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1 Introduction

In this report we discuss new operator approach [1], [2] to analytical evaluation of multi-loop
Feynman diagrams (FDs). We show that the known analytical methods of evaluation of massless
Feynman integrals, such as the integration by parts method [3] and the method of ”uniqueness”
[4] (which is based on the star-triangle relation), can be drastically simplified by using this
operator approach. To demonstrate the advantages of the operator method of analytical evalu-
ation of multi-loop Feynman diagrams, we calculate ladder diagrams for the massless φ3 theory
(analytical results for these diagrams are expressed in terms of multiple polylogarithms). We
also show how operator formalism can be applied to calculation of certain massive Feynman
diagrams.

The main idea of our algebraic method for evaluation of FDs is that we replace manipula-
tions with multiple integrals by manipulations with the corresponding algebraic expressions. In
other words, identical transformations of multiple perturbative integrals are substituted with
transformations of elements of special infinite dimensional algebra. This drastically simplifies
all calculations.

2 Feynman diagrams in configuration space

The Feynman diagrams, which will be considered in this paper, are graphs with vertices con-
nected by edges (propagators). To each edge we assign a complex number (the index of the
propagator). With each vertex we associate the point in the D-dimensional space RD while the
edges of the graph (with index α) are associated with the propagator of massless particle

α
x y = 1/(x − y)2α

where x, y ∈ RD, (x − y)2α := (
∑D

i=1(xi − yi) (xi − yi))
α, and α ∈ C. Moreover, we consider

the graphs with two types of vertices: boldface vertices • denote that the corresponding points
are integrated over RD. These FDs are called FDs in the configuration space.

Consider examples of FDs in the configuration space and present the corresponding multiple
integrals.

1. Graph with 5 vertices and 5 edges (3-point function):
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2. ”Star” graph:

���HHH
• α3α1
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x2
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=
∫

dDx
(x−x1)2α1 (x−x2)2α2 (x−x3)2α3

The problem (which we need to solve when analytically calculate multiple integrals corre-
sponding to FDs) consists in searching for special transformations of graphs (FDs) such that
the number of boldface vertices (the number of integrations) decreases at each step. In the
next section, we discuss these special transformations and describe the corresponding operator
formalism, which gives us a possibility to represent these transformations using a more compact
algebraic language.

3 Algebraic manipulations with perturbative integrals

Consider the D-dimensional Heisenberg algebra [q̂k, p̂j] = i δkj, where q̂i = q̂†i , p̂i = p̂†i are
operators of coordinates and momenta, respectively. Introduce the eigenvectors |x〉 ≡ |{xi}〉,
|k〉 ≡ |{ki}〉 of these operators: q̂i|x〉 = xi |x〉, p̂i|k〉 = ki |k〉. We normalize the states as follows

〈x|k〉 =
1

(2π)D/2
exp(i kj xj) ,

∫
dDk |k〉 〈k| = 1̂ =

∫
dDx |x〉 〈x| . (3.1)

The heat-kernels (”matrix representations”) of the operators p̂−2β are:

〈x|
1

p̂2β
|y〉 = a(β)

1

(x − y)2β′
,

(
a(β) =

Γ(β′)

πD/2 22β Γ(β)

)
. (3.2)

where β′ = D/2 − β and Γ(β) is the Euler gamma-function. Formula (3.2) relates the propa-

gators for massless particles and pseudo-differential operators p̂−2β. For the operators q̂2α the
”matrix representations” have the form:

〈x|q̂2α|y〉 = x2α δD(x − y) . (3.3)

Below we consider three (a,b,c) algebraic relations which are operator analogs of relations
used for the analytical evaluation of multi-loop perturbative integrals for FDs. Recall that these
relations give us a possibility to reconstruct FD in such a way that the number of integrations
(the number of boldface vertices in the graph) decreases to zero (this will indicate that a given
FD is calculated analytically).

a. Group relation. A convolution product of two propagators:

∫
dDz

(x − z)2α (z − y)2β
=

G(α′, β′)

(x − y)2(α+β−D/2)
,

(
G(α, β) =

a(α + β)

a(α) a(β)

)
, (3.4)

is graphically represented as

•
α β

x y
z

= G(α′, β′) ·
α+β− D

2x y
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The relation (3.4) describes a reconstruction of the graph in which the number of integrations
(boldface vertices) decreases by one. The operator analog of this relation is (group relation)

p̂−2α′

p̂−2β′

= p̂−2(α′+β′). (3.5)

