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I. INTRODUCTION

The process of beam injection into, or ejec-
tion from, a circular accelerator by means of
resonantly exciting or damping the betatron
oscillation with magnetic or electric field bumps
is, by now, a well-known art. Recently the
effect of field bumps on ion motions in a sector-
field accelerator has been the subject of many
intensive numerical studies.!'2:3 Analytically,
a general treatment* has been given for the
idealized problem of a linear betatron oscilla-
tion influenced by small but arbitrary excitation
forces all in exact resonance with the free
oscillation. Here, we shall present a general
analytical treatment for studying the motion of
ions in a sector-field accelerator (non-linear
free oscillation) under the influence of small but
arbitrary field bumps which are approximately
in resonance with the free oscillation. The
general method of analysis is further illustrated
by a specific example to show how handy
approximate formulas can be derived to
give the essential near-resonant behaviors of
the ion motions.

Il. REDUCTION OF THE GENERAL HAMILTONIAN

We assume that in the absence of the bump
field the magnetic field (intrinsic field) pos-
sesses perfect sector and median-plane sym-
metries.. To simplify the formulation we shall
admit only bump fields which preserve the
median-plane symmetry and shall study only
small oscillations in the median plane (no
vertical oscillation). The method of treat-
ment and the results obtained under these
restrictions exhibit all the essential features, and
extensions of the present work to include more
general cases are quite straightforward. The
equilibrium orbit is defined as the closed orbit in

the intrinsic field and, hence, possesses sector
symmetry. The Hamiltonian for the horizon-
tal betatron oscillation of an ion expanded
about its equilibrium orbit is®
H (z,p;; 6) = HY + H® +

H® 4+ H® 4 . . (]_)

where
HY = (Ap) 2)

H® =—; p.? + —; (* + v + pAu + Av)x?

H® = —;mﬂpx? + %(Zw + N + 2ulv + AN)Z?

H®w = % Pt + 2l4 Bux + o + 3uAN + Ag) x4

and

w(6) = %? B,, Au(8) = %3 4B)s @)
ﬁy(o) B %2 (%‘)O’Av(o) - cif( 323)0
MO) = 961—; %)0, AN(E) = % 9;3_5)0
o0 = B (IB), soto) = & (320)

The quantities appearing in (1), (2) and (3) are
defined below:
z =perpendicular displacement from
the equilibrium orbit in units of
R =canonical coordinate variable
P =canonical momentum variable
conjugate to
R=1/2r (length of equilibrium orbit)
6=1/R (distance along equilibrium
orbit) =independent variable
‘B =magnitude of intrinsic field
AB =magnitude of bump field
subscript , = value on equilibrium orbit
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e=charge of ion

p=momentum of ion

¢ =velocity of light
The quantities u, », A, ¢ giving the normal
(perpendicular to equilibrium orbit) derivatives
of the intrinsic field have sector periodicity 2=/N
(N =number of sectors), and are much larger
than the bump quantities Au, Ay, A\, A¢ which
may have only the minimum periodicity 2.
Terms containing factors of Ag, Av, AX, Ac etc.
are small bump terms and vanish when the
bump field is turned off, whereas terms con-
taining only factors pertaining to the intrinsic
field are large intrinsic terms.

The first part of this treatment follows closely
that for the study of non-linear betatron os-
cillations.® Because of the expansion about
the equilibrium orbit in the intrinsie field H®
contains only a small bump term. The existing
largest term in H, namely the intrinsic terms in
H®, can be eliminated by the following series
of transformations.

