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Samenvatting

Gedurende de afgelopen decennia heeft men met behulp van supersymmetrie en snaartheorie veel be-
langrijk nieuwe inzichten over de zwaartekracht vergaard. Zo heeft men bijvoorbeeld ontdekt dat de
kwantumvrijheidsgraden van supersymmetrische zwarte gaten kunnen worden beschreven via snaar-
theorie en via de zogenaamde holografie. Bovendien heeft men aangetoond dat stabiele vierdimensi-
onale vacua ? in de vorm van Minkowksiruimtetijd of Anti-de Sitterruimtetijd (AdS) ? kunnen voor-
komen in supersymmetrische configuraties in de snaartheorie. Het is een belangrijk vereiste voor
snaartheorie om de realistische vierdimensionale wereld te beschrijven.

Een niet-supersymmetrische studie

Ondanks de kennis verkregen met behulp van supersymmetrie, begrijpen we nog steeds niet volledig
de microscopische eigenschappen van realistische zwaartekrachtconfiguraties. Zo zijn zwarte gaten
in ons universum van het type Kerr en die zijn totaal niet supersymmetrisch. Experimentele waar-
nemingen tonen ook een versnelde expansie van ons universum aan. Deze waarnemingen zijn een
sterk bewijs voor de aanwezigheid van een kleine positieve kosmologische constante. Het vacum van
de algemene relativiteitstheorie met deze waarde voor de kosmologische constante wordt beschreven
door de Sitterruimtetijd. Omdat we verwachten dat de algemene relativiteitstheorie de effectieve be-
schrijving is op lage energien van de snaartheorie, is het belangrijk om binnen de snaartheorie een
vierdimensionaal de Sittervacum (dat niet supersymmetrisch is) te construeren. Wanneer dat niet mo-
gelijk is, wordt het lastig om contact te maken tussen snaartheoretische voorspellingen en gemaakte
observaties in ons universum.

Over dit proefschrift

Dit proefschrift is gewijd aan de studie van zwaartekrachtoplossingen met gebroken supersymmetrie.
Het gepresenteerde onderzoek wordt in twee hoofdonderdelen gepresenteerd. Elk onderdeel is voor-
zien van een aparte introductie en overzicht waarin het belang van het uitgevoerde onderzoek in een
historische en state-of-the-art context wordt uitgelegd. Na de inleiding wordt een meer technische
uiteenzetting gepresenteerd met relevante achtergrondkennis. Daarna volgt het onderzoek zelf, met
de presentatie van de resultaten en een verdere discussie daaromtrent. We schetsen nu kort de hoofd-
punten van dit proefschrift.

Niet-supersymmetrische zwarte gatenholografie

Deel Il van dit proefschrift behandelt niet-extreme zwarte gaten die tegelijkertijd ook niet-supersymmetrisch
zijn in de context van snaartheorie. Het gebrek aan supersymmetrie stelt ons niet in staat om dezelfde
rekentechnieken toe te passen op zwarte gaten als op hun supersymmetrische tegenhangers. Hierdoor

13



Samenvatting

is het moeilijk om een snaartheoretische configuratie of een holografische beschrijving van de micro-
toestanden van het zwarte gat te vinden. Daarom hebben we een nieuwe benaderingen nodig die
inzichten kan geven over de microscopie van zulke zwarte gaten. Om die reden onderzoeken wij een
methode die Subtracted Geometry heet. Subtracted Geometry stelt dat de relevante vrijheidsgraden
kunnen worden beschreven door een tweedimensionale conforme veldentheorie (CFT2). Minimaal
gekoppelde scalaire velden op deze resulterende achtergronden vertonen een exacte conformesymme-
trie. Na het verheffen van deze achtergrond tot hogere dimensies, blijken ze lokaal het product van
een AdS3 en een bol te zijn, waardoor een holografische beschrijving van hun microscopisch vrijheids-
graden mogelijk is via de zogenaamde AdS3 / CFT2 dualiteit. Deze en andere interessante kenmerken
van Subtracted Geometry ondersteunen de toepassing van deze methode.Het gepresenteerde onder-
zoek vindt plaats voordat de achtergrond wordt verheven naar hogere dimensies. We testen of de
duale theorie eigenschappen toont die kunnen worden toegeschreven aan een CFT2. Met dit als doel
bestuderen we de quasinormale tonen van zulke achtergronden. We gebruiken deze quasinormale
tonen als een holografisch kenmerk omdat we weten hoe ze zich moeten gedragen wanneer de duale
beschrijving CFT2 is, d.w.z. het geval van het zogenaamde BTZ zwarte gat.

Niet-supersymmetrische metastabiele Vacua

Deel III is gewijd aan de studie van niet-supersymmetrische metastabiele toestanden in de snaarthe-
orie. Deze metastabiele toestanden worden geconstrueerd met behulp van supersymmetriebrekende
antibranen. De focus op antibranen is vanwege hun rol in de snaartheorie: ze worden doorgaans
gebruikt in de snaartheorie om niet-supersymmetrisch configuraties te construeren. Met behulp van
metastabiele toestanden van antibranen is aangetoond dat vierdimensionale de Sittervacua kunnen
worden geconstrueerd binnen de snaartheorie. Niettemin is dit resultaat betwist omdat op dit mo-
ment het mechanisme alleen goed gedefinieerd is als de antibranen niet reageren op de achtergrond
en materievelden. Sinds 2009 is het bekend dat de reactie van de antibranen op de achtergrond en
materievelden (en vice versa) bij de eerste-orde-benadering onfysisch gedrag vertoont. Er wordt be-
weerd dat het onfysische gedrag een artefact is van de benadering die werd gebruikt om de onderlinge
interactie van de antibranen, de achtergronden en de materievelden te benaderen. De verwachtingen
zijn dat het volledig in acht nemen van de onderlinge interacties deze twist moet beslechten. Helaas is
het volledig in acht nemen van de onderlinge interacties nog niet mogelijk omdat dit een enorme tech-
nische inspanning vereist. In dit proefschrift ontwikkelen een techniek waarmee we een de onderlinge
interacties kunnen benaderen zonder gebruik te maken van de expliciete volledige oplossing. Met dit
als uitgangspunt kunnen wij randvoorwaarden onderzoeken die een systeem zonder onfysisch gedrag
toestaan. Deze aanpak is veelbelovend maar nog geen hard bewijs omdat we niet laten zien dat er een
oplossing is die aan de gegeven randvoorwaarden voldoet. We doen dit voor tien- en elfdimensionale
superzwaartekracht. De tiendimensionale antibraanconfiguratie is van bijzonder belang omdat het kan
worden gebruikt om het vierdimensionale de Sittervacum te verkrijgen.

Vooruitzicht

We eindigen met Deel IV, het vooruitzicht (Prospect), waarin we een korte algemene discussie geven
over het onderzoek dat wordt besproken in dit proefschrift en we bespreken de interessante vooruit-
zichten die de resultaten van dit onderzoek voor de toekomst biedt.
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Part 1

Summary

“Now, where was I?”

— Leonard Shelby, Memento






Chapter 1

Black Holes and Vacua in String Theory: A
Non-supersymmetric Study

During the past few decades, an important part of the understanding of gravity in the context of string
theory has relied on gravitational configurations that enjoy supersymmetry. Black holes, when super-
symmetric, allow their quantum degrees of freedom to be described via string theory configurations
or holography. Additionally, supersymmetric string theory configurations have been proven to give
rise to stable four-dimensional vacua - in the shape of Minkowski or anti-de Sitter (AdS) spacetimes —
fulfilling a critical requirement needed if string theory intends to describe a realistic four-dimensional
spacetime.

A Non-supersymmetric Study

Despite the knowledge retrieved under supersymmetry, we still do not fully understand the microscop-
ics of realistic gravitational configurations. Black holes in the Universe are of the Kerr type and enjoy
no supersymmetry at all. Also, experimental observations demonstrated an accelerated expansion of
our universe. These observations are strong evidence for the presence of a small positive cosmological
constant. The vacuum of general relativity with this cosmological constant contribution is described
by de Sitter spacetime. As we expect general relativity to be the low energy effective description
of string theory, it is then desirable to construct four-dimensional de Sitter vacuum (which is non-
supersymmetric) within string theory. If not, we are failing to make contact between string theory and
current observations about the Universe.

About this Thesis

This thesis is devoted to the study of gravitational solutions with broken supersymmetry. The involved
research separates into two main parts. Each part has its introduction and overview that puts in place
the importance of the performed research in a historical and state-of-the-art context. A somewhat
more technical discussion is given after this introduction, showing some relevant and useful back-
ground knowledge. After that comes the main research itself, with the presentation of the results and
their further discussion. We now briefly outline the thesis.
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1. Black Holes and Vacua in String Theory: A Non-supersymmetric Study

Non-supersymmetric Black Holes Holography

Part II tackles non-extremal black holes, which are non-supersymmetric in string theory. For black
holes, the lack of supersymmetry does not allow us to apply the same computational techniques as
with their supersymmetric counterparts, making it hard to find a stringy configuration or a holo-
graphic description of the black hole’s microstates. Therefore, we are in need of novel approaches
that could give insights about their microscopics. We scrutinize one of these approaches, the so-called
“subtracted geometry” program. The subtracted geometry program conjectures that by isolating the
relevant degrees of freedom, via a procedure that is called subtraction, the microscopics of four- and
five-dimensional asymptotically flat black holes (which includes the Kerr black hole) can be described
by a two-dimensional conformal field theory (CFT;). Minimally coupled scalars on these subtracted
black hole backgrounds exhibit an exact conformal symmetry. After an uplift, these backgrounds are
locally a product of an AdSs and a sphere, allowing a holographic description of their microscopic
degrees of freedom via the AdS3/CFT, duality. These and other interesting features of subtracted
geometries support the conjecture. Our scrutiny happens at the non-uplifted level, where we test if
the dual theory shows properties that could be attributed to a CFTs. For this purpose, we study the
quasinormal modes of static subtracted geometries. We use these quasinormal modes as a holographic
benchmark because we know how they behave when the dual description of the black hole background
is a CFTs, i.e., the BTZ black hole.

Non-supersymmetric Metastable Vacua

Part III is dedicated to the study of non-supersymmetric metastable states in string theory. These
metastable states are constructed using supersymmetry breaking antibranes. The focus on antibranes
is due to their relevance: they are generally used in string theory to construct non-supersymmetric
configurations. Using metastable states of antibranes, it has been shown that four-dimensional de Sit-
ter vacua can be constructed within string theory. Nevertheless, this result has been contested, since
for the moment this mechanism is well defined only when the antibranes do not back-react on the
background. Since 2009, it has been known that the antibrane back-reaction at first order approxi-
mation exhibits unphysical behavior in the matter fields. It is argued that this issue is an artifact of
the approximation used to include the back-reaction effects. The expectations are that full inclusion of
back-reaction should be conclusive about the existence of the metastable state. Unfortunately, a fully
back-reacted picture is unavailable and requires an enormous technical effort. We develop a technique
that allows us to explore a fully back-reacted picture without the explicit full solution. From here, we
can set the boundary conditions that allow for a system with no unphysical behavior. This resolution is
suggestive but not yet conclusive since we do not prove the existence of a solution that satisfies these
boundary conditions. We do this for ten- and eleven-dimensional supergravity. The ten-dimensional
antibrane configuration is of particular importance since it can be used to obtain four-dimensional de
Sitter vacuum.

Prospect

We end up with Part IV, the Prospect, where we give a short general discussion about this thesis’ re-
search and point out interesting prospects in relation to it.
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Part II
Non-supersymmetric Black Holes

Holography

“Look at the sky, that everything dwarfs. Our jobs,
meetings, and careers: so futile. What a relieve.”

— Gregory Cohen-Muiioz
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Chapter 2

Black Holes Subtraction

Black Hole Entropy and Subtracted Geometries

The microscopic origins of the entropy of a black hole Spy have been a fascinating puzzle since
Bekenstein [6] and Hawking [7] proved during the 70’s that black holes carry entropy. Since then, the
study of Spy has met two milestones discoveries:

e In [8], Brown and Henneaux set the starting point for the description of Spy via a dual CFT; for
black holes containing an AdS factor in their geometry. For example, the BTZ black hole which is
asymptotically AdS3 [9], or extremal black holes (i.e., zero Hawking temperature) whose near-
horizon limit contains an AdS, factor.

e In [10], Strominger and Vafa demonstrated that the entropy of a supersymmetric five-dimensional
charged black hole in the extremal limit is described by a microscopic string theory configuration.
This result was later extended to other extremal [11] and near-extremal examples [12, 13].

These two results are not immediately generalized for black holes that do not have an AdS factor
in their geometry or are non-extremal. For black holes non embedded in AdS, a dual field theory
is not immediately evident, since the traditional AdS/CFT duality does not hold anymore. And for
non-extremal black holes, a Strominger-Vafa approach is not possible. The reason is that non-extremal
black holes are non-supersymmetric in string theory. With no supersymmetry, we cannot extrapolate
some relevant observables from weak to strong coupling, which is a fundamental step in [10].

Black holes in astrophysical settings are expected to be finite-temperature Kerr black holes [14],
so non-extremal, and generally with no AdS factor — besides the extremal and near-extremal limit!.
Therefore, it is evident that a shortage of the understanding of black holes beyond extremality or with-
out an AdS factor is equivalent to an incomplete comprehension of the universe.

!Near-extremal Kerr black holes are claimed to exist in our universe [15, 16, 17]. These black holes are interesting to
study since it is likely that observations could confirm AdS/CFT predictions. Theoretically, extremal and near-extremal Kerr
black holes have a near-horizon dynamics governed by an SL(2, R) conformal symmetry [18, 19]. This symmetry constraints
the gravitational radiation and orbits of in-falling objects within this region, and allows to solve for their orbits and resulting
gravitational radiation [20, 21, 22, 23]. The frequency of this radiation is very characteristic for a near-extremal Kerr black
hole [24, 25]. Therefore, it could be used for Kerr black holes detection. Further experimental confirmation of the near-
horizon region conformal properties could also be possible.
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2. Black Holes Subtraction

However, there is evidence indicating that non-extremal black holes like Kerr might be dual to a
CFT,. The Spy of general four- and five-dimensional asymptotically flat black holes can be recast as
suggesting that a CFTs is responsible for it, i.e., Spy for these black holes can be written resembling
a left- and right-moving independent microscopic contributions [26]. Also, it was found in [27] that
a massless scalar probe on a general Kerr background exhibits an approximate conformal symmetry.
Even if approximate, this symmetry was enough to construct a Cardy entropy matching the Sgy of the
Kerr black hole [27]. Also in [27], it was shown that scattering amplitudes (absorption probabilities)
on the Kerr background are approximately the finite-temperature absorption cross-section of a CFTs.
The derived left and right temperatures of this cross section correspond precisely to the expected ones
of a hypothetical CFT; dual to the general Kerr black hole [27]2. It is tempting then to say that, some-
how, a dual CFT; exists for these non-extremal black holes, although no AdS factor is found in their
geometry.

An attempt to explain the origin of these suggestive features is the subtracted geometry program
[28, 29, 30, 31, 32]. Subtracted geometries are black hole spacetimes obtained by modifying the warp
factor in the geometry of four- and five-dimensional asymptotically flat black holes. These geome-
tries are not embedded in AdS, so a dual CFT description is not immediately available. Nevertheless,
subtracted geometries exhibit interesting features, among which:

e In a subtracted geometry spacetime, the approximate conformal symmetry of [27] for probe
scalars becomes exact, supporting the conjecture that these spacetimes should be well described
by a dual CFT.

e The black hole and its subtracted geometry have the same horizon quantities, such as tempera-
ture or entropy. This suggests that the black hole microscopics is unchanged after the subtraction
procedure.

The interpretation here is that a subtracted geometry is a way to put a black hole in a box: it decouples
away its asymptotic structure and isolates its relevant degrees of freedom. This interpretation is ap-
pealing since a black hole in a box is a system in thermodynamic equilibrium and with positive specific
heat [28]. The last is desirable if we intend to describe the black hole via a dual CFT since all unitary
CFTs have positive specific heat. Let us remind the reader that a subtracted geometry is not embedded
in AdS; thus a dual CFT description remains as a conjecture.

The features mentioned above make subtracted geometries interesting for holographic studies. A
holographic interpretation of these spacetimes is possible, but only after an uplift to one more dimen-
sion. The uplift spawns an AdSs factor in the line element of the subtracted geometry, where the
four-dimensional subtracted geometry uplifts to AdSs; x S? [30] and the five-dimensional to AdS3 x S3
[28]. Thus, using the AdS3/CFT; duality, the Spy of the uplifted subtracted geometry can be described
via a CFT5 dual.

The non-uplifted subtracted geometry has no obvious dual field theory description, despite all the
mentioned evidence pointing to a CFT,. This part of the thesis is devoted to advance in this direction.

2The last two results are the core of the “Hidden Conformal Symmetry of a Kerr Black Hole” [27] that we review at the
beginning of chapter 2.
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We scrutinize the non-uplifted subtracted geometry/CFT; conjecture, finding in chapter 5 evidence
against it. We study the quasinormal modes of the subtracted geometry to build up this evidence. We
describe now how these quasinormal modes can give insights about the dual field theory of a black
hole background.

Quasinormal Modes and Holography

Quasinormal modes are the late-time solution of the wave equations describing linear perturbations
on a given background. These wave equations have dissipative boundary conditions, and they can be
written as the following eigenvalue problem [33],

where ¢ is the time, z* are the spatial dimensions, 4 is the field encoding the perturbations, and P is a
second (first) order differential operator for integer (1/2) spin. The quasinormal modes in (2.1) have
complex spectrum (complex frequencies), characterizing then a dissipative phenomenon. Quasinormal
modes differ from the traditional normal modes, which are non-dissipative and thus very long-lived;
hence the prefix “quasi.”

The eigenfrequencies of (2.1) are known to carry information about the background geometry.
Maybe the most famous example in this regard is Kac’s “hearing the shape of a drum” [34]. The
study of the quasinormal modes of (2.1) allows for (limited) insights about the curved background
where they propagate through. Let us take for example the Schwarzschild black hole. Solving for
the quasinormal frequencies w, in this background, where ¢ is the spherical harmonics multipolar
momentum, allows the extraction of the mass M of the black hole [35] 3,

l

wp X

where ¢ >> 1. In this case, M is the parameter characterizing the geometry, and its value can (approxi-
mately) be evaluated by knowing the quasinormal frequency and the multipolar momentum associated
with it. It is good to remark that quasinormal modes, as a late-time solution, do not give information
about the initial perturbation that originated (2.1).

Notice that an asymptotically flat black hole, like the Schwarzschild example above, is naturally a
dissipative system. Modes are trapped and absorbed in the horizon of the black hole, while asymptot-
ically they are escaping to infinity. This information is implemented via the boundary conditions* in
(2.1), and it is crucial to describe quasinormal modes behavior when studying black holes.

In this thesis, we focus on the quasinormal modes of black holes. These quasinormal modes have
been extensively investigated in astrophysical and theoretical settings (see [36, 37, 38, 39] for detailed
reviews). With the detection of gravitational waves originated from the coalescence of compact bina-
ries [40], the empirical relevance of these quasinormal modes in astrophysics has increased notably.

3This publication also happens to be the one where the term “quasinormal mode” was coined.
“For another asymptotical structure, like AdS, the correct choice of the asymptotic boundary condition is less obvious; we
discuss this in section 4.
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2. Black Holes Subtraction

Quasinormal modes are providing the first tests of general relativity in its non-linear and dynamical
strong-field regime since:

1. The gravitational waves emitted during the late-time of the ringdown® stage is expected to be
well described by quasinormal modes [36, 37, 38, 39]. If general relativity holds within this
regime, the quasinormal spectrum should depend only on the mass and angular momentum of
the black hole.

2. The measurement of the frequency of the dominant mode — the lowest frequency mode —, allows
retrieving the experimental mass and angular momentum values.

3. Further measurements for higher frequency modes permit to test the no-hair theorem [41, 42]
since the whole spectrum should be characterized by the mass and angular momentum values,
already fixed in step 2. The no-hair theorem is a proxy for the validity of general relativity.

Positive results in this regard [40, 43] are evidence that general relativity has passed its first strong-
field regime tests. The existence of event horizons is a more subtle discussion, although it is expected
to be confirmed by a more in-depth study of the late-time ringdown signal [44].

For our purposes, we focus on quasinormal modes of black holes in holography. They will be useful
to scrutinize the dual field theory properties of subtracted geometries. More specifically, we use the
BTZ black hole [9] as a benchmark, as this black hole is known to be dual to a CFTs. Its quasinormal
spectrum for scalar, fermionic and vectorial perturbations is dual to the poles of the retarded real-time
correlation functions of the CFT, corresponding operators [45]. Thus, if a black hole background ex-
hibits a quasinormal spectrum like the BTZ, it is evidence for the existence of a dual CFT, description.
Likewise, the absence/departure from such spectrum is evidence against a dual CFT, description. In
this last case, another dual field theory might be responsible for the description of the black hole mi-
croscopics. Using this logic, we test if subtracted geometries are dual to a CFTs.

As an illustration of the last, let us advance one of our results of this part of the thesis. We will see
later in section 5.4.2 that for the subtracted geometry of a Schwarzschild black hole - as a solution for
an Einstein-Maxwell-Dilaton theory —, the quasinormal modes spectrum for vectorial perturbations® is

w —
AT

3 , 1 1/2
A;:{<2+k‘,12,/13+12k‘2,> 1+ /2+ K 5 .

In the expression above, k¥ = ¢(¢ + 1) — 1, with ¢ an integer greater or equal than 1, and T is the
temperature of the “subtracted Schwarzschild.” In (2.3) there are two towers of modes, and both of
them are integer spaced and purely imaginary. These spectrum characteristics are qualitatively the

—i(Af +n), n=0,1,2,..., (2.3)

with

>The ringdown is the stage where the end-product of the coalescence is relaxing — as predicted by general relativity —
towards a Kerr black hole.

®In this case, vectorial perturbations are the ones exciting the vectorial sector of the background Schwarzschild metric
and the (zero-valued in this case) background gauge field.
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same for a BTZ black hole. This similarity is evidence for the existence of a dual CFTs.

When adding charge to the black hole above, the spectrum departs from the BTZ one: the quasi-
normal frequencies are not purely imaginary anymore — see figure 2.1. This departure is evidence
against a dual CFTjy, at least in the charged static case. It can be argued that the study case in this
thesis is a very particular one. Further research on subtracted geometry configurations is needed in
order to come up with a more definitive statement about its dual nature — see section 5.1 for more
specific comments on this.

_2.4+t

-26+

i
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Figure 2.1: Extension of the spectrum (2.3) for a charged static subtracted geometry. Different colors correspond to different
values of the charge. The red crosses correspond to the analytical values in (2.3). The first and third QNM remain on the
imaginary axis, moving away from each other. The second QNM moves onto the complex plane, departing then from the
BTZ black hole spectrum features.

Outline

We elaborate more, in technical and conceptual grounds, about subtracted geometries in chapter 3
and quasinormal modes in chapter 4. In chapter 5 we study the quasinormal modes spectrum of static
subtracted geometries as solutions of the STU model and Einstein-Maxwell-Dilaton theory. Further
comparison with the BTZ quasinormal spectrum reveals discrepancy, making unlikely the fact that
subtracted geometries (at least the static case) have a CFT; as a dual description.
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Chapter 3

Subtracted Geometries

The subtracted geometry program [28, 29, 46, 31, 30, 32, 47] attempts to understand general four-
and five-dimensional asymptotically flat black holes. The main emphasis is placed on the microscopic
origin of their Bekenstein-Hawking entropy, which is conjectured to be captured by an underlying dual
CFT,. We review in this section the origins of the program, its physical interpretation, methodology,
and string theory and holographic description. Other interesting results about subtracted geometries,
regarding their thermodynamics, holographic renormalization, minimally coupled scalars probes, and
relation to the attractor mechanism can be found in [48, 49, 50, 51, 52, 53].

The subtracted geometry program began as an attempt to exploit the “hidden conformal symme-
try” found in the Kerr black hole [27], in more general charged and rotating asymptotically flat black
holes in four and five dimensions in string theory. As we shall see more in detail below, the key idea
is to place these black holes into a “conical box.” This induces an upgrade of the approximate (small
frequency limit) conformal symmetry of the massless scalar wave equation in a Kerr background to an
exact symmetry.

These geometries describing black holes inside a conical box were dubbed “subtracted geometries.”
They have a clear holographic interpretation once uplifted to one dimension more, since they become
AdS3 x S? or AdS3 x S locally, albeit its non-uplifted version still lacks a dual description. The holo-
graphic dual properties of the non-uplifted subtracted geometries are our main concern in this part of
the thesis. We now review the basics of the program.

