
QPI: A Programming Interface For Quantum
Computers

Ercüment Kaya∗†, Burak Mete∗†, Laura Schulz∗, Muhammad Nufail Farooqi∗, Jorge Echavarria∗, Martin Schulz†,
∗Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching, Bavaria, Germany

{ercuement.kaya, burak.mete, laura.schulz, muhammad.farooqi, jorge.echavarria}@lrz.de
†Technical University of Munich, Garching, Bavaria, Germany

{schulzm}@in.tum.de

Abstract—With the increasing maturity and accessibility of
quantum computers, their alignment, integration, and use in
the high-performance computing (HPC) ecosystem as a novel
accelerator triggers a crucial new area of research. To address
the demands for efficient and tightly coupled programming,
we present the Quantum Programming Interface (QPI), a C-
based library enabling the development of quantum tasks and
submission to quantum resources.

I. INTRODUCTION

High-performance computing (HPC) systems offer en-
hanced performance and less resource consumption by in-
tegrating various devices and architectures. On the other
hand, quantum computers (QC), with their unique computing
paradigm, hold promises of being accelerators and stand-alone
computational approaches, with their inherent capability of
tackling problems that would require exponential resources to
solve for their classical counterparts. However, it is essential to
recognize that both computational paradigms can complement
each other; QCs enable solving or accelerating intrinsic prob-
lems in quantum computing, while HPC systems pave the way
for more optimal computing by handling operational control
of QCs, the compilation of quantum circuits, and supporting
the parameter optimization of quantum circuits in variational
quantum algorithms.

Combining the radically different approaches of HPC sys-
tems with quantum computers presents a significant chal-
lenge at the software level. Beyond establishing a physical
connection, the software stack development enables seamless
user interaction between the two systems. Creating a hy-
brid application requires quantum programming tools (QPTs),
which are designed to specify the interaction between the
quantum computer and the HPC system. QPTs need to be
abstracted from the quantum component at the application
layer. Moreover, QPTs must be compatible with existing HPC
tools and higher-level programming languages to create a
better user experience and facilitate maintenance.

Quantum circuit compilation is another crucial step within
the quantum integration software. It transforms high-level
quantum algorithms into hardware-specific implementations,
optimizing circuit efficiency, potentially reducing errors, and
ensuring compatibility with diverse quantum hardware tech-
nologies, enabling seamless and efficient utilization of quan-

tum resources for real-world applications. Furthermore, given
the possibility of multiple quantum backends employing var-
ious underlying technologies and features integrated into the
software stack, it is crucial to abstract the compilation layer
from both the application layer and the architecture. This is
commonly achieved by describing the application in a so-
called intermediate representation (IR), thereby adding support
for various hardware configurations and addressing common
programming requirements such as scheduling and further
optimizations.

To tackle these challenges holistically, we present the Quan-
tum Programming Interface (QPI), a lightweight library to
embed quantum circuits in HPC applications. QPI enables the
acceleration of HPC applications by allowing programmers to
describe their quantum or classical-quantum programs within
a common programming interface while efficiently leveraging
quantum resources, regardless of the quantum device respon-
sible for executing the job thereafter.

QPI is a C-programming interface that allows users to create
quantum circuits at a high level of abstraction, which are
then converted into an LLVM-compliant IR, allowing seamless
communication and execution on various quantum computers
and simulators.

Our main contributions are the following:

• We eliminate application and architecture dependencies
from quantum circuits and HPC systems, simplifying the
creation of quantum circuits

• We provide a holistic approach for hybrid quantum-
classical applications

• We abstract the underlying technology of the target QPUs
and expose them as local accelerators

• Overall, we offer a novel solution tailored for HPC
ecosystems for 1) describing quantum circuits through
an interface familiar to most researchers, 2) parsing
the quantum algorithm’s components into an LLVM-
compliant IR, and 3) offloading it to the quantum com-
piler for its subsequent execution by the targeted quantum
accelerator

These contributions are further described in section III.

