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Abstract. Using extensive Monte Carlo simulations that employ the Wolff cluster flipping
and data analysis with histogram reweighting and quadruple precision arithmetic, we have
investigated the critical behavior of the simple cubic Ising model with lattice sizes ranging
from 163 to 10243. By analyzing data with cross correlations between various thermodynamic
quantities obtained from the same data pool, we obtained the critical inverse temperature
Kc = 0.221 654 626(5) and the critical exponent of the correlation length ν = 0.629 912(86) with
precision that improves upon previous Monte Carlo estimates.

1. Introduction
The Ising Model [1] has long played a special role in the theory of phase transitions and has
served as a “fruit fly” model for testing new numerical and theoretical approaches. While Ising
published the exact solution in 1-dim in 1925 [1] and Onsager the 2-dim version in 1944 [2], 3-
dim Ising models have defied solution. Monte Carlo simulations [3], non-equilibrium relaxation
Monte Carlo [4], Monte Carlo renormalization group [5, 6], field theoretic methods [7, 8] and
high-temperature series expansions [9] have provided precise values for the location of the phase
transition [10] and critical exponents, although the results did not all agree within the error bars.
Simulations were insufficient to test Rosengren’s “exact conjecture” for the critical temperature
of the simple cubic Ising model [11]; moreover, Fisher showed that other “exact conjectures”
gave quite similar values [12]. (For a nice review of results prior to 2002 see Ref. [10].)

Recent developments have renewed interest in the critical behavior of the 3d Ising model. The
conformal bootstrap method provided precise estimates for the critical exponent ν [13, 14, 15],
and Monte Carlo simulations [16, 17, 18] and tensor renormalization group theory with high-
order singularity value decomposition [19] also yielded very precise results. Although Zhang
claimed to have solved the 3d Ising model exactly [20], convincing arguments showed that his
solution was incorrect [21, 22, 23].

We now present new results of high-precision Monte Carlo simulations of critical behavior of
the simple cubic Ising model, analyzed using histogram reweighting techniques [24, 25], cross
correlation analysis [26, 27] and finite-size scaling methods [28, 29, 30, 31].

http://creativecommons.org/licenses/by/3.0
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2. Model and methods
2.1. Three-dimensional Ising model
We have considered the simple cubic, ferromagnetic Ising model with nearest-neighbor
interactions on L×L×L lattices with periodic boundary conditions. Each of the lattice sites i
has a spin, σi = ±1 which interact with Hamiltonian

H = −J
∑
〈i,j〉

σiσj , (1)

where 〈i, j〉 denotes distinct pairs of nearest-neighbors and J is the interaction constant. The
dimensionless energy E is

E = −
∑
〈i,j〉

σiσj . (2)

The dimensionless coupling constant K = J/kBT will be useful for discussing critical behavior.

2.2. Monte Carlo algorithm
We sampled states using the Wolff cluster flipping algorithm [32] in which single clusters are
grown and flipped sequentially. Clusters are created by drawing bonds to all nearest neighbors
of the growing cluster with probability

p = 1− e−2Kδσiσj (3)

Random numbers were produced using the Mersenne Twister generator [33]. No difference was
discernible between data obtained using 32-bit and 53-bit versions. Simulations were performed
at K0 = 0.221 654 (the estimate for the critical inverse temperature Kc by MCRG analysis
[6], also used in an earlier, high resolution Monte Carlo study [3]). Lattice sizes were in the
range 16 ≤ L ≤ 1024, and measurements were taken for each run after 2 × 105 Wolff steps
were discarded for equilibrium. Even for the largest lattice, L = 1024, the energy had reached
equilibrium by 130, 000 cluster steps, and the simulation was then run at least another ten times
the equilibrium relaxation time before data accumulation began. We performed 6,000 to 12,000
runs of 5 × 106 measurements for each L using a total of around 2 × 107 CPU core hours and
producing more than 5TB data.

