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I. INTRODUCTION 

The process of beam injection into, or ejection 
from, a circular accelerator by means of 
resonantly exciting or damping the betatron 
oscillation with magnetic or electric field bumps 
is, by now, a well-known art. Recently the 
effect of field bumps on ion motions in a sector-field 
accelerator has been the subject of many 
intensive numerical studies.1,2,3 Analytically, 
a general treatment4 has been given for the 
idealized problem of a linear betatron oscillation 
influenced by small but arbitrary excitation 
forces all in exact resonance with the free 
oscillation. Here, we shall present a general 
analytical treatment for studying the motion of 
ions in a sector-field accelerator (non-linear 
free oscillation) under the influence of small but 
arbitrary field bumps which are approximately 
in resonance with the free oscillation. The 
general method of analysis is further illustrated 
by a specific example to show how handy 
approximate formulas can be derived to 
give the essential near-resonant behaviors of 
the ion motions. 

II. REDUCTION OF THE GENERAL HAMILTONIAN 

W e assume that in the absence of the bump 
field the magnetic field (intrinsic field) pos­
sesses perfect sector and median-plane symmetries. 
To simplify the formulation we shall 
admit only bump fields which preserve the 
median-plane symmetry and shall study only 
small oscillations in the median plane (no 
vertical oscillation). The method of treatment 
and the results obtained under these 
restrictions exhibit all the essential features, and 
extensions of the present work to include more 
general cases are quite straightforward. The 
equilibrium orbit is defined as the closed orbit in 

the intrinsic field and, hence, possesses sector 
symmetry. The Hamiltonian for the horizontal 
betatron oscillation of an ion expanded 
about its equilibrium orbit is5 

H (x, px; θ) = H(1) + H(2) + 
H(3) + H(4) + .. (1) 

where 
H(1) = (∆μ) x (2) 

H(2) = 1 px2 + 1 (μ2 + ν + μ∆μ + ∆ν)x2 H(2) = 2 px
2 + 2 (μ

2 + ν + μ∆μ + ∆ν)x2 

H(3) = 1 μxpx2 + 1 (2μν + λ + 2μ∆ν + ∆λ)x3 H(3) = 2 μxpx
2 + 6 (2μν + λ + 2μ∆ν + ∆λ)x

3 

H(4) = 1 Px4 + 1 (3λμ + σ + 3μ∆λ + ∆σ) x4 H(4) = 8 Px
4 + 24 (3λμ + σ + 3μ∆λ + ∆σ) x

4 

and 

μ(θ) = eR B0, ∆μ(θ) = eR (∆B)0 (3) μ(θ) = cp B0, ∆μ(θ) = cp (∆B)0 (3) 

ν(θ) = eR ( 
∂B )0,∆ν(θ) = 

eR 
( 
∂∆B 

)0 
ν(θ) = cp ( ∂x )0,∆ν(θ) = cp ( ∂x )0 
λ(θ) = eR ( 

∂2B ) 0, ∆λ(θ) = eR ( 
∂2∆B 

)0 
λ(θ) = cp ( ∂x2 ) 0, ∆λ(θ) = cp ( ∂x2 )0 
σ(θ) = eR ( 

∂3B ), ∆σ(θ) = eR ( 
∂3∆B 

)0 
σ(θ) = cp ( ∂x3 ), ∆σ(θ) = cp ( ∂x3 )0 

The quantities appearing in (1), (2) and (3) are 
defined below: 

x = perpendicular displacement from 
the equilibrium orbit in units of 
R = canonical coordinate variable 

px = canonical momentum variable 
conjugate to x 
R = 1/2π (length of equilibrium orbit) 

θ = 1/R (distance along equilibrium 
orbit) = independent variable 

B = magnitude of intrinsic field 
∆B = magnitude of bump field 

subscript 0 = value on equilibrium orbit 
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e = charge of ion 
p = momentum of ion 

c = velocity of light 
The quantities μ, ν, λ, σ giving the normal 
(perpendicular to equilibrium orbit) derivatives 
of the intrinsic field have sector periodicity 2π/N 
(N = number of sectors), and are much larger 
than the bump quantities ∆μ, ∆ν, ∆λ, ∆σ which 
may have only the minimum periodicity 2π. 
Terms containing factors of ∆μ, ∆ν, ∆λ, ∆σ etc. 
are small bump terms and vanish when the 
bump field is turned off, whereas terms containing 
only factors pertaining to the intrinsic 
field are large intrinsic terms. 
The first part of this treatment follows closely 

that for the study of non-linear betatron oscillations.6 
Because of the expansion about 
the equilibrium orbit in the intrinsic field H(1) 
contains only a small bump term. The existing 
largest term in H, namely the intrinsic terms in 
H(2), can be eliminated by the following series 
of transformations. 

