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Abstract: Although partition temperature derived using the Darwin–Fowler method is exact for

simple scenarios, the derivation for complex systems might reside in specific approximations whose

viability is not ensured if the thermodynamic limit is not attained. This work elaborates on a

related problem relevant to relativistic high-energy collisions. On the one hand, it is simple enough

that closed-form expressions can be obtained precisely for the one-particle distribution function.

On the other hand, the resulting expression is not an exponential form, and therefore, it is not

straightforward that the notion of partition function could be implied. Specifically, we derive the one-

particle distribution function for massless particles where the phase-space integration is performed

exactly for the underlying canonical ensemble consisting of a given number of particles. We discuss

the viability of the partition temperature in this case. Possible implications of the obtained results

regarding the observed Tsallis distribution in transverse momentum spectra in high-energy collisions

are also addressed.

Keywords: partition temperature; Darwin–Fowler; saddle point approximation; jet; high-energy

collisions

1. Introduction

In high-energy hadronic collisions, the outgoing particle that possesses the same quan-
tum numbers as the incoming one is known as the leading particle, whose identification
allows us to obtain additional details about the kinematics of the scattering process. For
high-energy collisions [1–3], it was proposed that for the semi-inclusive scattering pro-
cesses [4–7], the single-particle distribution for (all of the remaining) nonleading particles
can be derived from the joint exclusive probability distribution [8]. Specifically, the lat-
ter is essentially a micro-canonical ensemble consisting of n particles under the relevant
conservation laws, which reads

P =
n

∏
l=1

d3pl

El
g(p1, p2, · · · , pn)δ

[

n

∑
i=1

pLi − PL

]

δ2

[

n

∑
j=1

pTj − PT

]

δ

[

n

∑
k=1

Ek − W

]

, (1)

where W, PL, and PT are the total energy and longitudinal and transversal momenta of the
N-particle system in the center-of-mass frame and g(p1, · · · , pn) refers to some additional
constraint of the phase space, whose form in this study will be made explicit below in
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Equation (14). To focus on the single-particle spectrum, one integrates out the degrees of
freedom associated with the remaining n − 1 particles to find

d3n̄

dydpT
=
∫ n

∏
l=2

d3pl

El
g(p, p2, · · · , pn)δ

[

n

∑
i=2

pLi + pL − PL

]

δ2

[

n

∑
j=2

pTj + pT − PT

]

δ

[

n

∑
k=2

Ek + E − W

]

, (2)

One manifestly arrives at a canonical ensemble

d3n̄

dydpT
∝ exp

(

− E

Tp

)

, (3)

for a single particle with longitudinal and transverse momenta pL and pT , rapidity

y = ln
E+pL
E−pL

, and energy E, where Tp effectively plays the role of temperature and is

referred to as partition temperature [9]. Such an endeavor was explicitly carried out in [8],
which primarily employs the following assumptions and approximations. (1) The mo-
mentum conservation in the transverse direction is largely ignored. (2) A specific form
of the density function f (y, pT) is assumed, c.f. Equation (6). (3) It was argued that the
integral in η =

√

(β + s)2 − t2 (where some relevant variables are defined in Equations (7))
is dominated by the region η → 0, and thus an approximate form is used. (4) The saddle

approximation is employed for the integral in ζ = arctanh
(

t
β+s

)

. Subsequently, the ob-

tained analytic results on the partition temperatures were compared against those obtained
by fitting to the experimental data for pp̄ collisions at 540 GeV [10]. By adopting the
parameters extracted from the data, excellent agreement was achieved, where, for the most
part, the discrepancies were less than 5%.

In principle, the Boltzmann–Gibbs characteristic of the above results can be under-
stood [10,11] in terms of the Darwin–Fowler framework [9]. In this regard, the notion of
partition temperature Tp emerges from a contour integration in terms of a selector vari-
able [12], which is utilized to enforce the relevant conservation laws. Specifically, the
common parameter between different assemblies resulting from such an approach bears
a resemblance to the temperature and is referred to in the literature as partition temper-
ature. It is noted that the feasibility of the Darwin–Fowler formalism largely resides in
the validity of the saddle point method, which is often employed to approximate the
contour integration. In particular, the partition function is essentially governed by the
location of the saddle point. Even though the partition is obtained without referring to the
thermodynamic equilibrium, its link to other thermodynamic quantities such as entropy
has been elaborated [13]. In this approach, the saddle point corresponds to a strong maxi-
mum on the contour in question, which is true when the thermodynamic limit is attained.
However, if the relevant degrees of freedom are not significant, numerical calculations
indicate that further caution might be taken [14]. To be more precise, the derivation based
on the approximation and, subsequently, the notion of partition temperature might cease
to be valid. Calculations need to be performed to validate the partition temperature for the
specific scenario in question. As discussed below, the feasibility of partition temperature
plays an essential role in the observed Tsallis distribution; therefore, the resultant particle
distribution at small multiplicities is physically pertinent.

