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Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-
known relation between the topological number given by the Chern character of the Berry curvature and the
Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the
fermion with general U(1) gauge interactions including nonminimal couplings by an explicit calculation.
A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number,
which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over
the temporal momenta.
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I. INTRODUCTION

Topological insulators in D ¼ 2nþ 1 dimensions are
characterized by topological numbers. One characterization
is given by the Chern character of the Berry connection
from the eigenfunctions of the Hamiltonian in the valence
band [1,2], the other characterization is given by the level of
the Chern-Simons action which appears in the effective
action after integrating out the fermion coupled to a smooth
external U(1) gauge field, i.e., photon [3–9]. These two
characterizations are known to be equivalent because they
both arise from the current correlation functions and there
are explicit proofs for various cases.
For example, the famous Thouless-Kohmoto-Nightingale-

den Nijs (TKNN) number [1] describes integer Hall con-
ductivity in spatial two-dimensional systems and it is valid
for all kinds of band structures neglecting interactions
between electrons. Meanwhile, motivated by the discovery
of the domain-wall fermion [10] (see also subsequent papers
to study the anomaly inflow [11–13]) in their paper,
Golterman, Jansen, and Kaplan also gave an expression
of conductivity of Chern-Simons current for a wide class of
fermion propagators on the lattice including Wilson fermion
with odd-dimensional Euclidean spacetime and found out

that the topological number is given by the homotopy class
for the map TD → SD [9]. They also showed that the
topological number one finds correlated perfectly with the
number of chiral edge states. The relation is well known to
many people, and in the continuum theory or in some special
models there exist studies for the relations [14,15].
In Ref. [16] a proof is given for a large class of models

for general odd dimensions, where they consider the most
general lattice action for an arbitrary free kinetic term on
the lattice which is then coupled to a U(1) gauge field in a
minimal way, i.e., with the gauge interaction in the form of

HðAÞ ¼
X
m;n

ψ†
mhmneiAmnψn þ

X
m

ψ†
mψm; ð1Þ

where m, n are the lattice sites, hmn are the hopping
parameters, and Amn is the line integral of the gauge field
along the straight line connecting the sites m and n. The
advantage of this class of Hamiltonian is that the contact
interactions such as fermion-fermion-multiphoton vertices
do not contribute to the final expression so that only a set
of Feynman diagrams which appear also in the continuum
theory gives nonvanishing contributions. Of course, this
type of gauge interaction is physically motivated since it is
based on the famous method of “Peierls substitution” [17].
However, in a more general situation, the gauge interaction
may not always be described by such a single straight
Wilson line. It could be a linear combination of various
Wilson lines of arbitrary path, which can give nonminimal
coupling. In such cases, one has to include the contribution
of contact interaction vertices.
In this paper, we study the equivalence of the topological

number from the TKNN formula and that from the
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Chern-Simons coupling for the most general lattice fermion
Hamiltonian coupled to a U(1) gauge field which is bilinear
in fermion. The new feature of our study is that the
Hamiltonian is general enough to include arbitrary non-
minimal gauge interactions, which has not been considered
in the previous studies [3–9,14–16]. We give an explicit
proof of the equivalence of the two topological numbers
for gapped fermion systems with Hamiltonian on the lattice
given by the bilinear form of the fermion coupled to
external U(1) fermions. We also discuss how the relation
can give the Chern character in a higher dimensional case.
The organization of this paper is as follows. In the next

section we rewrite the level of the Chern-Simons effective
action for the gapped fermion system coupled to a U(1)
gauge field using the Feynman rule and relate it to the
winding number of a map from TD to the fermion
propagator space inD ¼ 2þ 1 andD ¼ 4þ 1 dimensions.
In Sec. III, we show the equivalence of the winding number
to the Chern number for the Berry curvature. Section IV is
devoted to a summary and conclusion.

II. GAPPED FERMION SYSTEM
ON THE LATTICE

A. General gapped fermion system

We consider a gapped fermion system on a lattice (or
condensed matter systems on a translational invariant
crystal) with the following action in Euclidean space in
D ¼ 2nþ 1 dimensions (note that the time is continuous
but the space is discrete as in the condensed matter
systems):

SE ¼
Z

dt
X
r⃗

ψ†ðt; r⃗Þ
� ∂
∂tþ iA0 þHðA⃗Þ

�
ψðt; r⃗Þ; ð2Þ

where r⃗ runs over the 2n dimensional spatial lattice points.
We will set x0 ¼ t in the following. The Hamiltonian HðA⃗Þ
is given by a summation over all the possible hoppings on
the lattice which include gauge interactions with a smooth
external U(1) gauge field Aμ ¼ ðA0; A⃗Þ. The fermion fields
ψ†ðt; r⃗Þ and ψðt; r⃗Þ give creation and annihilation operators
of fermions after quantization. We assume that when the
gauge field is turned off, the Hamiltonian is translational
invariant so that it can allow band structures. We also
assume that there are Nv bands and Nc bands below and
above the Fermi level, respectively. Therefore the fermion
fields have Nv þ Nc components.