286

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3315-4137-8/24/$31.00 ©2024 IEEE
DOI 10.1109/QCE60285.2024.10293

II. BACKGROUND AND RELATED WORK

With the rising adoption of quantum accelerators in HPC
ecosystems, there is a growing need for new quantum pro-
gramming interfaces and frameworks tailored to HPC envi-
ronments. These interfaces and frameworks aim to enable
users to efficiently access and perform computations on such
accelerators, thereby promoting the exploration and utilization
of quantum capabilities across various applications.

Significant efforts have been dedicated towards the develop-
ment of quantum programming frameworks [1] to effectively
bridge the gap between high-level quantum algorithms, the
underlying quantum hardware, and their seamless integration
within the context of HPC systems.

Take, for example, ProjectQ [2], an open-source project
that uses a Python-embedded language incorporating both
quantum compilation tools and the ability to target IBM quan-
tum devices as well as quantum simulators. OpenQL [3], a
framework with compilation tools and a high-level description
of quantum circuits that could be mapped in various quantum
hardware types. Quilc [4], yet another framework providing
a target-specific platform explicitly focusing on NISQ-era
algorithms. Or ScaffCC [5], a framework that is based on
LLVM and designed primarily for quantum circuit compilation
and scheduling of quantum jobs.

III. QUANTUM PROGRAMMING INTERFACE

Quantum Programming Interface (QPI) is a lightweight
C-based library that abstracts hardware dependencies from
quantum accelerators and is tailored for HPC systems. Hence,
HPC applications can exploit radically different computational
paradigms of quantum computers.

C is the dominant programming language for the HPC
domain [6], and various HPC development platforms and
application programming interfaces (API), such as CUDA and
OpenMP, are built in C. Using those APIs makes QPI more
tailored for HPC systems.

QPI supports 24 quantum gates, named parameters, and
circuit fusing. Named parameters are crucial for HPCQC
applications since most of them execute the circuit in a
loop and update the parameters based on post-measurement
evaluation.

QPI acts as a front-end for the software stack shown in Fig-
ure 1. It is integrated into the Munich Quantum Software Stack
(MQSS), a comprehensive framework aimed at seamlessly
incorporating quantum acceleration into HPC ecosystems [7].
As an open-source component of the MQSS, QPI is accessible
at [8]. It supports multiple intermediate representations (IR),
facilitating integration with various backends. QPI translates
the circuit into target IR, which can be QIR [9] or OpenQASM
2.0 [10]. After the circuit is translated, the generated code is
offloaded to a so-called Offload Listener.

Bell state, also known as EPR pairs, represents one of the
basic examples of quantum entanglement. It is widely used
in quantum teleportation and quantum cryptography. Hence,
Bell State is one of the cornerstones of quantum information
science.

Algorithm 1 shows Bell State’s implementation with QPI.
The implementation consists of three phases as follows:

1) Application: The users include the library, as demon-
strated in Line 1, allowing them to use the additional features.
The variable named circuit represents a quantum circuit (Line
4). Before inserting the instructions, the circuit needs to be
initiated by calling the qCircuitBegin function (Line 6). It
performs all the required memory allocations and saves the
circuit into the global list. The variable named cr represents
classical registers (Line 8), and the users call the qInitClassi-
calRegisters function to initiate the classical registers (Line 9).
The function qH applies a Hadamard gate to a given target,
which is qubit 0 for the given example (Line 11). The function
qCX applies a controlled gate where the first argument is the
control, and the second is the target, qubit 0 and 1, respectively,
for the given example (Line 12). The qMeasure function adds
a measurement instruction in the Z-basis for a given qubit
specified in the first argument and saves the result in the
classical register at the index specified in the third argument
(Line 13 and 14). The function qCircuitEnd indicates that the
circuit is completed and ready to execute (Line 16).

2) Execution: The qExecute function mainly handles the
execution phase. This function takes the circuit and the number
of shots as arguments. The circuit is translated into target
representation such as OpenQASM 2.0 [10] and QIR [9].
The circuit is offloaded to the backend through a lightweight
daemon process named Offload Listener, as shown in Figure 1.
The circuit is executed on the available quantum accelerator,
and the Offload Listener sends the results back to QPI.

