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Abstract

On the basis of our recent modifications of the Dirac formalism we
generalize the Bargmann-Wigner formalism for higher spins to be
compatible with other formalisms for bosons. Relations with dual
electrodynamics, with the Ogievetskii-Polubarinov notoph and the
Weinberg 2(2J+1) theory are found. Next, we introduce the dual
analogues of the Riemann tensor and derive corresponding dynami-
cal equations in the Minkowski space. Relations with the Marques-
Spehler chiral gravity theory are discussed. The problem of indefinite
metrics, particularly, in quantization of 4-vector fields is clarified. We
also try to provide some mathematical foundations to the modern
non-commutative theories.

1. Introduction.

Recent advances in astrophysics [1] suggest the existence of fundamental
scalar fields [2, 3]. On the other hand, the (1/2, 1/2) representation of the
Lorentz group provides suitable frameworks for introduction of the S = 0
field, Ref. [4]. In this paper, starting from the very beginning we propose
a generalized theory in the 4-vector representation, for the antisymmetric
tensor field of the second rank as well. The results can be useful in any
theory dealing with the light phenomena.

The plan of my talk is following:
• Antecedents. Mapping between the Weinberg-Tucker-Hammer (WTH)

formulation and antisymmetric tensor (AST) fields of the 2nd rank.
Modified Bargmann-Wigner (BW) formalism. Pseudovector potential.
Parity.

• Matrix form of the general equation in the (1/2, 1/2) representation.
Lagrangian in the matrix form. Masses.

• Standard Basis and Helicity Basis.
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• Dynamical invariants. Field operators. Propagators. The indefinite
metric.

• Spin-2 Framework.
• Non-commutativity.

2. Preliminaries.

I am going to give an overview of my previous works in order you to under-
stand motivations better. In Ref. [2, 3] I derived the Maxwell-like equations
with the additional gradient of a scalar field χ from the first principles. Here
they are:

∇× E = −1
c

∂B
∂t

+ ∇Imχ , (1)

∇× B =
1
c

∂E
∂t

+ ∇Reχ , (2)

∇ ·E = −1
c

∂

∂t
Reχ , (3)

∇ ·B =
1
c

∂

∂t
Imχ . (4)

The χ may depend on the E,B, so we can have the non-linear electrody-
namics. Of course, similar equations can be obtained in the massive case
m ̸= 0, i.e., within the Proca-like theory. We should then consider

(E2 − c2p2 − m2c4)Ψ(3) = 0 . (5)

In the spin-1/2 case the analogous equation can be written for the two-
component spinor (c = ! = 1)

(EI(2) − σ · p)(EI(2) + σ · p)Ψ(2) = m2Ψ(2) , (6)

or, in the 4-component form 1

[iγµ∂µ + m1 + m2γ
5]Ψ(4) = 0 . (9)

1 There exist various generalizations of the Dirac formalism. For instance, the Barut
generalization is based on

[iγµ∂µ + a(∂µ∂µ)/m − κ]Ψ = 0 , (7)

which can describe states of different masses. If one fixes the parameter a by the require-
ment that the equation gives the state with the classical anomalous magnetic moment,
then m2 = m1(1 + 3

2α ), i.e., it gives the muon mass. Of course, one can propose a
generalized equation:

[iγµ∂µ + a + b∂µ∂µ + γ5(c + d∂µ∂µ)]Ψ = 0 ; (8)

and, perhaps, even that of higher orders in derivatives.
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In the spin-1 case we have

(EI(3) − S · p)(EI(3) + S · p)Ψ(3) − p(p · Ψ(3)) = m2Ψ(3) , (10)

that lead to (1-4), when m = 0. We can continue writing down equations
for higher spins in a similar fashion.
On this basis we are ready to generalize the BW formalism [5, 6]. Why is
that convenient? In Ref. [11, 7] I presented the mapping between the WTH
equation, Ref. [8, 9], and the equations for AST fields. The equation for a
6-component field function is 2

[γαβpαpβ + Apαpα + Bm2]Ψ(6) = 0 . (11)

Corresponding equations for the AST fields are:

∂α∂µF (1)
µβ − ∂β∂µF (I1)

µα +
A − 1

2
∂µ∂µF (1)

αβ − B

2
m2F (1)

αβ = 0 (12)

∂α∂µF (2)
µβ − ∂β∂µF (2)

µα − A + 1
2

∂µ∂µF (2)
αβ +

B

2
m2F (2)

αβ = 0 (13)

depending on the parity properties of Ψ(6) (the first case corresponds to
the eigenvalue P = −1; the second one, to P = +1).