B. Effective gauge action

Since the fermion system is gapped with a gap size
Δ > 0, the effective gauge action obtained by integrating
out fermions can be expanded in terms of gauge invariant
local actions as

Seff ¼
X
k

akSkðAÞ: ð3Þ

Here, SeffðAÞ is defined as

eSeff ¼
Z

DψDψ†e−SE ; ð4Þ

and SkðAÞ are the gauge invariant actions given by the
local Lagrangian LkðAÞ and ak are the coefficients. By
dimensional analysis, if the Lagragian LkðAÞ has a mass
dimension dk, the coefficient ak is suppressed by the
dk − ð2nþ 1Þ powers in 1

Δ or lattice spacing a. Many of
the Lagrangians are given in terms of a gauge invariant field
Fμν ¼ ∂μAν − ∂νAμ (e.g., SF

2

μν;ρσ ≡ R
d2nþ1rFμνFρσ with a

coefficent aF
2

μν;ρσ). Since we do not have the Lorentz-
invariance on the lattice, the structure of the coefficients
ak in the effective action heavily depend on the geometry of
the lattice.
However, there is a very special parity-violating term

called Chern-Simons action ScsðAÞ given by

ScsðAÞ ¼
Z

d2nþ1xϵα0β1α1���βnαnAα0∂β1Aα1 � � � ∂βnAαn : ð5Þ

This action is topological and always takes this form no
matter what the geometry of the lattice is. Topological
information of the fermion system is contained in the
effective action through the coefficient ccs as

SeffðAÞ ¼ iccsScs þ other gauge invariant terms: ð6Þ

Here the gauge invariance of the action requires that the
coefficient is quantized as (see [14] for example)

ccs ¼
k

ð2πÞnðnþ 1Þ! ; k ∈ Z: ð7Þ

Since the Chern-Simons action is of the lowest dimension
in the parity-violating sector, the coefficient ccs can be
obtained by the following quantity:

ccs ¼
ð−iÞnþ1ϵα0β1α1���βnαn
ðnþ 1Þ!ð2nþ 1Þ!

� ∂
∂ðq1Þβ1

�
� � �

� ∂
∂ðqnÞβn

�
×
Yn
i¼1

Z
dDxieiqixi

δnþ1SeffðAÞ
δAα0ðx0ÞδAα1ðx1Þ � � � δAαnðxnÞ

����
qi¼0

: ð8Þ

In the continuum theory or in simple lattice fermions such as a Wilson fermion, this can be rewritten in terms of a fermion
path integral as
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ccs ¼ −
ð−iÞnþ1ϵα0β1α1���βnαn
ðnþ 1Þ!ð2nþ 1Þ! n!

� ∂
∂ðq1Þβ1

�
� � �

� ∂
∂ðqnÞβn

�
×
Z

dp0

2π

Z
BZ

d2np
ð2πÞ2n

Tr½SFðpþ qnþ1ÞΓð1Þ½qnþ1; α0;p�SFðpÞΓð1Þ½q1; α1;p − q1�SFðp − q1Þ � � �Γð1Þðqn; αn;pÞ�jqi¼0: ð9Þ

Here, BZ stands for the Brillioune zone, qnþ1 ≡ q1 þ � � � þ
qn, SFðpÞ is the Fourier transform of the free fermion
propagator 1

∂∂x0þHðA⃗¼0Þ with momentum p, and Γð1Þ½q; α;p�
is the fermion-fermion-photon vertex with incoming fer-
mion momentum p and incoming photon momentum q.
However, the situation is not simple in general, since there
are also contributions from contact interactions such as
fermion-fermion-multiphoton vertices, which can naturally
arise from nonminimal gauge couplings or generic lattice
artifacts. In the following, we will explicitly show that these
contributions automatically cancel against the contributions
from the momentum derivative of vertex functions due to
the Ward-Takahashi identities.
In the next subsection, we formulate how to evaluate

Eq. (8) using fermion propagators and vertex functions for
a general Hamiltonian system.

C. Fermion propagator representation of Eq. (8)

The effective action can be given by the log of the
fermion determinant as

SeffðAÞ ¼ Tr½ln ðD0 þHðAÞÞ�; ð10Þ

where D0 ¼ ∂
∂x0 þ iA0. Splitting the kinetic operator

D0 þHðAÞ into a free part and an interaction part reads as

D0 þHðAÞ ¼ ∂
∂x0 þH0 − ΓðAÞ; ð11Þ

where H0 is the free fermion part defined as H0 ≡
HðAÞjA¼0 and ΓðAÞ is the interaction part defined as
ΓðAÞ≡ −iA0 −HðAÞ þH0. Plugging Eq. (11) into
Eq. (10) we obtain

SeffðAÞ − const: ¼ −
X∞
n¼1

1

n
Tr

��
1

∂
∂x0 þH0

ΓðAÞ
�

n
�

ð12Þ

Simple algebra shows that the following equation holds:

ϵα0β1α1
δ2Seff

δAα0ðx0ÞδAα1ðx1Þ
����
A¼0

¼ −ϵα0β1α1

�
Tr
�

1
∂
∂x0 þH0

·
δ2ΓðAÞ

δAα0ðx0ÞδAα1ðx1Þ
�����

A¼0

þ Tr

�
1

∂
∂x0 þH0

·
δΓðAÞ

δAα0ðx0Þ
·

1
∂
∂x0 þH0

·
δΓðAÞ

δAα1ðx1Þ
�����

A¼0

�
: ð13Þ

From Eq. (13), we find that the Chern-Simons coupling for D ¼ 2þ 1 dimensions is given by

ccs ¼ −
ð−iÞ2ϵα0β1α1

2!3!

