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An integrated correlator of four superconformal stress-tensor primaries of A =4 supersymmetric
SU(N) Yang-Mills theory (SYM), originally obtained by localization, is reexpressed as a two-dimensional
lattice sum that is manifestly invariant under SL(2, Z) S duality. This expression is shown to satisfy a novel
Laplace equation in the complex coupling constant 7 that relates the SU(N) integrated correlator to those of

the SU(N +1) and SU(N —

1) theories. The lattice sum is shown to precisely reproduce known

perturbative and nonperturbative properties of A'=4 SYM for any finite N, as well as extending
previously conjectured properties of the large-N expansion.
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The N = 4 supersymmetric Yang-Mills (V' = 4 SYM)
theory [1] is a highly nontrivial four-dimensional
conformal field theory that is of exceptional interest
for a variety of reasons. It possesses maximal supersym-
metry, which enables many of its properties to be
determined analytically. Furthermore, its relation to
string theory in AdSs x S° via the AdS/CFT correspon-
dence provides a model for more general examples of
holography.

Of particular significance to this Letter is the analysis of
the integrated correlation function of four superconformal
primaries that was formulated in terms of an N-dimensional
matrix model in Ref. [2], and further developed in
Refs. [3—6]. This integrated correlator was defined in terms
of the partition function of A" = 2* SYM theory, which is a
mass deformation of the superconformal N'=4 SYM
theory with mass parameter m. The suitably normalized
N =2* SU(N) partition function, on a round S%,
Zy(m,7,7), was determined by Pestun using supersym-
metric localization [7]. Our notation follows usual con-
ventions where the complex Yang-Mills coupling constant
is defined by 7 = 7| + i1, := 0/27 + i4n/ Gy

In Ref. [2] the integrated correlator of four
superconformal primaries was identified with the
m — 0 limit of four derivatives acting on logZy that
has the form

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’

0031-9007/21/126(16)/161601(6)

161601-1

On(7.7) =
:__/ dr/ de”“‘ )Ty o), ()

where A, = 4730,0; is the hyperbolic Laplacian and the
cross ratios U, V are defined by
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and are related to r and @ by U = 1 + r> — 2rcos(6) and
V = r? [8]. The function 7 y (U, V) is related to the four-
point correlator by

(Or(x1.Y1)...0,5(x4, Y4))
= e UViY) + LU, VYT (U, V)],
x12 34

(3)

where O,(x;, Y;) is a superconformal primary in the 20’
of the SU(4) R symmetry, which is encoded in the
dependence on the null vectors Y;. 7 y g (U, V; Y;) is the
free field correlator and the prefactor Z,(U,V;Y;) is
determined by superconformal symmetry [9,10]. So we
only focus on the nontrivial part, 7 5(U, V).

As pointed out in Ref. [2], the relation [Eq. (1)] between
the mass derivatives of the localized partition function and
the integrated four-point correlator may lead to mixing with
long operators, such as the Konishi operator. Not only do
such effects decouple in the large-N strong coupling limit,
as argued in Ref. [2], but they also do not appear at finite N
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and finite coupling [11]. We will see direct evidence of this
statement in our results later in this Letter.

The results in this Letter follow from a reformulation of
Gy(r,7), as a two-dimensional lattice sum that makes
manifest many of its properties for all values of N and
[12]. These results, which are based on a wealth of evidence
concerning the structure of Gy(z,7) in various limits, take
the form of a conjecture rather than a mathematical
theorem:

Conjecture.—The integrated correlation function of four
superconformal primary operators in the stress tensor
multiplet of N'=4 SU(N) supersymmetric Yang-Mills
theory is given by the lattice sum

N(N-=1)(1-

o) = =50 oy

and P,(\‘,"/} )(z) is a Jacobi polynomial.
The following general properties of By (¢) are of impor-

tance in the following:
1 1
=-By|—-, 7
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Using relationships between derivatives of Jacobi poly-
nomials leads to the recurrence relation

