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Abstract: We extend a result by one of the authors, established for nonvacuum Einstein
gravity, to minimally coupled k-essence scalar–tensor theories. First, we prove that in
order to source a Kerr–Schild-type spacetime, the k-essence Lagrangian should be at most
quadratic in the kinetic term. This is reduced to linear dependence when the Kerr–Schild
null congruence is autoparallel. Finally, we show that solutions of the Einstein equations
linearized in Kerr–Schild-type perturbations are also required to solve the full nonlin-
ear system of Einstein equations, selecting once again k-essence scalar fields with linear
Lagrangians in the kinetic term. The only other k-essence sharing the property of sourc-
ing perturbative Kerr–Schild spacetimes, which are also exact, is the scalar field constant
along the integral curves of the Kerr–Schild congruence, with the otherwise unrestricted
Lagrangian.

Keywords: k-essence; Kerr–Schild maps; linearized and exact solutions

1. Introduction
Most physically interesting metrics in Einstein gravity are of Kerr–Schild type. They

include Schwarzschild and Kerr black holes for vacuums and the Kerr–Newman family
and pp-waves for Einstein–Maxwell systems or the Vaidya radiating solution sourced by
a null dust solution [1]. Such spacetimes are generated by a null congruence la through
the map

g̃ab = gab + λlalb (1)

from the flat metric gab = ηab, with λ an arbitrary parameter. The extension to a generic
vacuum seed metric gab led to either a shearfree congruence la (containing all solutions
with flat seed metric) or a unicity theorem for the shearing class (only containing one of
the Kóta–Perjés metrics and its nontwisting limit, the Kasner metric) [2–4]. An important
result was provided by Xanthopoulos [5], stating that all vacuum Kerr–Schild metrics
arising as perturbations (with small λ) of vacuum seed spacetimes are also exact (hence
solutions of the Einstein equations for arbitrary λ). This result was generalized for the
nonvacuum case by one of us [6], proving that for any pair (gab, Tab) of a seed metric and

energy–momentum tensor, the pair
(

g̃ab, Tab + λT
(1)
ab

)

arising as a solution of the linearized
solution (hence for small λ) generates an exact solution (with arbitrary λ) of the form
(

g̃ab, Tab + λT
(1)
ab + λ2l(aT

(1)
b)c

lc
)

, in the case when the null congruence is autoparallel (if not,
a similar but more technical result holds).

While general relativity is precisely verified by Solar System tests, also all cosmological,
astrophysical and gravitational wave observations are consistent with it, and modified
gravitational theories are still of interest, provided they obey the observational constraints.
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They are pursued due to the need to explain dark matter and dark energy, to properly model
inflation, and to make room for quantum-gravity-motivated extensions in the low energy
regime. A plethora of modifications relaxing one or more assumptions of the Lovelock
theorem (gravity expressed solely by the metric tensor, obeying second-order dynamics
in four spacetime dimensions with a divergence-free energy–momentum tensor) are still
viable [7]. The relation of some of these modified theories with a subclass of Kerr–Schild
metrics has been investigated for vector-tensor [8,9] theories.

A most natural modification arises by including a scalar field in the gravitational
sector. By imposing second-order dynamics for both the metric and the scalar, such that
Ostrogradsky instabilities are avoided, the Horndeski class emerges [10,11]. Additionally,
requiring gravitational waves to propagate with the speed of light in a vacuum (in order to
comply with observations of high frequency gravitational waves by LIGO and Virgo [12])
leads to [13–16] a restricted subclass of kinetic gravity braiding theories [17]. The depen-
dence of the Lagrangian on the scalar φ of such theories is only through φ, □φ and the
kinetic term

X = −1
2

gab∇aφ∇bφ (2)

(with gab the inverse metric, ∇a the Levi–Civita connection, and □ = ∇a∇a). Without
the □φ dependence, they simplify to the k-essence class of scalar–tensor theories with
the Lagrangian

Lφ =
√
−gF(φ, X) (3)

(here, g is the determinant of the metric and F(φ, X) an arbitrary function of φ and X). We
will further assume minimal coupling to the metric, such that Lφ is supplemented with the
Einstein–Hilbert action (in this case, the Einstein and Jordan frames coincide).