We start by recalling the hidden conformal symmetry of a Kerr black hole, noted first in [27]. The
story starts with the realization that the massless scalar wave equation probing a Kerr background ex-
hibits a conformal symmetry at distances small compared with the inverse frequency. More concretely,
we write the massless wave equation as

Ou(vV—99"0,®) =0, B.1

-
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3. Subtracted Geometries

on the background of a Kerr background (in Boyer-Lindquist coordinates),

2 A in? 0
ds? = %dﬁ — ?(dt — asin®0do)? + p*dh* + %((r2 + a?)d¢ — a dt)?,
A = r?+a®-2Mr, p*=r*+a*cos?0, (3.2)

with mass M and angular momentum J = Ma. The wave equation on this background is separable
[54], so we can write down an ansatz of the form

B(t,r,0,¢) = e WM R(1)S(H). (3.3)

It can be seen explicitly [27] that the wave equation exhibits a conformal symmetry for r» < % This re-
gion was termed in [27] as the “near region.” Note that this is not to be confused with the near horizon
region since, for small values of w, the near region can be arbitrarily large. This conformal symmetry
is described by local SL(2, R)r, x SL(2, R)r generators, that globally break down to U(1) x U(1)r
ones, due to the identification of the azimuthal angle ¢ ~ ¢ + 2.

The presence of this approximate symmetry suggests that we can attempt to describe the near
region dynamics of the black hole in terms of a dual CFTy. Following [55], the azimuthal angle
identification mentioned above gives rise to left- and right-sector temperatures 77, and T given by the
Hawking temperatures at the outer and inner horizons by [27]

TR:T+_T_, TL:T++T_, 3.4
dma 4ma

where r4 = M £ v/ M? — a? are the outer and inner horizon of the Kerr black hole.

Following our assumption that the near region can be described by a dual CFT;, we would expect
the Cardy formula,

2

T
SCardy = ?(CLTL‘f'CRTR)v (3.5)

to match the Bekenstein-Hawking entropy of the black hole. For this purpose, we need the values of
the central charges ¢y, and cg. These central charges were computed in the case of the extremal Kerr
solution in [18, 56, 19], and turn out to be

cr=cr = 12J. (3.6)

Assuming that the conformal symmetry found in the extremal Kerr case connects smoothly with the
hidden conformal symmetry for Kerr, we can use the values in (3.6) for our computations. These
central charge values, in addition to the temperatures 77, and Tx in (3.4), give us all the ingredients
to fill up the Cardy formula of the supposed dual CFTs, obtaining then

2

T
SCardy = ?(CLTL‘FCRTR)

= 27TMT+
An
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where Ay is the area of the Kerr black hole’s horizon. To everyone’s surprise, the Cardy entropy agrees
on the nose with the Bekenstein-Hawking entropy of the Kerr black hole [27]. What is surprising is
the fact that there is no conformal symmetry in the geometry of the near region Kerr spacetime, the
usual smoking gun of a dual CFT description [57]. Comparison of absorption probabilities in the black
hole’s near-region to absorption cross-sections of a thermal CFTy at temperatures 77, and Ty reveals
further agreement [27]. Thus, there is evidence pointing to the conclusion that, somehow, a general
Kerr black hole is dual to a CFTs.

Although insightful, this evidence is still rudimentary. As the authors of [27] pointed out, a system-
atic way of conjecturing such a duality usually is undertaken by constructing the asymptotic symmetry
group [8, 57] of the geometry, or by the black hole description via a brane configuration [10] — neither
of which have been implemented in the case above [27]. Moreover, as soon as we leave the near-
region regime, any trace of symmetry disappears, dragging all the collected evidence with it. Willing
to understand the Kerr/CFT conjecture in a more robust framework is when subtracted geometries
come in.

Subtracted geometries made their first appearance in [28, 29]. Therein, it was noticed that asymp-
totically flat black holes, solutions of four-dimensional ' = 4 [29] and five-dimensional ' = 4,8 [28]
supergravities, can be modified in order to promote the approximate conformal symmetry of [27] to
an exact symmetry of the full spacetime. The modified geometry was termed “subtracted geometry.”
The origin of this name is due to the modification (performed in the warp factor of the black hole) that
is needed to obtain its subtracted version. This modification is effectively a “subtraction” of the black
hole’s asymptotics.

As an example of a subtraction procedure, it suffices to consider the metric of a four-dimensional
rotating black hole with two electric and two magnetic U(1) charges [29] — the full solution can be
found in [58]. Its asymptotic charges (mass, charges and angular momentum) are parametrized by

3

1 1 .
M= m IZO cosh 20y, Qr = ymsinh25y, J = ma(Il — IL,), (3.8)
where
3 3
II. = H coshdy, II; = H sinh 7, (3.9)
=0 I=0

with m, a, d; constants, and I = 0, 1, 2, 3 labels the four U(1) charges.

The geometry of the black hole is

G VA X .
ds? = _—Ao(dt + A)? + Xodr2 + A <d92 + 5 sin? 9d¢2> , (3.10)
with
X = 2 —2mr+a2, G = %> — 2mr + a® cos? 0, (3.11D)
2
A = m“igna[(nc — IL,)r + 2mIL]dé,
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3. Subtracted Geometries

3
Ay = H(r + 2msinh? 6;) + 2a* cos?
1=0

3
r? +mr " sinh® 67 4 4m? (T, — )T,
1=0

— 2m? Z sinh? §; sinh? 0 sinh? 65
I<J<K

+ a* cos* 0, (3.12)

where m, a, d; are constants. The subtraction procedure takes place at the warp factor in the following
way,

Ag — A = (2m)3r(T12 — 112) + (2m)* % — (2m)?(I1, — 11,)2a” cos® 6. (3.13)

This changes the warp factor and asymptotics of the black hole geometry. When probing the massless
scalar in this new subtracted background, its wave equation shows exact conformal symmetry [28, 29],
i.e. the solutions are hypergeometric functions — an explicit example of this behavior can be found in
section 5.4.1 with a Reissner-Nordstrom subtracted geometry.

The warp factor modification (3.13) achieves this enlargement of conformal symmetry [28]. How-
ever, the remaining matter fields have been kept intact. This configuration no longer satisfies the
equations of motion [29]. This can be solved by constructing the subtracted geometries via a scaling
limit or solution generating techniques. We will review both procedures later on in this chapter, after
discussing the physical interpretation of a subtracted geometry. As a last remark, notice that a Kerr
black hole is the uncharged case of the background (3.10)-(3.12), so it is fitted for a subtraction pro-
cedure.

The physical interpretation of the subtraction procedure is the decoupling of the black hole from its
asymptotics by enclosing it in a “conical box” [46]. This can be seen from the confinement properties
of subtracted geometries. Four-dimensional charged and rotating subtracted geometries, originated
from black holes as in (3.10), at spatial infinity are asymptotically conical spacetimes [46], generically
described by

R\
ds® = — (R) dt* + B2dR? + R*(d6? + sin® 0d¢?), (3.14)
0
with Ry, p, B constants, and R being the radial distance to the origin. In particular, the spatial

asymptotic of the subtracted geometries of charged and rotating black holes (3.10),

3/2 2m)3 (112 — II2
dSZ oo = — r dt2 \/( m) ( c S)d’f'2
’ V/(@m)(IZ —112) ri/?
+ r2/(2m)3 (112 — T12)(d6? + sin® 6d¢?), (3.15)

is a conical geometry of the form (3.14) with

R? = 71/2,/(2m)3(I2 — 112), B2 =16, Ry= (2m)(112 - 112)"/* (3.16)

These conical geometries endorse confining properties qualitatively equal to anti-de Sitter spacetimes.
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This can be seen in the way that the Ehrenfest-Tolman temperature! falls [46],

T x

1 —-p

NS x R7P, (3.17)
thus, for p > 1, the total energy and entropy are finite (for subtracted geometries, p = 3, so this in-
equality is always satisfied [46]). This adds evidence to the claim that the subtracted black hole system
may have a dual CFT description. Inside the box, the black hole is in thermodynamical equilibrium and
has positive specific heat, like all unitary CFTs. Moreover, the horizon area, angular and (Euclidean)
time periodicity remain unchanged after the subtraction procedure [28]. This property suggests that
the microscopic system behind the thermodynamics of a black hole remains the same after the subtrac-
tion procedure.

We have seen that the subtracted geometry shows compelling evidence of being dual to a CFTs.
Moreover, the Bekenstein-Hawking and Cardy entropy of a subtracted black hole, after a calculation in
the same lines of [27], can be shown to match [29]. However, a subtracted black hole does not realize
a conformal symmetry at spacetime level. Thus, a formal explanation in the fashion of [8, 57, 10] for
this matching is still lacking, just like the case of the hidden conformal symmetry of the Kerr black hole
[27]. In this regard, the program has not given a satisfactory answer.

When the subtraction procedure was first proposed, the subtracted end-products were not solutions
of the original supergravity theory [28, 29]. Later was found that subtracted geometries were solutions
of the STU model (N = 2 4d) and its five-dimensional uplift (V' = 2 5d supergravity) [31, 32, 30].
Methods to build these solutions from asymptotically flat black holes were also developed: (1) via a
scaling limit [46] and (2) via solution generating techniques called Harrison transformations and STU
transformations [30, 31, 32].

The scaling limit method subtracts an asymptotically flat black hole through a particular transfor-
mation of its geometry and matter fields. This transformation is controlled by a parameter subject
further to a limiting procedure. We give now an example, following [46]. Consider a four-dimensional
charged rotating black hole, solution of the STU model. We have already written down the geometry
for this black hole in (3.10), (3.11) and (3.12). This black hole has four U(1) charges. For simplicity,
we will take three charges equal §; = d; = d3 = 6 and d4 = Jp. The gauge fields A; 5 3 will be sourced
by 6 and AU by 50.

The matter supporting the geometry is given by three dilatons 7y, 72, 13 and axions x1, X2, X3,

(r + 2msinh?6)? + a? cos? 0

VA ’

o _ 2macos 6 cosh 0 sinh §(cosh ¢ sinh dg — sinh ¢ cosh dg) (3.18)
XM=X2=xs = (r + 2msinh? 6)2 + a2 cos? 0 ‘ .

e = 2 = ™

!The Ehrenfest-Tolman temperature [59] is the temperature measured by a local observer who follows an orbit described
by a Killing vector normal to the horizon. This temperature diverges at the horizon and reduces to the Hawking temperature
at infinity, just as expected [60].
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3. Subtracted Geometries

The gauge fields are explicitly

2m

A = A—([(r + 2msinh? §)%(r 4+ 2msinh? &) + ra® cos? 6]
0
X [cosh & sinh & dt — a sin? @ cosh 6 sinh 6(cosh § cosh 8y — sinh & sinh &g)de)]
+ 2ma? cos® fledt — a sin® @ sinh? § cosh & sinh doddp)]), (3.19)
2
Ay = A—m([(r + 2m sinh? 6y)3 + ra? cos? 6]
0

X [cosh &y sinh &y dt — asin? §(cosh® § sinh 6y — sinh® 8§y cosh &) d)
+ 2ma? cos? Oleg dt — a sin? @ sinh? § cosh dodg)), (3.20)

with

e = sinh?§cosh? 6 cosh dg sinh &y (cosh? § + sinh? §)
— sinh3 6 cosh 6(sinh? § + 2sinh? 6y + 2sinh? § sinh? &), (3.21)
eo = sinh® ¢ cosh?® §(cosh? §y + sinh? §y) — sinh &y cosh dg(3sinh? § + 2sinh® §),

where I = 1,2, 3. The scaling limit is performed by first doing the following transformations,

r — Te, t—>7’6_1, m— me, a— ae,

H2
2msinh?d  —  2me V3112 — 1123, sinh? 4§y — ﬁ’

(3.22)

and then taking the limit ¢ — 0. Once this limit has been performed, the matter fields are formally
infinite. However, the divergences can be removed by a gauge transformation in the scalar and gauge
fields [46, 48]. After this has been done, we arrive at the subtracted version of the black hole,

A = (2m)3rI12 —11%) + (2m)I2 — (2m)%a®(I1, — I1,)? cos? 6,
_ _ 2ma(Il, —1II;) cos 6
X1,2,3 om )
e 2
N VO
A - g (2m)a?[2mI12 — (I — I15)?] cos? edt,
2m A
(2m)* LI + (2m)2a®(I1. — I15)% cos? 0
i dt
(IZ - 1I5)A
2m)*a(Il. — I1,) sin” 0
n (2m)*a( ) sin a6, (3.23)

A

where we have recovered the warp factor (3.13), plus having explicitly found the fields that sustain
the box surrounding the black hole.

It is worth emphasizing that the scaling limit for a subtracted geometry is different from the near-
horizon limit [29]. In order to see this, let us set the charges to zero in the warp factor (3.12), namely
II. = 1, Il = 0,6; = 0. For these charge values, the geometry (3.10) describes a Kerr black hole,
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although not in the common Boyer-Lindquist coordinates [29]. The NHEK limit is obtained by the
following transformation [61],

r—m+Ar, a?— m?, (3.24)

and then taking the limit A — 0. The warp factor (3.12) then becomes

1
\/ AO,NHEK = 2m2§(1 + COS2 (9) (3.25)
The NHEK limit in the subtracted warp factor (3.12) bring us to

v/ ANHEK = 2m? V14 sin? 6. (3.26)

It is clear from here that the NHEK and subtracted limits are different. This difference is a curious fea-
ture since both scaling limits share the property that a hypergeometric function on these backgrounds
solves the scalar wave equation. This suggests that two different CFT descriptions of extremal rotating
black holes might be available [29], one related to the NHEK [18] and the other to the subtracted
geometry. Finding the relation between both limits could teach us further about what the subtracted
geometry dual description is.

As already mentioned, the construction of subtracted geometries can be undertaken by solution
generating techniques, namely Harrison transformations and STU transformations [30]. These con-
nect black holes to their subtracted version. The existence of these transformations confirms that the
subtracted black holes are also solutions of the relevant supergravity theory. Moreover, physical prop-
erties of the original black hole which are invariant under these transformations remain the same for
the subtracted black hole. It is worth noting that, besides the notable exception of the Kerr black hole,
the black hole entropy is not invariant under a general Harrison or STU transformation; however, the
parameters controlling the transformations can be adjusted for this purpose [46]. As an illustration of
how these solution generating methods work, let us subtract the Schwarzschild black hole case through
a Harrison transformation. We follow section 2.3 of [46].

The Schwarzschild STU model solution is effectively described by the 4d Einstein-Dilaton-Maxwell
theory,

o= 73 (S oo~ Lemors). @2

which is a consistent truncation of the STU model with the axions set to x; = 0, the dilatons to
7N = —%qﬁ, only one Maxwell field F is present, o = -, and the metric is given by the ansatz

%;
X A
i = R V002 4 /R (00 + sin? 007
X = r*-2mn (3.28)

where A is a function of » and m is a constant. To perform the Harrison transformation, we first
reduce to a three-dimensional theory in the time-like direction using the following ansatz,

ds? = —e®Ude? + efQU%-jdxidxj, Fyo = 0;1, (3.29)
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3. Subtracted Geometries

where U and ¢ depend in the 2* coordinates.

The three-dimensional action becomes

£3 = \f’y (R(’}/ZJ) — 2’yij (8Zx8]x + &y@]y — 6_2 1+0‘2Z8ﬂ/zaj¢)> s (330)
with z = Ultro‘aq;, y= 7%1’ The action can be recast in the following form,
L3 = ﬁ (R("}/i]’> + 1T azfy]Tr(aiPajP 1)) , (3.31)
with

(3.32)

p o VRt [ VT - (et VTt Py
—V1+ a2y -1 ’

with P = PT and detP = —e~2V1te?y,
Having collected these results, we can perform the Harrison transformation, given explicitly by

P—-HPHT, H:(}j (1)> (3.33)

where H € SO(1,1). The properties P = PT and detP = —e~2V1H+e®y are invariant under the Harrison
transformation, and so is the action (3.31), while the matter configuration will change — thus, the end-
product of the transformation is another solution of the theory. The transformation at the level of the
matter configuration is,

/ e\/1+o¢2m' _ A—le\/l+a2z

y =Y, )
o= AT {w Tt a2 (62\/@36 - +O‘2W2)}
A = (B +1)?2 = ple2Vite’s (3.34)

The Schwarzschild case is described by €2V = 1 — 27’” (this effectively sets Ay = 7% in (3.29)), ¢ =

0, and ¢ = 0. In the infinite boost limit 5 — 1 [46], we have that A — 27’”, and the warp factor and
matter configuration changes to

. _ - [2m 2 1
Agubtracted = (Qm)37-7 € 20/V3 — Tv \/;Ftr = %7 (3.35)

which is the same warp factor of (3.23) for the uncharged non-rotating case 2, i.e., II. = 1 and II, = 0.
This Harrison transformations result extends to four-dimensional, four U(1) charges rotating black
hole [30, 31] and to five-dimensional multi-charged rotating non-extremal black holes [32] — in the
later, the subtraction procedure can also be undertaken via the STU transformations [30].

2The field strength shows a +/2/3 factor difference. This is simply just a definition issue between the truncated and the
full STU model field strength [46].
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These solution generating techniques open the door to a possible description of four- and five-
dimensional asymptotically flat black holes via brane configurations. As already noticed, when four-
dimensional subtracted geometries are uplifted by one dimension, their geometry becomes locally
AdS3 x S? [29] supported by three magnetic fluxes threading the S2. This configuration corresponds
to the near-horizon of the DO-D4 system in type IIA, or the near-horizon of a set of intersecting M5
branes in M-theory [62, 63], each one wrapping a different four-cycle on an internal six-torus 7. In
M-theory, the Harrison transformations are equivalent to a set of T-dualities and timelike Melvin twists
[30]. Since the intersecting M5s microscopics is known to be described by the dual MSW CFT [64],
the understanding of the dual theory description of four-dimensional asymptotically flat black holes is
reduced to the understanding of the dual versions of these timelike Melvin twists and T-dualities on
the MSW system [30].

The methodology mentioned above can be extended to five-dimensional asymptotically flat black
holes. Its subtracted geometry uplifts to an AdS; x S3 geometry [28], the near-horizon limit of the
D1-D5 system [65]. The D1-D5 system is two T-dualities away from the D0-D4 configuration — so we
only need to add these T-dualities to the already existing set of T-dualities and timelike Melvin twist
for the DO-D4 case. A depiction of this whole procedure can be found in figure 3.1.

Insights about the dual theory for a subtracted geometry can also be obtained by the study of its
uplift via AdS3/CFT,. For example, In [47], an explicit family of solutions was constructed that inter-
polates between a Reissner-Nordstrom black hole geometry and its subtracted version. These solutions
are helpful for the identifications of which linear perturbations on the subtracted Reissner-Nordstrom
are responsible for initiating the flow towards the original Reissner-Nordstrom. After uplifting the
subtracted black hole and performing a reduction on the S?, these perturbations are identified with
irrelevant perturbations in the dual CFTs [47]. This is the expected result if we think of the subtracted
geometry as an IR limit of the original asymptotically flat geometry [47].

Even though a holographic dual of a subtracted geometry is available after its uplift, it is desirable
to test to which extent a CFT, description is present in the non-uplifted version. After all, in the hidden
conformal symmetry of the Kerr black hole, the near region (which is the region described by the Kerr
subtracted geometry) is the one that is conjectured to be dual to a CFTs. Therefore, and despite all the
evidence as mentioned earlier supporting a dual CFT,, we need to test further if conjectured duality is
well-based. A step would be to construct the asymptotic symmetry group [8] of the non-uplifted sub-
tracted geometry. However, other methods can also tell us very useful insights about the dual theory.
The study of subtracted black hole quasinormal modes is one of them. This is the chosen approach in
this thesis, and that we present in the following section.
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3. Subtracted Geometries

@ Upilift @ Equivalent @ Dual
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Figure 3.1: Description of how the subtracted geometry program allows for a four- and five-dimensional general
asymptotically flat black holes dual description via (dual) T-dualities and Melvin twists on the MSW CFT.
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Chapter 4

Linear Perturbations and Quasinormal
Modes

In this thesis, we use quasinormal modes with the purpose of finding evidence that supports (or disfa-
vors) the conjecture of a subtracted geometry being dual to a CFT,. In order to obtain the quasinormal
modes of a given background, firstly we need to study its linearized perturbations. A proper study of
the linearized perturbations requires to disentangle their “raw” equations of motion to clean-cut wave
equations of the form (2.1). For this purpose, we follow [66], where Kodama and Ishibashi formulated
a systematic disentangling procedure for tensorial, vectorial, and scalar linear perturbations for d > 4
dimensional black holes in Einstein-Maxwell theory. A subtracted geometry does not fit in the study
cases of [66], although an extension of method therein will allow for the disentangling of its linear
perturbations to wave equations. However, these wave equations do not describe quasinormal modes
yet; a sensible choice of boundary conditions is needed. We elaborate on these topics in this chapter.

Let us outline the Kodama-Ishibashi method for vectorial perturbations!' on a Reissner-Nordstrom
background, where we can see vividly how the disentangling process takes place. The Reissner-
Nordstrom black hole is given by

2 2 dr? 2 102
ds® = —f(r)dt* + 70 + rdQ3, 4.1)
2M | Q2 Q

f = 1774’72, f:deth,
r r T

where F is our accustomed electrically sourced field strength, and the constants M and () are the mass
and electrical charge of the black hole. We separate the coordinates as (¢,7) = (a,b) and (0, ¢) = (i, ),
D, and D; are the respective covariant derivatives, and ¢** and ¢/ the respective Levi-Civita tensors.
This background is a solution of Einstein-Maxwell theory, so it satisfies the equations of motion

1
Ry = & (T#V—2Tgw,>, (4.2)

dF = 0, dxF =0.

!n the literature, vectorial perturbations are also called Regge-Wheeler type or odd-parity type [38].
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4. Linear Perturbations and Quasinormal Modes

We are taking for the rest of the chapter the value x? = 2. This choice does not influence at all in the
method and makes for a cleaner computation.

We define a perturbed field ¥ as
U =0+560, O(5T%) ~0, (4.3)

where VU is the background field value and ¢V its perturbation. ¥ must satisfy the equations of motion
(4.2). This restriction implies that the dynamics of 6% will be dictated by (4.2) at the linear level.

The background geometry (4.1) is a product between a two-dimensional spacetime and a maxi-
mally symmetric space of dimension two — namely, the two-sphere S2. The isometries of this maximally
symmetric space are used to expand the linear perturbations in terms of according harmonics [67]. For
the S, these are spherical harmonics. Thus, a perturbation to the metric, § 9w, can be decomposed as
[68]

Sgudride” = Sgapdada’ + 8ggida’da’ 4 5g;jdaidr’ (4.4)
= haSdz®dz’ + (hir) Vi + hr) o DiS)dz"da’
+ (h(T)Tij + h(LT)D(iVj) + h(LL)(QﬁZ'Dj + k%/Qij)S + h(y)QijS) da:ia:j,
where the h__ functions? depend on the 2* coordinates only, ;; is the S? metric, and S(6, ¢), V;(0, ¢), T (0, ¢)
are scalar, transverse vectorial, and tensorial spherical harmonics respectively. Inspecting (4.4), and

using orthogonality arguments between different kind of harmonics, we classify the perturbations in
three different sets [68],

{habs P(r),as Prys ho)} = scalar perturbations, (4.5)
{h(1),a> h(r)} = vector perturbations,

{h(ry} = tensor perturbations.

For S?, tensorial harmonics do not exist [69], so we will not consider them further, i.e., h¢ry = 0.
We classify now the perturbations of the electromagnetic field. Let us notice first that the equation of
motion

dF =0 (4.6)

implies 0F = d(J.A), meaning that a vector potential can describe the electromagnetic perturbations.
Expanding as before,

5A,dat = a,Sdz® + (bpV; + by D;S)dat, 4.7)
where a,, by, and by, depend on the = coordinates. Again, we can group up the perturbations as

{aq, br} = scalar perturbations, (4.8)

{br} = vector perturbations. (4.9)

2The subindices 7 and L hold for “transverse” and “longitudinal” harmonics, see the appendix in [68].
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Then, the perturbations in the Reissner-Nordstrom background (4.1) can qualitatively be described
as

60 =60V 4+ 59 (4.10)

where the superscripts represent to which modes do they belong (vector or scalar).

As our goal is to find the quasinormal modes of the background (4.1), we take the time dependence
to be e~ for all perturbations, i.e.,

SU(t,r) = e 5w (r), (4.11)

where the frequency w will become the quasinormal frequency. This time dependence reflects that the
system under study is in a stationary stage, which is the expected late-time behavior [33]. Hence, the
time dependence (4.11) fits well if we want to study the quasinormal character of the linear perturba-
tions.