2.3. Methods of analysis
To locate the peaks in response functions precisely we used histogram reweighting [24, 25] to
transform a probability distribution measured at one coupling to one at an adjacent value of
coupling. After N configurations are generated at inverse temperature K0 with a probability
proportional to the Boltzmann weight, exp(−K0E), the probability of simultaneously observing
the system with total (dimensionless) energy E and total magnetization M is estimated,

PK0 =
1

Z(K0)
W (E,M) exp(K0E) ≈ H(E,M)/N, (4)

where Z(K0) is the partition function and H(E,M) is the measured histogram of states. The
(estimated) probability distribution for arbitrary K is then

PK(E,M) ≈ H(E,M)eΔKE∑
H(E,M)eΔKE

, (5)

where ΔK = K0 −K and the average value of any function of E and M , f(E,M),

〈f(E,M)〉K =
∑
E,M

f(E,M)PK(E,M) (6)
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Ferrenberg and Landau [3] showed that the critical exponent ν of the correlation length can
be estimated more precisely from Monte Carlo simulation data if multiple quantities, including
traditional quantities which still have the same critical properties, are included. The logarithmic
derivative of any power of the magnetization

∂ ln 〈|m|i〉
∂K

=
1

〈|m|i〉
∂〈|m|i〉
∂K

=
〈|m|iE〉
〈|m|i〉 − 〈E〉, (7)

for i = 1, 2, ..., can yield an estimate for ν. We also included (reduced) magnetization cumulants
U2i [34] defined by

U2i = 1− 〈|m|2i〉
3〈|m|i〉2 , i = 1, 2, 3, ... (8)

whose derivatives with respect to K can also be used to estimate ν. The inverse critical
temperature Kc(L) can be estimated from the locations of the peaks in the above quantities as
well as the specific heat

C = K2L−d(〈E2〉 − 〈E〉2), (9)

the derivative of |m| with respect to K,

∂〈|m|〉
∂K

= 〈|m|E〉 − 〈|m|〉〈E〉, (10)

the finite-lattice susceptibility,

χ′ = KLd(〈|m|2〉 − 〈|m|〉2), (11)

and the zero of the fourth-order energy cumulant

Q4 = 1− 〈(E − 〈E〉)4〉
3〈(E − 〈E〉)2〉2 . (12)

Note that Eq. (11) is for the finite-lattice susceptibility, not the “true” susceptibility calculated
from the variance of m, χ = KLd(〈m2〉 − 〈m〉2) which has no peak for finite L. (For long runs,
〈m〉 = 0 for H = 0 so that any peak in χ is merely due to finite run length.) All quantities were
calculated using the GCC Quad-Precision Math Library (quadruple, 128 bit) precision.

The critical behavior of a system near a 2nd order transition can be extracted from the size
dependence of the singular part of the free energy density [28, 29, 30, 31]. As a function of L
(linear dimension) and T (temperature) as variables, the free energy of a system is described by
the finite size scaling (FSS) ansatz,

F (L, T ) = L−(2−α)/νF(εL1/ν , hL(γ+β)/ν), (13)

where ε = (T − Tc)/Tc (Tc is the infinite-lattice critical temperature), h is the magnetic field,
and the critical exponents α, β, γ and ν are the infinite lattice values. Various thermodynamic
properties can be determined from Eq. (13) and have corresponding scaling forms, e.g.,

m = L−β/νM0(εL1/ν), (14)

χ = Lγ/νχ0(εL1/ν), (15)

C = Lα/νC0(εL1/ν), (16)
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where M0(x), χ0(x) and C0(x) are scaling functions. Because we are interested in zero-field
properties (h = 0), x is the only relevant thermodynamic variable. Then, for finite L, e.g. the
specific heat peak occurs where the scaling function C0 is maximum, i.e., when

∂C0(x)
∂x

∣∣∣∣
x=x∗

= 0. (17)

The temperature corresponding to the peak is the finite-lattice “transition” temperature Tc(L),
on the condition x = x∗ which varies with L asymptotically as

Tc(L) = Tc + Tcx
∗L−1/ν . (18)

The FSS ansatz is valid only for sufficiently large L and T sufficiently close to Tc. Corrections
to scaling and finite-size scaling terms appear for smaller systems and temperatures away from
Tc due to: irrelevant scaling fields which can be expressed in terms of an exponent θ, e.g.
a1ε