A. Floquet Transformation 

It is well-known that the coefficient of x2 in 
the intrinsic terms of H(2) may be transformed 
to a constant, say, Q2 (Q = betatron oscillation 
frequency) by the Floquet transformation7 
which consists of a transformation of θ followed 
by a canonical transformation of x and px. All 
other terms in H are, of course, also affected by 
the Floquet transformation. However, these 
are either bump terms or terms of higher degrees 
in x and px and, hence, much smaller than 
the intrinsic terms in H(2). For intrinsic fields 
with relatively small flutter (true for all 
medium energy sector-field cyclotrons) the 
modifications of these small terms by the 
Floquet transformation are even smaller and 
shall be neglected. Under this "smooth approximation" 
then, we shall leave all terms in 
the Hamiltonian (1) and (2) unchanged, except 
replacing the coefficient of x2 in the intrinsic 
terms of H(2) by the constant Q2, namely substituting 
for H(2) in (2) 

H(2) = ½(px2+Q2c2)+½(μ∆μ+∆ν)x2 (4) 
with the understanding that x, px, and θ now 
denote their corresponding quantities after the 
Floquet transformation. 

The intrinsic terms in H(2), now, produce 
only a rotation in the x px phase plane and can, 
hence, be eliminated by a transformation to a 
rotating coordinate frame in the phase plane. 
This can best be done using complex canonical 
variables. 
B. Transformation to Complex Variables z and z* 

{ 

z = √Q x + i px (5) 

{ 

z = √Q x + i 
√Q 

(5) 

{ z* = √ Q x - i px 

(5) 

{ z* = √ Q x - i 
√Q 

(5) 

C. Canonical Tranformation to Rotating Frame 
with Generating Function 

GI(z, Z*; θ) = zZ*eiQθ (6) 
which gives the relation 

z = Ze-iQθ (7) 
The transformed complex Hamiltonian is, now, 

Φ(Z, Z*; θ) = Φ(1) + Φ(2) + Φ(3) + Φ(4) + ••• 
(8) 

where 
Φ(1) = A(1)Ze-iQθ + c. c. (9) -2i = A

(1)Ze-iQθ + c. c. (9) 

Φ(2) 
= A(2)Z2e-2iQθ + B(2)ZZ* + c. c. -2i = A(2)Z2e-2iQθ + B(2)ZZ* + c. c. 

Φ(3) = A(3)Z3e-3iQθ + B(3)Z2Z*e-iQθ + c. c. -2i = A
(3)Z3e-3iQθ + B(3)Z2Z*e-iQθ + c. c. 

Φ(4) = A(4)Z4e-4iQθ + B(4)Z3Z*e-2iQθ+ -2i = A
(4)Z4e-4iQθ + B(4)Z3Z*e-2iQθ+ 

C(4)Z2Z*2 + c. c. 
and 

A(1) = 1 (∆μ) (10) A(1) = 2(1 !)Q½ (∆μ) (10) 

A(2) = B(2) = 1 (μ∆μ + ∆ν) A(2) = B(2) = 22(2 !)Q (μ∆μ + ∆ν) 

A(3) = 1 (2μν+λ+2μ∆ν+∆λ-3μQ2) A(3) = 23(3 !)Q3/2 (2μν+λ+2μ∆ν+∆λ-3μQ
2) 

B(3) = 3 (2μν+λ+2μ∆ν+∆λ-μQ2) B(3) = 23(3 !)Q3/2 (2μν+λ+2μ∆ν+∆λ-μQ
2) 

A(4) = 1 C(4) = 1 (3μλ+σ+3μ∆λ + A(4) = 3 C
(4) = 24(4 !)Q2 (3μλ+σ+3μ∆λ + 24(4 !)Q2 ∆σ+3Q4) 

B(4) = 4 (3μλ + σ+3μ∆λ+∆σ-3Q4) B(4) = 24(4 !)Q2 (3μλ + σ+3μ∆λ+∆σ-3Q
4) 
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with cc. denoting the complex conjugate 
terms. After these tranformations Φ(l) and 
Φ(2) both contain only small bump terms, and 
intrinsic terms enter only in the small third and 
higher degree terms in Z and Z*. The co­
efficients A(k), B(k), C(k) are functions of θ 
with at least the periodicity of 2π. To exhibit 
this property we shall write 

