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Abstract
In this paper, we construct the coherent states for a systemof an electronmoving in a plane under
uniform externalmagnetic and electricfields. These coherent states are built in the context of both
discrete and continuous spectra and satisfy theGazeau-Klauder coherent state properties Gazeau and
Klauder (1999 J. Phys. A:Math. Gen. 32, 123–132).

1. Introduction

The systemof charged quantumparticles interactingwith a constantmagnetic field continues to attract
intensive studies and is without a doubt one of themost investigated quantum systems,mainlymotivated by
condensedmatter physics and quantumoptics. A review article devoted to this quantum system and its related
different kind of coherent states (CSs)was recently elaborated byDodonov (see [1] and the complete reference
list therein).

The concept of what is now called coherent states has been of great interest to the scientific community since
thework of Schrödinger in 1926 [2] on the quantumharmonic oscillator (HO), where he introduced a specific
quantum state that has dynamical behavior that ismost similar to that of the classical HO. The conditions any
family of statesmust fulfill to be coherent were elaborated byKlauder as follows: continuity in complex label,
normalization, non orthogonality, unity operator resolutionwith unique positive weight function of the
integrationmeasure, temporal stability and action identity [3].More details on theCSs and their different
generalizations can be found in the literature [4–10], the list is not of course exhaustive.

In his study [11], Landau found that the systemof electronicmotion in a static uniformmagnetic field can be
assimilated in two dimensions to a harmonic oscillator, with an energy structure of equidistant discrete levels,
with a distance ÿωc (ωc is the cyclotron frequency), each level being highly degenerate. Such a system,more often
named Landaumodel, also provides a natural description for otherwell known significant phenomena, the so-
called integer and fractional quantumHall effects. In these last years, in the search of understanding themain
features of the fractional quantumHall effect (FQHE) [12, 13], many efforts have been done in the literature to
find awave functionwhichminimizes the energy of a two-dimensional systemof electrons subjected to a strong
constantmagnetic field applied perpendicularly to the sample, independently of the electron density. In [14], a
systemof electrons, essentially a two-dimensional crystal, has been considered. Besides, thewave function
introduced has beenmodified to lower the energy in order to explain the experimental data. From an
appropriate quantization of the classical variables of the systemHamiltonian, Bagarello et al (see [14, 15] and
references therein), havemodified the single electronwave function in view of the study of localization
properties. The similar quantization has been also used to investigate the Bohm-Aharonov effect ([16, 17] and
references therein) emphasizing the fact that it is not the electric and themagnetic fields but the electromagnetic
potentials which are the fundamental quantities in quantummechanics.

In a previous work [18], a connection has been established between quantumHall effect and vector coherent
states (VCSs) [19, 20] by applying the various constructionmethods developed in the literature. In the sameway,
themotion of an electron in a noncommutative xy plane, in a constantmagnetic field background coupledwith
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a harmonic potential was examinedwith the relevant VCSs constructed and discussed [21]. The Barut-
Girardello CSs have been built for Landau levels of a gas of spinless charged particles, subject to a perpendicular
magnetic field confined in a harmonic potential where the thermodynamical and the statistical properties have
been investigated [22]. See also [1] and references quoted therein. Recently [23], from amatrix (operator)
formulation of the Landau problem and the correspondingHilbert space, an analysis of various VCSs extended
to diagonalmatrix domains has been performed on the basis of Landau levels.

The constructionofCSs for continuous spectrumwasfirst proposed for theGazeau-KlauderCSs in [24] and later
in [25–27]. In thepresentwork,we follow themethoddeveloped in [24], by consideringLandau levels, tobuilt various
classes ofCSs as in [18, 28, 29] arising fromphysicalHamiltoniandescribing a chargedparticle in anelectromagnetic
field, by introducing additional parameters useful forhandlingdiscrete andcontinuous spectra of theHamiltonian.
The eigenvalueproblem ispresented and thequantumHamiltonian spectraprovided in the twopossible orientations
of themagneticfieldby considering the infinite degeneracies of theLandau levels. TheCSs are constructedwith
relevantproperties discussed forboth continuous anddiscrete spectra, and forpurely discrete spectrum.