Such scalar dynamics was originally introduced for k-inflation models, with La-
grangians combining first- and second-order powers of X, and explored in the context of
slow-roll and power law inflation scenarios [18]. A k-essence model with the Lagrangian
consisting of a purely X-dependent function divided by the scalar squared was proposed
to generate late time dark energy through the transformation of the scalar field into a
negative pressure state [19]. A related k-essence Lagrangian consisting of a product of func-
tions depending solely of φ and X, respectively, is suitable to accommodate for slow-roll,
power-law, and pole-like inflation mechanisms, and it also appears in the effective action
of string theory [20]. Such models are able to generate cosmic evolution, and they have the
appealing feature that late time acceleration is not permanent.

Moreover, Lim, Sawicki, and Vikman proposed a unification of dark matter and dark
energy in a single degree of freedom [21]. In their model, the k-essence field is supple-
mented by a second scalar acting as a Lagrange multiplier (hence, without a proper kinetic
term), enforcing a relation between X and φ. As consequence of this constraint, the system
retains a single dynamical degree of freedom, allowing for no wave-like modes, hence
leading to a generalized k-essence with vanishing speed of sound, energy flowing along
timelike geodesics (similarly as for dust), while possessing non-zero pressure. This model
is able to reproduce the ΛCDM evolution, with the structure formation possibly affected.
Similar techniques are explored for predicting the WIMP dark matter mass spectrum, while
the nonvanishing pressure of matter mimics the cosmological constant [22]. Generalized
k-essence was explored to heal the cosmological constant problem in Ref. [23], also to
achieve a graceful exit from inflation through proper choices of the scalar potential [24].

The gravitational collapse of k-essence was investigated numerically in Ref. [25]. For
strong fields yielding to black hole formation, in certain cases, the sound horizon may lie
inside the light horizon, allowing for superluminal k-essence signals escaping the black
hole. The evolution of a k-essence scalar field is governed by an effective metric (different
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from the spacetime metric). Its conformally related emergent gravity metric resembled
a generalized Vaidya metric sourced by a superposition of perfect and null fluids, when
the scalar was assumed to be driven by Dirac–Born–Infeld-type dynamics and assumed
to depend only on one of the advanced and retarded null coordinates [26]. Gravitational
collapse [27] and the evaporation of the emerging horizon [28] were also discussed.

In the present paper, we aim to investigate another feature related to k-essence, namely,
under which conditions the linearity property of Kerr–Schild metrics proven in Ref. [6]
would apply in this class of minimally coupled k-essence scalar fields, also dubbed Class
(A) in the classification of Ref. [29]. In Section 2, we summarize the results of Ref. [6]
on Kerr–Schild spacetimes with matter sources, necessary for our analysis on minimally
coupled k-essence fields.

In Section 3, we impose the condition on the k-essence to source Kerr–Schild space-
times. In Section 4, we analyze the requirements for lifting the solution of the linearized
system to exact solution by increasing the Kerr–Schild parameter to arbitrary values. In
Section 5, we repeat the analysis for a simpler case, left out from the previous discussion.

In Section 6, we address the question of how black hole properties are affected by
Kerr–Schild maps. We also include an analysis of the scalar fields inside or outside the
event horizons of black holes, also of cosmological scalar fields, in terms of equivalent
fluids. We calculate the adiabatic speed of sound, which does not vanish for the types of
k-essence scalar fields allowed by our requirements, a property already noted in Ref. [25],
and we formally exclude the Laplacian instability regimes. Finally, we argue that k-essence
Kerr–Schild seed spacetimes could be important in dynamical situations.

In Section 7, we summarize our results.

2. Kerr–Schild Spacetimes and K-Essence
In this section, we summarize the main results of Ref. [6] necessary for our forthcoming

discussion and discuss how the k-essence fits into the generic scheme.

