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Abstract

In this paper, we construct the coherent states for a system of an electron moving in a plane under
uniform external magnetic and electric fields. These coherent states are built in the context of both
discrete and continuous spectra and satisfy the Gazeau-Klauder coherent state properties Gazeau and
Klauder (1999 J. Phys. A: Math. Gen. 32,123-132).

1. Introduction

The system of charged quantum particles interacting with a constant magnetic field continues to attract
intensive studies and is without a doubt one of the most investigated quantum systems, mainly motivated by
condensed matter physics and quantum optics. A review article devoted to this quantum system and its related
different kind of coherent states (CSs) was recently elaborated by Dodonov (see [1] and the complete reference
list therein).

The concept of what is now called coherent states has been of great interest to the scientific community since
the work of Schrodinger in 1926 [2] on the quantum harmonic oscillator (HO), where he introduced a specific
quantum state that has dynamical behavior that is most similar to that of the classical HO. The conditions any
family of states must fulfill to be coherent were elaborated by Klauder as follows: continuity in complex label,
normalization, non orthogonality, unity operator resolution with unique positive weight function of the
integration measure, temporal stability and action identity [3]. More details on the CSs and their different
generalizations can be found in the literature [4-10], the list is not of course exhaustive.

In his study [11], Landau found that the system of electronic motion in a static uniform magnetic field can be
assimilated in two dimensions to a harmonic oscillator, with an energy structure of equidistant discrete levels,
with a distance Aw, (w, is the cyclotron frequency), each level being highly degenerate. Such a system, more often
named Landau model, also provides a natural description for other well known significant phenomena, the so-
called integer and fractional quantum Hall effects. In these last years, in the search of understanding the main
features of the fractional quantum Hall effect (FQHE) [12, 13], many efforts have been done in the literature to
find a wave function which minimizes the energy of a two-dimensional system of electrons subjected to a strong
constant magnetic field applied perpendicularly to the sample, independently of the electron density. In[14],a
system of electrons, essentially a two-dimensional crystal, has been considered. Besides, the wave function
introduced has been modified to lower the energy in order to explain the experimental data. From an
appropriate quantization of the classical variables of the system Hamiltonian, Bagarello et al (see [14, 15] and
references therein), have modified the single electron wave function in view of the study of localization
properties. The similar quantization has been also used to investigate the Bohm-Aharonov effect ([ 16, 17] and
references therein) emphasizing the fact that it is not the electric and the magnetic fields but the electromagnetic
potentials which are the fundamental quantities in quantum mechanics.

In a previous work [18], a connection has been established between quantum Hall effect and vector coherent
states (VCSs) [19, 20] by applying the various construction methods developed in the literature. In the same way,
the motion of an electron in a noncommutative xy plane, in a constant magnetic field background coupled with
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aharmonic potential was examined with the relevant VCSs constructed and discussed [21]. The Barut-
Girardello CSs have been built for Landau levels of a gas of spinless charged particles, subject to a perpendicular
magnetic field confined in a harmonic potential where the thermodynamical and the statistical properties have
been investigated [22]. See also [ 1] and references quoted therein. Recently [23], from a matrix (operator)
formulation of the Landau problem and the corresponding Hilbert space, an analysis of various VCSs extended
to diagonal matrix domains has been performed on the basis of Landau levels.

The construction of CSs for continuous spectrum was first proposed for the Gazeau-Klauder CSs in [24] and later
in [25-27]. In the present work, we follow the method developed in [24], by considering Landau levels, to built various
classes of CSs asin [18, 28, 29] arising from physical Hamiltonian describing a charged particle in an electromagnetic
field, by introducing additional parameters useful for handling discrete and continuous spectra of the Hamiltonian.
The eigenvalue problem is presented and the quantum Hamiltonian spectra provided in the two possible orientations
of the magnetic field by considering the infinite degeneracies of the Landau levels. The CSs are constructed with
relevant properties discussed for both continuous and discrete spectra, and for purely discrete spectrum.

The paper is organized as follows. In section 2, we revisit the model of electron moving on plane where the
eigenvalue problems are explicitely set and solved. The position and momentum operators, satisfying canonical
commutation relations, established for the considered Hamiltonians are also defined. Section 3 is devoted to the
construction of CSs for the quantum Hamiltonian possessing both continuous and discrete spectra by following
the method developped in [18, 24]. Concluding remarks are given in section 4.