By(1)

and

2

s = 2(V? - 1D)By(1)

[tBy(1)] = N(N — 1)By1(1)

F NN+ 1By, (1), (9)

The lattice sum Eq. (4) is convergent for 7 in the upper
half plane 7, = Imz > 0 and it is manifestly invariant under
the SL(2, Z) transformations

, y=<j Z)eSL(z,z), (10)

which is in accord with the expectations of Montonen-
Olive duality [14-16].
An important consequence of Eq. (4) together with
Eq. (9) is that Gy(z,7) satisfies the following corollary:
Corollary.—The integrated correlator satisfies a
Laplace-difference equation of the form

(8; =2)Gy(7.7) = N(N = 1)Gy.(7,7)

- 2N2QN(T, ’f) +N(N + l)gN_1<T, ’f)

(11)
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where By /(t) has the form

Bult) = v )

and where Qy(f) is a polynomial of degree 2N — 1
defined by
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This follows by applying the Laplacian A, to Eq. (4) and
using Eq. (9). Equation (11) provides powerful constraints
on Gy that relate the dependence on the coupling 7 and the
dependence on N in a manner that will be discussed later.
For now we note that as N — oo, assuming Gy is a
differentiable function of N, Eq. (11) becomes a Laplace
equation in both 7 and N, taking the form

(. =2)Gx(r.7) = (N*® —2N0W)Gx(5.7).  (12)

where terms of higher order in 1/N have been suppressed.
The structure of the integrated correlator.—The N' = 2*
partition function appearing in Eq. (1) has the form [7]

Zy(m.7.7) /dNa 5(Za > (Hau> ~67 /o) D %

i<j

XZ?vm(m,a )|Zm5t(m T, alj)|2. (13)

The perturbative factor in Eq. (13) is given by

2 (m, ay5) = H(’">H _ H(a;;) (14)

i.j (aij—’—m)’

where H(z) = e"1"12G(1 + iz)G(1 — iz), and G(z) is a
Barnes G function (and y is the Euler constant). The factor
|Zi84|2 is the product of Nekrasov partition functions that
describes contributions from instantons and anti-instantons
localized at the poles of S* [17].

In the following we will consider the Fourier expansion
of the integrated correlator, using the notation

Gy(r,7) ZgNk 7,7) = Zekan]:'le‘ (r2). (15)
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Details of the derivation of the following results are
presented in Ref. [13].

(i) Gauge group SU(2): When N = 2, the perturbative
contribution arises solely from Zpel1 and it is straight-
forward to show that it can be expressed as an asymptotic
series in g%y, of the form

(2s—1)I'(2s+1
S e D1y

_ 1—s
i =y (16)

s=2

where y = 77, = 47%/¢%y. This can be resummed by
expressing it as a convergent Borel integral

_[we(6r =9 +21)
Gao(y) = A 25k (57) dr.  (17)

In this form it can also be reexpanded at strong coupling in
positive powers of y,

)y)~%+§:(s—1)(2s (=)

— 1)’ (s + 1)¢(2s) o

(18)
It will be useful to formally identify the k =0 mode

of G, in Eq. (17) with the average of the y* and yl=s
terms,

(Gop(v) + Gy (7)) (19)

l\)l>—‘

G, o(y) =

The nonzero modes corresponding to instanton and
anti-instanton contributions can be extracted from the
|ZI™Y2 factor in Eq. (13) by extending the analysis in
Ref. [5]. This involves a systematic decomposition of

|

A% 70 (m, 7, a; )| m=o in terms of a sum over rectangular
Young diagrams with /2 rows and n columns, where k =
mn is the instanton number. The resulting k-instanton
contribution is

2rikt,
¢ 5 Z /00 e—ﬂfz(ﬁ’lz/t-’rnzt) ,T—sz(I)dt,
m#0,n#0 7 0 !

mn=k

Goi(7,7) =

(20)

with B, (#) given in Eq. (5) for N = 2. This integral can be
expanded as an infinite sum of K-Bessel functions using
the integral representation

/°° o=@ /1=l gy 2<%) K,(2ab), (21)
0

with a = /a7ty and b = \/7/7;n.