A. Floquet Transformation

It is well-known that the coefficient of x? in
the intrinsic terms of H® may be transformed
to a constant, say, Q? (Q =betatron oscillation
frequeney) by the Floquet transformation’
which consists of a transformation of 8 followed
by a canonical transformation of x and p,. All
other terms in H are, of course, also affected by
the Floquet transformation. However, these
are either bump terms or terms of higher de-
grees in x and p. and, hence, much smaller than
the intrinsic terms in H®. For intrinsic fields
with relatively small flutter (true for all
medium energy sector-field cyclotrons) the
modifications of these small terms by the
Floquet transformation are even smaller and
shall be neglected. Under this “smooth ap-
proximation’ then, we shall leave all terms in
the Hamiltonian (1) and (2) unchanged, except
replacing the coefficient of 2 in the intrinsic
terms of H'? by the constant Q2, namely sub-
stituting for H? in (2)

H® =}(p,*+Q%*) +5(vAu+A4av)z? 4)
with the understanding that z, p., and 6 now
denote their corresponding quantities after the
Floquet transformation:
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The intrinsic terms in H?, now, produce
only a rotation in the x p, phase plane and can,
hence, be eliminated by a transformation to a
rotating coordinate frame in the phase plane.
This can best be done using complex canonical
variables.

B. Transformation to Complex Variables zand z*
- . p:

z=VQz 412 (5)
vQ

2 =V Quz — -2

C. Canonical Tranformation to Rotating Frame
with Generating Function

Gl(zt Z*; 0) = ZZ*eiQar (6)
which gives the relation
z = Ze i@ (7

The transformed complex Hamiltonian is, now,
S(Z,Z*%;0) = WV 4+ D 4 I3 4+ o 4 . ..

(8)
where
D .
—o = A Ze—i00 4 ¢ c. 9
H2 .
2o = AWZte e BOZZY + . c.
Y @® , A
o = A 73300 4 B®Z2Z*e~i® L ¢, ¢,
@(4) . .
—5; = AWZ4e—4iQt L B Z3Z*e—2iQ0 |
CWwZ2Z*: + c. c.
and
1
A = SAgT (Ap) 10)
A® = B® = 22(%—')Q (pAp+Av)
A® = 2_3(————31|)Q3/2(2pv+)\+2uAv+A)\—3#Q‘3)
P
B® — W%W 2y -+ A+ 2udv+ AN+ 4Q?)
1 1
AW = C® = ————_ (3uA+o+3pAN +
37 AT, 1 3qy
B - 2_4(4_4‘)22_2 (BuA+0+3uAN+ A0 —3Q4)



with c.c. denoting the complex conjugate
terms. After these tranformations & and
¢ both contain only small bump terms, and
intrinsic terms enter only in the small third and
higher degree terms in Z and Z*. The co-
efficients A®, B®, C% gre funections of ¢

with at least the periodicity of 2r. To exhibit
this property we shall write
A = i alk eint g — g% (11)

‘ n=—co

JB(k) = Z btk gind bk = plir*
n ? T—n n

n=—co

o
> c(ﬂk) eint | c(_kn) - cik)*

n=—co

Co =

where a,®, b,®, ¢,¥ are complex constants
with respect to §. When (11) is substituted
in (9) we get

P i .
—5; = Z Y a,Vein@¢ 4 c c. (12)
n=-—q00
o 2 - (Dpi(n—2Q)8
j— iin—
o = Z ﬂgm alPe +
[==7]
* ind
ZZ* X b2 ein tc.c.
n=—co
q)(B) ZS E (3) pi( Q)0 +
.= a® gitn—
—21 p
) o
27 * (3) pi(n—Q)8
Z°Z ﬂ;_mb" ein=Q@8 4 ¢, c.
o Z4 E (4) gi(n—4Q)0
— = a el n-
_21 N=—co " +
=]
37 * (4) pi(n—2Q)80
YAYA n;—,m bi® eitn—2Q)6 4

Z2°Z** 3 c®eiv? + c.c.

where the primes on the summations in ®® and
% indicate that the harmonics of the intrinsic
field are missing in these summations.

For small oscillations, namely small Z, since
the terms appearing in @ are either bump terms
or terms of the third or higher degree in Z, & is
small showing that Z is a slowly varying function
of 8. Those terms in ® with exponential e¢i«?
where w is of the order of unity or larger are too
rapidly oscillating to produce appreciable
secular effect on Z. Only terms with very
small or vanishing « (resonant terms) can
produce large secular (resonant) effects on Z.