2.1. Nonvacuum Kerr–Schild Maps

The Ricci tensors of the Kerr–Schild and seed spacetimes are related as:

R̃ab = Rab + λR
(1)
ab + λ2R

(2)
ab + λ3R

(3)
ab , (4)

with the contributions

R
(1)
ac = ∇b

(

∇(a

(

lc)l
b
)

− 1
2
∇b(lalc)

)

, (5)

R
(2)
ac = ∇blbl(aDlc) +

1
2

DlaDlc + l(aDDlc) + lalc∇bld∇[bld] − Dlb∇bl(alc) , (6)

R
(3)
ac = −1

2
lalcDlbDlb (7)

(here, Dla = lb∇bla is the directional covariant derivative along the null congruence).
Expressing the Ricci tensor contributions in Equation (4) through the Einstein equations
written for both the seed and Kerr–Schild metrics, the condition

λR
(1)
ab + λ2R

(2)
ab + λ3R

(3)
ab = T̃ab − Tab −

1
2

gab

(

T̃ − T
)

− 1
2

λlalbT̃ (8)
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emerges (we have absorbed the constants into a redefinition of the energy–momentum
tensors). In Ref. [6] it was proven that when seeking the source of the Kerr–Schild spacetime
in the form of the series

T̃ab = Tab + λT
(1)
ab + λ2T

(2)
ab + λ3T

(3)
ab +

∞

∑
i=1

λ3+iT
(3+i)
ab , (9)

the terms of higher orders than three vanish. Furthermore, when la is autoparallel, T
(3)
ab = 0

also holds. Additionally requiring that the solution for small λ (the solution of the linear
equation) solves the full set of Einstein equations leads to the condition

T
(2)
ab = l(aT

(1)
b)c

lc . (10)

This was announced as Theorem 2 in Ref. [6].

2.2. K-Essence

The dynamics of the k-essence is given by the action

Sφ =
∫

d4xLφ =
∫

d4x
√
−gF(φ, X) , (11)

while its energy–momentum tensor emerges from its metric variation,

Tab =
−2√−g

δSφ

δgab
(12)

as
Tab = FX(φ, X)∇aφ∇bφ + gabF(φ, X) . (13)

Here, the subscript X denotes the derivative with respect to X.
As we assume minimal coupling, the variation in the total action, the sum of the

Einstein–Hilbert action and the k-essence contribution (11), with respect to the metric gives
the Einstein equations sourced by the energy–momentum tensor (13). Hence, in this case,
the results of Ref. [6] can be applied directly.

While the k-essence field is unaffected by the Kerr–Schild transformation, its energy–
momentum tensor changes as it contains both the metric and its inverse (through X).
Transforming them cf. Equation (1) and g̃ab = gab − λlalb leads to the Kerr–Schild trans-
formed kinetic term

X̃ = X + λX(1) , (14)

with
X(1) =

1
2
(Dφ)2 . (15)

The Kerr–Schild transformed energy–momentum tensor is

T̃ab = FX̃(φ, X̃)∇aφ∇bφ + g̃abF(φ, X̃) . (16)

When X(1) = 0, the sole change in the energy–momentum tensor appears through g̃ab. This
is possible if the k-essence is constant along the integral curves of the null congruence. We
will discuss this special case at the end of the paper. In what follows, we concentrate on the
generic case, when X(1) ̸= 0.



Universe 2025, 11, 100 5 of 14

3. K-Essence Sourcing Kerr–Schild Spacetimes
3.1. Infinitesimal Kerr–Schild Maps

Until now, the parameter λ was arbitrary. In this subsection, we assume it is small;
hence, both functions appearing in the Kerr–Schild transformed energy–momentum tensor
of the k-essence can be expanded in the power series as

F(φ, X̃) =
∞

∑
j=0

FX j(φ, X)

j!

(

λX(1)
)j

, (17)

FX̃(φ, X̃) =
∞

∑
j=0

FX j+1(φ, X)

j!

(

λX(1)
)j

(18)

where FX j denotes the jth derivative of F with respect to X. Hence, for small λ and
employing Equations (1), (14), (17), and (18), the leading order is given by the contribution
of the seed spacetime:

T
(0)
ab = Tab , (19)

while

T
(k)
ab =

1
k!