2. Electron moving in a plane revisited

In this section, we revisit the system of an electron moving in a plane as in [ 17], where we consider different
scenarios for the symmetric gauge and the scalar potential.

Consider an electron moving in the plane xy under the uniform external electric field E = —6@(9@ y)and

the uniform external magnetic field B whichis perpendicular to the plane described by the Hamiltonian

2
H= L(? + EX) — ed. 1)
2m c
2.1. Case of the symmetric gauge
Let’s consider the symmetric gauge
- B B
A ==y, —=x|. 2
(5 0

Experimentally, the electric field E isoriented according to one of the two possible directions of the plane.
Suppose the scalar potential is defined as

Q(x, y) = —Ey. (3)
Substituting the relations (2) and (3) in (1), the corresponding classical Hamiltonian, denoted by H, reads

1 eB \? eB \?
H(x, y, px,py) = %[(px + Zy) + (py - Zx) ] + eEy. 4)

A canonical quantization of this system is obtained by promoting the classical variables x, y, p., p,, to the
operators X, Y, P,, P, which satisfy the nonvanishing canonical commutation relations

[X, Bl =ih =Y, B]. ©)
The Hamiltonian operator is derived from (4) as follows
2 2
(X, Y, B, B) = L (Px + éY) + (Py - éX) + eEY. (6)
2m 2c 2c
In order to solve the eigenvalue problem

I:Ilgi - 8\:[/, (7)

itis convenient to perform the change of variables as below

Z=X+i¥, B=_(@B-iB), ®)




10P Publishing

J. Phys. Commun. 5(2021) 085013 I Aremuaand L Gouba

satisfying the nonvanishing commutations relations

and to define two sets of annihilation and creation operators b, b" and d, d' given by
b=2p— Lz N b =2p+i27 4 (10)
2c 2c
d=2P; + By g = 2P, — iz, (11)
2c 2c

with A = mTfE. These two sets of operators commute each other and satisfy the following commutation relations

[b, b'] = 2mhw. 1, [d', d] = 2mhw,1, (12)

where w, = ;—BC is known as the cyclotron frequency and 1 is the unit operator. The Hamiltonian H; can be then
re-expressed as follows:

N 1 A b
H=—0b+bb) - —@d +d — —, (13)
4m 2m 2m
where
d+d—op — By, (14)
c

In order to compute the eigenvalues £ and eigenvectors W, we split H; in (13) into two commuting parts in the
following manner:

I:Il = I:Ilos(; - ﬁ) (15)
where H; os denotes the harmonic oscillator part
N 1 P
Higge = _(bTb + bb'), (16)
4m
while the part linear in d and d is given by
A A X
I=—@d+d) + —. 7)
2m 2m

The annihilation and creation operators b and b can be also rewritten as follows:

b= 2mhw b, b = 2mhw b't, [V, V7] =1, (18)

b — [2mw, [ P; _i£+ A = [2mw, (P +£+ A . (19)
h mw, 4 2mw; h mw, 4 2mw;

Then, one has

bl0) =0, bln) = Jn2mwhln — 1), bin) = Jn + 1\2mw.h|n + 1) (20)

with

leading to
1 )
n+1) = ———-o-"b'n), (21)
| ) J2mw h(n + 1) ")
and, recurrently, to
1 3
O, = |n) = ——=—==(""|0). (22)

JQ2mw. h)'n!

The harmonic oscillator Hamiltonian H; osc Teduces to

hw,

I:IIOSC = > 2N+ 1), N' =b"v (23)
with eigenvalues £, given by
S”IOSC = hwc(n + %)) n = O, ]., 2,..., (24)

corresponding to the eigenvectors defined by (22).
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The eigenvalue equation T} = E£¢ can be reduced to

.0 muw, _mE
( y)¢ ¢ =0

Ox 2h

Setting o = r;:—f, itbecomes

.0 mw,
e ( o a)¢’

whose solution is readily found to be

(Zsa = ¢a(x: }’) = ei(aer";;‘xy)’ a € R.

Then, the eigenvalues of the operator T, corresponding to eigenfuctions (27), are given by

2
Ea:@a—i—i, aeR,
m 2m

I Aremuaand L Gouba

(25)

(26)

27)

(28)

indicating that this spectrum, labeled by «, is continuous. Therefore, to sum up, the eigenvectors and the energy

spectrum of the Hamiltonian H are determined by the following formulas:

Vo) =P ® ¢, = |1, a),
hw, R\ 22

6 =
() 2 m 2m

2.2. Case of the second possible symmetric gauge
We consider now the symmetric gauge

with the scalar potential given by
d(x, y) = —Ex.