3) Result Interpretation QPI represents results in a linked
list typed QuantumResult. A single element of the list contains
the state and the count, as shown in Lines 21 to 25.

HPCQC
Application

QPI
Runtime

Offload
Listener

MQSS Quantum
Accelerator

Fig. 1: Illustration of the QPI’s communication with intercon-
nected components of the software stack.

A. Ease of Access for Variational Algorithms

Variational quantum algorithms, one of the most promis-
ing use cases in quantum computing in NISQ-era, might
require high-level and problem-specific details, along with
the fundamental requirements for defining a quantum circuit.
For instance, Variational Quantum Eigensolver [11], [12] re-
quires an expectation value calculation of a certain molecular
Hamiltonian within each iteration. To execute such a circuit
on quantum hardware, one must decompose the Hamiltonian
operator and perform several measurements equivalent to
the total count of Pauli words present in the Hamiltonian
operator [13]. However, this poses a significant challenge for
programming frameworks since multiple measurements create
numerous intermediate representations of the quantum job.
Consequently, this complexity may require users to generate

287

Algorithm 1 Bell State Implementation with QPI.

1 #include <qpi.h>
2
3 int main(){
4 QCircuit circuit;
5 int numberOfShots = 100;
6 qCircuitBegin(&circuit);
7
8 QClassicalRegisters cr;
9 qInitClassicalRegisters(&cr, 2);

10
11 qH(0);
12 qCX(0, 1);
13 qMeasure(0, cr, 0);
14 qMeasure(1, cr, 1);
15
16 qCircuitEnd();
17
18 int isErr = qExecute(circuit, numberOfShoots);
19 if(!isErr) {
20 QuantumResult* results = qRead(circuit);
21 while(results){
22 printf("%s %d\n", results->state, results->count);
23 results = results->next;
24 }
25 }
26
27 qCircuitFree(circuit);
28
29 return 0
30 }

Algorithm 2 Bell State Implementation with Qiskit Provider.

1 def bell_state():
2 _provider = HPCOffloadProvider()
3 _backend = _provider.get_backend("Q5")
4
5 _circuit = QuantumCircuit(2, 2)
6 _circuit.h(0)
7 _circuit.cx(0, 1)
8 _circuit.measure_all()
9

10 _job = _backend.run(_circuit, shots=1000)
11 print(_job.result().get_counts())

multiple instances of the same circuit on their end, adding to
the overall intricacy of the computational process. The QPI
implementation addresses this challenge through its compact
format. It enables users to define the ansatz only once and effi-
ciently execute measurements along different bases, ultimately
combining them into a single expectation value.

Another aspect of QPI support for variational algorithms is
that it supports various options for parameter optimization.
It includes the so-called quantum gradients [14], through
routines such as parameter-shift [15] or SPSA [16], which
are used to calculate the optimal parameters in a variational
approach without having to define their gradient. They es-
sentially generate multiple quantum circuits whose parameters
are slightly perturbed in different directions and calculate the
gradients of the original circuit using a finite-difference-like
method. QPI natively supports these methods and enables
users to send hybrid quantum jobs.

Algorithm 3 Psuedocode for QAOA.

1 def qaoa(parameters, HC, HB, p):
2 # Apply Hadamard to all qubits
3 apply_hadamard(qubits)
4 # Apply alternating layers of unitaries
5 for i in range(p):
6 # Apply e−iγHC = U(C, γ)
7 apply_layer(HC, parameters[2*i], qubits)
8 # Apply e−iβHB = U(C, β)
9 apply_layer(HB, parameters[2*i+1], qubits)
10 # Measure the quantum state
11 results = measure(qubits)
12
13 # Postprocesss bitstrings into exp. values
14 exp_val = convert_counts_to_exp_val(results)
15 return exp_val
16
17 def optimize_qaoa(HC, HB, p):
18 parameters = random(p)
19 for i in num_iters:
20 exp_val = qaoa(parameters, HC, HB)
21 parameters = optimize(exp_val, parameters)

IV. EXPERIMENTAL STUDY

A. Experimental Setup

Qiskit is a widely adopted software development kit (SDK)
for writing quantum circuits in Python, renowned for its
accessibility and robust capabilities. To assist the Qiskit user
community in transitioning to high-performance computing
quantum computing (HPCQC), the MQSS offers the HPC
Offload Provider. This custom provider plays a crucial role
by enabling HPC users to access quantum accelerators, facil-
itating offloading quantum circuits within HPC environments
utilizing Pythonic programming interfaces like Qiskit.