(

gab +∇aφ∇bφ
∂

∂X

)

FXk (X(1))k +
1

(k − 1)!
lalbFXk−1(X(1))k−1 (20)

holds for any integer k ≥ 1.
As proven in Ref. [6], the transformed energy–momentum tensor satisfies the field

equations only when all contributions with k ≥ 4 vanish (this is a generic statement, apply-
ing for any λ, including small values). Furthermore, if the congruence la is autoparallel,
the k = 3 contribution is also zero. These conditions are expected to seriously constrain the
functional form of the free function F(φ, X).

First, we prove the following

Theorem 1. If T
(4)
ab = 0, then for all k ≥ 5, the contributions T

(k)
ab also vanish.

Proof. We prove this by induction. Assume that the statement is true until
k − 1 ≥ 4; thus,

T
(k−1)
ab =

1
(k − 1)!

(

gab +∇aφ∇bφ
∂

∂X

)

FXk−1(X(1))k−1

(21)

+
1

(k − 2)!
lalbFXk−2

(

X(1)
)k−2

= 0 .

Contracting T
(k−1)
ab with lb and exploring the expression (15) for the nonvanishing X(1),

laFXk−1 +
√

2X(1)∇aφFXk = 0 (22)

emerges. Further contracting with la gives FXk = 0, which in turn implies FXk−1 = 0

through Equation (22). (Hence, the vanishing of T
(k−1)
ab also implies FXk−2 = 0.) Then,

T
(k)
ab =

1
k!
∇aφ∇bφFXk+1(X(1))k , (23)

However, FXk+1 is also zero as it is the derivative of a function vanishing for any X.



Universe 2025, 11, 100 6 of 14

Next, we explore the conditions under which T
(4)
ab would vanish. From the proof of

Theorem 1, it can immediately be seen that it is equivalent to imposing FX3 = FX4 = FX5 = 0.
This is solved by quadratic functions of X:

F(φ, X) = A(φ)X2 + B(φ)X − V(φ) , (24)

with A, B, V arbitrary functions of φ.
In summary, Kerr–Schild spacetimes with infinitesimal parameter λ are solutions of

the Einstein equations sourced by k-essence with the quadratic Lagrangian.

3.2. Finite Kerr–Schild Maps

Let us now ignore that the quadratic form of the k-essence Lagrangian was derived for
infinitesimal Kerr–Schild maps and investigate such maps with finite parameters for space-
times sourced by quadratic k-essence. The kinetic term transforms under such maps with
arbitrary λ according to Equation (14), such that the function F in the Lagrangian becomes

F
(

φ, X̃
)

= A(φ)X2 + B(φ)X − V(φ) + [2A(φ)X + B(φ)]λX(1) + A(φ)
(

λX(1)
)2

. (25)

This agrees with the expression obtained from the expansion (17) for the F quadratic in X,
confirming its validity for large λ. The same conclusion can also be reached by realizing that
the convergence radius of the series expansion is infinite due to the vanishing derivatives.

Therefore, we reached the conclusion that k-essence models with the Lagrangian
quadratic in the kinetic term source spacetimes are of Kerr–Schild type.

3.3. Autoparallel Null Congruence

The situation is further simplified by requiring the Kerr–Schild null congruence to

be autoparallel, Dla ∝ la. In this case, T
(3)
ab = 0 should also be imposed. We note that the

proof of the Theorem 1 also holds for k − 1 = 3, implying FX2 = 0. Therefore, in the case
of autoparallel Kerr–Schild congruences, the k-essence Lagrangian should be linear in the
kinetic term,

F(φ, X) = B(φ)X − V(φ) , (26)

in order to source Kerr–Schild spacetimes.

4. Condition for the Solution of the Linearized System to Be Exact
In this section, we explore the requirement of the linearized solutions to also be exact.

We start with the autoparallel case, then proceed to the generic case.