{ 

A(k) = 
∞ 

an
(k) einθ a-n

(k) = an
(k)* (11) 

{ 

A(k) = ∑ an
(k) einθ a-n

(k) = an
(k)* (11) 

{ 

A(k) = 
n = — ∞ 

an
(k) einθ a-n

(k) = an
(k)* (11) 

{ B(k) = 
∞ 

bn
(k) einθ , b-n

(k) = bn
(k)* 

(11) 

{ B(k) = ∑ bn
(k) einθ , b-n

(k) = bn
(k)* 

(11) 

{ B(k) = 
n = —∞ 

bn
(k) einθ , b-n

(k) = bn
(k)* 

(11) 

{ 

C(k) = 
∞ 

cn
(k) einθ c-n

(k) = cn
(k)* 

(11) 

{ 

C(k) = ∑ cn
(k) einθ c-n

(k) = cn
(k)* 

(11) 

{ 

C(k) = 
n = — ∞ 

cn
(k) einθ c-n

(k) = cn
(k)* 

(11) 

where an
(k) bn

(k) cn
(k) are complex constants 

with respect to θ. When (11) is substituted 
in (9) we get 

{ 

Φ ( 1 ) 

= Z 
∞/ 

an
(1) ei(n-Q)θ + c.c. (12) 

{ 

Φ ( 1 ) 

= Z ∑ an
(1) ei(n-Q)θ + c.c. (12) 

{ 

-2i = Z ∑ an
(1) ei(n-Q)θ + c.c. (12) 

{ 

-2i = Z 
n=— ∞ 

an
(1) ei(n-Q)θ + c.c. (12) 

{ 

Φ(2) 

= Z2 
∞/ 

an
(1) ei(n-2Q)θ + 

(12) 

{ 

Φ(2) 

= Z2 ∑ an
(1) ei(n-2Q)θ + 

(12) 

{ 

- 2 i 
= Z2 ∑ an

(1) ei(n-2Q)θ + 

(12) 

{ 

- 2 i 
= Z2 

n = —∞ 
an

(1) ei(n-2Q)θ + 

(12) 

{ 

zz* ∞/ 
bn

(2) ei(n-Q)θ + c.c. 

(12) 

{ 

zz* ∑ bn
(2) ei(n-Q)θ + c.c. 

(12) 

{ 

zz* 
7t = —∞ 

bn
(2) ei(n-Q)θ + c.c. 

(12) 

{ 

Φ(3) 

= Z3 
∞ 

an
(3) ei(n-Q)θ + c.c. 

(12) 

{ 

Φ(3) 

= Z3 ∑ an
(3) ei(n-Q)θ + c.c. 

(12) 

{ -2i = Z3 ∑ an
(3) ei(n-Q)θ + c.c. 

(12) 

{ -2i = Z3 

n = — ∞ 

an
(3) ei(n-Q)θ + c.c. 

(12) 

{ 
Z2Z* 

∞ 
bn

(3) ei(n-Q)θ + c.c. 

(12) 

{ 
Z2Z* ∑ bn

(3) ei(n-Q)θ + c.c. 

(12) 

{ 
Z2Z* 

n = — ∞ 

bn
(3) ei(n-Q)θ + c.c. 

(12) 

{ 

Φ(4) 

= Z4 
∞ 

an
(4) ei(n-4Q)θ + 

(12) 

{ 

Φ(4) 

= Z4 ∑ an
(4) ei(n-4Q)θ + 

(12) 

{ 

-2i = Z4 ∑ an
(4) ei(n-4Q)θ + 

(12) 

{ 

-2i = Z4 
n = — ∞ 

an
(4) ei(n-4Q)θ + 

(12) 

{ 

Z3Z* 
∞ 

bn
(4) ei(n-2Q)θ + 

(12) 

{ 

Z3Z* ∑ bn
(4) ei(n-2Q)θ + 

(12) 

{ 

Z3Z* 
n = — ∞ 

bn
(4) ei(n-2Q)θ + 

(12) 

{ 

Z2Z*2 ∞ 

cn
(4) ei(n-Q)θ + c.c. 

(12) 

{ 

Z2Z*2 ∑ cn
(4) ei(n-Q)θ + c.c. 

(12) 

{ 

Z2Z*2 

n = — ∞ 
cn

(4) ei(n-Q)θ + c.c. 

(12) 

where the primes on the summations in Φ(1) and 
Φ(2) indicate that the harmonics of the intrinsic 
field are missing in these summations. 