Indeed, by using (3.2) and (3.3) we easily demonstrate that the ”matrix” analog of (3.5)

∫
dDz 〈x|p̂−2α′

|z〉 〈z| p̂−2β′

|y〉 = 〈x|p̂−2(α′+β′)|y〉

coincides with (3.4). Note that in the operator relation (3.5) the tedious coefficient G(α ′, β′)
(presented in (3.4)) is vanished.

b. Star-triangle relation. This relation is in the basis of the so-called ”method of unique-
ness” [4] (see also [5]) which is an efficient method of analytical evaluation of FDs. In fact, this
relation is a special case of the Yang-Baxter equation [6], [7], [2]. The star-triangle relation
(STR) has the form

∫
dDz

(x − z)2α′ z2(α+β) (z − y)2β′
=

G(α, β)

(x)2β (x − y)2(
D
2
−α−β) (y)2α

, (3.6)

and was initially used in the framework of investigations of multi-dimensional conformal field
theories [8]. The identity (3.6) can be graphically represented as

���HHH
• β′α′

α+β

z
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= G(α, β) ·

0
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�
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A
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Thus, STR (3.6) describes such a reconstruction of the graph for which the number of integra-
tions (boldface vertices) decreases by one. The operator version of this relation was proposed
in [1] and is written in the form

p̂−2αq̂−2(α+β)p̂−2β = q̂−2β p̂−2(α+β)q̂−2α (∀α, β) . (3.7)

Here again we note the absence of the coefficient G(α, β). To demonstrate the equivalence of
(3.6) and (3.7) we act on (3.7) by vectors 〈x| and |y〉 from the left and right, respectively, insert
the unit operator 1̂ =

∫
dDz |z〉 〈z| and use representations (3.2), (3.3).

Remark 1. The algebraic version of STR is equivalent to the commutativity for the infinite
set of operators H(α) = p̂2αq̂2α:

H(α)H−1(−β) = H−1(−β)H(α) ⇒ p̂2αq̂2(α+β) p̂2β = q̂2β p̂2(α+β) q̂2α .

Remark 2. Here we present the algebraic proof of STR (3.7). Introduce an inversion operator
R which obeys the conditions

R2 = 1 , R q̂i R = q̂i / q̂2 , 〈xi|R = 〈xi/x
2|(x2)−D/2 , (3.8)

R† = R , R p̂2β R = q̂2β p̂2β q̂2β . (3.9)

Using (3.8), (3.9) the algebraic version of STR is proved as follows:

R p̂2α R2 p̂2β R = R p̂2(α+β) R ⇒ p̂2αq̂2(α+β) p̂2β = q̂2β p̂2(α+β)q̂2α .

Remark 3. For propagators in α-representation one can consider another STR [9]

exp

(
q̂2

2α1

)
exp

(α2

2
p̂2
)

exp

(
q̂2

2α3

)
= exp

(
β3

2
p̂2

)
exp

(
q̂2

2β2

)
exp

(
β1

2
p̂2

)
,
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where parameters αi and βi are related by the identity αi = β1β2+β1β3+β2β3

βi
which is well known

as star-triangle transformation for resistances in electric networks.

c. Integration by parts rule [3].
First, we present the graphical version of this rule

���HHH
• α3α1

α2

0

x y

= 1
(D−2α2−α1−α3) {α1 (
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x y
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Fig. 1

With the help of this rule we reconstruct graphs in such a way that the number of integrations
(boldface vertices) is not decreased. However, this rule is extremely useful, since the corre-
sponding reconstruction leads to variations of the indices on the lines, which further permits to
apply previous relations a,b and decrease the number of integrations.

The operator version of the integration by parts rule (Fig. 1) has the form

(2γ−α−β) p̂2α q̂2γ p̂2β =
[q̂2, p̂2(α+1)]

4(α + 1)
q̂2γ p̂2β−p̂2αq̂2γ [q̂2, p̂2(β+1)]

4(β + 1)
(3.10)

where α = −α′
1, γ = −α2 and β = −α′

3. Identity (3.10) can be directly proved by using the
relations for the Heisenberg algebra:

[q̂2, p̂2(α+1)] = 4 (α + 1) (H + α) p̂2α ,

H q̂2α = q̂2α (H + 2α) , H p̂2α = p̂2α (H − 2α) ,
(3.11)

where H := i
2(p̂iq̂i + q̂ip̂i) is the dilatation operator. It follows from (3.11) that the operators