MQSS includes several tools to complement the quantum
computation, such as the compiler and scheduler. Therefore,
the computation of these tasks is not a part of the benchmarks,
as they are all excluded from the QPTs. MQSS has two
versions that support and use QASM 2.0 and QIR, respectively.
As our HPC Offload Provider and QPI are tightly integrated
within the MQSS, we will utilize the same provider in the
following comparative analyses to ensure fair comparisons.

To evaluate our implementations, we create two applica-
tions: Bell State and Quantum Approximate Optimization
Algorithm (QAOA) [17] for solving the Max-Cut problem.
We compare generated QASM 2.0 and QIR code to measure
their accuracy in Bell State and the execution times of QAOA.

The implementation of the Bell State is given in Algo-
rithms 6 and 7 using QPI and Qiskit Provider, respectively.
The pseudocode for the QAOA is provided in Algorithm 3.

The experiments used the HPC resources at the Leibniz
Supercomputing Centre (LRZ), which are integrated with the
QC systems. The jobs are submitted to an HPC node; then the
quantum parts are offloaded to the quantum accelerator. The
targeted quantum accelerator is a 20-qubit superconducting
quantum device from IQM. The classical node has a 256 GB
memory and features 2 Intel CPU sockets (Intel Xeon Platinum
8360Y CPU @ 2.40GHz), each with 36 physical cores.

288

Algorithm 4 QASM 2.0 code generated by QPI.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg c0[2];
5 h q[0];
6 cx q[0], q[1];
7 barrier q[0],q[1];
8 measure q[0] -> c0[0];
9 measure q[1] -> c0[1];

Algorithm 5 QASM 2.0 code generated by Qiskit Provider.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg meas[2];
5 h q[0];
6 cx q[0],q[1];
7 barrier q[0],q[1];
8 measure q[0] -> meas[0];
9 measure q[1] -> meas[1];

B. Experimental Results

1) Bell State: The generated QASM 2.0 code from QPI and
Qiskit are given in Algorithms 4 and 5, respectively.

As observed, the only difference is in the classical registers
of the measure instruction, which does not affect the outcome
of the application.

While QPI supports QIR natively, we resorted to qiskit-qir
[18] for parsing to QIR the results obtained by the Qiskit
Provider. The generated QIR codes are given in Algorithms 6
and 7, respectively.

The difference in the classical registers also affects the QIR
outcome. Besides that, the function name is also different, and
it is by design and does not change the outcome of the circuit.
As can be seen, QPI is fully capable of generating accurate
codes.

2) QAOA: Quantum Approximate Optimization Algorithm
(QAOA) constitutes an example of a hybrid quantum-classical
algorithm due to its inherent structure requiring classical com-
putation along with quantum workloads. It is mainly used for
solving combinatorial optimization problems, whose classical
problem description can be converted into a quantum Hamil-
tonian [19]. The algorithm starts by initializing all the qubits
into an equal superposition state, allowing all the bitstrings
to be a valid solution to the original problem. Then, the time
evolution w.r.t. the calculated Hamiltonian is parameterized
and applied to the principle system, called the cost unitary.
This part is interleaved by the mixing unitary, which allows
the full Hilbert space exploration. These two unitaries can
be repeated across several layers for more accurate results.
A classical optimizer is run to find parameters as close as
possible to the optimal. The optimizer can be gradient-based,
which requires considerably heavy classical computation, or
it can also be calculated numerically by putting the load onto
the quantum computer by spawning multiple quantum circuits
[16] [15].

Algorithm 6 QIR code generated by QPI.