We have already parametrized the perturbations in terms of time, radial, and angular dependence.
Now, we want to know the dynamics of the perturbations. For this purpose, we insert the perturbed
g and F — in the shape of (4.3) — in the equations of motion (4.2). This will give us the “raw”
equations of motion for the perturbations, that we will further disentangle obtaining wave equations
for the perturbations.

We start by studying the Maxwell equations in (4.2). As already discussed around (4.6), the left
side Maxwell equation in (4.2) implies that a vector potential can describe the perturbation of the field
strength,

§F = d(5A). (4.12)

The right side Maxwell equation in (4.2) gives the following equations of motion for the field strength
perturbations,

I
o

(4.13)

1 2 ab 2 ai Q ab 1 7 c ~ 7
T—2Db(r OFY) + Do F* + 3¢ §Db((5gi —0g5) — Didg;,

D, <6}"{‘ + geab(sgib> +DjoF = 0. (4.14)

Now we want to do the same for the Einstein equations. Unfortunately, these are too lengthy to write
for general dg,, and §F perturbations. Here we are working out the quasinormal modes for vectorial
perturbations. Thus, it suffices to write out only the vectorial perturbations of the Einstein equations.
Before writing down these explicitly, we need to elaborate further about vectorial perturbations and
the construction of gauge invariant quantities involving the perturbations. This will allow us to write
out the Einstein equations for the perturbations in a compact way.

We parametrize our vectorial perturbation as [66]

6gab = 0, 6ga; = 7faVs, 6gi; = 2r*HyVy;,
0Fay = 0, 0Fui= D, AV;, 0F; = A(DN; — DV,), (4.15)
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4. Linear Perturbations and Quasinormal Modes

where f,, Hr, A, are functions of (¢,r). The transverse vector harmonics V; can be described in terms
of scalar harmonics S as

V; = ¢9D;S, (4.16)
satisfying the following properties,
(D;D7 + k2)V; = 0, (4.17)
DV; = 0, (4.18)
Vi = —klvf)(ivj), (4.19)

where k¥ = ((¢ + 1) — 1, with ¢ an integer greater or equal to 1. These expressions are convenient in
the context of the disentangling process. They allow for factoring out the angular (¢, ¢) dependence
of the equations of motion for the linear perturbations. Thus, from now on, we focus only on the (¢,7)
dependence of these equations of motion. We could also Fourier transform the perturbations by now,
i.e., use (4.11). However, we prefer to refrain from doing this until the quasinormal modes analysis.
Thus, we are keeping the ¢ dependence on the functions parametrizing the perturbations.

The wave equations for the linear perturbations should capture only the relevant/physical degrees
of freedom. Therefore, we would like to rewrite the equations of motion for the linear perturbations
using gauge invariant quantities. This step is part of the disentangling process. We perform this step
systematically by studying the diffeomorphisms at the level of the linear perturbations. For ég,,,, we
have [67]

69;“/ — 59;”/ - £§g,u1/ = 59;“/ - vzgfl/ - Vgg@u (4.20)

where the superscript “bg” stands for background, ¢, is an arbitrary vector field, and Vzg is the covari-
ant derivative acting in the background four-dimensional spacetime. This implies that [67]

0gab — O9ab — Da&p — Dp&a, (4.21)
590,1' — 5gai - TzDa (%) - Digaa
T

8gij — 0gij — Di&j — Dj& — 2rD r&uyij.

From (4.21), we can construct gauge invariant quantities. Let us see how. Just as we did in (4.4) and
(4.7), we expand the vector field &, as [68]

€y = £,Sdx? + (£DV; + B D;S)da?, (4.22)

where &,, ¢, ¢ are functions of 2. The expansion (4.22) allow us to separate in scalar and
vector sectors the equations (4.21). Since we are studying vectorial perturbations, we parametrize &,
as [67]

5((15') =0, S(T) —_ TL(t,T), S(L) =0, (4.23)
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where L(t,r) is an arbitrary function. Using the expression above in the second and third equation of
(4.21) we obtain

fo — fa—1Dq (L(i’ T)> , (4.24)
Hy — HT+k7VL(t,r), (4.25)

from which we can construct the gauge invariant [67],

F,= fo+rD, (HT) . (4.26)
ky

This gauge invariant will help to disentangle the equations of motion for the vector perturbations. For
a vector perturbation, the A perturbation potential in (4.15) is already a gauge invariant®. The last
can be confirmed by following the same steps as in the metric perturbation case.

Using the parametrization (4.15) and the gauge invariants F, and A, we can finally write down
the Einstein equations for the vectorial perturbations [66],

D, <r3F<1>)—mvreabF” — 4Pyt (4.27)
kyDo(rF%) = 0, (4.28)

where my = k¥ — 1, and we have defined the (gauge invariant) F,-derived quantity

F
FO) = ¢rp, (b) : (4.29)
r
with r7, = —%eabDbA. Of course, with the set of Einstein equations, an energy-momentum conserva-
tion law comes along,
Dy (r37%) = 0. (4.30)

We rewrite now the Maxwell equations (4.13) and (4.14) for the vectorial perturbations case, using
(4.15) and the gauge invariants F;, and .A. Only (4.14) is non-trivial in this case,

2
by 1, _Q p), (4.31)

DDA — 72 T2

Now we are all set to disentangle the equations of motions for the perturbations. Using the energy-
momentum tensor conservation law (4.30) together with (4.28), we can build up a potential quantity
Q) that encodes both expressions, given that

8
D, <7~F“ — 7«37‘1) =0, (4.32)
my
which in turn implies
8
rF— —371% = ¢ DyQ, (4.33)
my

31f the perturbation were scalar, this would not be the case, and another gauge invariant quantity needs to be built.
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4. Linear Perturbations and Quasinormal Modes

The chosen pre-factor 8/my is just convenient for the calculation. Inserting this equation into (4.27),
we obtain

1 4
2D, | =D | — Ve - ——— 12D, (rmy). (4.34)
72 r2 my

Defining another potential O,

0=Q- &A, (4.35)
my
we can write (4.34) as
r’D, (:QD“@) - o= i—?A. (4.36)

Now we turn to the Maxwell equation (4.31). Using the last equation (4.36) and rewriting F'® in the
new potential O defined in (4.35),

rF = ¢®DyO, (4.37)
(4.31) can be written as
1 40Q?
DDA - — (/ﬁv +1+ %) A=YV (4.38)
r r r

We have disentangled all the equations of motion for the perturbations to two coupled wave equations,

1
2D, <29a9> - e - 2,4, (4.39)
r r T
1 4Q*
DDA - — (k?v +1+ Q2> A = Qv (4.40)
T r T
These wave equations can be decoupled. Define
Dy =asr 'O +biA, (4.41)
with
ay = @my , a_ =1, (4.42)
3M + /IM? + 4my Q2
4
b = ¢ (4.43)

- 5 b+ - 1
3M +\/9M2 + 4my Q2

Replacing © and A in terms of &, and further replacing in (4.39), we obtain two decoupled wave
equations,

1
DoD"® — ?vf[v)q)i =0, (4.44)
with
4Q% 1
v =1 (k% R IO 4va2>> . (4.45)
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The superscript (V') denotes the fact that this is the potential for vectorial perturbations. In the case
of tensor and scalar perturbations on a Reissner-Nordstrom background — tensor perturbations are
non-trivial for higher dimensions —, the equations of motion for the linear perturbations can also be
disentangled to wave equations [66].

The decoupling (4.41) is not necessarily possible for every system: we will see in chapter 5 that in
the static subtracted geometry case this is not possible. We will have to be content with studying the
coupled wave equations that describe the perturbations.

Quasinormal Modes

Let us now study further (4.44). This equation can be written as
tt 52 rr 1 (V)
(9"0; +0rg"" 0r)Px — }V:I: ®, = 0. (4.46)

We apply (4.11) in order to Fourier transform this equation into

FUFRL) + (w2 — Vo, = 0. (4.47)

This equation can be recast in a different way that is useful to examine its boundary conditions. For
this purpose, we define “tortoise coordinates,”

dry 1
=7 .48
dr [’ (4.48)
where
Thorizon = T« —> —00, Too = T'x — OQ. (4.49)
In these coordinates, (4.47) transforms to a Schrodinger equation,
d2
2%t (@2~ VD, =0. (4.50)

Now, as already mentioned in chapter 2, to study the quasinormal modes of (4.47), or (4.50), we need
to set suitable boundary conditions. Notice that these wave equations encode more physics than the
quasinormal modes. For example, studying the expectation value of the O operator defined by (4.50)
as

2
O(I)j:E <— d

pi Vi(v)) O = WPy, (4.51)

tells us about the stability of the black hole. If always non-negative, then its eigenvalues w? are non-
negative as well, implying that the perturbations do not grow exponentially in time. If this is the case,
we can state that the black hole is perturbatively stable [66].

Let us go back to the discussion on the boundary conditions for quasinormal modes. The boundary

conditions at the horizon of the black hole are virtually the same for every background, yet some sub-
tleties are found regarding the asymptotic boundary conditions [38, 39]. We elaborate on this now.
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4. Linear Perturbations and Quasinormal Modes

As nothing should (classically) leave the horizon, we assume that at the horizon there are no out-
going modes. These are ingoing boundary conditions, and they characterize the existence of a horizon.
On the other hand, when imposing asymptotic boundary conditions at spatial infinity, the discussion is
a bit more subtle: in an astrophysical setting, namely four-dimensional asymptotically flat black holes,
it makes sense to choose outgoing boundary conditions. These boundary conditions mean that there are
not ingoing modes from infinity that might be regarded as unphysical. However, if we are interested
in holography, we might want to set other boundary conditions at spatial infinity. For example, for an
asymptotically AdS spacetime, it suits better to impose regularity on the fields at infinity — effectively
Dirichlet boundary conditions. We come back to this point in a few more paragraphs.

We apply now the above discussion on boundary conditions to our Reissner-Nordstrom black hole
study case. Inspecting equation (4.45) and (4.50), we see that the potential Vi(v) behavior at the
horizon and spatial infinity is

v ~o, (4.52)

so both at the horizon and spatial infinity we expect the solution to behave as & ~ e~™(+7+) [38],
Ingoing boundary conditions at the horizon and outgoing boundary conditions at spatial infinity ex-
plicitly means

D Horizon ~ € W) @y o~ eI, (4.53)

By solving the problem with these boundary conditions, we obtain the quasinormal frequencies. The
quasinormal frequencies will be complex, and they depend on the mass M, the charge (), the harmonic
angular index ¢, and the overtone* n. Unfortunately, for the Reissner-Nordstrom case solving for the
quasinormal frequencies is not straightforward. It is technically challenging, and usually approxima-
tions or numerical techniques are needed® — see [70, 71, 72, 73, 74, 75, 76, 77] for studies related to
numerical and approximate analytical values for Reisner-Nordstrom quasinormal modes.

Let us come back to the boundary conditions for spatial infinity, specifically for asymptotically AdS
background spacetimes. For exemplifying this point, we switch to a four-dimensional Schwarzschild-
AdS black hole,

ds? = —fdt*> + f~rdr? 4+ r2dQ?, (4.54)
2 2M
= 1 —_——
! tmT o

where L is the AdS curvature radius. For a massless scalar perturbation ®, the wave equation can be
written as [38]

RL 9
—drz + (W =V)® =0, (4.55)
with
(e+1) 2M 2
V=Ff ( R L2>' (4.56)

“The overtone n measures how damped the mode is. As n increases, the mode gets more damped.
>An analytic example of the obtention of the quasinormal frequencies can be found in section 5.4.1, where we analize a
minimally coupled scalar on a subtracted geometry background.
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In this case, the solution at spatial infinity » — oo will be [38]

A
® ~ = + Br, (4.57)
T

with A, B constant. In contrast with the asymptotically flat case, where outgoing boundary conditions
are the most reasonable choice, in asymptotically anti-de Sitter space is not obvious which boundary
conditions fit for our purposes — see section 3.1 of [38] and references therein. In our work with sub-
tracted geometries, we take Dirichlet boundary conditions. This means that ® takes a finite value at
the boundary of AdS, so B = 0 in (4.57). Even though subtracted geometries are not asymptotically
AdS - they are asymptotically conical —, they still show qualitatively the same confining properties of
AdS, as we already discussed in section 3. Moreover, recall that we want to compare the quasinormal
modes spectrum of the subtracted geometries with the BTZ black hole spectrum. The BTZ is asymptot-
ically AdS, and its quasinormal spectrum was obtained using Dirichlet boundary conditions at spatial
infinity [45]. In short: using the BTZ as a benchmark for the analysis of the subtracted geometry quasi-
normal spectrum only make sense when both spectra are derived with equivalent boundary conditions.
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Chapter 5

The Spectrum of Static Subtracted
Geometries

This chapter is based on [1].

Subtracted geometries are black hole solutions of the four dimensional STU model with rather
interesting ties to asymptotically flat black holes. A peculiar feature is that the solutions to the Klein-
Gordon equation on this subtracted background can be organized according to representations of the
conformal group SO(2,2). We test if this behavior persists for the linearized fluctuations of gravita-
tional and matter fields on static, electrically charged backgrounds of this kind. We find that there
is a subsector of the modes that do display conformal symmetry, while some modes do not. We also
discuss two different effective actions that describe these subtracted geometries and how the spectrum
of quasinormal modes is dramatically different depending upon the action used.

5.1 Introduction

Our understanding of microscopic properties of extremal and supersymmetric black holes are far supe-
rior to our understanding of their non-extremal counterparts. The advantage of the extremal solution
is that we can decouple the near horizon geometry [78, 79, 80], i.e. we can place an extremal black
hole in a box. This box not only isolates the horizon, but it as well enhances the symmetries of the
geometry suggesting a dual description in terms of a CFT;. This is the core of the Kerr/CFT correspon-
dence [18], which is a proposal for the microscopic dual of the extreme Kerr solution.

Stretching the proposal of Kerr/CFT a step further, it is tempting to think of the non-extremal black
hole as a finite temperature excitation of the CFT describing the extremal solution. In an attempt to
realize this idea, it was noticed in [27] that, at low frequencies, linearized fluctuations around the Kerr
black hole display a hidden conformal symmetry. More concretely, the solutions to the wave equation
organize themselves in representations of the SO(2,2) group in the same fashion as the three dimen-
sional BTZ black hole [55, 81]. Despite the fact that the symmetry is only manifest in a low energy
limit, it was robust enough to express the Bekenstein-Hawking entropy of the Kerr solution as the sta-
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5. The Spectrum of Static Subtracted Geometries

tistical entropy of a CFTs at high temperature [27, 82, 83, 84]. That is, one could express universally
the area law as a Cardy formula, giving support to the Kerr/CFT proposal.

The drawback of this proposal is that the conformal features of the fluctuations is too fragile: as
we move away from the low energy regime there is very little evidence that exploiting the SO(2,2)
symmetry is the correct way to describe the black hole [85]. A rather interesting way to overcome this
obstacle was proposed in [28, 29]. The authors there suggested a concrete way to put a non-extremal
black hole in a box. Remarkably, this idea realizes the hidden conformal symmetry in [27] for probe
scalars without relying on a low frequency limit. The important feature of this box is that it doesn’t
tamper with the horizon of the original configuration: this suggests that the microscopic model that
accounts for the entropy is unchanged after placing the box.

The solutions in [28, 29] are known as subtracted geometries: the box is constructed by subtract-
ing certain metric factors from the asymptotically flat black hole solution. We recall now some points
discussed in chapter 3. The subtracted geometry is a solution to A/ = 2 supergravity, and this allows
to build these geometries in a variety of ways. For instance, they can be obtained by using solution
generating techniques [31, 32, 30] or scaling limits [46]. It is possible as well to build interpolating
solutions between the asymptotically flat black hole and the subtracted one [47]. Various properties
of the subtracted geometries have been analysed in the literature. For instance, the thermodynami-
cal properties of the solutions [49, 51] and holographic renormalization [51] have been worked out.
In addition, the behaviour of minimally coupled scalars on this background has been considered in
[48, 50]. See as well [52, 53] for a discussion on the attractor mechanism for subtracted geometries.

Our goal here is to understand dynamical properties of static subtracted geometries. In particular,
we will study linearized fluctuations of the gravitational and matter modes that support the subtracted
black hole. Along the way, we will report the scaling dimensions of the fluctuations and their quasinor-
mal frequencies. The general subtracted geometry can carry angular momentum, electric and magnetic
charges, in addition to mass. We will not include angular momentum in the backgrounds considered
here: cases that are only electrically charged will have enough structure to illustrate intricate proper-
ties of the fluctuations. Nevertheless, it would be interesting to add rotation and see which features
we find here persist.

These fluctuations will test if the hidden conformal symmetry persists for perturbations that are not
necessarily minimally coupled. Unfortunately, we will see that this symmetry is only present in certain
sectors. More broadly, a complete understanding of the fluctuations can provide useful information
about a potential holographic dual. Given that our analysis can be performed analytically to a large
extent, it would be very interesting to understand properties of the dual theory. One reason to do so is
that some features of the subtracted geometries are also present in other holographic setups, such as
those in Schrodinger spacetimes with z = 2 [86] and hyperscaling violating solutions [87]. Here we
will only present the bulk analysis of the fluctuations and highlight certain features of the fluctuations;
we leave a more holographic analysis for future work.
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5.1. Introduction

5.1.1 Summary of results

The main portion of our work involves rather technical analysis of linearized fluctuations. Here we will
summarize the key points of our method and highlights of our results. We will also comment briefly
on future directions.

We will build the linearized fluctuations around static subtracted geometries; these geometries are
described in Section 5.2. To construct the master fields and their equations we will use the technique
— discussed previously in chapter 4) — developed by Kodama-Ishibashi [88, 66]; this analysis is done
in Section 5.4. The strength of this method is that it exploits in a clever manner gauge invariance and
isometries to get decoupled ODEs for the physical modes. The drawback is that spherical symmetry is
crucial: for this reason we will only analyze static solutions that carry only electric charge. The modes
will be decomposed in vector and scalar modes with respect to spherical harmonic decomposition. Our
emphasis will be on finding solutions to the master field equations and the QNM frequencies.

We will work with two different actions that contain a static subtracted geometry as a solution: the
STU model and an Einstein-Maxwell-Dilaton (EMD) model. At the level of matter fields, the difference
between the two theories is that STU contains an axion field, y, whereas EMD does not. Throughout
our analysis we will compare the results for each theory: even though they are very closely related at
the level of the action, the structure of the fluctuations will be rather different.

The quick summary of our results is:

Vector Sector. Here is where we find the most striking difference between the STU model and EMD.
Due to a constraint arising from the equation of motion for the axion field, the STU model has
no vector excitations. On the other hand, for EMD this sector is non-trivial and the coupled
set of ODEs is given in (5.38). We have solved for the quasinormal frequencies of this system
numerically and the results are in Fig. 5.1. The frequencies have both a real and imaginary part.

Scalar Sector. For the STU model we can consistently take 6x = 0; here both the STU and EMD model
will give the same results. When dx = 0 there are eight non-trivial branches of solutions for the
modes. For four of these branches the solutions are hypergeometric functions and hence the
quasinormal frequencies are integer spaced (and purely imaginary); see (5.74) and (5.76). For
the other four branches, the modes are Heun functions, but rather surprisingly the quasinormal
frequencies are still integer spaced and purely imaginary (5.85). For dx # 0, which only applies
for the STU model, the modes are again Heun functions. However the quasinormal modes are
not integer spaced; see Fig. 5.2.

It is important to emphasize that for one scalar subsector the fluctuations are appropriately weighted
hypergeometric functions: this indicates that SO(2, 2) is the natural symmetry to organize this portion
of the spectrum. Since the geometries in consideration have no obvious conformal isometries, it is
highly non-trivial that this is occurring. However, there are modes that deviate significantly from this
conformal pattern: the solutions in this case are Heun functions instead of hypergeometric functions.
We don’t have an alternative holographic interpretation of this sector at the moment; we just know it
does not smell like a CFT and it does not mimic the fluctuations of BTZ black hole [45] in the way it
does for minimally coupled scalars. It would be interesting to study further what are the basic features
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5. The Spectrum of Static Subtracted Geometries

of the dual theory based on our results and complement them with the analysis in [89]. In partic-
ular, some of the non-conformal modes are in the gravitational sector and they would contribute to
the energy-density correlation functions. It would be interesting to analysis two-point functions of the
stress tensor on this background.

It is possible to uplift a subtracted geometry from four to five dimensions. Rather interestingly, in
five dimension the solution is locally AdSs x S? [29]. This suggests that the modes should be organized
using the conformal symmetry of AdSs, but we do not find evidence of this from the four dimensional
point of view. However the uplift is done in the magnetic frame, whereas we are always working in
the electric frame, and this might obscure certain properties. For instance, there could be a non-trivial
arrangement of the couplings as we uplift that restores the conformal features in the five dimensional
geometry, but this is highly speculative. In this work we only discuss four dimensional properties of
the solution.

5.2 The theory and the solution

In this section we will lay down the main features of the theory we will analyze, and more importantly,
the solutions we will focus on. Our conventions mostly follow those in [47, 51]. Our theory will be a
truncation of the STU model [90, 91], for which the matter content involves two gauge fields, a scalar
and axion field. The action for this truncation is

_ 4 35 pgiy — Doy ~ gy _ L o—3n([F0)2
1_167TG/d x\/§<R— 2(%778 n=ge Oux0 X = z¢ (F7)
3 e

- 2 12012 X oo T 2 —2m\ 0

O3+ e PEO A F] ) | (5.1

This is known as the electric frame action; equations of motion and some conventions are presented in
Appendix 5.A.1. The most commonly known version of this model is usually written in the magnetic
frame, in which it reads

1 3 3 1 3
I T /d4x\/§<R - 5(9#778“77 - 562"8@(8")( - 16_377(F0)2 - Ze_”(F + x?FY)?

+3xFAF+3*FAF+3FO A F0> . (5.2)
The relation between both of them is given by
1 - -
Fu = —(4)(2 + 6_277)_1 (28#,,pge_77(F — XQFO)”” +2x Fl, + X(2X2 + 6_2")F£V> ) (5.3)

Here we will mostly use the electric frame: the reason simply being that the matter content will
respect the spherical symmetry of the background solutions we will consider — in the magnetic frame,
the background gauge field (5.13) explicitly breaks this symmetry with its cos § dependence.

The backgrounds that we will present below will all have x = 0. This is not a consistent truncation
of the STU model (in either frame), since setting y = 0 in the equation of motion gives a constraint
between the remaining fields:

FANF—e®FOANF=0. (5.4
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5.3. Static Subtracted Geometries

However, it is interesting to note that for configurations with x = 0, the equations of motion for the
remaining fields can be obtained from the following action

n
v o 0 i 2
Ieg = e / N {R 8,m8 (F N 1 F*| . (5.5)
We will refer to this theory as EMD: Einstein-Maxwell-Dilaton theory. Throughout our analysis, we will
contrast the results obtained from using (5.1) versus (5.5).

5.3 Static Subtracted Geometries

The focus of our work is to study dynamical properties of a specific class of solutions to (5.1): electri-
cally charged black holes which are asymptotically conical. These solutions are known as subtracted
Reissner-Nordstrom (subRN) geometries, since they were first constructed by subtracting certain met-
ric factors from the asymptotically flat Reissner-Nordstrom solution [28, 29]. More generally, these
solutions can be obtained using solution generating techniques [31, 32, 30], scaling limits [46] or
interpolating solutions [47]. In the following we will summarize some basic properties of subRN back-
ground.
The asymptotically flat Reissner-Nordstrom with electric and magnetic sources is given by

VARN p(r)
ds®> = dr? dt? + \/ Agnd3 el =

X \/ARN i po(r)

x = 0, AY = Mdt , A = msinh(20) cos 0d¢ , (5.6)
po(r)
where
AgpN(r) = p(r)?’po(r) , X(r)= r? — 2mr

p(r) =7 +2msinh®s,  po(r) = r + 2msinh? &y . (5.7)

Here m, ¢ and dy are constants. This solution asymptotes to R*>! and has an inner and outer horizon
located at the zeroes of X (r). The conserved charges of this black hole, i.e. mass, electric and magnetic
charge, are

m 3m .