4.1. Autoparallel Kerr–Schild Congruences

Inserting the linear and quadratic contributions

T
(1)
ab = lalbF + FX2 X(1)∇aφ∇bφ + gabFXX(1) (27)

and

T
(2)
ab =

1
2

(

gab +∇aφ∇bφ
∂

∂X

)

FX2(X(1))2 + lalbFX(X(1)) (28)

of the energy–momentum tensor into the condition (10), we obtain

(

gab +∇aφ∇bφ
∂

∂X

)

FX2 X(1) = 2FX2(Dφ)l(a∇b)φ . (29)

This is automatically solved by the k-essence Lagrangian linear in X (implying FX2 = 0).
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4.2. Unicity

Theorem 2. The solution of the linearized equation becomes exact only if the Kerr–Schild congru-

ence is autoparallel (hence, the k-essence Lagrangian is linear in the kinetic term).

Proof. Let us assume that the null congruence la is generic, rather than autoparallel. Then,
the condition (10) for the linear solution to become exact is replaced by the statement of
Theorem 1 of Ref. [6], giving

T
(3)
ab = −3

4
lalb(DlcDlc) ,

(30)

2T
(2)
ab = 2l(aT

(1)
b)c

lc − 1
2

gab(DlcDlc) + DlaDlb − lalb(∇cDlc)

(31)

+l(a

[

Dlb)(∇clc) + DDlb) +
(

∇b)lc − 2∇|c|lb)
)

Dlc
]

.

The k-essence with the quadratic Lagrangian in X, Equation (24) has all T
(k≥4)
ab = 0 (and is

therefore able to generate Kerr–Schild-type solutions) and

T
(3)
ab =

1
4

lalb A(φ)(Dφ)4 . (32)

Comparison with Equation (31) gives the coefficient of the quadratic contribution:

A(φ) = −3(DlcDlc)

(Dφ)4 . (33)

The first two expansion coefficients of the energy–momentum tensor, Equations (27) and (28), are

T
(1)
ab = −3(DlcDlc)

(Dφ)4

[

lalbX2 + (Dφ)2(gabX +∇aφ∇bφ)
]

(34)

+B(φ)

(

lalbX + gab
(Dφ)2

2

)

− V(φ)lalb

and

T
(2)
ab = −3(DlcDlc)

4

(

gab + lalb
4X

(Dφ)2

)

+ B(φ)lalb
(Dφ)2

2
. (35)

Inserting the latter and

2l(aT
(1)
b)c

lc = −6(DlcDlc)

(Dφ)2

(

lalbX + l(a∇b)φDφ
)

+ B(φ)lalb(Dφ)2 (36)

into Equation (32) leads to the condition

6
l(a∇b)φ

Dφ
(DlcDlc) = DlaDlb + gab(DlcDlc)− lalb(∇cDlc)

(37)

+l(a

[

Dlb)(∇clc) + DDlb) +
(

∇b)lc − 2∇|c|lb)
)

Dlc
]

.

It can then be seen that, in the autoparallel case, this becomes an identity, confirming
our previous finding.

For generic null congruences, the trace of Equation (38) gives lbDDlb = 0, which can
be rewritten as DlbDlb = 0, hence Dla null. Then, however, through Equation (33), A = 0.
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Thus, we have proven that in order for the linearized Kerr–Schild solution to also be exact,
the k-essence Lagrangian should be linear in the kinetic term.

We complete the proof by exploring the condition of Dla being null vector. Beside the
autoparallel case Dla = αla, already discussed, the other possibility would be Dla = βka,
with ka the second null vector of a pseudoorthonormal base (with property kala = −1). In
this case, denoting δ = kc∇c, Equation (38) reduces to

0 = β2kakb − lalb(β∇ckc + δβ)

(38)

+l(a

[

kb)(β∇clc + Dβ) + βDkb) + β
(

∇b)lc − 2∇|c|lb)
)

kc
]

.

Its lalb projection shows β = 0, which renders Equation (39) an identity. Therefore, the only
surviving possibility is la being autoparallel.