The calculations [8] carried out by explicit phase-space integration also employed
the saddle point method. It was found that the divergence becomes more significant
for smaller multiplicities. When scrutinizing the results more closely, it was pointed
out [8] that the results did not correctly reproduce the dependence of average transverse
momentum on the event multiplicity, despite the apparent success of reproducing the
partition temperature. Moreover, the deviation increases further if one redefines the total
energy using the experimental data on transverse momentum. This, in turn, leads to some
degree of speculation about whether the notion of partition temperature is indeed valid in
such a context, such as p̄p collisions, where the overall multiplicity is not significant.
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For a wide range of pp, pp̄, AA, and e+e− collisions, the transverse-momentum spec-
trum for the intermediate and high momentum range (pT & 3 GeV) cannot be described
using a Boltzmann–Gibbs distribution. However, the resulting Tsallis distribution can
still be understood in the framework of superstatistics. Specifically, since the system is
not homogeneous, one may obtain the Tsallis distribution by assuming that the observed
spectrum corresponds to an ensemble average of subsystems where either the tempera-
ture [15] or multiplicity [16,17] fluctuates. It can be shown that an additional parameter, q,
associated with the Tsallis-like distribution, measures the strength of fluctuations in either
temperature or multiplicity. In this context, the notion of partition function continues to
play a significant role in these studies.

The present study is motivated by the above discussions. We aim at a scenario where
the contour integral can be performed precisely to steer clear of the uncertainty related to
the saddle point approximation when the multiplicity is small. To this end, we elaborate on
the case of massless particles where the phase-space integration can be evaluated without
saddle point approximation. In this regard, the obtained result presents another explicit
example where the concept of partition temperature is valid.

The remainder of the paper is organized as follows. In the following section, we give
a detailed account of the general form of the phase-space integration that gives rise to the
one-particle distribution from the microcanonical ensemble, essentially based on results
obtained in Ref. [8]. In Section 3, the specific contour integration is carried out precisely,
and the results are presented. We conduct numerical analysis in Section 4 and discuss
the viability of the extracted partition temperatures. Further discussions and concluding
remarks are given in the last section.

2. Phase-Space Integration of the One-Particle Momentum Distribution

We start by considering a system of N particles with a total energy of W, a momentum
of P, and a subsequently total invariant mass M =

√
W2 − P2. The particle’s mass is

denoted by m, which will be taken to be zero.
Following [8], we divide the phase space into N small intervals whose occupation num-

bers will be denoted as nℓ with ℓ = 1, 2, · · · , N. The probability of finding a microscopic
distribution {nℓ} ≡ {n1, · · · , nN}, Equation (1), takes the form

P({nℓ}) =
n!

n1! · · · nN !
q

n1
1 · · · qnN

N δ(n,∑N
ℓ=1 nℓ)

δ

[

N

∑
i=1

ni pLi − PL

]

δ2

[

N

∑
j=1

njpTj − PT

]

δ

[

N

∑
k=1

nkEk − W

]

, (4)

where qℓ stands for the probability of finding a particle in the phase space interval ℓ.
Apparently, qℓ is proportional to the volume of the phase space dV = dydpT , so that
qℓ = f (yℓ, pTℓ)dydpT , where the probability density function f (y, pT) is normalized

N

∑
ℓ=1

qℓ = 1 → lim
N→∞

N

∑
ℓ=1

qℓ =
∫

f (y, pT)dydpT = 1. (5)

One takes f (y, pT) = 1 if the occupation probability is simply proportional to the volume
of the phase space.

Using the probability given by Equation (4), the single particle momentum Equation (2)
distribution reads

d3n̄

dydpT

∣

∣

∣

∣

n,W,P

≡ 〈nk〉 =
∑{nℓ} P({nℓ})nk

∑{nℓ} P({nℓ})
≡ A

B
. (6)

We note that both Equations (4) and (6) have explicitly taken into account the conservation
of the total number of particles, momentum, and energy.