M = E(cosh(%g) +3cosh(20)), Qelec = yTe s1nh(250) Qmag = el sinh(20) . (5.8)

The Hawking temperature reads

1
T = (cosh &g cosh?® §) 71 | (5.9)
8mm
and the entropy is given by
Ay 4mm?

SBH = Sl A cosh &y cosh® § . (5.10)

4G G
A so-called subtracted version of (5.6) is given as follows. In the magnetic frame, the subtracted

solution takes the form

A X
d52 — \/X>d7'2 — ﬁdtQ + V AdQ% s
B2 o 2mB3IIL,.
en:ﬁ, XZO, A :WA dt, A:BCOSQd¢, (5.11)
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with X (r) as in (5.7) and

A(r) = (2m)3(T12 — I12)r + (2m)*112 . (5.12)
The parameters II. ;, m and B are constant. The horizons of this solution are again given by the zeroes
of X (7). Note that this solution, as r — oo, takes the form

d 2
ds? = 7 <52:2 — adt + ezdﬂ%) L A= VenP -1,
B2
eﬁ:W7 y=0, A%=0, A = Bcosfde , (5.13)

which we would identify as a “vacuum solution” to (5.11) and as such it gives a reference point to
quantify observables [51]. This solution has interesting scaling properties, which mimics those in
hyperscaling violating geometries [92, 93]. However, it is a singular solution to the system and hence
it is only used as an asymptotic solution.

As we mentioned above, (5.6) has an intimate relation to (5.11) via solution generating techniques,
scalings, or explicit subtractions. This relates the parameters in the solutions as

II, = sinh 8 sinh®4 , I, = cosh 8y cosh® 4 , B = 2msinh§ . (5.14)

This relation in particular assures that the entropy of both black holes is exactly the same and given
by (5.10). Furthermore, the surface gravities of both black holes are as well the same (provided the
same Killing vector is used for both solutions). However, the subRN solution has its own conserved
charges: using canonical definitions within the framework of holographic renormalization, the physical
quantities associated to (5.16) are [51]
= i e me= g
For the purpose of studying the fluctuations around subRN, it is more convenient to have a electri-
cally charged solution. The subtracted version of (5.11) in the electric frame is given by

(Hg + Hz) ) Qelec = (515)

/ 2
ds? = TAM - j%dtQ + VA3, el = \l/}
2omB3II I, . . 1
x = 0, A = mA Lat ) A= —E(T — 2m)dt R (5.16)

which is a solution to both (5.1) and (5.5). This will be the solution we will use throughout our
analysis in the following section, and we emphasize that we will not use (5.14): the parameters in
(5.16) should be thought to be independent. Finally, for sake of simplicity, in Section 5.4 we will set
B = 2m. Shifting the value of B can be acomplished by shifting n by a constant and rescaling the field
strengths appropriately, i.e.

n — n+n, F - 67’70/2}?, FO — eBnO/QFO, (5.17)

with 79 constant. This is a symmetry of the equations of motion (for y = 0) and hence qualitative
aspects of our results are not impacted by making the choice B = 2m.

When II; = 0, II. = 1 and B = 2m we obtain a version of subtracted Schwarzschild [94]. The
solution is conformal to AdS, x R? as can be checked explicitly from the above expressions. As we study
the fluctuations we will consider this a limit case, and due to the explicit symmetry of the background
all perturbations can be solved for exactly in terms of Hypergeometric functions. See [95, 96, 97] for
related examples.
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5.4 Linearized fluctuations

In this section we study the linearized fluctuations of the metric and matter fields of subRN in the
electric frame of the STU model and the EMD theory described section 5.2. The background solution
we will always consider is (5.16).

5.4.1 Warm-up: minimally coupled scalars

Before proceeding, it is instructive to review the key property that initially motivated the construction
of the subtracted geometries: the dynamics of a probe scalar field. Prior analysis similar to the one
below are given in [29, 48]. The behavior of this field should be contrasted with the modes in (5.27)
which we will derive in the following section. Consider a massless and neutral scalar field; its Klein

Gordon equation is
1

Oy (V—9g9""0,¥) =0. (5.18)
\/jg M( )
Expanding in eigenmodes and using separability
U(zh) = e ™S(0, $)R(r) , (5.19)
gives that (5.18) reduces to
X’ (04+1)  w?A
"o B _
R+XR—|—< = +X2)R 0. (5.20)

Here primes denote derivatives with respect to r, S are the usual spherical harmonics on S? defined by
(V24 0(0+1)S=0, (5.21)

with V2 the Laplacian on S? and [ € Z*. Introducing

2m w
— o= — 5.22
y r 47T’ ( )

where the Hawking temperature for subRN is given by 7' = (8wmll.) !, we verify that (5.20) depends

on the charges only via
11,

— 2
I, (5.23)

€

and takes the form

@2 _ 62
(y—1)R"+ R + (K(Eyz D (% _li)er 1)> R=0, (5.24)

where primes now denote derivatives with respect to y. The solution to (5.24) can be written in terms
of hypergeometric functions as

R=Ciy"™ (1 —y) @y (0 +1—i(1+€), L +1—io(1—€),—2(,y)
+ Oy (1 —y) 9P (—0 —i(1 + €), —0 —io(1 —€), =20, ) . (5.25)
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Note that the scaling dimensions of the scalar, i.e. the characteristic exponents of the power law
as y — 0, depend on the quantum numbers of the fields. This is very common occurrence in the
near horizon geometries of extremal black holes, and more generally in cases where the metric is
a direct product. It is as well present in geometries with non-trivial scaling properties in the UV,
such as the cases studied in, for example, [98, 99, 87]. This feature is usually interpreted as some
semi-local behavior of the dual theory [100]. We will encounter a similar type of dependence for the
scaling dimensions of all metric and matter fluctuations, and it would be interesting to account for this
holographically.

The quasi-normal modes (QNMs) of the black hole under consideration are solutions to the lin-
earized equations of motion which satisfy regularity at the boundary y = 0 and ingoing boundary
conditions at the horizon y = 1 [101, 38]. The latter condition corresponds to a near horizon be-
haviour of the form R ~ (1 — y)~* times a regular power series in y. These requirements imply that
the QNM frequencies are given by

1
v=———( =0,1,2,... . 5.26
w=-—g - (l+n), n=012 (5.26)
From the structure of the background metric (5.16), it is very surprising that the Klein-Gordon
equations for a massless field has such a simple solution. One of our goals is to investigate if the
coupled metric and matter fluctuations have a similar behavior, and hence which lessons can we draw
from a potential holographic dual.

5.4.2 Master equations for gravitational fluctuations

Our starting point is to decompose the fields as
guuzguu+5guua Au:Au"’_éAua A2:A2+5A27 77:77+6777 X:X"i_éX? (5.27)

where the barred variables correspond to the background values in (5.16) and the pieces proportional
to ¢ are the fluctuations. The dynamics of these modes are, as expected from the couplings in either
(5.1) or (5.5), a non-trivial coupled system of ODEs. To attack this hurdle we will build master
equations by following the techniques described in section 4 and originally constructed in [88, 66]. In
a nutshell, this approach gives a elegant and pragmatic approach to build master field equations for
gauge invariant variables by exploiting the spherical symmetries of the systems.

Just as we saw in chapter 4, we will decompose further our fluctuations into scalar and vector
modes of S?, i.e.

Sgu = BY) + 1) . 64, =AY + A 540 = ANY) 4 ADS) (5.28)

which can be discussed separately. The fluctuations of the dilaton n and axion x are all in the scalar
sector. Note that there are no tensor perturbations, we cannot build such structures on S2. We will as
well choose a radial gauge for which

6gur =0, §A, =0, 6A2=0. (5.29)

This condition does not fully fix the gauge. As we build the master equations, we will build combina-
tions that are invariant under residual diffeomorphisms and U(1) gauge transformations.
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Vector modes

We recall the discussion of chapter 4 on vector modes: these are perturbations of the form
0gab =0,  8gai =e “f)(r)V; 8gij = e HY) (r)Vy; (5.30)

6A, =0, 0A; = e “la(r)Vy 6A2 =0, §A? = e ™ip(r)V; (5.31)

where (a,b) = (t,r) and (4, j) = (6, ¢) and we decomposed the fluctuations in frequency eigenmodes;
note that there are no fluctuations for the dilaton and axion in this sector. Here V; are vector harmonics
on S?, which can be simply taken to be V; = ¢ ﬁjS with S being the standard spherical harmonics and
€, Ej are the Levi-Civita tensor and the covariant derivative on the 2-sphere. Note that they satisfy

(V24+E )WV, =0, Div;=0, (5.32)

where k% = ¢(¢ + 1) — 1, with ¢ an integer greater or equal to 1. As explained in [88, 66], modes
with ¢ = 1 correspond to pure diffeo modes, so we consider ¢ > 2 only. The V;; are define via the

symmetrized derivative

1 - .

Choosing the standard coordinates on the sphere d?> = d#? + sin? d¢?, these are given by

V@ = CsC (96¢S y V¢ = —sin 98@8 s

Voo = CSCG(COt 0 — 89)8¢S ,
ky
Vgp = —L(CSC 983, + cos 00y — sin 093)S ,
2ky
1
V¢¢ = —kf(COS 9 — sin 98@)8¢S . (5.34)
|4

The diffeomorphisms that preserve the form of the ansatz in the vector sector are generated by the
vector field

v = e VAV, . (5.35)
This generates the pure gauge mode
fi = —iwVA | HY) = 2k VA a(r) =b(r)=0. (5.36)

Moreover, it is clear that a(r) and b(r) are invariant under the U(1) gauge transformations associated
to the gauge fields. Based on this, and just as in section 4, the gauge invariant combinations of the
fluctuations we will use are a(r), b(r) in (5.31), in addition to W defined by

X A
W(r) = CTTNTE ((H ) - S H > : (5.37)

where prime denotes derivative with respect to r. The remaining component of the metric pertur-
bation, f;, can be written in terms of W using the equations of motion. At the linearized level, the
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5. The Spectrum of Static Subtracted Geometries

Einstein equations and the Maxwell equations for both gauge fields gives the following system of cou-
pled equations

/ ! _ 1.2 2
}W+<X_A>Wq(11W+WA)W+%%+%MJ%:Q

X A X X2 X X

/ / k}2 4 2 k‘Z—l
a”+<§—i>a’+<—("; )+“;(2A>a—(2"X)W—H§Lb_O,

m

A X! A1 2m)°TI2112

M+<A*TX>H+(%@'ﬂX(H%%+(mgfrﬂ)b
3(2m)°II I (2m) ILII, (1 — k)

_ AT 0 + A2 W=0. (5.38)

These equations are valid for both the STU model in (5.1), and the effective action in (5.5). However,
in the STU model we need as well to take into account the constraint (5.4), which comes from the
equation of motion of the axion field. This constraint gives

/ilé b+ (Ag/ — 26277/:1;) a=0. (5.39)
Solving for this constraint and replacing in (5.38), it simple to see that the only possible solution is
a(r) =b(r)=W(r)=0. (5.40)

Hence, all vector fluctuations in the STU model are trivial.
However, if subRN is viewed as a background solution to (5.5), we don’t have additional constraints
and the task ahead is to solve (5.38). Performing the redefinitions (5.22) in addition to

1 - 1
a=—a(r), b=

o 5mII2 b(r), (5.41)

the vector equations (5.38) read

y (y262 — 2y (62 -1)+ — 1) , k2 —1 2 ((y— 1)e? + 1)
W)+< (y=Dy((y—1e* +1) )ML+(@—1M2+ (y—1)% >>v

a=0, (5.42)

+2€ l;+23
v(I-y) vy (1-y)

o (e (@ -1 +e 1)) R (VRS GRS VA
+< (v =Dy ((y—1e* +1) ) ’*(@1w2+ (y—1)%
(1—k¢) ¢

_F@—lwﬁw+(y—Dﬁ

21 ((y2 — 1) € + 1) 7 3e a e(l - k\Z/)
b +<( >b+ +< >W

y—Dy((y—1)e2+1) (y—1)((y — 1)e2 + 1) (y—1)((y — 1)e2 + 1)
N I{:‘z, ((y — 1)62 + 1)2 + (y2 + 2y — 2) €2+ (y — 1)264 +1 @2 ((y — 1)62 + 1)
(y — D2 ((y — ez + 1) (y—1)%

b=0, (5.43)

) =0. (5.44)
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5.4. Linearized fluctuations

The near boundary analysis of (5.42)-(5.44) reveals that the characteristic behaviours near y = 0 are
of the form y*v with

_ 3 2 1 2 12 2
AV_{i<2+kViQMh%+mh> RESVOEE - (5.45)

For € = 0, it is possible to decouple (5.42)-(5.44) and the resulting equations can be solved analyti-
cally in terms of hypergeometric functions. Imposing regularity at the boundary and ingoing boundary
conditions at the horizon, we find that the spectrum is given by

©=—i(A} +n), n=0,1,2,..., (5.46)

where A‘J; are the three positive scaling dimensions in (5.45).

For € # 0, it is not clear how to further decouple (5.42)-(5.44) while keeping the system of sec-
ond order. Nevertheless, it is rather straightforward to solve the system numerically, and in particular
to find its QNMs. We do so by discretizing the system of equations and solving the resulting matrix
eigenvalue problem numerically. We present our results in Fig. 5.1. Note that some of the frequencies
acquire a non-zero real part as we increase e, manifestly departing from the structure found in the
Klein-Gordon equation in section 5.4.1. If the system has a hidden conformal symmetry, the quasinor-
mal frequencies here should be compared with those in for BTZ black holes [45]: there the frequencies
are always interger spaced and purely imaginary. This is not the feature we find here.

24+

-26+

i

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
Re W

Figure 5.1: Snapshots of the lowest vector QNM in the complex plane for e = 0.01,...,0.08. Different colors correspond
to different values of e. The red crosses correspond to the analytical values in (5.46), @ = {1.49265,2.49265,2.64575}. The
first and third QNM remain on the imaginary axis, moving away from each other. The second QNM moves onto the complex
plane.

This sharp discrepancy between the two actions in considerations is very interesting: the STU model
still supports the conjecture that there is a hidden conformal symmetry in the subRN solution, whereas
a different effective action, such as (5.5), shows that the quasinormal mode spectrum of subRN in the
vector sector does not fit with a conformal description.
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5. The Spectrum of Static Subtracted Geometries

Scalar modes

We now move on to studying the scalar modes, which are much more intricate. In this case we have
for the metric fluctuations

Sgab = € “'hapS . Ogai = e (S, gy = e HHY (1S + HP (r)0yS), (5.47)
for the gauge fields we take
64y = e “au(r)S, 6A; =e “ag(r)S;, OA) =e “ba(r)S, 0A) = hy(r)S;,  (5.48)
and for the dilaton and axion we have
sel = e Wl (r)S ox = e “lsy(r)S . (5.49)

As before, we have (a,b) = (t,r) and (¢,j) = (0, ¢) and we will use the radial gauge (5.29). Here, S
are vector harmonics on 52, satisfying

(V2+E3)s=0, (5.50)
with k% = ¢(¢ + 1) and
AP 1
S, =——D,S, S;i = fDiDjS + —aijS . (5.51)
Here o;; is the metric on S2. The eigenvalue equation (5.50) implies that / is a non-negative integer.

However, modes with £ = 0, 1, are trivial [88, 66] so we focus on ¢ > 2. The diffeomorphism that
preserves the form of the ansatz in the scalar sector can be written as

€ = e WIATY2(c,0 X0, + c50AS' ;) (5.52)
where ¢y and cg are arbitrary constants. This generates the diffeomorphic mode
hi = —2ct0inA_1/2 , t(S) = —ctgkXA_1/2 — csoiwA1/2 , (5.53)
HY) = —2c50k A2 | H) = ook A2 | (5.54)
a; = ctoiw;lt , ag = ctokf:lt , b= ctoiwfl? , by = Ctok‘/i? , (5.55)
s1=0, s2=0, (5.56)

In addition, we record the linearized field strengths since they are invariant under the U(1) gauge
transformations

OF,., = e_i“’ta;S, SF.; = e_i“’ta’QSi , SF),; = e_i“’t(k:at —iwag)S; , (5.57)
SFY = e ™S | SFY = e ™S, | SF) = e (kby — iwbg)S; . (5.58)

It should be noted, however, that expressions (5.57) and (5.58) are not invariant under diffeomor-
phisms. We shall take this into account when constructing our gauge invariant variables.

As we saw in the vector modes, the equation of motion for the axion field played a crucial role: it
is a constraint that forced the dynamics of all fluctuations to be trivial. However, for the scalar modes
its role is a bit different. This equation gives a quadratic equation for §y which reads

/ / 2 2 4
sg+(i+§>sg+(°‘;ﬁg+%m+4)32=o. (5.59)
Note that there is no source from other fluctuations in the scalar modes, the equation for Jx nicely
decouples. This gives us two possible routes: we can either set x = 0 and solve for the remaining
modes or consider non-trivial solutions to (5.59). In the following we will consider both cases.
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5.4. Linearized fluctuations

Scalar modes with §y = 0

Let us study first the scalar modes with 6y = 0. We again closely follow [88, 66] and write the
fluctuation equations in terms of gauge invariant quantities. We obtain four gauge invariant variables,
each representing the degrees of freedom of the metric, the scalar and each of the gauge fields. We
denote the fields as ® for the metric, S, for the scalar, and A, A for the gauge fields. Their expressions
in terms of the basic fields are

X ’(S) 4/A (S) X’ VA XA (S)
> = -— H 2— —————— | H 5.60
hsova Pt T\ gzya T A T agae ) U (560)
. ( X XA >
ksw\/Z QkSwA3/2 ’
(S) (5) /
H H
A= s M My VA e (5.61)
2ksm  2kgmvVA  dkgmvA  4ksmX kg
A%, 48mTI I A 16m* I ILA ) SmILILVA A
AO = bt+ S1 — L h‘tta
ks * ks(IIZ —1I3) ks(II2 — II2)VA ks (I — II3) X
+ ar(r) fi + ao(r)HY + ag(r) HYD + g (r) HS) (5.62)
B 3 , 3X3/2A72 (S) 3X3/2A3 (8)
S = §k55\/§A Sl—W T +W T (563)

where the expressions for the coefficients «;(r) can be found in Appendix 5.A.2.

As above we redefine the fields, the radial variable and the frequency such that the equations of
motion only depend on ¢ = 11, /TI, and @ = w/ (47 T), and the radial coordinate y = 2m/r. This can be
achieved by the redefinitions (5.22) alongside with

i i 8172 & 5772 7 (2m)?
A=A, Ap = (2m)°1IIZ A , S = (2m)°IIZS b= ’ . (5.64)
The equations of motion then read
A"+ clA,(y)/l' +c1a(y) A+ e 5 ()@ + 15 (V)P + e 5(y)S + C1 i, (y)Ag =0, (5.65)
A+ ¢4 () A + €54, () Ao + €251 + 05 (1) + (1) S + ¢, 4 (1) A =0, (5.66)
O+ ey (1) + €35 (W) + c35(1)S + e 1) A+ ey 4, () Ao =0, (5.67)
S"+ 645”(3/)5/ + C4§(y)5 + C4<i>(y)¢' + Cyr (y)(I)’ + C4A(y)-'4 + C4A/(y)-’4/
+C4A6(y)A6 + 44, (y)Ao =0 (5.68)

The coefficients are complicated functions of y, ¢, e and @, and are given in Appendix 5.A.2. It is worth
mentioning that the frequency dependence occurs only through &?, so the equations of motion we
have obtained can be thought to be of second order in time, as in [88, 66]. Note that the scalar sector
is characterized by 8 degrees of freedom, corresponding to the 8 integration constants that the general
solution of (5.65)-(5.68) must have.

Rather surprisingly, the system (5.65)-(5.68) can be decoupled and its physical properties can be
studied analytically. In order to do so, we begin by noting that we can decouple a fourth order equation
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5. The Spectrum of Static Subtracted Geometries

for A. To obtain this equation, we take a linear combination of (5.65)-(5.68) along with up to two
derivatives of (5.65) and (5.67). Choosing the coefficients of this linear combination properly, we

arrive at .

d .
> bi(y) - Aly) =0, (5.69)
i=0 dy’
where
by=1, b3:4<1+1>, (5.70)
y y—1
2((y — 1)e(L+1 Ty —6 02 (2(y — 1)e® + 2
= 2= DU+ +y(Ty=6) | & =D +2). 5.71)
(y—1)%y (y—1)%y
202y + 02 +10) @ ((4dy —2)e? +2
1:(y 22) ((3/ )22 )’ (5.72)
(y—1)%y (y—1)%y
(U e +1)° 6l +1) (2 +0-2)
’ (y — D*y? (y—1)%y*
O ((y—1)2€ (y+2 (2 +L0+1)) +2yl? + 2yl + 3y — 20?2 — 20 — 2)
3 . (5.73)
(y—1)%y
The four independent solutions of this equation are of the form
A=y2a(1—y) @oR(A; —id(1+e) Ay —id(1—€),2A 4,y), (5.74)
where
Aj={2+661—0,-1-1}. (5.75)
The associated QNM are then easily found to be
wy = —1i6(£+n), w3 1i€(€—|—2+n), n=0,1,2,... . (5.76)

The labels (0) and (2) in these quantities denote the offsets of 0 and 2 with respect to ¢ that these modes
have, respectively. Expressions (5.76) are as well valid at ¢ = 0. Once a solution of A is given, the
remaining profiles can be found by plugging the solution back into (5.65)-(5.68). While for general
parameters this task can be cumbersome, it is straightforward once we set the frequencies to their
QNM values (5.76), since then the hypergeometrics reduce to polynomials.

The remaining four degrees of freedom can be isolated by noting that setting A = 0 we obtain a
consistent set of equations for ®, S, and Ay. To see this, we set A = 0, and eliminate S algebraically
from (5.65). By doing so, (5.66) and (5.67) become two coupled second order equations for & and
Ay, while (5.68) yields a third order equation for & which does not provide independent information.
The second order equations can be in fact decoupled introducing the fields V, via

S=a0()(V-+Vy),  Ai=a (V- +oay )V, (5.77)

42 (- 1DE+ 1)+ 40 ((y — DE+ 1) + (2 — 1) ((y — 1)% — 1)
- y((y—1e+1) ;
e (y—1)S +6) + (2 -1)

ayt(y) = " , (5.79)

ao(y) (5.78)
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5.4. Linearized fluctuations

with

2
-1
OGS
€

(1+e(20+1)). (5.80)
The decoupled equations of motion for V. adopt the form

9 Pi(y) n 1+ (y—1)e?)w?
Q+(y)? y(y —1)

(y—VI+Vi+ |y Vi=0, (5.81)

where
Qi= 204+ 1)y —1)+(20+1)* ey, (5.82)

and

Pr=c'(20+1)%(y — 1)UL+ 1)(y —1) — y)
+ 20+ Dy + 1) (1 —y) —y +2)
+ @ (P 40+ 1) y> +20(0 + 1)(20 + 1)%y — 20(¢ + 1)(2¢ + 1)?)
Fe20+ D)y20(l+1) —y+2)+ L+ 1) (20 +1)* —dy) —y. (5.83)

The two second order decoupled equations (5.81) capture the four degrees of freedom that we were
after. We observe that the fields V. can be mapped into one another by the “charge conjugation”
transformation ¢ — —e. For ¢ = 0, we can easily find the full solution of the system in terms of
hypergeometric functions, and that the spectrum is given by

w=—i({+n), w=—i(l+2+mn). (5.84)

On the other hand, for any € # 0, the presence of )+ in (5.81) modifies the structure of the singularities
in the wave equation so it is no longer of the hypergeometric type. The ODE (5.81) has four regular
singular points located at y = 0, 1,00 and the zero of Q. ; this makes the solutions Heun functions.!
Because of this, we have not been able to solve it for general parameters, but we can show that for the
frequencies

1
1Fe

o =———(t+n), @ =-

((+2+n), n=01,2,..., (5.85)

the solutions satisfying ingoing boundary conditions and regularity at infinity can be written as poly-
nomials of order n and n + 2, for dzf ) and wf ) respectively. More concretely, the independent solutions
take the form

—io Y v
VI =y 11— )T Qu(y) Y allyt (5.86)
k=0
@) _ 41 _io® R
Vit =yt (1 —y) 7 Qe (y) T Y apay” (5.87)
k=0

The coefficients a,goi, af)i can be computed order by order in y.2 The profiles for the original gauge

invariant fields can be easily recovered by solving the algebraic relations (5.77), and (5.65) with A=0.

!Because ¢ is an integer, the singularity at y = 0 is actually a resonant singularity, but it does not affect the conclusions
we draw hereafter.

2The polynomials in (5.86) are formally known as a particular class of Heun polynomials. The specific form is not
important, rather we want to highlight that the solution truncates.
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5. The Spectrum of Static Subtracted Geometries

While our analysis does not a priori guarantee that all solutions of (5.81) are of this form, we have
checked this result numerically for a wide range of parameters. Moreover, continuity with the ¢ = 0
case, and analogy with the Klein-Gordon field in the subRN background, suggests that this might be
the full solution of the system. This completes our analysis of the scalar modes with §y = 0.