For small oscillations, namely small Z, since 
the terms appearing in Φ are either bump terms 
or terms of the third or higher degree in Z, Φ is 
small showing that Z is a slowly varying function 
of θ. Those terms in Φ with exponential eiwθ  

where ω is of the order of unity or larger are too 
rapidly oscillating to produce appreciable 
secular effect on Z. Only terms with very 
small or vanishing ω (resonant terms) can 
produce large secular (resonant) effects on Z. 

In terms of first-order perturbation theory, 
where we average Φ over θ to get the first-order 
approximate Hamiltonian, we see that terms 
with large co will average to zero and that only 
terms with small or vanishing ω remain in the 
approximate Hamiltonian. Setting the ex­
ponent of each of the terms in (12) equal to 
zero, we obtain the resonance-condition: 

kQ = nc k,n = 0,l,2,... (13) 
For any specific problem, therefore, the first 
step is to determine the relevant resonant 
terms and to simplify the Hamiltonian (8) and 
(12) by neglecting all other terms. We shall 
illustrate this method of treatment by a specific 
example. 

III. EXTRACTION FROM A 3-SECTOR CYCLO­
TRON OPERATING NEAR Q = l 

A. Further Reduction of the Hamiltonian 
For a 3-sector cyclotron the intrinisc field has 

only harmonics of orders n = 0,3, 6 , . . . There­
fore, for operation near Q = l the nearby in­
trinsic resonances (those derived from the in­
trinsic field) are 0Q = 0, 3Q = 3, 6Q = 6, etc. To 
decide on the necessary bump field, since, as we 
shall see later, the stability of motion in the 
immediate neighborhood of the equilibrium 
orbit (small Z) is caused by a term of the 
second degree in Z and Z* in the Hamiltonian, 
to destroy this stability to effect extraction the 
bump term will have to be of either the first or 
the second degree in Z. This means that we 
will have to supply either a first-harmonic or a 
second-harmonic bump field. We shall study 
only the case of a first-harmonic bump field. 
The same treatment applies quite straightfor­
wardly also to the case of a second-harmonic 
bump field. With a first-harmonic bump field 
(n = 1) and an operation near Q = 1, the nearby 
bump resonance (that derived from the bump 
field) is clearly 1Q = 1. Writing Q = l+Є; 
keeping in (12) the bump terms for the bump 
resonance 1Q = 1, the intrinsic term for the 
lowest order (hence, strongest) intrinsic res­
onance 3Q = 3, and the "intrinsic" term for the 
neutral resonance 0Q = 0; and dropping all 
other terms we get 

Φ = a(1)
1Ze-iЄθ + a(3)

3 Z3e-3iЄθ + b(3)
1Z2Z*e-iЄθ + -2i = a(1)

1Ze-iЄθ + a(3)
3 Z3e-3iЄθ + b(3)

1Z2Z*e-iЄθ + 
c(4)

0Z2Z*2 + c. c. (14) 
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Now we make the canonical transformation 
to the coordinate frame rotating in the Z phase 
plane with angular speed Є to follow the precessional 
motion of the phase point caused by 
not being exactly on the resonance (Є ≠ 0). The 
generating function is : 

G2(Z, ζ*; d)=Zζ*e-iЄθ, (15) 
which gives the relation 

Z = ζe-iЄθ. (16) 
The transformed Hamiltonian is 

1 ψ(ζ,ζ*,θ) = a(1)
1ζ + Є 

ζ ζ * + a ( 3 )
3 ζ 3

 + b ( 3 )
1 ζ 2 ζ* + -2i ψ(ζ,ζ*,θ) = a(1)

1ζ + 4 ζ ζ * + a ( 3 )
3 ζ 3

 + b ( 3 )
1 ζ 2 ζ* + 

c0
(4)ζ2ζ*2+c. c. (17) 

The coefficient c0
(4) is real and the coefficient 

a3
(3) can be made real (phase angle = 0) by 

choosing the origin of θ to be where the third 
harmonic of A(3) (i.e. the third harmonic of 
2μv + λ — 3μQ2, since the bump terms in A(3) are 
assumed not to contain the third harmonic) is a 
maximum. To simplify the formulation fur­
ther, we shall assume that the bump field is so 
arranged that the coefficients a1

(1) and b1
(3) 

have the same phase angle α, and to simplify 
the notation we shall rewrite 
a3

(3) ≡ A, a0
(4) ≡ B, a1

(1) ≡ Ceia, b1
(3) ≡ Deia. (18) 

This gives 

ψ = 
Є ζζ* + A(ζ3+ζ*3)+2Bζ2ζ*2 + 

-2i = 2 ζζ* + A(ζ3+ζ*3)+2Bζ2ζ*2 + 

C(ζei° + ζe- i a)+D (ζ2ζ*eia+ζ*2ζe-'a), (19) 

where the A and B terms are the intrinsic 
terms and the C and D terms are the bump 
terms. 

