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ABSTRACT OF THE DISSERTATION

Transverse Wakefield of Waveguide Damped Structures

and Beam Dynamics
by

Xintian Lin
Doctor of Philosophy in Physics
University of California, San Diego, 1995
Professor Norman M. Kroll, Chair

In the design of new high energy particle colliders with higher luminosity
one is naturally led to consider multi-bunch operation. However, the passage of a
leading bunch through an accelerator cavity generates a wakefield that may have a
deleterious effect on the motion of the subsequent bunches. Therefore, the suppression
of the wakefield is an essential requirement for beam stability. One solution to this
problem, which has been studied extensively, is to drain the wakefield energy out
of the cavity by means of waveguides coupled with the cavity and fed into matched
terminations [2]. Waveguide dimensions are chosen to yield a cutoff frequency well
above the frequency of the accelerating mode so that the latter is undamped. This
paper presents a thorough investigation of the wakefield for this configuration.

The effectiveness of waveguide damping has typically been assessed by eval-
uating the resultant ()..; of higher order cavity modes to determine their exponential
damping rate. We have developed an efficient method to calculate ).,; of the damped
modes from popular computer simulation codes such as MAFIA. This method has
been successively applied to the B-factory RF cavity.

We have also found another type of wakefield, associated with waveguide cut-

off, which decays as =% rather than in the well-known exponentially damped manner.

XV



Accordingly, we called it the persistent wakefield. A similar phenomenon with essen-
tially the same physical origin but occurring in the decay of unstable quantum states,
has received extensive study [3].

Then we have developed various methods of calculating this persistent wake-
field, including mode matching and computer simulation. Based on a circuit model
we estimate the limit that waveguide damping can reach to reduce the wakefield.

Finally, based on an analytic treatment of the Beam Break-Up(BBU) insta-
bility, we show that bunch to bunch accumulation effects are limited for any wakefield
that falls off at least as fast as {71, As a consequence, there is no significant qualita-
tive difference in the effect on BBU of a {~2 decaying wakefield and an exponentially
damped one, and even the quantitative difference is small when the characteristic
decay lengths are the same. The persistent wakefield, in particular, turns out to have

a small effect based on the current Next Linear Collider parameters.
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Chapter 1

Introduction

1.1 Wakefield

Colliders, the colliding beam devices, are first introduced by D. Kerst [1] in
1956 to achieve the highest center of mass energy as compared to the fixed target
experiments. Their main parameters are energy and luminosity. As the name sug-
gests, energy is the energy carried by each charged particle. The higher the energy,
the deeper the fundamental structure it reveals. The proposed Next Linear Collider
(NLC) has a 0.5 TeV center of mass energy, upgradable to 1 TeV. While colliders
for high energy particle physics research typically aim for the highest achievable en-
ergy, some machines are designed at specific energy to explore the physics there or
to produce a large amount of certain particles at resonance. For example, the ongo-
ing B-factory project at Stanford Linear Accelerator Center, targeted at 10.58 GeV
center of mass energy [8], produces hundreds of millions of B mesons on the Y(45)
resonance. Luminosity, on the other hand, is a measure of the number of particle
collisions per unit time. It is always favorable to have a machine with higher lumi-
nosity so that small cross section events can be studied in a reasonable amount of
experiment time. Besides, due to the kinematics of high energy collision, cross section
scales with energy as %; so the future TeV colliders necessarily require a very high

luminosity. The proposed NLC is aiming for a luminosity of 10%* — 10**em™?sec™!.



Luminosity can be increased by accelerating more particles per bunch, by
increasing collision frequency, and by reducing the beam areal. Since a charged
bunch interacts electromagnetically with the surroundings, usually a metallic vacuum
chamber, it generates an electromagnetic field, called the wakefield. The wakefield
acts back on the motion of the bunches, including the source bunch and the trailing
bunches. It causes instability and subsequent beam loss. The number of particles per
bunch is limited by single bunch instabilities. For example, the space charge effect will
limit the bunch charge at the gun and the low energy transport line; energy spread
and single bunch beam break up [4] from the short range wakefield also limit the
charge of a single bunch. The long range wakefield, on the other hand, restricts the
bunch collision frequency. The second bunch cannot be injected until the wakefield

generated by the first one dies out, or becomes negligible, unless other measures are

taken?.

1.2 Wakefield Suppression

The wakefield can be reduced by coupling out of the cavity with waveg-
uides and feeding into matched loads [2]. The cutoff frequency of the waveguide is
chosen such that all but the accelerating mode are damped. The rate of the energy

propagating out of the cavity is proportional to the field square at the port, that is

Cil—lf = —al? = —-dF, (1.1)
where F is the total energy in the cavity, F' is the field (either electric or magnetic
field) at the port, and a and o' are two constants. From the above differential
equation, we get an exponential decay law,

Wt

E(t) = BE(0)e" = E(0)e e
F(t) = F(0)e %" = F(0)e %o

, (1.2)

INLC is designed to focus the beam to a tiny spot 60 nanometers high and 1 micron wide at the
collision region.

2Such as feed back.



where ()., is the external () of the damped mode.
The natural ohmic loss on the wall, for the same reason, also gives rise to
exponentially decaying fields. It typically yields a much higher ) value. A rough

estimate of @) for a cavity mode can be obtained [7] by

V V' [pow
I et 1.
Som SV 20 (1:3)

Q =~

where V' and S are the volume and the total surface area of the cavity, respectively,
Oskin 18 the skin depth evaluated at the mode frequency, and ¢ is the metal conductiv-
ity. For example, B-factory cavity modes have a natural @ of 40000 (principle mode,
476 MHz). The ) of the Higher Order Mode (HOM) is about the same. On the other
hand, with the help of waveguide damping, the HOM @).,; of the B-factory RF cavity
is reduced to around 20°, making it possible to achieve a bunch separation of 1.26
meter, a total of 1658 bunches? in the ring [8]. See Fig. 1.1. It is designed to achieve
a luminosity of 3 x 10%cm™2sec™t.

The effectiveness of waveguide damping has typically been assessed by eval-
uating the resultant ()..;. It will be the most reliable and straightforward to calculate
the resonant frequency of the cavity subject to outgoing wave boundary condition at
the waveguide port. The resonant frequency is typically complex, the real part is the
oscillating frequency, while the imaginary part is the amplitude decay rate. A real
resonant frequency means that the mode is trapped, it does not decay at all.

Except for some simple geometries, analytical solutions of this sort are hard
to find. A number of powerful computer programs have been developed to compute
the resonant frequencies of closed cavities. These programs apply finite difference or
finite element methods to a lattice representation of the cavity (We refer to them

as Lattice Based Closed Cavity, LBCC, programs.). In addition, the field distribu-

tions, () due to the metal wall losses, dielectric losses and time domain evolution are

3Even lower ) can be achieved, but one has to weight the loss of the fundamental mode shunt
impedance.

4Compare with just 1 or a few in first generation colliding rings. The B-factory uses feed back to
control transverse instabilities too. In fact, the @ value is not low enough to completely damp the
wakefield, but enough so that a small amount of feed back power can handle the instability.



Matched Load
\

RF cavity

Figure 1.1: Schematic layout of a storage ring. Only one waveguide and one
RF cavity are shown. Typically, there are 3 or more waveguides attached
to each RF cavity to damp dipole modes of all polarizations and minimizing
distortion of the field of the accelerating mode.

readily available. Examples are MAFIA [9], SUPERFISH [10]. These programs have
proven to be valuable tools for accelerator cavity design. However, they do not in-
clude procedures for external () calculation on coupling a waveguide with a matched
load configuration. Currently, there is a strong interest in cavities which are heavily
damped by external coupling to facilitate multi-bunch operation. Examples are SRS
cavity [11] at Daresbury and ALS cavity [12] at LBL.

It is clear from the work of Slater [13] that the desired information can be
obtained by inserting a terminating short at the end of the waveguide and studying
the behavior of the combined cavity, shorted waveguide system. Gluckstern and
Li [14] have described a computer implementation of applying the Slater method.
Kroll and Yu [16] have developed a related but distinct method, which we have
modified to reduce the number of computer runs needed and to extend the domain
of applicability. It will be covered in chapter 2. Arcioni and Conciauro [19] have also
developed a program to calculate the whole excitation spectrum, in which ()., follows

from the width of each peak. Their method combines information obtained from



LBCC programs with a mode matching approach applied to the damped waveguides.

While the waveguide damping research reported here has been in progress,
other methods, including cavity detuning, damped detuning, and patching lossy ma-
terial on the cavity wall, have been suggested and are being actively pursued. These
alternatives will not be discussed here; interested readers are referred to [20], [21],

[22], [6] and [5].

1.3 Beam Break-Up Instability

In the linac of the proposed SLAC NLC design, 90 one nanocoulomb bunches
are accelerated in a train. In fact, it is the de facto approach of most NLC designs to
increase luminosity. In this multi-bunch design, one important issue that needs to be
coped with is the transverse Beam Break-Up (BBU) instability [23]. There is single
bunch BBU and a multi-bunch version of it. Their underlying physics is the same,
but different aspects of the wakefield are involved. Single bunch BBU is dependent
upon the very short range wakefield, while multi-bunch BBU is affected by the long
range wakefield. Here when referring to BBU, we always mean multi-bunch BBU.

When an intense beam passes through an accelerating cavity slightly off
axis, it will generate a strong wakefield that kicks the trailing beam off axis. A simple
calculation points to linear growth of the second bunch, quadratic growth of the third
bunch, ..., t"7! growth for the nth bunch. This more and more rapid growth for
the later bunches poses a serious danger to emittance control. We will address the
problem of what type of wakefield leads to a stable bunch train for a given linac length
in Chapter 7.

We begin by examining two bunches in a train, it is straightforward to
generalize to n bunches. Assume no acceleration and smooth focusing for the sake of

simplicity. The equations of motion are

" 2
ol 4+ kg

I
=2

1" 2 .
o+ kfr, = —F-a



Here x1, x5 are the transverse displacement of the first and second bunch, respectively,
k is the betatron wave number, [ is the distance between bunches. Also £ denotes
the energy of the electrons in the beam, W, (1) is the transverse wake function at the
location of the second bunch due to the first, and N is the number of electrons per

bunch. The prime stands for derivative with respect to longitudinal distance s.

Taking the solution of the first equation in the form x;(s) o ¢’**, we obtain
iks
ri(s) = ae
) 2 (1.5)
Ne*W, (1) iks

z9(s) = a(l+ Ws)e

Note that while the oscillation amplitude of x; is constant, that of x5 grows linearly

with s. The secular growth is the direct consequence of the fact that the two bunches
oscillate in resonance.

There are many situations in which the wakefield is strongly damped so that

a bunch will only feel the wakefield generated by the immediately preceding bunch. In

this case, we can use a simple “daisy chain” model to estimate the transverse blowup

of each bunch. The equations of motion become

o + ke = 0 ;
! ! ) (1.6)
2! + kx, = Ne IgL d Tp-1(n > 1).
We assume the solutions are of the form z,(s) = a,(s)e’**, which yields
Ne2W (1
al’ 4+ 2ikal, = GTL()an_l, (1.7)

and since a,(s) is a slow varying function, we neglect the a!/ term. Thus we have

al = —ica,_q, (1.8)
Ne2W, (1)
2%E

condition a,(0) = 1 for all n)

where 0 = . It is straightforward to show that the solution is (with initial

an(s) = 2 (_3#)] (1.9)

We see that as grows quadratically with sufficient large os, a4 grows with third

—i0s

power, and so on. Also note, lim,_. a,(s) = =7, In fact, so long as n > os, the



asymptotic expression is valid. The apparent stability for later bunches is the result of
the fact that the wakefield is short-ranged, and also due to the fact that the resonant
response of a bunch to the transverse displacement of the preceding bunch is 90° out
of phase with it. Thus there is no long term accumulation of bunch displacement

with the bunch number. We shall address this issue again in Chapter 7.



Chapter 2

Waketfield Damping

Strong wakefield damping can be achieved by a waveguide feeding to a
matched load. A considerable effort has been spent on how to characterize the cavity-

waveguide system.

= a—=[=—D—+

Figure 2.1: Shorted waveguide-cavity system. The cavity is an a x a square.
It is coupled to a waveguide of the same width through an iris of size d. A
shorted plane is placed at distance D away from the iris.

Consider a cavity attached to a single waveguide through a small iris. The
smallness of the iris is not required, but many properties of this system can be easily
quantified with small coupling. Following Slater [13], we place a short at a distance
D away from the waveguide-cavity junction. See Fig. 2.1. The shorted waveguide
can be viewed as a cavity with a certain resonant frequency depending on the length

D. Let us denote by w; the resonant frequency of the cavity without iris opening,



and by w, that of the shorted waveguide. In the presence of a small iris, the two
modes are coupled with each other, with eigenfrequencies w,, and w_. Without loss
of generality, we assume w; > wy. When the fractional frequency difference of w; and
wy is much greater than the coupling constant ', each eigenmode looks like either
that of wy or wy, i.e. the coupling between the modes is small. Field patterns and
frequencies are similar to the uncoupled case, i.e. wy —w_ & w; —ws. By sliding the
waveguide shorting plane inward, we could increase wy. When wy is very close to wy,
where the closeness is measured by the coupling constant, both cavity and waveguide
are excited at each eigenmode. If wy = wy, cavity and waveguide store equal amount
of energy at each eigenmode , and w; — w_ is minimized. For small couplings, the

minimum separation is related to coupling constant:

Wy —w-
=2 —- 2.1
! (w'l' +w- )mznzmum ( )

When we further increase ws, the difference of the eigenmode frequencies increases.
This phenomena is called avoided crossing (AC). Numerical simulations using MAFIA
on the geometry shown in Fig. 2.1 are performed to illustrate this behavior. (See
Fig. 2.2.)

The same structure with zero iris thickness can be solved analytically based
on an equivalent circuit model [16]. Typical examples are illustrated in Fig. 2.3.
Fig. 2.3a exhibits the behavior when the external coupling is quite small. The dashed
lines correspond to the waveguide modes present with no coupling between waveguide
and cavity. The solid lines, which represents the frequency of the coupled system when
a small iris is opened between the cavity and the waveguide, exhibit AC behavior
near each point where the uncoupled waveguide and cavity mode curve would cross.
They exchange mode characteristics after crossing. Fig. 2.3b shows the evolution of
this behavior when coupling increases. An inspection of Fig. 2.3 convinces one that
no matter what waveguide shorting length is chosen, there is at least one cavity-

waveguide eigenfrequency that is close to resonance.

1 is defined in the circuit model as n = \/JLV[l—z, where Mjs is the mutual inductance which
1482

couples the LC resonant circuits, and L; and Lo are the inductances of each circuit.
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Figure 2.2: Electric field plots from the MAFIA simulations of the cavity-
waveguide system shown in Fig. 2.1, with ¢ = 2e¢m, d = 0.6em, and iris
thickness 0.2e¢m. The shorting distance D is chosen to be 2.1cm in plot (a)
and (b), 2.0cm in plot (¢) and (d) and 1.9cm in plot (e) and (f) respectively. We
have w, = 10201 M Hz (primarily the waveguide mode) and w, = 10459M H =
(primarily the cavity mode) with Aw,, = 258MHz, w. = 10385M Hz and
wg = 10507TM Hz with Aw.y = 122M Hz, and w, = 10431 M Hz (primarily the
cavity mode) and wy = 10723M Hz (primarily the waveguide excitation) with
Aw.s =292MH=.



Figure 2.3: Typical examples of relative frequency f plotted as a function
of relative length r of the waveguide. The frequency f is normalized to the
frequency of the uncoupled cavity mode, and the waveguide length r is normal-
ized to one half the cutoff wavelength. The cavity mode is sufficiently isolated,
so that other cavity modes do not have a significant effect over the frequency
range shown. The top figure represents a weakly coupled case, where the
dashed lines are the uncoupled waveguide resonance. The bottom one shows
a case of moderate coupling.

11
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Qualitatively speaking, at the AC, the mean frequency of the two eigenmodes
gives the resonance frequency of the cavity, and the minimum separation yields the
coupling constant. However, relating n to the ().,; requires a theory and an equivalent
circuit, and the relation is different for each AC.

The Kroll-Yu (KY) method (See Appendix B) and the method discussed
below are, on the other hand, based upon study of the frequency dependence of the

reflection coefficient R(w) near the cavity resonance frequency.

2.1 Kroll-Lin (KL) Method

The KY method, in writing the reflection coefficient near the resonance as

(see Egs. B.1, B.2, and B.4)

e = R() = — L E I i ) (22)
w—1u—jJov 7

provides a four-parameter representation of the reflection coefficient. Four MAFIA
runs at four different waveguide shorting distance D provide enough information to
find the parameters u, v, y(u), and x'(u).

A highly accurate MAFIA calculation usually consumes a large amount of
computer time?. Therefore the reduction of the number of MAFIA runs is quite
desirable. Our extension on top of the KY method reduces MAFIA runs by a factor
of two and make it possible to obtain ()., from a single MAFIA run. It essentially
utilizes the extra information provided by numerical code on such quantities as field
strength, energy, ete. [18]

Taking tangent of Eq. B.3 and using the approximation in Eq. B.4, we obtain

[

tan(k{w)D + (1) + ()0 — ) = . 23)
200 — )
Differentiating Eq. 2.3 with respect to w, we find
dw wD 2Qu -
— =—k ! 2.4
dD () (k(w)02 )+ 4Q%*(w — u)? + uz) (2:4)

?Because MAFIA 3.20 is a finite difference program, in order to model the curved boundary, it
has to have a very small mesh size. And the time needed in a sparse matrix eigenmode calculation
is proportional to the number of mesh points, i.e. mesh size to the - 3rd power in 3D.
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where ¢ is the speed of light. Eq. 2.4 is a new condition that u, v, y'(u) have to

satisfy. It is useful only if we can calculate 5—1‘; independently. This can be done via

the formula

dw w [(poH* — eg£*)dS (2.5)
dD 2 [ uoH?dV ’ '

which is a result of the cavity perturbation theory [13]. The denominator on the right

side of the above equation is the stored energy of the whole cavity system, which is
a standard output of MAFIA. The numerator includes the surface integral at the
shorting plane. Since MAFIA also provides the field strength at any locations, the
surface integral can also be evaluated.

Now we are able to calculate u, v, y(u), and x'(u) with two frequency-
length pairs plus two derivatives. With the inspection of the field plot, if one branch
is recognized near the resonance, another run at a different length is needed to provide
a second point; if two branches near the cavity resonance can be identified, which is

usually the case, one MAFIA run suffices.

2.1.1 Implementation Formula

The parameter determination procedure described in Sec. B.1 is readily

adapted to our new method by taking limits as the frequencies approach one an-

other in pairs. We need to use % instead of 3—1‘*;. They are related by
d k D
@ _ dw(“) ey (2.6)
do  2(w)  k(w)e
From the input data points and an assumed value of y'(u), we define
By = (#(en) + (), (27)
B12 = (wl — CUQ) cot (¢1 — ¢2 + X/(U)(wl — CUQ)), (28)
and A= %. (2.9)
From these, we obtain
v =5, (2.10)

and u = w; — Av. (2.11)
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We then determine y'(u) numerically as the root of

@(u&) () + v —0. (2.12)

dw (wy — u)? 4 v?

We have implemented a FORTRAN program to search the root automatically. In
this method, y(u) is not involved in determining the other parameters. It may be

determined upon substituting u, v and y'(v) in Eq. B.9.

2.2 Numerical Investigations of the Sensitivity of

the KL Method on the Choice of the Waveg-
uide Length

In order to test the validity and sensitivity of the KL method, we have
tested several simple configurations, one with known analytical result, and the other
with input from a computational simulation code. The test results are compared to

themselves to show the self consistency. Both have shown excellent agreement.

2.2.1 Analytic Waveguide Model

We first tested the KL method on the analytic waveguide model introduced
in Sec. 3 of Kroll and Yu’s paper [16]. (See Fig. 2.1 also.) This is a standard TE!®
waveguide. With an adjustable symmetric iris parallel to the electric field, it forms
a waveguide loaded resonator. When taking a zero thickness iris, this configuration
can be modeled accurately by the equivalent circuit shown in Fig. 2.4, provided the
frequency of concern is lower than the cutoff of the higher waveguide mode. The
open waveguide is represented by the equivalent circuit shown in Fig. 2.4(a), and the
waveguide with variable short is shown in Fig. 2.4(b). The parallel lines represent

transmission lines with propagation constant &k satisfying

#=(Ep - Cy

w T
C a



15

Zo |B 7o | 20 |B

|~— a—] | a—-=| D
(a) (b)

Figure 2.4: (a) Equivalent circuit for the waveguide model with outgoing wave
boundary condition. (b) Equivalent circuit for the waveguide model with ter-
minating short at distance D from the output window

Even though the exact formula of shunt susceptance B is not known, highly
accurate expression may be found in the Waveguide handbook by Marcuvitz. Since

we are interested in testing the KL method, only a reasonably accurate expression

for B is needed. We used
27 wd

%) (2.13)
where B has been normalized to the characteristic admittance of the waveguide TE®
mode.

The resonant condition of the circuits in Fig. 2.4 requires that the sum of all
admittance of the elements vanishes. We choose the reference point at the window,
where the short at the left side transformed into —j cot(ka). Because it is a matched

line on the right hand (see Fig. 2.4(a)), the admittance is 1. Thus the resonance

condition of the open waveguide is

—jcot(ka)+jB+1=0. (2.14)
It becomes
i(me) + 2 cot(Z4) 15 = 0 (2.15)
cot(ma) + —cot™ () +j = :
where x = ’;—“ = 2(%)2 — 1. Similarly the circuit equation of the shorted waveguide
18
2, md D
cot(wx) + - cot (%) + COt(TFl’;) = 0. (2.16)
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Our object here is to solve the circuit model Eq. 2.15 to find the complex
resonant frequency w, i.e. the u and v (as the real and imaginary part of w, respec-
tively.) in the KL method. And the circuit equation 2.16 simulates what simulation

codes will give you with a shorting distance D, i.e. length, frequency pairs. Since

dw3

57 All these information is then

Eq. 2.16 is an analytic expression, it also yields
fed into the KL implementation to solve for u and v. By a comparison of the values
of v and v with the known result, the accuracy of the KI. method can be tested. Our
exercise also shows the sensitivity of the KI. method to the shorting distance chosen.

The results obtained for a set of seven iris openings are shown in Fig. 2.5
and 2.6 for () and u, respectively. Calculations were performed at a large number
of lengths between R = 0.8 to 3, so that the dependence of the computed ¢} and
frequency U on the length could be displayed as continuous curves. In carrying out
the procedure, it is also necessary to choose the right pair of branches. See Fig. 2.3,
at 7 ~ 1, branches 1 and 2 are near the avoided crossing, when r is increased. branch
1 moves downward quickly, so does branch 3. So around r ~ 2, branches 2 and 3
are near the avoid crossing, clearly the better choice than branch 1 and 2. We use
a simple criteria to determine the switch: Use the pair with the smallest frequency
difference, provided they are significantly below the frequency of the next higher
cavity resonance. The discontinuity of the curves in Fig. 2.5 and 2.6 reflects the
successive jumps to the higher branches.