Scalar modes with §y # 0

Let us now consider modes with non-vanishing axion perturbation. As mentioned above, the equation
of motion for the axion decouples and adopts the form (5.59), so it can be studied on its own. In
particular, this means that the QNM frequencies obtained by solving this equation, let’s call them
Waxion, are QNM of the full system, despite the fact the axion does enter as a source in Maxwell’s
equations for A and A°.3

The near boundary fall offs that follow from (5.59) are given by s5 ~ rEo

axion Wlth

Caxion = V2 +0+4. (5.88)

The QNM are then solutions that decay as r—%ion and satisfy ingoing boundary conditions. As before,
we perform the redefinitions (5.22), obtaining

(3/262 -2y (62 - 1) + € — 1) / <6axi0n(y - 1)62 + Oaxion + 2y€ w? ((y - 1)62 + 1)

2t —y(y—12+1) 2 y? ((y =12 +y—1) (y—1)%y

8220.

(5.89)
For ¢ = 0, this equation can be solved in terms of hypergeometrics, and the resulting spectrum is once
again quantized according to
@ = —i(daxion + 1) - (5.90)
By studying the structure of the singularities of (5.89), we conclude that it is not a hypergeometric
equation for € # 0; it contains four regular singular points making the equation of the Heun type. While
this prevents us from finding the analytic solution for general ¢, we can obtain the spectrum numerically
as in the previous cases. All frequencies are purely imaginary, but we find that the spectrum is not
evenly spaced. We plot our results in Fig. 5.2. In order to check for evenly spaced frequencies, we
define the quantity
VUp = Z'((:)n+4 — G)n+2) — ’L'((f)n+2 — d}n) . (591)
where n denotes the overtone of the mode, n = 0 being the lowest QNM. This quantity is identically
zero for all ¢, ¢ for the frequencies (5.76). This is not the case for solutions of (5.89) with ¢ # 0,
showing that the spectrum is not evenly spaced.

5.A Appendix

5.A.1 Equations of motion in the electric frame

In this appendix we give the equations of motion for the electric frame STU action (5.1). The Einstein
equation is

1 1 3 3 3 3
Ryy = 59 R + 500 (gﬁanaan + 262”8ax8°‘><> = 50um0um = 50X DX

3Similarly to the cases discussed above, in order to obtain the profiles for the remaining fields for every wayion, We need
to find the non-homogeneous solutions with these given sources.
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Figure 5.2: Six lowest QNM frequencies for the axion field for £ = 2. All real parts are zero and the imaginary parts are
negative. On the left panel we plot —Im & as a function of e. Modes we would expect to be evenly spaced for hypergeometric
solutions are plotted in the same color. On the right panel we display our test for even spacing defined in (5.91) for i = 0
(red) and 7 = 1 (blue). This ceases to be zero for € # 0, so the modes are not evenly spaced.

1 L 30002, 3 e = 2 120\ 2
RN (10 o) LN — NV
+29u (46 ( ) +4(4X2+€_2n)( X )
1 3 - - -
e R PO - S (F— *FO)uu(F — F0), = 0. (5.92)

2 2 (42 + e~2)
The equations for the dilaton and axion are

1 4y —e

1 1 _ _ ~
T IO = PO e R e (PR
v e~ 21 . -
X (P PFO) A (F - XFY) =0,
(4x* — e7?1)
1 xe ~ ~ _
NET A 1) + @ 1ot T XAF)uw (2F 4 (27 + e 21 FO)
4y? —e 2 ~ e~ ~
and the Maxwell equations are
3 e " -
20, (V=g ————(F — x2F")m
V=3 “( T e T
2 —2n
afuv i X _ ~afuv 0 X(2X +e ) _
L ouvmgetnromy + g, (yeg T (F R
—g © —g © (4X2+67277)
2 —2n 3(+2 —2n
afuv X(2X +e ) _ ~aBuv 0 X (X +e ) _
+3e Fopoy <4X2 g € Fop0u —4X2 e =0, (5.94)
In (5.93), the wedge notation is short hand for a contraction with an epsilon tensor
FAFO = e, FY (5.95)
where €,,,), = /—9g€uwp, and €123 = 1. Setting x = 0 simplifies these equations to
1 1 3 1 _ 3 ~
Ry = 500~ o (500"~ eI = Jen(F)?)
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3 1 3 . .
—50un0vn — 56*3"F3MF0»3 — 5S¢ FauF, =0, (5.96)
and
L (vV/—g0"n) + 1(FO)%*’"? _Lpren— g
NEra 4 4 ’
Ou(v/—ge"F*) =0, Ou(v/—ge MTFH) =0, (5.97)
with the addition of the constraint
FAF—eFONEF=0. (5.98)
5.A.2 Details of the scalar mode calculation
The coefficients «;(r) that participate in the definitions (5.60)-(5.63) are given by
4im?(T12 — TI2)wA32 X" 4im(I12 — TI2)wA5/?
o] = 3 — 3 — (599)
E2ILIT, X R2ILIT, X A
 dimPw(4mPTIZIE — (112 — T12)2X) VA A
kg‘HcHs(Hg - HE)X 7
2H2*H2 A(X 22AX/ 2 2H2*H2 2A5/2
ay = m ( c 8?0,\/»( + 2w ) o m (30 s)w _mQA/ % (5100)
E3TLIT, X E3TLIT, X A
y 7T(I12 — T12)2 X2 — 16m2II2I12w2 A + 2X (8kZm2II2112 + (I12 — 112)2 (2w2A + X7?)) N
23T I, (112 — T12) X VA
N m?(8m2I2112 — 9(I12 — 12)2X) X'A?  Tm2X (4m?T12112 — (112 — T12) X) A% (5.101)
2k3 T I1,(T12 — T12) A3/2 2k3 T I1,(T12 — T12) A5/2 '
2 2H2_H2 A(3X X/2 92 2H2_H2 A3/2X,
k3T, kgL A
N 8m?(m?I2N2 — (II2 — 1122 X) X'A’ 6m? X (4m? 12112 — (II2 — [12)2 X)) A"
E3ILIL (112 — I12)VA k3TIIL (112 — 112) A3/2
om2(I12 — II2)XVAX'  2m2(I12 — T12) X A3/2
oy = m(c3s)\ﬁ _m(g :) (5.103)
k3T, k3T IT A’
N 2m2 X (4m2TI2112 — (T12 — T12)2 X)) A’

FALIL(IZ — 12)VA
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The coefficients that appear in the equations of motion for the linearized perturbations in the scalar
sector (5.65)-(5.68) are

Cra

a4 =

Cl./‘(o

e -
2A)

C2Ao

Co%

Codpr

€98

CQA()

1/(=1+vy), (5.104)
40 ((y — 12 + 1) k%
(y — 1)y (y — 1)y? (5.105)
3 (62 — 1)2

v (8K ((y =D+ 17 + (@ - 1) (y - D)2y = 5) + 3y —5))
(e = 1)k (5= Ve + 1)

- : (5.106)
2y — Dy (8K2 (y = D) + 1) + (@ = 1) ((y = D2y — 5) +3y — 5))
(= 1)"hs , (5.107)
(383 (g — D2+ 1)° + (2 = 1) ((y — )2y — 5)e2 + 3y - 5))
{4]{:?9 ((y — 1)62 + 1)2 — (1 — 62) ((y — 1)262 — 1)} X [24(1 — y)3/2y (62 — 1)
8k2 ((y— 1)e + 1)2 + (62 - 1) (2y2e2 — Tye® + 3y + 5e? — 5)} o ,
—e(—1) (5.108)

{256 ((y—1)e2 +1)° (Skg ((y =D +1)"+ (€ -1) ((y - D2y — 5)* + 3y — 5))]71 ,

(y—2)(y —1)e? + 3y — 2

Dy (- e+ 1) (5109
k2 407 ((y — 1) +1)
(y — 1)y (y—1)% -110)
€ (62 — 1)2
((y =D +1) (8K ((y = D + 17 + (2~ 1) (y ~ D2y = 5) + 3y —5))
B 128¢ (2 = 1) k3 ((y — 1)e* + 1) 5.111)
(v =1y (83 (y = D +1) + (& = 1) (y = )(2y — 5)e> + 3y = 5))
64e (2 — 1) ks (5.112)

8k2 ((y — 1)e2 + 1)* + (€2 — 1) (2y2€2 — Tye? + 3y + 52 — 5)’
{—326 (4k§ (=1 +1)"+ (2 =1) (y—3)(y — )2 + 2y — 3))] (5.113)
[y (1)

8k% ((y — 1)e2 +1)° + (¢ — 1) ((y — 1)(2y — 5)¢® + 3y — 5)} o

768¢ (2 — 1)°

_ (5.114)

y? (8141% ((y —1)e2 +1)% + (€2 — 1) (2y2€ — Tye? + 3y + 5e? — 5)) 7
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(y—2)(y —1)e + 3y — 2

(y— Dy (ly— D + 1) (5-115)
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Part II1

Non-supersymmetric Metastable Vacua

“How many realities do actually exist? Who cares.
This is the one you are in, so you better regard it as
the one and only.”

— Lia Maldonado-Parada
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Chapter 6

Supersymmetry Breaking with Antibranes

We have already discussed in part I how important supersymmetry breaking mechanisms are in string
theory and how this fits with reality. In part II, our concern was on non-supersymmetric black holes
holography. Now we focus on supersymmetry breaking in cosmological settings with antibranes. As
black holes and cosmological settings share common features in this regard, we start this introduction
by first recalling some key aspects of the already discussed black holes, to then move on to cosmology
— the topic this part of the thesis is mostly related with.

The construction of non-supersymmetric black holes in string theory is a valuable step for extending
the knowledge we have about their supersymmetric counterparts. As we already discussed in chapter
2, it is desirable to explain the entropy of these black holes through a microscopic system of bounded
D-branes [10] or a dual field theory description [57]. Explicit construction of non-supersymmetric so-
lutions gives important insight about these black holes. For example, non-supersymmetric microstate
geometries! are crucial for testing the fuzzball proposal® [102, 103, 104, 105, 106, 107] beyond ex-
tremality. Various supersymmetric microstate geometries have been successfully constructed already
[108, 109, 110, 111, 112, 113, 114]. The presence of supersymmetry makes the equation of motion
linear, thus easier to solve [115, 116, 117, 118, 119, 120]. When there is no supersymmetry present,
the non-linearity of the equations makes the solving process a highly challenging task.

The construction of non-supersymmetric microstate geometries is so technically challenging that for
a long time only two classes of solutions were known: the JMaRT [121, 122, 123] and the running-Bolt
[124, 125]. Eventually, generalization procedures/systematic constructions of non-supersymmetric mi-
crostate geometries were developed [126, 127, 128, 129, 130, 131]. For our purposes, we would like
to focus on [127]. Therein, the authors proposed a way of constructing non-supersymmetric microstate
geometries using supertubes. The supertubes break supersymmetry since they carry antibrane charge

"Microstate geometries are horizonless and nonsingular solutions of supergravity that asymptotically approach the black
hole geometry but they differ at horizon-scale.

2The fuzzball proposal states that a black hole is an ensemble of horizonless and non-singular configurations called
“fuzzballs.” Each of these configurations carries the same conserved charges as the black hole. In the supergravity context,
a microstate geometry can be seen as a fuzzball. The importance of this proposal is that it has the potential to solve many
of the puzzles related to black holes, in particular, the information loss paradox and the statistical origin of the black hole
entropy.
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6. Supersymmetry Breaking with Antibranes

(we elaborate further on antibranes in the next subsection). Breaking supersymmetry with antibrane
charge is a general feature of string theory, and it also used for the construction of de Sitter vacua
within its framework.

Supersymmetry breaking antibranes were proposed by Kachru-Pearson-Verlinde (KPV) [132] and
used by Kachru-Kallosh-Linde-Trivedi (KKLT) [133] to construct four-dimensional de Sitter spacetime
using ten-dimensional string theory — a long-standing string cosmology problem. The latter is of great
phenomenological importance, as our universe at large scales is approximately de Sitter spacetime due
to the presence of a small and positive cosmological constant [134, 135]. If string theory intends to
be a successful quantum theory of gravity, it should be able to describe de Sitter spacetime. De Sitter
spacetime is not a supersymmetric solution; thus a supersymmetry breaking process in string theory
for this purpose is also needed.

When working with supergravity in ten dimensions, building four-dimensional de Sitter is hard to
achieve. As a start, we would like to work with warped compactifications, because of their role in
stabilizing part of the moduli. However, following the no-go theorems [136, 137], warped compact-
ifications to a four-dimensional Minkowski or de Sitter spacetime are not immediately possible. We
need to add sources or singularities to the compact internal space, as done for example in [138]. After
adding these sources/singularities and avoiding the no-go theorems, moduli might remain unfixed.
Moreover, even if we manage to fix the moduli, we still need to introduce a supersymmetry breaking
mechanism that does not spoil any of the previous steps.

The KKLT model has the historical importance of being the first one that managed to complete
all steps above: it fixes the full moduli with warped compactifications and non-perturbative quantum
corrections and obtains de Sitter vacua by using supersymmetry breaking anti-D3 branes. Later it was
found that these vacua were not unique to anti-D3 branes; for example, turning on the gauge fields
living within D7 branes gives a contribution to the four-dimensional potential that allows for de Sit-
ter vacua [139]. However, our interest in anti-branes is founded on its ubiquitous nature in string
theory. They are used in inflationary models [140, 141, 142], in dynamical supersymmetry break-
ing [143, 132, 144, 145, 146], and as said before, in non-extremal black holes microstate geometries
[127, 126]. Thus, it is natural to dig deeper into its physics and to start asking questions about the
details of how these antibranes are breaking supersymmetry.

Metastable States, Probe Level and Back-reaction

To understand better the role of anti-branes in the construction of de Sitter vacua, we review the
KKLT model. We divide it into two general steps. First comes the warped compactification from ten-
dimensional supergravity to an effective four-dimensional theory. After the full moduli have been fixed,
we are left with supersymmetric anti-de Sitter vacua. This part of the construction is not the one that
we will study further in this thesis. The details are nicely explained in the original publication [133].
Our main concern is the second step, the addition of supersymmetry breaking antibranes. Their addi-
tion can uplift the energy of the vacua to de Sitter spacetime.

Let us now discuss the details of these antibranes addition in the KPV calculation. In ten dimen-
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sions, topological cycles can support non-zero fluxes. We add now probe/non-backreacting branes with
opposite charge relative to these fluxes (hence “antibranes”), thus breaking supersymmetry. As the
ground state is supersymmetric, we expect this anti-branes set-up to decay eventually. This decaying
happens through brane polarization and further brane-flux annihilation. We review both effects in
chapter 7, but we give here a flavor:

1. The antibranes polarize into an NS5 brane that contains in its worldvolume the antibranes
charge.

2. Branes materialize out from the background flux and annihilate the antibrane charge in the NS5.
3. After all the anti-brane charge has been annihilated, the system is back to a supersymmetric state.

However, there is a bonus step between 1 and 2. If the antibrane charge is small enough in comparison
to the background flux charge, there exists a metastable state where the NS5 carries anti-brane charge.
This state breaks supersymmetry and gives an extra contribution to the four-dimensional potential,
uplifting from anti- to de Sitter vacua.

The existence of the above mentioned metastable state has been debated for years. One known
issue is the presence of a divergence in the energy density of a three-form flux. This divergence does
not show up at the probe level of [132] but appears when back-reaction is approximatively taken into
account [147, 148]. Divergences in the energy density are normal if they are linked to the presence
of a source. In this case, one might like to attach this divergence to the source of antibrane charge.
However, the behavior of the matter fields and geometry close to the divergence does not seem to
indicate that. Lacking a clear interpretation, we name this divergence “unphysical.” In this thesis, we
focus our efforts on its study. Nevertheless, there are other related issues to the metastable state of
antibranes that are open®.

The unphysical divergence might be an artifact of the approximation scheme. A fully back-reacted
solution would be welcome and might settle down the whole discussion. However, an explicit solution
to the supergravity equations of motion including the back-reaction of antibranes is nowhere in sight.
The absence of supersymmetry makes the solving process very challenging. Thus, we are in need of
novel approaches that can extract relevant information from the equations of motion without the need
to explicitly solve them. In this thesis, we make progress in this direction.

Before we go on to explain our work, a comment is in order. It might be that the divergence is
evidence that supergravity is failing to capture the relevant physics. In this case, a resolution might
be found in full string theory. The last was argued for a single anti-brane in [155, 154]. Even so, it is
desirable to have a physical interpretation of the singularity in the supergravity picture — for example,
in the lines of [156, 157, 158, 159]. A supergravity interpretation should give insights about how the
divergence is resolved in string theory. If we lack this interpretation, the string theory resolution of

3For example: tachyonic repelling behavior of the anti-D3 branes that might jeopardize the polarized 5-brane state
[149, 150], anti-D6 branes non-polarization behavior that (as a T-dual system of smeared anti-D3 branes) suggest the
same behavior in the anti-D3 case [151], flux-clumping around the anti-D3 that lowers the effective potential barrier (thus
eliminating the metastable state possibility) [152, 153], among others that are debated in [154].
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6. Supersymmetry Breaking with Antibranes

the divergence is unclear. Moreover, there might be no resolution at all, indicating that the antibranes
metastable state is unphysical. Thus, in order to clarify these uncertainties, a more in-depth supergrav-
ity study of the divergence is required.

Necessity is the Mother of Invention: the Smarr Way

Fortunately, we will not need the full solution to make progress. The antibrane sourced configuration
allows for the construction of a Smarr law. A consistent Smarr law imposes constraints on the IR and
UV values for the fluxes and geometry. When satisfied, these constraints are equivalent to a config-
uration with a divergence now attached to the antibrane source [2, 3]. Let us point out that not all
the (in this thesis) studied antibrane sourced configurations satisfy these constraints. This approach is
our contribution to the metastable debate, and we use it for ten- and eleven-dimensional antibranes
settings in chapter 8 and 9.

Effectively, our method discloses the boundary conditions necessary for a supergravity solution
that will result in a well-behaved metastable state. However, having the boundary conditions does not
mean that the solution exists. The existence of the solution can only be demonstrated by constructing
it explicitly or by obtaining sufficient evidence via numerical methods*. A proof for the existence of
this solution is beyond the scope of this thesis. However, it might be a natural step to take.

Eleven-dimensional Supergravity

The mentioned KKLT mechanism and most of the previous discussion are in the frame of ten-dimensional
supergravity. We also scrutinize an eleven-dimensional supergravity configuration, where we can con-
struct analogous systems with probe anti-M-branes. At the probe level, these also break supersymmetry,
polarize and reach a metastable state [161]. When backreaction is approximately included, they de-
velop an unphysical singularity in the flux density [162]. Again, the full eleven-dimensional solution
with antibrane sources is beyond our technical reach. Fortunately, we can apply the same approach
again as in the ten-dimensional case and extract boundary conditions for well-behaved configurations.

Just like in the ten-dimensional case, our approach will show us under which boundary condi-
tions the metastable state is physical. This calculation is interesting because it shows that a resolution
of the unphysical divergence via a proper choice of boundary conditions is possible beyond the ten-
dimensional setting®. It might be that these unphysical divergences due to antibrane sources in string
theory are resolved just by setting proper boundary conditions. In particular, from here we can al-
ready scrutinize the construction of non-supersymmetric microstate geometries via anti-brane charged
supertubes [126, 127]. Let us recall that having the boundary conditions does not prove the existence
of the solution. For the last, we need to solve the full equations of motion or collect enough numerical

“An interesting investigation where a numerical solution for a stack of (smeared) anti-M2 branes at finite temperature
has appeared not long ago [160]. Therein, the authors address the singularity in the energy density of the metastable state
and a possible topological phase transition. These two behaviors agree qualitatively with [3]. We check [3] in great detail in
chapter 9.

5Another advantage of the case of supergravity in eleven dimensions is that there is less field content (there is only one
flux) making the calculation and results cleaner.
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evidence.

Outline

This part of the thesis consists of three more chapters. In chapter 7 we review the brane polarization
(Myers effect) [163] and brane-flux annihilation (Kachru-Pearson-Verlinde or KPV mechanism) [132].
These two effects have the leading role in the construction of the metastable non-supersymmetric state
that we will scrutinize. Chapter 7 focus entirely on the ten-dimensional perspective, but the eleven-
dimensional version is entirely analogous (see [161]).

In chapter 8 we introduce our work. Here we study the antibranes metastable state in ten-
dimensional supergravity. We start with a more specific introduction to this ten-dimensional con-
figuration. Then we discuss a general ansatz that solves the equations of motion for antibranes on
throat geometries supported by three-form fluxes — a KPV-like setting. We then discuss how UV and IR
boundary conditions are related. This relation let us obtain a consistency relation for the configuration
sourced by antibranes. This last relation is used to show explicitly what are the boundary conditions
where unphysical singularities arise. It also shows how to avoid them. We do this first for zero temper-
ature, to then add finite temperature. Finally, we present our conclusions and outlook. In this section,
we translate the derived consistency relation to the Smarr law of the system. After this, an appendix
follows with relevant technical details.

In chapter 9 we approach antibranes metastable states in eleven-dimensional supergravity. We start
again with a more particular introduction to this case. We then move to the technical set-up and probe
results for anti-M2 branes. Then, we build the Smarr law of the backreacted system and discuss its
relation to on-shell brane actions. Note that in this chapter we start our analysis by building the Smarr
law, unlike chapter 8 where our analysis led us to a Smarr law. We continue with the study cases of
smeared antibranes, the non-smeared and extremal branes. We then study finite temperature black
branes. In all the previously mentioned cases, we use the Smarr law to find the boundary conditions
that avoid the unphysical divergence. We conclude with the discussion. Some useful technical details
can be found in the appendix.
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Chapter 7

Brane Polarization and Brane-flux
Annihilation

As we reviewed in the previous chapter, antibranes put in backgrounds with fluxes have important
applications in black hole physics and the KKLT (Kachru-Kallosh-Linde-Trivedi) construction of non-
supersymmetric de Sitter spaces in string theory. In this chapter, we quickly review the basics of two
important aspects of supersymmetry breaking antibranes in flux backgrounds. First, we discuss brane
polarization [163]. Second, we explain the decay mechanism of this system called brane-flux anni-
hilation [132] and its application to the KKLT setting [133]. For both, we focus on the probe limit,
where the back-reaction of the anti-D3 branes on the flux background is neglected. In the following
two chapters, we will discuss the potential issues after back-reaction and our work on how to address
some of these issues.

Brane polarization [163], also known as the Myers effect, happens when a number N of Dp-branes
are put in a background with fluxes, forming a stack. In contrast to when the branes are apart, the
stacked systems can develop a new ground state that is understood as a bound state of the Dp-branes
and a higher dimensional D(p + 2)-brane. Geometrically, the background flux has puffed-up the Dp-
branes to a higher dimensional worldvolume, whose dynamics can be approximatively captured via a
D(p + 2)-brane description. This approximation improves when the number N of Dp-branes becomes
large.

As an example, we can look at DO-branes polarizing into a D2-brane. This example comes from
Myers himself, where he put a stack of DO-branes on a flat background electrically charged with respect
to an Fy four-form. In this setting, the stack polarizes into a DO-D2 bound state [163]. The polarized
system has two equivalent descriptions:

1. A non-abelian theory of a stack of N D0-branes, effectively giving rise to a local D2-brane charge
coupling.

2. An abelian theory of a single D2-brane that carries N DO-brane in its worldvolume.

How a D2-brane can carry lower dimensional DO-brane charge can be seen from the Chern-Simons term
of the D2-brane action. Let us write it for a flat background that only has C's and C; Ramond-Ramond
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7. Brane Polarization and Brane-flux Annihilation

three- and two-forms turned on,

Scs = Mg/ (P[C3] + 27TCM/P[01} AN F)

— / PlCy) + (2m/u2 / F) / PlCy]. 7.1)

In this expression, y is the D2-brane charge, v is the string length scale, F' is the two-form field
strength living in the worldvolume of the D2, and PJ...] represents the pullback of the background
fields to the D2 worldvolume. The term involving Cj is the natural coupling for a D2-brane. The
second term is an effective DO coupling arising due to the F' two-form presence. It is then said then
that the D2-brane carries DO-brane charge in its worldvolume.

Geometrically, the DO-branes form a “fuzzy sphere”' [164], or equivalently, a spherical D2-brane
with N DO-brane charge in its worldvolume, as in (7.1). The spherical D2-brane does not carry a net
D2-brane charge. However, these configurations carry a local dipole D2-brane charge. We can make
here an analogy between brane polarization and the dielectric effect: just as an uncharged material in
an exterior electric field can have an electric dipole, a DO-brane configuration with no D2-charge can
have a dipole D2-charge induced by an external field. See figure 7.1 for a visual representation of the
DO0-D2 polarize state.