θ + a2ε
2θ + · · · , and others due to the non-linear scaling fields, e.g. b1ε

1 + b2ε
2 + · · · . The

correction terms can then be expressed by: a1L
−θ/ν+a2L

−2θ/ν and b1L
−1/ν+b2L

−2/ν . Including
correction terms, the estimate for the inverse critical coupling Kc(L) becomes

Kc(L) = Kc +A0L
−1/ν(1 +A1L

−ω1 +A2L
−ω2 + · · · ). (19)

We first estimate the critical exponent ν and then insert it into Eq. (19), so that there is one
less unknown parameter to do the non-linear fit to Eq. (19). To do this we can use the critical
scaling form without the prior knowledge of the transition coupling Kc

∂U2i

∂K

∣∣∣∣
max

= Ui,0L
1/ν(1 + a1L

−ω1 + a2L
−ω2 + · · · ) (20)

∂ ln 〈|m|i〉
∂K

∣∣∣∣
max

= Di,0L
1/ν(1 + a1L

−ω1 + a2L
−ω2 + · · · ) (21)

Once ν is determined from the fit of Eq. (20) and Eq. (21), we can estimate the critical inverse
temperature Kc with a fixed value of ν. Kc can also be estimated from Binder’s 4th order
cumulant crossing technique [34]. As L→∞, the fourth-order magnetization cumulant U4 → 0
for K < Kc and U4 → 2/3 for K > Kc. U4 can be plotted as a function of K for different lattice
sizes, and the location of the intersections between curves for the two lattice sizes is given by

Kcross(L, b) = Kc + a1L
−1/ν−ω1

(
b−ω1 − 1

b1/ν − 1

)
+ a2L

−1/ν−ω2

(
b−ω2 − 1

b1/ν − 1

)
+ · · ·

where L is the size of the smaller lattice, b = L′/L is the ratio of two lattice sizes, and ω1, ω2

are correction exponents in the finite-size scaling formulation.
Ideally, each configuration only depends on the previous configuration, but, in practice, it is

likely to be correlated to earlier configurations. The correlation decays with separation in Monte
Carlo time, but fluctuations appear smaller than they should be. To deal with this issue, we
can consider blocks of the original data, and use jackknife resampling [35].

An important advance by Weigel and Janke [26, 27] was the seminal observation that
cross correlation between different quantities could lead to systematic bias in the estimates
of critical quantities extracted from the data. For a set of n measurements of a random variable
x = (x1, x2, · · · , xn), and an estimator θ̂ = f(x), the Jackknife estimate of the value and error

of θ̂ is found by leaving out one measurement at a time. We define the jackknife average, xJi by,

xJi =
1

n− 1

∑
j �=i

xj , (22)
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where i = 1, 2, · · · , n, so xJi is the average of all the x values except xi. Similarly, we define

θ̂Ji = f(xJi ). (23)

The jackknife estimate of θ̂ = f(x) is the average of θ̂Ji , i.e.

θ̄ =
1

n

n∑
i=1

θ̂Ji =
1

n

n∑
i=1

f(xJi ), (24)

and the jackknife error σ(θ̂), is given by,

σ(θ̂) =

[
n− 1

n

n∑
i=1

(θ̂Ji − θ̄)2
]1/2

. (25)

In general there can be multiple adjacent elements in each block, and significant cross correlations
may exist between estimates θ̂(k) and θ̂(l) from the same original time-series data, To reduce
these effects, we calculated the jackknife covariance matrix G ∈ R

m×m [35]. For a number of

estimates θ̂(k), the rth row, cth column entry of matrix G is given by,

Grc(θ̂) =
n− 1

n

n∑
i=1

(θ̂
J,(r)
i − θ̄(r))(θ̂

J,(c)
i − θ̄(c)). (26)

The m different estimates θ̂(k)(k = 1, 2, ...,m) for the same parameter θ̂, should have the same

expectation value. So the estimated value for θ̂ can be determined by a linear combination,

θ̄ =
m∑
k=1

αkθ̂
(k). (27)

where
∑

k αk = 1. Based on the cross correlation analysis from Ref. [26, 27], with the optimal
choice for the weights, the variance can be expressed by,