Theory

In terms of first-order perturbation theory,
where we average ® over 8 to get the first-order
approximate Hamiltonian, we see that terms
with large w will average to zero and that only
terms with small or vanishing « remain in the
approximate Hamiltonian, Setting the ex-
ponent of each of the terms in (12) equal to
zero, we obtain the resonance-condition:

kKQ=mn k,n=0,1,2, ... 13)
For any specific problem, therefore, the first
step is to determine the relevant resonant
terms and to simplify the Hamiltonian (8) and
(12) by neglecting all other terms. We shall
illustrate this method of treatment by a specific
example.

Hl. EXTRACTION FROM A 3-SECTOR CYCLO-
TRON OPERATING NEAR Q=1

A. Further Reduction of the Hamiltonian

For a 3-sector cyclotron the intrinise field has
only harmonics of orders n=0,3,6,... There-
fore, for operation near Q=1 the nearby in-
trinsic resonances (those derived from the in-
trinsic field) are 0Q =0, 3Q =3, 6Q =6, etc. To
decide on the necessary bump field, since, as we
shall see later, the stability of motion in the
immediate neighborhood of the equilibrium
orbit (small Z) is caused by a term of the
second degree in Z and Z* in the Hamiltonian,
to destroy this stability to effect extraction the
bump term will have to be of either the first or
the second degree in Z. This means that we
will have to supply either a first-harmonic or a
second-harmonic bump field. We shall study
only the case of a first-harmonic bump field.
The same treatment applies quite straightfor-
wardly also to the case of a second-harmonic
bump field. With a first-harmonic bump field
(n=1) and an operation near Q =1, the nearby
bump resonance (that derived from the bump
field) is clearly 1Q@=1. Writing Q=1+¢;
keeping in (12) the bump terms for the bump
resonance 1@ =1, the intrinsic term for the
lowest order (hence, strongest) intrinsic res-
onance 3Q =3, and the “intrinsic’’ term for the
neutral resonance 0@ =0; and dropping all
other terms we get

P X X .
_:.Qz'za(ll)ze—uﬂ + a(i)z3e—3uﬂ + b(?)Z?Z*e-—u;Z_
cOZZ* + c. c. (14)
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Now we make the canonical transformation
to the coordinate frame rotating in the Z phase
plane with angular speed ¢ to follow the pre-
cessional motion of the phase point caused by
not being exactly on the resonance (e > 0). The
generating function is:

G2(Z; g-*! 0):Z§'*e‘il9, (15)
which gives the relation
Z=teit, (16)

The transformed Hamiltonian is

jlz—z-‘lf(i’, $*, 0) =aﬂ”s”rfifs“*+a(§>s“3+b(f)§2§*+

17
cPrx*itc. . 1D
The coeflicient c¢o¥ is real and the coefficient
2;® can be made real (phase angle=0) by
choosing the origin of 4 to be where the third
harmonic of A® (i.e. the third harmonic of
2ur +X —3uQ?, since the bump terms in A® are
assumed not to contain the third harmonic) is a
maximum. To simplify the formulation fur-
ther, we shall assume that the bump field is so
arranged that the coefficients «,¥ and b,®
have the same phase angle «, and to simplify
the notation we shall rewrite

a:® =4, ¢y =B, 0,V =Ce’?, by =De'=, (18)
This gives

s = ST AR 2By 4
C(gei*+¢*em i)+ D({2*ei - 2o ),
19)
where the A and B terms are the intrinsic
terms and the C and D terms are the bump
terms.

To facilitate physical interpretation, we
transform the complex Hamiltonian (19) back
to real canonical variables. This can be done
in two ways. If we choose the real Cartesian
canonical variables X and P defined by

§=X+P, (20)
we get the real Cartesian Hamiltonian

Kc(X, P;0) =;—(X2+P2) +2A(X3—-83XPy)+
2B(X2+P2)2+2C(X cos o —P sin a)+

2D(X2+P2)(X cos a—P sin a)
. (21)
Or, else, we can transform (19) to the real polar
canonical variables ¢ and p defined by

= Vpe® (22)
(Note here that although +/p is the physical
radial length in the phase plane, p is the canoni-
cal momentum variable conjugate to ¢.) We
get for the real polar Hamiltonian:

—2Kr($, 3 6) = Sp + 24,5 cos 3¢ + 2Bp? + (23)
2CpY2 cos (¢+a) + 2Dp%2 cos (¢p+a).

