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Abstract

Itis well known that the Euclidean black hole action has a boundary term at the horizon
proportional to the area. I show that if the horizon is replaced by a stretched horizon
with appropriate boundary conditions, a new boundary term appears, described by
a Schwarzian action similar to the recently discovered boundary actions in “nearly
anti-de Sitter” gravity.
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1 Introduction

It has long be recognized that “boundary” degrees of freedom, either at infinity or
at or near the horizon, may play a central role in black hole thermodynamics [1-
5]. In the path integral, the entropy of the “Euclidean” black hole—the stationary
black hole analytically continued to Riemannian signature—comes from a boundary
term, either at infinity [6] or at the horizon [7, 8]; in the latter case, it is canonically
conjugate to a horizon deficit angle [9]. At the microscopic level, the symmetries
of the horizon suggest the existence of boundary degrees of freedom as “would-
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be diffeomorphisms,” deformations that would ordinarily be pure gauge but become
physical because boundary conditions restrict the true gauge transformation [10—12].
In some cases, the argument for such degrees of freedom is quite strong. The (2+1)-
dimensional BTZ black hole, for instance, has no local bulk degrees of freedom, but
one can still explicitly construct an induced dynamical action at the boundary that may
account for the Bekenstein—-Hawking entropy [13, 14].

Recently, related boundary actions have proven important in a somewhat different
context. In two-dimensional “nearly anti-de Sitter space” [15-17], the boundary of
asymptotically AdS space at infinity is replaced by a finite boundary. A bulk action
given by Jackiw-Teitelboim gravity [18, 19] or its variants then induces a boundary
action that can be described by a Schwarzian,

I=C/dr¢{f,r}, (1.1)
where the Schwarzian derivative { f, t} is
_f 37
{f’l’}—?—zﬁ (1.2)

(a dot is a derivative with respect to t). This is a powerful result: the Schwarzian
action can be quantized exactly [20, 21], and has fascinating connections to a variety
of conformal field theories and matrix models [22—-24].

While most of the recent work on the Schwarzian action has taken place in the
context of nearly anti-de Sitter space, the same action also appears elsewhere: in
“nearly de Sitter space” [25], for instance, and as a corner term in asymptotically flat
(2+1)-dimensional gravity [26]. The Schwarzian action is closely related to Liouville
theory [21], which is ubiquitous in quantum gravity, and there are arguments from
effective field theory that a Schwarzian at a one-dimensional boundary is generic [27].
So it may not be surprising to find similar actions elsewhere.

In particular, nearly anti-de Sitter space approximates the near horizon geometry
of an extremal black hole, and it seems natural to ask whether there is an extension to
more generic black holes. In this paper, I will show that a Schwarzian action does, in
fact, describe the stretched horizon of an arbitrary nonextremal Euclidean black hole,
albeit with slightly different boundary conditions. This opens up the possibility that
some of the powerful results from nearly anti-de Sitter space may be applicable to this
broader setting.

2 The boundary action

To understand the appearance of the Schwarzian action, we will first need two ingre-
dients, the dimensional reduction of the near-horizon region and the form of the
near-horizon metric. Both are fairly standard:

e Near-horizon dimensional reduction
It has been understood for some time that the near-horizon region of an extremal or
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nearly extremal black hole can be described by a two-dimensional dilaton gravity
model [28]. While it is not quite as well known, the same is true for the near-
horizon region of an arbitrary stationary black hole [29, 30]. More precisely, write
the metric near the horizon in the general form

ds® = gapdxdx® + ¢, (dy" + A tdx)(dy” + Ap'dxP), 2.1

where lower case Roman indices (a,b,...) run from O to 1 and label the “r—t plane,”
while lower case Greek indices (u,v,...) run from 2 to D —1 and label the transverse
coordinates. Then as shown in [30], after a conformal rescaling of the metric, the
near-horizon behavior is described by a two-dimensional action

—_— ——_— 2 . e
L= G d°x Jg{eR+ V[pl} +---, (2.2)

M

where

¢ = /|detg,l

is the transverse volume element. The omitted terms are additional Kaluza-Klein-
like matter fields, which couple to the the two-dimensional metric and dilaton. But
as shown in [30], these vanish at the horizon and are very small in the near-horizon
region, making them irrelevant for the phenomena considered here.