To deal with the conservation of energy and longitudinal momentum, we introduce
two Laplace transforms in the variables s and t and rewrite these quantities in terms of trans-
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verse momentum and rapidity, namely, E =
√

p2
T + m2 cosh y and pL =

√

p2
T + m2 sinh y.

Specifically, we have

δ

[

N

∑
k=1

nkEk − W

]

=
∫ ǫ0+i∞

ǫ0−i∞
ds exp

[(

W −
N

∑
k=1

nkEk

)

s

]

=
∫ ǫ0+i∞

ǫ0−i∞
dseWs

N

∏
k=1

[

e−Eks
]nk

δ

[

N

∑
i=1

ni pLi − PL

]

=
∫ ǫ1+i∞

ǫ1−i∞
dt exp

[

−
(

PL −
N

∑
i=1

ni pTi

)

t

]

=
∫ ǫ1+i∞

ǫ1−i∞
dte−PLt

N

∏
i=1

[

epLit
]ni , (7)

where ǫ0 = ℜs > ℜt = ǫ1 ≥ 0, so the integrals are convergent. The conservation law for
the transversal momentum can be treated similarly by introducing the Fourier transform of
a two-dimensional delta function

δ2

[

n

∑
j=1

pTj − PT

]

=
∫

duT exp

[

−i

(

PT −
N

∑
j=1

njpTj

)

· uT

]

=
∫

duTe−iPT ·uT

N

∏
j=1

[

eipTj ·uT

]nj
. (8)

The Kronecker delta responsible for particle number conservation can be dealt with
by noticing the relation

δ(n,∑N
ℓ=1 nℓ)

=
∫ 2π

0
dv exp

[

−i

(

n −
N

∑
ℓ=1

nℓ

)

v

]

. (9)

By plugging Equations (7)–(9) into the numerator of Equation (6) and picking out the
terms related to the occupation numbers, we have

d3n̄

dydpT

∣

∣

∣

∣

n,W,P

≡ 〈nk〉 ≃ n f (y, pT)dydpT
C

D
, (10)

where

C =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt[F(s, t)]n−1 × exp[(W − pT cosh y)s − (PL − pT sinh y)t], (11)

D =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt[F(s, t)]n exp[Ws − PLt], (12)

and

F(s, t, uT) = dydpT f (y, pT) exp[−pT(s cosh y − t sinh y) + ipT · uT ]. (13)

We relegate the details of the derivations of Equations (11) and (12) to Appendix A.
It is noted that the integrations in s and t given by Equations (A9), (A10), (11) and (12)

still pose a challenge for most scenarios. For most cases, the approximation method is
indispensable. In particular, the saddle point approximation was employed for the ansatz
in [8].

3. The Contour Integration

In this section, we elaborate on a simplified scenario that remains physically relevant
while avoiding the need for any approximations. Specifically, we constrain the emission
of massless particles entirely to the longitudinal direction, with the probability density
function taking the form

f (p) = αe−β|p|, (14)
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where β > 0 and α = β/2 serve as the normalization constant. Notably, the parame-
ter β should not be construed as a “temperature”. As it turns out, the specific form of
Equation (14) simplifies the integrations, and its role is primarily technical to ensure the
convergence of the integrations. Furthermore, as discussed below, the pure phase space
integral can be readily recovered by taking the limit β → 0+ at the end of the calculations.

Subsequently, F(s, t), defined by Equation (A4) has the following form:

F(s, t) =
β

2

∫ ∞

−∞
exp[−(β + s)|p|+ pt],

=
β

2

[

∫ 0

−∞
exp[(t + β + s)p] +

∫ ∞

0
exp[−(β + s − t)p]

]

, (15)

=
β

2

[

1

t + β + s
+

1

t − β − s

]

,

=
β(β + s)

(β + s)2 − t2
,

where one requires ℜs > ℜt ≥ 0 so that the integrals are well-defined. We note the
simplification brought to Equation (A4) in this case, which also benefits from the form given
by Equation (14). On the contrary, the exponential cannot be simplified for massive particles,
which eventually leads to further change in variables and the saddle approximation.