We now recognize that the total integrated
correlator, G, = G + > 420 Gox» is an infinite sum of
nonholomorphic Eisenstein series with integer index and
with rational coefficients

where

@ a1, (23)

In making this identification we recall that a non-
holomorphic Eisenstein series has a Fourier expansion of
the form

s 20(2 2y/al’ -1
Elsen) =L B ___ C(Xs)72 Val(s Sr(> )( s )T%_Y
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We further note that E(s, 7, 7) satisfies the Laplace equation
[A; —s(s —1)]E(s,z,7) = 0. (25)

Upon substituting the integral representation

00 5 ts—]
E(s0,7) = / el s ar,(26)

(m.n)#(0,0) 70

into Eq. (22) it takes the form given in Eq. (4) with N = 2.

(ii) Gauge groups SU(N) with N > 2: Here the direct
analysis of Eq. (1) is considerably more complicated
and is presented in more detail in Ref. [13], where the
expression for By(t) in Eq. (5) is motivated. However,
for the purposes of this Letter it is more efficient to
use the Laplace-difference equation, Eq (11), to generate
the expression for the integrated correlator when
N > 2. Once we input the boundary conditions G; =0
and G, given by Eq. (22), the correlators for theories
with higher N are generated recursively. They may be
expressed as

161601-3
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where the coefficients c§N> are rational numbers that depend

on N and are generated by the expansion of By (¢) in the form

w_WN)
BN(t) = ZFS(S)
s=2

1 (28)
The coefficients cgN) can also be determined up to any desired

order by substituting the series Eq. (27) into Eq. (11) and
|

solving iteratively in terms of the coefficients c£2>

in Eq. (23).

Properties of the integrated correlator.—The integrated
correlator has interesting behavior when expanded in
various domains of the parameters, N and 7. We will here
discuss three of these domains.

(a) Finite N, small A = g%\;N: This is the domain of
standard Yang-Mills perturbation theory. The expansion
of the perturbative part of the expression Eq. (4) has
the form

given

3¢(3 75¢(5)a®  7358(7)a® 6615¢(9)(1 +2N"2)a*  114345¢(11)(1 + N~2)a®
gN.O(TZ):(Nz—l)[ g(z)a— C(S Ja + i(6 Ja” _ 8615¢( )(32 N7 )a + d 1)2(8 Ja
25 a7-2 4 -4\ 6
_3864861£(13)(1 + BN + 7N H)a o). (29)

1024

where a = ¢3\;N/(4x*) and arbitrary N > 2. When N = 2,
this reduces to Eq. (16). Although the perturbative
expansion of the unintegrated four-point correlator has a
very complicated dependence on the cross ratios U, V, the
above expression is remarkably simple, consisting of a
power series in a with coefficients that are rational multi-
ples of odd Riemann zeta values.

This expansion is in rather impressive agreement with
known facts concerning the perturbative expansion
of the four-point correlator of superconformal primaries
of N'=4 SYM. The expressions for the unintegrated
correlator up to three loops (up to order a®) are given in
Ref. [18]. In Ref. [13] we have verified the integrals of the
one-loop and two-loop contributions agree with the
coefficients proportional to a and to a”> in Eq. (29). In
performing these integrals we make use of the all-order
results for ladder diagrams [19]. The one-loop and two-
loop contributions are special cases of such ladder dia-
grams. However, at higher loops the correlator contains
more general diagrams that we have not evaluated.

A further property that is apparent from the perturbative
expansion Eq. (29) is the dependence on N. We see that up
to order a’ the coefficients do not depend on N, apart from
the overall factor of (N> — 1). This is in accord with known
perturbative properties of the correlator, which develop a
dependence on N2 at order a* [20,21]. From Eq. (29) we
anticipate that an extra power of N=2 will appear at every
subsequent even power of a, which is in agreement with the
observations in Ref. [22].