Ideally, we would hope that the solid curves coincide with the dashed lines,
which are the exact value from the circuit models. The discrepancy is then a measure

of how reliable the KI.. method is. We have the following observations:

o The relative accuracy increases with higher ()

o The agreement and consistency arising from the combination of branches 1
and 2 is noticeably poorer than that from the higher branch combinations.
This is explained by noting that the frequencies involved in the lower branch

combinations are further from the complex pole. Thus the linear approximation

3while simulation obtains the same quantity through Eq. 2.5
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in Eq. B.3 is less accurate, resulting in a poorer result. Since one usually has
a rough idea of where the resonant frequency is, the lower branch combination

can be avoided by choosing a longer waveguide length.

o Agreement is the best at the avoided crossing region. Because, near the avoided
crossing, the frequency difference is the smallest. It is our view, that the agree-

ment is good enough for most practical purpose at any waveguide length.

2.2.2 Computer Simulations

The real application of the KL, method is in the computational context. As
a test to the method, we chose the geometry illustrated in Fig. 2.1, with ¢ = 0.9
inch, iris thickness 31—2 inch, and iris opening % left for variation. The cavity mode of
interest is similar to the TM!? mode in a 0.9 inch by 0.9 inch box, independent of
height. This mode has an electric field perpendicular to the top and bottom plane.
This is essentially a 2 dimensional problem, MAFIA 3D code is used because of its
many advantages. The height-dependent modes are avoided by choosing a very small
height (0.01 inch) to push them far above the spectrum of interest.

We begin the analysis of the computer output by examining the field plot of
the cavity-waveguide system. In Fig. 2.7, we plot the field of the lowest four modes
in the case of g = 0.5 inch, D = 2 inch. Because the configuration has a mid plane
reflection symmetry, only one half of the cavity-waveguide system need be considered.
Since the lowest cavity modes is symmetric, we apply a symmetric boundary condition
at the mid plane (instead of an antisymmetric boundary condition). The field pattern
clearly indicates that mode 3 is the closest to the cavity resonance: The field pattern
in the cavity is close to that of TM!!, plus the fact that most of the energy is inside
the cavity. Modes 2 and 4 are on the lower and the higher branches, respectively.
Because the frequency difference between modes 2 and 3 (533 MHz) is smaller than
that between modes 3 and 4 (1710 MHz). We choose modes 2 and 3 for application
of the KL method, the result is () = 34.542 and resonant frequency = 8769.07 MHz.
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In order to carry out the test on the sensitivity of the KL method on the
waveguide length chosen, we ran MAFIA with a number of different lengths. We also
investigate the () dependence of the agreement by varying the iris opening. The results
are summarized in Fig. 2.8. Note that the points from different branch combinations
are displayed in different symbols: ¢ symbol for the branches 1 and 2 combination,
the other symbol for the combination of branches 2 and 3. As outlined earlier, the
decision on choosing the right branch combinations is based on the actual cavity
excitation, as well as the frequency separation. In all these cases, the exact values
are of course unknown, but a dashed line, showing the arithmetic mean of all the
data points, is added, nevertheless, as an aid to the visualization of the fluctuation.
This line does not have any more significance. We see roughly the same fluctuation
of the result as that shown in Fig. 2.6 and 2.5. So we know it is coming out of the
approximation we made in the 4-parameter representation, not from the numerical
noise of the code.

The data used to determine the points in Fig. 2.8 allowed us to compare the
results shown in Fig. 2.8 with two lengths single branch application of the KI. method
and also with two lengths two branches and four lengths single branch applications
of the KY method. These results are given in Table 2.1. Comparison of the entries
with one another and with the points in Fig. 2.8 shows excellent consistency.

Even though the single length two-branch calculation proves to be very suc-
cessful, there are situations in which two-length calculation is preferred: for example,
when no two branches of the same cavity mode can be identified from the field plot or
when the frequency separation between the two branches is too large. These situations
can usually be avoided by choosing a longer waveguide. But some computational lim-
itation may prohibit this from being done, especially when there are too many extra
mesh points introduced as a result of longer waveguide.

The number of mesh points in the plane of the figure in MAFIA simulation
was 7896. Increasing density was used in the vicinity of the iris to better model the

important field variation. Because of the two dimensional nature of the problem, only
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% frequency (MHz) | @Q | Branches | Lengths(inches) | Method
0.5 8769.07 34.54 2,3 2.0 KL
8769.09 34.52 2 1.3, 1.9 KL
3763.03 3563 | 2.3 2.0, 2.1 KY
3768.84 3459 | 2 13,1.6,1.9,20| KY
0.65 8405.01 10.41 2,3 2.0 KL
8407.99 10.39 2 1.5, 2.0 KL
3103.95 1034 2.3 15, 2.0 KY
0.70 8266.35 7.54 2,3 2.0 KL
8270.48 7.48 2 1.5, 2.0 KL
8263.87 7.48 2,3 1.5, 2.0 KY
0.75 8109.44 5.57 2,3 2.1 KL
8114.20 5.47 2 1.5, 2.1 KL
8109.52 5.55 2,3 1.5 2.1 KY

Table 2.1: Numerical comparison of the KL and the KY methods at various

iris opening and waveguide shorting lengths.

two points were used in the direction perpendicular to the plane.
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The consistency of the KL and the KY method is remarkably good down

to ) ~ 5. FEven lower () has been tested; it still shows reasonable results.

The

KL method has also been successfully applied to very high @ (In the 10° range.)

cases. We note that the single run KL method is particularly advantageous for high

() application. This is because high () cases require accurate determination of small

frequency difference. This can be done more reliably when one is dealing with two

modes of a single lattice than when one is dealing with modes on the same branch

from different lattices. The lattices must differ to some extent because the waveguide

lengths are different. One of course tries to minimize the difference, but in so doing the

resonant frequency differences are notably smaller than the cross branch differences,

which further reduces the reliability of method requiring two or more runs.



Chapter 3

The Persistent Wakefield in
Waveguide Damped Structures

3.1 Origin

The problem of describing a decaying system is of great interest to the
physics community. In particle physics, almost all known elementary particles are
unstable. Even in nuclear physics a considerable number of unstable (radioactive)
nuclei, both naturally and artificially produced, are known. In fact, it was the desire
to understand the process of radioactivity that first led physicists to the elaboration of
a quantitative theory for the decay process. It goes without saying that such a theory
fits nicely under quantum theory, where typical effects, like the tunneling effect, are
particularly suitable to account for the dynamics of unstable systems.

The wakefield is just another form of decaying system. However, the wake-
field energy in the cavity is usually very large compared with that of a quantum hw,
where w is the resonant frequency of the cavity. This implies that a large number of
quanta exist in the cavity, classical field theory should account for the system very
well.

As described by classical theory, decay is a memoryless process. In other

words, the decay probability does not depend on the history. The governing dif-

24
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ferential equation is similar to Eq. 1.2. This is a phenomenological description of
the process, since no effort is made to understand the mechanism that is responsible
for the decay. However, we have to remark that Eq. 1.2 accounts very well for the
experimentally observed facts.

A more detailed analysis reveals that the decay can not be exponential at
long time. The argument goes as follows: If one decomposes the field in the cavity
in terms of the eigenmodes of the system, it has a number of discrete modes plus a
continuum of propagating modes above the cutoff of the waveguide. When the fields
are added up, the result is a few sines and cosines associated with the discrete modes,

plus an integral of the type:

A(t) = /w j deo f(w)e™ ",

It is understood that the physical quantity is the real part of the above expression.
An integral of the above type can not be an exponential in t. At large enough ¢,
A(t) is asymptotically proportional to t~¢. This assertion can be demonstrated by
integration by parts.

/OO dw f(w)e™ ™!

1 —zwt 1 —zwt
- f szn t‘/w f
1 L 1
= Cememmtfo Y= [ e ) d. (3.1)
Zt t Wmin

Here we have used the fact that f(w — oo) = 0. The leading term decays as ¢!
if the coefficient is non-zero. If f(wypin) is zero, we have to repeat the process of
partial integration. Not all f(”)(wmm) can vanish for finite wy,;,, otherwise f(w) is
identically zero everywhere!. It could happen that f0)(w,i,) = 0,n = 0,1,...,m—1,
but f")(wpin) — oo. This is an indication that the integral decays as ¢, for some
a with m < a < m + 1. In fact, we shall see this situation later.

Similar phenomena have been much discussed in connection with radioactive

nuclei. This power law tail has, however, never been observed for radioactive decay

!The fact that f is analytic and bounded in the upper half plane is enough to prove this assertion.
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because its coefficient is so small that it dominates the exponential decay only after
many half lives, at which time the residual decay is too weak to detect.

In this chapter, we present analytic discussions of two simple but physically
realistic models which illustrate the presence of the =(n+3) decaying tail in addition

to the usual exponentially damped mode in the transverse wakefield.

3.2 Transverse Wakefield in a Straight Waveguide

For our first example we consider a uniform rectangular waveguide excited
by a beam passing through it in the z direction (see figure below). It may be thought
of as an extreme limit of the waveguide model cavities studied in the previous chapter,

the limit in which the irises are opened up completely.

Z ;Y

Figure 3.1: A straight waveguide going in the z direction. Beam path is off
center in y direction by an amount of dy, represented by the thick line.

It a particle bunch passes through the cavity off-center in the y direction,
it will excite the TE*® waveguide mode. A residuum of the mode remains well after
the particle has left the waveguide and its H, field at and near the origin generates
a force on trailing bunches in the same direction as that of the initial transverse
displacement. Hence the result of the force is to drive trailing bunches farther off axis,

thereby exhibiting in its simplest form the fundamental mechanism of the transverse

multi-bunch Beam Break-Up(BBU) instability.
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The derivation of the wakefield uses no more than Maxwell’s equations:

VxE = —%8—?
V-D = Arp
— — — (3.2)
VxH = Z]4+158
V-B =0
with the linear isotropic homogeneous relations
D=cE , B = ,uﬁ. (3.3)

Combining the curl and divergence equations, we obtain a single equation in terms

of the field H,

~ 4w - €0 ,u@[-jf
Vx(VxH) = —VxJ+-——(—=——
< (Vo< H) ¢ 8 —I_cat( ¢ 8t>
ep 0 5 . 4w >
——H-V*’H = — : A4
252 \Y CVXJ (3.4)

With a charged particle moving at velocity v, the current J = quo(x)o(y —
dy)6(z — vt)z, with dy the y direction offset. The field equation for H, is

ep 0 2 Amqu
C—ZﬁHx —V*H, = . §(x)8'(y — dy)é(z — vt). (3.5)
With the uniform y — z cross section outlined here, the field can be calculated by
an expansion in terms of the eigenmodes in the regions < 0 and * > 0. The

matching condition at * = 0 provides the necessary equations to solve for the unknown

amplitudes:
Hy = Yo [ g (@)e™ 0 deo frn (y, 2)
HE = Yo [ g (@)e™ 0 deo frun(y, 2)
where the superscripts 1 and 2 denote the regions > 0 and = < 0, respectively.

L= (5 - (B = (2

C a

(3.6)

the sign of the above square root is chosen such that the field satisfies the outgoing

wave boundary condition in both regions. The f,,,.(y,z) are the eigenmodes of the
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waveguide cross-section.

1 mmT a 1 nw b
fmny,Z = ——Co8(— Yy — =) —F/———=cos(— (2 — =) ). 3.7
09 = (= ) el T 37
These modes satisfy
0? 0? ,
(a—yﬁr@)f(yaz) = A(y,2) in Q
0

_nf(yvz) = 0 on ’

where € is the interior of the cross section and , is the boundary. The symbol n
points to the normal direction of the boundary surface, not to be confused with the
index n. For later convenience, the numerical factors are chosen to normalize the
eigenmodes so that [ f..fmmdydz = 60

By inspecting Eq. 3.6, the field continuity at = 0 immediately gives?
al (W) =da’, (w) (3.8)

The other condition a,,’s have to satisfy comes from the (dis)continuity of

the first derivative of the field. Using Eq. 3.8, we integrate Eq. 3.5 from fgj dz to

obtain
d d 47 qgv
(Y = ) Lo = 8y — dy)d(z - ot);
X X C
: 4
=Y [ Rl (@) e fn(y,2) = ey — dy)o(z = vt). (39)

To solve for an,s, we multiply Eq. 3.9 with f,..(y,z) and then integrate
[ dydz to yield

4
S / &'y — dy)o(z — vt)dydz

_ 7 (2 (‘2‘ n dy))cos(nb (vl + 2)) (3.10)

ZSince for this problem V - H as well as V - B vanish.
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where Z,, 1s a short notation for 2 — é,,5. We use the inverse Fourier transform to

express a’ (w) explicitly as

U ()
1 1 4dwqo 1 mnm . Mm%, a o nm b.. .

= — - _ (_ d / 1 zwtdt
S e vz e g tdy) _%COS( p (it g)e
qv 1 mm mn  a

w b
— : d ™ ({_\R W —z—w 11
CZ N L Lo VZ 7. ab a sm( (2 T y)) _ nz_gz’vz(( ) € € ) (3 )

We are interested in the field around the center, at the location of the beam.

Setting y = 0 yields
Hx(t7 x, Z) = Z/a”}nn(w)e_th+ilmxdwfmn(07 Z)

_ 1 Ciwtitee ;. ©08("5) e, _ 9
= ;/amn(w)e dw\/mcos( 2 (z 2)) (3.12)

Without any confusion, we will use H, (¢, x, z) to denote the field at the center of the
waveguide. From Eq. 3.11 and 3.12, it is easy to see that only even m contribute to
H.(t,x,z). And because b is chosen to be very small, n # 0 terms will only come from
high frequency components of the spectrum. Our point charge, of course, excites an
infinitely wide spectrum, but it does not prevent us from taking only the low frequency
part to mimic a finite length bunch for the sake of simplicity. Therefore, we will limit
our attention ton =0 and m = 2,4,6,.....

Taking n = 0 and m = 2 for example, the field pattern

qu 2 . 2 1 iLw iy —iw lyw
HX(t,7) = 5he o Sin (?dy)/w—lx(e 20 — e )e T Wil (3.13)
is that of the traveling TE*® waveguide mode. Since the n = 0 term is independent
of z, we also dropped the argument z in H*. In writing w = %”c:z;’ = w.a’, where 2

is a scaled dummy variable, not to be confused with coordinate x, we obtain

ot
v d:z: b b gTwwwet
20 _ q . zﬁwcl" . —zﬁwcx' 2\/1”2—127”1’

H (1,2 sin Y € € —e

2abc a x 22 _ |

/ —tz'wet

— qv Siﬂ( dy) / dl’ (ei%wcl" —e Z%u;cx ) €
2abc z’ 2 — 1

2 2
(¢sin(Va'? — 1—7T:1;) + cos(Va'? — 1—7T:1;)) (3.14)
a
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Before taking x = 0, we want to point out that the integral of the first term

(involving sin(v/2”? — 122z)) above vanishes when ¢ > -+ since the integrand is an
sin(ve2 —12Z )

analytic expression on the whole complex plane. Notice that — is analytic,

elagWed | Tigpwed

x/

. The path can be closed from below when ¢ > % + % With no

so 18
singularities in the contour, the integration vanishes. When ¢t < —% — %, the contour

3. In other words, this term

can be closed from above, the integration vanishes too
basically represents the passage of the charge. From now on, without any confusion,
we will drop this term from H?°. Remember that we are only interested in long time
behavior of the wakefield near the center.

The other term in Eq. 3.14 involving cos(v/xz"? — 1%”:1;) is different. For

simplicity, let us take x = 0; then

27 we(t+5%) e
a2 = L gin(Zld / d’/d"i. 3.15
o) = s [y B = (3.15)
We have used the identity 2.176””/9”” = [¢e@'@"d" in deriving the above equation. The

inner integral has two branch points on the complex z” plane: +1. The outgoing
boundary condition already defines the branch cuts, from 1 to +oc and from —1
to —oco. As a result, the integration path can be detoured according to the sign of
2'. When t < —%, all ' < 0, the integration along the semi-circle in the upper half
plane vanishes, and the line integral from —oo to 400 is the same as the whole contour

integral. The contour integral vanishes because there is no singularities within the

5

5> charge has not shown up in

contour. This is the result of causality, before t = —
the waveguide yet.

When ¢ > %, all 2/ > 0, integration along the semi-circle in the lower half
plane vanishes. Because the line integral can be deformed into the path in Fig. 3.2(b),

subtracting zero contribution from the semi-circle yields the two branch cuts integral.

Since the square root on the lower half plane path is the negative of the square root

31t is a little counter intuitive in noticing ¢ < —% — % instead of ¢ < —% as causality suggested.

This is due to the fact that we split e?’=®. The expression is still causal when we include the cos
term in Eq. 3.14. This effect is not important to us because we are only interested in the field value
with very small x.

When discussing field propagation in z direction, it is better not to split the term e’=®.
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(a) (b)

Figure 3.2: The dashed lines signify the branch cuts. (a) when 2’ < 0, the
path can be closed from above. (b) when @’ > 0, the path can be closed from
below

on the upper half plane path and since the integration direction is opposite, the
branch cut integral doubles the value of that from integrating a single side path. Also

observing that the two branches are complex conjugate of each other, this integral is

not hard to write down as

)
/dwﬂL
" — 1

. A 7

0o jew'w

[

1 " =1
o sin(x"z’)
1 x//2 —1

= 2rJo(a'), (3.16)

"

where Jy(z') is the 0th order Bessel function. As a result, H2°(¢) is given by

HP(t) =

—2 2 we(t+5%)
W sin(Zd )/ T Jo(a')d, (3.17)

we(t=255)

where A = ab is the area of the waveguide cross section.

It is obvious that for large ¢, the field H, decays as t~%/2. We call it the
persistent wakefield, in distinction with the usual exponentially decaying ones. In
this particular model, we do not have a cavity mode because we do not have a cavity

yet. But in general, there will be contributions from damped modes as well as the

1/2 ot and becomes the dominant

persistent wake. At large enough time, t7'/% exceeds e~

term. Also note that persistent wake oscillates at the waveguide cutoff frequency. This
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supports the notion that zero group velocity component contributes to the persistent

wakefield.

This model does not generate any transverse wakefield in the = direction,

because it is translationally invariant in x.

3.3 Wakefield in a Dielectric Waveguide Cavity

A better model that illustrates the effect of the cavity but is still reasonably

easy to solve is a straight waveguide filled with dielectric material in the middle. See

Fig. 3.3.
nZ /Y

/
/

= O

7
/
/

d»i"i _____________ X
/

Figure 3.3: Waveguide partially filled with dielectric material, represented by
shaded region. The beam passes with an offset dz in the x direction to excite
the dipole of that polarization.

/ n /

The dielectric constant € > 1 effectively enlarges the portion with the ma-
terial, making it a cavity. This configuration has at least one trapped mode, much
like the situation in one-dimensional potential well problem in quantum mechanics.
This lowest energy trapped mode has a symmetric field distribution with respect to
y-z plane, and has an electric field distribution suitable for accelerating particles in
the z direction. More trapped modes are possible depending on the parameters cho-
sen. There are also damped modes associated with multiple reflections between the

two dielectric-free space interfaces that have frequencies above the cutoff of the free
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space portion of the waveguide. Hence it provides us with a reasonable model of a
waveguide damped accelerator cavity.

With a charged particle moving at velocity v in the 2z direction as indicated
by the arrow in Fig. 3.3, the current J= qud(x — dx)o(y)o(z — vt)z, where da is the

x direction offset. The field equation for H, is

4rqv
2 o2 c

§(x — dz)d'(y)o(= — vt). (3.18)

With the uniform y — z geometry outlined here, the field can be calculated by an

expansion in terms of the eigenmodes in regions = < —@ % <o <dr,dr < x<

h

5 and % 5 < x, denoted by superscript 4, 2, 1, and 3, respectively. The matching

conditions at x = —%, x =dr, and x = % provide the necessary equations to solve

for the unknown amplitudes.

HE = S ()70 b )t et (5. 2)
HE = S ()0 4B )t emitf (y.2)
HE = Bl B o)

()

HY = T (w)e D etdu f (y, 2)

(w)
(w)e

(3.19)

w

where k, = \/,ue (2)2 = (21)2 — (25)2, I, = \/(%)2 — (™1)2 — (5F)2. Because of the

a

material interface at x = £, regions 1 and 2 have waves going in both directions,

27

while regions 3 and 4 only have outgoing waves.

First, the B, field has to be continuous across the interface x = —%, x = dx,

and @ = 2 (See the footnote on page 28). It immediately gives

U+ by = a0 + 07,
Qe ™G0 4 MG = e (3.20)
a2 etka(=5—dz) + B2 e—the(=5—dz) _ 1.2
mn mn H mn
Next, by integrating Eq. 3.18 from = to T at « = —% and at ¢ = %, continuity of
dH,
Tdr
a}nneikm(g—dx) o b}nne—ikm(g—dx) _ l_mc}rm
n o ha (3.21)
Cl2 elkm(—g—dl’) o b? e—lkm(—g—dl’) _ _l_ECQ

mn mn - ks
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follows because no source is present.
The last condition the unknown amplitudes have to satisfy comes from the
(dis)continuity of the first derivative of H, at @ = da due to the delta function source

term. Integrating Eq. 3.18 from dz~ to dz™, we obtain

4
“8 (y)o(= — ot)
C
_ d 1 d 2

- _Z/zk W) = b (@) — a2 (@) + B (@) dw frun(y, 2). (3.22)

To simplify Eq. 3.22, we multiply it by f..(y, z), integrate over the y — z

cross-section and apply the inverse Fourier transform in ¢. We then have

a:rm(w) - birm(w) - azrm(w) + bzrm(w)
2qv 1 mnr . mm w b b O,

- i)

ck N/ Zab a

Note that a,,, is analytic everywhere.

