

Bridging Space and Society: The Significance of Public Outreach of Quantum Communication Technologies

M Filipova¹, A Mladenov², B Jekov³ and L Georgiev⁴

^{1,3}Computer Science Department, ULSIT, 119 Tsarigradsko Shose blvd., Sofia, Bulgaria

^{2,4}Institute for Nuclear Researches and Nuclear Energy - Bulgarian Academy of Sciences, 72 Tsarigradsko Shose blvd., Sofia, Bulgaria

E-mail: m.filipova@unibit.bg

Abstract. Quantum communication technologies are on the verge of a technological development that will change humanity. This paper aims to show the need for quantum technology knowledge outreach among the general public and the necessity of quantum science reaching people in an understandable language. Drawing on global scholarly sources, we explore the differences between classical and quantum physics, classical and quantum computing, and the conventional Internet versus the quantum Internet. Examples from different fields show the need for education and the popularization of quantum technologies. A number of effective methods for teaching youngsters are described, such as infographics, comics, interactive events, storytelling, and personal experiences. This research is based on worldwide scientific sources and an experimental approach, aiming to contribute to a wider understanding of quantum communication technologies based on the contemporary need for their outreach.

1. Introduction

The development of quantum communication technologies drives the humankind a step ahead in its technological evolution. The predicted applications of the new technologies are a big variety and are promising for the advancement they portend in different fields. However, the complexity of quantum physics is challenging in spreading and popularizing the knowledge to the wide public. The purpose of the current paper is to make a focus on the significance of public outreach in facilitating a comprehensive understanding of quantum communication technologies and also presents methods and approaches that make knowledge easily perceptible for all people including children.

2. Classical Physics vs. Quantum Physics

The scientific world was focused on the big objects in searching for answers to the universe for a long time. It became different during the 20th century when the explorations aimed at the little particles. Quantum physics is known as the science of the small and cold particles that brought about the idea of the way things, upon being prepared in a specific way, could interact no matter the distance between them. This phenomenon is called entanglement [1]. Another concept of quantum physics is the superposition: a multiple-state particle is proven to exist [2]. All the mentioned new knowledge changes the vision and makes us rethink how we see the universe. Understanding quantum principles changes people's lives. That's why it is important for them to have access to the new evidence and to be informed.

3. Classic Computers vs. Quantum Computers

Traditional computers, which have been the foundation of our information technology, for years process data using bits that can be either 0 or 1. In contrast quantum computers utilize qubits or quantum bits. Qubits can exist in a combination of states allowing quantum computers to perform computations simultaneously and significantly speed up problem solving processes [3]. This characteristic has reaching implications in areas such as cryptography, optimization and simulations.

Content from this work may be used under the terms of the [Creative Commons Attribution 4.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Given the approaches of classical and quantum computers it is necessary to adjust our understanding of algorithms and problem-solving methods. Quantum algorithms like Shor's algorithm, for factorization and Grover's algorithm for search problems demonstrate the advantages offered by quantum computing [4].

4. Internet vs. Quantum Internet

The classical internet, the backbone of modern communication, relies on classical bits to transmit information. Quantum internet, an emerging paradigm, is in essence a network of quantum computers, which are able to perform tasks in unison, the communication in that network would be via quantum bits, enabling secure communication through quantum key distribution and explores the possibility of quantum teleportation [1]. The quantum internet holds the promise of fundamentally secure communication, as any attempt to eavesdrop would disturb the delicate quantum states being transmitted.

Understanding the disparities between classical and quantum communication infrastructures is vital as quantum internet prototypes emerge. The security and efficiency offered by quantum communication technologies are poised to redefine how we exchange information globally.

5. Importance of Quantum Technologies in Various Domains

Quantum technologies are poised to transform many fields. Their capacity to model complicated systems with until now unprecedented accuracy and effectiveness offers great hope for revolutionary developments. The potential of quantum computers, by simulating molecular interactions, to accelerate the creation of more effective drugs and to play a key role in the pharmaceutical sector is quite realistic.

The great power of quantum computers is expected to improve risk analysis, financial management, and financial optimization tools will be created. Financial markets might face a revolution as a result, and more effective and lucrative investing techniques could follow.

Energy storage, superconductivity and the creation of materials with previously unknown properties are now possible. Thanks to the discovery of new materials with remarkable properties through quantum simulations, progress is a fact in several industries such as electronics, aerospace and energy.

Artificial Intelligence could be completely changed by quantum computing's capacity to speed up machine learning algorithms, giving researchers a quantum advantage in data processing and pattern detection. It is expected to lead to advances in areas such as financial modeling, autonomous systems, healthcare and related AI.

By means of quantum computers, it will be possible to prepare simulations of complex climate models whose accuracy and efficiency will be greater. They will contribute to a better understanding of climate change. Also, they will have a key role in creating innovative solutions and strategies to deal with global warming [5].

6. Methods for Public Outreach and Education

Recognizing the importance of public awareness, particularly among the younger generation, effective methods for outreach and education are crucial. The following approaches have proven successful:

6.1 Infographics

Infographics distill complex information into visually digestible formats, making quantum concepts accessible to a broad audience. By combining text with graphics, infographics simplify intricate ideas, aiding in the comprehension of quantum principles [6].