Z
d3p
ð2πÞ3

� ∂
∂q1

�
β1

fTr½SFðpÞΓð2Þ½−q1; α0;q1; α1;p��

þ Tr½SFðp − q1ÞΓð1Þ½−q1; α0;p�SFðpÞΓð1Þ½q1; α1;p − q1��gjq1¼0; ð14Þ

where SFðpÞ is the fermion propagator 1
ip0þH0ðp⃗Þ and Γð1Þ½q1;α1;p� and Γð2Þ½q1; α1; q2; α2;p� are fermion-fermion-photon

and fermion-fermion-photon-photon vertices with incoming fermion momentum p and incoming photon momenta qi
(i ¼ 1, 2) with Lorentz index αi (i ¼ 1, 2)

Γð1Þ½q1; α1;p� ¼
Z

d2nþ1x1eiq1·x1
Z

d2nþ1yeip·y
δΓ½A�ðx; yÞ
δAα1ðx1Þ

����
A¼0;x¼0

; ð15Þ

Γð2Þ½q1; α1; q2; α2;p� ¼
Y2
i¼1

�Z
d2nþ1xieiqi·xi

�Z
d2nþ1yeip·y

δ2Γ½A�ðx; yÞ
δAα1ðx1ÞδAα2ðx2Þ

����
A¼0;x¼0

: ð16Þ

Note that the contributions with multiphoton vertices vanish for the class of Hamiltonians with gauge interactions given by a
single straight Wilson line because the multiphoton vertices are symmetric under the interchange of Lorentz indices of
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photons. When contracted with the antisymmetric tensor, such contributions vanish. However, in general Hamiltonian we
must consider these contributions.
From a similar calculation, we find that the Chern-Simons level for D ¼ 4þ 1 dimensions is given by

ccs ¼ −
ð−iÞ3ϵα0β1α1β2α2

3!5!

Z
d5p
ð2πÞ5

� ∂
∂q1

�
β1

� ∂
∂q2

�
β2

fTr½SFðpÞ · Γð3Þ½−ðq1 þ q2Þ; α0; q1; α1; q2; α2;p��

þ 2Tr½SFðp − q2ÞΓð2Þ½−ðq1 þ q2Þ; α0;q1; α1;p�SFðpÞΓð1Þ½q2; α2;p − q2��
þ Tr½SFðpþ q1 þ q2ÞΓð2Þ½q1; α1; q2; α2;p�SFðpÞΓð1Þ½−ðq1 þ q2Þ; α0;pþ q1 þ q2��g;
þ 2Tr½SFðpþ q1ÞΓð1Þ½q1; α1;p�SFðpÞΓð1Þ½q2; α2;p − q2�SFðp − q2ÞΓð1Þ½−ðq1 þ q2Þ; α0;pþ q1��gjq1¼q2¼0; ð17Þ

where Γð3Þ½q1;α1; q2;α2; q3;α3;p� is the fermion-fermion-photon-photon-photon vertex with incoming fermion momentum
p and incoming photon momenta qi (i ¼ 1, 2, 3) with Lorentz index αi (i ¼ 1, 2, 3), which is given by

Γð3Þ½q1;α1; q2;α2:q3; α3;p� ¼
Y3
i¼1

�Z
d2nþ1xieiqi·xi

�Z
d2nþ1yeip·y

δ3Γ½A�ðx; yÞ
δAα1ðx1ÞδAα2ðx2ÞδAα3ðx3Þ

����
A¼0;x¼0

: ð18Þ

D. The case for D= 2 + 1 dimensions (n= 1)

In D ¼ 2þ 1 dimensions, i.e., the n ¼ 1 case, the Chern-Simons coupling ccs has contributions from the loop involving
two fermion-fermion-photon vertices and the loop involving a single fermion-fermion-photon-photon vertex (contact
interaction) as

ccs ¼ −
ð−iÞ2
2!3!

Z
d3p
ð2πÞ3 X; ð19Þ

where X is given as

X ¼ ϵα0β1α1

� ∂
∂q1

�
β1

fTr½SFðpÞΓð2Þ½−q1; α0; q1; α1;p�� þ Tr½SFðp − q1ÞΓð1Þ½−q1; α0;p�SFðpÞΓð1Þ½q1; α1;p − q1��g: ð20Þ

The first term on the right-hand side is the one-loop contribution with contact interaction and the second term is the usual
one-loop contribution with simple fermion-fermion-photon vertices.
Carrying out the momentum derivative with q,

X ¼ ϵα0β1α1 ×

�
Tr

�
SFðpÞ

�
−
∂Γð2Þ½q; α0; 0; α1;p�

∂qβ1
þ ∂Γð2Þ½0; α0; q; α1;p�

∂qβ1
������

q¼0

þ Tr

�
SFðpÞ

�∂Γð1Þ½q; α1;p�
∂qβ1

−
∂Γð1Þ½0; α1;p�

∂pβ1

�
SFðpÞΓð1Þð0; α0;pÞ

�����
q¼0

− Tr

�
SFðpÞΓð1Þ½0; α1;p�SFðpÞ

∂Γð1Þðq; α0;pÞ
∂qβ1

�����
q¼0

− Tr

�
SFðpÞΓð1Þ½0; α1;p�

∂SFðpÞ
∂pβ1

Γð1Þð0; α0;pÞ
�����

q¼0

�
: ð21Þ

In Appendix A, we derive the Ward-Takahashi identities as follows:

Γð1Þ½0; α;p� ¼ −
∂S−1F ðpÞ
∂pα

; ð22Þ
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∂2Γð1Þ½k; μ;p�
∂kν∂pλ

����
k¼0

¼ ∂Γð2Þ½k; μ; 0; λ;p�
∂kν

����
k¼0

¼ ∂Γð2Þ½0; λ; l; μ;p�
∂lν

����
l¼0

: ð23Þ

Using these identities, we obtain

X ¼ ϵα0β1α1 ×

�
2Tr

�
SFðpÞ

�∂2Γð1Þ½q; α1;p�
∂qβ1∂pα0

������
q¼0

þ 2Tr

�∂SFðpÞ
∂pα0

∂Γð1Þ½q; α1;p�
∂qβ1

�����
q¼0

þ Tr

�
SFðpÞ

∂S−1F ðpÞ
∂pα1

SFðpÞ
∂S−1F ðpÞ
∂pβ1

SFðpÞ
∂S−1F ðpÞ
∂pα0

�����
q¼0

�
: ð24Þ

The first and the second terms on the right-hand side can be combined to give a total divergence which vanishes when we
integrate over the momentum. Therefore, one finds that the Chern-Simons coupling is given by the winding number as

ccs ¼
ð−iÞ2ϵα0β1α1

2!3!