1 define void @EntryPoint() #0 {
2 entry:
3 ;...
4 call void @__quantum__qis__h__body(%Qubit* null)
5 call void @__quantum__qis__cnot__body(%Qubit* null, %

↪→ Qubit* inttoptr (i64 1 to %Qubit*))
6 call void @__quantum__qis__mz__body(%Qubit* null, %

↪→ Result* null)
7 call void @__quantum__qis__mz__body(%Qubit* inttoptr (

↪→ i64 1 to %Qubit*), %Result* inttoptr (i64 1 to
↪→ %Result*))

8 ;...
9 }

Algorithm 7 QIR code generated by Qiskit Provider.

1 define void @circuit-120() #0 {
2 entry:
3 ;...
4 call void @__quantum__qis__h__body(%Qubit* null)
5 call void @__quantum__qis__cnot__body(%Qubit* null, %

↪→ Qubit* inttoptr (i64 1 to %Qubit*))
6 call void @__quantum__qis__mz__body(%Qubit* null, %

↪→ Result* inttoptr (i64 2 to %Result*))
7 call void @__quantum__qis__mz__body(%Qubit* inttoptr (

↪→ i64 1 to %Qubit*), %Result* inttoptr (i64 3 to
↪→ %Result*))

8 ;...
9 }

The experiments involving QAOA are executed over eigh-
teen variations, based on different combinations of number
of nodes, number of layers, and number of optimization
iterations. We conclude the experiments by measuring the
different sections of the application.

The sections are circuit creation, circuit execution, and post
quantum optimization. While the first and third sections are
entirely classical, the second section mainly depends on the
software stack and quantum accelerator. Consequently, during
our experiments, we got outlier results, errors that indicate
time out which arise after waiting 1000 seconds for the results,
and warnings about there being no available QPUs. To have
more accurate results, we exclude such executions from the
experiment.

Table Ia and Ib shows the average execution times of the
selections based on different combinations of number of nodes
(Column 1), number of optimization iterations(Column 2),
and number of layers (Column 3). All results are in seconds
and round up to 6-digit precision. Figure 2 visualizes the
benchmarks for a various number of qubits, and a fixed number
of layers (4) and iterations (50).

We observe that the execution time of a single circuit
creation increases as the number of qubits and the number
of layers is increased in Qiskit Provider and QPI, and the
increase in Qiskit Provider is more aggressive compared to
QPI. Besides, we observed the average execution time of a
single circuit creation in QPI is 97% less than Qiskit Provider.
However, the average difference between QPI and Qiskit
Provider is 0.052 seconds. Even though the improvement rate
is high, a significant amount of circuits need to be created
to observe the effect. The maximum difference of all circuit

289

N I L
Circuit Circuit Post Quantum

Creation Execution Execution

4

30 3 5.65 ×10−4 415.4384 4.3 ×10−5

4 6.52 ×10−4 415.2457 3.9 ×10−5

40 3 7.59 ×10−4 552.1834 4.7 ×10−5

4 8.77 ×10−4 552.5055 4.8 ×10−5

50 3 9.07 ×10−4 686.9105 6.4 ×10−5

4 1.111 ×10−3 686.3051 6.6 ×10−5

6

30 3 8.06 ×10−4 442.3336 2.94 ×10−4

4 1.024 ×10−3 444.0678 2.9 ×10−4

40 3 9.95 ×10−4 587.9037 3.76 ×10−4

4 1.434 ×10−3 588.1279 3.98 ×10−4

50 3 1.211 ×10−3 732.3930 4.77 ×10−4

4 1.434 ×10−3 737.8179 3.98 ×10−4

8

30 3 1.151 ×10−3 472.4381 2.132 ×10−3

4 1.393 ×10−3 474.9329 2.116 ×10−3

40 3 1.548 ×10−3 638.6727 2.848 ×10−3

4 1.904 ×10−3 641.1524 2.838 ×10−3

50 3 1.834 ×10−3 786.6663 3.476 ×10−3

4 2.407 ×10−3 794.3176 3.548 ×10−3

(a)