{q̂2, p̂2,H} generate the algebra sl(2):

[q̂2, p̂2] = 4H , [H, q̂2] = 2 q̂2 , H p̂2 = −2 p̂2 . (3.12)

4 Applications

4.1 Ladder FDs for φ3 theory in D = 4; relation to conformal quantum

mechanics

Consider dimensionally and analytically regularized massless perturbative integrals

DL(p0, pL+1
, p;α, β, γ) =

[
L∏

k=1

∫
d

D
pk

p2α
k (p

k
− p)2β

]
L∏

m=0

1

(p
m+1 − pm)2γ

, (4.13)

which correspond to FDs (x1 = p0, x2 = pL+1, x3 = p)
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Perturbative integral (4.13) can be graphically represented in two ways – as diagrams in con-
figuration and momentum spaces, as it is shown in Fig. 2, where α, β, γ are indices on the
lines in the left diagram (in configuration space) , while in the right diagram (in momentum
space) the indices pi indicate momenta flowing over the lines. These diagrams are dual to each
other (boldface vertices in the left diagram correspond to the loops in the right diagram). The
operator version of the integral (4.13) follows from the representation for the left diagram

DL(xa;α, β, γ) = (a(γ ′))−L−1 〈x1|p̂
−2γ ′

(∏L
k=1 q̂−2α(q̂ − x3)

−2β p̂−2γ ′

)
|x2〉 .

It is convenient to consider the generating function for the integrals DL (4.13)

Dg(xa;α, β, γ) = a(γ ′)

∞∑

L=0

gL DL(xa;α, β, γ) = 〈x1 |

(
p̂2γ ′

−
g/a(γ ′)

q̂2α(q̂ − x3)2β

)−1

|x2〉 . (4.14)

If the indices on the lines are related by the condition α + β = 2γ ′ , then by using properties

(3.8), (3.9) of the inversion operator R we obtain (for details see [1]):

Dg(xa; 2γ ′ − β, β, γ) =
1

(x2
1x

2
2)

γ
〈u |

(
p̂2γ ′

−
gγ ′,β

q̂2β

)−1

| v〉 , (4.15)

where gγ,β = g
(x3)2βa(γ)

, ui = (x1)i

(x1)2
− (x3)i

(x3)2
, vi = (x2)i

(x2)2
− (x3)i

(x3)2
(i = 1, . . . , D). In the case when

the indices on the lines are fixed as γ ′ = β = 1, the generating function Dg (4.15) is reduced to
the Green function for D-dimensional conformal mechanics

Dg(xa; 1, 1, D/2 − 1) =
1

(x2
1x

2
2)

(D/2−1)
〈u |

(
p̂2 −

g1,1

q̂2

)−1

| v〉 = (4.16)

= a(1)

∞∑

L=0

gL DL(xa; 1, 1, D/2 − 1) .

Thus, we have shown that with a special choice of indices on the lines α = β = 1, γ = D
2 − 1 =

1 − ε the ladder diagrams (in momentum space):

----

� � � �

6 6 6 6........

x1-x3

x1

1

1

1

1

1 − ε

x2 - x3

x2

1 − ε1 − ε 1 − ε

Fig. 3

are related to the Green function for D-dimensional conformal mechanics. Moreover, according
to the definition of the generating function Dg (4.14), the expression DL for the ladder diagram
with L loops (or L boldface vertices for FD in the configuration space) is obtained by expanding
of the Green function (4.16) over the coupling constant g up to the coefficient in order gL.

The operator method of evaluation of Green function (4.16) is based on the remarkable
identity [1]

1

p̂2 − g/q̂2
=

∞∑

L=0

(
−

g

4

)L
[
q̂2α (H − 1)

(H − 1 + α)L+1

1

p̂2
q̂−2α

]

αL

, (4.17)

where we have used the notation [. . . ]αL = 1
L!

(
∂L

α [. . . ]
)
α=0

. Taking into account the integral
representation for the rational function of H (in the right-hand side of (4.17))

(H − 1)

(H − 1 + α)L+1
=

(−1)L+1

L!

∫ ∞

0
dt tL etα ∂t

(
et (H−1)

)
,
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and using obvious properties of the operator et H : et(H+ D
2

) |x〉 = |e−tx〉, we can rewrite Green
function appearing in (4.16) in the form

〈u|
1

(p̂2 − g1,1/q̂2)
|v〉 =

a(1)

u2(D/2−1)

∞∑

L=0

1

L!