Solving Eqs. 3.20, 3.21 and 3.23 simultaneously gives us all the amplitudes:

(ko + Lop)[e™ M (ke + Lop) + 25 (ky — Lop1)]

1
T ;(3.24
Gmn 24k, [—ik, sm(km) + Lo cos(kxz)][k COS(kx%) — sin(kx%)]’( )
mee 24k, [—ik, sm(km) + ll,,u cos(kxz)][k COS(kx%) — sin(kx%)]’ '
mn 24k, [—ik, sm(km) + ll,,u cos(kxz)][k COS(kx%) — sin(kx%)]’ '
o L amalke 4 Lp)[em™ M (ke 4 lop) 4 e (kg — Lopt)] (3.27)
mee 24k, [—ik, sm(km) + 1, ,ucos(kxz)][k COS(kx%) — sin(kx%)]’ '
D pan [ G (4 L) 4 G, — L))
Coin = - - - —; (3.28)
4[—1tk, sm(km) + Lo cos(kxz)][k cos(ky5) — ilypsin(k.5)]
. _ [5G Ry L) + R Gk, — )]
. = - , - - (3.29)
4[—1tk, sm(km) + Lo cos(kxz)][k cos(ky5) — ilypsin(k,5)].
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By substituting the solutions back into Eq. 3.19, the field H? can be written

explicitly in the following equation,

L amn{cos(kyx) Dy — ky sin(kpx) Dy H{cos(kydx) Dy + ky sin(kydx) Dy}

2 _
Hx—Z/ k2 Dy Dy

e dw frnly, 2) (3.30)
where
) h . h
Dy = [k, sm(kl,g) + il cos(kl,g)]; (3.31)
h h
D, = [k COS(kxg) — ik sin(kxg)]. (3.32)

3.3.1 Analytic Properties

In order to evaluate the integral in Eq. 3.30, it is important to understand

the analytic structure of the integrand on the complex w plane. We start with the

expression
w mm nw
I = ¢ “Ne (e B
Ep (T (T
To simplify the notation, we shall write [, = % w? —w?. The meaning of w. is

apparent. From the definition of [,, there are two branch points at tw. associated
with the square root. A careful inspection on the expression DDy and D, confirms that
the integrand in Eq. 3.30 indeed has branch points at these two locations. On the
other hand, square root in k, does not give rise to singularities because the integrand
is even in k,, i.e. the integrand does not change when k, — —k,. Also there is no
singularity at k, = 0. The singularities on the real axis, however, prevent simple-
minded contour closure in evaluating the integral because branch cuts have to be
drawn. Drawing the contour is related to choosing the right sign for the square root.
It is normally referred to as choosing the outgoing wave boundary condition in this
context. What it really means is that by writing the field in the region 3 (see Eq. 3.19)

pz—iwt

in terms of ¢ , we choose [, positive real when w is positive (of course, when w

is bigger than w..) and choose [, negative real when w is negative (of course, when
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w is smaller than —w.). This is done by lifting the integration path (—oo, c0) a little

bit above real axis. Thus,

[, = \/(w—l—ie)Q—wf = \/wQ—wf—l—Ziew

where ¢ is an infinitesimally small positive number *.

Now let us return back to the Eq. 3.30. The singularities of the integrand de-
pend on Dy and D;. The rest of the expression is analytic. To simplify the discussion,
we assume = and dx very small so that we do not have to think about them in the
next statement. When ¢ < —%, the source has not appeared yet, causality requires
the integral to be zero. The integrand vanishes on the big semi-circle in the upper
half plane because of the factor e=* ®. Adding the two paths, the whole contour
integral vanishes. The vanishing contour integral gives the well known result that the
upper plane is free of any singularities. It is usually referred to as the requirement of
causality.

Before we cite time reversal property, let us paint the physical picture of the
whole process: Before time —%, there is no field in the cavity; after time —%, there
are fields in the cavity and waves going out of the waveguide.

Because the governing differential equations involve second order derivative
in time only, the process is invariant under operation ¢ — —t. The time reversal
produces a process like this: before time %, there are fields in the cavity and waves
coming into the waveguide; after time %, there is nothing left. It is graphically

illustrated in Fig. 3.4

To be more precise, we proceed with the underlying differential equation:

2 RS — d)8 (y)s(z —vt) —L<t< 2
WOy ey, =) e ol d))elE et g 2 (3.33)
02 6t2 0

otherwise

The exact form of the current term is irrelevant. However, we write it out explicitly to

*4sign” of I, is automatically defined in the region —w. < w < w, once we have done that.

>That is why we avoid the divergence of sin k,z and cos k,dz etc. on the complex w plane by
assuming z and dz very small. Causality still works out, but more tediously.



37

VOID VOID
—

| > ! =

-b/2v b/2v t -b/2v b/2v t

Figure 3.4: Time reversal.
facilitate further discussion. The solution of Eq. 3.33 is subject to the initial condition

Ho(to,x,y,2) = xol(®,y,2) , %Hx(tmxvyvz) = x1(2,y,7),
and outgoing wave boundary condition. As a special case, the problem we solved in
the previous section has xo(x,y,z) = x1(x,y, z) = 0. The solution can be expressed
in terms of an integral

At x,y, 2 /ﬂ e~ “dw. (3.34)

The arguments x, y, and z in 3 are suppressed for convenience.

Now we take the same differential equation, and solve another problem,

52 A S — dz)8' (y)6(z + vt b < b
6/: /2 H/ VQH; — c ( ) (y) ( ) 2u 2u 7 (3‘35)
c? ot 0 otherwise

w@p
/

where we use to denote a different field and a different time. Comparing Egs. 3.33
and 3.35 we see an overall change of the sign of v. If we take the initial condition at

time t| = —t;, with #; > %, as

0 0
Halv(tllvxvyvz) = _Hl’(tlvxvyvz) 9 _H/(tlvx Y,z ): a_Hl’(tlvxvva)v

ot’ 1
and subject the solution H! to incoming wave boundary condition, we will show below,
that H. (¥, x,y,z) = —H,(—t,x,y, z) is the solution. First it obviously satisfies initial

conditions. Second, we have

ep 0*
2 atzH/(t .Y,z ) VZHQ/L’(t7x7y72)
ep 0
= ( /;atQ ( tvxvyvz)_vsz(_tyeT,y,Z))
4
= (e — da)8(y)8(= + vt). (3.36)

c
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The third line follows from Eq. 3.33. Incoming wave boundary condition is also
satisfied by noting the sign change of .
Following the same procedure of getting Eq. 3.34 (we will take care of in-

coming wave boundary condition later), we can also write

H (' 2y, /ﬂ e duw. (3.37)

The difference in Eq. 3.37 and Eq. 3.34 is from the initial condition and current source
term, it does not affect the analytical property of the integrand due to the structure,
i.e. the poles of the differential operator.

Instead of outgoing wave boundary condition, Eq. 3.37 has incoming wave
boundary condition. It amounts to mapping [, — —[,. We could accomplishing this
by drawing the branch cut from —oo to —w. and w. to co. Here, we observe that by

taking the integration path a little bit below the real axis, [, changes sign®.

1
I, = —\/(w —i€)? — w?

c

See Fig. 3.5. At time ¢ > >

o=, The line integral from —oo — i¢c to oo — ic is zero as

Im
Integration path with outgoing wave boundary condition

Integration path with incoming wave boundary condition

Figure 3.5: The integration path with incoming wave boundary condition.

we know already from H.(t) = —H,(—t). The integral along the big semi-circle in
the lower half plane vanishes because of the factor e7“!. By adding the two integrals
together, the vanishing contour integral shows that 4’(w) has no singularity in the
lower half plane.

Since (w) and B'(w) have the same poles on the sheet defined by Fig. 3.5,
f(w) also has no poles in the lower half plane. Poles can only reside on the real axis

or on the second sheet defined by the branch cuts.

61t changes sign when crossing branch cut once.
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The plane defined by the above branch cut is usually called the physical
sheet. The other plane approached by crossing the branch cut once is called unphysical
sheet. In order to see the unphysical sheet, we will rotates the branch cut associated

with —w. counter clockwise by 180°. so it looks like Fig. 3.6. Where the shaded region
Im
Re

Figure 3.6: Branch cut to reveal the unphysical sheet poles.

represents the lower half plane of the unphysical sheet. The branch cut is reduced to
the segment from —w. to w,. One can think of it as that crossing the line (w., 00)
is equivalent to crossing two branch cuts; it does not change anything. Therefore,

no branch cut discontinuity is present in (w., co). At ¢ > the integration path

b
2v7?
in Eq. 3.34, or more precisely, Eq. 3.30 can be closed in the lower half plane. In
shrinking the contour to the one around the branch cut, the resulting integration

includes two types of contribution: one from the branch cut integral, the other from

passing through all the poles in the lower half plane, as illustrated in Fig. 3.7.

Im

Re

Figure 3.7: Contour integral to include the unphysical sheet poles.

Eq. 3.34 becomes

H.(t) = j{ﬂ(w)e_mdw + Z’yie_w"t. (3.38)



40

The meaning of each term is self-explanatory. Since H, is real, the poles necessarily
appear in group of two with w; = —w? to ensure reality, where x is the complex
conjugate. It appears as natural that the resonant frequency w; is complex, with
negative imaginary part, so that each term under the summation decays exponentially.
They are then interpreted as the decaying modes.

On the other hand, we could do a similar maneuver to the expression in
Eq. 3.37. This time, we rotate the branch cut associated with —w. clockwise 180°,
so that the upper half plane of the unphysical sheet is revealed. See Fig. 3.8. At

Im

Figure 3.8: Branch cut to reveal the unphysical sheet poles.

1< —%, the integration path (-oo — 2€,00 — 7€) can be closed from above. Similarly,
the contour integration is reduced to a branch cut integral plus pole integrals, as

shown in Fig. 3.9.

Im

Re

Figure 3.9: Contour integral to include the unphysical sheet poles.
Eq. 3.37 then becomes

H.(t) = j{ﬂ’(w)e_mdw + Z%{e—wl/‘t. (3.39)

The imaginary part of the resonant frequency w! is positive, giving rise to a

growing mode, which is expected from the incoming wave boundary condition. From
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the time reversal aspect, not only the real part of the w! has to equal the real part of
the w;, but the imaginary part of the w! has to equal the negative of the imaginary
part of the w;. i.e.

_ /
W, = w;.

Hence we conclude that the poles on the second sheet are symmetric with
respect to both real and imaginary axes.

With the explicit expression of Dy and Ds, in Eq. 3.30, it is straightforward
to verify these assertions. In order to explain the point, we will take a digression on
the calculation of the square root.

Most programs (numerical or theoretical) implement the square root calcu-

lation as

Vel = \/Felg (3.40)

where —7 < § < 7 and r > 0. This is equivalent to taking the branch cut from —oo

to 0. This particular choice has the property
VEE = (Va), (3.41)

while cuts anywhere else do not preserve this identity. For example, with cut from 0

to oo, we could define

Vel = \/Feig

where 0 < § < 27. Then /a* = —(/z)*, since

[(eit) = Veiltr=0) = =5 —

The above observation leads us to a more precise definition of /,(w). With

the branch cut we outline in the previous section

[:(w) = Vw —we/w + we = ivw. —wy/w + w, (3.42)

where the v is defined in accordance with Eq. 3.40. On the unphysical sheet, the

definition of [, is changed by an overall minus sign. The first square root results in
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the branch cut from w. to oo, and the second square root leaves the branch cut from

—00 to —w,. It is then obvious that
[;(w") = = (w). (3.43)

The minus comes from the ¢ in Eq. 3.42. We also have [,(—w) = [, (w).
These relations hold on both sheets, it being understood that the left and
right sides always refer to the same sheet.

It is then easy to see by inspection that

Di(w") = Di(w) » Di(=w) = Di(w),

Dy (w*) = Dj(w) , Di(—w) = Dy(w).

Hence if w; is a root of D; on one of the sheets, then, on the same sheet, —w;, w?,
and —w; are also roots. Thus the location of the roots of D; and hence poles of (w)
is symmetric with respect to both the real and imaginary axes. Also the absence of

of roots on the upper half plane of the physical sheet implies the absence of roots on

the lower half plane.

Before we look into the poles on the real axis, it is instructive to see what
all these terms in Eq. 3.30 mean, and have some insight into why there are poles on
the real axis.

The Eq. 3.30 can be written in the form

Dy
Dy

| G {sm(kx(zj —2)) , cosh x>k6208<k dw)g_j — sin(ky) sin(kydz) -

e_mdwfmn(y, z)

}

The term with no denominator on the right hand side of Eq. 3.30 is

YL LR o

The integrand of this expression is an analytical function on the whole complex w

plane, with no singularities. Based on the same argument as on page 30, this term
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represents beam passage, it does not give any contribution shortly after the beam
leaves the cavity. We shall ignore this term from now on.
Now H? is reduced to
D,
— —sin(k, ) sin(k,dx
B in(h ) sin(hde) 7

e dw frnly, 2). (3.45)

Z/ ozmni{cos(kl,x) cos(kydx) Dy

It is interesting to note that the first term in Eq. 3.45 represents a field which is sym-
metric with respect to the plane © = 0 (notice the cos k,x term.), and the excitation
of the field is proportional to cos k,dx. By the same token, the second term represents
an antisymmetric field.

As suggested earlier, the poles of Dy on the real axis of the physical sheet
give rise to a trapped symmetric field, while poles on the complex plane of the un-
physical sheet result in an exponentially damped symmetric field. Similarly, poles of
Dy contribute to the antisymmetric field.

Taking the expression of Dy in Eq. 3.31, for example, we only need to look

at the positive real axis as a result of the left-right symmetry on the complex plane.

Further more, Dy can not have any roots in the intervals (0, %<) and (w., o0): In

Ve

the interval (0, k, sin kx% < 0, and #l,.p cosk < 0; in the interval (w., o0),

v

k.. sin kx@ is real while 2/, p cos kx@ is imaginary. As a result, the expression D; can

never be zero. Therefore, we confine our attention to the interval (-

)
With w € (\/—, w.), we have [, = iy /w? — w?. The roots of Dy satisfy

. h H h
ky sm(kx§) = Z\/wf — w? COS(kxg). (3.46)

It is easier to write everything in terms of k, = ,/,uew — w?. Notice that
k. is in the range (0, #2/pe —1). Eq. 3.46 then reduces to

k, tan(k f¢wc (e —1) — k2. (3.47)

kec

we ?

In order to work with dimensionless quantities, we scale k, by = i.e. k, and

hw C

h +— =1t is equivalent to choosing our own length unit as =. We finally arrive at
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this transcendental equation

kl,tan(kxg) _ @\/(/Le ) — (3.48)

Since the root can not be expressed in terms of elementary functions, the solution is
displayed graphically in Fig. 3.10. The thick gray solid lines represent the left hand
side of the Eq. 3.48. The vertical line is an artifact of the plotting program trying to
connect different branches of the tan curve. It is worth noting that the curve starts
from 0 at &k, = 0 and monotonically increases to +o0c at kx% = %7. The thin solid lines
represent the right hand side of the Eq. 3.48. It starts from \/g\/m at k, =0
and monotonically decreases to 0 at the other end of the range of k,, /e — 1. These
two curves have at least one intersection by noting their respective monotonicity, no
matter how small A is, or for that matter, how small p and € are, as long as pe > 1.
The exact same equation is involved in the one dimensional potential well problem in
quantum mechanics. No matter how small and shallow the well is, there is always a
ground state energy below 0. The wave function is also symmetric.

Whether there are more trapped modes depends on the parameters chosen.
We have chosen ¢ =10, e = 1, h = 1 in Fig. 3.10(a), and only one trapped mode is
present. We also plotted the case with h = 3 in Fig. 3.10(b), where a second trapped
mode does appear. To add to our understanding of how the trapped modes appear,
it is beneficial to add a third curve to the plot, the dashed lines representing the
negative of the solid thin lines. In the previous discussion we have emphasized that
to cross a branch cut once will reach the unphysical sheet from the physical sheet
and vice versa. Numerically, it is the same as changing [, (w) into —[,(w). Thus,
the intersections of the thick gray curves with the dashed lines are the real roots of
Dy on the unphysical sheet. The Fig. 3.10(b) shows that there is a real pole on the
unphysical sheet associated with the second trapped mode, by “associated” we mean
they are from the same branch of the tan curve. By decreasing h, the whole thick

gray curves scale horizontally to the far right, while the solid and dashed thin lines

"k, may not be able to take that value if h is too small, but for the following discussion, the
monotonicity is enough.
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Figure 3.10: A graphical display of solutions to Eq. 3.48. The thick gray solid
lines represent the left hand side of the Eq. 3.48, the solid thin lines represent
the right hand side of the Eq. 3.48. The dashed line is the negative of the solid

thin curve.
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stay the same. As a result, the intersections move to the right, i.e. the frequency of
the root moves up.

At around h = 2.1, to be precise, h = ﬁ, (see Fig. 3.10(c).) the
two curves intersect at £***, which is w. if we write the root in terms of frequency.
Thus, the pole coincides with the branch point. When we further decrease h, the real
pole on the physical sheet moves on to the unphysical sheet and moves towards lower
frequency, while the other pole moves towards higher frequency until the two poles
associated with the same branch collide as illustrated on Fig. 3.10(d). It is about
h = 1.6. Further decrease of h moves the poles into the complex plane, one above the

real axis, one below, as required by the symmetry.

h

The number of trapped modes N is then related to k7" 3

, the phase advance
in the dielectric material at w,, by

hy/pe —1

N = ceiling( 5
T

) (3.49)
where ceiling(x) = min{n|n > x, integer n}.

The poles of Dy which satisfy

h
ky COt(kxg) =F ﬁ\/(,ue —1)— k2 (3.50)
€

have a similar movement on the complex plane. The minus and plus sign correspond
to the real roots on the physical and unphysical sheet, respectively. We have chosen
several sets of parameters to solve for the roots. They are shown in Fig. 3.11. The
curves have similar meanings as those in Fig. 3.10.

The intersection of the thick gray line and the dashed line in Fig. 3.11(a),
representing a real pole on the unphysical sheet, moves toward the branch point as

s

we increase h. At h = T the real pole is at w, (see Fig. 3.11(b)) and any further

increasing of h brings the pole on to the physical sheet to become a trapped mode.
Further increase of h brings the two damped modes associated with another branch
of the cotangent closer to the real axis. In Fig. 3.11(c), the two poles hit the real

axis on the unphysical sheet. As h increases, one pole moves to the higher frequency
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Figure 3.11: A graphical display of solutions to Eq. 3.50. The thick gray solid
lines represent the left hand side of the Eq. 3.50, the solid thin lines represent
the right hand side of the Eq. 3.50. The dashed line is the negative of the solid

thin curve.
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while other moves to the lower. At h = \/i:——l’ the higher frequency pole moves to
the physical sheet (Fig. 3.11(d)).

3.3.2 Wakefield

Since we are most interested in the so-called dipole wakefield, namely the
deflecting force in the same direction as the source particle offset, and proportional
to the offset, we can simplify the expression in Eq. 3.45 further. Because the offset is
in z direction, we need to calculate H, field at the center. From the Gauss’s Law on

magnetic induction

. QH, OH, OH.
+—L+

V'B:'M(ax dy 82):07
we obtain
0? 0?
8x8yH + 3y 2H =0 (3.51)

because we choose the dimension b in the z direction very small, the field is indepen-
dent of z. in another word, we only consider the n = 0 terms in the Eq. 3.45.

Substituting Eq. 3.45 in, we obtain

Oty in(k, D . D
H, = ;/ zo; 0{—Sm§% ?) cos(kxdx)D—j — cos(kyx)k, sm(kxd:z;)D—:}

aa_yme(yv Z)
()7

We have used the fact 8 (ayfmo(yv z)) = (M)Q(aa_yfmo(y,z)). Taking + = y = 0

a

e~ dw (3.52)

and dx infinitesimally small, the wake force F) is

FZ’—B&_UIMZ/ZO[THO Dl —zwtafmo( :OZ)
qgde  cdr dy ()2

The wake function W, defined as the force produced by unit charge offsets unit

(3.53)

distance on unit test charge, becomes

k2 : D
W, = % 3 (sin %)2/ Zw (elﬁ‘” —e_l%w)e_lmD—:dw
m=2n+1 2 b
— /Zk sin 5-w MDld
= — —= v — 3.54
ab = w ‘ D, “ (3:54)
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In the relativistic limit.
As we have discussed before, the integral in Eq. 3.54 is taken along the entire
real axis of the physical sheet on the positive imaginary side of the branch cut with

infinitesimal detour above them.

Figure 3.12: Contour path to calculate W.

After the particle leaves the cavity (¢t > %), the line integral from +oo to
—oo slightly below real axis vanishes because it can be closed in the lower half plane.
We add it to the integration path of Eq. 3.54 and shrink it to the form shown in
Fig. 3.12. This is nothing more than decomposing the field in terms of the continuum
eigenmodes, and accordingly we refer to it as the continuum representation. Usually,
there are poles of Dy on the real axis, and they will contribute to the line integral
because the path sweeps through them as we shrink the contour. The non-decaying
nature of the trapped modes make them undesirable in the design of accelerator

cavities. We could, in our model, make sure no trapped modes exist by making

h < \/;;——1 In reality, the cavity geometry has to be carefully designed to avoid any
trapped dipole (antisymmetric) modes. It is commonly done with the help of an
electromagnetic simulation code. Assuming it has been done, therefore, we did not
include poles on the real axis in Fig. 3.12.

A representation which is more convenient for analyzing the wakefield is
obtained by moving the branch cut integral downwards to +w. — 200, as shown in
Fig. 3.13.

Here the upper half plane together with the lower half plane region between
the two indicated branch cuts is a part of the physical sheet, while the remainder of

the lower half plane is on the unphysical sheet. In shrinking the contour integral to
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Figure 3.13: Contour path to exhibit the damped and persistent components
of WJ_.

the two discontinuity integrals along the branch cuts, we must pass through the poles
which have been exposed on the unphysical sheet, and we must retain a residue from
each of them. Thus we have expressed W as an expansion in terms of the discrete
exponentially damped cavity modes with ¥(w;) > w. plus a contribution from the
branch cut integrals. It is this latter contribution which provides the persistent wake

(see, Sec. 3.3.3). We refer Eq. 3.55

Wo (4 [)B@)e™ 4 Y pe (3.55)

as the damped modes representation. Here the N denotes the two branch cut integrals,
and w;s are the poles on the unphysical sheet with real part greater than w..

The pole contributions are normally interpreted as damped modes, but they
do have one difficulty when one considers the time-distance propagation. The time
t and coordinate = dependence of an exponentially damped mode with, for example,
w, >0

H ~ e twrtiwi)t ik +iki)z (t>0,2 >0, and % <1)

has k, +1ik; = \/(wT + iw;)? — 1, (for simplification, frequency is normalized to cutoff,
and speed of light is 1) with

ko =

w2 —w? =14 /(w2 —w?—1)? + 4w, ?w;?
\I \/( 5 ) , (3.56)

—(w,2 — w2 —=1)+ /(w2 — w2 —1)% + 4w, 2w;?
—\l ( ) \/( 5 ) ) (3.57)
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The sign of k, follows from analytic continuation of k, from w; = 0 into the
unphysical sheet with w; < 0. The negative sign of k; is seen most simply from the
relation k; = f*w;. Interpreting f}—: (always less than one) as the group velocity of
the decaying mode as it propagates down the waveguide, we see that the exponential
growth in = at fixed ¢ just reflects the fact that the field was emitted at an earlier
time. Indeed if we take 2 = v, i = f}—:t, then w;t — k;x vanishes, corresponding to
the fact that the mode propagates at v, without decay after it is emitted into the
waveguide. The anomaly occurs for 1 > £ > v,. Here the exponential factor increases
without limit as ¢ and = simultaneously increase. This unphysical exponential growth
can only be cancelled by the infinite pole summation and/or the branch cut integral.
We conclude that it is better to use the continuum representation for this region.

However, we are interested in the field at the origin, where this difficulty

does not occur. So we will use Eq. 3.55 to study the wakefield.

