be reduced to about 3°
for 7 = 100°, with AV = 0.12 MV ard V/ = 0.83 MV. This is a reduction by a factor
of four from the 12° phase shift without the jump in generator phase. If a similar
phase jump is carried out for the low energy beam, the residual phase error would
be reduced from 4° to about 1°. This produces a collision point shift of about 0.20;,
which may be acceptable.

Finally, feedback can also be used to reduce the transient effects due to the gap (see
Ref. 1).

6. Phase Stability and Phase Oscillations
6.1 Phase Stability

In an electron storage ring it is well known that, to be stable against phase
perturbations, a particle must have a synchronous phase on the time-falling part of the
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rf wave, For example, a particle having too much energy compared to a synchronous
particle will follow a longer path and will therefore receive less energy from the rf cavity
on the next revolution. A particle that arrives at the rf cavity too early compared to a
synchronous particle will get more than the synchronous energy gain, will consequently
take a longer path and will arrive back at the cavity closer to the synchronous passage
time. Using V4 = V. cos[w(t — &) + ¢.], the condition dV4/dt < 0, evaluated at
t = t,, leads to {(—wV. sin¢,) < 0, or sing, > 0. Of course, ¢, must also be less
than 7/2 if V4 is to be positive. At high current, where the beam-induced voltage
component is large, the situation is more complicated. As the arrival time varies due
to phase oscillations, the beam-induced voltage component moves with the bunch and
hence cannot contribute to phase stability; only the generator voltage component can
provide a restoring force against phase perturbations. From Fig. 4.1.1 we see that
the phase of the generator voltage component with respect to the beam is § 4+ 9, and
hence the condition dV;/dt < 0 at t = t, leads to sin( + %) > 0, or from Eq. (4.1.1),

2V, sing + Vor 8in2¢ > 0. (6.1.1)
This is the condition for the high-current limit on phase stability first derived by
Robinson. Robinson’s derivation involved setting up a set of linear equations in terms
of slow (compared to the rf frequency) perturbations to the variables of the system.
He then applied Routh’s criterion to the determinant of the coefficients to test for
exponentially growing solutions, However, the result is completely equivalent to the
simple condition dV,/dt < 0, which leads directly to Eq. (6.1.1) using the geometry
of the basic phasor diagram in Fig. 4.1.1. If the cavity tuning is adjusted to make the
beam-loaded cavity voltage look real, then Eq. (5.1.1), together with Eq. (4.2.1) gives

Ve > Vir cosg . (6.1.2)

If the cavity coupling is also optimized according to Eq. (4.2.3), then Vir cos¢ =
Ve(Bo — 1)/(Bo + 1) and the condition in Eq. (6.1.2) is always satisfied.

6.2 Phase Oscillations

There is not space here for a complete derivation from first principles of the damping
time for phase oscillations. A derivation emphasizing the time-domain behavior of
phasor quantities subject to small perturbations is given in Ref. 2, Sec. 4.2. A more
traditional derivation is given in, for example, Ref. 5. The result for the growth rate
(inverse of the damping time) of the oscillation is

1 _ Verw, én

ta Vesing [1+(¢+n)’1+(¢-n7"
where § = tan ¥ = (wo — w) Ty and 5 = w,Tr. The synchrotron oscillation frequency
is given by

(6.2.1)

[ame.; sin ¢ 11/?
w,= |2t F

T B , (6.2.2)
where Eo is the beam energy in volts and o, is the momentum compaction factor.
From Eq. (6.2.1) we see that the oscillations are damped if tan ¢ is negative; that is,
if the rf frequency is greater than the cavity resonant frequency. This is the case if ¥
is optimized according to Eq. (4.2.1) to produce a real beam-loaded cavity reflection
coefficient. The damping rate given by Eq. (6.2.1) vanishes if either ¢ or # approaches
zero or infinity. For small %, the function on the right-hand side of Eq. (6.2.1) has
a maximum value of 0.32 5 for £ = 0.58 (¢ = 30°). For large 9, the function has a
maximum value of 0.25 for § = . Equation (6.2.1) can also be used to calculate the
growth or damping rate of the coupled-bunch longitudinal instability due to a higher
mode in the rf cavity or to a resonance in another vacuum chamber component. In
this case, the growth or damping rate given by Eq. (6.2.1) must be multiplied by the
ratio of the mode frequency to the frequency of the accelerating mode.
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The physical origin of this damping (Robinson damping) can be traced to the
inertia of the stored energy in the rf cavities. Because of the finite filling time, the
beam-induced voltage cannot follow changes in the beam current instantaneously.
A phase difference between the induced voltage and the driving current oscillation
appears, which in turn leads to an energy interchange between the oscillation and
the cavity fields. A similar effect is seen in other physical systems, for example, the
excitation of mechanical oscillations is the walls of a superconducting cavity.®
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