Asalways, if the metric is fixed at aboundary, an extra Gibbons—Hawking boundary
term is also required [6]. Its dimensionally reduced form is

1
Ioary = e—— / dxvVh oK | (2.3)
oM

where /1 is the induced metric on the boundary dM and K is the trace of the
extrinsic curvature of M.

e The near-horizon metric
We will also need the near-horizon form of the metric, analytically continued to
Riemannian signature. For a Schwarzschild black hole, it is well known that the
dimensionally reduced metric near the horizon takes the form

ds*> = —N?dt> + N72dr? with N = \/2c(r —ry), (2.4)
where « is the surface gravity and the horizon is located at » = r. This turns out
to be generic: the same form occurs for an arbitrary stationary nonextremal black

hole, regardless of the presence of matter or even the detailed form of the field
equations [4, 31]. If one now sets

1
r=ry+ zlcpz, T =ikt, 2.5)
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the near-horizon metric becomes!

ds®> = dp* + p2dz?. (2.6)

The horizon is at p = 0, and the coordinate p now has a clear physical meaning
as the proper distance from the horizon, while the “Euclidean time” 7 is periodic
with a period of 27 — ©, where the deficit angle © is conjugate to the transverse
area ¢ and vanishes on shell [9].

We can now compute the boundary action (2.3) for a stretched horizon. We enlarge
the horizon by considering a small closed path A encircling the origin. Such a path
can be described as a parametrized curve (p(o), 7(0)), where for later convenience
we will take o to be periodic with a fixed range [0, 1]. The length of A is then

1
d 1/2
€= ygds - /a do with ¢ = &2 — (p’2 + ,021"2) , 2.7)
do
0

where a prime denotes a derivative with respect to o. For £ to be small, ¢ must be
small, which in turn implies a small p; that is, A must remain close to the horizon.

Note that by the smooth Schoenflies theorem, a two-dimensional diffeomorphism
can map any such curve into any other. But we will treat A as a boundary, and the
gravitational action is not invariant under diffeomorphisms transverse to a boundary. In
this sense, different choices of the path A represent the “would-be diffeomorphisms”
of [10].

The unit tangent and normal vectors to A are

1
4= — /7 7/

S (0. 7)

!/
n = g (r/, —%) . 2.8)
The extrinsic curvature is thus
1
K =t*"Vnp = = (pp/t” —pt'p” +2p%t + ,021’3) . (2.9)

£

The induced metric on A is v/h = &, and with a little calculation, one can show that

1 ’ N —1/2 N
ViK =7 — ——— <p” - p’8—> =7 — (1 - p—2> (p—) . (2.10)
g2 — p? & 3 €

1 Technically, the two-dimensional metric in (2.2) is conformally rescaled from the D-dimensional expres-
sion, but near the horizon the effect is higher order in p [30].
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Hence the boundary action (2.3) takes the form

1 p/2 -1/2 p/ /
Inary = = G[dmp( (1—8—2> <;> . 2.11)

The second term in parentheses is a total derivative. If we choose ¢ to be constant
on A, we therefore have

1 | ®
lbary = g /da ot = ‘Z—GA (1 _ Z) , 2.12)
A

which is the standard boundary action; the only effect of enlarging the horizon is to
slightly shift the value of the area ¢|a. This is, of course, an approximation—the
metric (2.6) has corrections away from the horizon—but any such corrections will be
of order p2.

Now, observe that & appears in (2.11) only in the combination edo = ds. By a
suitable choice of parametrization, we can take ¢ to be constant on A. In that case,
from (2.7), ¢ is just the length of the stretched horizon, while o is a rescaled proper
length.

3 A Schwarzian at the horizon
Let us now drop the requirement that ¢ be constant on A. We will, however, assume

that A is “not too irregular.” More precisely, while p is O(¢g), we will now assume
that p’ is O(¢2). Then from (2.7),

,0 1 10/2 1/2N 1 lp 1 1.[//2
o\ e) ollza)¥o\lm27e) OGP

To lowest order, with ¢ held fixed, the boundary action (2.11) then becomes

1 7\ 1 1772 1
Iba’ryz—G'/dO’(p (ﬁ) 8 G dT(p( Zﬁ_i_ﬁ{t’a}) .

(3.2)

(Note that this approximation only requires the lowest order term in (3.1); the next
order term will be important below.)

We evidently have a problem: the piece we are interested in, the Schwarzian deriva-
tive, is a small correction to the standard area term (2.12), and can be modified by
making small changes to the leading term. In particular, the Schwarzian derivative

@ Springer



53 Page6o0f9 S. Carlip

transforms anomalously: under a reparametrization 0 — o (o),

dr\ 2 dt\ % 1
(E) {t,0}=(£> {t,a}—i—ﬁ{a,a}. (3.3)

Thus in the integrand in (3.2),

1 _L,//Z 1 _L,//2 1
1—§ﬁ—> 1—§ﬁ+ﬁ{a,o},

and we can certainly find a new parametrization for which this term reduces to 1. Such
a choice seems rather arbitrary, though. The parameters we are using are physically
natural: 7 is the background Killing time, and o is the scaled proper length. So the
question remains whether the particular structure in (3.2) has any deeper meaning.