Now, we proceed to evaluate C and D defined by Equations (A9) and (A10). For the
denominator, we have

D =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt

[

β(β + s)

(β + s)2 − t2

]n

exp(Ms) (16)

= βn
∫ ǫ0+i∞

ǫ0−i∞
ds(β + s)n exp(Ms)

∫ ǫ1+i∞

ǫ1−i∞
dtG(t).

where

G(t) =

[

1

(β + s)2 − t2

]n

, (17)

and one has utilized the relation W = M and P = 0 in the center of mass frame of the jet.
The integral in t can be performed using the residue theorem by completing the

contour in the counterclockwise direction on an infinite semi-circle. The analytic function
G(t) has two n-th order poles. By picking up the relevant one on the l.h.s. of the imaginary
axis t0 = −(β + s), one finds

D = βn
∫ ǫ0+i∞

ǫ0−i∞
ds(β + s)n exp(Ms)

∫ ǫ1+i∞

ǫ1−i∞
dtG(t)

= βn
∫ ǫ0+i∞

ǫ0−i∞
ds(β + s)n exp(Ms)

∮

C
dtG(t) (18)

= βn
∫ ǫ0+i∞

ǫ0−i∞
ds(β + s)n exp(Ms)2πiRes(G, t0)

=
2πiβn(2n − 2)!

22n−1[(n − 1)!]2

∫ ǫ0+i∞

ǫ0−i∞
dsH(s),

where

H(s) =
eMs

(s + β)n−1
, (19)
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as it is straightforward to find

Res(G, t0) =
1

(n − 1)!
lim
t→t0

dn−1

dtn−1
((t − t0)

nG(t))

=
1

(n − 1)!
lim
t→t0

dn−1

dtn−1

(−1)n

(t + t0)n
(20)

=
(−1)n

(n − 1)!

(−n)(−n − 1) · · · (−2n + 2)

(2t0)2n−1

=
(2n − 2)!

[(n − 1)!]2[2(β + s)]2n−1
.

The last integral of Equation (19) can again be performed using residue theorem by
using Jordan’s lemma and enclosing the contour in the counterclockwise direction on an
infinite semi-circle. By picking out the contribution from a residual on the negative real
axis s = −β, we have

∮

C
H(s)ds = 2πiRes(H,−β)

=
2πi

(n − 2)!
lim

s→−β

dn−2

dsn−2

(

(s + β)n−2H(s)
)

(21)

=
2πi

(n − 2)!
lim

s→−β

dn−2

dsn−2
eMs

=
2πiMn−2

(n − 2)!
e−βM.

Therefore, one obtains

D =
−π2(2n − 2)!β2(βM)n−2

22n−3[(n − 1)!]2(n − 2)!
e−βM. (22)

The calculation of Equation (A9) can be carried out in a similar fashion, and we have

C =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt

[

β(β + s)

(β + s)2 − t2

]n−1

exp[(M − |p|)s + pt]

= βn−1
∫ ǫ0+i∞

ǫ0−i∞
ds(β + s)n−1 exp[(M − |p|)s]

∫ ǫ1+i∞

ǫ1−i∞
dt

ept

[(β + s)2 − t2]
n−1

= 2πiβn−1
n−2

∑
r=0

(n + r − 2)!

r!(n − r − 2)!

pn−2−re−pβ

2n+r−1

∫ ǫ0+i∞

ǫ0−i∞
ds

exp[(M − |p| − p)s]

(β + s)r
(23)

= (2πi)2βn−1
n−2

∑
r=0

(n + r − 2)!

r!(n − r − 2)!

pn−2−re−pβ

2n+r−1

(M − |p| − p)r−1

(r − 1)!
e−β(M−|p|−p)

= −4π2βn−1e−β(M−|p|)
n−2

∑
r=0

(n + r − 2)!

2n+r−1r!(r − 1)!(n − r − 2)!
pn−2−r(M − |p| − p)r−1.

In the above calculations, the integral in t can be carried out for

G = G(t) =
(−1)n−1ept

[t − (β + s)]n−1[t + (β + s)]n−1
, (24)

using Jordan’s lemma. Both residues at t1,2 = ±(β + s) are relevant, as one must choose the
counterclockwise (clockwise) contour when p > 0 (p < 0). Specifically, for p > 0, we have
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Res(G, t2) =
(−1)n−2

(n − 2)!
lim
t→t2

[

dn−2

dtn−2

ept

(t − t1)n−1

]

=
(−1)n−2

(n − 2)!
lim
t→t2

n−2

∑
r=0

(

n − 2
r

)[

dn−2−r

dtn−2−r
ept

][

dr

dtr

1

(t − t1)n−1

]