For easy reference we shall list below the
relationships between the coefficients A, B, C,
D, and ¢ and the magnetic field and linear hori-

B = 6 — average of

2

6 — average of

112

e=Q —1

230

A cos 30 = third (intrinsic) harmonic of

D cos (6+a) = first (bump) harmonic of

first (bump) harmonic of

zontal betatron oscillation parameters; and
those between the new real canonical variables X,
P, ¢, pand the original canonical variables z, p..
2ur + N — 3uQ?

243 HQE3¥? (24)

@ third (intrinsic) harmonic of % @Cuv + X — 3p)

3(3ur + ¢ + 3QY
2¢(41)Q?
1

98 Bpr + 0+ 3)

<
C cos (6+ca) = first (bump) harmonic of 4—(1%2—

@ first (bump) harmonic of } (Aw)

3(2uav + AN)
TEEeT

1



and

1

T=—rx

vQ

P.=—+/Q Vpsin (6—¢) =

Equation (25) shows that if we look at x and p,
only once every revolution they simply coincide

1 _
X2X and v/Q P2P.

vQ

B. Study of Properties of Resonant Extraction

respectively with

The Hamiltonians (21) and (23) being ex-
plicitly independent of 6 give immediately the

Vpcos (0—¢) = \/LQ (X cos 6 + P sin 6)

Vi = —34 + v/9A? — 8B
P= 8B
27 4r
¢ =0, 33
where it is assumed, of course, that 9A4?

—8eB >0 and where the signs in front of the
radicals are to be chosen so as to make v/p > 0.
Three of the six fixed points given in (27) are
stable and three are unstable. The central
stable phase area is that bounded by the
separatrices passing through the three unstable
fixed points.

Because of the appearance of cos 3¢ in K,

Fig.1 Phase plot with no bump term
(€= —04, A=44, B=}, C=D=0)

Theory

(25)

VQ(—X sin 6 + P cos 6)

trajectories of the phase points as K. =constant
or Kp=constant. Without the bump terms
(C=D=0) the phase point trajectories are the
well-known three sided figures (Fig. 1). The
fixed points are given by the conditions

do _ oHp_, . dp_ oHp
s ——W—O,anddo— P =0 to be
Vp=0 (26)
and
-~ 3A + v9A? — 8B
x 37 br
$=3733

there are two typical sets of values for the
phase angle of the bump terms; the set of a=0,

27 47 m 3r br

33 33 3

Phase plots for values of o belonging to the
same set differ only by a rotation of the phase
plane. Moreover, the plots for a== are the
same as those for a=0 with the signs of C and
D reversed. Therefore, it is sufficient to study
only the case of « =0 with unrestricted signs for
C and D. The qualitative effects of the addi-
tion of these bump terms are shown in Fig. 2.

and the set of a=

Fig. 2a Phase plot with C bump term
(e=—-04, A =-1lg, B=1,C=0.03, D=0)
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For practical cases of medium energy sector-
field cyclotrons the coefficient B is very small,
and the three stable fixed points on the outside
are quite far out. Since for beam extraction we
are only interested in the behavior of the

central region of the phase plane, as a good
approximation we can put B=0. With both «
and B put equal to zero, the Hamiltonians (21)
and (23) reduce to

K¢: =2CX + %(X2 + P?) + 2A(X? — 3XP?) 4 2DX(X*® + P?) (28)

and

Kp = —2[20,1”2 cos ¢ + % p + 2p%2 (A cos 3¢ + D cos ¢o):| (29)

Without the bump terms (C=D=0) the
three outside stable fixed points, now, recede to
o leaving the phase plots open on the outside
(Fig. 3), and the three unstable fixed points are,
now, given by

— € 27I’ 47[‘ . €

Vo= —gar ¢=05, g if g7 <0E0)
or

T . € 31)
*=333 Tea>?