The classical Hamiltonian H in equation (1) becomes

2m c

2 2
H(x, y, Px,p},) = L[(Px — gy) + (py + ;—Bx) ] + eEx.

en+1)— —a—-—, aeR,n=0,1,2,...

(29)

(30)

(D

(32)

By mean of canonical quantization and proceeding like in the previous section, we define the two sets of

annihilation and creation operators defined by

[,1':f2ipi+§z+ A b:2i1’z+§2_+)\>
2c 2c

. B . . B
v=2 - 27 o =—2p. - L7
2c 2c

(33)

(34)

with A defined asin (10) and (11). They also commute each with other and satisfy the commutation relations

(12). The corresponding Hamiltonian operator H, can be then written as
. 1 A N
H, = —(6'b 4 bb') — —@ +2) — —,
2T am ( ) 2m ( ) 2m
where the following relation
a*+o:2py—§x,
c
is obtained. Here, the harmonic oscillator part is given by
~ 1 &
Hy, = —(b'b + bb')
4m

and the linear part by
A A X
Lh=-"—@® +0+ —.
2m 2m

The annihilation and creation operators b and b" become here

b= \2mhw b, b = 2mhw b'f, [b/, 67 =1,

(35)

(36)

(37)

(33)

(39)
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with

o 2mw, [ iB +Z+ A b/t — 2mw, [ iP; +§+ A (40)
h mw, 4 2mw, ) h mw, 4 2mw, )

From (36), it comes

—(DT—|—D) h)\(__lmwcx):ﬁ)\ —'i—mch. @1
2m m\h 2 h m Oy 2h
Then, the eigenvalue equation 15 ¢ = £ is equivalent in this case to
hA 0 mw,
Sl [ X |p = Ep, 42
M il - o — s @
which leads to
.0 mw, mé&
0 _mwe Ny M. 43
( Oy 2h )¢ hA ¢ )
Taking again a = %, it follows the equation
muw,
R + o s 44
20-(5her “
which can be solved to give the eigenfunctions
b, = ¢y (x, y) = WTED, o € R, (45)

of the operator T corresponding to eigenvalues expressed as in (28). Therefore, the eigenvectors and eigenvalues
of the Hamiltonian H,, as previously determined for Hj, are obtained as

Vo) = (I)l ® ¢, = I, @),

2
_mn f)‘—, a€R, 1=0,1,2,... (46)

Eia
by = m 2m

Let us introduce the position and momentum operators obtained from the annihilation and creation operators
(10)and (33) as

1 . A i +

— "'+ b), Pp=——=(0" - D),

2mw.h ! 2mw.h

A 1 . A ] L

Qr=———( +1b), Py=——0 (¥ —b), (47)

2mw.h 2mw.h

respectively, where the following commutation relations

[b, 6']=0=[b", b], [b,b]=0=[b, 0],

Q=

[Qi, Pl =0=1[Q Pil, [Q, Qo] =0=[P, P] (48)
. . . - B. B
are satisfied. Then, we respectively have in the gauges A = ( =y, ——x) and A = (—Ey, Ex)
N ﬁwc N hw: ~ A
Hypge = [Ql + Pl I, Hy oo = T[QZ + PZZ]’ [Hlosc> HZOSC] =0. (49)

Thus, from (29), (46) and (49), the eigenvectors denoted [U,) := |n, [) = |n) & |I) of Hlosc can be so chosen
that they are also the eigenvectors of H,,_as follows:

A 1 N 1
Hloscllpnl> = ﬁwc(” + E)l\pnl>> H205C|\I/nl> = ﬁwc(l + E)|\Ilnl>: n, I= 0> 1, 2:“-700 (50)

sothat H,, lifts the degeneracy of H, . and vice versa.
From (28), consider the shifted eigenvalues

5/ = Sa _ — = —Q, (51)

where the states |¢,) are delta-normalized states and form the orthonormal basis {|¢,), & € R}. They satisfy the
eigenvalue equation

Y ,
L — —Ig |5n,> = ga|f&>: (52)
2m

which is the same equation for the operator T.

5
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3. Construction of coherent states

In this section, CSs are constructed, considering the two possible orientations of the magnetic field asin [18] as
well as additional parameters, originated from discrete and continuous aspects of the Hamiltonian spectrum in
line with [24]. As a matter of comparison, we first replace the original Hamiltonian operators by their
corresponding shifted counterparts, as done in [24]. Then, we investigate the full operators and analyze the
results.