=
(−1)n−2

(n − 2)!
lim
t→t2

n−2

∑
r=0

(

n − 2
r

)

[

pn−2−rept
] (−1)r(n − 1)n · · · (n + r − 2)

(t − t1)n+r−1
(25)

=
n−2

∑
r=0

(

n − 2
r

)

n · · · (n + r − 2)pn−2−re−p(β+s)

2n+r−1(β + s)n+r−1

=
n−2

∑
r=0

(n + r − 2)!

r!(n − r − 2)!

pn−2−re−p(β+s)

2n+r−1(β + s)n+r−1
.

The integral in s, the exponential (M− |p| − p) > 0, dictates the use of Jordan’s lemma,
and the residue of

H(s) =
e(M−|p|−p)s

(β + s)r
(26)

at s = −β is found to be

Res(H,−β) =
1

(r − 1)!
lim

s→−β

[

dr−1

dsr−1
e(M−|p|−p)s

]

(27)

=
(M − |p| − p)r−1

(r − 1)!
e−β(M−|p|−p).

We note that when p < 0, the integral in t leads to a factor with exponential dependence
of ep(β+s). A similar expression is obtained after performing the integration in s.

Putting the pieces together, we have

dn̄

dp

∣

∣

∣

∣

n,W,P

≡ 〈nk〉 = n f (p)dp
C

D
∝

n−2

∑
r=0

(n + r − 2)!

2n+r−1r!(r − 1)!(n − r − 2)!
× pn−r−2(M − |p| − p)r−1, (28)

where it is noteworthy that the exponential term exp[−β|p|] cancels out identically. In other
words, the obtained one-particle distribution does not depend on the specific value of β, as
taking the limit β → 0+ yields no changes to the resultant expression. Additionally, based
on the form of Equation (28), it is unclear whether the resultant one-particle distribution
can be characterized by any sort of partition temperature.

4. The Feasibility of Partition Temperature

The one-particle distribution function obtained in the last section, Equation (28),
possesses a rather tedious form consisting of a summation of polynomials in p. In this
section, we numerically evaluate the resulting distribution function and use a non-linear fit
to extract the associated partition temperature.

The corresponding numerical results are shown in Figures 1 and 2 and Table 1. As the
results mainly aim to demonstrate the feasibility of the effective temperature, the assumed
values do not refer to any specific scenario, and natural units are used. The calculations are
carried out for a given average p̄ so that the total mass reads M = W = np̄. The summations
in Equation (28) are carried out numerically and sampled at Nsample = 50 points evenly
distributed on the interval p ∈ (0, 2p̄). The calculations are for different multiplicities
n = 5, 10, 50, and 100. Also, without loss of generality, we take p̄ = 10. We have confirmed
that the qualitative conclusion drawn below remains unchanged, independent of this
specific choice.
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In order to assess the validity of partition temperature, a nonlinear fit is carried out
regarding the above range and depicted on top of the numerical results. By using the
Mathematica build-in module NonlinearModelFit[], the resultant one-particle distribution
function is fit to an exponential form y = A exp

(

−p/Tp

)

. The fit is performed under the
assumption that the numerical values yi (i = 1, · · · , 50) are independent and normally
distributed with a mean of ŷi and a common standard deviation. The results are presented
in Figure 1, where black curves show the nonlinear fits, and the numerical distribution
functions are shown in solid red symbols. It is somewhat surprising that even for n = 5,
the one-particle distribution function agrees reasonably well with the notion of partition
temperature. As the multiplicity increases, the agreement further improves, as shown in
the left panel of Figure 2.
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Figure 1. Left: The numerical fits shown in Figure 1 but presented in the logarithmic scale. From the

top to bottom, the curves correspond to the multiplicities n = 5, 10, 50, and 100, respectively. Right:

The extracted partition temperature 1/Tp as a function of the multiplicity n, where the red dashed

curve is obtained by a third-order spline fit.