3.3.3 Persistent Wake

We define the persistent wake function W, as the contribution from the
branch cut discontinuity integrals, and to simplify the discussion we redefine ¢ as w.t
and w as w/w.. The cut discontinuity can then be written as vw? — 1F(w) where F'is
analytic in the neighborhood of the branch point. Making use of partial integration,
we obtain the large ¢ asymptotic behavior as follows:

1—i00

W,(t) = Vw? — 1F(w)e_mdw + c.c.
1
1 1—200
= _t/ _Wtdw—\/w — 1F(w)dw + c.c.
7

1—i00 .
_ / i (1) A
vt w

2

1—i00 .
_t/ e~ Wi/ w? — 1G(w)dw + c.c.. (3.58)
it )1

Here G, which has the same analyticity properties as F, is given by

Fw)w— F(1) N dr

Glw) = w?—1 dw’

(3.59)
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The dominant asymptotic behavior comes from the first term. Carrying out the

integral we find

W,(t) = —%HéQ)(t)F(l) + O™ + cec.. (3.60)

which decays as t=%/2. Here HéZ) is the zeroth order Hankel function of the second
kind. Because the second term in Eq. 3.58 is subject to the same manipulations as
the first, it falls off as t=%2, and by repeating the process one obtains a sequence
terms falling off with increasing powers of %

There is another class of integrand, which can be written as \%2—%8 near the
branch point. Our straight waveguide model in Sec. 3.2 has an integrand in this class.
See Eq. 3.14. The leading term of the persistent wakefield falls off as 7% because the
integration by part in FEq. 3.58 is not necessary, which saves one power of .

In general, if the integrand can be written as F(w)(w? — 1)”_% near the
branch point, the persistent wakefield falls off as t=("+3) because integration by parts

has to be performed n times to bring down nth power of ¢.

3.3.4 Numerical Test

For a particular choice of parameters, h = 0.8, ¢ = 1.25 and ¢ = 10, the
full expression for W, in Eq. 3.54, m = 1 term, has been evaluated numerically. We
calculate the integration by the contour in Fig. 3.7. A numerical root searcher finds
all the complex poles and their respective residues in the lower half complex plane
(up to 330w, in the real part) . A few of them has been listed in Table 3.1. Of
course, there are their mirror images on the left side of lower halt plane, which we did
not show.

It is interesting to note that the imaginary part of the poles approaches a
constant value. For a physical interpretation, note that at higher and higher fre-
quency, the group velocity approaches the speed of light. The rate of energy leaking
out of the dielectric cavity, which is proportional to the group velocity, is thus con-

stant. As a result, the imaginary part of w;, signifying the decay rate, approaches a

8wt ig taken out.
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Mode number Pole Location (In unit of w.) Asymptotic value
1 (1.09888934698, -0.122566829057) | 1.110720735 - 0.2612752287 1
2 (3.34227453238, -0.24855915074) | 3.332162204 - 0.2612752287 1
3 (5.56038962312, -0.256685988028) | 5.553603673 - 0.2612752287 1
4 (7.78003711983, -0.258931266412) | 7.775045142 - 0.2612752287 1
5 (10.000416003, -0.259856580572) | 9.996486611 - 0.2612752287 1
6 (12.2211624663, -0.260325308928) | 12.21792808 - 0.2612752287 1
7 (14.4421158112, -0.260595004928) | 14.43936955 - 0.2612752287 1
8 (16.6631962693, -0.260764255552) | 16.66081102 - 0.2612752287 1
9 (18.8843601641, -0.260877386255) | 18.88225249 - 0.2612752287 1

Table 3.1: Location of the poles on the unphysical sheet.

constant.

Mathematically, we take the expression of Dy in Eq. 3.32, and write the pole

as ky COS(kx%) =il sin(kx%), i.e.

. h . h
ethag 4 ¢thay pVw? —1

ok R
elkfi — e_lkfi \/,ueuﬂ —1

Ye

where we have taken .

ivEEwh | ] T
eivirewh 1\ ¢

Solving for w, we have

1 /e
= \/ﬁh(er—zlog(\/g_ 1))

In our case, with = 1.25, ¢ = 10, and h = 0.8, we find

w

w = 1.110720735 4 2.221441469n — 0.2612752287:

(3.61)

as unity. Taking the limit as w approaches co, we obtain

(3.62)

(3.63)

(3.64)

It can be seen from Table 3.1 that the asymptotic value is highly accurate even down

to the second pole.

We select the parameters so that no trapped modes exist. It is shown graph-

ically in Fig. 3.14
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Figure 3.14: A graphical display of the trapped dipole mode solution.

Since there is no intersection between the thick gray curve with the dashed
line, no real poles exist on the unphysical sheet either. Our branch cut integral then
does not encounter any singularities; no particular care was needed to perform the
integration.

The resulting wakefield is shown in Fig. 3.15. Highly damped successive
reflections from the interfaces appear at early time. Careful scrutiny reveals that the
field oscillates at about 1.12w,. in early time, which is in between the least damped
first mode and the rest almost uniformly damped modes. At long time, however, it
is not an exponentially decaying tail.

We also evaluate the asymptotic limit from Eq. 3.60, where, we essentially
expand the integrand in Eq. 3.54 in terms of [,. The linear coefficient of the [, term
is the F(w) in Eq. 3.58, which gives the coefficient of {3 emiwet,

The long time tail oscillates at w. as shown in Fig. 3.16. The asymptotic

limit takes over quite rapidly.
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Figure 3.15: Transverse wakefield of the dielectric waveguide model.
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3.4 Conclusion

We have shown how the persistent wakefield arises from the waveguide cut-
off effect, and its connection to the analytical structure of the complex plane. We
have also demonstrated that it decays like t_(”"'%), in particular, =% for the straight
waveguide model, =% for our dielectric model. Another familiar example of the per-
sistent wakefield is the resistive wall wakefield, which also decays as t=(+3) . The
resistive wall wakefield does not oscillate since the dispersion( the relationship of the
wave vector with frequency) in the metal is k o< y/w.

Because the persistent wakefield does not involve resonance, its magnitude is
believed to be small compared to a damped resonant mode. Because of its persistent
nature, however we considered it to be necessary to quantify its strength for more
realistic structures. We develop various ways of accomplishing this in the next three

chapters.



Chapter 4

Persistent Wakefield Amplitude
and MAFIA Simulations

Since most of the geometries we are interested in as accelerator cavities can
only be simulated on computers, it would be useful to have a procedure in the code to
calculate the persistent wakefield. Most simulation codes, in particular MAFIA, do
have a wakefield calculation capability. In particular, there is provision to carry out
time domain simulation of the fields excited by a beam. It would be most straightfor-
ward to calculate the beam excited wakefield under outgoing wave boundary condi-
tions on the waveguide ports. Unfortunately, the accuracy provided with the available
broad band outgoing wave boundary condition is not sufficient to see the persistent
tail of the wakefield, namely, the outgoing wave conditions at the boundary matched
poorly near the waveguide cutoff frequency which is the source of persistent wake.
We have performed a few cases where the persistent tail at long time is completely
washed out by the errors.!

We have chosen to limit this part of the study to heavily damped cavities.

We use a very long waveguide, long enough so that, in the time range of interest,

the reflected field has not yet returned to the cavity. We can then proceed with

'While this work is in progress, some improvement in MAFIA has made it possible to approach
the matched load condition by placing lossy dielectric load at the waveguide end. But we have not
tested it.
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time domain studies without concern for the terminating boundary conditions on the
waveguides. (The "electric” boundary condition was actually used.) The waveguide
lengths used varied from 26 c¢cm to 60 cm, which allows us to study time intervals
somewhat larger than that proposed for successive NLC bunches. The excitation is
provided by a o, = 2.7mm Gaussian beam slightly displaced from the cavity center
in the horizontal direction. The time domain simulation requires a finite beam length
(0.). The length chosen suppresses the contribution of high frequency cavity modes
and waveguide cutoffs, which improves numerical accuracy. There is some discussion
of results with smaller length in the next chapter.

In all of the structures studied below we specify a very small cavity height
(the dimension in the beam direction, which we always refer to as z). The effect of the
very high frequency cavity and waveguide modes which are z dependent is completely
suppressed by the specified beam length, so that the fields excited may be thought of

as two dimensional.

4.1 Simulation

We first studied the cavity formed by two identical waveguides crossing at
right angles as shown in Fig. 4.1.

In order to damp the dipole wakefield of both polarizations, at least three
waveguides must be used. To simplify modeling, we choose four. By taking symmetry
into account, only a quarter of it with proper boundary conditions needs to be studied.
See Fig. 4.1(b). Note that with the boundary conditions selected only one of the two
dipole mode polarizations can appear. Furthermore, only odd indexed TE modes can
appear in the x-directed waveguide and even indexed TE modes in the y-directed
waveguide.

The dimension of the configuration, i.e. the width of the waveguide, is
chosen such that its fundamental mode has a frequency of 11.424 GHz, as proposed
for the X-band NLC, so that we could compare our wakefield with that from other
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(a) (b)

Figure 4.1: Crossed waveguides. The slightly off center dot is the position of
beam passage. The (b) figure is the upper right quarter of (a) with electric
boundary on the Y axis and magnetic boundary on the X axis.

means of wakefield suppression. The required dimension is calculated in the post

processing step by scaling. To scale to the right frequency, all lengths are multiplied

fo

e, Where fo is the fundamental frequency of the simulated structure.

by a =
All the field and force quantities are multiplied by a™2. We found that a waveguide
half width of 5.39 mm is needed to obtain f; = 11.424 GHz.

The MAFIA time domain simulated transverse wakefield is displayed in
Fig. 4.2(a). It is clearly not exponential. The oscillating period of the wakefield as
determined by the spacing of the wakefield zeros is strikingly uniform. It corresponds
precisely to the cutoff wavelength of the waveguide. Because the cutoff frequencies
of the z independent modes are all in harmonic relation to one another, this uniform
spacing of zeros is expected for the persistent wake. In order to determine the decaying
trend, the amplitude is calculated by averaging the square of the field over one period
of the waveguide cutoff wavelength. A log-log plot of this amplitude as a function of
time is displayed in Fig. 4.2(b). Note that time is shown as z (¢t) in all the plots. A
=% line (shown dashed) is fitted to the curve by visual inspection. As seen from the

plot, the persistent wake dominates the wakefield from as early as one wavelength

away from the source particle. Due to the extremely heavy damping, we are not able
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Figure 4.2: Wakefield of the crossed waveguides.
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to resolve any higher order damped modes from the wakefield, nor have we been able
to identify any by application of the Kroll-Yu method.

We next studied a set of more realistic models, namely a cylindrical pill-box
cavity coupled to the waveguides via inductive irises. The configuration is displayed

in Fig. 4.3. Only a quarter of the structure is shown because of the symmetry. The

Figure 4.3: Waveguide damped cavity.

waveguide has a half width of @ (the total width is 2a). The radius of the arc is fixed
at 1.75a. We then varied the iris width w-a and thickness ¢ - a to adjust the coupling.

The first case we tested has an iris width of 0.25a, and thickness of 0.05a.
Through the same scaling procedure, we make the fundamental mode 11.424GHz,
which gives the waveguide half width ¢ = 5.25mm. The cutoff of the lowest waveguide
mode is then = = 14.27 GHz. Two damped dipole modes are identified by MAFIA
frequency domain calculations. We applied the Kroll-Yu and the Kroll-Lin method as
described in Chapter 2 for the first mode and produced consistent results: Resonant
frequency = 17.365 GHz and () = 3.74. Because the second dipole mode frequency
was found to be above the cutoff of the TEyg mode in the y-directed waveguide too,

which is 25~ = 28.54 GHz, the cavity is coupled to two propagating channels and the
Kroll-Kim-Yu [17]? (KKY) method was required. It yields a resonant frequency of

?KKY show that with more than one channel propagating, the determinant of the S-matrix takes
the role of the reflection coefficient in the Kroll-Yu method. The same pole searching procedure
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Figure 4.5: The wakefield of a waveguide damped cavity. The iris has a width
0.25a and thickness 0.05a.
34.297 GHz and @) = 9.0.

The MAFITA time domain simulation of the transverse wakefield for this
case is shown in Fig. 4.4. An early exponentially decaying field is visible (it is not
shown in Fig. 4.4(a) because of the scale.) in the wakefield plot. The log plot of
the averaged amplitude in Fig. 4.4(b) exhibits perhaps three exponential damping
rates. The straight line fit shown by the dashed line determines a damping rate of
44.33m~1, which is to be compared to the unresolved pair of decay rates of 48.64m ™"
and 39.92m~! from the first and second dipole modes determined in the frequency
domain calculation earlier. The second slope of 27.6m ™! in the z interval 0.1 — 0.15
meters (the straight line fit is not shown.) is associated with a higher frequency mode
beyond the range of our frequency domain simulation. Figure 4.5 shows the log-log
plot of the same wakefield. The persistent wake is again quite apparent, and the

straight line fit shows that, as in the waveguide cross case, it dominates at an early

applies.
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stage.

It is very interesting to compare the wakefield of Fig. 4.2(b) and Fig. 4.5
at a typical distance, 42 c¢m, the inter-bunch distance chosen by the X-band NLC
design. The second configuration, despite having less damping, results in a wakefield
which is 3.5 times smaller. It can be understood by noticing the role played here by
the coupling strength.

With the contour integral in Fig. 3.13, and the results of Egs. 3.58 and 3.60,
Eq. 3.55 can be written as sums of the damped modes and persistent wake modes as

in the following:
Wi(t) = Z ozie_%i sin(w;t) + Z ’yjt_% sin(w;t + &;), (4.1)
{ J

where index ¢ sums over all damped modes, which are shown as complex poles on the
unphysical sheet. The index j runs over all waveguide modes. The damped mode
amplitudes a’s are primarily determined by the cavity geometry, particularly, the
size®, while the Qs and ~+’s are directly related to the cavity-waveguide coupling.
The weaker the coupling, the higher the )’s, but the 4’s vary in the opposite way.
The persistent wake is associated with an excitation in the waveguide. Its excitation
by a beam passing through the cavity is reduced by weakening the cavity-waveguide
coupling. The competition between the ()’s and ~’s will lead to an optimum coupling
strength, which gives a minimum wakefield. Of course, the minimum value depends on
the distance we are interested in. Nevertheless, it is clear from the above comparison,
that extreme damping can do more harm than good.

To further investigate this issue, we proceed to increase the iris thickness
in order to further reduce the coupling. The transverse wakefield shown in Fig. 4.6
is obtained by increasing the iris width to 0.25a, other parameters of the cavity-
waveguide system being kept unchanged. (It is understood that we always rescale
to keep the frequency of the accelerating mode at 11.424 GHz.) We see a factor of 2.2
reduction of the persistent amplitude in Fig. 4.6(b) compared with that of Fig. 4.4(b).

3Especially for the higher () resonances. In very low @ cases, the amplitudes depend moderately
on the coupling.
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Since the persistent wake still dominates the wakefield after 0.3 meters, the overall
wakefield at 42 cm is reduced by the factor of 2.2 as well.

The straight line fit in Fig. 4.6(a) determines a damping rate of 28.48m™".
By careful examination of the location of the zero crossings in the wakefield data,
we are able to determine the resonant frequency of the dipole mode* at 17.445GHz.
Based on the damping rate and resonant frequency, we determine the ¢} of the mode
to be 6.42. This represents a 72% increase with respect to the result 3.74 found for the
previous case. On the other hand, The amplitude of the damped mode, as indicated
by the intersection of the dashed line with vertical axis in Fig. 4.4(a) and Fig. 4.6(a),
changed only moderately from 2.33 x 107 to 1.817 x 10'7, a 22% change. This result
supports our argument on page 64 .

The results obtained from a third simulation with even larger iris width
(0.35a) is displayed in Fig. 4.7. The damping rate shown in Fig. 4.7(a) is 16.88m™!,
and the resonance frequency is 18.14GHz based on the same zero crossings location
method used for the previous case. The dipole mode thus has a ) of 11.3. The
persistent wake does not dominate the wakefield until 0.8 meters behind the source
particle. As a consequence, the wakefield amplitude at 42 cm becomes larger than that
in Fig. 4.6 even though the persistent wakefield amplitude has decreased. Therefore,
we know that the optimum coupling has a () in between 6.42 and 11.3.

4.2 Conclusion

We have shown a way to extract the persistent wakefield from MAFIA time
domain simulations. Through the examples, we observed the dependence of wakefield
amplitude on the coupling strength of the cavity-waveguide system. The results imply
the existence of an optimum damping to achieve a minimum wakefield at a specified

trailing distance i.e. time interval.

*We have assumed only one damped mode dominates at the early time. Even though our fre-
quency domain calculation of the previous case shows that there is a higher order dipole mode at
around 34 GHz, our assumption is reasonably well justified because of the weak excitation at higher
frequency due to finite bunch length.
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Notice from the above simulation that for a moderate value of (), we have to
calculate the wakefield to a very long distance in order to see the persistent tail. Our
current method, which requires that we extend the waveguide length proportionally,
becomes untenable, partly because of the finite difference meshing: the total mesh
points goes as square of the length in 2D, not to mention cubic growth in 3D. All
the mesh points in the space between the waveguides are totally wasted. We are thus
motivated to explore other methods of determining the persistent wakefield. One

promising method is mode matching, which will be described in the next chapter.



Chapter 5

Mode Matching Method

The previous chapter has demonstrated that the persistent wakefield decays

3/2in a waveguide damped cavity and oscillates at the waveguide cutoff frequency.

ast”
But the amplitude of the wakefield is far from easy to determine. In this chapter, we
present a new mode matching method, which involves concurrent mode matching on
two or more orthogonal surfaces, to calculate the persistent wakefield. Furthermore,
combining this technique with concatenation of generalized S-matrices, we illustrate
that the electromagnetic field for many regular shapes can be determined.

The technique of mode matching on orthogonal surfaces has potentially use-
ful applications on a variety of passive microwave circuits as well. We discuss a ninety
degree bend problem as an example.

We also derive, as a consequence of the complex form of the Poynting vector

Theorem, a weakened but non-trivial form of the unitary condition which applies to

a general S-matrix involving non-propagating modes.

5.1 Mode Matching

Mode matching is a semi-analytical way to solve electromagnetic fields in a
structure. It involves expanding the fields in two or more uniform regions in their

respective eigenmodes and matching the fields on the common surface. We have
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already used this method in Chapter 3, where the waveguide eigenmodes are the same
on both sides of the common surface and not cross-coupled. As a result, the equations
for the unknown amplitudes are easy to solve. Normally, the transverse electric field

E, and magnetic field H, are matched at the interface, which is equivalent to our

dH,

treatment on page 33 of matching =

and B,, respectively in the dielectric cavity
model.
A slightly non-trivial example of mode matching is to calculate the S-matrix

of a waveguide step, where the waveguide changes its cross section at a certain loca-

tion called the junction or interface. A typical step is illustrated in Fig. 5.1, where

an

© | -
Wl 2

- 2 W>
bl Ey | a bn /

v

Figure 5.1: A one-step waveguide, where the superscripts 1 and 2 denote the

ports, and the subscript n represents the channel.

the y direction is considered to be uniform. To simplify the discussion, the fields
are also taken to be uniform in the y direction. Under these assumptions there are
waveguide eigenmodes with F, = F. = 0, and an independent corresponding set
with H, = H, = 0 (See Appendix A.l. Treat the configuration as a waveguide in
Y direction.). Take the former case, which may be characterized by TE™ (n # 0)
waves incident with amplitude a! and a?. We need to determine the reflected ampli-

tudes b! and 2. Expanding fields on both sides of the interface in their respective
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eigenmodes(waveguide modes in Z direction), we obtain

EJI_ — Z( 1 zk z_l_bl zkinz)e—iwt]%? (51)

. ’ kl . . .

HJI_ = Z(_ﬂ)(a}lezkznz _ b;e_ZkznZ)e_ZWt§i7 (52)
= wp

Bt = Y(ane et 4 by e )T (5.3)

o ) k2 7.2 .12 .

H? = Z(ﬂ)(afnezkzmz — b2 ehim ) mivl g2 (5.4)
o

where k2, =\ /(£)? — (27)? and k2, = /(#)? — (%7)2. In deriving the magnetic field,

C

we have used Eq. A.17. The eigenmodes f’s and ¢’s are

> 2 nw .. i 2 nw ..
= sin(—ax)y, = sin(—ux)a, 5.5
2 2
PP=——=sin(ra)g,  § = ——sin(a)i, (5.6)

A/ W2 Wy N /W2 Wy

where
/fgﬁj:/ TF =6y p=1,2 nn'=1,2. (5.7)
0 0

Continuity for the fields (El and ﬁL) at z = 0 produces the following equations:

Slah + ) = (a2 +0E)f2, (5.8)

n

D (an = bk gn = X =kl (an, = b)3 (5.9)

n

In order to make use of Eq. 5.7, the mode orthogonality, Eq. 5.8 is multiplied by fg,
and integrated with respect to x from 0 to w; and Eq. 5.9 is multiplied by ¢%, and

integrated with respect to « from 0 to wy. This yields

ar +by, = Z 20 ) F(m,n') n'=1,2,..N, (5.10)
m=1
N
> (ay — bkl F(m/.,n) = —kZ (a2, —0b2) m' =1,2,..M, (5.11)
n=1

where
B (—1)m+1 mr sm( wg)
F(m,n) = ()2 = (@n) . (5.12)
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We truncate the summation to NV in the bigger waveguide, M in the smaller guide.
There are a total of M + N equations, with N 6. and M b? as unknowns. Solving the
linear equations expresses the b!’s and b2 ’s in terms of a! and @2 . This is the so-called
scattering matrix. The ratio of % is chosen to be 3= to optimize convergence [24].

With the above choice of the mode number ratio, the spatial resolution of the fields

on both side of the interface is the same.

5.1.1 Mode Matching Calculation on a Waveguide Cross

Figure 5.2: Crossed waveguides.

The structure under consideration is a crossed waveguide as in Fig. 5.2.
Taking symmetry into account, the waveguide cross can be completely characterized
by a 90 degree rectangular waveguide bend shown in Fig. 5.3. We note three ap-
propriate boundary conditions on the X = 0 and the ¥ = 0 boundaries: (magnetic,
magnetic) for the accelerating mode, (electric, magnetic) for dipole modes, and (elec-
tric, electric) for quadrapole modes. Because of the symmetry the (magnetic,electric)
case, corresponding to the other dipole mode polarization need not be considered
separately.

The method of single surface mode matching does not work here. The

matching procedure has to be performed for the two dashed line interfaces at the
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N
=2
N

Figure 5.3: A quarter of the crossed waveguide. The short dashed line is the
symmetric boundary; the long dashed lines are the waveguide junctions, and
the large black dot marks the beam position.

same time. The situation here is distinct from that of two or more serial waveguide
junctions in a pipe line, where the matching interfaces are parallel to one another.
For the latter case the S-matrix for the assembly can be obtained by concatenating

S-matrices separately computed for each junction.

Superposition

Before we introduce the new mode matching method, we digress to consider
a simple, more intuitive situation in circuit theory. The box in the Fig. 5.4(a) has two
output channels, and we propose to calculate the current flow through the resistors
R' and R? as a function of their values and of the current flows which would occur if
the two channels were shorted as shown in Fig. 5.4(b). All circuit elements are linear
so that the currents are proportional to the source strength, and the superposition
principle holds. In order to calibrate the effects of finite voltage on the R' and R?*, we
can take a voltage source V1 to replace the resistor R', also remove the source in the
box, and calculate the currents I! and I? which the voltage V' produces (Fig. 5.4(c)).