3.1. Case of the shifted quantum Hamiltonian

Let Hpc == Hp & Hc be the Hilbert space associated to the operator Hp & Hc, where Hp and $c are
associated to dlscrete and continuous spectra, respectively. Let consider the dlscrete shifted Hamiltonian
Hp == H,
the 1dent1ty operators on $p and §¢, respectively. Let §p be spanned by the elgenvectors [T,y = |n, 1) of Hy,.
and H, . provided by (50). Besides, let §) be the Hilbert space associated to the continuous spectrum spanned
by the eigenvectors of the operator T, denoted |¢,) in equation(52).

4, and the continuous shifted Hamiltonian H¢ == T, — I 5o Where I and I denote

osc

The shifted Hamiltonian (Hlm_ - h% | %) - (7} - % 1 56) possesses a spectrum which is discrete and

degenerate according to (29); the Landau levels are infinitely degenerate and given by { € ;m =

hw.n, n = 0, 1, 2,...} while the continuous spectrum is furnished by {5;, a € R}.So, from (17) and (23), the
positive eigenvalues are

5;,(1 =& - & = hwc(n — A a) = hw.(n — €,), €4 = a, (53)

mw, mw,

such that, foralln € N*, o < m; <. For the continuous spectrum, one also requires the condition

& = —hw,€e, > 0,whichimplies & < 0. Therefore, the energy positivity condition should be: o < 0.
Provided the positivity of the eigenvalues, as required [ 18] for the operator T} (respectively T,), the CSs
related to Hp @ H, are given by the unnormalized states [24]

I, 1,5 LK, 0; 8= f(K, DI, v T35 1) + e Pg(d, v, ], v)IK, 0)

Jn/2e—iny
= f(K, O INDNJ) V212N L — |,
o Z Y
K6Q/2 i€
e—if g, v 7, fy/)./\/' (K)~ 1/2f - -
ok
with e, =: — ¢, > 0. Thelabeling parameters are chosen such that: 0 < J, J/, K < 00, —0c0 < 7, 7/, # < o0

and 0 < 0 < 2w, fand gare scalar functions. The normalization constants for the states |J, v; J/, v'; I} € $p
are given by

00 1 o] n 1 ]/l
]’ bl 3 l]’ bl ) I;l - (55)

g YIS UL T A1) = N N T

Besides, |K, 0) € $c and
(K, 01K, 0) =1 = N(K)~ f a)de lealen) = N(K) j; p(%)d -
00 K N

K) = de=. 6
= N fo plen @ 0

The continuity of the combined CSs follows from the continuity of the separate states and of the functions fand
g, which are assumed. Indeed, from the definition, we have

I ¥ T 25 5K, 05 8) — T, % 7', 7' 5 K, 85 B)|P
=\1f&K OPT, % T4 W v 15950 + 18U, v T VK, 01K, 6)
U DPT, % 1,45 0, % 1545 ) + 180, » 1, V) (K, GIK, 8)
+ K Of R, T, 4 T 45 Ws v I s 1) + K 0 F K, 00U, v 15 UL 4 T 45 1)
+¢U, 1 ANgd, % T, AVNK, 01K, 0) + gU, v 1, v)*¢ T, 4 7> ¥) (K, 0IK, 0) (57)
such that

lim

WIS B 6 8) — LA T s LR, 8 B =o. (58)
UTw]''sK.0)—U,3) "7 K, 0)
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Now, let us investigate the resolution of the identity or the completeness relation which is expressed in terms of
the projectors onto the states |J, v; J', v'; ; K, 6; ().

Proposition 3.1. The CSs (54) satisfy, on $p ¢, the resolution of the identity

j:c j(;oc f(;oojﬂéj];{&j;hu, v I LK, 080, v 1,95 LK, 0; 8

iy iy () T LN AT N BV Dl (PANK) = Ty, + T (59)

where 1yl , 1, are the identity operators on the subspaces §)p, 9% of 9p such that