To facilitate physical interpretation, we 
transform the complex Hamiltonian (19) back 
to real canonical variables. This can be dont 
in two ways. If we choose the real Cartesiar 
canonical variables X and P defined by 

ζ= X + iP, (20) 
we get the real Cartesian Hamiltonian 
Kc(X,P;d) = Є (X2 + P2) + 2A (X3 - 3XP2) + Kc(X,P;d) = 2 (X

2 + P2) + 2A (X3 - 3XP2) + 

2B(X2 + P2)2 + 2C(X cos a - P s i n α ) + 

2D(X2 + P2)(X cos α - P sin α) (21) 

Or, else, we can transform (19) to the real polar 
canonical variables Φ and ρ defined by 

ζ = √ρeiφ (22) 
(Note here that although √Ρ is the physical 
radial length in the phase plane, ρ is the canoni­
cal momentum variable conjugate to φ.) We 
get for the real polar Hamiltonian: 

- 1 
KP(Φ, ρ; θ) = € ρ + 2Aρ3/2 cos 3φ + 2Bρ2 + 

-
2 KP(Φ, ρ; θ) = 2 ρ + 2Aρ3/2 cos 3φ + 2Bρ2 + 

2Cp1/2 cos (φ+α) + 2DP
3 / 2 cos (Φ+α). 

(23) 

For easy reference we shall list below the 
relationships between the coefficients A, B, C, 
D, and « and the magnetic field and linear horizontal 

betatron oscillation parameters; and 
those between the new real canonical variables X, 
P, Φ>, ρ and the original canonical variables x, pr. 

{ 

A cos 3θ = third (intrinsic) harmonic of 2Μv + λ - 3ΜQ2 

{ 

A cos 3θ = third (intrinsic) harmonic of 24(3 !)Q3/2 

{ 

third (intrinsic) harmonic of 1 (2Μv + λ — 3Μ) 

{ 

third (intrinsic) harmonic of 
96 (2Μv + λ — 3Μ) 

{ 

B = θ – average of 3 ( 3 Μ Λ + σ + 3Q4) 

{ 

B = θ – average of 
24(4 !)Q2 

{ 
θ – average of 1 

(3μλ + σ + 3) 
{ 

θ – average of 128 (3μλ + σ + 3) 
{ 

C cos (θ + α) = first (bump) harmonic of ∆μ { 
C cos (θ + α) = first (bump) harmonic of 4(1 !)Q1/2 

{ 

first (bump) harmonic of 1 
(∆Μ) 

{ 

first (bump) harmonic of 4 (∆Μ) 

{ 

D cos (0+a) = first (bump) harmonic of 3(2Μ∆v + ∆X) 

{ 

D cos (0+a) = first (bump) harmonic of 24(3!)Q3'2 

{ 

first (bump) harmonic of 1 
(2∆v + ∆X) 

{ 

first (bump) harmonic of 32 (2∆v + ∆X) 

{ 

Є = Q – 1 

(24) 
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and 

{ x = 
1 

√ρ cos (θ – Φ) = 1 (X cos θ + P sin θ) (25) { x = √Q 
√ρ cos (θ – Φ) = 

√Q 
(X cos θ + P sin θ) (25) { 

PX=-√Q √Ρ sin (θ - Φ) = √Q(– X sin θ + P cos θ) 

(25) 

Equation (25) shows that if we look at x and px 
only once every revolution they simply coincide 
respectively with 1 X X and √Q P P. √Q X X and √Q P P. 