We noted:
• One can derive equations for the dual tensor F̃αβ , which are similar

to (12,13), Ref. [10, 11].
• In the Tucker-Hammer case (A = 1, B = 2), the first equation gives

the Proca theory ∂α∂µFµβ − ∂β∂µFµα = m2Fαβ . In the second case
one finds something different, ∂α∂µFµβ − ∂β∂µFµα = (∂µ∂µ − m2)Fαβ

• If Ψ(6) has no definite parity, e. g., Ψ(6) = column(E + iB B + iE ),
the equation for the AST field will contain both the tensor and the
dual tensor:

∂α∂µFµβ − ∂β∂µFµα =
1
2
∂2Fαβ + [−A

2
∂2 +

B

2
m2]F̃αβ . (14)

• Depending on the relation between A and B and on which parity
solution do we consider, the WTH equations may describe different
mass states. For instance, when A = 7 and B = 8 we have the second
mass state (m′)2 = 4m2/3.

We tried to find relations between the generalized WTH theory and other
spin-1 formalisms. Therefore, we were forced to modify the Bargmann-
Wigner formalism [10, 12]. For instance, we introduced the sign operator

2 In order to have solutions satisfying the Einstein dispersion relations E2 − p2 = m2

we have to assume B/(A + 1) = 1, or B/(A − 1) = 1.
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in the Dirac equations which are the input for the formalism for symmetric
2-rank spinor:

[iγµ∂µ + ϵ1m1 + ϵ2m2γ5]αβ Ψβγ = 0 , (15)

[iγµ∂µ + ϵ3m1 + ϵ4m2γ5]γβ Ψαβ = 0 , (16)

In general we have 16 possible combinations, but 4 of them give the same
sets of the Proca-like equations. We obtain [10]:

∂µAλ − ∂λAµ + 2m1A1Fµλ + im2A2ϵαβµλFαβ = 0 , (17)

∂λFµλ − m1

2
A1Aµ − m2

2
B2Ãµ = 0 , (18)

with A1 = (ϵ1 + ϵ3)/2, A2 = (ϵ2 + ϵ4)/2, B1 = (ϵ1 − ϵ3)/2, and B2 =
(ϵ2 − ϵ4)/2. See the additional constraints in the cited paper [10]. So,
we have the dual tensor and the pseudovector potential in the Proca-like
sets. The pseudovector potential is the same as that which enters in the
Duffin-Kemmer set for the spin 0.
Moreover, it appears that the properties of the polarization vectors with
respect to parity operation depend on the choice of the spin basis. For
instance, in Ref. [10, 13] the momentum-space polarization vectors have
been listed in the helicity basis. Berestetskĭı, Lifshitz and Pitaevskĭı claimed
too, Ref. [14], that the helicity states cannot be the parity states. If one
applies common-used relations between fields and potentials it appears that
the E and B fields have no usual properties with respect to space inversions.

Thus, the conclusions of the previous works are:
• The mapping exists between the WTH formalism for S = 1 and the

AST fields of four kinds (provided that the solutions of the WTH
equations are of the definite parity).

• Their massless limits contain additional solutions comparing with the
Maxwell equations. This was related to the possible theoretical exis-
tence of the Ogievetskĭı-Polubarinov-Kalb-Ramond notoph, Ref. [15,
16, 17].

• In some particular cases (A = 0, B = 1) massive solutions of different
parities are naturally divided into the classes of causal and tachyonic
solutions.

• If we want to take into account the solutions of the WTH equations
of different parity properties, this induces us to generalize the BW,
Proca and Duffin-Kemmer formalisms.

• In the (1/2, 0)⊕ (0, 1/2), (1, 0)⊕ (0, 1) etc. representations it is possi-
ble to introduce the parity-violating frameworks. The corresponding
solutions are the mixing of various polarization states.