5. Constant K-Essence Along the Integral Curves of the Kerr–Schild
Null Congruence

For completeness, we also discuss the special case Dφ = 0, implying X(1) = 0. In this
case, the k-essence is constant along the integral curves of the Kerr–Schild null congruence
and the energy–momentum tensor changes exclusively due to its dependence on g̃ab:

T̃ab = Tab + λlalbF(φ, X) . (39)

With only T
(1)
ab ̸= 0 in the expansion, Equation (31) gives Dlc null, while Equation (32)

simplifies to

0 = DlaDlb − lalb(∇cDlc)

(40)

+l(a

[

Dlb)(∇clc) + DDlb) +
(

∇b)lc − 2∇|c|lb)
)

Dlc
]

,

a condition purely on the null congruence (F dropped out).
For autoparallel congruences Dla = αla, the condition (41) becomes an identity. For

the alternative case Dla = βka it gives

0 = β2kakb − lalb(β∇ckc + δβ)

(41)

+l(a

[

βkb)(∇clc) + βDkb) + kb)Dβ + β
(

kc∇b)lc − 2δlb)

)]

,

its lalb projection, implying that β = 0 leads to another identity.
With this, we have proven the following:

Theorem 3. For k-essence fields constant along the integral curves of the autoparallel null Kerr–Schild

congruence, the solutions of the linearized Einstein equations also solve the exact equations, with no

further restriction on the functional form of the k-essence Lagrangian.

6. On the Physical Interpretation of Kerr–Schild Maps
6.1. How Are Black Hole Properties Affected by Kerr–Schild Maps?

It is interesting to consider how the Kerr–Schild map transforms the characteristics
of spacetime as it affects null geodesics, hence causality, horizon location, light deflection,
gravitational lensing, and black hole shadows. The latter gained particular interest in light
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of the Event Horizon Telescope observations of the M87* and Sagittarius A* supermassive
black holes [30,31].

The Kerr–Schild map changes the light cone in each point by modifying it everywhere
except along one conserved direction generated by the Kerr–Schild congruence. For Kerr
black holes with mass M and rotation parameter a, the deformation caused by a Kerr–Schild
map can be easily visualized. The Kerr metric in Kerr–Schild coordinates (t′, x, y, z) is

g̃ab = ηab + Hl′al′b , (42)

with

H =
2Mr3

r4 + a2z2 , l′a =
(

1,
rx + ay

r2 + a2 ,
ry − ax

r2 + a2 ,
z

r

)

, (43)

where the constant r surfaces are ellipsoidal, emerging from the null condition l′al′a = 0 as

x2

r2 + a2 +
y2

r2 + a2 +
z2

r2 = 1 . (44)

Note that the form Hl′al′b can be obtained from λlalb by reparametrizing the null con-
gruence. We also remark that for any decomposition M = M1 + M2 (and denoting
Hi = 2Mir

3/
(

r4 + a2z2), with i = 1, 2), the Kerr metric in the Kerr–Schild form can
be decomposed in two equivalent ways:

g̃ab = ηab +
(

H1l′al′b + H2l′al′b
)

=
(

ηab + H1l′al′b
)

+ H2l′al′b . (45)

The first decomposition is the initial interpretation of a Kerr–Schild map acting on the
flat seed spacetime, transforming it into a Kerr spacetime with mass M = M1 + M2. The
second decomposition represents a Kerr–Schild map from a Kerr seed spacetime with mass
M1 to another Kerr spacetime with mass M. Hence, one can interpret the Kerr–Schild
map acting on a Kerr black hole as a simple increase in the mass. This means that the
deflection of light increases, lensing is amplified, and the radius of the black hole shadow
increases. A further remark concerns the null direction unaffected by the Kerr–Schild map.
In the nonrotating case a = 0, the Kerr–Schild congruence from Equation (43) has purely
radial spatial projection (x/r, y/r, z/r). In the rotating case a ̸= 0, these projections point
perpendicularly to the ellipsoidal surface (l′adl′a = 0 holds). Therefore, the Kerr–Schild
map is conserving the symmetries and is not expected to change the shape of the black
hole shadow.

6.2. The Scalar Field Inside and Outside a Black Hole

In this subsection, we qualitatively discuss the modifications induced by a k-essence
scalar field of the type allowed by our Theorems on black holes. It is well known that a scalar
with a timelike gradient is equivalent to a perfect fluid [32], at least at the nonperturbative
level. By contrast, when the spacetime is static and spherically symmetric, the scalar field
depends only on the radial coordinate; hence, its gradient is spacelike. In this case, the
scalar energy–momentum tensor (13) is equivalent to an imperfect fluid with its tangential
pressure equal to the negative of its energy density [33].