σ2(θ̂) =
1∑m

k=1

∑m
l=1[G(θ̂)−1]kl

. (28)

At our level of resolution the finite precision of the pseudorandom number generator and the
numbers that can be stored in memory become relevant. When the Wolff algorithm probability
of adding a spin to the cluster is converted to a 32-bit unsigned number for comparison with a
pseudorandom number generated in the simulation, it is truncated due to finite precision. When
reconverted back into a value ofK the result differs from 0.221 654 in the 10th decimal place. For
the largest L, this is only a factor of 20 smaller than the statistical error. Simulations with a 53-
bit pseudorandom number generator showed that this is not significant for our analysis, but for
future studies of larger systems and/or higher precision, a 32-bit random number generator might
not suffice. We also used the corrected, effective K0 instead of 0.221654 and for L = 1024 we
used the multiple-histogram method [25] to combine results for the 32 and 53-bit pseudorandom
number generators.

Comparisons of results from Wolff cluster flipping runs and Metropolis single spin-flip runs
for L = 32 showed no differences. The Wolff cluster simulation for L=32 was repeated
using the MRG32K3A random number generator from Pierre L’Ecuyer, “Combined Multiple
Recursive Random Number Generators”, Operations Research, 47, 1 (1999), 159-164. The
locations and values of the maxima in all quantities agreed, to within the error bars, as those
from the Metropolis simulations and the Wolff simulations with the Mersenne Twister. Hence
the problems found by Ferrenberg et al. [36] using other random number generators were not
noticeable here.
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Table 1. Estimates for ν with: one fixed correction exponent ω1 = 0.83, two fixed exponents
ω1 = 0.83, ω2 = 4, and three fixed exponents ω1 = 0.83, ω2 = 4, ω3 = 1.6 as a function of Lmin.

Lmin ν(ω1 fixed) ν(ω1,2 fixed) ν(ω1,2,3 fixed)

16 0.631 814(18) 0.630 806(30) 0.630 072(45)
24 0.631 046(26) 0.630 513(40) 0.630 049(57)
32 0.630 722(33) 0.630 241(55) 0.629 980(77)
48 0.630 350(48) 0.630 278(78) 0.629 99(11)
64 0.630 319(62) 0.630 21(11) 0.630 06(15)
80 0.630 285(78) 0.630 10(15) 0.629 93(21)
96 0.630 25(10) 0.629 93(18) 0.629 90(29)
112 0.630 14(13) 0.630 01(17) 0.629 93(18)
128 0.630 04(15) 0.630 04(15) 0.629 84(22)
144 0.629 85(18) 0.629 85(18) 0.629 96(26)

3. Results
3.1. Finite-size scaling analysis
The conformal bootstrap [13, 14] gives a theoretical prediction for the confluent correction
exponents,

ω1 = 0.8303(18), ω2 ≈ 4. (29)

and the correction term corresponding to the non-linear scaling fields is [37],

ω3 = 1/ν (30)

Thus, the fitting model for the peak value of quantity X is,

Xmax = X0L
1/ν(1 + a1L

−ω1 + a2L
−ω2 + a3L

−ω3) (31)

We analyzed the data fitting model Eq. (31) using between one and three correction terms
with fixed powers ω1 = 0.83, ω2 = 4, ω3 = 1.6. By calculating the covariance matrix and doing
the cross-correlation analysis, we give estimates for ν in Table 1 where the minimum lattice size
included in the analysis, Lmin, is eliminated one by one. With three correction exponents, two
for confluent corrections (ω1 = 0.83, ω2 = 4) and one for the non-linear scaling fields (ω3 = 1.6),
the estimate for the critical exponent ν shows statistical fluctuations; but the value for ν was
estimated by taking the average of ν obtained from fits for different Lmin and the error estimated
with the jackknife method on estimates of ν from the analysis using different ranges of relatively
large Lmin. Using values of Lmin from 80 to 144, we find

ν = 0.629 912(86). (32)

Since higher order terms like a1,2L
−2ω1 + · · · could be present and larger than the higher

order confluent corrections, we repeated the analysis using these higher order corrections instead.
The results for the asymptotic values of the critical temperature and exponent were essentially
identical. Thus, either the higher order terms have small prefactors or we do not have sufficient
resolution to differentiate their contribution from those of higher order confluent corrections.