B. Study of Properties of Resonant Extraction 

The Hamiltonians (21) and (23) being ex­
plicitly independent of θ give immediately the 

trajectories of the phase points as Kc = constant 
or KP = constant. Without the bump terms 
(C = D = 0) the phase point trajectories are the 
well-known three sided figures (Fig. 1). The 
fixed points are given by the conditions 

dΦ = ∂Hρ 
= 0, and dρ dHρ 

= 0 to be dθ = ∂ρ = 0, and dθ dΦ = 0 to be 

√ρ = 0 (26) 
and 

{ √P = 
- 3 A ± √9A2 - 8eB { VΡ = 3 A ± √9A2 - 8«B 

(27) { √P = 8B { VΡ = 8B (27) { Φ = 0, 
2π 

, 
4π { Φ= π 

, 
3π 

, 
5π 

(27) { Φ = 0, 3 , 3 
{ Φ= 3 , 3 , 3 

(27) 

where it is assumed, of course, that 9A2 

– 8ЄB ≥ 0 and where the signs in front of the 
radicals are to be chosen so as to make √Ρ > 0. 
Three of the six fixed points given in (27) are 
stable and three are unstable. The central 
stable phase area is that bounded by the 
separatrices passing through the three unstable 
fixed points. 

Because of the appearance of cos 3Φ in KP 

Fig. 1 Phase plot with no bump term 
(Є = - 0 . 4 , A = l ,B = l , C = D = 0) (Є = - 0 . 4 , A = 

12 
,B = 4 , C = D = 0) 

there are two typical sets of values for the 
phase angle of the bump terms; the set of α = 0, 
2π 

, 

4π 
and the set of α = π 

, 
3π 

, 
5π . 

3 , 3 and the set of α = 3 , 3 , 3 
. 

Phase plots for values of α belonging to the 
same set differ only by a rotation of the phase 
plane. Moreover, the plots for α = π are the 
same as those for α = 0 with the signs of C and 
D reversed. Therefore, it is sufficient to study 
only the case of α = 0 with unrestricted signs for 
C and D. The qualitative effects of the addi­
tion of these bump terms are shown in Fig. 2. 

Fig. 2a Phase plot with C bump term 
(Є = -0 .4 , A = l , B = l , C=0.03, D = 0) (Є = -0 .4 , A = 12 , B = 4 , C=0.03, D = 0) 
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For practical cases of medium energy sector-field 
cyclotrons the coefficient B is very small, 
and the three stable fixed points on the outside 
are quite far out. Since for beam extraction we 
are only interested in the behavior of the 

central region of the phase plane, as a good 
approximation we can put B = 0. With both α 
and B put equal to zero, the Hamiltonians (21) 
and (23) reduce to 

Kc = 2CX + Є (X2 + P2) + 2A(X3 - 3XP2) + 2DX (X2 + P2) (28) Kc = 2CX + 2 (X
2 + P2) + 2A(X3 - 3XP2) + 2DX (X2 + P2) (28) 

and 

KP = - 2 2Cρ1/2cosΦ + Є ρ + 2ρ3/2 (A cos 3Φ + D cos Φ) (29) KP = - 2 2Cρ1/2cosΦ + 2 ρ + 2ρ3/2 (A cos 3Φ + D cos Φ) (29) 

Without the bump terms (C = D = 0) the 
three outside stable fixed points, now, recede to 
∞ leaving the phase plots open on the outside 
(Fig. 3), and the three unstable fixed points are, 
now, given by 

√Ρ = -
€ 

-, Φ = 0 , 
2π 

', 

4π if Є < 0 (30) √Ρ = - 6A -, Φ = 0 , 3 ', 3 if 6A < 0 (30) 

or 

√Ρ = 
Є 

, Φ = 
π 

, 
3π , 5π if Є > 0 (31) √Ρ = 6A , Φ = 3 , 3 , 3 if 6A > 0 (31) 

The phase plots of these two cases are just the 
reflections of each other about the P-axis. 
Henceforth, we shall concentrate only on the 
case when Є <0. 6A <0. The separatrices are, 
now, straight lines passing through the three 
unstable fixed points bounding an equilateral 
triangular shaped stable-phase region of area, 

So = 
1 Є2 

(32) So = 
16√3 A2 (32) 

With the bump terms the fixed points are 
given by dX = ∂Hc = 0 and dP = -∂Hp = 0 dθ = ∂P = 0 and dθ = - ∂X = 0 

to be 

X= -Є ± √Є2 - 48C(A + D) , P = 0 (33) X= 12(A + D) , P = 0 (33) 

and 

x = Є 
, P = ± 

1 √ 16C + Є
2(9A+D) 

(31) 
x = 4(3A - D) , P = ± 4 √ 3 A - D + (3A-D) 3 

(31) 

One of the two fixed points given in (33) is 
stable and the remaining three are unstable. 
When 