The phase plots of these two cases are just the
reflections of each other about the P-axis.
Henceforth, we shall concentrate only on the

case when GLA <0. The separatrices are,

now, straight lines passing through the three.

unstable fixed points bounding an equilateral
triangular shaped stable-phase region of area,

So=—i- 2 (32)
"7 16V3 A*
With the bump terms the fixed points are
. dX__ch_ dP_ aHp_
given by = eP = 0 and T _a_)_(__()
to be
_ —ex Ve — 48C(A + D) _
X = 12(A + D) ,P=0 (33
and
34

e _ 1]/ 16C |, e(9A+D)
X=gsa—py ¥~ i4[/3A—D+ BA Dy’
One of the two fixed points given in (33) is
stable and the remaining three are unstable.
When

CA+D) > 5 (35)

the first pair of fixed points (33) (one stable, one
unstable) vanishes, and the stable phase area
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shrinks down to zero leaving the central region
of the phase plane opened up at the corner on

the X-axis. (Fig. 4a.) When
BA-D): . &
CSiyp € 18 (36)

the second pair of fixed points (34) (both un-

Fig. 2b Phase plot with D bump term
(¢e=—-04,A=7%,B=1,C=0,D=})

LS

Fig. 3 Phase plot for B =0 with no bump term
(6=—04,A=L, B=C=D=0)

DRSS




stable) vanishes, and the central region of the
phase plane is opened up at the other two
corners (Fiig. 4b). In either case, the destruc-
tion of the stable phase area will cause the
originally stable-phase points to stream away
from the central region, and extraction of the
beam is, thus, accomplished.

To study the asymptotic behaviors of these
phase points after leaving the central region we
derive, first, the asymptotic streaming direc-
tion ¢, of the phase points at large v/p (mean-
ing that v/, is large enough so that only its
highest degree terms in the Hamiltonians (28)
and (29) are important, but not so large that

\J_
R
/&@

Z )

Fig. 4a Phase plot for B=0 with bump terms—one
corner opening case

(e=—04, A=%, B=0, C=0.0125, D=0.1)

A
/q \

Fig. 4b Phase plot for B=0 with bump terms—two
corner opening case

(e=—04, A=%, B=0,C=—0.11, D =0.1)

Theory

the B terms which are dropped in these Hamil-
tonians would become important), by equating

the p* term in %g = %ﬁ to zero. This
gives
A cos 8¢, +D cos ¢, =[4A cos? ¢,—
(8B4 —D)] cos ¢.=90 37D
or
$o = Tgs, Ty  Eé  (38)
where
_ _1/3A-D >0 . 3A-D
¢o=COSl‘/—~4T<% 1f0<————‘4A <1

The asymptotic radial “velocities” (@_&/o_—">

of the motion of phase points along these
directions are obtained by substituting (38) in

dve 1 dp 1 oH,

the equation B S Ed - T2 e
keeping only the p term on the right-hand
side.

This gives

- (39)
:t2p(3A—Dl/é—_—£2 £Or o = 7 = o

™

for ¢, =1r:!:2

vy _
—dg—)a—z —~20(34—D)

2034 —D\/é;:—D for ¢o = £ o

Thus, for the one-corner opening case, the
phase points stream into the central region of
the phase plane in the asymptotic direction
.=, and stream out of the central region in
the asymptotic direction ¢,= —¢, both with

the asymptotic speed 2p(34 —D)\/ A—XD— ; and

for the two-corner opening case, the phase
points stream into the central region in the
asymptotic direction ¢,=3r/2 and stream out
of the central region in the asymptotic direction
¢.=n/2 both-with the asymptotic speed
2p(8A — D) (see Fig.4). Itshould be noted, here,
that the asymptotic streaming direction has no
real physical significance since, at different
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azimuths around the cyclotron, the correspond-
ing phase plots are rotated from one another.
It is always possible to find an azimuth where
the asymptotic outstreaming direction is along
the X-axis to give the maximum increment per
revolution in the displacement of the ions from
the equilibrium orbit to facilitate entrance into
a magnetic or an electrostatic channel.