Zlqlnl> <\Dnl| = IyJ’D) Zlan» <\Ilnl| = I,ﬁ,;) (60)
n=0 1=0

dug refers to the Bohr measure [18] provided as follows
1 T — -
(g = lim — [ TGhgdrs= [ TEgdpy() (61)
given on the Hilbert space $),,; of functions f: R — C, which is complete with respect to the scalar product {.|.),s.
d\(K) = o(K)dK, and o (K ) is a non-negative weight function o (K) > 0 such that

f ¥ Koo (K)dK = p(er). (62)
0

On the Hilbert spaces 9p, $c and Hp.y ¢, we have the following essential relations

fR J]; fR fom fo°° j:o j;h [f & DR 3 I o5 DA s T s )

d
dup(, v 1> Y dpc (K, 9)£ =1,

jﬂéLfRfRfom fom j:o foh lgU, v ', YD IIK, 0) (K, 6]

d
duD(]J ) ]I) ’}//)d‘UC(K) 0)% = If)c’

2T dﬂ . o ~
i3 s T AV, DI, v T A D (K, 0
j(; eZWJH;{»/];&jn;L j; j:) g, v T, AN ( W v 7' s |
d/J“D(]) V> ]/) ’Y/)d,U,C(K’ 0) = 0. (63)

that need to be satisfied, where dup and dyc are the measures associated to the discrete-spectrum CSs {J], v, J', 7'}
and continuous-spectrum CSs {K, 0 } labeling parameters, respectively. The identity operator 1, . . is the direct sum
of theidentity operators 1, and 1 which act on the complementary subspaces $p and ¢, respectively,
corresponding to discrete and continuous spectra.

Noting that the integration over 3, 0 < (§ < 27 eliminates the third relation above, which is related to the
off-diagonal terms, the three conditions (63) are reduced to

[ [ & orduc, 6 =1,
R J0

fR fR j;oo fooo 80> v s VI Pdup U, 7 T, 7)) = 1. 64)

In view of getting the resolution of the identity, let us take the functions fand gas in [24], such that

2
24y

f(K, 9):Nfe*K2?HZ, g,y Js7)=Nge 2, (65)

where the factors /\/g and NV, 7 are chosen so that
2 (K46
[ e ek, 0 = 1,
R Jo

Néfm fR L/:O fom e (7, A = 1. (66)
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Proof. See in the appendix. O

Proposition 3.2. The property of temporal stability can be obtained here by postulating similar assumptions as in
[24], suchthat 0 < Hp < Qand Q < Hc, i.e. the Hamiltonians are adjusted so that 0 < Hc — ). By taking into
account the phase factor e ', it comes the following relation

e MLy Iy K, 05 8)= f(K O,y + wets ', v'5 1)
+ efi(ﬂjtflt)g(]’ Y, ]/, ’}/I)lK, 0 4 wct>
=Ly+wt ], v LK, 0+ wt §+ Q) (67)

with’ H = Hp + (Hc — Q).

Proof. See in the appendix. O
The action identity as noticed in [24] is difficult to obtain with the combined CSs given in (54).

3.2. Case of the Hamiltonian H,  — T,
By analogy of the setting in section 3.1, we study the shifted Hamiltonian (Hzm — h;"' I fm) — (Tz — % I ﬁc).

The related CSs are here given on $p ¢ by

L, v 1,5 m K, 0; 8) = f(K, DI, v 1,75 n) + e g, v, I, ¥)IK, 0)

NOONGDT /2] 26 J 2!
=f(K, 0 “l/apn/emimy e —— |,
fEK DINDNUNI 2] 2e 302, Wl 1)
. o0 Kf;/zeifﬂg
+ e (T, 7 I YINJK)Y V2| ———e,) de, (68)
’ fo Vrey)
where the normalization constants are given as in (55) with the relation (56) also satisfied.
Proposition 3.3. The CSs satisfy, on $p . ¢, the resolution of the identity
00 00 00 2m
.7/ e 4he . .7/ le 4. .
fo fo j; ‘/;Qij];fo s v 1> s m5 K, 605 B) (T, v 15 o' 5 K, 65
do d
Aty )ty () S S NN N KV (1 (AN = L, + Ty (69)
Proof. See that of proposition 3.1. O
Proposition 3.4. The temporal stability property is given by
e MLy Iy m K 05 B) = fK O % T2 + wets n)
+ e 1T (], 4, I ADIK, 0 + wet)
=ILvJ,7 + wt;n K, 0+ wt; B+ Q). (70)
Proof. See that of proposition 3.2. O

3.3. Case of the unshifted Hamiltonians H; and H,
The eigenvalues &, , of the Hamiltonian operators H, and H,, given respectively in equations (29) and (46), can
berewrittenas £, , = £, + &,, where