• The sum of the Klein-Gordon equation with the (S, 0) ⊕ (0, S) equa-
tions may change the theoretical content even on the free level. For
instance, the higher-spin equations may actually describe various spin
and mass states.
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• The mappings exists between the WTH solutions of undefined parity
and the AST fields, which contain both tensor and dual tensor. They
are eight.

• The 4-potentials and electromagnetic fields [10, 13] in the helicity basis
have different parity properties comparing with the standard basis of
the polarization vectors.

• In the previous talk [18] I presented a theory in the (1/2, 0) ⊕ (0, 1/2)
representation in the helicity basis. Under the space inversion op-
eration, different helicity states transform each other, Puh(−p) =
−iu−h(p), Pvh(−p) = +iv−h(p).

3. The theory of 4-vector field.

First of all, we show that the equation for the 4-vector field can be presented
in a matrix form. Recently, S. I. Kruglov proposed, Refs. [19], a general
form of the Lagrangian for 4-potential field Bµ, which also contains the
spin-0 state. Initially, we have

α∂µ∂νBν + β∂2
νBµ + γm2Bµ = 0 , (19)

provided that derivatives commute. When ∂νBν = 0 (the Lorentz gauge) we
obtain spin-1 states only. However, if it is not equal to zero we have a scalar
field and an axial-vector potential. We can also verify this statement by
consideration of the dispersion relations of the equation (19). One obtains
4+4 states (two of them may differ in mass from others).
Next, one can fix one of the constants α,β, γ without loosing any physical
content. For instance, when α = −2 one gets the equation

[δµνδαβ − δµαδνβ − δµβδνα] ∂α∂βBν + A∂2
αδµνBν − Bm2Bµ = 0 , (20)

where β = A+ 1 and γ = −B. In the matrix form the equation (20) reads:
[
γαβ∂α∂β + A∂2

α − Bm2
]
µν

Bν = 0 , (21)

with
[γαβ]µν = δµνδαβ − δµαδνβ − δµβδνα . (22)

They are the analogs of the Barut-Muzinich-Williams (BMW) γ-matrices
for bivector fields.3 It is easy to prove by the textbook method [21] that
γ44 can serve as the parity matrix.

3 One can also define the analogs of the BMW γ5,αβ matrices

γ5,αβ =
i
6
[γακ, γβκ]−,µν = i[δαµδβν − δανδβµ] . (23)

As opposed to γαβ matrices they are totally antisymmetric. They are related to boost
and rotation generators of this representation. The γ-matrices are pure real; γ5-matrices
are pure imaginary. In the (1/2, 1/2) representation, we need 16 matrices to form the
complete set.
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Lagrangian and the equations of motion. Let us try

L = (∂αB∗
µ)[γαβ ]µν(∂βBν) + A(∂αB∗

µ)(∂αBµ) + Bm2B∗
µBµ . (24)

On using the Lagrange-Euler equation we have

[γνβ ]κτ∂ν∂βBτ + A∂2
νBκ − Bm2Bκ = 0 . (25)

It may be presented in the form of (19).
Masses. We are convinced that in the case of spin 0, we have Bµ → ∂µχ;
in the case of spin 1 we have ∂µBµ = 0.

(δµνδαβ − δµαδνβ − δµβδνα)∂α∂β∂νχ = −∂2∂µχ . (26)

Hence, from (25) we have

[(A − 1)∂2
ν − Bm2]∂µχ = 0 . (27)

If A− 1 = B we have the spin-0 particles with masses ±m with the correct
relativistic dispersion.
In another case

[δµνδαβ − δµαδνβ − δµβδνα]∂α∂βBν = ∂2Bµ . (28)

Hence,
[(A + 1)∂2

ν − Bm2]Bµ = 0 . (29)

If A+ 1 = B we have the spin-1 particles with masses ±m with the correct
relativistic dispersion.
The equation (25) can be transformed in two equations:

[
γαβ∂α∂β + (B + 1)∂2

α − Bm2
]
µν

Bν = 0, spin 0 with ± m, (30)
[
γαβ∂α∂β + (B − 1)∂2

α − Bm2
]
µν

Bν = 0, spin 1 with ± m. (31)