For the particular case of the near-horizon black hole, it does. To see this, we will
need two additional elements. First, as noted above, if ¢ is constant the boundary term
reduces to the usual area factor, with no extra dynamics. This suggests that we might
split off a constant part of ¢ to separate out the leading contribution. From (2.5), it is
clear that the first nonconstant piece of ¢ appears at order p?, so to the order we are
considering,

1
=9+ + 5:03,0‘/" (3.4)

The boundary term (3.2) is thus

1 1 11_//2 1
iy = 26 | T igrg ) e\ g F oAl ) G
A A

Second, let us reconsider the boundary conditions at A. The full boundary term in
the variation of the action I + Ipgyy is [32]

1
8(Ir + Ipqry) = equations of motion + G /da [K\/E&p +n%d,0 8(\/%)] .
T
A
(3.6)

(The same result can be obtained in the Lorentzian setting from the symplectic form
in [30], and is a special case of the results of [33].) The boundary conditions we have
assumed so far are the standard Dirichlet conditions, in which ¢ and h are fixed.
This is certainly a reasonable choice, especially if one is taking the two-dimensional
model to be fundamental.

For an action obtained by dimensional reduction, though, it seems equally natural
to fix the transverse variables ¢ and n“V,¢. Geometrically, this is a “free boundary”
condition: the full geometry of the stretched horizon, intrinsic (given by /) and extrinsic
(given by K), is unrestricted, while the transverse area profile is fixed. In the nearly
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anti-de Sitter case, the metric # determines the inverse temperature, and fixing its
conjugate d,¢ leads to a microcanonical ensemble with fixed ADM mass [32]. For
the nonextremal case this is trickier, since the ADM mass is much more complicated
[34]. It is still true, however, that V, ¢ remains conjugate to the length of the horizon
in imaginary time, and thus conjugate to the inverse temperature f3.

This new choice of boundary conditions requires an additional boundary term. From
(3.6),

1 1 ep’
) 0
Kby =—gag [ 4oV =~ [ (o700~ Lo |
A A
1
=——— [dt pd,p, 3.7
Snt T pdpe 3.7
A

where I have used (2.8) and the fact that 3;¢ = 0 for a stationary background. >
Now combine the two boundary actions (3.5) and (3.7). From (3.1), to the order we
are considering,

) 1 1772 1
Ibdry_‘_lbdry:% df(p+—m dr,oap(p 1+§ﬁ—ﬁ{‘[,0}
A
@l+ S 1 / € 2
b D do —-d ( e ) 3.8
40( 271) 167G | 90 aee (T mal) . GB)
A

The first term in (3.8) is the standard transverse area contribution. The second is
essentially a Schwarzian action, with a coefficient that depends only on d,¢. Thus by
changing our boundary conditions and switching our background source from ¢ to
d,¢, we have isolated a distinct, and interesting, second order piece of the action.

4 Conclusion

Obtaining a horizon action is, of course, only a first step. The Schwarzian action has
been extensively studied over the past few years in the nearly anti-de Sitter [15, 16]
and nearly de Sitter [25] settings, and it seems plausible that some of those results can
be adapted to this new case. There may be subtleties, though: the flat space metric
(2.6) is not the metric anti-de Sitter space, and while the action (3.8) is almost the
standard Schwarzian, it differs by an extra prefactor of 1/7’2. One might learn more
by investigating the extremal limit of the action (3.8), where the expansion (3.4) breaks
down; it should presumably be possible to reproduce known results.

It is tempting to try to extend this derivation to higher orders, to see whether one
continues to obtain functions of the Schwarzian, as occurs in the nearly AdS case [35].
This is tricky, though: the near-horizon metric (2.6) has O(p*) corrections that would

2 The boundary value ¢| can still depend on 7, of course, but only through the dependence of A on 7.
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need to be accounted for, and universality would probably be lost. It should be possible
to repeat this derivation in Lorentzian signature, although the definition of a stretched
horizon becomes a bit delicate there [36]. In [32], a collection of alternative boundary
conditions is described; the corresponding actions will probably not be Schwarzians,
but it could be worthwhile to understand the differences. Finally, it might be possible
to generalize this approach to gain at least a bit of insight into the dynamics of black
hole evaporation. The Euclidean continuation used here assumes a stationary metric,
but one might artificially insert some time dependence into ¢. From (3.7), this would
add a new term to the action, with potentially interesting implications.
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