Z
dp0

2π

Z
BZ

d2p
ð2πÞ2 Tr

�
SFðpÞ

∂S−1F ðpÞ
∂pα0

SFðpÞ
∂S−1F ðpÞ
∂pβ1

SFðpÞ
∂S−1F ðpÞ
∂pα1

�
: ð25Þ

E. The case for D= 4 + 1 dimensions (n= 2)

The Chern-Simons coupling can be written as

ccs ¼ −
ð−iÞ3
3!5!

Z
d5p
ð2πÞ5 ½X1 þ X2 þ X3 þ X4�; ð26Þ

where X1, X2, X3, X4 are defined as follows:

X1¼ ϵα0β1α1β2α2

� ∂
∂q1

�
β1

� ∂
∂q2

�
β2

fTr½SFðpÞ ·Γð3Þ½−ðq1þq2Þ;α0;q1;α1;q2;α2;p��gjq1¼q2¼0;

X2¼ ϵα0β1α1β2α2

� ∂
∂q1

�
β1

� ∂
∂q2

�
β2

f2Tr½SFðp−q2ÞΓð2Þ½−ðq1þq2Þ;α0;q1;α1;p�SFðpÞΓð1Þ½q2;α2;p−q2��gjq1¼q2¼0;

X3¼ ϵα0β1α1β2α2

� ∂
∂q1

�
β1

� ∂
∂q2

�
β2

fTr½SFðpþq1þq2ÞΓð2Þ½q1;α1;q2;α2;p�SFðpÞΓð1Þ½−ðq1þq2Þ;α0;pþq1þq2��gjq1¼q2¼0;

X4¼ ϵα0β1α1β2α2

� ∂
∂q1

�
β1

� ∂
∂q2

�
β2

f2Tr½SFðpþq1ÞΓð1Þ½q1;α1;p�SFðpÞΓð1Þ½q2;α2;p−q2�SFðp−q2Þ

×Γð1Þ½−ðq1þq2Þ;α0;pþq1��gjq1¼q2¼0: ð27Þ

Using Eqs. (22), (23) as in the case ofD ¼ 2þ 1 dimensions. as well as the followingWard-Takahashi identities given in
Appendix A,

∂2Γð3Þ½q; μ; r; ν; 0; λ;p�
∂qα∂rβ

����
q¼r¼0

¼ ∂3Γð2Þ½q; μ; r; ν;p�
∂qα∂rβ∂pλ

����
q¼r¼0

; ð28Þ

we obtain
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X1 þ X2 þ X3 þ X4 ¼ ϵα0β1α1β2α2

� ∂
∂pα0

�
3Tr

�
Γð2Þ½q; α1; r; α2;p�

∂qβ1rβ2
����
q¼r¼0

SFðpÞ
�

þ 3Tr

�
Γð1Þ½q; α1;p�

∂qβ1
����
q¼0

SFðpÞ
Γð1Þ½q0; α2;p�

∂q0β2

����
q0¼0

SFðpÞ
�

þ 8Tr

�
Γð1Þ½q; α1;p�

∂qβ1
����
q¼r¼0

SFðpÞ
∂S−1F ðpÞ
∂pα2

∂SFðpÞ
∂pβ2

��

þ 2Tr

�
SFðpÞ

∂S−1F ðpÞ
∂pα0

SFðpÞ
∂S−1F ðpÞ
∂pβ1

SFðpÞ
∂S−1F ðpÞ
∂pα1

SFðpÞ
∂S−1F ðpÞ
∂pβ2

SFðpÞ
∂S−1F ðpÞ
∂pα2

��
: ð29Þ

The total divergence term will vanish after integrating over the spatial momenta due to the periodicity in BZ.
Thus, we finally get

ccs ¼ −
ð−iÞ3 · 2
3!5!

Z
d5p
ð2πÞ5 ϵα0β1α1β2α2Tr

�
SFðpÞ

∂S−1F ðpÞ
∂pα0

SFðpÞ
∂S−1F ðpÞ
∂pβ1

SFðpÞ
∂S−1F ðpÞ
∂pα1

SFðpÞ
∂S−1F ðpÞ
∂pβ2

SFðpÞ
∂S−1F ðpÞ
∂pα2

�
:

ð30Þ

Therefore, the Chern-Simons coupling is given by the winding number with fermion propagator also for the
D ¼ 4þ 1 case.
We expect that the relation of a Chern-Simons coupling and the winding number for a general Hamiltonian including

nonminimal coupling holds for arbitrary odd dimensions (D ¼ 2nþ 1). This will be left for future studies.

III. EQUIVALENCE OF A WINDING NUMBER AND A CHERN NUMBER

In this section, we show the equivalence of the Chern-Simons coupling given by the winding number expression and the
Chern character given by the Berry connection for the energy eigenstates in the valence bands.
The proof of this part is already given in Ref. [16], but since the proof is simple, we give it here for completeness. We give

the calculation for arbitrary odd (D ¼ 2nþ 1) dimensions, even though we have shown that the Chern-Simons coupling ccs
can be written by the winding number using SF only for D ¼ 2þ 1 and D ¼ 4þ 1 dimensions.
In order to simplify the notation, hereafter we abbreviate the derivative with respect to the momentum pμ

as ∂μ ≡ ∂
∂pμ

.