These properties can easily be seen by inserting the metric decomposition

gab = −nanb + mamb + hab , (46)
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(where na and ma are an orthornormal pair, also normal to hab) into the energy–momentum
tensor (13), yielding

Tab = (2XFX − F)nanb + F(mamb + hab) , (47)

when the scalar gradient is timelike, ∇aφ ∝ X1/2na or

Tab = (F − 2XFX)mamb + F(−nanb + hab) , (48)

when the scalar gradient is spacelike ∇aφ ∝ (−X)1/2ma.
In the spherically symmetric case, the scalar gradient points along ∂/∂r. However, this

direction transitions from spacelike outside the horizon to timelike inside the black hole.

6.2.1. Inside the Horizon

The scalar field trapped inside the horizon mimics a perfect fluid with energy density
ρin = 2XFX − F and isotropic pressure pin = F. For the quadratic case (24), the energy
density and isotropic pressure become

ρin = 3A(φ)X2 + B(φ)X + V(φ) ,

(49)

pin = A(φ)X2 + B(φ)X − V(φ) .

These contribute to the gravitational attraction of the black hole in the same manner as
stellar matter (through the Tolman–Oppenheimer–Volkoff equation, which, however, in
this case, appears as an integro-differential equation, with the mass function defined as an
integral in terms of the functions A, B, V). The equation of state for the scalar results in

win =
pin

ρin
= 1 − 2

(

AX2 + V
)

3AX2 + BX + V
. (50)

When the potential dominates, win ≈ −1; thus, the scalar mimics dark energy.
The adiabatic sound speed (the propagation velocity of the scalar field perturbations)

squared is

c2
s,in =

dpin

dρin

∣

∣

∣

∣

s/n

=
pin,X

ρin,X

∣

∣

∣

∣

s/n

=
2AX + B

6AX + B
= 1 − 4AX

6AX + B
, (51)

where s = S/V is the entropy density and n = N/V the particle number density. We have
explored that d(s/n) = 0 yields dφ = 0 (a simple realization of this being φ = s/n). The
condition dφ = 0 signifies that while the variations dp and dρ allow for arbitrary variations
in X, they are such that φ should stay constant [34].

The pairs of functions A, B yielding Laplacian instability regimes with c2
s,in < 0 should

be excluded.

6.2.2. Outside the Horizon

In this case, the scalar is equivalent to an anisotropic fluid with energy density equal
to the tangential pressures ρout = pt

out = F and radial pressure pr
out = F − 2XFX , which in

the quadratic case (24) become

ρout = pt
out = A(φ)X2 + B(φ)X − V(φ) ,

(52)

pr
out = −3A(φ)X2 − B(φ)X − V(φ) ,
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resulting in

wr
out =

pr
out

ρout
= −1 − 2

(

AX2 + V
)

AX2 + BX − V
, wt

out =
pt

out
ρout

= 1 . (53)

When the potential dominates, wr
out ≈ 1; thus, the fluid approaches isotropy

(

cr
s,out

)2
=

dpr
out

dρout

∣

∣

∣

∣

s/n

=
pr

out,X

ρout,X

∣

∣

∣

∣

s/n

= − 1 − 4AX

2AX + B
(54)

(

ct
s,out

)2
=

dpt
out

dρout
= 1 . (55)

Again, any pair of functions A, B yielding radial Laplacian instability regimes with
(

cr
s,out

)2
< 0 should be excluded. Tangential Laplacian instability regimes do not arise.

6.3. Cosmological Scalar Field

In a cosmological setup, the scalar field is equivalent to a perfect fluid (47), with energy
density and pressure already calculated as (50) and the equation of state as (50). The scalar
field mimics dark energy (cosmological constant), when the potential dominates. The sole
difference compared to the discussion on the black hole interior arises from the fact that, in
this case, the scalar depends on time (instead of the radial coordinate). Hence, the adiabatic
speed of sound squared reads

c2
s =

dp

dρ

∣

∣

∣

∣

s/n

=
pX

ρX

∣

∣

∣

∣

s/n

= 1 − 4AX

6AX + B
. (56)

A physical requirement to impose on the set of functions A, B is to avoid the instability
regime c2

s < 0.