C(A+D) ≥ Є2 

(35) C(A+D) ≥ 48 (35) 

the first pair of fixed points (33) (one stable, one 
unstable) vanishes, and the stable phase area 

shrinks down to zero leaving the central region 
of the phase plane opened up at the corner on 
the X-axis. (Fig. 4a.) When 

c (3A-D) 2 

≤ -
Є2 

(36) c 9A+D ≤ - 16 (36) 

the second pair of fixed points (34) (both un-

Fig. 2b Phase plot with D bump term 
(Є=-0.4, A = l ,B = l , C = 0 , D = l ) (Є=-0.4, A = 12 ,B = 4 , C = 0 , D = 4 ) 

Fig. 3 Phase plot for B =0 with no bump term 
(Є= -0 .4 , A =1/6, B=C = 0 = 0 ) 
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stable) vanishes, and the central region of the phase plane is opened up at the other two corners (Fig. 4b). In either case, the destruction of the stable phase area will cause the originally stable-phase points to stream away from the central region, and extraction of the beam is, thus, accomplished. To study the asymptotic behaviors of these phase points after leaving the central region we derive, first, the asymptotic streaming direction 
øa of the phase points at large √ρ (meaning that √ρ is large enough so that only its highest degree terms in the Hamiltonians (28) and (29) are important, but not so large that 

Fig. 4a Phase plot for B=0 with bump terms—one 
corner opening case 
(ε=-0.4, A=1/6, B=0, C=0.0125, D=0.1) 

Fig. 4b Phase plot for B=0 with bump terms—two 
corner opening case 

(ε=-0.4, A=1/6, B=0, C=-0.11, D=0.1) 

the B terms which are dropped in these Hamiltonians would become important), by equating 
the ρ½ term in dØ = ∂HP to zero. This the ρ½ term in dθ = dp to zero. This 
gives 

A cos 3Øa+D cos Øa={4A cos2 Øa— 
(3A-D)] cos Øa=0 (37) or 

Øa = π±Ø0, π± π ±Ø0 (38) Øa = π±Ø0, π± 2 ±Ø0 (38) 
where 
Ø0 ≡ cos-1√ 3A-D > 0 if 0 < 3A-D <1 Ø0 ≡ cos-1√ 4A < π if 0 < 4A <1 Ø0 ≡ cos-1√ 4A < 2 

if 0 < 4A <1 

The asymptotic radial "velocities" ( d√ρ )a ( dθ )a of the motion of phase points along these directions are obtained by substituting (38) in 
the equation d√ρ 

dθ 
= 1 
2√ρ 

dρ 
dθ 
= - 1 

2√ρ 
∂Hp 
∂Φ, ' 

keeping only the ρ term on the right-hand side. This gives 
(39) 

( d√ρ )a { 
±2ρ(3A-D√ A+D for Øa=π±Ø0 

( d√ρ )a { 
±2ρ(3A-D√ 

A 
for Øa=π±Ø0 

( d√ρ )a { ±2ρ(3A-D) for Øa=π± π ( dθ )a { ±2ρ(3A-D) for Øa=π± 2 ( dθ )a { 
±2ρ(3A-D√ A+D forØa=±Ø0 

( dθ )a { 
±2ρ(3A-D√ A forØa=±Ø0 

Thus, for the one-corner opening case, the phase points stream into the central region of the phase plane in the asymptotic direction 
Øa=Ø0 and stream out of the central region in the asymptotic direction Øa=-Ø0 both with 
the asymptotic speed 2ρ(3A D)√ A+D ; and the asymptotic speed 2ρ(3A D)√ A ; and for the two-corner opening case, the phase points stream into the central region in the asymptotic direction Øa=3π/2 and stream out of the central region in the asymptotic direction Øa=π/2 both with the asymptotic speed 2ρ(3A-D)(see Fig. 4). It should be noted, here, that the asymptotic streaming direction has no real physical significance since, at different 
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azimuths around the cyclotron, the corresponding 
phase plots are rotated from one another. 
It is always possible to find an azimuth where 
the asymptotic outstreaming direction is along 
the X-axis to give the maximum increment per 
revolution in the displacement of the ions from 
the equilibrium orbit to facilitate entrance into 
a magnetic or an electrostatic channel. 
Next, we would like to know asymptotically 

what region of the phase plane is occupied by 
the phase points which were originally in the 
stable-phase area before the bump field was 
turned on (or before the ion orbits were displaced 
into the physical space where bump field 
exists). Qualitatively we know that this 
asymptotic occupied region must be an elongated 
oval with the long dimension along the 
outgoing asymptotic direction. The extremities 
of the width w of this area at a givenv √ρ 
lie on trajectories with values of the Hamiltonian 
which differ by 