(g1,1

4

)L
ΨL

(
v2

u2
, 2

(uv)

u2

)
, (4.18)

where g1,1 = g/(a(1)x2
3) and

ΨL

(
v2

u2
, 2

(uv)

u2

)
= −

∫ ∞

0
dt tL

[(
u2

v2

)α

etα

]

αL

∂t

(
e−tu2

(u − e−tv)2

)( D
2 −1)

. (4.19)

Finally the result for the evaluation of the L-loop ladder diagram (Fig. 3) is

DL(x1, x2, x3; 1, 1,
D

2
− 1) =

(
1

L!4La(1)L

)
x

2(D/2−L−1)
3

(x2
13x

2
2)

D/2−1
ΨL(

v2

u2
, 2

(uv)

u2
) , (4.20)

where u2 =
x2
13

x2
1x2

3
, v2 =

x2
23

x2
2x2

3
, (u − v)2 =

x2
12

x2
1x2

2
and xab = xa − xb.

For D = 4 − 2ε the function ΨL( v2

u2 , 2 (uv)
u2 ) (4.19) is expanded over ε

ΨL

(
v2

u2
, 2

(uv)

u2

)
=

1

(z1 − z2)

∞∑

k=0

εk

k!
Φ

(k)
L (z1, z2) .

where z1 + z2 = 2(uv)/u2 and z1z2 = v2/u2. The coefficient functions Φ
(l)
L are expressed in

terms of multiple polylogarithms

Lim0,m1,...,mr(w0, w1, . . . , wr) =
∑

n0>n1>···>nr>0

wn0
0 wn1

1 · · ·wnr
r

nm0
0 nm1

1 . . . nmr
r

. (4.21)

The first coefficient (for D = 4 or ε = 0) has the form [11], [12]

Φ
(0)
L (z1, z2) =

L∑

f=0

(−)f (2L − f)!

f ! (L − f)!
lnf (z1z2)

[
Li

2L−f
(z1) − Li

2L−f
(z2)

]
.

and is expressed via the standard polylogarithms Lim(w) =
∑∞

n=1
wn

nm . The next coefficient was
calculated in [1]:

Φ
(1)
L (z1, z2) =

2L∑

n=L

n!
[
(nLin+1(z1) − Lin,1(z1, 1) − Lin,1(z1,

z2
z1

)) − (z1 ↔ z2)
]

(−1)n (2L − n)! (n − L)! ln
n−2L

(z1z2)
,

and is expressed via multiple polylogarithms Li
n,1(w0, w1) (4.21).

Remark. The conformal symmetry requires that the Green function (4.15) (after the special
normalization) is a function which depends only on two conformal variables (cf. (4.18)):

u2(D/2−γ) 〈u|

(
p̂2γ −

g(u2v2)
β−γ

2

q̂2β

)−1

|v〉 = Ψ(γ,β)

(
v2

u2
,
2(uv)

u2

)
, (4.22)

where Ψ(γ,β)(u1, u2) = u
γ−D/2
1 Ψ(γ,β)(u−1

1 , u2u
−1
1 ) = Ψ(γ,2γ−β)(u1, u2).

Let u = 1
x1

− 1
x3

, v = 1
x2

− 1
x3

(see (4.15)) and u′ = 1
x1

− 1
x12

, v′ = 1
x13

− 1
x12

, where we have

used concise notation ( 1
xa

)i = (xa)i

x2
a

. Then, one can deduce the cross-ratio relations

v2

u2
=

(v′)2

(u′)2
=

x2
23x

2
1

x2
2x

2
13

,
(u − v)2

u2
=

(u′ − v′)2

(u′)2
=

x2
12x

2
3

x2
13x

2
2

,
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which lead to the identities Ψ(γ,β)
(

v2

u2 , 2(uv)
u2

)
= Ψ(γ,β)

(
v′2

u′2 , 2(u′v′)

u′2

)
. Using representation (4.22)

we write these identities as

u2( D
2
−γ) 〈u|

(
p̂2γ − g (u2v2)

β−γ
2

q̂2β

)−1

|v〉 = (u′)2(
D
2
−γ) 〈u′|

(
p̂2γ − g (u′2 v′2)

β−γ
2

q̂2β

)−1

|v′〉 , (4.23)