I:Oij Kk k k k

Figure 7.1: Left: DO-branes previous to polarization. Middle: Polarized DO-branes into an S? at a given radius R (fuzzy
sphere). Right: D2-brane with R x S? topology, where the S? has approximately the same radius R as the fuzzy sphere
picture. The D2-brane carries dissolved N DO-brane charge in its worldvolume. In the three cases, there is an influence of
an electrically sourced background four-form Fj.

Branes immersed in flux background can also annihilate against the flux, in a process closely re-
lated to the polarization we just discussed. This process is called brane-flux annihilation. We review
now the brane-flux annihilation example introduced by Kachru, Pearson, and Verlinde (KPV) [132].
For this, we need to introduce first the antibranes, which are our supersymmetry breaking ingredient.
Antibranes are branes that are oppositely charged relative to the flux background. For example, in the

!The explanation of the “fuzzy sphere” name goes as follows. Transversal coordinates describe the brane position in its
transversal space. For a stack of branes, these coordinates no longer commute. In the DO-D2 polarization case, they form an
SU(2) algebra. Thus, the stack is a rotational invariant configuration in transversal space.
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KPV setting, the background three-form fluxes carry D3-brane charge. Hence, the anti-D3-branes are
carrying minus D3-brane charge. As reviewed in the previous chapter, antibranes break supersymme-
try. We can roughly explain this by comparing them with branes. For branes, the gravitational and flux
interactions between brane and background cancel out. For antibranes, they add up, thus violating the
no-force condition. This violation is equivalent to say that supersymmetry is broken in this configura-
tion.

We return now to the review of the KPV brane-flux annihilation example. In this example, a stack of
anti-D3-branes polarizes into an anti-D3-NS5 bound state that further annihilates its antibrane charge
against D3-branes that materializes out from the background three-form fluxes. The polarization here
occurs in a more complex configuration than the DO-D2 polarized state of Myers. The background is
an explicit example of the Giddings-Kachru-Polchinski (GKP) solution [138], a type IIB supersymmet-
ric warped geometry product of a four-dimensional Minkowski external spacetime and a topologically
non-trivial six-dimensional manifold. In this GKP example, the compact manifold is a Calabi-Yau three-
fold that locally allows the reproduction (or embedding) of the non-compact Klebanov-Strassler (KS)
warped geometry [165]. Thus, when focusing in this region, the system can be well described by the
KS geometry: the Calabi-Yau threefold can be seen as a non-compact six-dimensional deformed coni-
fold of topology S° x 52, with background five-form Fs and three-form fluxes F3 and Hj present. There
are M F3-flux units threading the A-cycle of the deformed conifold, and K Hj-flux units threading its
dual B-cycle — see figure 7.2, left. F; vanishes in the “near the tip” region of the KS geometry, which is
the region that we want to focus in for reasons that we explain below.

Calabi-Yau threefold

B-Cycle

Klebanov-Strassler
“near the tip” geometry

O Anti-D3 Brane

Figure 7.2: Left: Representation of the compact Calabi-Yau threefold in the KPV setting. It has a local region described by the
Klebanov-Strassler geometry. In this region, the internal manifold can be described by a deformed conifold with an A-cycle
and a dual B-cycle. Right: The “near the tip” region where the anti-branes gather.

We put now an amount of p < M antibranes on this background. This limit allows us to neglect
the backreaction of the antibranes — this probe level assumption is used for the whole KPV calculation.
The influence of the background F; flux and gravitational attraction will gather the antibranes to the
tip of the deformed conifold — see figure 7.2, right. We assume then that the relevant dynamics are
concentrated to this region; thus we work in the “near the tip” limit from now on. This antibrane
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7. Brane Polarization and Brane-flux Annihilation

gathering in the tip makes evident that the configuration is no longer supersymmetric: if D3-branes
were the ones to be placed on the KS geometry, the F; and gravitational contributions would cancel
out, and the no-force condition will be satisfied, as expected from a supersymmetric configuration.

The p antibranes form a stack at the tip of the cone that further polarizes into an NS5-brane wrap-
ping an S? within the S? of the deformed conifold. This NS5 moves from one pole of the S2 to the other
while annihilating its worldvolume anti-D3-brane charge against M D3-branes that materializes out
from the background three-form fluxes. The annihilation process finishes in the opposite pole, leaving
(M — p) D3-branes as a residuum, which can also be seen as the decay of a non-supersymmetric state
to a supersymmetric one. See figure 7.3 for a visual representation of the NS5 brane-flux annihilation.

D3 branes

— V)
m === 0yV)

NS5 S 4

Anti-D3 branes

Figure 7.3: Left: A schematic picture of the brane-flux annihilation. Right: A qualitative representation of the potential V (¢))
and 9,V (¢) felt by the NS5-brane for p/M = 0.03. The initial configuration consists of p anti-D3-branes, which polarize into
an NS5 wrapping the S? within the deformed conifold’s S%. The NS5 rolls through the S* until it reaches the final (M — p)
D3-branes supersymmetric configuration. When p < M, the NS5 can sit at a small polar angle 1, in a metastable state.

In the limit p < M, the NS5-brane can sit still in the S at a small polar angle (see figure 7.3, right)

27p

= = b ~0.93266, (7.2)
biM

(20

where the NS5 has a radius
Ruyss = sintoRgs ~ %RSS. (7.3)

This is a metastable state containing anti-D3-brane charge with remarkable phenomenological conse-
quences. Following the KKLT construction [133], the GKP solution can be compactified to four dimen-
sions with all its moduli fixed due to the presence of fluxes and the introduction of non-perturbative
quantum effects. Initially, the four-dimensional vacuum is supersymmetric anti-de Sitter spacetime.
The existence of the antibrane-charged metastable state allows us to add an extra contribution to the
four-dimensional potential that uplifts in a controlled way — thanks to the GKP solution space warping
— the vacuum energy from anti-de Sitter to de Sitter spacetime.

The KPV mechanism is a calculation done at the probe level. When including backreaction correc-
tions to the calculation, the Hj3 flux energy density has a singularity near the anti-D3-charge source
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[147, 148]. This singularity does not match the radial dependence expected from standard anti-D3-
branes, so its origins are not immediately obvious. With no physical interpretation, this singularity
might be a reason to doubt on the existence of this metastable state, and therefore, de Sitter vacua
constructions that use anti-D3-branes as an uplifting method. The next two chapters are devoted to
scrutinizing the existence of antibrane-charged metastable states in ten and eleven dimensions super-
gravity. We study the UV and IR boundary conditions of a (putative) full solution. This study allows
us to discover some boundary conditions for the matter fields of the full solution that permits to avoid
the unphysical singularities.
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Chapter 8

Antibranes Metastable States in Type II
Supergravity

This chapter is based on [2].

In this chapter, we revisit under which gluing conditions a stack of anti-D3 branes can be added
into flux throats with opposite charge, i.e., how the UV and IR of the would-be solution should be
consistently related. These consistency conditions typically reveal singularities in the 3-form fluxes
whose meaning is being debated. Yet, we prove (under well-motivated assumptions) that unphysical
singularities can potentially be avoided when the anti-branes polarize into spherical NS5 branes, with
a specific radius. If a consistent solution can then indeed be found, our analysis seems to suggests
a rather large correction to the radius of the polarization sphere compared to the KPV probe result
[132]. We furthermore comment on the gluing conditions at finite temperature and point out that one
specific assumption of a no-go theorem [166] can be broken if anti-branes are indeed to polarize into
spherical NS5 branes at zero temperature.

8.1 Introduction

Supersymmetric throat geometries supported by fluxes are stable string theory solutions with impor-
tant applications for holography, flux compactifications and black holes. As we briefly introduced in
chapter 6, one explicit method to break the supersymmetry in the throat while preserving classical
stability is adding anti-branes to the flux background, which carry charges opposite to the charge dis-
solved in flux [143, 132, 133, 145, 127]. We focus on anti-D3 branes in the Klebanov—Strassler (KS)
throat as first studied in the KPV paper [132]. If the anti-brane charge p is small compared to the
background RR-flux M, then their addition can be seen as a small perturbation of the KS throat; the
limit of small anti-brane charge is what guarantees metastability, at least at probe level. The decay
channel is the annihilation of the p anti-D3 branes with some of the background NSNS flux. If the
corrections to the probe result come with positive powers of p/M it guarantees the self-consistency of
the approach as long as p/M < 1.

If the above reasoning is to hold, then the results of [132] suggest that the supergravity solution
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8. Antibranes Metastable States in Type II Supergravity

describing the metastable state should be spherical NS5 branes wrapping a contractible two-cycle of
finite size. These spherical NS5 branes carry no monopole NS5 brane charge but the original p anti-D3
charges instead. This supergravity picture should hold in the following limit:

gs <1, gsp>1, gsM > 1, (8.1)

and at the same time p/M < 1 as required for stability. The above limit ensures that string loop
corrections can be ignored and that the length scales of the tip of the KS throat and of the contractible
2-cycle are large in string units such that higher derivate corrections are also suppressed. Interesting
arguments have been presented that for p = 1 the metastability is not threatened by backreaction
[155, 167]. A single anti-brane is however beyond the scope of this thesis since it cannot be under-
stood within the supergravity limit. The complementary regime of p/M of order unity or larger cannot
be regarded as a perturbation to the KS throat and the would-be supergravity solution in this case can
better be thought of as being AdSsxS® perturbed by M units of three-form flux [156]. We do not go
into that limit in this work since it does not correspond to meta-stable supersymmetry breaking by
perturbatively small amounts as originally intended in [132].

The first attempts for constructing the supergravity solutions (in certain approximate schemes) re-
vealed “non-physical” singularities: singularities which were claimed to be different from the usual
ones associated to brane sources [147, 148]. The singularity is such that the scalar e~?|H3|?, which
gives the contribution of the Hj flux to the energy-momentum tensor in Einstein frame, diverges near
the sources. Although it is tempting to interpret this divergence as the self-energy of the NS5 brane, it
was claimed this is not the correct interpretation, because the orientation of the fluxes and the magni-
tude of the divergence was not right for NS5 branes. One might worry that this mismatch is inherent
to the approximations of the original papers [147, 148], but in fact the singularity was shown to per-
sist beyond those approximations [168, 166]. Nonetheless, that interpretation of the singularity as
unphysical is incomplete since the computations of [168, 166] assume genuine anti-D3 branes instead
of spherical NS5 branes carrying anti-D3 charges, thus, one could therefore speculate that when one
looks instead for supergravity solutions describing spherical NS5 branes at the tip of the throat, one
finds acceptable singularities. This is the first point we investigate in this chapter and we find that,
under well motivated assumptions, certain fields can be tuned near the horizon such that the singu-
larity corresponds to the usual divergent self-energy of the NS5 brane. There is no guarantee that this
tuning is possible in the sense that the UV can be glued consistently to the IR, but at least we find that
all earlier no-go theorems against that gluing can be circumvented.

Second we investigate the configuration at finite temperature [169]. The temperature acts as an
IR cut-off in field theory. If there is a mechanism in string theory that can resolve the singularity or
turn it into a physical divergence (such as with brane polarisation), one expects the singularity to be
shielded at finite temperature. Numerical evidence has shown that this hope was in vain [170, 171] at
least for anti-D3 branes that are smeared over the finite tip at the bottom of the throat or for localised
anti-D6 branes [172]. In addition, a no-go theorem was found for localised anti-Dp branes with p < 6
[166]: the would-be supergravity solution will develop a divergent flux density e~?|H3|? at the hori-
zon. However, as all no-go results, the theorem is only as strong as its assumptions. In this chapter
we argue that NS5 polarization is a priori consistent with relaxing one assumption in [166] on the

86



8.2. GluingIRtoUVatT =0

boundary conditions. If finite 7' solutions exist, our results should then be a useful lead on how to
pick boundary conditions near the brane sources. In fact, some progress on the existence of smooth
finite T solutions was reported in [173] and we verify that indeed this boundary condition was used.
Still the construction of [173] misses a compact A-cycle, which is crucial for the physics of anti-brane
metastable states. Without such a compact A-cycle the construction of smooth finite temperature solu-
tions was also argued earlier in [174].

We start the remainder of this chapter with a review of the main results of [166]. Then we analyse
the Hj flux density. At zero temperature, we review the singular flux for anti-D3 brane boundary
conditions in the IR region of the flux throat and extend the analysis to spherical NS5-branes carrying
anti-D3 charge. We show the flux energy density is again singular, but it is possible to obtain the
appropriate power of divergence expected for a local NS5-source. This turns out to be only possible
at a NS5 radius which scales as R ~ /p/M for small p/M, which differs from the probe prediction
R ~ p/M. We then heat up the background, and elaborate on a caveat in the arguments of [166] and
discuss under which conditions the singularity can be cloaked by a smooth horizon. The discussion
and interpretation of our results is found in section 8.5.

8.2 GluingIRtoUVat7T =0

We recall the formalism of [166]. This formalism extends the results in [168] and using the equa-
tions of motion with a general ansatz relates the boundary conditions near the anti-brane in the IR to
the generalized ADM mass, which is measured in the UV. This allows to elaborate analytic arguments
about the existence of the supergravity solution without knowing its explicit version — which is quite
involved to obtain. Thus, these relations between the UV and IR tell us which consistency relations are
necessary — but not sufficient — for the existence of well-behaved interpolating solutions. They have
proven useful to demonstrate the absence of solutions in many non-trivial circumstances, which are
otherwise only amenable to heavy numerical techniques.

We focus the discussion on throat geometries supported by 3-form fluxes in which anti-D3 branes
are added at the tip, i.e. we will pay special attention for the p = 3 case. The example to have in
mind is the Klebanov-Strassler throat [165]. The would-be solution takes the following form in 10D
Einstein frame,

ds%o — 24 (—ledt2 + (Z'jdxidfbj) + ds% ,

Cy = %40,

Hs = —e? 44~ 46 (a0 + a) F3 + X3) . (8.2)
The functions ¢, A, f, « only depend on the internal coordinates and «q is a constant. The horizon is
located at €2/ = 0. At this point the throat metric dsZ is completely general. As said, we use notation

with tildes for metrics and Hodge duals without any warp factor e?4
the Minkowski metric.

nor 2/, For instance §,,, = 7, is

We require the throat geometries to have a 3-dimensional subspace non-trivial in homology, which
we call the A-cycle, and F3 to have a fixed quantised flux [, F3 = 472 M. This piece of information is
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8. Antibranes Metastable States in Type II Supergravity

crucial to describe the backreaction of anti-branes in the Klebanov-Strassler background. The A-cycle
is present in the UV limit of the supergravity solution [147] and was essential in proving the presence
of the original non-perturbative brane-flux instabilities [132] and the singularity [166]. For a relatively
low number of anti-branes p such that p/M < 1 we expect the topology to remain the same and the
A-cycle to be present.

Remember that the 3-form fluxes H3 and Fj are closed and we choose them to take values inside
the 6-dimensional throat geometry. Then Hj is the most general form that solves the By equation of
motion

d(e_¢ *10 H3> =—F5 A\ Fy, (8.3)

provided that X3 is closed as well. The ansatz for the H3 flux (8.2) seems to have a redundancy, as
any shift in X3 along Fj3 shifts the constant «. This redundancy can be fixed by demanding that

/ X35 =0. (8.4)
A

We will furthermore fix the gauge for C; (and hence «) such that oy = 0. This is the gauge used in
[147, 175], whose results we use below.

The key observation of [166], which we repeat in the appendix, is that the following 9-form
B=—CyAFs— %11 A By A X3 +*10d(¢—4A—f) (8.5)

integrates over a spacetime volume M to

1
— B = Mapnm » (8.6)

V4 Jom

if the closed surface O M encapsulates the anti-brane sources; otherwise the integral vanishes. In this
expression, 74 is the four-dimensional volume. This is very much like Gauss’ law in electrodynamics
with the role of the electric charge played by the generalized ADM mass. When supersymmetry is
broken by p anti-branes, M 4pys is proportional to p and positive [166]. This condition can then be
used to constrain the behavior of the supergravity fields near the source by letting the closed surface
approach the anti-brane horizon. We want to stress that this integral has only been shown to repro-
duce the ADM mass for the perturbative solution of [147]. We come back to more general asymptotics
allowing p/M > 1 in Section 8.5.3.

The above formalism needs to be altered in order to apply it to spherical NS5 branes. The reason
is that we intend to integrate the 9-form (8.5) on a surface 9 M infinitesimally close to the spherical
NS5 horizon. But along this surface B, is not everywhere defined since an NS5 acts as a magnetic
source for By. This would imply that we need to compute the contribution from a surface of Dirac
“strings” stretching from one side of the spherical NS5 to the opposite side, as depicted in Figure 8.11.

!n a first version of this work we missed that contribution and we are grateful to J. Polchinski for pointing that out. See
also comments in [154].
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OMuyy
OMir

“Dirac string” surface

Figure 8.1: Boundaries 9M, with 4d Minkowski directions suppressed. Left: the IR surface that encapsulates the NS5
corresponds to an S® x S? close to the brane. The spherical NS5 is drawn symbolically as a red circle. We can choose a
patch such that the B, gauge field is well-defined everywhere except in they gray surface stretching from one side of the
NS5-brane to another. Right: the UV boundary can be taken to be S°.

Luckily this complication can be avoided by using Bg as the fundamental potential instead of Bs.
Going through an analogous computation as in [166], but using Bg, one finds:

B:—04/\F5—BG/\H3+*10d<¢—4A—f), (8.7)
where we made use of
e ®x Hs=dBs — Cy A Fy, (8.8)
such that
dBg = —x41 A X3. (8.9)

Again, notice that we ignore a possible closed but not exact piece in X3. Such a harmonic piece would
give a non-zero bulk contribution

/ H3z A %41 N X3 (8.10)
M

to the ADM mass. This harmonic contribution to the ADM mass would be similar to the mechanism
to smooth support black hole microstate geometries [176]. This connection will be explored in more
detail in future work.

8.3 Flux divergences

We focus on the density of the NS-NS 3-form flux as it appears in the energy-momentum tensor. From
the ansatz (8.2) we find
e ?|Hs|? = 84" |aFy + X312, (8.11)

It is the aim of this chapter to infer whether this quantity stays finite near the source or not, by using
consistency relations for gluing the IR solution to the UV solution.

89



8. Antibranes Metastable States in Type II Supergravity

8.3.1 Anti-D3 boundary condition

Consider eq. (8.11) and take zero temperature (e2/ = 1). Close to the anti-D3 brane, we can use
the near-D3 solution of the appendix, eq. (8.42). The factor e~54 is expected to blow up whereas ¢

P . -2
remains finite. The metric transverse to the brane scales as ds2 = e~24dsg, such that

e | Hs|* ~ e |aF; + X3|2o (8.12)
56

T . . .2
where the subscript indicates we take the contraction without warp factors using dsg;. Hence unless
the combination aF3 + X3 vanishes at the position of the brane, we find a singular H3 density scaling.
This is the infamous 3-form singularity encountered in many places in the literature.

One can argue that the combination a.F3 + X3 indeed does not vanish at the anti-D3-brane position
using eq. (8.6). As we are dealing with anti-D3 branes, we are free to use the (8.5) boundary term,
since we do not expect a contribution from Dirac strings. For the standard anti-D3 boundary condi-
tion, the last term (whole bracket) in (8.5) does not contribute. Hence X3 and « cannot both vanish
since Mspas > 0. As F3 has a non-vanishing component along the A-cycle, the combination aF3 + X3
is nonzero by construction and hence introduces a three-form singularity. Note that for a D3-brane
boundary condition with M4py; = 0, this issue is not present.

A possible way out would be that F3 and X3 vanish at the position of the anti-D3 brane, while « is
non-zero (see the discussion in [168]). This is a priori not impossible since only the integral along the
A-cycle of I equals 472M and the flux could be distributed inhomogeneously along that cycle. If one
tracks down what is needed for a regular H-flux density, one finds that the charge density in the fluxes
has to scale to zero near the source as

H3/\F3N€4A*61. (8.13)

We consider this to be an unphysical boundary condition, since the anti-brane attracts both gravita-
tionally and electromagnetically the charges dissolved in flux; therefore one expects that the maximal
value for Hs A F3 is reached near the source, instead of going to zero. We leave it for further research
to find a full mathematical proof of this.

8.3.2 NS5 boundary condition

In the probe limit, the anti-D3 brane is unstable towards puffing up into an NS5-brane that wraps a
contractible 2-cycle inside the A-cycle [132]. This NS5 brane carries no NS5 monopole charge, but
rather anti-D3 charge through flux on its worldvolume. Since the probe NS5-branes can sit at a clas-
sically stable position, one expects a consistent supergravity solution with an NS5 brane boundary
condition in the IR. We argue now that this possibility can indeed not be excluded from the gluing
conditions.

With NS5 boundary conditions at the brane position, the four-dimensional transverse metric scales
as e~ %4, while e¢? scales as e %4. Three non-trivial conditions have to be met in order for the Hj
density (8.11) to be consistent with an NS5 brane (the interested reader can corroborate them using
the expressions in Appendix 8.A.2):
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1. Near the NS5 source, the Hs3 density should be singular of a specific degree: e~?|H3|? ~ e =24,

2. Near the source, the dominating legs of H3 are perpendicular to the NS5 worldvolume.

3. $5., B has to be finite and positive by (8.6), with M a spacetime volume encapsulating the
source.

The ansatz (8.2) and the second requirement imply that aF5 + X3 must have two legs on the NS5
worldvolume and one transverse leg. Together with the local metric scaling of an NS5 brane this
implies
e ?|Hs|? = e 1% aFs + Xg\%? : (8.14)
6

Then condition 1 requires that aF3 + X3 scales as e*4. F3 indeed has two legs on the NS5 when it
threads the A-cycle, but we assume it cannot scale to zero near the NS5 brane for exactly the same
reasons mentioned around equation (8.13).

Hence either o and X3 scale as e*#, or one does and the other one vanishes still more rapidly. We
now argue that neither of these two possibilities can be excluded since sending o and X3 to zero can

still be consistent with a positive 1/74 ¢, ,, B integral.

Consider (8.7) and its integral over the 9-surface in the IR along the NS5 horizon. Again one finds
that the last term does not contribute by comparing with the known flat space solution. Interestingly
the first two terms can be integrated explicitly, such that we find the equality

Mapnr = Voly (OéHQs + bHQ5V012) , (8.15)

where Q3 is the monopole anti-D3 charge and ()5 the dipole NS5 charge carried by the spherical NS5

brane defined as
Q3=/ Fy. Q5=/ H| (8.16)
S5 §3

for an S° surrounding the D3-branes and an S? linking the NS5-brane, as in Figure 8.1.

The values of the gauge potentials near the horizon are denoted
Cy = agkql, Bg = bgxs1 N eo, (8.17)

with €5 the volume-form of the 2-cycle wrapped by the NS5 brane, whose integrated value is denoted
Voly. The above value formula for the ADM mass computed near the horizon coincides exactly with
what would have been found using the formalism of [168] — and [166] — that relates the ADM mass
to the on-shell brane action Spgp; + Swz. Indeed, the above expression is the on-shell Wess-Zumino
term for a spherical NS5 brane carrying anti-D3 charge. The DBI probe action always vanishes on-shell
since the warp-factor vanishes near the horizon. This is a nice consistency check of our results. It is
now clear that we can take oy to vanish as long as by remains finite to account for the ADM mass.
At the same time this is consistent with X3 scaling down as e*4 such that the expression for the flux
divergence (8.14) is consistent with a spherical NS5 brane. The way X3 scales down is not affected by
the finite value of by - needed to account for the ADM mass - since X3 relates to the derivatives of by
but not by itself, see (8.9).
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We can glean interesting quantitative information from our analysis concerning the NS5 position
as well. Consider the 2-cycle wrapped by the NS5. Its volume scales as g, M

Vol, = / € = gsMR?, (8.18)

where R is the radius of the S? on the A-cycle wrapped by the NS5 brane, with the overall g, M scaling
taken out and we ignored numerical prefactors?. Since the ADM mass is proportional to the number
of anti-branes p [175, 177]

Mapy = 2V01464Aﬁpp, (8.19)

we find from combining the last two equations with (8.15) that

R~ L2 8.20
U ( )

This differs from the probe level (7.3), where it was found that for small p/M,

p
~ 21
R M 8.21)

In the discussion we comment on the interpretation of this mismatch.