More specific values of the extracted partition temperatures and the goodness of the
fits are shown in Table 1. As a measure of the fit’s quality, the standard error is defined as
the standard deviation divided by the square root of the number of samples. Furthermore,
the p-values are also evaluated, which give the probabilities, under the null hypothesis,
of obtaining a result equal to or more extreme than the sampled points. The smallness of
both quantities indicates the partition temperature’s feasibility; moreover, the fit becomes
more reliable at large multiplicities. For small multiplicity, however, the extracted value of
partition temperature is not a constant. This is understood as an indication that the quantity
is irrelevant to thermodynamic equilibrium. As the multiplicity increases, one observes
that the partition temperature converges, as indicated by the right panel of Figure 2. It
is interesting to point out that the effective temperature extracted numerically indicates
that Tp → p̄ at the limit n → ∞. Nonetheless, it is also noted that the notion of partition
function breaks down for the high-momentum region.
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Table 1. The extracted partition temperatures, the corresponding standard errors, and p-values for

different multiplicities n. The quality of the fit improves as the multiplicity increases.

n 5 10 30 40 50 100

1/Tp 0.0523 0.0794 0.0936 0.0952 0.0962 0.0981

standard error 0.0006 0.0005 0.0002 0.0001 0.0001 0.00005

p-value 1.2 × 10−51 9.5 × 10−67 3.0 × 10−91 1.9 × 10−97 3.2 × 10−102 6.5 × 10−117

d
n
/
d
p

n=5
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n=50
n=100
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0.2

0.5

1

p
20 40 60 80 100

n

0.02

0.04

0.06

0.08

0.10

0.12

1/Tp

Figure 2. The numerical fits shown in Figure 1 but presented in the logarithmic scale (left) and the

extracted partition temperature 1/Tp as a function of the multiplicity n (right), where the red dashed

curve is obtained using a third-order spline fit.

5. Further Discussions and Concluding Remarks

The notion of partition temperature with the Darwin–Fowler approach is widely
known, and the result is exact for simple scenarios. As a result, it is often accepted and
borrowed in different contexts without further scrutinization. Nonetheless, for complex
systems, the validity of the partition temperature resides on some approximations, such as
the saddle point method, and subsequently, further caution should be taken. The present
study explores a scenario pertinent to particle emission in relativistic high-energy collisions,
which possesses an analytic closed form for the resulting one-particle distribution. It
is observed that even the analytic result does not imply the existence of an effective
temperature, and the distribution converges rapidly to an exponential form for particles
with low and intermediate momenta. Nonetheless, it is noted that the notion of partition
temperature breaks down for the high-momentum region. We also note that the general
scenario with massive particles and the momentum in the transverse direction is essential.
While it is mainly handicapped, as an analytic closed-form solution is often not accessible,
it might be feasible to carry out numerical studies.

In the transverse direction, experimental data from ATLAS [18], ALICE [19], and
CMS [20–22] have shown that the transverse-momentum spectra of hadrons for various
collision systems and at various collision energies are very well described by a Tsallis
distribution [23–25]. As a generalization of standard Boltzmann–Gibbs statistics, the Tsallis
distribution is derived by maximizing the Tsallis entropy under appropriate constraints.
From the side of data analysis, it properly accounts for the observed slowly decreasing
tails obeying the power law. Besides the phenomenological formula proposed by Hage-
dorn [26], a natural recipe is to employ the relativistic hard-scattering model in perturbative
QCD. It was intriguing to observe that the experimental hadron transverse differential
cross section appears to differ from what one expects from the intuitive partonic collision
viewpoint [27–29]. To be specific, in the context of the quark model, the high-pT differential
cross section in a 2 → 2 exclusive process can be inferred from a scaling law [27–29], leading



Symmetry 2023, 15, 2035 10 of 13

to a different power index from the data. This fact was subsequently interpreted in terms
of the counting rule of the parton-meson degrees of freedom [30–33].

The present study, however, concerns an alternative line of thought that does not di-
rectly involve the underlying dynamics. We primarily focus on the phase space distribution
regarding the kinematic variables by scrutinizing the partition and constraints of the phase
space from a statistical viewpoint. Specifically, statistics turns out to play an intriguing role
in the relevant analyses [15–17,34–38], where the notion of local partition temperature is
a pertinent concept. For instance, since the system is not homogeneous, it can be argued
that the partition temperature fluctuates. Wilk and Wlodarczyk showed that an additional
parameter, q, which measures the strength of fluctuations in temperature, readily gives rise
to the desired q-exponential distribution [15], furnishing a plausible explanation of the data.
Alternatively, if the momentum distribution in an event with fixed multiplicity is featured
by a partition function, and the multiplicity fluctuates according to a Gamma distribution,
the average momentum distribution also obeys a Tsallis-like form [16,17]. Again, in this
case, the variance of the multiplicity distribution is associated with the parameters of the
Tsallis-type distribution. It is thus understood that the apparent validity of such a line of
thought indicates that the resulting Tsallis-like distribution is not entirely a manifestation
of the underlying dynamics, namely, the QCD.