A X

Enzmc(ﬂ+l), ga:_ﬁwcga) €q = Oé+ N
2 mw, 2mhw,

(71)
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The required conditions £, , > Oforall n € Nandhence £, > 0lead to the relations

A
<2 72
a Yy (72)
Setting
such that
" 1 3
pn) =[] ﬁwc(k + —) = (Fa)"(—) » k= hw, (74)
k=1 2 2/u

where (%) stands for the Pochhammer symbol [30]. The CSs, related to H;, defined in line with (54), are now

n

given, where the function p(n) = n!is replaced by the one in (74), by

B o ]n/ZefiS,,'y
I, v I, 95 I K, 65 B) = f(K, O)INDNJ) V2]V 2y | e [y
“Jrmp "
) 00 Kf;/2eifa€
+ e Pg(J, v I ANNSKY V2| ——Ie,)de, (75)
§ ’ fo Vp(ey) >
yields
T L e (I
p(1) ,.;n(g) 2" K
1 11 !/
NOY = 5580 2 = 5y = Fl(l; 3 ’—), (76)
p(D) “1(5)1 2" K

with the relation (56) also remaining here valid.

Proposition 3.5. The CSs (75) satisfy, on $p ¢, a resolution of the identity given in (59), where the measures dv(J)
and dv (J') are now given by

FZ 1 —J/kT—n+n—1
) =28 D (15 L) T g - oar
KT (1) K (; + - 0’)
1"2 i 1 / —J'/ky1—14+n—1 . 3
dv(J’) = # lFl(l; ; ]—)LIL{’ T —o)d], n==, (77)
K(7) K (% - U) 2

where the quantities L)' [(n — 0)]1, L'~ Y[(u — o)]'] are the Laguerre polynomials, and lead to the identities

[30]
n!fOo ML T (e — o)tledt = T(w + D(s — 0)*(s — )™ L R@) >n— 1
0

l!jvoc t"*le‘”L,”’l[(y —otletdt=T@w+ DG — o)ls — w7, Rw)>1-1 (78)
0
withv =n +n — I (resp.v =1 +n —I)and% =5— [

The CSs for the Hamiltonian H,, similar to the ones in (75), can be constructed in the same way, with the
labeling parameters J, v playing the role of J’, +" and vice versa.

4. Concluding remarks

Coherent states have been constructed for Hamiltonians with both discrete and continuous spectra, in the
context of the motion of an electron in an electromagnetic field, arising in the quantum Hall effect by
considering shifted and unshifted spectra, respectively. These coherent states satisfy the Gazeau-Klauder
coherent states criteria that are the continuity in the labels, the resolution of the identity and the temporal
stability. The action identity property remains difficult to obtain in the combined coherent states as noticed
in [24].

An extension of this work that is currently under investigation is the construction of coherent states for a
Hamiltonian in the case of an electric field depending simultaneously on both x and y directions, and for
Hamiltonian operators admitting discrete eigenvalues and eigenfuctions in appropriate Hilbert space [31].
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Appendix

Proof of proposition 3.1. From (54), we get
I, v 1545 5K 0 B, v 155 B K, 6 0

]/l nzﬂei(pfn)w

= K OOPp——>>* T (T
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00 K 2 el(f —€a)0
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18U 7 /s 7Y PN(K) fo j; e e
+ (K, Oy e Pg(J, v, ', )IK, O){J; v, I |
+ f(K, 0)eg(T, v, J's V), v T ') (K, 6. (A1)

Then, the following equalities are valid:
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B o 1 5 ﬁ 2T 2w n;p .
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d"}// d/B ! A ! !
DD ) 0l + [ . te 0 70 Pty s DNGIANT )]

00 ) 2 KEXJ;F,
A
= Zn 0 [f |f(K a)lzN (K) ] n]/ll\I/nl> <\I'pl|

6(€x — €4) ﬁde Sde el (e

al

!/ N2 ! / o Kf; = .— -
e[ [0 %I,V)IduB(v)duB(fy)N(])N(I)] Jy stedea el (A.2)
The conditions (64) implies
[ [T opn a0 = [ 715 0P, 0 = 1, (A3)
L j; fo 180> % s ) Py () dpi (VYNNG dw () d ()
=L L [ w0 kg 1 = 1 (A4)
The measures difJ) = e ’dJ and dv (J") = e 7'dJ’ are such that the moment problems given by
[e%e] n o0 1
f ]—du(])—l f ]—du(])—l (A.5)
0 0

are satisfied. Therefore,

o0 00 00 2T
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= 202 o[ Wur) (Wl +f (ealdey = 1 + g (A.6)
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Proof of proposition 3.2. By definition, we have
e ML s I s I K, 05 )
0 In/Zefin'y