The result is the following:

I =y"y! and 2=y (5.13)



(c) (d)

Figure 5.4: A circuit model with two output channels.
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where we have used the linearity of the circuit. The proportionality constants Y

are called admittances. A similar expression can be derived from the configuration of

Fig. 5.4(d), which yields
[ = y12y? and 2= y2y?, (5.14)

Finally, the solution of Fig. 5.4(a) can be constructed from Fig. 5.4(b), (¢),

and (d) by taking account of the superposition principle.

1

11:}NW+YWﬂ+Q:EVR (5.15)
1
]2:}mW+Ymﬂ+ﬁ:EV? (5.16)

At the last equal sign, we used the matching condition at each of the resistors. The
linear equations can be easily solved to give the voltage V’s at each channel and

consequently the currents 17 through the resistors.

Mode Matching on the Cross

To expand the fields at the terminal planes in terms of corresponding waveg-
uide TE or TM eigenmodes, (See Eqgs. A.15 and A.17.) an appropriate set of f,’s and

gn’s in the cross configuration is

2 2
Ji(a,2) = sin(=Cw) g (e.2) = =/ sin(Tra)d, (5.17)
AT

dzwq wy

4 2 n+LHr . 2 n+Hr
Py, z) = cos(PT DT gy ) = cos( DT v 1)
dzw, Wy dzw, Wy

where the superscript denotes the junction. The coordinate directions are as shown

in Fig. 5.5, and dz refers to the thickness in the z direction. Because the direction of
the field is clear from inspection, we will often use the f’s and ¢’s without the vector
symbol.

Eq. A.20 gives us a close analogy between the black box circuit in Fig. 5.4
and the microwave junction, where Y,,’s are the inverse of the R’s. The ¢,’s and ¢e,’s

are the unknowns we need to calculate just like the I’'s and V’s.
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Figure 5.5: Shorted waveguide cross. The long dashed lines are replaced by
the solid lines to symbolize the shorting plane and the large black dot is the
beam position.

First, in the cross configuration, we are able to calculate the currents on the
terminals when the waveguides are shorted at the interface.(See Fig. 5.5 and compare
with Fig. 5.4(b).) The z dimension is not shown in the graph, but for the purpose
of illustration, we assume dz < w;. From Eq. 3.4, the transverse magnetic field H,
satisfies

1 o? 4r 0
——H, - V?H, = ——
2 o0t? ¢ Oy

where J, = gcé(x — dx)6(y)o(z— ct). We have taken g = ¢ = 1. Since the source cur-

Jz, (5.19)

rents on the interface 2 are the expansion coefficients of the magnetic field generated
by J. on interface 2 in terms of eigenfunctions of waveguide 2, we expand the Fourier

components of the field in the @ = (0, w;) region in terms of them.

Hi(w) = Y (af(w)e™ +az(w)e™ ) h(y, z)

n=0
= Tt - e (0 (320)
n=0
Hy(w) = Y (bf(w)e™ + by (w)e™ ") h(y, )
n=0
= > bl (w) (e — eTHRen Ty b (y, 2), (5.21)
n=0

Pl 2) = m sin((n + %”%) and ey = J(%)? - <%>z
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H' stands for the H, field to the right of the source particle and H! is that to the

left of the source particle. We also used the fact

H(0) |omin = H (@) |o=0= 0

xr

in arriving at Egs. 5.20 and 5.21. We have omitted z dependent modes in the ex-
pansion. Because we have specified that dz be very small, z dependent expression
produce a very high frequency wakefield which will be of no interest to us. The h,’s

satisfy orthogonal conditions:

The continuity of H, at * = dx requires

a:(eikmdag o e2ikmw1 e—ikmdx) — b:(eikmdag o e—ikmdx)‘ (523)

Integrating Eq. 5.19 from dz~ to dxt and taking its time Fourier transform
yields
0 0

() 4w == HL () = L8(y — )€’ (5.24)
Ox Ox c

In deriving the above we have replaced 6'(y) by (1/2)¢'(y — €) in order to avoid
ambiguity associated with the y integration from zero to w; carried out below. The
small positive quantity ¢ is set equal to zero after the integration. The factor 1/2
arises because the assumed symmetry of the configuration implies an equal current
source at y = —e. Multiplying by h,, carrying out the y integration as described

above taking account of the orthogonality property, and also integrating over z from

—dz/2 to dz/2, we find

ikm [a;(eik”dgc 4 ezikmme—ikmdx) . b:(eikmdag + e_ik”dx)]

. dz
_ —q2 sm(w%)F(n‘F T _— (5.25)
w dzwy Wy

Solving the linear Eqs. 5.23 and 5.25 simultaneously yields the unknown amplitude

ot = _iw‘ (5.26)

n kxn 1 _ e?ik;pnwl
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According to waveguide theory (See Appendix A.1), if we treat the H, field
as the longitudinal field of the waveguide TE mode, then the transverse field H,

follows;
Zkl’n 7 z tkenwi  —1 z a
Hy(w) = Y —graf(ehn® 4 et hn)—h, (y, 2)
n kJ_ ay
_ Z Zk a:(ezkmx 4 emk”wle_lkmgg)gz(y,z), (5‘27)
n 1
where
(n+3)7
k, = e
L w0y
Substituting the expression for a;f into Hj, we obtain
a sin (ky,dz
Hy () oy = 3 o S ) (5.25)

~ H sin (kyntw1)

The current produced by the charged particle on the interface 2 is the coefficient of

the g2 (y, 2), d
2sin(wi) 2 sin ky,dx
2y 2¢ Sl 9.29
(7)o q w @sin kynwy ( )

Observe that the current (i2)o, which is the dipole current we are interested in, is

proportional to the quantity dax when dx is very small. This is the result of the
boundary condition we imposed at x = 0.
In terms of an analogy with the circuit model, the above quantity is to be
compared with the I3 in the Fig. 5.4(b). The difference is the extra index n here.
Similarly, we obtain

Hy |"==> "¢

2 sin(w%)

w ZWo

(cos(kpndr) — cot(kypwr) sin(kyndx)). (5.30)

To obtain the (¢} )o, the source current at the interface 1, we follow the same procedure

to expand the Fourier component of the field in Fig. 5.6 to obtain

Hy(w) = Z_:O(ai(w)eik“"y+a;(w)e‘i’“z’my)hm($az)

= Z al (w)(eFomy — e2tkymwao=ikymy )] (g 2, (5.31)

m
m=0

(5.32)
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Figure 5.6: Shorted waveguide cross. The long dashed lines are replaced by
the solid lines to symbolize the shorting plane and the large black dot is the
beam position.

where
b (2, 2) = 2 COS(MTFi) and kym = ¢(f z (m 2
wydz wy c wo
We used the fact that
Hy(w) [y=uw2=0
in arriving at Eq. 5.31.
Similarly, the magnetic field H, satisfies
L, v, =T 2 (5.33)

where J, = qcé(x—dx)6(y)o(z—ct). Integrating Eq. 5.33 from —e to +¢ in y direction,

and taking its Fourier transform, we obtain

0 0 2q , v,
a—yHy(w) | e —a—xHy(w) |—e= ?5 (x — da)e'<”. (5.34)

Because of the symmetry boundary on the x axis, left hand side of Eq. 5.34 is twice
the first term. Taking account of the orthogonality of &, and integrating over z from

—dz/2 to dz/2, we find

. wdz thymw
2 d ym 2
at = - ¢ sin(%y) msilq(?nﬂ'—:]c)ei. (5.35)
tkym w widz wy w1 cos(kymws)
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By regarding H, as the longitudinal field of the T'E modes, we obtain

Zky2 (ezkymy 4 ezzkymw2e—zkymy)%hm(x7z)

Ho(w) = >

m=0

_ Z U Yy ( thymy + emkymw?e_lkymy)g:n(x,,z). (536)

the current (i} )o, as the coefficient of ¢,

2 sin(wd—z) 2 sin 2z
Ly = LAY Ll 5.37
(fm)o = ¢ w dzwq cos ky,ws ( )

The magnetic field H, at the center is also derived to give

2sin wd %) 2 o . ImT
H, |V=o= Z ¢ ”wldz k;m tan (kymws) sm(w—ld:z;) (5.38)

We note that the magnetic fields in the cavity region is the same for these two ex-

pansion, merely being expressed in terms of different expansion functions.

From the discussion of the circuit model, it is clear that we need the ad-
mittance matrix which relates the port currents with port voltages. To calculate the
admittance matrix elements, we first short the interface 1, and provide a voltage at
the interface 2, just as we did in the black box circuit example in Fig. 5.4(d). The
configuration is illustrated in Fig. 5.7. The Fourier component of the electric field F.

Q

Figure 5.7: The configure to calculate the admittance matrix. The assumed
voltage is applied on the thin dashed line.
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on the thin dashed line!, when expanded in the waveguide modes, becomes

E2 |l’ wy Z f2 y7 7 (539)

where f2(y, z) is defined in Eq. 5.18.
The field in the region # < w; can be naturally expanded in terms of left

propagating and right propagating components as

BHw) = Ylafe b aze iy, )
= Za (e — e7Ham®) fi(y, 2), (5.40)

where the boundary condition at v = 0, EZ(x = 0) = 0, has been taken into account.
Comparing Eqs. 5.39 and 5.40, we find

62

at = — n____ (5.41)

n ezkmnwl _ e—zkmnwl

It we regard the K. field as the transverse field of the waveguide TE mode, the
associated H,(w) field obtained by Eq. A.17 is (notice that the propagation direction

is x instead of z.)

Ckl’n 2 z 2 z
Hy(w) = Y ——afike (e + 7M7) fi(y, 2)

= > -

Ckacn eikmnx_l_e—ikmnac
n

e2g:(y,2). (5.42)

w eikmnwl _ e—ikmnwl
Thus, the current on the interface 1 (x = wy) is

kl’n .
2= i cot(kpnwr)el. (5.43)

n
w

Similarly, the longitudinal H,(w) field can also be obtained from Eq. A.9 as

o) = X Safleh — o= ) iy )

ww

CkJ_ ) ezkmnx _ e—zkmnx D) ) (n + %)ﬂ-y
= > —e - - sin . (5.44)
w  etkenwr — e—thanwi \| dzqp, Wy

n

'there are no E, components because, as mentioned before, we are only including the z indepen-
dent modes.



For y = w,, we have

cky sin(kynx) 2 5
Ho () [y, = S 1),
(@) Iy iw sin(kpptor) dzwz( )en

The currents on the interface 2 are then

. cky sin(ky,) 2

= g d / dz —1)" 1 2
tm / ! iw sin(kppwr) dzwz( Vg 2)e,
9 (_)m—l—n—l—l mm (n—l— )=

- w1 wo 2
Zn: W /Wy (2)2 — (mzy2 — ((TH'%)W)z "

[y

C

The admittance matrix elements are

R i zz (nt2)r
Y = Wi e - \ d
mn A/ WiWsy ( ) (mr)g . ((n+5)7r)2 an
kl’n .
Y2 Pan cot (kpntw1)6pm,
w
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(5.45)

(5.46)

(5.47)

(5.48)

Similarly, by assuming a voltage across interface 1, and shorting interface 2

as in Fig. 5.8, we are able to calculate the fields at the junctions; in particular, the

Figure 5.8: The configure to calculate the admittance matrix. The assumed

voltage is applied on the thin dashed line.

fields H,(w) and H,(w) are

b isin(k
H.(w) = ch i sin(k, y)el fi(x,z) and

—~ W cos(kynwz) "

¢ 1 cos(kyny 2 mw mn
Hyw) = > — (ky )el —ux).

—~ wcos(kymwy) "V widz wy W

(5.49)

(5.50)
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Following the above expression, the resulting currents can be determined on both

interface 1 and 2. Therefore, the admittance matrix elements are

m?r(n+1_)77
20 (_)m—l—n—l—l mmT At 2/7
vy = = L - d 5.51
o W /W Ws (g)2_(m)2_((”+5)”)2 o ( )
Eym .
yi == Py i tan (kymws )0 . (5.52)
w

The waveguide junction is completely characterized by the admittance ma-
trix, which relates the port currents with port voltages. The consistent solution of

the cross waveguide is

N R N A W G e;
= + —Y* , (5.53)
2 ) vy e )\ @

where Y¢ is the diagonal matrix with the characteristic admittance of the outgoing
waves. The last equal sign is the matching condition for outgoing waves.

The resulting voltage on the surface can be easily solved:
= (Y —Y)! : (5.54)

where Y is understood as the admittance matrix. The indices n and m both run from
1 to oo, but since the value of any fixed row or column element falls off as m=2 or

n~2, it is quite safe to truncate the series. A numerical solution of ¢,’s is obtained.

At last, from Eqgs. 5.42, 5.50 and 5.38, the total H, at + =y = 0, is obtained

ck 7 2
H _ Tn 2
v(«) Zn: w sin(kgntwr) wgdzen
c mnw 7 2
> oo &
—~ jw wy cos(kymwz) | widz

2sin(wd—i) 2 ., mT
T ;—q » 2 ond o tan(kymwl)sm(w—ldx). (5.55)

As a result, the dipole wakefield

Wi(t) = /WL(w)e_M = /%e_mdw (5.56)
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is readily available. Careful observation reveals that each term in Eq. 5.55 has poles
at the modes of the cavity formed by shorting the waveguides, i.e. k,,wl = m7 or
equivalently ky,wy = (n+ %)7‘(’ There are, of course, no such resonances because the
waveguides are not shorted. It is the sum of all 3 terms which cancels the spurious
cavity mode resonances.

The persistent wakefield, as a special term of the wakefield, is obtained by
using Eq. 3.58 in Section 3.3.3. Essentially the integrand of Eq. 5.56 is expanded
at the cutoff of the waveguide modes in terms of the corresponding wave number
k (either k., or ky,). The last term of Eq. 5.55, caused by the currents (i} )o or
equivalently, (i2)o, is an even function of k. Therefore they have no branch point
singularity. Thus, for the purpose of extracting the persistent wakefield, we omit
them. In the numerical calculation, we determined the coefficient of the & term, F'(1)
in Eq. 3.58, by means of a finite difference quotient.

The resulting persistent wakefield is written as a sum of the contribution

from each waveguide mode.

Wy(t) =Y 35t~ sin(wit + ¢;), (5.57)
J
where
T
i =/ L), (5.58)
Comparison

In the previous sections, our mode matching calculation is based on point
charge excitation. In order to compare the result with actual simulations done with
finite bunch length, a form factor has to be put in to reflect the bunch structure. The
wakefield W*(#) of a bunch with bunch profile p(#) is

Wh(t) = / p(1YW (t — t)dt' = / ()W (w)e“ du, (5.59)

where p is the Fourier transform of the p(¢). The Fourier transform of a Gaussian

beam profile is also a Gaussian. The Gaussian expression prohibits straightforward
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contour closure. At large ¢, however, we can use the saddle point method (see page

118) to derive
W) = 3235 p(wi)i 7 sin(wit + ¢,), (5.60)
J

the same as Eq. 5.57 except for the form factor p.

We have shown the persistent wakefield of the cross in Fig. 4.2(a), where
one persistent mode (TE!'?) is clearly visible. The higher frequency modes are sup-
pressed because the bunch length (2.7 mm) corresponds to a form factor with fairly
narrow frequency width. A shorter bunch length (1.35mm) case was also run, and the

wakefield is displayed in Fig. 5.9. The persistent nature (t_%) is also dominant, and
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Figure 5.9: Wakefield with a 1.35 mm beam in the waveguide cross.

higher order harmonics are clearly present. In order to determine the higher order
persistent mode amplitude the envelope method previously used in Chapter 4 does
not apply. We therefore take a section of the wakefield from a MAFIA time domain
calculation at a time when the persistent wake dominates, multiply by t%, and then

Fourier transform to obtain its amplitude and phase. Since all the waveguide modes
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are harmonics of the TE! mode, only a section of the wakefield with length equal to
the cutoff wavelength of TE!? is needed.
Table 5.1 compares amplitudes and phases of the mode matching calculation

with that from the MAFIA simulation.

Beam Mode MAFIA Mode matching

length | number amplitude ‘ phase ¢; amplitude ‘ phase ¢,
T Fyo 1.69468 x 107 | —0.8528819 | 1.73054 x 107 | —0.825266
2.7mm | TEy | 0.324174 x 107 | 0.6851612 | 0.32468 x 107 | 0.637734
TEs |0.161986 x 107 | 0.9210403 | 0.157393 x 107 | 0.858344
T Eio 2.1428 x 107 | —0.8481099 | 2.18093 x 107 | —0.825266
1.35mm | TFEqy | 0.822358 x 107 | 0.6949352 | 0.819026 x 107 | 0.637734
T Fsy 1.27451 x 107 | 0.9868003 | 1.26221 x 107 | 0.858344

T Eho 2.35575 x 107 | —0.825266
0 T Ey 1.11492 x 107 | 0.637734
T s 2.52646 x 107 | 0.858344

Table 5.1: Comparison of the MAFIA and mode matching calculations of
the persistent wake parameters of the waveguide cross. The mode matching
calculation uses 20 modes in each waveguide. A finite difference quotient
method is used to obtain the persistent amplitude.

The amplitudes are in quite good agreement, but a small phase discrepancy
exists, which can be attributed to the numerical error of MAFIA. We notice that
the phase discrepancy increases with higher mode number, which indicates poorer
modeling of the rapid oscillations in the transverse direction. The discrepancy was
originally larger than that shown in the table. The original values have been adjusted
by applying the correction described below.

As a check on the reliability of the phase extracted from our MAFIA time
domain simulations we calculated the persistent wake of a straight waveguide shorted
at one end, a configuration for which an analytic result for the persistent wakefield
phase is available. We found out that the MAFIA computed phase was in error
by an amount related to the distance away from the source particle. The error at

zero distance was obtained by linear extrapolation. After the linear correction, the
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agreement of all the modes improves significantly. There is a small residual error which
increases with mode number, indicating higher order errors. The entries in Table 5.1
were adjusted by a similar linear phase correction scheme, which also improves the

agreement.

5.1.2 Mode Matching for More Complex Geometries

We have illustrated the mode matching method on a waveguide cross. With
the help of S-matrices, more complex geometries can be solved. To illustrate the

procedure, we will consider the geometry shown in Fig. 5.10. To make the drawing

Figure 5.10: A larger cavity loaded by waveguides. The dot represents the source.

simpler, we arbitrarily place the source and assume the metal wall on the lower x
and y boundaries. Following the previous section, we are able to find the current
(¢1.)o and (:2)o due to the source if surfaces 1 and 2 are shorted. Also the impedance

m

matrix Y12 is available from our previous calculation, which gives

i1 ¢! i1
=y |+ (.2)0 . (5.61)
? € (l )0

We have omitted the subscripts m and n.

From the outgoing boundary condition, we have

it =Yl (5.62)
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on port 1. On port 2, we need to use the S-matrix S?3 connecting ports 2 and 3.

(2)- (%)
=9 , (5.63)
b 0

where we have used the fact that there is no incoming wave at port 3. From

From the definition, we have

et =a>+ ¥ =a*+ 52223a2, (5.64)
we obtain
a>=(1+53)7e* and b =(1— (14 S2) e (5.65)
Thus the current and voltage are related by
2 =Y (a® = b)) = Y*(2(1 + SZ3)7T — 1), (5.66)
Putting Eq. 5.61, 5.62, and 5.66 together yields
61 il chel
y12 L) 2 . (5.67)
e? (1%)o Y2(2(1 4+ S33)7t — 1)e?
Eq. 5.67 can be solved to obtain the voltages e' and e?, which gives the fields in the
junction.
With concatenation of S-matrices, even more complex geometries can be

solved, for example, the fields in the irised structure, shown in Fig. 5.11, are obtained

e ( ! ) . ( (') ) _ ( YIE((L+ ST - et ) | (5.68)
¢? (i)o Y2(2(1 4+ 53)71 = 1)e?

The S-matrices S22 and S** can be calculated from the concatenation formula derived

by solving

in Appendix A.3.

5.1.3 Mode Matching Calculation of S-matrix

The scattering matrix, defined in Appendix A.2, is an important quantity in

describing microwave junctions. We have shown in the early sections how to calculate
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Figure 5.11: A complicated cavity with waveguide loading. The dot represents
the source.

the S-matrix of a step. With mode matching on 2 orthogonal surfaces at the same

time, we can solve the ninety degree bend problem in a similar way.

H-bend and E-bend

To illustrate the procedure, we calculate the S-matrix of a rectangular bend,
as in Fig. 5.12. The admittance matrix of the “H-bend” is closely related to the
one we calculated in the previous section. Only the lower y boundary condition is

different. The transverse field expansion on the interface is then

Ey =Y e, and H =Y i,d,, (5.69)
P

p

2
y/—sm z g = —y/w—lsin(TU—fx):%, m=1,2,..., (5.70)
2
y/—sm g = 1/—sin(ﬂy)g), n=1,2,.., (5.71)
W2 W2

where the z dimension is completely dropped. The admittance matrix Y relating e,’s

where

and 2,’s becomes

Ckym eikymwg _I_ e—ikymwg

w eikymwg _ e—ikymw2

St (5.72)

m'm
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E
® £ g

@E |w 1‘EW2

2 X X
=

=

(a) (b)

Figure 5.12: A 90° bend. (a): rectangular waveguide bend with T'E°" mode,
i.e. electric field pointing in/out of paper, called H-bend. (b) rectangular
waveguide bend with T'E° mode, i.e. electric field going across waveguide,

called E-bend.

c 9 (_)m-l-n-l-lmﬂ

Y21 — — wy w2 7 573

nm @@M(%)z_(z_fy_(%)z ( )
2 _ \m+4n+1lmr nrw

e - - (5.74)

E\/M(%)Q — (ZL}_IT)? _ (%)27
Ckxn e’ik:pnwl _I_ e—ikmnwl

) & S (5.75)

w eikmnwl — e—ikmnwl

where

)= (=) (5.76)

Wwa

b= JEP =Dt ke
c
The S-matrix is then computed from the formula
S=(1+Y)'(1-Y). (5.77)

For further discussion see Appendix A.2.
We used the dimensions of a standard WR90 waveguide rectangular bend,

(w; = wy = 0.9 inch) and calculated the TE® mode reflection coefficient at 11.424

GHz. In carrying out the S-matrix calculation, Eq. A.27, we used 10 modes in each
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waveguide. The resulting amplitude and phase agree very well with values from the

“Waveguide handbook” [25] as shown in Table 5.2. The error from the “Waveguide

handbook” is about 1%, so is the mode truncation error.

H-bend Handbook

Mode matching

S11 0.769 40.052 1

0.770 +0.053 1

Table 5.2: Numerical comparison on the S-matrix of the H-bend.