Next, we would like to know asymptotically
what region of the phase plane is occupied by
the phase points which were originally in the
stable-phase area before the bump field was
turned on (or before the ion orbits were dis-
placed into the physical space where bump field
exists). Qualitatively we know that this
asymptotic occupied region must be an elon-
gated oval with the long dimension along the
outgoing asymptotic direction. The extremi-
ties of the width w of this area at a givenv/ p
lie on trajectories with values of the Hamil-
tonian which differ by

AK »(+/p)

e
|

g
|

o (40)
- (g = —2(22) w

Now, since the area S of the occupied region is
an invariant (Liouville theorem) the length ¢ of
this region may be approximately given by

48 8 S <d\/p>
S T Wom 7 BK ) \ d0 (1)

where S is the invariant area of the oval,

((_Jl_\/_—p) is the asymptotic radial streaming
de
velocity averaged over the length of the oval,

and (AKp)mex is the maximum range of the
values of K for all phase points in the oval; and
where for lack of more detailed information we
have assumed the oval to be an ellipse with
major and minor axes ¢ and w respectively.

For any other “ovalish” shape the factor %

should be modified. To calculate (AKp)max
we assume the bump field to be turned on
adiabatically. (Adiabaticity, here, means that
the rate of change of the bump field is small
compared to that of the original variables x and
p,. However, since the transformed variables
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¢ and p or X and P are slowly varying them-
selves we can still assume that these variables
do not change appreciably during the turn-on
period.) Thus, the Hamiltonians during the
turn-on period have the same forms as (28) and
(26) except, now, C and D are explicit functions
of 6 having the asymptotic values C(8) =D(6)
=0 before the turn-on period and C(6)=

constant, D(8) = D =constant after the turn-on
period. The motion before and after the turn-
on period when C and D are asymptotically
independent of ¢ is still given by Kp=con-
stant; but the constant. values of the Hamil-
tonian of the same ion before (K »°) and after

(Kp) the turn-on period are different. From
the “equation of motion” of Kp, namely,
dKp aK dKr _0Kp

where the square brackets denote the Poisson
Bracket, and expression (29) for K » we see that
these two values of the Hamiltonian are related
by

Kp=Kp'—4 (C+Dp) Vp cos ¢, (43)
where ¢ and p are some kind of average values
over the turn-on period; but since these vari-
ables do not change appreciably during this
time we can approximate them by their values
at the beginning of the turn-on period. Assum-
ing that before the turn-on period the phase
points occupy a small (considerably smaller
than the total stable phase area), hence, almost
circular area with radius V/p, about the origin
we see from (43) that the maximum range of
K is the difference between its values at the
phase points (=0, Vp=V'ps) and (¢=m,
vVp=Vpo). Although these two points have
the same Kp®® —¢p,, they produce the largest
AKP: namely (AKP)max =-8 (C+D)po \/;7;
from the second term on the right-hand side of
(43). Substituting this and S==p, in (41) we
get

_ Vm (d\/ p)
‘= C+Dn \ ds 44)
or
=t _1 v
"= =C+Dp P
where 5./, = 2« (‘%%E) is the radial dis-



tance the phase points traverse per revolution
of the ions averaged over the length of the oval,
and 7 is the number of revolutions it takes for
the occupied phase area to “move out of itself”’
or, in other words, the number of revolutions it
takes to extract all the ions. As a general guide
in designing the bump field we can remark that,
of the two bump terms, C is primarily respon-
sible for the destruction or opening up of the
stable phase area, and D serves primarily as a
control of the asymptotic behaviors of the
phase points after streaming out of the central
region.

We have, so far, centered our discussion on
the extraction problem. It is clear, however,
that all formulas derived above apply equally
well to the reverse process, namely that of the
resonant injection. However, since many ap-
proximations have been employed in the deriva-
tion of these handy formulas, they can not be
expected to give quantitatively exact results.
Nevertheless, these approximate results are
fairly good approximations; and can serve as a
valuable guide for the design and the under-
standing of the effects of the field bumps, and
for performing the exact computing machine
studies.

1.

2.
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