— N1-1/2711/2 iy —iHpt

. . 00 Kf;/z i€, 0
+ 671(7-{57(2)%71;38,(], %, I/: W/)A/;)(K)fl/zj; e

——l€,)de,
e €,)de

o ]n/2€7in("/+wct)

= £ DA ey L
n=0 n:t.
i(B+80) aJ ], )N (K) szoo Kf;/Zeie(.(9+w[t)| >d

+ e’ e, v I _ KOl oy e

= F(K, O, v+ wets I, A3 1) + e G Wg (1, ~, T, AN K, 6 + w,t)

=1 v+ wets 575 5K, 0+ wets 6+ Q1) wn

O
ORCIDiDs

Laure Gouba @ https: //orcid.org/0000-0002-1203-238X

References

[1] Dodonov V'V 2018 Coherent states and their generalizations for a charged particle in a magnetic field In Coherent States and Their
Applications; Spinger Proceedings in Physics 205 ed ] P Antoine, F Bagarello and ] P Gazeau (Cham, Switzerland: Springer) pp 311-38
[2] Schrodinger E 1926 Der stetige Ubergang von der Mikro-zur Makromechanik. Naturwissenschaften. 14 664—66
[3] Klauder ] R 1963 Continuous-representation theory: I. Postulates of continuous-representation theory J. Math. Phys. 41055
[4] Nieto M M and Simmons L M Jr 1979 Nieto’s definition of nearly classical coherent states Phys. Rev. D 20 1321-31
[5] Klauder ] R and Skagerstam B S 1985 Coherent states Applications in Physics and Mathematical Physics (Singapore: World Scientific
Publishing Co)
[6] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[7] Gazeau] P 2009 Coherent States in Quantum Physics (Berlin: Wiley-VCH)
[8] Combescure M and Robert D 2012 Coherent States and Applications in MathematicalPhysics (New York, NY: Spinger)
[9] AliST, Antoine J P and Gazeau ] P 2014 Coherent States, Wavelets and their Generalizations II edition, Theoretical and Mathematical
Physics (New York, NY: Springer)
[10] Stopera Cand Morales J A 2020 Temporally stable coherent states for molecular rotors J. Chem. Phys. 152 134112
[11] Landau LD 1930 Diamagnetismus der Metalle Z. Phys. 64 629
[12] Pasquier V 2007 Quantum hall effect and noncommutative geometry Séminaire Poincaré X 1-14 http:/ /www.bourbaphy.fr/
pasquier.pdf
[13] Prange R Eand Girvin S (ed) 1990 The Quantum Hall Effect (New-York, NY: Springer)
[14] Bagarello F 2002 Multi-resolution analysis and fractional quantum Hall effect: more results J. Phys. A: Math. Gen. 36 123
[15] Antoine] P and Bagarello F 2003 Localization properties and wavelet-like orthonormal bases for the lowest Landau level Advances in
Gabor Analysised H G Feichtinger and T Strohmer (Boston: Birkhauser)
[16] Harms B and Micu O 2007 Noncommutative quantum Hall effect and Aharonov-Bohm effect J. Phys. A: Math. Theor. 40 10337-47
[17] Dayi O F and Jellal A 2002 Hall effect in noncommutative coordinates J. Math. Phys. 43 4592
Dayi O Fand Jellal A 2004 Erratum-ibid 45 827
[18] AliST and Bagarello F 2005 Some physical appearances of vector coherent states and coherent states related to degenerate
Hamiltonians J. Math. Phys. 46 053518
[19] Ali S T and Thirulogasanthar K 2003 A class of vector coherent states defined over matrix domains J. Math. Phys. 44 5070-83
[20] AliST, Engli$ M and Gazeau J P 2004 Vector coherent states from Plancherel’s theorem, Clifford algebras and matrix domains J. Phys.
A: Math. Gen. 37 6067-89
[21] Hounkonnou M N and Aremual2012 Landau levels in a two-dimensional noncommutative space: matrix and quaternionic vector
coherent states J. Nonlinear Math. Phys. 19 1250033
[22] Aremual, Hounkonnou M N and Baloitcha E 2015 Coherent states for Landau levels: algebraic and thermodynamical properties Rep.
Math. Phys. 76 24769
[23] Aremualand Hounkonnou M N 2020 Matrix vector coherent states for Landau levels Adv. Studies Theor. Phys. 14 237-66
[24] Gazeau] P and Klauder ] R 1999 Coherent states for systems with discrete and continuous spectrum J. Phys. A: Math. Gen. 32 123-32
[25] Inomata A and Sadiq M Modification of Klauder’s coherent states 8th International Conference Path Integrals. From Quantum
Information to Cosmology 11 http://wwwl jinr.ru/Proceedings/Burdik-2005/pdf/inomata.pdf
[26] Ben Geloun J and Klauder J R 2009 Ladder operators and coherent states for continuous spectra J. Phys. A: Math. Theor. 42 375209
[27] Popov D and Popov M 2016 Coherent states for continuous spectrum as limiting case of hypergeometric coherent states Romanian
Reportsin Physics 68 1335—48
[28] Gazeau] P and Novaes M 2003 Multidimensional generalized coherent states J. Phys. A: Math. Gen. 36 199-212
[29] Gouba L2015 Time-dependent q-deformed bi-coherent states for generalized uncertainty relations J. Math. Phys. 56 073507
[30] Ismail Mourad E H 2005 Classical and Quantum Orthogonal Polynomials in One Variable (Cambridge, UK: Cambridge University
Press)
Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1953 Tables of Integral Transforms (New York, NY: McGraw-Hill)
[31] Aremualand Gouba L Coherent states for electromagnetic Hamiltonians with discrete spectra in preparation