A. Winding number in D= 2n+ 1 dimensions

The result of the previous section forD ¼ 2þ 1 andD ¼ 4þ 1 can be unified to the following results: In the expression
using the fermion propagator SðpÞ, the Chern-Simons coupling ccs in D ¼ 2nþ 1 dimensions is given as

ccs ¼ −
n! · ð2nþ 1Þð−iÞnþ1ϵi1i2���i2n

ðnþ 1Þ!ð2nþ 1Þ!
Z

d2np
ð2πÞ2n

Z
dp0

2π
Tr

�
SFð∂0S−1F Þ

Y2n
k¼1

ðSFð∂ikS
−1
F ÞÞ

�

¼ −
n! · ð2nþ 1Þð−iÞnþ1ϵi1i2���i2n

ðnþ 1Þ!ð2nþ 1Þ!
Z

d2np
ð2πÞ2n

Z
dp0

2π
Tr

�
1

ip0 þH
i
Y2n
k¼1

�
1

ip0 þH
ð∂ikHÞ

��
: ð31Þ

Next we insert a complete set
P

α jαihαj, where α is the label of energy. Then we have

ccs ¼
n!ð−iÞnþ2

ðnþ 1Þ!ð2nÞ!
Z

d2np
ð2πÞ2n J: ð32Þ

Here J is defined as

J ¼
X

α1;…;α2n

ϵi1i2���i2n
Z

dp0

2π

hα1j∂i1Hjα2ihα2j∂i2Hjα3i � � � hα2nj∂i2nHjα1i
ðip0 þ Eα1Þ2ðip0 þ Eα2Þ � � � ðip0 þ Eα2nÞ

; ð33Þ
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where i1;…; i2n stands for the spatial indices and summa-
tion over these indices are implicitly assumed following
Einstein’s contraction rule. All we have to do is to integrate
over p0 using Cauchy’s theorem. In order to discuss it in
detail let us define the key integral J as follows.

B. p0 integration

Here, we use a trick to simplify the integration. It is easy
to see that the expression Eq. (31) is invariant under
continuous deformation of SF (or H) provided that the
integrand remains to have no singularities. Therefore, under
a continuous change of the Hamilitonian, the winding
number remains unchanged from its original value as long
as the energy spectrum is kept gapped throughout the
deformation.
Now, the most general Hamiltonian with Nv valence

bands and Nc conduction bands is expressed as

Hðp⃗Þ≡XNv

a¼1

Eaðp⃗Þjaðp⃗Þihaðp⃗Þj þ
XNc

_b¼1

E _bðp⃗Þj _bðp⃗Þih _bðp⃗Þj;

ð34Þ

where jaðp⃗Þi labeled by a is the energy eigenstate in the
valence band with spatial momentum p⃗ and negative energy
eigenvalue Eaðp⃗Þ < 0. The state j _bðp⃗Þi labeled by _b is the

energy eigenstate in the conduction band with spatial
momentum p⃗ and positive energy eigenvalue E _bðp⃗Þ > 0.
One can continuously deform the Hamiltonian without
hitting the singularity of SðpÞ (i.e., keeping the system
gapped) so that all energy eigenvalues in the conduction
bands and all energy eigenvalues in the valence bands are
degenerate and momentum independent (i.e., flat band),
respectively.
Then the deformed Hamiltonian Hnew which gives the

same winding number becomes

Hnewðp⃗Þ ¼ Ev

XNv

a¼1

jaðp⃗Þihaðp⃗Þj þ Ec

XNc

_b¼1

j _bðp⃗Þih _bðp⃗Þj;

ð35Þ

where Ev < 0, Ec > 0 are the momentum independent
constant. Here the eigenstates are identical to those with the
original Hamiltonian.
Using Eqs. (B9) and (B10), one finds that in the insertion

of eigenstates sandwiching ∂iH, if states in the conduction
bands appear in a row or if states in the valence bands
appear in a row, the matrix element vanishes. Therefore, in
Eq. (33) states in the valence bands and the states in the
conduction bands should appear in an alternating order.
Therefore, J is expressed as

J ¼
XNv

a1;…;an¼1

XNc

_a1;…; _an¼1

ϵi1j1���i2nj2n

�Z
dp0

2π

1

ðip0 þ EvÞnþ1ðip0 þ EcÞn
ha1j∂i1Hj _a1ih _a1j∂j1Hja2i × � � � × hanj∂inHj _anih _anj∂jnHja1i

þ
Z

dp0

2π

1

ðip0 þ EcÞnþ1ðip0 þ EvÞn
h _a1j∂i1Hja1iha1j∂j1Hj _a2i × � � � × h _anj∂inHjanihanj∂jnHj _a1i

�
: ð36Þ

Renaming the labels for eigenstates and using the definition of the master integral in Appendix C and substituting
Eqs. (B11) and (B12), we have

J ¼
XNv

a1;…;an¼1

XNc

_a1;…; _an¼1

ϵi1j1���i2nj2nð−1ÞnðEc − EvÞ2nðI½nþ1;n�ðEv; EcÞ − I½nþ1;n�ðEc; EvÞÞ

ha1j∂i1 _a1ih _a1j∂j1a2i × � � � × hanj∂in _anih _anj∂jna1i; ð37Þ
where I½m;n�ðE1; E2Þ is defined as

I½m;n�ðE1; E2Þ≡
Z

dp0

2π

1

ðip0 þ E1Þmðip0 þ E2Þn
: ð38Þ

The expression of I½m;n�ðE1; E2Þ after p0 integration is given in Appendix C.
Substituting Eq. (C3) into Eq. (37), we obtain