To estimate the critical coupling Kc, we fitted the locations of the peak of the multiple
quantities using between one and three fixed correction exponents, ω1 = 0.83, ω2 = 4, ω3 = 1.6,
to the fitting model Eq. (33),

Kc(L) = Kc +A0L
−1/ν(1 +A1L

−ω1 +A2L
−ω2 +A3L

−ω3). (33)
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Table 2. Fitted values for Kc with: (left column) one correction term (fixed exponent
ω1 = 0.83); (center column) two correction terms (fixed exponents ω1 = 0.83, ω2 = 4; and
(right column) three correction terms (fixed exponents ω1 = 0.83, ω2 = 4, ω3 = 1.6) as a
function of Lmin.

Lmin Kc(1 fixed ω) Kc(2 fixed ω) Kc(3 fixed ω)

16 0.221 654 656 2(10) 0.221 654 639 3(11) 0.221 654 625 7(21)
24 0.221 654 638 8(11) 0.221 654 630 8(12) 0.221 654 625 7(24)
32 0.221 654 634 3(11) 0.221 654 630 7(12) 0.221 654 625 3(32)
48 0.221 654 630 7(12) 0.221 654 630 5(12) 0.221 654 623 2(30)
64 0.221 654 628 4(13) 0.221 654 628 4(13) 0.221 654 623 4(60)
80 0.221 654 627 5(14) 0.221 654 627 5(15) 0.221 654 625 0(75)
96 0.221 654 626 0(17) 0.221 654 626 0(16) 0.221 654 627 9(97)
112 0.221 654 625 9(18) 0.221 654 626 0(18) 0.221 654 625 0(49)
128 0.221 654 625 8(21) 0.221 654 625 8(21) 0.221 654 626 3(48)
144 0.221 654 627 0(25) 0.221 654 627 0(25) 0.221 654 627 1(34)

The results for Kc are shown in Table 2.
The fluctuation of Kc when Lmin ≤ 80 is larger than when Lmin ≥ 80 and finite-size

effects diminish for larger L. From the average of Kc for Lmin = 80 to 144 we estimate
Kc = 0.221 654 626 2. Likewise, a jackknife analysis has been done on the estimates for Kc

which are obtained from the three correction terms analysis. From values of Lmin from 80 to 144
we estimate Kc = 0.221 654 626 2(23) whereas for Lmin = 16 to 144, Kc = 0.221 654 625 5(42).
Therefore, we conclude from the finite size scaling analysis, with conservative error bars, that

Kc = 0.221 654 626(5). (34)

As seen in Fig. 2, effects of higher order correction terms are clearly visible.

3.2. Crossing technique of the 4th order magnetization cumulant
As the lattice size L → ∞, the fourth-order magnetization cumulant U4 → 0 for K < Kc and
U4 → 2/3 for K > Kc. For large enough lattice sizes, curves for U4 cross as a function of inverse
temperature at a “fixed point” U∗, and the location of the crossing “fixed point” is Kc. Because
of finite-size correction terms, not all curves cross at a common intersection. The locations of
the cumulant crossings have been fitted to Eq. (22) with two correction terms. The critical
coupling appears to be stable if Lmin ≥ 96 and the average of Kc values for Lmin ≥ 96 yields

Kc = 0.221 654 628(2) (35)

3.3. Discussion
The combination of an efficient, cluster-flipping Monte Carlo algorithm, high statistics
simulations, histogram reweighting, and a cross-correlation jackknife analysis enables the high
resolution of the results presented above. In Fig. 3, we show the results of our Monte Carlo
study as well as other high-resolution simulations estimates for ν and Kc. The boxes represent
the quoted error bars in both ν and Kc assuming independent errors.