In the case of the E-bend, it is the TM modes that are involved (again, we

have assumed uniform z dependence). The only quantities involved are H., E,, and

E,. Thus, the transverse field expansion is

E)J_ :Zepﬁ

p

2
f_}n 1/—cos(—m7r:1;):f;,
w1 w1
- 2 nw .,
I =] cos(—y)3,
Wy Wy

where

2
7L =\ cos(*—a)z,
w1 w1
_ 2 nw ..
7 = = cos(“Ty)z,
Wy Wy

ﬁJ— = Zipgpv
P

(5.78)
m=0,1,2,.., (5.79)
n=0,1,2,.. (580

Notice that the indices m and n start with 0. The admittance matrix elements (using

H, = X Eyor Hy = T U X EL),
Yé}m _ Y elikymw + e_likymu@ o
Ckym ethymwz _ o—tkymws

N w 2 (_)m+n+1
T ey (92 = G - ()

yi2 w 2 (_)M+n+1
e (27 = (5 - (7

w e’ik:pnwl _I_ e—ikmnwl
Yo = .

Ckxn eikmnwl — e—ikmnwl

follow.

So far, we have dealt with z independent modes.

(5.81)

(5.82)
(5.83)

and

(5.84)

The S-matrix of the z

dependent modes, as an extension to the previous results, are derived by observing
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first, modes with different z variation are independent from one another because of the
symmetry; second, by taking the z independent solution H,(x,y) in the H-bend and
FE.(x,y) in the H-bend as the TE and TM eigenmodes of the waveguide (propagating
in z direction), respectively, solutions of the z dependent modes can be obtained by
superimposing 2 waves with opposite wave number in the z direction. The solutions
obtained usually have mixed T'E and T'M modes if viewed in ports 1 and 2. Linear
combination of the solutions are derived to give the S-matrix.

Fortunately, we only need to calculate the reflection coefficient of the TE!
mode (one variation in the z direction, no variation in x or y directions). There is no
TM!Y with which to be mixed. The z independent E-bend calculation at frequency
=y /w? — (££)? yields the result.

A standard WRY0 waveguide is also utilized to test the accuracy of the
method. The values of w; and w, are chosen to be the narrow dimension, 0.4 inch,

the z dimension is 0.9 inch. At 11.424 GHz, we calculated the z independent E-
bend S-matrix at \/11.4242 — (21070 _y2 — 93548 (GHz with 10 modes in each

0.9x2x0.0254

waveguide. The result agrees very well with that from “Waveguide Handbook” [26].

E-bend | Handbook | Mode matching
S11 0.610 -0.307 I | 0.608 -0.307 I

Table 5.3: Numerical comparison on the S-matrix of the E-bend.

5.2 General Conditions Satisfied by S-matrix In-
cluding Non Propagating Modes

In numerical calculations, non-propagating modes are frequently encoun-
tered. In the cascading formula above, evanescent modes in region 2 are actually
very important because they do penetrate the short distance L. While the ampli-

tude scattering matrix defined later in the section is unitary with propagating modes
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only, thus widely used, it is easier to work with voltage scattering matrix to derive a

generalized unitary condition when non-propagating modes are involved.

5.2.1 General Property of a Waveguide Junction

It is very difficult in general to calculate the electromagnetic field in a waveg-
uide junction due to the complicated geometry involved. It has been pointed out [27]
that a complete solution of an electromagnetic problem is not always desired. Often
a description of conditions at the terminals of a junction is sufficient.

Consider a junction made of perfect conductor completely surrounded by
an imaginary surface S. This surface cuts the waveguides perpendicularly at some

planes called terminals as shown in Fig. 5.13.

éds (e)—
/_

Terminal

(e)
Terminal S

Figure 5.13: Example of a two-terminal junction.

Maxwell’s equations for a periodic (e=*') field are

(5.85)
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The €, p, and o are real here. Then if

Vo ExH)Y=H -V xB—E-Vx il =iop* 0 — (Zo+ 5 B (5.86)

C C

be integrated over the volume enclosed by the surface S and the volume integral con-

verted into a surface integral by Gauss’s Theorem, we obtain the Poynting’s Theorem:

(B 7y a5 = - MEKWMWMV—QE/EEWV (5.87)

Cc Ju &

Since the field vanishes everywhere over the surface S except at the terminals?, the
surface integral reduced to an integral over the terminals. Since the dS is perpen-
dicular to the axis of the waveguide, only the transverse components of E and H
contribute to the integral. Expanding the transverse field as in Eqs. A.18 and A.19,
Eq. 5.87 becomes

4 — — ) — —
S it = ﬂ/E BV — E/(6|E|2 — uld)H)av
n & v C Ju
— 2P 4 dic(Wy — W), (5.88)

where [ ﬁ X g dS = —0um follows directed from [ ﬁ X G dS = —Oum on page 132.
Wiy and Wi are the average magnetic and electric energy, respectively. A factor of
2 comes from time averaging. Eq. 5.88 provides a connection between the terminal

quantities and the field quantities.

Symmetry Condition of Impedance and Admittance Matrices

Let there be two solutions of the Maxwell’s equations that satisfy the bound-

ary conditions, the

VX B = el (5.89)
Vx H' = %UE)I—I—%GE)I ‘

VX B = el (5.90)
Vx H? = %UE)Q—I—%GE)Q ‘

2Tt is not precisely true if the waveguide is made of lossy material since the fields penetrate the
wall.
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follows from Eqs. 5.85. The superscript 1 and 2 is used to distinguish the solutions.

Likewise

s

VA(E'xH*~E*xH")Y = H*VxE'—E'""Vx H*— H"-V x E*+ E*.V x H'. (5.91)
From Egs. 5.89 and 5.90, we obtain
Vo (E'x H* — E* x H') =0. (5.92)

It Eq. 5.92 is integrated over the volume enclosed by the surface,

oz/v-(ﬁl « H? — F? xﬁl)dv:f(El < 0 — B % {445 (5.93)

S

holds too. The right hand side of Eq. 5.93 can be expressed in terms of terminal
voltage e and current ¢, which gives
0= Z(e}zf — e?@;) (5.94)
J
By substituting the definition of admittance matrix into Eq. 5.94, we obtain
0= Z e}ijeZ — e?ijei = Z(Yfk — ij)e}ez. (5.95)
ik ik
Since Eq. 5.95 holds for any sets of applied voltages at the terminals, it is obvious
that
Yir = Yij, v gk (5.96)

It can be shown in a similar way that
Zik = Ly, v g, k. (5.97)

Therefore impedance and admittance matrices are always symmetric.

5.2.2 Voltage Scattering Matrix

The voltage scattering matrix (VSM) S, has several general properties of
importance. One of them is its symmetry, arising directly from the symmetry condi-

tion of Y and Y°. We have shown the symmetry of ¥ in the previous section; Y. is
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diagonal, therefore certainly symmetric. Thus
STy = (Yo = Y)Y+ V) 'Ye

= Y'Y+ Y)Y Y (Y + Y)YV

= 2V (Y 4+ V)V — (Y + Y)Y+ V) 'ye

= 2Y(Y° +Y) 'V —-Y©

= Y RY +Y)'YV — (Y 4+ Y)Y+ V)

= Y'Y +Y) (Y =Y)=Y"5 (5.98)
The symmetry condition of Y and Y© has been used in the first line.

An additional condition is imposed by Eq. 5.88. If Egs. A.21 and A.24 are
substituted in Eq. 5.88,

—

(@ + b)Y (@—b) = @Y +5TY —ves—styes)a
= 2P 4+ 4ju(Wy — Wg) (5.99)
follows. For a lossless junction, i.e. P = 0, the real part of Eq. 5.99 vanishes, which
is
0 = @Y+ Sy —ves—SyeS)a+a(y™ + Sty — y=s* — Sty=g=)a-
= @Y+ YT stye Lyt —yes - gtyet _gtyes — sty<tsya.  (5.100)

Since Eq. 5.100 has to be true for any amplitude @, the sum inside the parenthesis
has to vanish, it yields

Ve vyt =St ye 4+ vehs 4 STyt — ye) 4 (vy° — vehs. (5.101)

Eq. 5.101 is the Generalized Unitary Condition(GUC) for the VSM S, the current
scattering matrix 5; follows a similar derivation which we will not repeat. The result

is given below:
S = (Z°+ 2y Yz - 27), (5.102)
STze = 7¢8;, (5.103)
76+ 70 = SNz + 208+ SH(zt — 76) + (7° — Zz°1)Si. (5.104)
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5.2.3 Voltage and Amplitude Scattering Matrices

In microwave network analysis, the amplitude scattering matrix is widely
used [27] [29]. It follows the same derivation as the voltage scattering matrix except

in Eqs. A.18 and A.19, ﬁ and ¢, are normalized:
1 —

—fn

VYe

So that [ f; X G - dS = =8, still holds, but f’s and ¢’s are not normalized to unity.

fn =  Ge = JYEG, (5.105)

Eq. A.21 is changed into
eg=a,+b, , i, ="(a,—by). (5.106)

We need the admittance matrix Y,, which is given by

1 1
Y, = Y ——, 5.107
Y e (5.107)

to obtain the corresponding amplitude scattering matrix

S, = (I+Y,)"Y(I—Y,). (5.108)

It follows from the above two equations that both Y, and 5, are symmetric

and also that

1
Se = VYes, 5.109
Ve (2109
holds.
Without DNP modes, we have
(@ +0)a@—0b) = a(I+5—5,—81s,)a

= 2P 4+ 4ju(Wy — Wg). (5.110)

With P = 0, the familiar result
SiS, =1 (5.111)

follows.
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GUC, on the other hand, not only contains the same information about
scattering matrix elements connecting propagating modes, but also provides extra
information about scattering matrix elements related to DNP modes.

Suppose we have a lossless junction with N number of propagating modes
and M number of non-propagating modes, the characteristic admittance Y“ and VSM

S, can be written as

Yi 0 S S
' S, = T (5.112)
0 1B, So1 S22

ye =

where Y7 is a N x N diagonal matrix with the N characteristic admittances of the
propagating modes; j By is a M x M diagonal matrix with purely imaginary matrix
elements. S, is also split into similar blocks. Inserting them into Eq. 5.101, we obtain
Y1 0
0 0

St sy Yy 0 Si1 S
st st 0 0 So1 Soy

IR 0 0
Si, S, J\0 jB,
0 0 St S12

n , (5.113)
0 1B, So1 S22

It breaks down into 4 equations:

i = SHViSu,
0 = STYiSi — S4B,
0 = SLYiSu +jBaSa,
0 = STLViS1: 4 jBySyy — S1,7Bs.
Eq. 5.114 is the same as Eq. 5.111. Egs. 5.115 and 5.116 are complex conju-

gate of each other. The last three equations can be further simplified if we take gen-

eralized symmetry condition into consideration. Substituting Eq. 5.112 into Eq. 5.98,
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the symmetry condition becomes

SthYi 53,iB, _ YiSu  YiSwe ‘ (5.11)
SiaYa SpiBs jB2Sa1 jBaSas
Eqgs. 5.115 and 5.117 become
S2157 = 55
B (5.119)
5215?2 —|— 522 - 552 — 0 (5120)

They relate Syp, Si2, and Sy, with their complex conjugates, respectively,
i.e. a generalized reality condition. Current scattering matrix has similar results.

Because of the relationship of amplitude scattering matrix and voltage scat-
tering matrix shown in Eq. 5.109, the generalized unitary condition of the amplitude
scattering matrix S, with DNP modes is readily available by substituting Eq. 5.109
into Eq. 5.101.

Besides the extra information, GUC is exact no matter where you do the
mode number truncation, which allows one to check S-matrix in numerical calcula-

tions.

Application: Lossy Waveguide

In the presence of a lossy waveguide, the characteristic admittance of the
waveguide mode is no longer real. See Fig. 5.14. To simplify the algebra, let us
assume only TE®! waveguide mode is involved in matching the field at the interface.
For a TE mode with electric field pointing out of the paper plane, the characteristic
admittance

Y= %, (5.121)

w
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Figure 5.14: Example of a lossy waveguide loaded cavity. The gray lines
represent a lossy waveguide and the cavity enclosed in the solid line is assumed
to be made of perfect conductor.

where the propagation constant of the waveguide mode &, = %« Jw? — w2, For a lossy®

waveguide, the field dependency on = becomes

ehrTemoT — eikm(l-l_?éwm, (5.122)
where « is the attenuation constant, and @, = 5—; Therefore the characteristic
admittance

ck, 7
Ye=—(1 . 5.123
) (5,129

By substituting Eq. 5.123 into Eq. 5.101, we obtain

1 . cC 1 c

Ty 4 ——

5 kp Sy, (5.124)
w W

2 2
k= S (SSk) S, + S
w w

which simplifies to
i

1=559,
S8 +2Qw

(S, — 5%). (5.125)

4

In assuming 5, = re', we obtain

] , sind
= r° —
Qw

3Strictly speaking, our discussion applies only to the perfect conducting wall, see footnote on
page 94. It is still a good approximation if small resistance p is introduced to the waveguide wall.
First, the waveguide eigenmode distortion is a 2nd order effect. Thus the field expansion is still
valid. Second, the difference of the r.h.s. of Egs. 5.87 and 5.88 is of second order too.
Another way of making the waveguide lossy is to fill the waveguide with material of non-zero o
which has no contradiction with the previous derivation.

r. (5.126)
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The amplitude r is solved to obtain

sin? 0 N sin # ~ 14 sin #
102 1 2Q.  2Q.

r=4 1+

(5.127)

Due to the lossy nature of the waveguide, the scattering matrix of a junction is no
longer unitary even though the junction is lossless. The amplitude is phase dependent.

By a similarity transformation, the amplitude scattering matrix

S, = VY¢S, =9, (5.128)

1
A /Yc
is, in this simple case, the same as voltage scattering matrix. Thus S, is not unitary
either.

Taking the dominant TE’' mode as a practical example, the attenuation

constant « is [28]
_ Jewll+ ()2

“= %b /1_(%)27

where a and b are the width and height of the waveguide ( it assumes that a > b),

(5.129)

and A is the free space wavelength, and o is the conductivity of the metal. The @,

therefore follows

(5.130)

where 6, is the skin depth defined as \/%

Taking WRI0 waveguide (¢ = 0.9 inch, b = 0.4 inch) at 11.424 GHz for
example, the @, of copper is 8.52x 10 and Q,, of stainless steel type 304 is 1.32 x 10°.
It shows that stainless steel can cause 4 x 10™* amplitude variation depending on the
phase.

Also note that (), dropped as the frequency approaches the cutoff of the
waveguide mode because of the numerator in the Eq. 5.130. Further more, % is in-
versely proportional to the square root of frequency. Therefore, at higher frequency

and closer to waveguide cutoff, the phase modulation of the scattering matrix ampli-

tude will be appreciable.
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5.2.4 Conclusion

We have derived voltage/current scattering matrix including DNP modes
from admittance/impedance matrix and their corresponding generalized symmetry,
unitary condition. Using a simple example, we have demonstrated the extra infor-
mation contained in them compared with traditional amplitude scattering matrix
applied only to propagating modes. We have also shown an example of lossy waveg-

uide attached to a lossless junction, where the scattering matrix is not unitary.



Chapter 6

Minimum Wakefield Achievable by
Waveguide Damping

If one were unaware of the persistent wakefield, one would conclude that the
wakefield which remains after some fixed time interval is always reduced by decreasing
()ert, and that limits on achievable wakefield suppression arise from limits on how low
a ()ert can be achieved. This is no longer obvious if one takes the persistent wake into
account because our simulations have suggested that measures which increase cavity-
waveguide coupling strength also tend to increase the strength of the persistent wake.
In this chapter we present a circuit model which indicates that for a fixed separation of
the lowest resonance from the cutoff and at fixed time delay that there is an optimum

rather than a minimum ().,; which minimizes the wakefield.

6.1 Circuit Model

We used two waveguide models in Chapter 3 to illustrate the origin of the
persistent wakefield. Despite the simplicity of the geometry of the structures con-
sidered the required electromagnetic field computations were quite complex. In this
chapter, we will utilize a much simpler equivalent circuit to model the waveguide

damped cavity system. By lumping the distributed field into circuit parameters,

103
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the model explicitly demonstrates the relationship between damped and persistent
components of the wakefield in a simple mathematical form, thus making significant

qualitative statements possible.

11 V1 | L
>

L1 Cl__ C—o 3Ls

Figure 6.1: The circuit model of a waveguide loaded cavity. Thick line repre-
sents a transmission line. L, €, Ly are understood as distributed quantities.

The circuit model is shown in Fig. 6.1. The L; and C; form a lossless
resonant circuit to mimic the cavity. As explained later the transmission line with
shunt inductance L; mimics the waveguide. We note that L and ' are inductance and

capacitance per unit length, respectively, while L; is inductance times unit length.

6.1.1 Transmission Line

The differential equations of the transmission line with shunt inductance are

explained below. See Fig. 6.2. At a given location z, taking a small increment A,
V(xt) L V(xxt)
=p{TYVTN —
1(X,t) | (X+2X,1)
| J(X,1)
Ls

C_

Figure 6.2: Transmission line with shunt inductance.
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the voltages are related by

V(e + Ax,t)—V(z,t) = _LA:EZ_; (6.1)
In the limit Az — 0, the above equation becomes
aVv al
— =—L—. 6.2
Ox ot (62)
Similarly
dq d
Ie+ Ax,t)— (2, t) = —— — [, = ——(CAzV) — I, (6.3)
dt dt
where ¢ is the charge on the capacitor C'. Also we have
Ly dI
=V A
Az dt v (64)

Remembering that L is the inductance times length, the inductance of a short section

Az is thus % Differentiating Eq. 6.3 with respect to time, and utilizing Eq. 6.4, we

obtain
%1 v v
grot o L, (6.5)
Combining Eqs. 6.2 with 6.5, we are able to obtain a single equation
v oV L
— —V =0 6.6
ot? 0xz? + L, (6.6)
involving V' only.
For a periodic (e~*!) field,
0*V L
—(LCw?* — = = 0. .
57 (LCw LS)V 0 (6.7)
The solutions are
Vo~ etk (6.8)

with & = VLC | /w? — ﬁ Now we see the purpose of introducing the shunt induc-
tance L in the transmission line: it gives rise to a cutoff frequency w. = \/O;T There
is, in fact, a clear physical correspondence between our inductively shunted trans-

mission line and a rectangular waveguide propagating the T'Ejy mode. The top and
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bottom plates correspond to a parallel plate transmission line with series inductance
and shunt capacitance, and the side walls provide the shunt inductance.

From Eq. 6.2, the voltage and current of the transmission line mode must

V  wlL L w
=T = —_— =7 .
I +k i\/ C\Jw? —w? ’ (6.9)

where the 4 sign depends on the direction of the propagating waves: plus for positive

be related by

x direction, negative for the other.

6.1.2 Resonator with Transmission Line Loading

The differential equation of the voltage V; and current [ of the cavity follows

the familiar equations of capacitance and inductance:

dVi(t) o 1dQ 1
& T G a oW and (010
L dn()
i = -1 T (6.11)

where () is the charge on the capacitor (7.

The circuit is set up to have initial conditions Vi(t = 0) = vy and [1(t =
0) = 0. Vi(or equivalently the electric field across the capacitor) is regarded as the
longitudinal wakefield of the cavity. It is indeed the case if we have a small hole in the
middle of each of the capacitor plates, and charged particles pass through them. In
other words, the circuit is very close to a “pill-box” cavity with side wall modeled by
the inductance. The initial condition is then equivalent to a charge passing through
the “pill-box” cavity instantaneously and building up a voltage between the plates.
Therefore V; as a function of ¢ gives us a good description of the decaying wakefield.

Multiplying Eqs. 6.10 and 6.11 by ¢** and integrating from ¢ = 0 to ¢ — oo,

and taking the initial conditions explicitly into account, we find

]Nl == ]N—|— Cl fooo %ethdt == ]N — Clvo — chl‘z
= % — Clvo - iwClvl ” (612)

Vi = Lywl,
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where () symbolizes the Fourier transform (we have assumed the quantities to which
we have applied the Fourier transform to be zero for negative time). We also used
the result from the previous section in writing I as % on the second line of Eq. 6.12,

where Z is the characteristic impedance of the transmission line defined in Eq. 6.9.

Solving Eq. 6.12 for V; then yields

Vi = - (6.13)

where wg = \/ﬁ’ is the natural resonant frequency of the cavity and R = /% L1 ,1s the
characteristic impedance of the cavity resonant mode. The inverse Fourier transform
brings us the solution in the time domain:

Wt) _ (/%—Mm (6.14)

Vo "o

What we have calculated is the longitudinal wakefield. The transverse wake-
field is related to the longitudinal wakefield by the Panofsky-Wenzel theorem [30].

0

VLV1=$

Vi, (6.15)

where V| is the transverse wakefield and s = ¢t. It states that the transverse gra-
dient of the longitudinal wake potential is equal to the longitudinal gradient of the

transverse wake potential. Thus

Wi
. Wi o~ —2 %
Vi = Vi= 0 . 6.16
1 _Z-wl (:}_O)Q_I_Z%:,_O_l ( )

The symbol w; is a geometric factor related to the detailed shape of the structure.
It is not given by our model. An equivalent result is obtained if one identifies V|
with the current /1 multiplied by an impedance (another parameter not given by the
model). Physically this corresponds to the fact that the transverse force exerted by
a dipole mode is due to its magnetic field.

The wakefield in the time domain

1 r~
Vi(t) = 5 / Vet du (6.17)
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is obtained from the inverse Fourier transform. The integrand has two branch points
from the definition of Z. With a proper choice of branch cut, see Fig. 3.13, the
integration is naturally divided into two terms: one from the pole contribution , the
other from the branch cut integral.

When % < 1, i.e. the damping term is small, the pole of the expression

V| is very close to wo. For the purpose of calculating the pole and evaluating the

residue, Z(w) can be taken as Z(wg). Then the poles satisfy

w / 1 ?
(CU_O) |pole: +4/1 — @ - E7 (618)

where () = Z(;{O). The poles are symmetric with respect to the imaginary axis because

of reality.
The branch cut integral (persistent wakefield) is evaluated with Eq. 3.58.
When ¢/ > 1, we only need to keep the first term. The total wakefield is

1 —1 1 ¢!
Vi(t) ~ ————sin({/1 — —t)e %7
v 1) & i1 gt

2 (=) o, 11
YR (=g G T (619

where ¢/ = wol.

It is clear from the above expression that the persistent wake amplitude is
proportional to %, which explains the phenomena we observed in Chapter 4, namely,
the stronger the damping the larger the persistent wake. It also indicates that as
the resonant frequency gets closer to the waveguide cutoff, the persistent wake is
enhanced.

It has to be pointed out that in a cavity system without external damping,
i.e. () — oo, the transverse wakefield is a pure sine curve. It is possible to place
bunches at the zero wakefield of the preceding bunches. But when more dipole modes
(oscillating at different frequencies) are included, zero wakefield placement is not

possible for all of the modes. Zero wakefield placement is not possible for the persistent

wakefield either because of its phase.
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Eq. 6.19 also tells us the best waveguide damping can do at a certain distance
t' behind the source particle. A typical value for NLC is ¢/ = 40 * 7, i.e. 20 wave

lengths away.