The first one has the solution with spin 0 and masses ±m. However, it
has also the spin-1 solution with the different masses, [∂2

ν + (B + 1)∂2
ν −

Bm2]Bµ = 0:

m̃ = ±
√

B

B + 2
m . (32)

The second one has the solution with spin 1 and masses ±m. But, it also has
the spin-0 solution with the different masses, [−∂2

ν +(B−1)∂2
ν−Bm2]∂µχ =

0. So, m̃ = ±
√

B
B−2m. One can come to the same conclusion by checking

the dispersion relations from Det[γαβpαpβ − Apαpα + Bm2] = 0 . When
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m̃2 = 4
3m2, we have B = −8, A = −7, that is compatible with our con-

sideration of bi-vector fields, Ref. [7]. Thus, one can form the Lagrangian
with the particles of spines 1, masses ±m, the particle with the mass

√
4
3m,

spin 1, for which the particle is equal to the antiparticle, by choosing the
appropriate creation/annihilation operators; and the particles with spines
0 with masses ±m and ±

√
4
5m (some of them may be neutral).

Energy-momentum tensor. According to Ref. [6], it is defined as

Tµν = −
∑

α

[
∂L

∂(∂µBα)
∂νBα + ∂νB∗

α
∂L

∂(∂µB∗
α)

]
+ Lδµν (33)

Pµ = −i

∫
T4µd3x . (34)

Tµν = −(∂κB∗
τ )[γκµ]τα(∂νBα) − (∂νB

∗
α)[γµκ]ατ (∂κBτ )

−A[(∂µB∗
α)(∂νBα) + (∂νB∗

α)(∂µBα)] + Lδµν (35)

= −(A + 1)[(∂µB∗
α)(∂νBα) + (∂νB∗

α)(∂µBα)] +
[
(∂αB∗

µ)(∂νBα)

+ (∂νB∗
α)(∂αBµ)] + [(∂αB∗

α)(∂νBµ) + (∂νB∗
µ)(∂αBα)] + Lδµν .

Remember that after substitutions of the explicit forms of the γ’s, the
Lagrangian is

L = (A + 1)(∂αB∗
µ)(∂αBµ) − (∂νB∗

µ)(∂µBν) − (∂µB∗
µ)(∂νBν)

+ Bm2B∗
µBµ , (36)

and the third term cannot be removed by the standard substitution
L → L′ + ∂µΓµ ,Γµ = B∗

ν∂νBµ − B∗
µ∂νBν to get the textbook Lagrangian

L′ = (∂αB∗
µ)(∂αBµ) + m2B∗

µBµ .

The current vector is defined

Jµ = −i
∑

α

[
∂L

∂(∂µBα)
Bα − B∗

α
∂L

∂(∂µB∗
α)

] , (37)

Q = −i

∫
J4d

3x . (38)

Jλ = −i
{
(∂αB∗

µ)[γαλ]µκBκ − B∗
κ[γλα]κµ(∂αBµ)

+ A(∂λB∗
κ)Bκ − AB∗

κ(∂λBκ)}
= −i {(A + 1)[(∂λB∗

κ)Bκ − B∗
κ(∂λBκ)] + [B∗

κ(∂κBλ) − (∂κB∗
λ)Bκ]

+ [B∗
λ(∂κBκ) − (∂κB∗

κ)Bλ]} . (39)
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Again, the second term and the last term cannot be removed at the same
time by adding the total derivative to the Lagrangian. These terms corre-
spond to the contribution of the scalar (spin-0) portion.

Angular momentum. Finally,

Mµα,λ = xµT{αλ} − xαT{µλ} + Sµα,λ = xµT{αλ} − xαT{µλ}

− i

{
∑

κτ

∂L
∂(∂λBκ)

Tµα,κτBτ + B∗
τTµα,κτ

∂L
∂(∂λB∗

κ)

}
(40)

Mµν = −i

∫
Mµν,4d

3x , (41)

where Tµα,κτ ∼ [γ5,µα]κτ .