N I L
Circuit Circuit Post Quantum

Creation Execution Execution

4

30 3 2.164 ×10−2 421.2956 1.496 ×10−3

4 2.841 ×10−2 423.2209 2.332 ×10−3

40 3 3.155 ×10−2 560.1304 2.734 ×10−3

4 3.784 ×10−2 560.6924 2.936 ×10−3

50 3 3.92 ×10−2 700.512 3.74 ×10−3

4 4.93 ×10−2 698.699 5.02 ×10−3

6

30 3 3.382 ×10−2 446.9151 1.776 ×10−2

4 4.375 ×10−2 447.1684 1.251 ×10−2

40 3 4.458 ×10−2 595.545 1.999 ×10−2

4 5.353 ×10−2 596.5857 2.059 ×10−2

50 3 5.579 ×10−2 736.2345 2.542 ×10−2

4 6.808 ×10−2 748.882 2.774 ×10−2

8

30 3 5.039 ×10−2 478.4504 9.374 ×10−2

4 6.279 ×10−2 479.1915 9.281 ×10−2

40 3 6.639 ×10−2 639.8411 1.259 ×10−1

4 8.182 ×10−2 645.4425 1.223 ×10−1

50 3 8.34 ×10−2 802.6442 1.577 ×10−1

4 1.038 ×10−1 803.4487 1.532 ×10−1

(b)

TABLE I: Average creation and execution time of the sections
using (a) QPI and (b) Qiskit Provider. Note that 1) N , I , and
L correspond to the number of nodes, number of iterations,
and number of layers, respectively, and that 2) the reported
creation and execution times are expressed in seconds.

creation executions is 0.1 seconds, which occurred during
eight nodes, four layers, and fifty iterations.

The most intensive section is the circuit execution. It
contains offloading to the Offload Listener, waiting for the
execution on the QPU to be completed, parsing the response
from Offload Listener, and returning the results to the HPCQC
application. Qiskit Provider and QPI use the same protocol
to utilize the quantum accelerators. The differences that cause

Fig. 2: Comparison of Qiskit and QPI benchmarks for different
values of N. N represents the number of nodes in the problem,
or similarly the number of qubits for the algorithm. The
plot shows the time elapsed for Circuit Creation, Circuit
Execution, and Post Quantum Execution for different qubit
numbers, with 50 iterations and 4 layers. The values for Circuit
Execution have been scaled down by a factor of 10,000 for
better readability. The same colors are used for corresponding
categories in both Qiskit and QPI, with different hatching
patterns to differentiate between them.

execution time difference are serialization of the QuantumTask
and deserialization of QuantumResult.

We observe that the execution time of a single circuit exe-
cution increases as the number of qubits and layers increases
in Qiskit Provider and QPI. The increase rate caused by the
increase in the number of qubits is more aggressive than the
increase in the number of layers. Besides that, even though the
average execution time of a single circuit execution in QPI is
1.2% less than Qiskit Provider, the average execution time of
this section takes 7.4 seconds using Qiskit Provider, and it
has called 61 to 101 times per execution. Therefore, it can
significantly affect the total execution time of the application.
In our experiments, it affects up to 15.97 seconds.

The section post quantum optimization is similar to circuit
creation. The improvement rate in post quantum optimization
is as high as circuit creation. The section is not compute-
intensive to show a difference more prominent than 0.1 sec-
onds. However, it is clear that as compute-intensive increases
in the section, the difference would be more significant.

V. CONCLUSION AND FUTURE WORKS

This work presents QPI, a C-based library for developing
and targeting quantum jobs into quantum resources. Unlike
other programming interfaces and libraries, we aim to design
it to be tailored for HPC systems. Thanks to its lightweight
nature, our experiment shows notable improvement in the
classical and quantum sides. However, there is room for
improvement.

Our future works are described as follows:
• The main known bottleneck of QPI is string manip-

ulations to create OpenQASM 2.0 code. We wish to

290

improve on that by providing full support for the non-
string manipulation-based intermediate representations.

• We wish to implement known algorithms such as QFT
and Shor’s as off-to-shelf solutions to provide a better
development kit.