∆ K P ( √ Ρ ) -
∂Kp ∆Ø = -dρ 

∆Ø (40) 
∆ K P ( √ Ρ ) - dØ ∆Ø = -dθ ∆Ø (40) 

= -2 d√ρ (√ρ∆Ø) -2( d√ρ )aw 
= -2 dθ (√ρ∆Ø) -2( dθ )aw 

Now, since the area S of the occupied region is 
an invariant (Liouville theorem) the length l of 
this region may be approximately given by 

l 4 S = -8 S 
( 
d√ρ )a (41) l π wmax 

= -π (∆KP)max ( dθ )a (41) 

where S is the invariant area of the oval, 

( 
d√ρ )a is the asymptotic radial streaming 

( dθ 
)a is the asymptotic radial streaming 

velocity averaged over the length of the oval, 
and (∆KP)max is the maximum range of the 
values of K P for all phase points in the oval; and 
where for lack of more detailed information we 
have assumed the oval to be an ellipse with 
major and minor axes l and w respectively. 
For any other "ovalish" shape the factor 4 

π 
should be modified. To calculate (∆KP)max 
we assume the bump field to be turned on 
adiabatically. (Adiabaticity, here, means that 
the rate of change of the bump field is small 
compared to that of the original variables x and 
px. However, since the transformed variables 

Ø and ρ or X and P are slowly varying themselves 
we can still assume that these variables 
do not change appreciably during the turn-on 
period.) Thus, the Hamiltonians during the 
turn-on period have the same forms as (28) and 
(26) except, now, C and D are explicit functions 
of θ having the asymptotic values C(θ) = D(θ) 
= 0 before the turn-on period and C(θ) = C = 
constant, D(θ) = D = constant after the turn-on 
period. The motion before and after the turn-on 
period when C and D are asymptotically 
independent of θ is still given by K P = constant; 
but the constant values of the Hamiltonian 
of the same ion before (KP0) and after 
(KP) the turn-on period are different. From 
the "equation of motion" of KP, namely, 

dK P = [KP, KP] + ∂Kp = ∂KP (42) dθ = [KP, KP] + ∂θ = ∂θ (42) 

where the square brackets denote the Poisson 
Bracket, and expression (29) for K P we see that 
these two values of the Hamiltonian are related 
by 

K P = Kp0-4 (C+Dρ) √ρ cos Ø, (43) 
where Ø and ρ are some kind of average values 
over the turn-on period; but since these variables 
do not change appreciably during this 
time we can approximate them by their values 
at the beginning of the turn-on period. Assuming 
that before the turn-on period the phase 
points occupy a small (considerably smaller 
than the total stable phase area), hence, almost 
circular area with radius √ρ0 bout the origin 
we see from (43) that the maximum range of 
K P is the difference between its values at the 
phase points (Ø = 0, √ρ = √ρ0) and (Ø = Π, 
√ρ = √ρ0). Although these two points have 
the same K P

0 — Єρ0, they produce the largest 
∆ K P , namely (∆KP)max = -8 (C+D)ρ0 √ρ0, 
from the second term on the right-hand side of 
(43). Substituting this and S = πρ0 in (41) we 
get 

l = √ρ0 
( 
d√ρ )a (44) l = C + D ρ 0 ( dθ )a (44) 

or 
n = l = 1 d√ρ )a (45) n = 

Δ√ρ = 2π C + D ρ 0 
)a (45) 

where δ√ρ = 2π ( d√ρ )a is the radial dis-where δ√ρ = 2π ( dθ 
)a is the radial dis-
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tance the phase points traverse per revolution 
of the ions averaged over the length of the oval, 
and n is the number of revolutions it takes for 
the occupied phase area to "move out of itself" 
or, in other words, the number of revolutions it 
takes to extract all the ions. As a general guide 
in designing the bump field we can remark that, 
of the two bump terms, C is primarily responsible 
for the destruction or opening up of the 
stable phase area, and D serves primarily as a 
control of the asymptotic behaviors of the 
phase points after streaming out of the central 
region. 
We have, so far, centered our discussion on 

the extraction problem. It is clear, however, 
that all formulas derived above apply equally 
well to the reverse process, namely that of the 
resonant injection. However, since many approximations 
have been employed in the derivation 
of these handy formulas, they can not be 
expected to give quantitatively exact results. 
Nevertheless, these approximate results are 
fairly good approximations; and can serve as a 
valuable guide for the design and the understanding 
of the effects of the field bumps, and 
for performing the exact computing machine 
studies. 
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