Finally a word on the assumption of having a spherical NS5 brane as an IR configuration. This is
clearly motivated by the probe analysis of [132]. Nevertheless, it could be that the NS5 polarisation
channel comes with partner five-brane polarisation channels when backreaction is taken into account,
similar to the Polchinski-Strassler (PS) background [156]. Therefore, if the supergravity solution lo-
cally is a non-supersymmetric version of PS, there could be a rather involved web of (p,q) 5-branes
spanning different directions. The natural direction for D5 polarisation in the KS throat is the con-
tractible B-cycle as drawn schematically in fig. 8.2. If the D5 channel is also present, our computations

N
B-cycle

NSS

A-cycle

Figure 8.2: Pictorial representation of the Klebanov-Strassler geometry. There are a priori two polarization channels for
anti-D3 branes: NS5 polarization on an S? inside the A-cycle, or D5 polarization on the S? of the B-cycle.

are not valid for at least two reasons. First, having two intersecting branes around complicates the

2This is a consequence of the fact that the S® tip of the KS cone has a radius set by /g M.
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metric scaling such that our above arguments are invalidated. Second, we have relied on a trivial
Bianchi identity for F3, which is altered in the presence of D5 charges. It has been argued in the
regime when p/M >> 1 that D5 polarisation does not occur [178, 149]. This seems to be a peculiar
property of anti-branes. For the purpose of this paper, the absence of a D5-polarization channel also
for small values of p/M would imply a big simplification: we would then simply discard the analysis
of boundary conditions where a spherical D5 polarization accompanies the NS5 brane.

However the full story seems more intricate. As suggested in [149] in the regime p/M > 1,
the preferred channel might well be an oblique phase, a combination of D5 and NS5 polarisation
along resp. B- and A-cycles. We leave a full treatment of possible oblique phases and more general
asymptotics that allow to go beyond the limit p/M < 1 to future work.

8.4 Revisiting 7' > (0 no-go claims

Let’s go further in our investigation of the near brane behavior of anti-branes by heating up the back-
ground. If the metastable state persists in the supergravity regime, one expects to cover all the involved
5-brane polarisation processes behind a smooth horizon [174]. For that reason we ignore the issue of
not having a well defined Bs field along the IR surface.

Once we introduce temperature in the form of a non-zero blackening factor, we find
e ®|Hs|? ~ e |aFy + X3|?, (8.22)

where we assume that e4 and ¢ are finite at the horizon. It was shown in [166] that also at finite 7'
one can argue that o and X3 cannot simultaneously vanish at the horizon: this is necessary in order
to have a non-zero finite boundary integral § /3 at the horizon. Hence we seem to have a singular Hj
density since e 2/ becomes infinite at the horizon.

There is however one assumption that went into the no-go result of [166] that should perhaps be
relaxed. Five assumptions were made explicitly. Let us take r to be the coordinate perpendicular to
the horizon:

1. The temperature shows up under the form of g ~ €/, g, ~ e=2f, with €2/ ~ 1 — 1.
2. e?4 ¢%/ ¢ depend only on r near the horizon 7.

3. The ansatz (8.2) for metric and form fields .

4. The component of F3 with all legs along the horizon is non-zero.

5. The relevant part of the boundary term,
f *a1 A [OéF5 + By A Xg] , (8.23)
aMhoTizon

is finite and non-zero.
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These assumptions are rather solid, following either from black brane solutions — points 1 and 2 — the
expectation of the backreaction in the KS background - points 3,4 — or the study of the boundary term
— point 5. Condition 4 however was used in a stronger form: not only F3, but aF5 + X3 was assumed
to always have a component along the horizon. This was partially inspired by former smeared branes
setups in which this was necessary for preserving the symmetries [170]. We think that this requirement
might be too strong, and indeed some comments about this were already present in [166]. Our aim
here is to further clarify this issue.

First, one of the distinguishing features is that F5 has flux along the topological A-cycle. This leads
to xgHs = e?~44~f(aFy + X3) also having flux through this cycle. This Hj flux is the cause of the
Myers effect that polarizes the probe branes into NS5-branes and we expect it to be present in the
backreaction as well. In general, the radial coordinate along the A-cycle will not be identified with the
radial component r orthogonal to the horizon. Nevertheless, these coordinates will have a non-trivial
relation, leading to the near-horizon behaviour:

aFs+ Xg=drAws+..., (8.24)

for some two-form w,. In case the terms ... vanish we find that the H3 density remains finite since
Grr ™~ 672f:
e O Hs| ~ |aFs + X5 (8.25)

where now the contraction does not include e?4 factors nor blackening factors e?/. Intriguingly, this
is exactly the mechanism in [173] that provides a finite solution. However, it is unclear whether this
extends to a viable finite T' version of anti-D3 branes in KS backgrounds. In [173], there was no
topological compact A-cycle. Rather the simplification was made that the six-dimensional transverse
space was RS, the role of the A-cycle being played by an R? factor. Also, the work of [173] included
the first order backreaction of the fluxes on the black D3-brane geometry, but did not include the
backreaction of the metric nor second order effects that can turn up in the flux density. Thus the
believe that this issue still has to be settled.

8.5 Conclusions and outlook

In this chapter we emphasized the importance of exploring the boundary term that evaluates to the
generalized ADM mass to shed new light on the back-reaction of anti-branes in flux throats. This
method is very powerful, as it gives strong constraints on the back-reacted supergravity solutions
without having to construct them explicitly. Our main result is the application of this method to the
polarized NS5 state of supersymmetry-breaking anti-D3 branes in warped throats. Our method allows
for the first time to study the polarized NS5 state in the regime where supergravity and probe limits
are both expected to be applicable — gsp > 1 and p/M < 1, with p the anti-brane charge and M the
3-form flux through the A-cycle of the KS throat.

8.5.1 Summary of results

The main result is the observation that the 3-form flux divergence, typical to anti-brane solutions, can
potentially be made physical by polarising the anti-D3 branes into spherical NS5 branes. This polarisa-
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tion process is expected from probe computations [132] and the presence of local NS5 sources offers
a natural explanation for the presence of singular three-form fluxes. We found that the conditions for
gluing the IR geometry to the UV geometry do not forbid such a three-form singularity. Furthermore
the computation suggests that there is a unique radius R for the spherical NS5 brane and that the radius
scales as R ~ +/p/M. The probe analysis however suggests that R ~ p/M. So for small values of p/M,
which is the regime in which one can expect meta-stable SUSY-breaking, the radius of the NS5 brane
is much bigger than the radius predicted by the probe computation. This is a clear indication that, if
the full back-reacted supergravity solution exists, the flux clumping process described in [152, 153]
indeed significantly pushes the NS5 brane towards the equator. However, in contrast with [152, 153]
we cannot conclude that it actually goes over the equator nor that the system becomes locally unstable.

The result rests on the absence of D5 polarisation in the B-cycle of the KS throat, which was argued
based on the computations carried out in [178, 149]. This turns out to be the simplification needed
to apply the techniques of [168, 166] to compute the 3-form flux density near the source without the
need for the full supergravity solution. Our proof does not depend on any details of the background —
aside the absence of D5 polarisation: the only requirement is that supersymmetry is broken such that
the — generalised — ADM mass is positive. But as mentioned in [149] there can be oblique D5/NS5
polarisation channels. It is an interesting challenge to extend the result to that case.

As an aside, we reinvestigated the assumptions that went into the no-go theorem for the existence
of smooth finite temperature anti-brane solutions [166]. In view of the possible NS5 polarisation chan-
nel we argued that a specific assumption about the directions of the 3-form flux near the horizon could
be relaxed. If the 3-form xgH3 near the horizon is of the form dr A ws, with ws a two-form and r
the local coordinate transverse to the horizon, the flux density at the horizon will be smooth. This
condition cannot be satisfied for smeared anti-D3 solutions [170] or localised anti-D6 branes [172].
Hence if smooth finite 7" solutions exist, then their construction will necessarily involve the boundary
condition xgH = dr A woy at the horizon, which can be natural for NS5 branes.

We used that at large enough 7' we expect that the details of the NS5 polarization are hidden
behind the horizon. One can still try to heat up the NS5-polarization itself to see the effect of small
temperature. This is an interesting question to adress in the future.

8.5.2 Numerical analysis

We hope that this analysis can be the starting point for a numerical investigation of fully backreacted
NS5 solutions. These results could be useful for choosing boundary conditions near the horizon in
order to find a solution. We showed that boundary conditions exist, consistent with the ADM mass,
that evade unphysical singularities. Having certainty that anti-brane supersymmetry breaking is meta-
stable as indicated by probe computations [132] requires that a well-behaved supergravity solution
can be found. At least this statement is true for large flux numbers and charges such that all typical
length scales are within the classical gravity level. For small charges, arguments beyond the probe
approximation have been suggested in [155, 154].

If a numerical study suggests that our IR boundary conditions cannot be chosen, then an unphysical
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3-form singularity remains that can only be interpreted as a fatal attraction of the D3 charges dissolved
in flux towards the anti-D3 brane. In that case we speculate that this could be an explanation for the
tachyon found in the analysis of Bena et. al. [149]. The tachyon corresponds to a force on anti-D3
branes that has a non-zero projection towards the top of the A-cycle. The same should hence apply to
spherical NS5 branes carrying anti-D3 charge [150]. If the picture of [152, 153, 179] is correct, then
one expects exactly a tachyonic mode that pushes spherical NS5 branes towards the North Pole of the
S3 A-cycle, consistent with [150].

8.5.3 Connection to Smarr relations and black hole physics

In [166], the boundary term (8.5) has only been related to the ADM mass for KS-like throats with
added anti-brane charge of [175] based on the perturbation of [147]. However, we believe that it can
be applied much more widely. The expression for the mass in terms of a boundary term that we used
in this paper is a special case of a Smarr relation. For instance in five-dimensional supergravity, the
generalized ADM mass for asymptotically flat or AdS solutions with horizons — black holes, black rings
— can be derived from a boundary term that evaluates to — see [180, 181] and references therein:

Mapy =TS + ®Q + g+ VA. (8.26)

The parameters in this expression are charges and dual potentials: entropy S and temperature 7T,
electric monopole charge () and electrostatic potential ®, magnetic dipole charge ¢ and its magnetic
potential ¢, and (minus) the effective inside the horizon and the cosmological constant A . The ap-
pearance of the dipole charge might be surprising: it is not a global conserved charge, but can only be
measured locally for instance for dipole black rings. Still, it contributes to the Smarr relation because
it is impossible to define the dipole potential ¢ using only a single patch, as explained in great detail
in [182]. Recently the Smarr relation was shown to allow also for a bulk contribution (not a boundary
term), that is non-zero only for non-trivial topology, which was previously overlooked. This topological
contribution makes the construction of stationary spacetimes possible even in absence of horizons and
underpins the black hole microstate geometry programme [176].

The form of the Smarr relation (8.26) is not restricted to asymptotically flat or AdS spaces, but
to more general asymptotics. The prescription for the conserved energy (mass) in generic spacetimes
with a timelike Killing vector has been discussed by Hawking and Horowitz in a Hamiltonian formal-
ism [183]. Its application to flat space or AdS reduces to the known form of the Smarr formula in
terms of Komar integrals, while for the anti-branes in KS it should become our boundary term (8.5).
We sketched the analogy between Smarr relations for black holes and warped throats in [4].

8.A Appendix

This appendix has three sections with more technical details. We rederive the boundary term that
integrates to the ADM mass in 8.A.1, give a quick review of p-brane solutions in flat space in secction
8.A.2 and in section 8.A.3 we conclude with the details for extending our finite temperature results
from anti-D3 to anti-Dp branes for any p < 6.

96



8.A. Appendix

8.A.1 Boundary term

Here we rederive the boundary term from the Einstein equations and other equations of motion. First
we choose a shorthand notation X7 in the ansatz that solves the B> equation of motion (8.3):

e ? *19 Hy = —Cy AN F3+ X7, dX7=0. (8.27)

In the main body of the text we used Poincaré invariance in four dimensions to write X7 = %41 A X3
with X3 closed.
With the ansatz we describe in section 8.2, the Einstein equations can be massaged to [166]

Ry = —V?¢ — e ?|H3|? — |F5|® — u3d(2). (8.28)

Here, R, is the trace of the Ricci tensor along the four macroscopic dimensions and ¥ denotes the
brane world-volume. The ansatz (8.2) together with the equations of motion for the form fields also
imply that

*1o€7¢|H3|2 =—-CyNF3NHs+ X7 N Hjs, (8.29)
*10|F5* = d(Cy A F5) + C4 A F3 A Hz — 1136(2)Cy A %1, (8.30)
Cy = x4(e ) (8.31)

From these equations, it follows that
*10Rs = d *10 dp — d(Cy A F5) — X7 A Hz + *19(ce ™4 — 1) usd (). (8.32)

In order to get a still more suggestive form, we use the following relation between the Ricci scalars of
the metrics with and without warp factors:

Ry = 6_2AR4 + *10(1 *10 d (4A) . (8.33)
Then with (8.8) and R, = 0 (Minkowski space), we are left with
*10(1 — 04674A)M35(2) = d %19 d(qﬁ — 4A) — d(C4 AN F5) — X7 N\ Hs. (8.34)

The first two terms on the right-hand side are total derivatives, but not the last one. However, we can
remark that since X7 is closed we can write it as

X7 = dBg + XPam™ | (8.35)

where B is globally well-defined and X?*™ is harmonic. From now on we assume that X2*™ = (.
We will come back to the contribution of such harmonic terms to the ADM mass and the comparison
to black hole microstate geometries and fuzzballs in future work. Then we can write

X7 N\ Hj :d(B6/\H3) — Bg AN dHs. (8.36)

Now, we integrate both sides of (8.34) along a region of spacetime M not containing the source.
The region M we have in mind has two boundaries: one IR boundary surrounding the branes at a
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small distance, which we will let go to zero; and another one far in the UV of the KS throat. In the
region M, there is no NS5 charge such that dH3; = 0 and we get

/ B= B. (8.37)
8MU\/ aMIR
where
B=—-CyNFjs —BG/\H3+*10d((Z)—4A). (8.38)
In [166] it was shown that in the UV the integral

1

— (*04 A F5 + dBg A\ By Jr*lod(d)*llA)) = Mapm (8.39)

V4 JoMyy

is equal to the ADM mass M 4pys, where 94 is a volume factor accounting for the integration along
the Minkowski directions. This ADM mass is non-vanishing whenever supersymmetry is broken by
(anti-)D3 branes, as it is in the KPV set-up for metastable states. In the UV, Bs can be integrated over
OMyy. By partial integration and taking into account the fact that we integrate along a boundary, we

see that )
— B = Mappy # 0. (8.40)
V4 JoMuyy

When we combine this with (8.37) and realize that the dilaton and the warp factor do not contribute

at the IR, we obtain the remarkable result

1
— <C4/\F5+BG/\H3) = Mapn # 0. (8.41)

V4 JoMir
This is what we need to argue for the singularities in section 8.3.
8.A.2 Supergravity brane solutions
Near the branes sources (D3 or NS5), we approximate the geometry by a p brane metric:
+1
ds? = A (—e 2 df? + di?) + 27N + r2d03,) (8.42)

where the dilaton and sourced field strength for a Dp brane are

3—
e? =t Py, = e coth BQudQs_, (8.43)
and for an NS5/F1 are
3—p
e =e vt Hy = e coth BQ,dQs . (8.44)
Also,
184 25 . 7-p .7 2 rg P
er=T" = 14 sinh® Bro P /rT P, M =1- 9. (8.45)
T

The T — 0 limit is 3 — oo, 79 — 0 while keeping Q,, = sinh? ﬂrg_p fixed.
Finally we note that at T = 0, the flux density near p-branes scales with the warp factor A as:

_op=3)?

NS5/F1: e3P 2 e a2 ? (8.46)
_o=3)?

Dp: e G PR 12 e Zaoz (8.47)
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8.A.3 Anti-Dp branes at finite T’

The extension of the finite temperature results to anti-Dp branes inserted in throat geometries that
carry Dp brane charges dissolved in fluxes is immediate [166]. The ansatz generalizes to

dsiy = e*tg, datda” +dsj_,,, (8.48)
CP-‘rl = ;p-ﬁ-la?

Hjs = e?—(p+1)A *9—p (OzF(afp + ngp) .

Such backgrounds exist up to p = 6, which describes an anti-D6 brane in a background with Romans
mass and Hj flux carrying D6 charges. As with anti-D3 branes, there is a conserved current that entails
a non-trivial gluing condition between the IR and the UV. Near the horizon in the IR the conserved
charge is given by

2 - 4
f 1 *p+11 A [Fg_p + By A Xg} + *10df, (8.49)
IR+ —P p

+1

and as before this integral has to be positive and finite.

In complete analogy with anti-D3 branes we can investigate necessary gluing conditions to obtain
the same conclusions, except for anti-D6 branes where we find a different result. When p = 6, the
three-form Hj is always proportional to the volume form in the three-dimensional transverse space
(there is no A-cycle) and there is no X term: Hs = ¢®~ 74 «3 Fy). For finite T solutions we further-
more cannot evade the no-go result as sketched earlier, since x3H3 ~ Fy is a zero-form and hence
cannot have a direction along dr. Therefore we still find a singular horizon for anti-D6 branes in flux
background and their T-dual equivalents such as anti-D3 branes smeared on the tip of the Klebanov-
Strassler throat.
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Chapter 9

Antibranes Metastable States in M-theory

This chapter is based on [3].

In this chapter, we study the backreaction of smeared and localised anti M2-branes placed at the
tip of the Cvetic-Gibbons-Lu-Pope (CGLP) background [184]. To this end we derive a Smarr relation
for backreacted antibranes at zero and finite temperature. For extremal antibranes we show that if
smeared they cannot have regular horizons, whereas localised M2-branes can potentially be regular
when polarised into M5-branes, in agreement with the probe result of Klebanov and Pufu [161].
We further discuss antibranes at finite temperature and argue that localised antibrane solutions with
regular horizons are not excluded.

9.1 Introduction

Just as in ten-dimensional supergravity (chapter 8), breaking supersymmetry in eleven dimensions in
a controlled manner remains one of the hard challenges in constructing string theory vacua. In eleven
dimensions, this game can be played by the addition of anti M2-branes to a nontrivial background
flux, in the same manner of anti-D3 branes in ten-dimensional supergravity. As we already briefly
mentioned in chapters 6 and 8.1, brane/flux set-ups have already proved useful in string cosmology
[133, 185], the black hole microstate program [127, 126] and dynamical supersymmetry breaking
in holographic field theories [143, 132, 144, 145, 146]. In eleven dimensions, the stability of such a
background is again complicated to analyse since the decay generically occurs through the Myers effect
[163], with the M2-branes polarising into M5-branes that then subsequently decay. The M2-branes are
then effectively annihilated against flux quanta via brane/flux annihilation [132].

A concrete set-up involves placing anti M2-branes in the resolved cone background of Cvetic, Gib-
bons, Lii and Pope (CGLP) [184] analogous to the Klebanov-Strassler background in type IIB super-
gravity [165]. The CGLP background plus anti M2-branes set-up was analysed using a probe brane in
[161] where it was found that the M2 would polarise to a spherical M5-brane which finds a metastable
state close to the original M2-brane location. Later, various approaches used to study the backreaction
of M2-branes on the geometry revealed a divergent energy density for G4 which could not be attributed
to the presence of M2-branes [162, 186, 187, 188, 189]. One reasonable interpretation of the singu-
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larity is that because the M2s want to polarise to an M5-brane they induce the observed singularity in
G4. The singular flux pile-up could signal that the brane/flux annihilation process occurs classically
rather than through quantum tunnelling [152, 153, 179]. If not, we would expect to be able to hide
the singularity or any polarised metastable state behind a horizon by heating up the branes [169].
Reference [189] found that smeared antibranes exhibit a singular horizon at any temperature. A toy
model analysis of localised branes showed that the result of [189] might be an artifact of the smearing
[173]. In this chapter we aim to determine what is required so that a extremal polarised state exists,
but we also revisit the non-extremal scenario.

In this chapter, we study the backreaction of anti M2-branes and polarised M5-branes in the back-
ground of [184], using the same technique as previous chapter — employed in [168] and further
developed in [166, 2]. After reviewing the essential ingredients of the CGLP background in section
9.2, we derive in section 9.3 the Smarr relation for a system of M2 and M5-branes placed at the tip
of that geometry. It relates the energy measured far away from the branes to the charge and surface
gravity of the M2/MS5 system,

_z kA
681Gy

+ PyvoQm2 + PumsQuis (9.1)

where « and A denote the surface gravity and area respectively, ®y; and Qy2 denote the potential
and M2-charge of the system, while ®\5 and Qs denote the dipole potential and charge of the brane
system. Note that since the M5-branes are contractible, as we explain later, their monopole charge
vanishes. However, we find similar to [190, 2] that the dipole charge of the M5s contribute with a
non-vanishing term to the Smarr relation. A non-vanishing dipole contribution is only possible for
horizons with a non-trivial topology.! In Section 9.4 we warm up by discussing smeared antibranes,
which we will show cannot be regular. Then, in Section 9.5, we extend the results of [162, 186, 189]
to localised branes, showing that extremal anti M2-branes with trivial horizon topology cannot have a
regular horizon. If the horizon topology is non-trivial on the other hand, then the Smarr relation does
not constrain the horizon to be singular. This is most likely the metastable state found by Klebanov
and Pufu [161], although a full solution remains to be found. Finally in Section 9.6 we consider non-
extremal branes. There we argue that localised branes posses at least two possible phases, differing in
their horizon topology, which we briefly discuss. We conclude with Section 9.7.

9.2 Anti M2-branes in CGLP

In this section the smooth background of [184] is reviewed, which is a warped product of R and a
Stenzel manifold. We start with the construction of Stenzel spaces before turning to the full supergrav-
ity field configuration.

Let us consider Calabi-Yau hypersurfaces in C**! with a conical singularity at the origin:

c" = {z eC"tl . 2z = 0} . 9.2)

!0One could wonder whether the backreacted solution has no horizon but is rather supported by a topological contribution
as in [176]. In this paper we will not explore this possibility as we assume a presence of a horizon.
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For n > 3, the base spaces of the cones are Sasaki-Einstein manifolds of dimension 2n — 1 and can be
identified by intersecting C" with the unit sphere in C**!:

Bl ={zeC" : zz=1}. (9.3)

For n = 3 the base space is B’ = T whereas for n = 4 the base is B” = V5 5. A resolution of the conical
singularity of (9.2) can be achieved by modifying the defining equation by adding an inhomogeneous
term to the right hand side

Cl={zeC"! : zz =€}, (9.4)

where € € R. For n = 2 the hypersurface is the Eguchi-Hanson resolution of the A; singularity [191]
while n = 3 gives the well-known deformed conifold [192]. The explicit metrics can be derived using
a Kahler potential K which only depends on the variable

p=2iZ , (9.5)
and satisfies the differential equation [193]
)" + (p* = )K" (K')" =, 9.6)

for some normalization constant c. After solving this equation the metric can be written down

n+1 n+1
ds3, = K'(p) Y dzdz + K"(p) > |zdz]* . 9.7)
=1 =1

We will focus exclusively on n = 4 with ¢ = 9/4€3 for which an explicit form of the metric can be
found in [161]. Since we do not require its explicit form we omit writing it. From now on we will
rescale our coordinates to absorb ¢, then the coordinate p ranges between 1 and oo and for large p the
metric reduces to that of the cone (9.2). Finally, for p = 1 the metric reduces to that of a 4-sphere with

radius /3/2.
The CGLP background

The supergravity background of [184] is a warped product of the metric (9.7) with n = 4 and flat
3-dimensional spacetime:

ds? = H23(— dt* + (da")? + (da?)?) + H'/3ds? . (9.8)

This metric solves the Einstein equation derived from the action of 11-dimensional supergravity

1 1 1
= -_— = - = A .
167TGN/{*11R 5 *11 Gy NGy 6G4/\G4/\ 3} , 9.9
where the form fields are
Gy = —vols AdH ™ + muwy (9.10)
G7 =x11Gy = H? s dH ' — mH 'vols A wy . (9.11)
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Here vols = dt Adz! Ada? and wy is an anti self-dual closed 4-form on C2, m is a constant and xg is the
Hodge operator on ds2. The Bianchi identity dG4 = 0 is trivially solved for (9.10) whereas the Bianchi
identity for G7:

dG7+%G4AG4 =0, (9.12)
implies
dxg dH = %m2 *g Wy A\ Wy (9.13)
which can be written as
ViH = f%mz\md? : (9.14)

This equation can be integrated assuming H = H (p) and regularity at p = 1 [184, 161]

oo
H=co+ (12° 38)1/4m2/ a

—_— 9.15
(appi/s (1 — 12 ©-15)

The constant ¢, controls the asymptotic behaviour of the solution. We will consider both ¢y = 0 for
which the metric is asymptotically AdS4 x V; 2, and ¢g # 0 for which the solution is asymptotically Ricci
flat, R12 x C%. For ¢y # 0 we can rescale the coordinates as well as m to absorb ¢y. Therefore we will
only consider ¢y = 1 in addition to ¢y = 0.