It is worth noting that the above two approaches can be viewed consistently under
appropriate circumstances. As pointed out by Wong and Wilk [39], if one considers the
showering and hadronization processes of the parton jets on top of the multiple hard
scattering of partons, the experimentally observed Tsallis-type distributions can be reason-
ably explained. On the one hand, by analyzing the experimental results of jet transverse
differential cross sections with the relativistic hard-scattering model, it is concluded that the
jet production can be approximately described by the relativistic hard-scattering model that
appropriately takes into account the effects of multiple scattering and partition thicknesses.
On the other hand, the showering and hadronization processes further push the power
index to a more significant value observed experimentally. By comparing this picture
with the discussions on the statistical side, the latter corresponds to the collinear hadron
emission from a given jet. Employing the phase-space integral, the distribution is then
estimated at the center-of-mass frame of individual jets, which typically is not of significant
relative momentum. Although the finite size of the underlying phase space implies that the
distribution will not have an extensive tail at a small momentum, it becomes an exponential
function consistent with those of phenomenological models. Moreover, by convoluting
the above two ingredients, it was argued that the resulting distribution is essentially the
Tsallis type [16,17]. In this regard, the present study is qualitative, with the primary goal of
demonstrating the feasibility of effective temperature when the multiplicity is small. It is
worth conducting further analyses regarding a quantitative comparison with the observed
Tsallis distribution in the data.
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Appendix A. The Derivations of the Formuale for One-Particle Distribution Function

In this appendix, we give an account of Equations (10)–(12) utilized in the main text.
By plugging Equations (7)–(9) into the numerator of Equation (6) and picking out the

terms related to the occupation numbers, we have

∑
{nℓ}

n!
∫ 2π

0
dv exp
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= ∑
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,

where the remaining integral in v will still turn out to be manageable. A similar derivation
can be carried out for the denominator of Equation (6).

To proceed, we note that the part involving the product ∏
N
ℓ=1 between phase space

intervals can be concluded as follows
N

∏
ℓ=1

exp
[

qℓe
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]

= exp

[

N
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]

, (A2)

and therefore
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N→∞
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where

F(s, t, uT) ≡ lim
N→∞
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. (A4)

The resulting contribution that involves the integral in v can be dealt with analytically.
For the numerator, it possesses the following form:
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By putting the above pieces together, one simplifies Equation (6) into the following
forms [8]:

A =
−n

(2π)4
f (y, pT)dydpT

∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt
∫

duT [F(s, t, uT)]
n−1 (A6)

× exp

[
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√

p2
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√

p2
T + m2 sinh y)t − i(PT − pT) · uT

]

,

and

B = − 1

(2π)4
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ds
∫ ǫ1+i∞

ǫ1−i∞
dt
∫

duT [F(s, t, uT)]
n exp[Ws − PLt − iPT · uT ]. (A7)

As elaborated further below [16,17], if these hadrons are emitted from a jet, it is a
reasonable approximation to assume that 〈pT〉 is not significant when compared to 〈pL〉 as
the hadrons are mostly aligned. This is in accordance with the scenario of a di-jet when
the momentum component in the perpendicular direction of the jet is insignificant. In this
regard, one relaxes the conservation of transverse momentum by assuming that F(s, t, uT)
does not depend on uT . We therefore replace F(s, t, uT) by F(s, t) in the above expressions.
By noticing that the integrations in uT become irrelevant and cancel out in the ratio, we find

d3n̄

dydpT

∣

∣

∣

∣

n,W,P

≡ 〈nk〉 ≃ n f (y, pT)dydpT
C

D
, (A8)

where

C =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt[F(s, t)]n−1 × exp

[

(W −
√

p2
T + m2 cosh y)s − (PL −

√

p2
T + m2 sinh y)t

]

, (A9)

and

D =
∫ ǫ0+i∞

ǫ0−i∞
ds
∫ ǫ1+i∞

ǫ1−i∞
dt[F(s, t)]n exp[Ws − PLt]. (A10)

By assuming m = 0 in Equations (A9) and (A10), one readily obtains Equations (11)
and (12) given in the main text.
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