The field operator. Various-type field operators are possible in this repre-
sentation. Let us remind the textbook procedure to get them. During the
calculations below we have to present 1 = θ(k0) + θ(−k0) in order to get
positive- and negative-frequency parts.

Aµ(x) =
1

(2π)3

∫
d4k δ(k2 − m2)e+ik·xAµ(k) (42)

=
1

(2π)3

∫
d3k
2Ek

θ(k0)[Aµ(k)e+ik·x + Aµ(−k)e−ik·x]

=
1

(2π)3
∑

λ

∫
d3k
2Ek

[ϵµ(k,λ)aλ(k)e+ik·x + ϵµ(−k,λ)aλ(−k)e−ik·x] .

Moreover, we should transform the second part to ϵ∗µ(k,λ)b†λ(k) as usual.
In such a way we obtain the charge-conjugate states. Of course, one can
try to get P -conjugates or CP -conjugate states too. We set

∑

λ

ϵµ(−k,λ)aλ(−k) =
∑

λ

ϵ∗µ(k,λ)b†λ(k) , (43)

multiply both parts by ϵν [γ44]νµ, and use the normalization conditions for
polarization vectors.
In the (1

2 , 1
2 ) representation we can also expand the second term in the

different way:
∑

λ

ϵµ(−k,λ)aλ(−k) =
∑

λ

ϵµ(k,λ)aλ(k) . (44)

From the first definition we obtain (the signs ∓ depends on the value of σ):

b†σ(k) = ∓
∑

µνλ

ϵν(k,σ)[γ44]νµϵµ(−k,λ)aλ(−k) , (45)
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The second definition is Λ2
σλ = ∓

∑
νµ ϵ∗ν(k,σ)[γ44]νµϵµ(−k,λ). The field

operator will only destroy particles.

Propagators. From Ref. [21] it is known for the real vector field:

< 0|T (Bµ(x)Bν(y)|0 > = (46)

−i

∫
d4k

(2π)4
eik(x−y)(

δµν + kµkν/µ2

k2 + µ2 + iϵ
− kµkν/µ2

k2 + m2 + iϵ
) .

If µ = m (this depends on relations between A and B) we have the cance-
lation of divergent parts. Thus, we can overcome the well-known difficulty
of the Proca theory with the massless limit.
If µ ̸= m we can still have a causal theory, but in this case we need more
than one equation, and should apply the method proposed in Ref. [11].
The reasons were that the Weinberg equation propagates both causal and
tachyonic solutions.

Indefinite metrics. Usually, one considers the hermitian field operator in
the pseudo-Euclidean metric for the electromagnetic potential:

Aµ =
∑

λ

∫
d3k

(2π)32Ek
[ϵµ(k,λ)aλ(k) + ϵ∗µ(k,λ)a†λ(k)] (47)

with all four polarizations to be independent ones. Next, one introduces
the Lorentz condition in the weak form

[a0t(k) − a0(k)]|φ >= 0 (48)

and the indefinite metrics in the Fock space, Ref. [20]: a∗0t
= −a0t and ηaλ =

−aλη, η2 = 1, in order to get the correct sign in the energy-momentum
vector and to not have the problem with the vacuum average.

We observe:
1) that the indefinite metric problems may appear even on the massive

level in the Stueckelberg formalism;
2) The Stueckelberg theory has a good massless limit for propagators,

and it reproduces the handling of the indefinite metric in the massless
limit (the electromagnetic 4-potential case);

3) we generalized the Stueckelberg formalism (considering, at least, two
equations); instead of charge-conjugate solutions we may consider
the P− or CP− conjugates. The potential field becomes to be the
complex-valued field, that may justify the introduction of the anti-
hermitian amplitudes.

4. The Spin-2 Case

The general scheme for derivation of higher-spin equations was given in [5].
A field of rest mass m and spin j ≥ 1

2 is represented by a completely
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symmetric multispinor of rank 2j. The particular cases j = 1 and j = 3
2

were given in the textbooks, e. g., ref. [6]. The spin-2 case can also be
of some interest because it is generally believed that the essential features
of the gravitational field are obtained from transverse components of the
(2, 0) ⊕ (0, 2) representation of the Lorentz group. Nevertheless, questions
of the redandant components of the higher-spin relativistic equations are
not yet understood in detail.
In this section we use the commonly-accepted procedure for the deriva-
tion of higher-spin equations. We begin with the equations for the 4-rank
symmetric spinor:

[iγµ∂µ − m]αα′ Ψα′βγδ = 0 , [iγµ∂µ − m]ββ′ Ψαβ′γδ = 0 (49)

[iγµ∂µ − m]γγ′ Ψαβγ′δ = 0 , [iγµ∂µ − m]δδ′ Ψαβγδ′ = 0. (50)

The massless limit (if one needs) should be taken in the end of all calcula-
tions.