If we ignore the oscillating factor sin, cos, and the sign and take —— — ~ 1

1=z

in Eq. 6.19, it is a good approximation to regard the sum as maxima of the oscillating

amplitude of the V,(¢). Thus the wakefield can be written as

¢ b 1
W = Wo€™+ -—0

2 (5
b o= |- .
7 (1= ()

with (6.20)

The parameter b as a function of oo s plotted in Fig. 6.3

T T T T T T

100 | ]

1 1 1 1 1 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.3: The value b as a function of e The horizontal axis is e, and
vertical axis represents b.
For a given t', the minimum value of the wakefield occurs when
1 _ 2logt' —logb
20) t ’
Thus decreasing Q beyond this value increases the wakefield at ¢/. The optimum @)

(6.21)

as a function of ¢’ is plotted in Fig. 6.4.
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12 T T T T T T T r .
optimum Q with b:]_O, ,,,,,
10 ¢ optimum Q wi th b=100 1

0 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Figure 6.4: The optimum () value as a function of distance. The three lines,
from bottom to top, correspond to b = 1, 10, 100, respectively. The horizontal
axis is 1’ = w.t, and the vertical is the optimum ) value.
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Figure 6.5: The minimum wakefield as a function of distance. The three lines,
from bottom to top, correspond to b = 1, 10, 100, respectively. The horizontal
axis is ¢ = w.f. The vertical axis is the minimum wakefield achieved as a ratio
to the wakefield at ¢’ = 0.
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Substituting Eq. 6.21 into Eq. 6.20, The value of the minimum wakefield at

t/
W = Wot'™*°(5blog ' + b — 2blog b). (6.22)
is obtained. Fig. 6.5 displays the minimum wakefield as a function of ' for a few

values of b.

6.2 Numerical Comparison

We have made a few MAFIA simulations on different geometries in Chap-
ter 4 where we have calculated the persistent wake amplitude and the damped wake
amplitude. The ratios of the persistent wake amplitude to the damped wake am-
plitude for these cavity waveguide systems are compared with those predicted by

Eq. 6.19 to explore the universality of the circuit model.

MAFIA result | Theory
() =3.94, £= = 0.776 217 2.19
Q =6.72, == = 0.776 1.17 1.28
() =7.34, 2= = 0.705 0.587 0.659
Q =12.0, == =0.731 0.351 0.503

Table 6.1: Comparison of the circuit model and MAFIA simulation on per-
sistent wake amplitude. The ratios of the persistent wake amplitude to the
damped wake amplitude for several MAFIA simulated configurations are com-
pared to those computed from the circuit model.

The MAFTA results and the circuit model agree very well considering how
simple the circuit model is. The discrepancy at high ) value is attributed to the non

resonant factors.

6.3 Cavity and Waveguide Detuning

For a single damped cavity, Eq. 6.22 presents the limit of the transverse

wakefield. In the case of a multi-cell structure, there are more things one can do.
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Notice that the persistent wakefield oscillates at the waveguide cutoft frequency. We
could change the width of the waveguide from cavity to cavity. As a result, the
persistent wakes of individual cavities do not oscillate coherently; the cancelation
leaves the net effect of the total persistent wake very small. It is a natural extension
of the cavity detuning scheme [20].

In an optimum-damped system, the dipole frequency (wp) has to be detuned

We

in proportional to that of the waveguide cutoff, i.e. . of each cavity is the same.

In a N cell structure, detuning usually results in a wakefield which is % of that of a
single cell.

Taking the SLAC proposed X-band NLC for example, with dipole frequency
at 15 GHz, the waveguide cutoff can be chosen at 13 GHz (it has to be greater than
11.424 GHz to keep the fundamental mode undamped.). At # = 407, the minimum
wakefield of a single cell is 6.0 x 10~* times that of an undamped cavity. With detuning

in a 100-cell structure, the achievable transverse wakefield is down to a few parts in

a million.



Chapter 7

Multi-bunch Transverse Instability

Since the discovery of the cumulative beam break-up instability at the SLAC
linac by Neal and Panofsky [31] in 1966, it has been a subject of many research works.
The first theoretical studies were carried out in the following few years by Wilson
in 1967 [32], Panofsky and Bander in 1968 [33], and Helm and Loew [34] in 1970.
Subsequent works have treated different aspects of the instability: Neil, Hall, and
Cooper [35] have studied the dynamics of a single intense bunch passing N number of
identical accelerator units, and with the help of the Laplace transform, exponential
growth with N at the asymptotic limit is derived. Chao, Ritcher and Yao [36] used
a perturbation method to find the emittance growth of a single long bunch both in
the case of a coasting beam and an accelerated beam. Even though the very long
bunch limit bears some resemblance to multi-bunch BBU, these works are primarily
in the region of single bunch BBU. Gluckstern, Cooper and Channel [37] were the
first to treat multi point-like charged bunches. They made use of the discrete Laplace
transform and derived the asymptotic limit as the bunch number goes to infinity.
The discussion is limited to the transverse wakefield of a single exponentially damped
cavity mode. The subsequent work by Gluckstern, Neri, and Cooper [38] [39] dealt
with the effect of randomly fluctuating parameters and smoothly varying parameters.
Yokoya [40] solved the BBU equation under an arbitrary wakefield and evaluated

the effect of cavity detuning, misaligned cavity, and misaligned focusing elements.

113
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Decker and Wang [41] did a similar work. Thompson and Ruth [23] have treated the
multi-bunch BBU in a very high energy linac in the time domain, where putting the
bunches at the zero wakefield location is discussed.

In order to assess the effects on beam dynamics from the persistent wakefield,
which decays as t_%, we have analytically solved the multi-bunch BBU subject to an
arbitrary form of wakefield in the continuous focusing approximation. The asymptotic
limits of linac length going to infinity is then evaluated by a saddle point method.
We start with the simple daisy chain model to illustrate the method.

7.1 Analytical Solution of the Daisy Chain Model

In section 1.3, we have solved the daisy chain model with an approxima-
tion to illustrate its rapid growing transverse offset with distance and to exhibit the
dependence upon bunch number. We return to it here to obtain the solution with-
out approximation. With proper scaling, the daisy chain model can be written as a

recursive differential equation:

d2

Comparing with FEq. 1.4, we see immediately that

_ N€2WJ_(Z)

u = ks, A =%

. (7.2)

Here u has the meaning of betatron phase advance along the linac, while A is usually
a small coefficient coupling the motion of the bunches. It is understood that z_; = 0,
so the equation for zq is included. If we multiply Eq. 7.1 by e™?* and integrate from

0 to oo,
—p+ (p* + Din(p) = Aana(p) (7.3)

follows. In Eq. 7.3, we have used the initial conditions x,(0) = 1 and 2/,(0) = 0,
which corresponds to an injection offset error in accelerator language. A () on top

of a symbol denotes Laplace transform. Recursive equations can be solved by a
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generating function method in a systematic way [42], which we will use later. However

Eq. 7.3 is simple enough to be solved by inspection. Starting from 3y = #, T =

1-|-p (14 1-|-p —=), and @y = 1-|-p =(1+ 1+p2 + (l-l—p )?) etc, it is straight forward to see that
Eq. 7.3 is solved by the the general form

Iy 7.4
1+p§1+p (7.4)

With the inverse Laplace transform, we obtain

1
rp(u) = 27”/:?; e dp

n A
- pu
271'@/1—|—p Z(l—l—p)e P
n A
- pu
du2m/1—|—p§:1—|—p)e P

= —) — )\ji,d ) 7.5
du;)%'i/ (1 + p?)itt P (7.5)

The path of integration is understood to be taken along a line parallel to the imaginary

axis with positive real part. Because of the factor e, the integration path can be
closed from the left. The contour integral has contributions only from the two 7+ 1th
order poles at ¢ and —¢. Therefore Eq. 7.5 becomes

d 2 )\k ePu

el

I N AT R R () Iy SR R C) B N ‘
$n(U) du = k’ ((p _I_ )k+1) |p—2 —I_((p o i)k+1) |p——2}7 (7 6)
where () is the kth derivative. Carrying out the derivatives according to the binomial
il k! ’ ’
formula (fg)® = — g9 we have
(/9) ]Z:;)]!(k —J)!

)= 30> It in D) s con(u— T (17
z,(u) = — — w7 sin(u — j=) + u’ cos(u — j=)]. :
2 & (e — )l gt 22Fi 73 73

= ]_

In order to simplify the expression, it is necessary to switch the order of the summation

which leaves

ealw) = ZZ = I Ll sin(u — 55+ cos(u — 57
no (AN - n=j R
— ]Z:;)(j’) wi~ 1s1n(u—j2)—|—u cos(u—jQ)]];)(4) 7((]2+—|];)]’3€’ (7.8)
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If we shift the index j in the sin term by one unit, the sin term is then combined with
the cos term to give the following result:

A
2

JA 2k+7) g
COSU_] Z::Z G+ kW 2k 15 (7.9)

Note, that when 7 = 0 and k£ = 0, the factor ﬁ =1.
As a check on the algebra we have used Mathematica [44] to show the a,(u)
in Eq. 7.9 satisfies Eq. 7.1 for n up to ten.

A set of typical values for the NLC parameters are [20]

Quantity | N k s Wi(l) E
Value | 10'° | 0.25 m™' | 6000 m | 10V/C/m? | 18 GeV |

In this example,

A=1.4x10"% (7.10)

Hence the k£ = 0 term of the Eq. 7.9 dominates, the contribution of other terms drops
rapidly. To a good approximation, we are able to keep only the £ = 0 term. Not
surprisingly, Eq. 7.9 then reduces to Eq. 1.9.

Zi: %4cos u—j—.: Zn: “) . (7.11)

=
We have discussed the case of non accelerating beams; due to gradual accel-

eration, the “effective” length of the linac is given by [23]

[ E;
Uefs 2 E—fu, (712)

where I; = 18 GeV is the initial linac energy, Iy = 250 GeV is the final energy. It is

assumed that £ scaled as —% power, and hence that A is energy independent. With
Ueff = 0.8 x 103, (713)

Eq. 7.11 gives a moderate growth of | 1 + 0.56: | —1 = 15% for ;.
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7.2 More General Model

In the case of a slowly decaying wakefield, where the effect of all the preceding
bunches other than the closest cannot be ignored, a more general approach has to
replace the daisy chain model'. As will be seen, it again amounts to the solving of

recursive equations.

7.2.1 General Solution of z,

With proper scaling, this problem can be formulated by a series of recursive

equations as follows [43]:
2 n

d
ZaTn + 2z, =) Z Tpemh(m), (7.14)

m=1

where v and A are defined in Eq. 7.2, therefore h(1) = 1. The equation assumes
smooth focusing and no acceleration as before. Bear in mind that A is usually small
as shown in Eq. 7.10 and x,(u) is usually evaluated at large v as shown in Eq. 7.13.

Taking the Laplace transform in u, we have

n

=Poo (P + 1)Ea(p) = A D T (p)h(m). (7.15)

We assume 2/(0) = 0 and 2,,(0) = g, and will show later that this assumption does

not affect the result by much. Multiplying Eq. 7.15 by ™ and summing from 0 to oo,

we obtain
—p+ (P +1)G(y,p) = A(y)G(y,p) (7.16)
with fly) = Z_:ymh(m) (7.17)
Gly,p) = iymi'm(p)- (7.18)

The generating function G is solved from Eq. 7.16 to give

p
PP+1=Af(y)

this section actually shows that daisy chain model is surprisingly good for approximating many

different wakefields.

Gy, p) = (7.19)
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The inverse Laplace transform gives

Gy, u) = cos(uy/1 — Af(y)). (7.20)

To find x,(u), we need to extract the coefficient of the y" term in G(y,u) (see

Eq. 7.18), which can be obtained by integrating i(nyﬂ) along a contour in the y plane

around the origin and dividing the result by 2x¢ (from Cauchy’s theorem). We thus

en(t) = — écog(uVl_Af(y))dy. (7.21)

yn+1

have

2w
From the two power expansions
cos(uy/1 — Af(y)) = D xu(u)y™ and V1IN W) — > za(u)y”,
n=0 n=0
we see that equation

zn(u) = R(z,(u)) (7.22)

has to hold by equating powers of y.

From now on, we will use the expression for x,(u) in the following form.

L /1MW)
]{ A (7.23)

ool = o

yn+1
It is understood that we only take the real part of the right hand side of Eq. 7.23.

Alternatively, we could take its magnitude as the envelope of x,(u).

Saddle Point Method

Our primary interest is in the behavior of x,(u) at large u, so that we know
whether the beam is unstable and how fast the instability grows. A powerful method
in dealing with just this type of integral is the saddle-point method, also called the
method of steepest descent, which we will briefly explain in the following. Consider

a typical integral of the form
/ W dy, (7.24)
c
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where ¢(y) varies rapidly with y due to a large factor ( in our case, u.). The rapid

oscillating integrand yields a substantial contribution only at the saddle point y;

defined by
do(y)
dy

By analytically changing the path C' through y;, the integral in Eq. 7.24 can be

|y.= 0. (7.25)

written as?

// ¢9(ue) 5 ()6 (W) +O((v=v)") g (7.26)
The orientation of path C” is chosen such that the integrand has the steepest descent

(hence the name.) away from the saddle point. Then we may write the integral as

EZR I

where we have used the fact that | ¢"(y,) | is large.

Asymptotic Limit of z,

For asymptotic evaluation of Eq. 7.23, we deform the contour to pass through

the saddle point, which satisfies

ii dzu - . . _ iudf'(y) _n—l—lz
o) = oA (o) = =2 - T <0, 129

The solution of Eq. 7.28 for each n is substituted in ¢(y), and R(¢4(y)) is the ex-

ponential growth rate of x,. In order to set an upper bound of BBU, we take the

maximum of those rates as the upper limit of BBU growth, which satisfies

(i [T N () (n+ 1) log y) = 0. (7.20)

It is understood that y is a function of n implicitly defined by Eq. 7.28. Utilizing this

fact, we can further write Eq. 7.29 in the form of

dy d
di o (iurn/1 — Mf(y) — (n + 1)logy) — Rlogy = 0. (7.30)

?We have assumed that no poles are encountered when moving the integration path, otherwise a
pole contribution will be added.
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The first term vanishes because of the saddle-point condition. The equation then

reduces to

y=e". (7.31)

We are able to calculate § by invoking the saddle-point condition Eq. 7.28.
Eq. 7.28 becomes

o0

Ryf) = Z_: mh(m)cos(mb) =0 (7.32)

if we assume /1 — Af(y) = 1. Solution of Eq. 7.32 determines the value of §. Substi-

tuting y = ¢* into the expression of i¢(y), we obtain the maximum growth exponent

= Rio(y) = ST~ ) = 3 sinlmd)him). (759

The maximum growth occurs at bunch number N,,,,, where N, .. satisfies

Eq. 7.28, which we rewrite as

Noow _M —1
S T— )
~ Ag—u%(yf’(y))
= )\2_u Z_:l mh(m)sin(mb). (7.34)

It is not surprising then to see Eqs. 7.32 and 7.33. In fact, Eq. 7.32 is the maximum
condition of Eq. 7.33 with respect to the variable 6.
A few simple wakefield models have been worked out explicitly. The results

are displayed in Fig. 7.1. Details are given in Appendix C.

L hm) | 0 | /5 [ Nooa/ 3 |
5m,1 % 1 1
e‘ﬁ(mg_l) arcsin(tanh /) — lc_oz—lifﬁ
m”z 0.74377 1.07736 1.29804
lim,_ g+ m~17¢ e Z[1 4+ eloge+ (logm + v, — 1)¢] =1

Table 7.1: Solutions of the maximum beam growth vs wakefield decay laws.
The ~, is Fuler’s constant, which is approximately 0.5772156649.
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7.2.2 Uniform Initial Offsets

In the case where all bunches start with a uniform offset, i.e. ,(0) =1 and

2/ (0) =0, Eq. 7.15 and 7.16 become

DA DRG) = A d ) 1:3)
—£§+W+MMM==VMQMO (7.36)

where f(y) and G(y, p) are defined in Eq. 7.17 and 7.18, respectively. Solve for G/(y, p)

to get

_ 1 p
G@m»_l—yﬁ+1—Aﬂw' (7.37)

o) = cos(uy/1 — Af(y)) (7.38)

I —y

Therefore

is obtained by inverse Laplace transform.
Carrying through the same contour integral to extract the coefficient of the

y" term, we have

1 j{COS(u\/l — Mf(y))

SO S P
L /T3 ) . i
~ — ¢ —————dy. .39
27t jé (1 —y)ynt! Y (7.39)

The ~ is understood as taking the real part of the right hand side. Note the extra
factor ﬁ in the integrand compared with Eq. 7.23. The corresponding saddle-point

condition is modified to

Ti(s) = S/ =AT(0) = (n-+ 1) logy ~ log(1 — )

_ iulf'(y) _n-|-1_|_ 1 _o. (7.40)

_Zﬂ—Aﬂw y L—y

The y value for maximum growth rate then satisfies

%?fﬁ(it\/l —Af(y) —(n+1)logy —log(1 —y)) =0. (7.41)
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Again, y is regarded as a function of n defined by the saddle-point condition Eq. 7.40.
Rewriting Eq. 7.41 in the form

dy d B
0= dn dy (tury/1 = Af(y) —(n+1)logy —log(l —y)) — Rlogy = —Rlogy, (7.42)

we find that the same maximum growth condition holds:
_ b
y =€, (7.43)

We can calculate § the same way as before by invoking saddle-point Eq. 7.40.
With the approximation, \/1 — Af(y) ~ 1, Eq. 7.40 becomes

i 1 sind

Y _ _
R(yf — m1—) = mZ::I mh(m) cos(mb) + ol —cosd 0. (7.44)

The second term in Eq. 7.44 is negligible when u — oo, and Eq. 7.44 becomes Eq. 7.32.

The maximum growth rate then becomes

Au

7:7

)\

SF(e?) + Rlog(l — e — Y sin(mb)h(m) + Rlog(l — ¢ by, (7.45)
m=1

By the same token, Eq. 7.45 approaches Eq. 7.33 at large u limit.

From Eq. 7.40 the maximum growth occurred at bunch number
Nypas = )\Q—U%(e”f( ")+ R( ei = Z mh(m)sin(mf) — g (7.46)
which goes to Eq. 7.34 at large v limit.

It is interesting to note that all of the wakefields above produce a growth rate
with a maximum in N. It is a direct consequence of the fact that >_°°_; h(m) is finite.
This observation has an interesting implication in accelerator design: If the wakefield
decays faster than , the luminosity can be indefinitely increased by adding more and
more bunches to the train (we ignore the technical problems of beam loading etc.).
In other words, if the bunch charge is limited so that the growth rate at n = N4, 1s
acceptable, then the luminosity can be increased indefinitely by increasing n beyond
Npaz. Numerical simulations of bunch displacements caused by wakefields decaying

with different power laws are shown in Fig. 7.1 to illustrate this assertion.
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Figure 7.1: Simulations of BBU for wakefields with different decay laws, all

with Az—“ = 2.145306 and with initial offset x,(0) = 1. The maximum beam
offset is plotted against the bunch number. (a): h(m) = m™'%, (b): h(m)
m~ (¢): A(m) = m™ (d) h(m) = m™°°.
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7.2.3 Oscillating Wakefield  cos(mfy)

The same analysis allows one to deal with an oscillating wakefield, i.e.
h(m) o cos(mbyp). In fact, we have dealt with the special case of y = 0 in the

earlier sections. If we assume a single damped mode to represent the transverse
wakefield, then
h(m) = ¢~ Alm=1) cos(mby), (7.47)

where 6 is the bunch to bunch wakefield phase advance (modulo 27). According to
Eq. 7.33, the maximum growth rate

T )\2_u Z sin(m@)e_ﬁ(m_l) cos(mby)
m=1

[ sin(6 + 6y) N sin(6 — )
L+e 28 —2eBcos(§+6y) 1+e 2 —2eBcos(d —0)

and 6 satisfies (from Eq. 7.32)

)\_ul

53 ] (7.48)

cosh 3 cos 0 cos (90(Cosh2 B 41+ cos?d + cos? 6)

+ (1-2 cosh? ﬂ)(cos2 0 + cos? b)) — 2 cos? 0 cos? 0y + cosh? f—1=0.(7.49)

Numerical solutions of the above equation are plotted for a few 3 values in
Fig. 7.2. As can be seen from the plots, 8 correlates with 6, strongly, especially for a
slowly decaying wakefield (low /). The oscillation introduced by cos(m#fq) in h(m) is
neutralized by sin(m#) in the Eq. 7.48. Therefore, the maximum growth rate does not
change drastically due to the introduction of wakefield oscillation. Physically, what
happens is that the trailing bunches find their way in the betatron phase, so that their
betatron phases lag by an appropriate amount to neutralize the wakefield phase from
the proceeding bunch. The wake force still adds up from all the proceeding bunches.
That is why the BBU growing trend does not differ much between oscillating and
non-oscillating cases.

The following figure plot the maximum growth rate v as a function of 6,

The maximum growth happens at bunch number

Au &

Niazw = 5 Z mh(m)sin(mb) = —)\Q—U%(%f(e”))

m=1



Figure 7.2: Solutions of # as a function of ;. The three lines(solid, short
dashed, and long dashed), from top to bottom, correspond to 3 = 0.01, 0.1,
1, respectively. The vertical axis is cos #, the horizontal axis represents cos ;.
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Figure 7.3: The maximum growth rate v as a function of y. The solid line,
short dashed line, and long dashed line correspond to 5 = 0.01, 0.1, 1, respec-

tively. The vertical axis is

(o)

MR the horizontal axis represents cos fy.
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)\_u[ sin(0 + 0p)(1 — e727) sin(0 — 0p)(1 — e=%¥)
4 (14 e 2 —2eFcos(§+6))? (14 e20—2e¢ P cos(d —0p))?

1(7.50)

Equation 7.50 is plotted as a function of 8y for a few value of 3 in Fig. 7.4
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0.9} /
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0.7! -
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~
-
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0.6} -
0.5 Frmm e e oo oo

Figure 7.4: The bunch number N,,,, as a function of #y. The solid line, short
dashed line, and long dashed line correspond to g = 0.01, 0.1, 1, respectively.

. . . N o . .
The vertical axis is %(FO)Z, the horizontal axis represents cos ;.
max

7.2.4 Oscillating Wakefield o sin(m#y)

The previous section described the beam dynamics of the wakefield which
oscillates proportional to cos(m@) for the sake of comparison between the oscillating
and non-oscillating cases. In the real accelerating structure, the transverse wakefield is
proportional to sin(m#) while the longitudinal wakefield is proportional to cos(mé).
We have, of course, assumed point-like charge bunches. Hence, it is important to
discuss the wakefield

h(m) = e~Alm=1) sin(mby), (7.51)

where 6, is again the bunch to bunch phase advance. Similar to Eq. 7.48, the maxi-

mum growth rate satisfies

A o0
T 7u > sin(m#)e=P" =Y sin(mé,)
m=1

)\_ul[ e — cos(0 + 0y) e — cos(0 — 0y)
22 14e 2 —2eFcos(0+06y) 1+ —2¢ 5 cos(f — )

| (7.52)
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where 6 satisfies (from Eq. 7.32)

—(1+ 5e2h 4 645) cos 0 + %P cos 30 — ?° cos(f — 26,)

+ 465(1 + eﬁ) cos By — e2° cos(f + 26,) = 0. (7.53)

Numerical solutions of Eq. 7.53 are plotted in Fig. 7.5.
3 L

0.5 1 15 2 2.5 3
Figure 7.5: Solutions of # as a function of ;. The three lines(solid, short

dashed, and long dashed), correspond to § = 0.0625, 0.25, and 1, respectively.
The vertical axis is #, the horizontal axis represents 6.