The paper is organized as follows. In section 2, we revisit themodel of electronmoving on planewhere the
eigenvalue problems are explicitely set and solved. The position andmomentumoperators, satisfying canonical
commutation relations, established for the consideredHamiltonians are also defined. Section 3 is devoted to the
construction of CSs for the quantumHamiltonian possessing both continuous and discrete spectra by following
themethod developped in [18, 24]. Concluding remarks are given in section 4.

2. Electronmoving in a plane revisited

In this section, we revisit the systemof an electronmoving in a plane as in [17], wherewe consider different
scenarios for the symmetric gauge and the scalar potential.

Consider an electronmoving in the plane xy under the uniform external electric field

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FE x y,( ) and
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2.1. Case of the symmetric gauge
Let’s consider the symmetric gauge
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Experimentally, the electricfield

E is oriented according to one of the two possible directions of the plane.

Suppose the scalar potential is defined as

F = -x y Ey, . 3( ) ( )

Substituting the relations (2) and (3) in (1), the corresponding classical Hamiltonian, denoted byH1, reads
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A canonical quantization of this system is obtained by promoting the classical variables x, y, px, py, to the
operatorsX,Y, Px,Pywhich satisfy the nonvanishing canonical commutation relations

= =X P i Y P, , . 5x y[ ] [ ] ( )

TheHamiltonian operator is derived from (4) as follows
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In order to solve the eigenvalue problem

Y = YH , 71ˆ ( )

it is convenient to perform the change of variables as below

= + = -Z X iY P P iP,
1
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, 8z x y( ) ( )
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satisfying the nonvanishing commutations relations

= =Z P i Z P, , , 9z z[ ] [ ¯ ] ( )¯

and to define two sets of annihilation and creation operators b b, † and d d, † given by
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B
These two sets of operators commute each other and satisfy the following commutation relations
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In order to compute the eigenvalues  and eigenvectorsΨ, we split H1
ˆ in (13) into two commuting parts in the
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The annihilation and creation operators b and b† can be also rewritten as follows:
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The harmonic oscillatorHamiltonian H1OSC
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corresponding to the eigenvectors defined by (22).
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The eigenvalue equation f f= T1̂ can be reduced to

w
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whose solution is readily found to be
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indicating that this spectrum, labeled byα, is continuous. Therefore, to sumup, the eigenvectors and the energy
spectrumof theHamiltonian H1

ˆ are determined by the following formulas:
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2.2. Case of the second possible symmetric gauge
Weconsider now the symmetric gauge
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with the scalar potential given by

F = -x y Ex, . 31( ) ( )

The classicalHamiltonianH in equation (1) becomes
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Bymean of canonical quantization and proceeding like in the previous section, we define the two sets of
annihilation and creation operators defined by
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withλ defined as in (10) and (11). They also commute eachwith other and satisfy the commutation relations
(12). The correspondingHamiltonian operator H2

ˆ can be thenwritten as
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of theHamiltonian H2

ˆ , as previously determined for H1
ˆ , are obtained as

f a
w l

a
l

a

Y = F Ä º ñ

= + - - Î = ¼

a a

a
  

l

l
m m

l

, ,

2
2 1

2
, , 0, 1, 2, 46

l l

l
c

,

,

2

∣

( ) ( )

( )

( )

Let us introduce the position andmomentumoperators obtained from the annihilation and creation operators
(10) and (33) as
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3. Construction of coherent states

In this section, CSs are constructed, considering the two possible orientations of themagnetic field as in [18] as
well as additional parameters, originated fromdiscrete and continuous aspects of theHamiltonian spectrum in
linewith [24]. As amatter of comparison, wefirst replace the original Hamiltonian operators by their
corresponding shifted counterparts, as done in [24]. Then, we investigate the full operators and analyze the
results.

3.1. Case of the shifted quantumHamiltonian
Let Å+D C D C≔H H H be theHilbert space associated to the operator Å D C , where DH and CH are
associated to discrete and continuous spectra, respectively. Let consider the discrete shiftedHamiltonian
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The continuity of the combinedCSs follows from the continuity of the separate states and of the functions f and
g, which are assumed. Indeed, from the definition, we have
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Now, let us investigate the resolution of the identity or the completeness relationwhich is expressed in terms of
the projectors onto the states g g q b¢ ¢ ñJ J l K, ; , ; ; , ;∣ .