We proceed expanding the field function in the set of symmetric matrices
(as in the spin-1 case). The total function is

Ψ{αβ}{γδ} = (γµR)αβ(γκR)γδG
µ

κ + (γµR)αβ(σκτR)γδF
µ

κτ (51)
+ (σµνR)αβ(γκR)γδT

µν
κ + (σµνR)αβ(σκτR)γδR

µν
κτ ;

and the resulting tensor equations are:

2
m

∂µT µν
κ = −G ν

κ ,
2
m

∂µR µν
κτ = −F ν

κτ , (52)

T µν
κ =

1
2m

[∂µG ν
κ − ∂νG µ

κ ] , (53)

R µν
κτ =

1
2m

[∂µF ν
κτ − ∂νF µ

κτ ] . (54)

The constraints are re-written to

1
m

∂µG µ
κ = 0 ,

1
m

∂µF µ
κτ = 0 , (55)

1
m

ϵαβνµ∂αT βν
κ = 0 ,

1
m

ϵαβνµ∂αR βν
κτ = 0 . (56)

However, we need to make symmetrization over these two sets of indices
{αβ} and {γδ}. The total symmetry can be ensured if one contracts
the function Ψ{αβ}{γδ} with antisymmetric matrices R−1

βγ , (R−1γ5)βγ and
(R−1γ5γλ)βγ and equate all these contractions to zero (similar to the j =
3/2 case considered in ref. [6, p. 44]. We encountered with the known
difficulty of the theory for spin-2 particles in the Minkowski space. We
explicitly showed that all field functions become to be equal to zero. Such
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a situation cannot be considered as a satisfactory one (because it does not
give us any physical information) and can be corrected in several ways. We
modified the formalism [12]. The field function is now presented as

Ψ{αβ}γδ = α1(γµR)αβΨµ
γδ + α2(σµνR)αβΨµν

γδ + α3(γ5σµνR)αβΨ̃µν
γδ , (57)

with

Ψµ
{γδ} = β1(γκR)γδG

µ
κ + β2(σκτR)γδF

µ
κτ + β3(γ5σκτR)γδF̃

µ
κτ , (58)

Ψµν
{γδ} = β4(γκR)γδT

µν
κ + β5(σκτR)γδR

µν
κτ + β6(γ5σκτR)γδR̃

µν
κτ , (59)

Ψ̃µν
{γδ} = β7(γκR)γδT̃

µν
κ + β8(σκτR)γδD̃

µν
κτ + β9(γ5σκτR)γδD

µν
κτ .(60)

Hence, the function Ψ{αβ}{γδ} can be expressed as a sum of nine terms:

Ψ{αβ}{γδ} = α1β1(γµR)αβ(γκR)γδG
µ

κ + α1β2(γµR)αβ(σκτR)γδF
µ

κτ

+ α1β3(γµR)αβ(γ5σκτR)γδF̃
µ

κτ + α2β4(σµνR)αβ(γκR)γδT
µν

κ

+ α2β5(σµνR)αβ(σκτR)γδR
µν

κτ + α2β6(σµνR)αβ(γ5σκτR)γδR̃
µν

κτ

+ α3β7(γ5σµνR)αβ(γκR)γδT̃
µν

κ + α3β8(γ5σµνR)αβ(σκτR)γδD̃
µν

κτ

+ α3β9(γ5σµνR)αβ(γ5σκτR)γδD
µν

κτ . (61)

The corresponding dynamical equations are given by the set

2α2β4

m
∂νT µν

κ +
iα3β7

m
ϵµναβ∂ν T̃κ,αβ = α1β1G

µ
κ ; (62)