All these precise agreements would be spoiled if
there were any additional contribution such as mixing
with a three-point correlator involving the Konishi
operator.

(b) Large N, with fixed 2 = ¢%,N: In this limit instan-
tons are of order e=87*N/* and are therefore suppressed.

The large-N expansion of the correlator is ’t Hooft’s
topological expansion,
Gy(r.7) ~ Y N*7G0)(2), (30)
g=0

where the leading term is of order N? and is given by the
sum of planar Feynman diagrams in Yang-Mills perturba-

tion theory. Given our knowledge of the coefficients CEN) in

Eq. (28) we are able to determine the A dependence of G¢)
order by order in N. For small A the leading term is given by
the series

—1)"1¢(2n + D0(n +3)?
z 2n+1F ) <n+3) s

n=1

At (31)

which converges for |A| < z% It can be resummed to give

GO) = /1/00 dww?
0

which is well defined for 1 > z* and coincides with the
result of Ref. [2] after using an identity that relates | ', and
Bessel functions J,,.

However, following an analysis similar to Ref. [23], it is
easy to see that the large-A expansion of Eq. (32) is
divergent and not Borel summable since the Borel integral
is obstructed by a branch cut along the positive axis. This
signifies that in order to reproduce the exact result
[Eq. (32)] one needs a resurgent nonperturbative comple-
tion AG() (1), which is determined in Ref. [13] to be of the
form

1F2( 32,4, =25 )
4z? sinh?(w)

(32)
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4) 1643/2 ‘

(33)

This expression is a sum of “instantonic" terms that are
nonperturbative in 1/1/2, with coefficients O(e‘zﬁ) that are
similar to those found in Refs. [24-26] for the cusp
anomalous dimension and other quantities in ' = 4 SYM
[27]. Similar arguments lead to nonperturbative completions
of GY. For example, the expression for Ag(l)(/l) is also
determined in Ref. [13] and takes an analogous form as
Eq. (33). We believe that such nonperturbative effects in the
large-1 expansion have a holographic interpretation in terms
of string world sheet instantons.

(c) Large N, with fixed g%,;: This is the large-N limit in
which Yang-Mills instantons contribute in a manner that
ensures that SL(2, Z) S duality is manifest. The form of Gy
can be obtained (as in Ref. [13]) by a large-N expansion of
By(t) [defined in Eq. (5)], which is an expansion in half-
integer powers of N. It is easy to check that this leads to a
solution of Eq. (11) of the form

N2 0 1 7+3/2
On(z.2) ~ -+ S ONTCY T dE(sitE), (34)
=0 s=3/2

which is a series of Eisenstein series with s € Z + 1/2. The
terms with s = ¢ +% satisfy the limiting large-N Laplace
equation, Eq. (12), but this does not determine their
coefficients, which have to be input from the expansion
of By(1), giving

ri [+ =D +I0(E+3)
dy > = 22042 32 ) . (35)

Once d§+3/ 7 s input the Laplace-difference equation
determines the rest of the solution. This reproduces
and extends the results of Ref. [5], where the first
few coefficients were obtained. For example, terms with
s=¢—-1>0and s =7¢—-3> 0 are given by

(¢ =122 + 9 (£ - HI(£ +1)?

df—l/Z _
4 - 302043 13/2 21 ’

df_s/z B (f - 3)2(201,”2 + 48¢ — 293)F(f - %)
A =

45225321 (¢)

3 3
re-—-|r'(2+=). 36
(=2)r(e+3) 69
Finally, we believe that the considerations of this Letter
generalize to a second integrated correlator that was

considered in Ref. [4] and further explored in Ref. [6].
This is obtained from the N = 2* partition function by
applying four derivatives with respect to mass,
Gy (z,7) = 0% log Zy(m,7,%)|,,_, Which again generates
a supersymmetric integrated correlator of four super-
conformal primaries, but with a different integration
measure.
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