Proposition 3.1.TheCSs (54) satisfy, on +D CH , the resolution of the identity
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D
l

D
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H H are the identity operators on the subspaces ,D
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D
lH H of DH such that
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=
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dμB refers to theBohrmeasure [18] provided as follows
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On theHilbert spaces DH , CH and +D CH , we have the following essential relations
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that need to be satisfied, where dμD and dμC are themeasures associated to the discrete-spectrumCSs g g¢ ¢J J, , ,{ }
and continuous-spectrumCSs{K, θ} labeling parameters, respectively. The identity operator +1I

D CH is the direct sum
of the identity operators 1I

DH and 1I
CH which act on the complementary subspaces DH and CH , respectively,

corresponding to discrete and continuous spectra.

Noting that the integration over b b p<, 0 2 eliminates the third relation above, which is related to the
off-diagonal terms, the three conditions (63) are reduced to
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In view of getting the resolution of the identity, let us take the functions f and g as in [24], such that
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Proof. See in the appendix. ,

Proposition 3.2.The property of temporal stability can be obtained here by postulating similar assumptions as in
[24], such that W 0 D and W < C, i.e. theHamiltonians are adjusted so that < - W0 C . By taking into
account the phase factor b-e i , it comes the following relation
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with = + - W  D C( ).

Proof. See in the appendix. ,

The action identity as noticed in [24] is difficult to obtainwith the combinedCSs given in (54).

3.2. Case of theHamiltonian -H T2 2osc

By analogy of the setting in section 3.1, we study the shiftedHamiltonian - - -w lH T1I 1I
m2 2 2 2osc

c

D C

2( )( )H H .

The relatedCSs are here given on +D CH by
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where the normalization constants are given as in (55)with the relation (56) also satisfied.

Proposition 3.3.TheCSs satisfy, on +D CH , the resolution of the identity
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Proof. See that of proposition 3.1. ,

Proposition 3.4.The temporal stability property is given by

g g q b q g g w
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Proof. See that of proposition 3.2. ,

3.3. Case of the unshiftedHamiltoniansH1 andH2

The eigenvalues an, of theHamiltonian operatorsH1 andH2, given respectively in equations (29) and (46), can
be rewritten as = +a a  n n, , where

w w
l
w

a
l
w
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The required conditions >a 0n, for all Î n and hence a  0 lead to the relations
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where
n

3

2( ) stands for the Pochhammer symbol [30]. TheCSs, related toH1, defined in linewith (54), are now
given, where the function ρ(n)=n ! is replaced by the one in (74), by
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with the relation (56) also remaining here valid.

Proposition 3.5.TheCSs (75) satisfy, on +D CH , a resolution of the identity given in (59), where themeasures dν(J)
and n ¢d J( ) are now given by
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where the quantities m s m s- - ¢h h- -L J L J,n l
1 1[( ) ] [( ) ]are the Laguerre polynomials, and lead to the identities

[30]
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with ν=n+η−1 (resp. ν=l+η−1) and m= -
k

s1 .

TheCSs for theHamiltonianH2, similar to the ones in (75), can be constructed in the sameway, with the
labeling parameters gJ , playing the role of g¢ ¢J , and vice versa.

4. Concluding remarks

Coherent states have been constructed forHamiltonianswith both discrete and continuous spectra, in the
context of themotion of an electron in an electromagnetic field, arising in the quantumHall effect by
considering shifted and unshifted spectra, respectively. These coherent states satisfy theGazeau-Klauder
coherent states criteria that are the continuity in the labels, the resolution of the identity and the temporal
stability. The action identity property remains difficult to obtain in the combined coherent states as noticed
in [24].

An extension of this work that is currently under investigation is the construction of coherent states for a
Hamiltonian in the case of an electric field depending simultaneously on both x and y directions, and for
Hamiltonian operators admitting discrete eigenvalues and eigenfuctions in appropriateHilbert space [31].
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Appendix

Proof of proposition 3.1. From (54), we get
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Proof of proposition 3.2.By definition, we have
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