• To capture more complex quantum circuit generation
dynamics, one of the next goals is to implement and
benchmark methods where the circuit grows dynamically
[20].

• Generating MLIR code as an intermediate representation.
• Currently, the target QPU cannot be specified by the

interface and is assigned by the inherent scheduling
mechanism of the MQSS, but we wish to allow the users
to assign the target QPU among the available devices

VI. ACKNOWLEDGEMENT

This work is funded by the German Federal Min-
istry for Education and Research under grants 13N15689
(DAQC), 13N16063 (Q-Exa), 13N16188 (MUNIQC-SC), and
13N16078 (MUNIQC-ATOMS), and the Bavarian State Min-
istry of Science and the Arts as part of Munich Quantum Val-
ley (MQV). Further, we want to acknowledge the contribution
done by Dr. Martin Ruefenacht while he was at LRZ.

REFERENCES

[1] R. LaRose, “Overview and comparison of gate level quantum software
platforms,” Quantum, vol. 3, p. 130, 2019.

[2] D. S. Steiger, T. Häner, and M. Troyer, “Projectq: an open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
2018.

[3] N. Khammassi, I. Ashraf, J. Someren, R. Nane, A. Krol, M. A. Rol,
L. Lao, K. Bertels, and C. G. Almudever, “Openql: A portable quantum
programming framework for quantum accelerators,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 18, no. 1,
pp. 1–24, 2021.

[4] R. S. Smith, E. C. Peterson, M. G. Skilbeck, and E. J. Davis, “An open-
source, industrial-strength optimizing compiler for quantum programs,”
Quantum Science and Technology, vol. 5, no. 4, p. 044001, 2020.

[5] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: A framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, 2014, pp. 1–10.

[6] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A large-scale study of mpi usage in open-source hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–14.

[7] M. Schulz, H. Ahmed, X. Deng, J. Echavarria, M. Gammelmark,
S. Karlsson, E. Kaya, M. Reznak, L. B. Schulz, and M. Tovey,
“From the physics lab to the computer lab: Towards flexible and
comprehensive devops for quantum computing,” in Proceedings of
the 21st ACM International Conference on Computing Frontiers:
Workshops and Special Sessions, ser. CF ’24 Companion. New York,
NY, USA: Association for Computing Machinery, 2024, p. 139–143.
[Online]. Available: https://doi.org/10.1145/3637543.3653432

[8] Munich Quantum Software Stack. (2024) Munich Quantum
Software Stack. [Online]. Available: https://github.com/Munich-
Quantum-Software-Stack

[9] QIR Alliance, QIR Specification, 2021, also see https://qir-alliance.org.
[Online]. Available: https://github.com/qir-alliance/qir-spec

[10] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[11] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
no. 1, p. 4213, 2014.

[12] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth et al., “The variational quantum
eigensolver: a review of methods and best practices,” Physics Reports,
vol. 986, pp. 1–128, 2022.

[13] A. Jena, S. N. Genin, and M. Mosca, “Optimization of variational-
quantum-eigensolver measurement by partitioning pauli operators using
multiqubit clifford gates on noisy intermediate-scale quantum hardware,”
Physical Review A, vol. 106, no. 4, p. 042443, 2022.

[14] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Eval-
uating analytic gradients on quantum hardware,” Physical Review A,
vol. 99, no. 3, p. 032331, 2019.

[15] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, “General parameter-
shift rules for quantum gradients,” Quantum, vol. 6, p. 677, 2022.

[16] J. C. Spall, “A one-measurement form of simultaneous perturbation
stochastic approximation,” Automatica, vol. 33, no. 1, pp. 109–112,
1997.

[17] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[18] Microsoft, “qiskit-qir.” [Online]. Available:
https://github.com/microsoft/qiskit-qir

[19] W. M. Kirby and P. J. Love, “Variational quantum eigensolvers for sparse
hamiltonians,” Physical review letters, vol. 127, no. 11, p. 110503, 2021.

[20] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An
adaptive variational algorithm for exact molecular simulations on a
quantum computer,” Nature communications, vol. 10, no. 1, p. 3007,
2019.

291