Now we use (4.15) for both sides of eq. (4.23). As a result, we write (4.23) in the form of
relation on generating functions for the ladder diagrams (4.14):

x
2(γ−D/2)
3 〈x1|

(
p̂2γ −

g x2γ
3 ũ

β−γ
2

q̂2(2γ−β)(q̂ − x3)2β

)−1

|x2〉 =

= x
2(γ−D/2)
12 〈x1|

(
p̂2γ −

g x2γ
12 ṽ

β−γ
2

q̂2(2γ−β)(q̂ − x12)2β

)−1

|x13〉 .

where ũ =
x2
13x2

23

x2
1x2

2
and ṽ =

x2
2x2

23

x2
1x2

13
. Expanding both sides over the coupling constant g, we obtain

D-dimensional identities for the L-loop ladder momentum diagrams in the order gL:

eu
L(β−γ)

2

x
2( D

2 −γ−γL)

3

×

---

� �
......66 6

β β . . .

eβ eβ . . .

γ′ γ′

x1 − x3

x1

x2 − x3

x2

= ev
L(β−γ)

2

x
2( D

2 −γ−γL)

12

×

-- -

� � �
......66 6

β β . . .

eβ eβ . . .

γ′ γ′

x2

x1

x2 − x3

x1 − x3

where β, β̃ = 2γ−β and γ ′ = D/2−γ are special indices on the lines and x1, x2, x3 parametrize
external momenta. These identities, in the special case D = 4 (ε = 0) and β = γ ′ = β̃ = 1,
were obtained in [13] and used there for deriving many remarkable relations for various planar
FDs.

4.2 Diagrams with massive propagators

In this subsection we consider an example of the operator approach to analytical evaluation of
the 1-loop 3-point function with one massive propagator.

First, we use the automorphism (p̂2 ↔ q̂2, H ↔ −H) of the sl(2)-algebra (3.12) to write the
first relation in (3.11) as [q̂2β , p̂2] = 4β (H−β+1)q̂2(β−1) and, then, generalize it by introducing
the massive parameter m as follows:

[(q̂2 + m2)β, p̂2] = 4β (H + m2∂m2 − β + 1)(q̂2 + m2)(β−1) . (4.24)

This identity can be converted into the integral form

1

p̂2
(q̂2 + m2)(β−1) 1

p̂2
=

1

4β

∫ ∞

0
dtet(H−β−1+m2∂

m2 )[
1

p̂2
, (q̂2 + m2)β]

from which the representation for the 3-point function is deduced

〈x1|
1

p̂2
(q̂2 + m2)(β−1) 1

p̂2
|x2〉 =

a(1)

4β

∫ ∞

0
dt et(D/2−1) (e−tx2

2 + m2)β − (etx2
1 + m2)β

(etx1 − x2)2(D/2−1)
.

Here the left-hand side is represented in the form of the perturbative integral and we obtain
the equality

∫
dDk (k2 + m2)β−1

((k − x1)2(k − x2)2)(D/2−1)
=

1

4a(1)

∫ ∞

0
dt

((e−tx2
2 + m2)β − (x2

1e
t + m2)β)β−1

et(1−D/2) (x1et − x2)2(D/2−1)
.

7



Finally, we consider the limit D → 4, β → 0 for this relation and deduce the identity

∫
d4k

(k − x1)2(k2 + m2)(k − x2)2
= π2

∫ ∞

0
dt

e−t

(x1 − e−tx2)2
log

(
e−tx2

2 + m2

etx2
1 + m2

)
,

which is important for physical applications and corresponds to the evaluation of the 3-point
one-loop FD (in the momentum space) with one massive line.

Conclusion

Now let us make a few remarks about the results presented above.
1. It should be noted that the coefficient functions ΨL(u, v) (4.18) appear in the calculations
of the 4-point functions in the N = 4 supersymmetric Yang-Mills theory [10].
2. The proposed operator relations (3.7) clarify the structure of the integrable Lipatov model
(see [2]) and its certain generalizations [14].
3. The important problem is the search for generalizations of the described algebraic formalism
in the cases of supersymmetric quantum mechanics and for massive propagators. In the last
case we have succeeded in calculating the special 3-point FD with one massive propagator (see
subsection 4.2). However, this calculation is particular. From this point of view it would be
important to calculate the coefficients ΦL(u, v;m2) in the expansion over g of the spectral Green
function for conformal mechanics:

〈u|
1

(p̂2 − g/q̂2 + m2)
|v〉 =

∞∑

L=0

gL ΦL(u, v;m2) .
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