J ¼ −
XNv

a1;…;an¼1

XNc

_a1;…; _an¼1

ϵi1j1���i2nj2n
ð2nÞ!
ðn!Þ2 ha1j∂i1 _a1ih _a1j∂j1a2i × � � � × hanj∂in _anih _anj∂jna1i: ð39Þ
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Using the formula for the Berry curvature in Eq. (B14), J is
finally expressed as

J ¼ ð−1Þnþ1
XNv

a1;…;an¼1

XNc

_a1;…; _an¼1

ϵi1j1���i2nj2n

×
ð2nÞ!
ðn!Þ2 i

nF a1a2
i1j1

� � �F ananþ1

injn
: ð40Þ

C. Results of ccs
Plugging Eq. (40) into Eq. (32)

ccs ¼
ð−1Þn

ðnþ 1Þ!ð2πÞn
Z
BZ

chnðAÞ; ð41Þ

where chnðAÞ is the second Chern character defined by

chnðAÞ ¼ 1

n!
1

ð2πÞn trðF
nÞ: ð42Þ

Comparing this expression with Eq. (7)

ccs ¼
k

ðnþ 1Þ!ð2πÞn ; ð43Þ

we arrive at the relation

k ¼ ð−1Þn
Z
BZ

chnðAÞ: ð44Þ

This means that the Chern-Simons level and the topological
number in terms of the Berry connection is shown to be
identical.

IV. SUMMARY AND CONCLUSION

We derived a general TKNN formula from a Chern-
Simons level in the effective action for a lattice system
with a general Hamiltonian bilinear in fermions in (2þ 1)
and (4þ 1) dimensions. We have shown that the Chern-
Simons level is given by the winding number of a map
from TD to the fermion propagator space. For this relation,
Ward-Takahashi identities including higher order relations
are crucial.
There has been an understanding that for the field theory

approach to work, there should be a low energy mode
which can be described by a relativistic field theory.
Therefore, the impression was that the field theory
approach works only with a special type of system with
emergent relativistic spectrum. The interesting point to note
in our proof is that one does not need to assume anything
but gauge invariance. The detailed structure of minimal or
nonminimal gauge coupling is irrelevant. Also one does

not need to assume that there exists an effective theory
described by the relativistic field theory and it applies to
any system including arbitrary bands which may be far
away from the Fermi level.
Since we have found that the two methods can equally

work well, we are now certain that we can use field theory
approach to study the topological properties for arbitrary
condensed matter systems which include interactions
where one can fully utilize the power of field theory.
There are topological materials for systems with addi-

tional symmetries and in other dimensions. Whether a
complete equivalence holds for those systems remains an
open problem. We hope to extend our study to those
systems in the future.
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APPENDIX A: WARD-TAKAHASHI IDENTITIES

In this appendix, we derive various identities among
vertex functions and the inverse fermion propagator
obtained from gauge invariance, i.e., Ward-Takahashi
identities. The finite difference operator which appears
in the hopping term of the lattice fermion system can be
expressed in terms of infinite series of derivatives. For
example, consider a gauge invariant fermion bilinear term
connected by a straight line Wilson line in the μ direction as

X ≡ ψ†ðt; x⃗Þei
R

x⃗þaμ⃗

x⃗
dr⃗0·A⃗ðr⃗0Þψðt; x⃗þ aμ⃗Þ; ðA1Þ

where a is the lattice spacing and μ⃗ is the unit vector in the μ
direction. This term can be formally expanded as

X ¼ a
X∞
n¼0

ψ†ðt; x⃗Þ
X∞
n¼0

an

n!
ðDn

μψÞðt; x⃗Þ; ðA2Þ

whereDμ ¼ ∂μ þ iAμ. We assume that the Hamiltonian can
be expressed in terms of all sorts of fermion hopping terms
connected by the Wilson lines of arbitrary contours or
superpositions of them. Then, the action can be formally
expanded as

S¼
Z

dt
X
x⃗

X∞
n¼0

ψ†ðt; x⃗ÞMμ1���μnðDμ1 � � �DμnψÞðt; x⃗Þ ðA3Þ

where summation over μ1;…; μn are implicit. Mμ1���μn are
some N × N matrix where N ¼ Nc þ Nv is the number of
fermion degrees of freedom per site.

FUKAYA, ONOGI, YAMAGUCHI, and WU PHYS. REV. D 101, 074507 (2020)

074507-8



Expanding this action in terms of gauge fields and making Fourier transformations, one can obtain the formal expressions
of the inverse propagator and the vertex functions in momentum space. In the following, let us denote the inverse fermion
propagator with momentum p as S−1F ðpÞ and the vertex functions with incoming fermion momentum p and n photons with
incoming momentum ki and μi components (i ¼ 1;…; n) and outgoing fermion with momentum pþP