11


https://orcid.org/0000-0002-1203-238X
https://orcid.org/0000-0002-1203-238X
https://orcid.org/0000-0002-1203-238X
https://orcid.org/0000-0002-1203-238X
https://doi.org/10.1007/BF01507634
https://doi.org/10.1007/BF01507634
https://doi.org/10.1007/BF01507634
https://doi.org/10.1063/1.1704034
https://doi.org/10.1103/PhysRevD.20.1321
https://doi.org/10.1103/PhysRevD.20.1321
https://doi.org/10.1103/PhysRevD.20.1321
https://doi.org/10.1063/5.0002424
https://doi.org/10.1007/BF01397213
https://www.bourbaphy.fr/pasquier.pdf
https://www.bourbaphy.fr/pasquier.pdf
https://doi.org/10.1088/0305-4470/36/1/308
https://doi.org/10.1088/1751-8113/40/33/024
https://doi.org/10.1088/1751-8113/40/33/024
https://doi.org/10.1088/1751-8113/40/33/024
https://doi.org/10.1063/1.1504484
https://doi.org/10.1063/1.1901343
https://doi.org/10.1063/1.1617366
https://doi.org/10.1063/1.1617366
https://doi.org/10.1063/1.1617366
https://doi.org/10.1088/0305-4470/37/23/008
https://doi.org/10.1088/0305-4470/37/23/008
https://doi.org/10.1088/0305-4470/37/23/008
https://doi.org/10.1142/S1402925112500337
https://doi.org/10.1016/S0034-4877(15)30032-X
https://doi.org/10.1016/S0034-4877(15)30032-X
https://doi.org/10.1016/S0034-4877(15)30032-X
https://doi.org/10.12988/astp.2020.9728
https://doi.org/10.12988/astp.2020.9728
https://doi.org/10.12988/astp.2020.9728
https://doi.org/10.1088/0305-4470/32/1/013
https://doi.org/10.1088/0305-4470/32/1/013
https://doi.org/10.1088/0305-4470/32/1/013
http://www1.jinr.ru/Proceedings/Burdik-2005/pdf/inomata.pdf
https://doi.org/10.1088/1751-8113/42/37/375209
https://doi.org/10.1088/0305-4470/36/1/313
https://doi.org/10.1088/0305-4470/36/1/313
https://doi.org/10.1088/0305-4470/36/1/313
https://doi.org/10.1063/1.4927263

	1. Introduction
	2. Electron moving in a plane revisited
	2.1. Case of the symmetric gauge
	2.2. Case of the second possible symmetric gauge

	3. Construction of coherent states
	3.1. Case of the shifted quantum Hamiltonian
	3.2. Case of the Hamiltonian H2osc-T2
	3.3. Case of the unshifted Hamiltonians H1 and H2

	4. Concluding remarks
	Data availability statement
	Appendix
	References