6.4. On K-Essence Kerr–Schild Seed Spacetimes

In order to apply our Theorems, a seed spacetime generated by a nontrivial scalar
field is needed. The simplest such solutions are expected to arise in highly symmetric
situations. However, various unicity theorems forbid the scalar hair for k-essence black
holes. Bekenstein ruled out the existence of stationary, asymptotically flat black holes with
scalar hair for canonical scalar fields (quintessence) [35–37]. The generalized Brans–Dicke
theories in the Einstein frame are also contained in this class; hence, its stationary and
asymptotically flat black holes have no scalar hair either [38]. Another no-hair theorem for
stationary, asymptotically flat black holes in a more generic class of k-essence models was
provided by Graham and Jha [39], holding when FX and φFφ are of opposite and definite
signs. No-hair theorems were also shown to hold for static, asymptotically flat black
holes in Horndeski, Beyond Horndeski, Einstein scalar–Gauss–Bonnet, and Chern–Simons
theories [40].

Due to the host of unicity theorems assuming stationarity and asymptotic flatness, we
expect that our result would be useful in dynamical situations. Such a scenario could be a
black hole with slowly growing scalar hair, arising either from cosmological evolution, or
due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar
field [41]. Pairs of inspiralling black holes of this kind emit dipole radiation, first constrained
by observations on the quasar OJ287 in Ref. [42]. Another model could be a Vaidya-type
radiating solution with dynamical horizon, as discussed for a Dirac–Born–Infeld model
in Ref. [28]. Perhaps the most interesting would be considering wavelike behaviors. For
example, Einstein–Rosen cylindrical waves were derived for Brans–Dicke theories (which
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in the Einstein frame fit into our framework) in Ref. [43], including standing wave, solitonic
wave, and particular pulse-wave-type solutions. For any such time evolving solution
obtained from the k-essence Lagrangian linear in X, a Kerr–Schild spacetime would emerge
as the solution of the Einstein equation linearized in λ instead of dealing with the full set of
Einstein equations. Exploring such possibilities requires further investigations beyond the
scope of this paper.

7. Concluding Remarks
Most of the physically interesting solutions of the Einstein equations, including black

holes and radiation fields are of Kerr–Schild type. The generating technique of such
solutions is quite elegant geometrically: the Kerr–Schild map modifies the metric through
the addition of a diad of null vectors, therefore changing the light-cones in such a way
that in each point a single null generator of the cone is left unmodified. One of the most
fascinating properties of such Kerr–Schild spacetimes in a vacuum is that any solution of
the linearized Einstein equation can be propelled into an exact solution of the full nonlinear
Einstein equations by simply increasing the expansion parameter to finite values [5]. The
conditions for generalizing this property to the case where matter sources are present are
also known [6].

In the present paper, we investigated whether this property of Kerr–Schild maps
holds for minimally coupled k-essence scalar–tensor theories. First, we proved that the
Lagrangian of the k-essence should be at most quadratic in the kinetic term in order to
source a Kerr–Schild-type spacetime. In a cosmological context, such models include
dilatonic ghost condensate [44] and unified models of dark energy and dark matter [45].

This is reduced to a linear dependence Lφ =
√−g[B(φ)X −V(φ)], when the Kerr–Schild

null congruence is autoparallel. Generic junction conditions and the generalization of the
Lanczos equation were derived [46] for such k-essence fields, which also include the quintessence
models in the particular case B = 1.

Further, we proved a unicity theorem for k-essence. The solutions of the Einstein
equations linearized in Kerr–Schild-type perturbations also solve the full nonlinear system
of Einstein equations, when the k-essence is given by a linear Lagrangian in the kinetic
term. The proof of the theorem omitted one special case of a k-essence everywhere constant
along the integral curves of the Kerr–Schild congruence. We proved that such a k-essence
field also shares the property of sourcing perturbative Kerr–Schild spacetimes which are
exact, without the need to restrict in any way the functional form of its Lagrangian.
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