n
i¼1 ki as

ΓðnÞ½k1; μ1; � � � ; kn; μn;p�. Then the formal expression gives

S−1F ðpÞ ¼
X∞
n¼0

Mμ1���μn
Yn
i¼1

ðipμiÞ; ðA4Þ

Γð1Þ½k; μ;p� ¼ −i
X∞
n¼1

Xn
a¼1

Mμ1���μa−1μμaþ1���μn
Ya−1
i¼1

ðiðpþ kÞμiÞ
Yn

i¼aþ1

ðipμiÞ; ðA5Þ

Γð2Þ½k; μ; l; ν;p� ¼ −i2
X∞
n¼1

Xn
a;b¼1
a<b

Mμ1���μa−1μμaþ1���μb−1νμbþ1���μn
Ya−1
i¼1

ðiðpþ kþ lÞμiÞ
Yb−1

i¼aþ1

ðiðpþ lÞμiÞ
Yn

i¼bþ1

ðipμiÞ

− i2
X∞
n¼1

Xn
a;b¼1
a<b

Mμ1���μa−1νμaþ1���μb−1μμbþ1���μn
Ya−1
i¼1

ðiðpþ kþ lÞμiÞ
Yb−1

i¼aþ1

ðiðpþ kÞμiÞ
Yn

i¼bþ1

ðipμiÞ; ðA6Þ

Γð3Þ½k; μ; l; ν; r; λ;p� ¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

Mμ1���μa−1μμaþ1���μb−1νμbþ1���μc−1λμcþ1���μn

Ya−1
i¼1

ðiðpþ kþ lþ rÞμiÞ
Yb−1

i¼aþ1

ðiðpþ lþ rÞμiÞ
Yc−1

i¼bþ1

ðiðpþ rÞμiÞ
Yn

i¼cþ1

ðipþ rμiÞ

þ ½other 5 terms obtained from the permutaion of ðμ; kÞ; ðν; lÞ; ðλ; rÞ�: ðA7Þ

Differentiating Eq. (A4) with respect to pμ and taking the soft photon limit (k → 0) in Eq. (A5), one obtains

∂S−1F ðpÞ
∂pμ

¼ −Γð1Þ½k; μ;p�jk¼0 ¼ i
X∞
n¼1

Xn
a¼1

Mμ1���μa−1μμaþ1���μn
Y1∼n
i≠a

ðipμiÞ: ðA8Þ

This is the well-known Ward-Takahashi identity in QED, which is generalized for the lattice fermion system.

1. First order Ward-Takahashi identities

It is interesting to note that we could also obtain Ward-Takahashi identities for quantities involving higher order terms
in photon momenta and multiphoton vertex functions. In order to see that, let us take the second derivatives of Eq. (A4).
One obtains

∂2S−1F ðpÞ
∂pμ∂pν

¼ i2
X∞
n¼1

Xn
a;b¼1
a<b

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μn þ ðμ ↔ νÞ�
Y1∼n
i≠a;b

ðipμiÞ: ðA9Þ

Let us also differentiate Eq. (A5) with kν or pν and take the soft photon limit. We obtain

∂Γð1Þ½k; μ;p�
∂kν

����
k¼0

¼ −i2
X∞
n¼1

Xn
a;b¼1
a<b

Mμ1���μa−1νμaþ1���μb−1μμbþ1���μn
Y1∼n
i≠a;b

ðipμiÞ ðA10Þ

∂Γð1Þ½k; μ;p�
∂pν

����
k¼0

¼ −i2
X∞
n¼1

Xn
a;b¼1
a<b

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μn þ ðμ ↔ νÞ�
Y1∼n
i≠a;b

ðipμiÞ: ðA11Þ
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Taking also the soft photon limit of Eq. (A6), we obtain

Γð2Þ½k; μ; l; ν;p�jk;l¼0 ¼ −i2
X∞
n¼1

Xn
a;b¼1
a<b

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μn þ ðμ ↔ νÞ�
Y1∼n
i≠a;b

ðipμiÞ: ðA12Þ

We then obtain the following identities:

∂2S−1F ðpÞ
∂pμ∂pν

¼ −
�∂Γð1Þ½k; μ;p�

∂kν þ ðμ ↔ νÞ
�����

k¼0

¼ −
∂Γð1Þ½k; μ;p�

∂pν

����
k¼0

¼ −Γð2Þ½k; μ; l; ν;p�jk;l¼0: ðA13Þ

2. Second order Ward-Takahashi identities

We could go even further in higher order. Taking the third derivative of Eq. (A4), we obtain

∂3S−1F ðpÞ
∂pμ∂pν∂pλ

¼ i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μc−1λμcþ1���μn þ ðperm: inðμ; ν; λÞÞ� ×
Y1∼n

i≠a;b;c
ðipμiÞ: ðA14Þ

The second derivatives of Eq. (A5) with respect to k or p give

∂2Γð1Þ½k; μ;p�
∂kν∂kλ

����
k¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1νμaþ1���μb−1λμbþ1���μc−1μμcþ1���μn þ ðν ↔ λÞ� ×
Y1∼n

i≠a;b;c
ðipμiÞ ðA15Þ

∂2Γð1Þ½k; μ;p�
∂kν∂pλ

����
k¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1νμaþ1���μb−1λμbþ1���μc−1μμcþ1���μn þ ðν ↔ λÞ þ ððν; λ; μÞ ↔ ðν; μ; λÞÞ�
Y1∼n

i≠a;b;c
ðipμiÞ

ðA16Þ

∂2Γð1Þ½k; μ;p�
∂pν∂pλ

����
k¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μc−1λμcþ1���μn þ ðperm: inðμ; ν; λÞÞ� ×
Y1∼n

i≠a;b;c
ðipμiÞ: ðA17Þ

From the first derivative of Eq. (A6) with respect to k or l or p, we obtain

∂Γð2Þ½k; μ; l; ν;p�
∂kλ

����
k;l¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1λμaþ1���μb−1μμbþ1���μc−1νμcþ1���μn

þ ððλ; μ; νÞ ↔ ðλ; ν; μÞÞ þ ððλ; μ; νÞ ↔ ðν; λ; μÞÞ�
Y1∼n

i≠a;b;c
ðipμiÞ; ðA18Þ

∂Γð2Þ½k; μ; l; ν;p�
∂lλ

����
k;l¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1λμaþ1���μb−1μμbþ1���μc−1νμcþ1���μn