The maximum growth rate is also plotted as a function of 6, for several 3
values in Fig. 7.6.

The bunch number of the maximum beam growth N, .. satisfies

A & ) Au_ . d :
Nippow = 7;1 mh(m)sin(mb) = _?%(@f(e 0))

)\_u
4

[ cos( + o) (1 + e72) —2¢7F  cos(f — 0o)(1 + e=2) — 2e=F 1750
(1420 —2e=Fcos(f+0p))2 (14 e 26 —2eFcos(§d —bp))>

It is shown in Fig. 7.7

It is seen from Figs. 7.6 and 7.7 that v(0) = Npaz(0) = ¥(7) = Nppau(7) = 0
because there is no wakefield at the location of the bunches if 8y = 0,7. These
locations are referred as wake zero crossings. Thompson and Ruth [23] have discussed
the application of putting the bunches near wake zero crossing. It is however, not

practical if there is more than one mode present. We observe that in between 0 and
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Figure 7.6: The maximum growth rate v as a function of ;. The solid line,
short dashed line, and long dashed line correspond to g = 0.0625, 0.25, and

1, respectively. The vertical axis is (o), the horizontal axis represents 6.
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Figure 7.7: The bunch number N, as a function of 6y. The solid line,
short dashed line, and long dashed line correspond to §# = 0.0625, 0.25, 1,
respectively. The vertical axis is Ny,q.(60). The short and long dashed line
has been multiplied by a factor of 10 in the vertical direction in order to shown
all the curve on the same scale. the horizontal axis represents 6.
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7, the point 0y = 7 gives a reasonable estimation of v and V., for the whole range.

The result
s s
(=) =— 7.55
=1 (7.55)
is easily verified from Eq. 7.53, and
T Au 1
=T 0
is derived from Eq. 7.52. In addition,
T Au 14 e 208 Au coth g
Npwe(=) = ———— = ——— :
(2) 2 (1 —e26)2 21 —e28 (7.57)

follows from Eq. 7.54.
It is interesting to note that Eqs. 7.56 and 7.57 are the same as the result
for the wakefield h(m) = ¢=#(™=1 outlined in Table 7.1.

7.3 Conclusion

With a smooth focusing approximation and no acceleration, we have solved
the cumulative BBU analytically to quantify the effects of various wakefield decay
forms on the BBU growth trend in the limit of v — oco: With a field decaying
faster than %, the BBU is qualitatively similar to the daisy chain model, which has
a maximum BBU growth rate. The significance of this result is that adding more
bunches to the train does not worsen the beam quality provided the train is already

longer than N,,,;, the location of maximum beam growth.

A

5¢ is seldom bigger than unity in order to preserve the

In practical designs,
beam quality, then the adiabatic damping due to acceleration, discrete focusing, and
the detailed form of the wakefield play moderate and complicated roles. Also the
effect of structure misalignment becomes significant. Therefore this work is not a

substitute for detailed particle tracking, rather it gives a qualitative insight into the

effects of wakefields.



Appendix A

Microwave Theory

A.1 Waveguide Theory

The source free Maxwell’s Equations are

VxE = 128
V-D =0 N
VxH = 190 (a1)
c It
V-B =0
It follows that both £ and [ satisfy
0 | E
2

Without loss of generality, we assume that the waveguide is oriented in the 2z
direction. Because of the cylindrical geometry of the waveguide, it is useful to single
out the spatial variation of the field in the z direction and also assume sinusoidal time

dependence ™",

E(:z;,y,z,t) } _ { E)(wvy)eikz_m (A.3)

H(x,y,z,1) H(:z;,y)eikz_m

The transverse coordinate dependence satisfies:

=

(V2 + k1) { } =0, (A.4)

nuf]
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where V? is the transverse part of the Laplacian operator. With proper boundary
conditions, a set of eigenvalues k; are determined with an associated set of field

functions called eigenmodes. The propagation constant k satisfies
b= (Er -, (A.5)
¢

where plus sign gives a wave propagating in positive z axis, minus sign gives the wave
propagating in the opposite direction.
It is useful to separate the field into components parallel to and perpendic-

ular to the z axis, so that
E=:E.+E, and H=:H +H),, (A.6)

where Z is the unit vector in z direction. Maxwell’s equations can be written out in

terms of the longitudinal and transverse components as

S 0 W, =

(Vitig) x GE.+ Ey) = —=(Hi+2H.),
—2><6J_EZ—|—Z']€2><E)J_—|—6J_XE)J_ = %(EL—FéHz) (A?)
C

Eq. A.7 can be further split into two equations, one for the longitudinal direction, the

other for the transverse direction:

—Ax Vi E. +ikix E, = ZH, (A.8)
&

6J_ XEJ_ = %QHZ (Ag)
&

Similarly, there is a corresponding set of equations for the curl equation of
H. Notice the symmetry between the two curl equations; they are invariant under
operation K — H, H — —F and € «<» . From the above observation, the second set

of equations is easily written as

lew =

—EX VL H +ikixH = ——F,, (A.10)
&
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Substituting the expression for E, in Eq. A.10 into Eq. A.8, we then have
— 3 w N — 3 k —
Hy =i1—5eZx VB +i—-V.H.. (A.12)
cki k9
The same symmetry argument produces the expression for El;

— k —
E, = —@—,uz XV, H +i-V,E.. (A.13)
ck? k2

1 1
It is evident from the Eqs. A.12 and A.13 that the fields are determined by the
longitudinal components £, and H, only. The fields thus naturally divide themselves

into two distinct categories:

e Transverse Magnetic (TM) waves: H, = 0,

— k — —
B =i—V.E., i =i—e: x V_E,. (A.14)
k% ck?

Therefore the transverse magnetic and electric fields are related by

H_}LZ%GQXE)LEYQXE)J_. (A15)

c

Now the equation looks more or less like the relation between the electric current

and voltage. Accordingly, Y was called the mode admittance.

e Transverse Electric (TE) waves: E, =0,

. k
FE = —z—k2 T VLHZ, HL = zk—vaH and (A.16)
c
- ck
HJ_——ZXEJ_—YZXEJ_ (Al?)
wi

It is useful to expand the transverse field in a waveguide in terms of the

corresponding waveguide TE and TM modes:
Er o= Y enfn (A.18)
Hi = Y .G (A.19)

where [ fo - fndS = [ G+ GndS = Snms [ fo X G - dS = 8, with dS points to the

direction of the wave.
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The €, and i,, are conveniently called voltage and current, and the index n
designates the eigenmodes (both TE and TM).

With the field expansion in Egs. A.18 and A.19, Eqgs. A.15 and A.17 can be
rewritten as

i =YCe,. (A.20)

where Y ¢ is called characteristic admittance of the waveguide mode. Notice that the
same waveguide mode propagating in opposite direction has a characteristic admit-

tance differing by a minus sign.

A.2 S-matrix of a Microwave Junction

Voltage and current are not the only useful description of the terminal fields;
another useful representation can be obtained in terms of incoming and outgoing
waves. These waves may be characterized as voltage amplitudes, current amplitudes
or, especially in the case of propagating modes, as wave amplitudes normalized to

unit power. They are defined below:

e =a,+b, , i,= ch(aq —b,) or (A.21)
lg=a,+b, , e = ch(aq —b,) or (A.22)
€q = 4/ ch(aq + bq) y U= ch(aq - bq)- (A,23)

In Eq. A.21, a, is interpreted as incoming wave voltage amplitude, b, as that
of outgoing wave. Y is the characteristic admittance of gth mode. In Eq. A.22, a,
and b, are that of the current amplitudes, and Z; is the characteristic impedance of
the gth mode. Similarly, a, and b, in Eq. A.23 are that of the wave amplitudes.

The scattering matrix as defined by

by = Sypa, (A.24)
is readily derived from Eqs. A.21 and admittance matrix Y, which yields

-, -

Y@ —b)=1

YE=Y(i+b), (A.25)
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where matrix notation is used instead of the indices. Solving b in terms of d, we have
b= (Y°+Y)(Y° =Y. (A.26)
Thus the scattering matrix,
S, =Y+ YY) (Y -Y). (A.27)

This matrix is called the voltage scattering matriz because it relates outgoing voltage
amplitudes to those of the incoming.
Similarly, the current scattering matriz S; and amplitude scattering matriz

S, satisfy

S; = (Z°+2)NZ°— Z), and (A.28)
S, = (I+Y,)"(I-Y,) (A.29)

where [ is the unit matrix. Note here the admittance matrix Y, is related to Y by

11
Y, = =Y —. A.30
Y (A.30)

The voltage scattering matrix, current scattering matrix and amplitude scat-

tering matrix are related by

S, = =YlSYe or Si=-7'S,Z7" (A.31)
1
S, = VYeS,— (A.32)

VY©

For the sake of brevity, the subscript v and ¢ are dropped in most cases
unless we want to emphasize the difference. It is also easy to distinguish the voltage

or current scattering matrix used in context by the appearance of Y’s or Z’s.

A.3 Concatenation of S-matrices

When microwave elements are linked together, the S-matrix of the final

structure can be obtained by the concatenation formula. For example, the scattering
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Lo LD

L SO

3 ‘444
g3 — glt2 + 2328

Figure A.1: Example of a two-step junction.

matrices S1? and S23 in a two-step junction, shown in Fig. A.1 are readily available
from mode matching method. The combined S-matrix S*3, by definition, should
relate the amplitudes of ports 1 and 3. We proceed by writing down S-matrix relations

connecting incoming and outgoing waves of adjacent ports

al . = S{Eal + S{Za? (A.33)
a’, = Sital + S32al ), (A.34)
ane = Spag, +SpEa, (A.35)
Qo = Syaj, +S3al, (A.36)

and then eliminating the waves in region 2. Note that the 5’s in these equations are
matrices whose elements are S matrix elements. The boldface superscripts identify the
individual S matrices as indicated in the figure, and the subscripts refer to the port on
which they operate. Correspondingly, the a’s are column vectors whose components
are mode coefficients in the waveguide indicated by the superscript. The terms “in”

and “out” refer to incoming and outgoing waves, respectively. All the amplitude a’s

are measured at the dashed line interfaces. As a result, the amplitude a?’s are related

by

2 gtkel2 and (A.37)

Apn out

a?. = eTtely? (A.38)

out in”

The region 2 amplitudes can be expressed in terms of those of regions 1 and 3 by

combining the Eqgs. A.34, A.35, A.37 and A.38. The result is then substituted in
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Eqgs. A.33 and A.36 to obtain

1 _ 12 1 12/ @23 ko[ 012 ke IN—17 023 koL 012 1 23 3
Uout = S11 G, — 515 (522 € Sy — € ) (522 € Sot @i, + 553 am), (A_39)
3 o 23 3 23/ 012 koL 23 ke IN—1/ 012 1 12 ikyL 023 3
Uoyy = Siya;, — S5 (522 € Sy — ¢ ) (521 a;, + 555 S5 am), (A-40)

which gives the elements of the final S-matrix as follows:

S = S SESBeRtsE - Rl TSBASE (A
SE = SE(SPORISE - el (A2
S = SBSERISE sl (A1)
SE =SB - SB(SEISE - TSRS (A



Appendix B

Kroll-Yu Method

The Kroll-Yu method is based on the studies of the reflection coefficient
R(w) near the cavity resonance frequency to calculate the external @) of a waveguide
loaded cavity.

Field in the waveguide region is easy to write down
E, o< &"" 4 Re™7"

where x is the longitudinal coordinate along the waveguide, with x = 0 taken at
the cavity waveguide interface, and R is the reflection coefficient with respect to
this surface. The propagation constant k& = %m, and w, is the cutoff of the
waveguide mode®.

The Kroll-Yu method utilizes the observation that the eigenfrequency (com-
plex) of the cavity-waveguide system without the shorting plane corresponds to a
situation in which there is an outgoing wave but no incoming wave, plus the fact that
reflection coefficient R has to have absolute value unity with real frequency w. We

can write
w—1u-+jov
_76

w—1u—jJov

R(w) = ~2ix(w) (B.1)

where y(w) is a real analytic function in the vicinity of the pole being studied. The

minus sign is introduced for later convenience. The symbols u and v are the real and

!'We have assumed that only one mode propagates in the waveguide at the frequency range under
discussion
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imaginary part of the resonant frequency, respectively. Since the field £, must vanish

at the shorting plane, thus /%" + Re=%P =0
R(w) = —e¥? = —e2kD, (B.2)

Combine Eq. B.2 with Eq. B.1 to obtain

d(w) = tan™! ( ) — x(w) +nrx (B.3)

w—u
where y(w) is assumed to be adequately represented by its first two terms of a Taylor

series expansion around u,

X(w) & x(u) + X' (u)(w — u). (B.4)

Differentiating Eq. B.3 and applying Eq. B.4 we find

1dé 1 y .
A2 v L ), B.
2 dw Q(w—u)2+v2+2X(u) (B.5)

It is apparent that Eq. B.5 exhibits a typical Breit-Wigner resonant form with peak
at w = u, and when multiplied by v, with peak value () + %X’(u)v, where () = -

We note that the form of Eq. B.3 is unchanged when the origin of reference
plane is shifted by a distance d, only y(w) — x(w) + kd. Because the relationship
between k and w is not linear, shifting reference plane will result in different answers
when we make the assumption in Eq. B.4. We can, of course, assume a different
Taylor expansion

V() () + X (k) (k{eo) — k(u) (B.6)
to make the choice of reference plane completely irrelevant.

We also note that the boundary condition of the shorting plane can be
changed into magnetic, which amounts to changing n7 in Eq. B.3 to (n 4+ 1/2)n,
or equivalently changing y(u) into x(u) 4+ 1/27. The same argument applies to any
boundary conditions.

The choice of representation of R(w) by Eq. B.1 is not unique. Sometimes,

it is useful to exhibit two or more resonances. Taking into account of the fact that
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each resonance corresponds to a pole in the expression of R(w), we may write

L w—uF o w — Uzt o o —2ix(w)

W— Uy — JU W Uy — JUy

R(w) = —e¥? =

which gives

d(w) = tan™! ( o ) + tan™! ( k& ) — X(w) + nr. (B.8)

W — Uy W — Uy

The same reference plane independent approximation of x(w) can be made.

B.1 Implementation Formula

Equation B.3 with the approximation Eq. B.4 or Eq. B.6 provides a four
parameters representation of the function ¢(w), which can be numerically solved [16]
with four ¢-w pairs as the input. A set of MAFIA calculations with different value of
D are performed?. With the inspection of field plot, if one branch near the resonance
(avoided crossing) can be identified, four MAFIA runs with different length will pro-
vide enough information. With two branches near AC identified, two MAFIA runs
are needed.

The procedure can be thought as a four parameters fit to the four data
points. Thus explicit formula expressing u, v, x(u), and x'(u) in terms of the four
data points ¢; and w; (¢ € {1,2,3,4}) is of interest.

We did not quite achieve that due to the complicated nature of the expres-
sions, but we will show that for arbitrary choice of x/(u), it is possible to obtain
explicit expression for u, v, and y(u) by requiring them to satisfy the ¢(w) curve for
any three data points. The fourth data point provides a straight forward root search
to find \'(u), therefore, determining all the parameters.

Let us designate the three points by (¢;, w;) where ¢ € {1,2,3}. Then from
Eq. B.3 with the approximation Eq. B.4>.

v

) (B.9)

?Waveguide boundary conditions can be arbitrary as long as they are consistent
3Eq. B.3 and Eq. B.6 produce similar results

é: + x(u) + x'(u)(w; — u) = tan™'(

W, —u
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Taking the difference of the above for : = 1 and ¢+ = 2 yields

— tan !
wl—u) at (wg—u

¢1 — by + X'(u) (w1 — wy) = tan™( ) (B.10)

Next we take tangent of both sides, use a standard trigonometric identity, and rear-

range slightly to get

v(wy — wy)
t — ' — = B.11
an(¢1 ¢2 + X (u)(wl (“J?)) (wl _ u)(wz _ u) + 2 ( )
Now we take the reciprocal and multiply by (wy — ws) to obtain
/ _ (w1 —u)(ws —u) _
(w1 —wa)cot(dr — g2 + X' (u) (w1 —w2)) = —v — = B, (B.12)

v

Here we identify By, with the left-hand side of Eq. B.12 and note that it is completely
determined by a pair of the originally designated points and the assumed value of
X'(u). Defining B3 similarly, we define

B12 - B23

2
w3 — w1

A

(B.13)

a quantity determined by the three designed points and x/(u). Then we find, following
simple algebra, that

= A. (B.14)
Eq. B.14 can be combined with Eq. B.12 to eliminate v and obtain

_wy+ ABpp + wi A?
B 1+ A2

(B.15)

Now that u has been determined, v and x(u) can be determined accordingly from

Eq. B.12 and B.14.

v=(u—wi)A— B (B.16)

X(u) = tan™H () — & — X'(u)(wi — u) (B.17)

The second expression can be evaluated at any of the 3 points. Indeed, despite the
asymmetric appearance of the 3 data points in Eqgs. B.15, B.16 and B.17, the results

are independent of the order. In fact, by using 3 data points and assuming y'(u) = 0,
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we have an explicit three-parameter formula, which is very accurate at sufficiently
high ()., provided that the input data is accurate. More reliable result, however, can
be obtained by determining x'(u) from a fourth data point. Rearranging Eq. B.9 for
1 =14

wg —u—vecot(dg + x(u) + x'(u)(ws —u)) =0 (B.18)

Since all 3 parameters have been expressed in terms of \'(u), the left hand side of
Eq. B.18 can be regarded as a function of y'(u). x'(u) is determined as a root of it.
It is possible that Eq. B.18 has more than one root due to the periodic nature of the
cot. A FORTRAN program is used to manually select the right one.



Appendix C

A Few Examples of BBU Growth

Rate

C.1  h(m) =6, (Daisy Chain Model)

From Eq. 7.32 we immediately have
cosf =0,

which gives

p="_.
2

And from Eqgs. 7.33 and 7.34, we obtain

A A
Y= _u and Nmax - _u
2 2

C.2 h(m)= g—Alm=1)

We first calculate an auxiliary function f(e*),

. 0 . 0 .
f(ezﬁ) _ Z h(m)ezm€ _ eﬁ e—mﬁezmﬁl
m=1 m=1
Summing the series we obtain the closed form
o—0 it ol _ =P

fle) = -

1 —eBet? 14262 Bcosh’

142

(C.1)

(C.2)



143

If we write Eq. 7.32 in the following form

0= %%(f(eﬁ)) = d%l n e_walge_ﬁ cosl ((11iee—251C3Z?ﬁ;§S€9:27 (C.6)
the solution is easily obtained:
cos = ——. (C.7)
cosh 3
Substituting Eq. C.7 in Eqs. 7.33 and 7.34, we obtain
1= ) = e and (©8)
Nowe = (I = XA (©9)

C.3 h(m)= m 1€

With a power law decaying wakefield, stationary point equation 7.32 be-

comes
0 10\m ) )
0=R> (e ) ) = R(eD(e, 1)), (C.10)
m=1 m
where ®(z,s,v) is Lerch ® function defined by
A1
(z,3,v) mz_:o (ot m) (C.11)

Taking e = % for example, we use Mathematica [44] to solve Eq. C.10 nu-

merically to obtain

0 ~ 0.74377. (C.12)
Substituting in Fqgs. 7.33 and 7.34,
o A A
v o= (D1 + e, 1))7“ ~ 1.077367“ (C.13)
o u A
L T T 1))7 ~ 1. 298047“ (C.14)

follows.
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We observe numerically that at the limit of ¢ — 0%, the stationary point
e’ from Eq. 7.32 approaches 1. Near z = 1, Lerch ® function has an asymptotic

expression [45]

lim &(z,5,0) =, (1 —s)(1 —z)* (C.15)

where , is Gamma function. In the limit of ¢?® — 1, we obtain
ef0(e e, 1) = (1 — ) (1 —¢) =€ | 1 — e |71 D) (C.16)
where tan ¢ = % = — Cot Lie ¢= —(———) To simplify the expression, , (1—¢)

is taken to be 1. Therefore Eq. C.16 can be written as

. . . 0 .
620(1)(6207 €, 1) — 629(2 sin 2)5 lel(i_g)(l_ﬁ)
- i(g(l—l—e)—ze) : 0 e—1
= 1€ ‘2 2 (2 sin 5) . (Cl?)
The result
(9:7T1+6—>7T6. (C.18)

is easily obtained by noting Eqgs. C.10 and C.17.
The value of N,,4, then follows from Eq. 7.34, C.17, and C.18

ma$ _ AU Z mh Slﬂ me) (eiﬁq)(ei9767 1)))\2_u — %)\Q_U — ll)\Q_u (019)
T €

From a generic expansion of Lerch @ function [46], we have

O(z,3,0) = M(log i ZC s—r,v) (10g Z) (C.20)

Zv r!

where ((s,v) is the generalized zeta function defined by

o0

((s,0)=> (v+n)? v#£0,—1,-2,... R(s) > 1. (C.21)

n=0
If s is taken to be 1 + ¢, we have
B 30 (20)
e’P(e”, 1 +¢61)=, (—€)(—ih)° —I—ZC (1+e—r, 1)—.

r=0

(C.22)

With € — 07, we have [47]

€ 7T

()= () - SRR W O, ()
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where (1) = —v. and /(1) = ((2,1) = %. We also have [48]

1

((I14+el)=((1+¢) = e” —l—l—’yo—’yle—l—O( ), (C.24)

where ~, are constants defined by

log k)" (logm)™+!
=1 : 2
2! mgrgo{Z ) (C.25)
As a special case, we see that 4o = ~.. We also have [49]!
1
(1) = () = =2 + O(e), (C.26)

2

Putting Eqgs. C.23, C.24, and C.26 together, Eq. C.22 becomes

ew(I)(ew, l+e¢1)
2 2

= - 505 m—g>1[1+dog<—w>+%bg?(—w)]
1

+ (CHre—me) - 5” +0(c*log ). (C.27)

1 € w2

In keeping the lowest order of €, we have used the fact that 8 is of the same order as

e. Eq. C.27 is further simplified into

P, 1 +¢1)
i e 7

. € LT
— (i5 ~log0)(1+e3.) - S(logd —iZ)F = T = (%

= St = e (029)

From Eq. 7.34, C.28 and C.18, the value of maximum growth rate = is obtained.

A
Y =3("0(e” 1+ ¢,1)) 2“
A
. [g(l—l—e%)—l— Zelogh — —9] - (C.29)
A
= g[1+610g6—|—(10g7—|—75 — 1)6]%. (C.30)

!The definition of {(s,v) in Eq. C.21 does not apply here, but its analytical continuation defined
by other series applies, for example, Eq. C.24.
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