2α2β5

m
∂νR µν

κτ +
iα2β6

m
ϵαβκτ∂νR̃

αβ,µν +
iα3β8

m
ϵµναβ∂νD̃κτ,αβ −

− α3β9

2
ϵµναβϵλδκτD

λδ
αβ = α1β2F

µ
κτ +

iα1β3

2
ϵαβκτ F̃

αβ,µ ; (63)

2α2β4T
µν

κ + iα3β7ϵ
αβµν T̃κ,αβ =

α1β1

m
(∂µG ν

κ − ∂νG µ
κ ) ; (64)

2α2β5R
µν

κτ + iα3β8ϵ
αβµνD̃κτ,αβ + iα2β6ϵαβκτ R̃αβ,µν −

− α3β9

2
ϵαβµνϵλδκτD

λδ
αβ =

=
α1β2

m
(∂µF ν

κτ − ∂νF µ
κτ ) +

iα1β3

2m
ϵαβκτ (∂µF̃αβ,ν − ∂ν F̃αβ,µ) . (65)

The essential constraints can be found in Ref. [24]. They are the results of
contractions of the field function (61) with three antisymmetric matrices,
as above. Furthermore, one should recover the above relations in the par-
ticular case when α3 = β3 = β6 = β9 = 0 and α1 = α2 = β1 = β2 = β4 =
β5 = β7 = β8 = 1.
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As a discussion we note that in such a framework we already have physical
content because only certain combinations of field functions would be equal
to zero. In general, the fields F µ

κτ , F̃ µ
κτ , T µν

κ , T̃ µν
κ , and R µν

κτ , R̃ µν
κτ ,

D µν
κτ , D̃ µν

κτ can correspond to different physical states and the equations
above describe oscillations one state to another. Furthermore, from the set
of equations (62-65) one obtains the second-order equation for symmetric
traceless tensor of the second rank (α1 ̸= 0, β1 ̸= 0):

1
m2

[∂ν∂µG ν
κ − ∂ν∂νG µ

κ ] = G µ
κ . (66)

After the contraction in indices κ and µ this equation is reduced to the set

∂µGµ
κ = Fκ , (67)

1
m2

∂κF κ = 0 , (68)

i. e., to the equations connecting the analogue of the energy-momentum
tensor and the analogue of the 4-vector potential. Further investigations
may provide additional foundations to “surprising” similarities of gravita-
tional and electromagnetic equations in the low-velocity limit.
The questions of ”non-commutativity” see in Ref. [23].

5. Conclusions

• The (1/2, 1/2) representation contains both the spin-1 and spin-0
states (cf. with the Stueckelberg formalism).

• Unless we take into account the fourth state (the “time-like” state,
or the spin-0 state) the set of 4-vectors is not a complete set in a
mathematical sense.

• We cannot remove terms like (∂µB∗
µ)(∂νBν) terms from the Lagrangian

and dynamical invariants unless apply the Fermi method, i. e., man-
ually. The Lorentz condition applies only to the spin 1 states.

• We have some additional terms in the expressions of the energy-mo-
mentum vector (and, accordingly, of the 4-current and the Pauli-
Lunbanski vectors), which are the consequence of the impossibility
to apply the Lorentz condition for spin-0 states.

• Helicity vectors are not eigenvectors of the parity operator. Mean-
while, the parity is a “good” quantum number, [P,H]− = 0 in the
Fock space.

• We are able to describe the states of different masses in this represen-
tation from the beginning.

• Various-type field operators can be constructed in the (1/2, 1/2) rep-
resentation space. For instance, they can contain C, P and CP con-
jugate states. Even if b†λ = a†λ we can have complex 4-vector fields.
We found the relations between creation, annihilation operators for
different types of the field operators Bµ.



Lorentz-Covariant Theories of Higher-Spin Fields 169

• Propagators have good behavior in the massless limit as opposed to
those of the Proca theory.

• The spin-2 case can be considered on an equal footing with the spin-1
case.

Acknowledgments. I am grateful to Profs. Y. S. Kim, S. I. Kruglov,
W. Rodrigues, R. Yamaleev and participants of the recent conferences for
useful discussions.
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