þ ððλ; μ; νÞ ↔ ðμ; λ; νÞÞ þ ððλ; μ; νÞ ↔ ðλ; ν; μÞÞ�
Y1∼n

i≠a;b;c
ðipμiÞ; ðA19Þ

∂Γð2Þ½k; μ; l; ν;p�
∂pλ

����
k;l¼0

¼ −i3
X∞
n¼1

Xn
a;b;c¼1
a<b<c

½Mμ1���μa−1μμaþ1���μb−1νμbþ1���μc−1λμcþ1���μn þ ðperm: inðμ; ν; λÞÞ�
Y1∼n

i≠a;b;c
ðipμiÞ: ðA20Þ
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These equations give the following identities:

∂2Γð1Þ½k; μ;p�
∂kν∂pλ

����
k¼0

¼ ∂Γð2Þ½k; μ; l; λ;p�
∂kν

����
k;l¼0

¼ ∂Γð2Þ½k; λ; l; μ;p�
∂lν

����
k;l¼0

: ðA21Þ

3. Third order Ward-Takahashi identities

Carrying out similar calculations by simply differentiat-
ing Γð2Þ and Γð3Þ given in Eqs. (A6) and (A7), we can see
that the following identity holds:

∂2Γð3Þ½q; μ; r; ν; s; λ;p�
∂qα∂rβ

����
q;r;s¼0

¼ ∂3Γð2Þ½q; μ; r; ν;p�
∂qα∂rβ∂pλ

����
q;r¼0

:

ðA22Þ

APPENDIX B: USEFUL FORMULAS FOR
ENERGY EIGENSTATE

Consider a Hamiltonian in momentum representation
HðpÞ and the normalized complete set of eigenstates at
momentum p labeled by index α (α runs over the states in
both the valence and the conduction bands) with the
following properties:

HðpÞjαðpÞi ¼ EαðpÞjαðpÞi; ðB1Þ
hαjβi ¼ δαβ; ðB2Þ

hαðpÞjHðpÞjβðpÞi ¼ EαðpÞδαβ; ðα; β ¼ 1;…; NÞ:
ðB3Þ

Let us consider differentiation with respect to pμ. Here we
introduce the simplified notation

j∂μαi ¼ ∂μjαi≡ ∂
∂pμ

ðjαðpÞiÞ; ∂μH ≡ ∂
∂pμ

ðHðpÞÞ:

ðB4Þ
Then differentiating Eq. (B2), we obtain

h∂μαjβi ¼ −hαj∂μβi: ðB5Þ
Also, differentiating Eq. (B3) and making a little algebra,
we have

ðEα − EβÞhαj∂μβi þ hαj∂μHjβi ¼ ∂μEαδαβ: ðB6Þ
This means the matrix element of the momentum derivative
of the Hamiltonian is given as

hαj∂μHjαi ¼ ∂μEα; ðB7Þ
hαj∂μHjβi ¼ −ðEα − EβÞhαj∂μβi ðα ≠ βÞ: ðB8Þ

1. Degenerate flat band case

Let us now consider the special case where all the
energies in the valence bands and those in the conduction
bands are degenerate and flat. Then, one can easily see that

haðp⃗Þj∂μHðp⃗Þjbðp⃗Þi ¼ 0; ðB9Þ

h _aðp⃗Þj∂μHðp⃗Þj _bðp⃗Þi ¼ 0; ðB10Þ

haðp⃗Þj∂μHðp⃗Þj _bðp⃗Þi ¼ðEc − EvÞhaj∂μ
_bi; ðB11Þ

h _aðp⃗Þj∂μHðp⃗Þjbðp⃗Þi ¼ −ðEc − EvÞh _aj∂μbi;
ða; b ¼ 1;…; Nv; _a; _b ¼ 1;…; NcÞ; ðB12Þ

where the states with undotted indices jai, jbi are in the
valance bands with constant energy Ev < 0 and those with
dotted indices j _ai, j _bi are in the conduction bands with
constant energy Ec > 0.
Let us define the Berry connection using the negative

energy eigenstates as

Aab ≡Aab
μ dxμ ¼ −ihaj∂μbidxμ ≡ −ihajdbi: ðB13Þ

Then the Berry curvature F ab is

F ab ¼ ðdAþ iAAÞab ¼ −ihdajdbi

þ i
XNv

c¼1

ð−iÞhajdcið−iÞhcjdbi

¼ −i
�XNv

c¼1

hdajcihcjdbi þ
XNc

_c¼1

hdaj_cih_cjdbi
�

− i
XNv

c¼1

hajdcihcjdbi

¼ i
XNv

c¼1

hajdcihcjdbi þ i
XNc

_c¼1

hajd_cih_cjdbiÞ

− i
XNv

c¼1

hajdcihcjdbi

¼ i
XNc

_c¼1

hajd_cih_cjdbi: ðB14Þ

APPENDIX C: USEFUL FORMULAS FOR p0

INTEGRATION

We define the following p0 integrations:

I½m;n�ðE1;E2Þ≡
Z

dp0

2π

1

ðip0þE1Þmðip0þE2Þn
ðE1≠E2Þ:

ðC1Þ
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Simple contour integral by adding a contour in the lower
half semi-circle in the complex p0 plane and picking up
poles in the lower half plane, we obtain

I½m;n�ðE1;E2Þ¼ð−1Þm ðmþn−2Þ!
ðm−1Þ!ðn−1Þ! ·

θð−E1Þ−θð−E2Þ
ð−E1þE2Þmþn−1 :

ðC2Þ

In particular, when ðm; nÞ ¼ ðnþ 1; nÞ

I½nþ1;n�ðE1;E2Þ¼ð−1Þnþ1
ð2nÞ!
2ðn!Þ2 ·

θð−E1Þ−θð−E2Þ
ð−E1þE2Þ2n

ðC3Þ

holds. This formula is useful in making p0 integration of
the propagator expressions for the Chern-Simons level.
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