6.2 Comics

Comic strips provide a narrative approach to convey quantum principles. By combining entertainment with education, comics engage readers and make complex concepts more approachable. Quantum comics offer a unique avenue for demystifying the world of quantum physics [7]. Based on the mentioned benefits, we conducted an experiment with school-age learners to measure the success rate of quantum technology training for beginners. Taking into account the schematic, sequential, and facilitated step-by-

step presentation style of the comics training method, we decided to organize a comic-based learning contest about basic concepts in the field of quantum computing. We chose an experiment with comics learning because of the quick and easy possibility of gaining knowledge through graphic images, an easy and fun way of presenting information through short sentences with keywords. The expected results were that the participants easily understand, memorize, review, and recall from the graphically presented information. The competition was conducted with school-aged students who had 15 minutes to explore a given topic of quantum computers presented in a comic book. They were expected to demonstrate knowledge of the topic afterwards. The study showed that over 80% of the students had good understanding of the material and were able to reproduce the quantum concepts with approximate accuracy. The experiment was reported as successful, and the results proved the effectiveness of the method.

6.3 Interactive Events

Engaging events, such as workshops and demonstrations, provide hands-on learning experiences. By facilitating direct interaction with quantum phenomena, these events make abstract concepts tangible. Interactive events are particularly effective in breaking down barriers to understanding.

6.4 Storytelling

Narratives and storytelling humanize scientific concepts. By weaving quantum principles into relatable stories, complex ideas become more accessible and captivating. Storytelling appeals to our innate desire for connection and understanding [8].

6.5 Personal Experiences

Experiential learning through hands-on experiments allows individuals to directly interact with quantum phenomena. This approach fosters a deeper understanding and appreciation for the intricacies of quantum physics. Personal experiences make quantum concepts more tangible and memorable.

7. Discussion

The discussion segment reflects on the interconnectedness of quantum technologies and societal progress. It addresses the challenges and opportunities associated with quantum communication technologies, while not missing the importance of their responsible usage. Informing the public is a major task for the integration of quantum technologies into people's life. This requires the joint efforts of both academics and educators, as well as non-specialists with a public presence.

8. Results

As quantum technologies continue to advance, their successful integration into society depends on widespread understanding and acceptance. Effective public outreach methods yield positive results, empowering individuals to appreciate the transformative potential of quantum communication technologies. The engagement of the public in the discourse surrounding quantum technologies is essential for ethical development and equitable access. Also, spreading knowledge about quantum technology will benefit the faster development of the quantum ecosystem and its effective integration not only in a wide variety of industries, incl. space science, but also for achieving technological progress in social life.

9. Conclusion

In conclusion, the significance of public outreach in the realm of quantum communication technologies cannot be overstated. Bridging the gap between the complexities of quantum physics and the broader society is essential for responsible development and widespread adoption. The examples across various domains and the outlined educational methods underscore the urgency of prioritizing quantum literacy. As we navigate the quantum frontier, collective understanding and engagement will pave the way for a future where quantum technologies contribute to a more advanced, secure, and interconnected world.

Public outreach serves as a conduit for democratizing knowledge and ensuring that the benefits of quantum communication technologies are accessible to all.

10. Acknowledgements

The authors acknowledge the support from Project № BG05M2OP001-1.002-0006 “Construction and Development of Centre of Competence “Quantum Communication, Intelligent Security Systems and Risk Management”” (QUASAR), funded by “Science and Education for Smart Growth” OP 2014-2020, co-funded by European Union via European Structural and Investment Funds.

References

- [1] A. S. Cacciapuoti, M. Caleffi, R. Van Meter and L. Hanzo, "When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet," in IEEE Transactions on Communications, vol. 68, no. 6, pp. 3808-3833, June 2020, doi: 10.1109/TCOMM.2020.2978071.
- [2] Perepechaenko, M., Kuang, R. Quantum encryption of superposition states with quantum permutation pad in IBM quantum computers. EPJ Quantum Technol. 10, 7 (2023). <https://doi.org/10.1140/epjqt/s40507-023-00164-3>
- [3] Rangaswamy, S. (2020). Bits or qubits? ResearchGate. https://www.researchgate.net/publication/345973380_Bits_or_Qubits
- [4] Raj, G., Singh, D., Madaan, A. (2018). Analysis of Classical and Quantum Computing Based on Grover and Shor Algorithm. In: Satapathy, S., Bhateja, V., Das, S. (eds) Smart Computing and Informatics . Smart Innovation, Systems and Technologies, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-10-5547-8_43
- [5] Otgonbaatar, S., Nurmi, O., Johansson, M. P., Mäkelä, J., Kocman, T., Gawron, P., Puchała, Z., Mielzcarek, J., Miroszewski, A., & Dumitru, C. O. (2023). Quantum Computing for Climate Change Detection, Climate Modeling, and Climate Digital Twin. ResearchGate. <https://doi.org/10.36227/techrxiv.24478663.v1>
- [6] Naparin, H., & Saad, A. (2017). Infographics in Education: Review on infographics design. International Journal of Multimedia and Its Applications, 9(4/5/6), 15–24. <https://doi.org/10.5121/ijma.2017.9602>
- [7] Yeung, V. a. P. B. a. B. P. K. (2020, November 27). Quantum Computing through Comics. Art by Physicist Kitty Yeung. <https://artbyphysicistkittyyeung.com/2020/05/24/quantum-computing-through-comics/>
- [8] Joubert, M., Davis, L. S., & Metcalfe, J. (2019). Storytelling: the soul of science communication. JCOM, Journal of Science Communication, 18(05), E. <https://doi.org/10.22323/2.18050501>