Our estimate ν = 0.629 912(86) is consistent (i.e. within the error bars) with the recent
conformal bootstrap result of Kos et al. [15], as well as that from an older work by El-Showk et
al. [14]. Also, our result agrees well with the Monte Carlo result of Hasenbusch [16] but is lower
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Q4

∂U6/∂K
∂U4/∂K
∂U2/∂K

C
∂〈|m|〉/∂K

χ
∂ ln 〈|m|4〉/∂K
∂ ln 〈|m|3〉/∂K
∂ ln 〈|m|2〉/∂K
∂ ln 〈|m|〉/∂K

L−1/ν (10−4)

K c(L)

76543210

0.2219

0.2218

0.2217

0.2216

0.2215

Figure 1. Size dependence of the finite-lattice effective critical temperatures estimated from
L = 96 to 1024.

Q4

∂U6/∂K

∂U4/∂K
∂U2/∂K

C
∂〈|m|〉/∂K

χ
∂ ln 〈|m|4〉/∂K
∂ ln 〈|m|3〉/∂K
∂ ln 〈|m|2〉/∂K
∂ ln 〈|m|〉/∂K

L−1/ν (10−3)

ε (10−6)

2.52.01.51.00.50

4

3

2

1

0

-1

Figure 2. Size dependence of the residual difference between measured Kc and fitted values
including one correction term.
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Table 3. Comparison of our results for the critical coupling Kc and the critical exponents ν, γ
with other recently obtained values. Numbers marked with * are calculated by Fisher’s scaling
law γ = ν(2− η), and the error estimates assume that ν an η are independent and uncorrelated.

Method Kc ν γ

conformal bootstrap [15] 0.629 971(4) 1.237 075(8)*
MC [27] 0.221 657 03(85) 0.630 0(17) 1.240 9(62)*
MC [16] 0.221 654 63(8) 0.630 02(10) 1.237 19(21)*
MC [17] 0.221 654 604(18)

tensor RG [19] 0.221 654 555 5(5)
Our results (no fit assumptions), MC 0.221 654 630(7) 0.629 60(15) 1.236 41(45)
Our results (constrained fits), MC 0.221 654 626(5) 0.629 912(86) 1.236 94(31)
Our results (cumulant crossings), MC 0.221 654 628(2)

Kc

Kaupuz̃s(2010)

(2014)
Wang et al.

(2010)
Hasenbusch

(2016)
Kos et al.

(no fit assumptions)
Our results

Our results (cumulant crossings)

(constrained fits)
Our results

ν

0.221654800.221654700.221654600.22165450

0.6304

0.6302

0.6300

0.6298

0.6296

0.6294

Figure 3. High-resolution estimates for Kc and ν obtained using different methods

than that of Weigel and Janke [27]; however, within the respective error bars there is agreement
although we have substantially higher precision than either of these previous studies. Our
system sizes and statistics are substantially greater than those used by Weigel and Janke and
Hasenbusch examined the behavior of the ratio of partition functions Za/Zp, and the second
moment correlation length over the linear lattice size ξ2/L so the methodologies differ. Our
estimate for Kc differs from that obtained by Kaupuz̃s et al [17] using a parallel Wolff algorithm
by an amount that is slightly outside the error bars. Somewhat perplexingly, they were able
to fit their data to two rather different values of ν, so no comparison of critical exponents is
possible. The recent tensor renormalization group result for Kc [19] disagrees with our result by
many times the respective error bars.
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4. Conclusion
We have studied a 3d Ising model with the Wolff cluster flipping algorithm, histogram
reweighting, and finite size scaling including cross-correlations using quadruple precision
arithmetic for the analysis. Using a wide range of system sizes, with the largest containing
more than 109 spins, and including corrections to scaling, we have obtained results for Kc, ν,
and γ that are comparable in precision to those from the latest theoretical predictions and can
provide independent verification of the predictions from those methods. Our values provide
further numerical evidence that none of the purported “exact” values are correct. To within
error bars we obtain the same value for the critical exponent ν as that predicted by the conformal
bootstrap; however, our estimate for the critical temperature Kc does not agree with that from
the tensor renormalization group.

As computer power increases, new sources of error must be taken into account. To improve
precision more stringent tests of the random number generator and much greater statistics for
much larger lattice sizes will be needed.
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