Probe anti M2-branes

Anti M2-branes placed in the M-theory background just described experience a radial force which pulls
them towards the resolved tip of the cone. In [161] Klebanov and Pufu performed a probe analysis
to determine the behaviour of p anti M2-branes sitting at the tip. In this section we review their results.

Locally, close to the tip, the metric (9.7) reduces to the metric on the 4-sphere
3 .
ds? 13 [dep® + sin® dQ3] | (9.16)

where dQ)3 is the metric on the round three-sphere and 1 € [0, 7] is the azimuthal angle on the four-
sphere. Without loss of generality, one may assume that the antibranes are initially located at the
North pole, with ¢ = 0. The interaction between the branes and the background flux gives rise to a po-
larisation process through the Myers effect. Concretely, the anti M2-branes polarise into an M5-brane
carrying finite M2 charge wrapping a finite size S® at a certain value of 1.

The probe calculation follows closely the initial work of [132]. By evaluating the Lagrangian of
a probe M5-brane with p units of M2 charge, one obtains an effective potential as a function of the
azimuthal angle and the ratio p/M, where M is the total G flux threading the four-sphere:?

1 G = 187%m
T @rl)? Jo T (2m,)3

(9.17)

Depending on the value of p/M, this potential has either only one absolute minimum at 1) = =, corre-
sponding to the supersymmetric state where the M5-brane has p — M units of M2-brane charge which

>We use conventions where 167Gy = (2)%(5.
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preserves the same supersymmetry as the flux background, or one absolute minimum at ) = 7 plus a
local minimum at some value 1) = ¥y, corresponding to a metastable polarised state.

The analysis of [161] was carried out after a dimensional reduction along one of the coordinates
of the anti M2-branes. We then have anti fundamental strings in type IIA supergravity, which polarise
into D4-branes. The polarisation angle v, is found at the minimum of the polarisation potential

V() = y/hsin® o + U2 () — U ()., (9.18)
where L 5 ) ’
U(w):§cos w—gcosw—l-i—m, (9.19)
and H(1) ¢ 3\t et
=562 = g6,z <4> /31/4 T~ 0.0114 (9.20)

where we used that m > 1. In Figure 9.1 we plot the polarisation potential for different values of p/M.
A metastable minimum of the potential only exists for small range of parameters 0 < p/M < 0.0538.

Furthermore, for small p/M the minimum satisfies

I p
2 o
¢min ~ SIM . (9~21)
0.06 I
p/M = 0.00 ——
p/M = 0.01
p/M = 0.03 ——
p/M =0.06 ——
0.04 i
E
>

0.02

/4

Figure 9.1: The polarisation potential V() for different values of p/M.
of the metastable minimum given in eq. (9.21).
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9.3 A Smarr relation for M2-branes

In this section the Smarr relation (9.1) for p anti M2-branes in the CGLP background with flux number
M is derived. It will be assumed that p/M < 1, in line with [161]. In Sections 9.4, 9.5 and 9.6 we
then use this formula to constrain both extremal and non-extremal antibrane solutions. It is found that
smeared and extremal pointlike anti M2-branes are not consistent with the Smarr relation, whereas
polarised and non-extremal states are. Our approach is reminiscent of the one employed in [168] and
later [166] for type II antibrane systems. In Appendix 9.A.4 we derive the Smarr relation for such
set-ups.

In order to perform the calculation, an important assumption is made that asymptotically, far away
from the tip of the cone, the solution should look like the CGLP solution described above. In particular
the M2 charge measured at infinity is fixed to the one for a CGLP background for a given m. When
the antibranes are introduced m is adjusted so that the charge remains the same. This will lead to a
nonvanishing ADM mass measured at infinity as it will be explained in Section 9.5. It is the aim of
this section to obtain the Smarr relation between the ADM energy density, area, charge and chemical
potentials of the antibrane system.

The full antibrane metric is assumed to take the form
ds?, = 24 (—e2fdt2 +(dzh)? + (dx2)2> +ds?, (9.22)

where ds? is a modification of the metric on C} which takes into account the backreaction of the M2
branes on the flux background. We omit writing an explicit warp factor in front of the 8-dimensional
metric but assume that asymptotically, for large p,

dsg — HY3ds? | (9.23)

where ds§ is given in eq. (9.7). Note that we have introduced a metric function e/ that breaks the
Lorentz symmetry of R to incorporate a possible non-extremal state. The metric is general enough
to describe either a stack of anti M2-branes or polarised M5-branes carrying M2 charge.

In the following it will be useful to introduce notation for the gauge fields that is adapted to the
metric (9.22). We write

Gy = —e* " vols A Fy + Fy (9.24)
Gr = 63A+fV013 NFy+ Fy (9.25)
which implies Fy = xgFy and F; = — g F}. In this section g refers to the Hodge operator on ds2. With

these definitions the equations of motion in absence of source terms take the form

dF7+%F4/\f7‘4 = 0, (9.26)
dS" R+ SR AE = 0, (9.27)
A4 Py = o, (9.28)

dFy, = 0. (9.29)
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For pointlike M2-branes in the internal space, only eq. (9.26) receives a delta function contribution
on the right hand side. For M5-branes that wrap three internal dimensions only eq. (9.29) receives
a contribution, unless the M5 carries M2 charge which then disguises itself as a contribution to eq.
(9.26). For large p, the asymptotic expansion of all field strengths and warp factor should equal the
one for the CGLP background to leading order. Beyond leading order, fields will generically differ from
their background values. We therefore let

el 51, A5 g, (9.30)

as p — oo.

We will from now on assume that there are globally well-defined gauge potentials for F; and F1,
defined by
AP =dCy  and  SE =dCs - CoFy . (9.31)

Despite the suggestive notation, Cy appears in the Wess-Zumino (WZ) terms for M2-branes while Cj
appears in the WZ terms for M5-branes. In the limit p — oo the potentials reduce to

Co— H' and C3—0, (9.32)

and so these are globally defined for the CGLP background. The presence of M2-branes or their
polarised state does not affect the existence of Cy and (5 in line with the discussion below egs. (9.26-
9.29). The gauge transformations that leave the field strengths invariant are

6Cy=0, 5C5=d\s. (9.33)

ADM energy

We now turn our attention to the ADM energy density of the anti M2-branes. We will relate it to
the potentials Cy and C3 evaluated at the horizon of the brane configuration. The general expression
for the ADM energy density of a p-brane configuration in D dimensions is derived in Appendix 9.A.1,
which extends the results of [194] to spacetimes which are not transverse asymptotically Ricci flat.
The result is

1 1
= — A A _ A .
3 167TGNJ{O*D {dn/\ pHEATAN + 5——adnA L) (9.34)

where Ay = Ay A--- A )(p), 11 is @ one-form dual to the timelike Killing vector 9; and ) ;) are one-forms
dual to p spacelike killing vectors 0,.:, ¢ = 1, ..., p. Finally, £ is a one-form that takes care of subtracting
the background contribution to the energy density and corresponds to adding a counter-term to the
action

/ dxp €. (9.35)
We normalize the energy with respect to the CGLP background for which (see Appendix 9.A.1)
¢ =dlogH . (9.36)
Using this (9.34) reduces to
_ bV sagy
- 16WGN3fie ws d(9A +Tf + 3log H) . 9.37)
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9. Antibranes Metastable States in M-theory

We now use the Einstein equation to bring the integration surface from p — oo close to the horizon of
the branes. To this end we write the components of the Einstein equation along the brane worldvolume,

1 -
Ry + <G (2\F7\2 n |F4]2) —0, (9.38)

for u,v = 0, 1,2. Using the form of the metric (9.22) the Ricci tensor on R can be explicitly written
down,

Roo = —goo [Os(A+ f) + V(BA+ f) - V(A+ f)] (9.39)
Rij = —gij [OsA+ V(3A+ f) - VA] , (9.40)

where 4,7 = 1,2 and the dot-product is performed using the transverse metric ds3. The Einstein
equation (9.38) reduces to two differential equations that will enable us to rewrite the ADM energy,

d(e3A+f*8df) — 0, (9.41)
e3A+f
3

1 -~
d(e3A+f X8 dA> X8 (|F7|2+2|F4|2> . (9.42)

We define an 8-dimensional submanifold Mg that has boundaries at p — oo and at the horizon of the
brane configuration. Using the above differential equations together with (9.37) yields

L 1 [ sasr
= = d(94
& 167G 3 ﬁ e *3 d(9A + 7f)

1 1 -
/ e3A+f *8 <|F7|2 + 2|F4|2) (943)
Mg

B 167G N
f e34+f xgdlog H ,

1
+ 167G N

where the subscript H in the first term denotes the horizon.

We will analyse the three terms of (9.43) individually. First, by construction the warp factor A is
completely regular at the horizon and?®

34t 50 as p—opm. (9.44)

This implies that we can rewrite the first term of (9.43) as

1 7

% e3Ats *8 d(9A + 7f) = —% *11dn A )\(1) AN /\(2) . (9.45)
3 u 6 Ju

The integral on the right-hand side above yields exactly minus two times the horizon surface gravity «

times the effective area of the horizon A [195, 194] (see also Appendix 9.A.2), and so

7 kA
687Gy

1 1

- .46
16mGn 3 (9.46)

f{ 3 g d(9A + 7f) =
H

*Note that for extremal horizons A diverges, wheras f vanishes. It is simple to verify that all results obtained in this
section are valid also for extremal horizons taking the limit f — 0.
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9.3. A Smarr relation for M2-branes

The second term of eq. (9.43) can be rewritten using (9.26-9.28) together with the definitions (9.31)
63A+f *8 (2|F7|2 + ‘F4|2> = d(Cg A F4 + 200F7) . 9.47)

The bulk integral can therefore be transformed into a surface integral evaluated at the horizon and at
infinity. At infinity we can use the behaviour of the fields (9.30-9.32) so that

1 1 I 1 . _
167rGNj{ (203 N Fy+ C'OF7> RERTIe jl{ CoFr = —Qwme pli)rgloH L), (9.48)
where? 2
_ P2 _ M
Qm2 = Qcarp = 2rt,)f /F7 = M2 (9.49)

is the M2 charge of our solution which we assume to be the same as the one of the CGLP background
(see Appendix 9.A.3). When ¢y = 0 the term (9.48) diverges as p°/* but is exactly cancelled by the last

term in (9.43)
1

167Gy
Combining the above results we can write the ADM energy as

7 kA 1 1 -
= - — F Frl . 51
E 687TGN+167rGN}[H<203/\ 4+ Co 7> (9.51)

f{ e34%f wg dlog H = Qcaip pli_{go H(p) . (9-50)

For the CGLP background the horizon area vanishes and the regularity of the background ensures that
the second integral also vanishes so that we end up with the expected result

Ecaip =0 . (9.52)

The equation (9.51) has non-trivial implications for the consistency of the supergravity solutions de-
scribing anti M2-branes and polarised M5-branes at the tip of the cone. It allows us to relate the UV
behaviour of the solution, characterized by the ADM energy measured at infinity, to the IR structure
of the horizon. In [166] and in the previous chapter such a relation was used to argue for a singular
flux at the horizon of localised anti D3-branes sitting at the tip of the Klebanov-Strassler background
as a result of demanding a non-vanishing ADM energy. However, we will use (9.51) in a somewhat
different way: we will assume that the solutions have regular horizons, and from there on investigate
what it implies for the ADM energy measured in the UV.

Charges and potentials

We now close the ADM discussion by interpreting the last term in (9.51). First of all, from the equations
of motion (9.26)-(9.29) we can write a local gauge potential for Fy:

. I | .
Fy=dHs, Fr = F7; — 57‘[3 NFy, (9.53)
where F is a closed 7-form. With this we can rewrite the horizon integral as

}1{ (;(Cs — CoMs) N Fy+ COF7) . (9.54)
H

*In our units the charge of a single M2-brane is um2 = 2n/(27f,)® and the unit charge of an M5-brane is ums =
21 /(27L,)".
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9. Antibranes Metastable States in M-theory

The integral involving Cjy and F» has the structure of the potential-charge (®p2Qwm2) term that is
standard in Smarr relations for black holes. Indeed, we will see that Cj is constant at the horizon.
Moreover, the integral of £, corresponds to the Page charge sourced by the branes, and hence measures
the localised M2 charge present in the geometry through

_ kM2 =
QM2 = 5 6 f fr (9.55)
We are left with )
=9 5
167rGN]£ICO 7 M2@m2, (9.56)

where ®y2 equals to the gauge potential Cy evaluated at the horizon:
Pp2 = Colm - (9.57)

As for the other term in the integral (9.54), we will now argue that the three form (C3 — CyH3)
restricted to the horizon is closed. The Einstein equation for 11-dimensional supergravity takes the

form
1

2 -3l
from which we derived eq. (9.38). At the Killing horizon of the timelike Killing vector ¢ we have®

1
Ry — G uprpaps G177 + 69W|G4|2 =0, (9.58)

€*=0 and ¢"¢“R,, =0. (9.59)
Contracting the Einstein equation with ¢ at the horizon yields

LeGal2 = 0. (9.60)

Analogously we can write the Einstein equation in terms of the dual field strength G7 and run the same
argument to show that at the horizon
lLeG7* =0 (9.61)

Using the definitions (9.24) and (9.25), we can rewrite the previous equations as:

e M3 2 = e *dCy2 = 0, (9.62)
e 43T B2 = e 403 — CoFy> = 0. (9.63)

It follows that Cj is constant along the horizon as stated before and furthermore that C3 — CyH3
restricted to the horizon is closed. The latter allows us to write

C3 — CoH3 = w3 + exact (9.64)

where ws is harmonic at the horizon. Furthermore since dF; = 0, the integral of (C5 — CoHs) A Fy

reduces to 0
- - 2
?{ (C5 — CoHs) A Fy —% w3 NEFy = (276y)
H H

Py Qs - (9.65)

>The second equality follows from the Raychaudhuri equation.
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9.3. A Smarr relation for M2-branes

Here the M5-charge Qs is defined by

_ HMm5 =
Qs = gt /M4 P, 9.66)

where M is a submanifold of the horizon which is related to the Poincaré dual of w3 by a constant of
proportionality 2®y;5. We are now in position to write Smarr’s relation for a system of anti M2-branes
normalised for the background energy of the CGLP background:

7 kA

687G N
The numerical factor 7/6 seems rather ad-hoc in this equation but is correct. We can see this by
deriving the first law of black hole thermodynamics. It is easy to verify that  scales with the area in a
non-trivial way

+ Pp2Qmz + PusQuis - (9.67)

(k] = L7 = [A]7Y7, (9.68)

whereas the chemical potentials do not scale with the charge. Using this, the first law takes the
expected form
d€ =

dA + (I>M2 dQMZ + (I)MS dQM5 (969)
87TG

Relation to on-shell brane actions

In [168] a similar relation between brane charges and the cosmological constant of a compactification
of type II supergravity was obtained. There the derivation relied on using delta functions in the equa-
tions of motion, which result from varying the brane worldvolume action. This is only relevant for
extremal branes for which the worldvolume actions are known. We can also do this in 11-dimensional
supergravity where the modified form equations of motion (9.26) take the form

1. -
dF7 + §F4 ANFy = Qw208 — QusF3 A 05, (9.70)
dFy = —Qus0s . (9.71)

In these equations F3 is the self-dual tensor field living on the M5 brane. It is fixed by gauge invariance
of the M5 action to be 73 = dby + A3 with by a 2-form and A3 the gauge potential for G4. The Einstein
equation will also receive delta function contributions from the DBI actions of the branes but since we
only use its external components in the derivation of the ADM energy, we only need to consider the
couplings to form fields.

We can now repeat the evaluation of the ADM energy using delta functions in the equations of
motion, following closely the calculation performed in the last two subsections. All equations remain
unchanged up to (9.47), which now takes the form:

M s (2AFTP + [F1f?) = d(Cy A Fy+2C0F)
—(C3 = 2F3Ch) A Qusds — 2CoQm20s (9.72)

where b, is assumed to only have legs transverse to the M2 worldvolume. The first term of equation
(9.43) is zero since we only discuss extremal branes, the second one reduces to an integral over the
delta functions after cancelling the infinite contribution using the third term:

£ = QM2/0058 + — Qs /(03 — 2]:300) A 05 . (9.73)

111



9. Antibranes Metastable States in M-theory

Note that we have assumed that the delta functions take care of the singularities and that the total
derivative in (9.72) is free of any singularities. Identifying the chemical potential ¥y, with Cy and
®ys with the integral

1
Py = 5 /(03 — 2.7'—30()) Ads , (9.74)

we reproduce the Smarr relation (9.67). It is interesting to note that the Smarr relation has the form
of a sum of on-shell brane actions in analogy with the results of [168]. A recent paper has suggested
that this is not an accident and in general the on-shell actions of branes will arise in the calculation of
the on-shell gravitational action (or free energy) of a given system [196].

9.4 Smeared anti M2-branes

As a warm-up we will start by considering smeared antibranes. Smeared branes preserve the full
SO(5) symmetry of the 4-sphere at the tip of the background. This implies that the gauge potential C3
vanishes. Regularity of the horizon then implies that

Oy = Colag =0, (9.75)

as follows from eq. (9.63). Finally, it easy to verify that a Smarr relation for smeared branes cannot
have a dipole contribution. This follows from eq. (9.65) together with the previous result that C3 =
Coy = 0. The final Smarr relation for smeared branes then takes the form

7T kA

= — . .76
687 Cn (9.76)

Such a Smarr relation cannot be attributed to branes with antibrane charge. In particular an extremal
limit would give zero energy to the Smarr relation which cannot represent a stack of supersymmetry
breaking antibranes sitting at the tip of the geometry.

This result has previously been observed as singular backreaction of the antibranes on the flux
background [162, 186, 189]. Our calculation does not allow for such a singularity since we assumed a
regular horizon. If we would not have done so, then we could not conclude that ®yj, vanishes, but we
would then also see that the solution exhibits the previously found singularity, so the final outcome it
is the same in both approaches.

9.5 Extremal anti M2-branes

In this section we use eq. (9.67) to constrain localised extremal antibrane solutions. Extremality
implies that (9.67) reduces to

E = Oyv2Qm2 + Pums Qs - (9.77)

All quantities on the right hand side of (9.77) are evaluated in the limit of zero horizon area. For the
set-up in question, the ADM energy measured at the UV is proportional to two times the red-shifted
tension of the p anti M2-branes sitting at the tip of the throat [161],

& = 2pTpe®/? . (9.78)
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9.5. Extremal anti M2-branes

Here e34 is the red-shift factor generated by the warping of the background evaluated at the tip. This
equation can be understood as follows. We fix the M2-charge at infinity to be the same as for a CGLP
background with a given m, which is proportional to the total G4 flux threading the 4-sphere M, see
(9.17). This charge is calculated in Appendix 9.A.3 and it is given by

81mwim?2 M?

W = M2 (9.79)

Hm2

Qcarp = / Fr = pvi2
( 77[17>6 V5’2

For every anti M2-brane introduced into the background, m must be adjusted so that the charge re-

mains constant. This is equivalent to adding an M2-brane together with every anti M2-brane at the tip

of the geometry which explains the factor of 2 in eq. (9.78).

There is the further constraint from eq. (9.63) that restricted to the horizon,
dCs = CyFy . (9.80)

We now focus on the component of this equation along the 4-sphere at the tip. F; must be proportional
to the volume form on the 4-sphere at the tip, since its integral there is proportional to M. The
symmetries of the solution require that the only component of C3 along the 4-sphere takes the form

f(p,¥)volgs (9.81)

for a function f of the cone coordinate p and the azimuthal angle ) on the 4-sphere with the antibranes
sitting at ¢ = 0. Since Cj is globally defined by construction, we conclude that f(p, ) should reach
either a minimum or a maximum at the poles, and therefore dC; restricted to ¢ = 0 at the tip vanishes.
Then eq. (9.80) yields:

CQ‘H =®yp =0 (9.82)

for pointlike antibranes. The conclusion is that the first term in the right-hand side of (9.77) cannot
contribute and the Smarr relation reduces to

& = PmsQus - (9.83)

Moreover, it is simple to see that for a pointlike horizon, just like for a smeared one, the M5-charge
Qw5 as defined in (9.66) is zero. This can be seen by freely transforming the integration domain in
the definition of Qys in (9.66) to infinity using the fact that F} is closed. Since we demand CGLP
asymptotics, and therefore no M5 charge as measured at infinity, we obtain

Qms =0. (9.84)

This means that the Smarr relation will imply £ = 0, which cannot be because there is a stack of
antibranes sitting at the tip which do contribute to £. We conclude then that there is no way to satisfy
the Smarr relation (9.77) for extremal anti M2-branes present at the tip.

Crucial steps in our argument above was that F; was regular at the horizon and that we could freely
transform the integral of Fj to infinity where it is zero, thereby leading to a contradiction. Once the
antibranes polarise to spherical M5 branes with induced anti M2-charge both of these arguments break

113



9. Antibranes Metastable States in M-theory

down. First of all we do expect a singular F} close to an M5-brane to account for the charge. Secondly,
since the topology of the polarised state is non-trivial one cannot freely transform the integral of F
to infinity. In fact, there will be obstructions whenever the integration surface M, is non-trivial in
homology on the horizon (see figure 9.2). Note that for M5-branes the horizon is not 7-dimensional as
for M2-branes, so three of the directions in the integral

7{ (C5 — CoHs) A Ey (9.85)
H

are parallel to the brane worldvolume. It is for this reason that we clarify that the integration surface
in eq. (9.66) must be non-trivial as for example in figure 9.2 in order to give a non-vanishing con-
tribution. As already noticed in section 8.5.3 for the polarized NS5 brane, the polarized antibranes
have much in common with black ring solutions in five dimensions [190], whose thermodynamics was
studied in [182]. The black rings had the surprising feature that the dipole charge entered into the first
law. This was understood as a consequence of the horizon not being spherical as was previously as-
sumed in the black hole thermodynamics literature. If Qus, which we will denote as the dipole charge,
is non-vanishing we can obviously satisfy eq. (9.77).

In the set-up we are considering, we expect the M5-branes to source a component of C5 extending
along the three-sphere they are wrapping. In fact there is a very natural way of satisfying the Smarr
relation by letting again Cy|y = dC3|y = 0 and C3 = f(v)volgs , so that the gauge potential C5 equals
the volume from on the brane times a function f(¢)). Then the potential ®ys is proportional to f(¢'x),
the function f(¢)) evaluated at the polarisation radius. The Smarr relation (9.77) reduces to

2pThae*t = € = OysQus = pms f (V) - (9.86)

Where we used that Qs is the charge of a single M5-brane, 5. Comparing to the probe result (9.21)
we can rewrite this as )
37 p
fn) = g7 - (9.87)
We learn that in order to recover the probe result in the p/M — 0 limit of the backreacted solution,

the function f(¢ ) should scale as 1%.

9.6 Black branes

After having discussed extremal antibranes, let us take a look at what would be the effect of heating up
the system away from extremality. The Smarr relation (9.67) now also includes non-zero contributions
from the area,

7T kA
E= 687I:GN + Pp2@mz2 + Pms Qs - (9.88)
Remember that 4
K
SnOn TS, (9.89)

where T is the temperature and S is the entropy of the black brane. Starting from the extremal state
discussed in last section we expect a near-extremal antibrane to have a non-trivial horizon topology.
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A

</ =

Figure 9.2: The left figure depicts a black M2 horizon for which the dipole charge vanishes. Since F} is regular
and closed, the integration surface M, can be shrunk down to zero size which implies that Qs = 0. In contrast
the fact that polarised antibranes have a nontrivial horizon implies that the dipole charge can be non-zero.

This corresponds to a black M5-brane wrapping a contractible three-cycle on the four-sphere at the tip
of the cone. The dipole M5-charge does not vanish (see figure 9.2) if the topology is non-trivial and
®pp can be small, or zero as in last section. As the horizon area increases we expect an instability
towards a collapse to a spherical black brane which cannot support a dipole charge (see figure 9.2). A
regular horizon then demands a cancellation between the form fields

dC5 — CoFy =0, (9.90)

when restricted to the horizon. This spherical phase, however, does not have a regular extremal limit
and so we expect that below some critical area A the dominant phase has non-trivial topology. In
figure 9.3 we sketch these two phases as horizons in the p — 1) plane close to the tip.

Let us remark that the spherical phase of anti M2-branes (as well as anti D3-branes) was studied
in a linear approximation in [173], where the branes were inserted in a toy model background which
captures some of the features of the set-up studied here. There it was observed that the spherical
antibranes become singular as the area shrinks to zero size which is consistent with our results.

9.7 Conclusion

In this chapter we derived the Smarr relation for anti M2-branes (and their polarised state) immersed
in the CGLP background [184]. We followed a similar procedure as in [168, 166] where the super-
gravity equations of motion were combined to find a constraint on the boundary conditions of the
solutions at the antibrane location. We showed that these constraints arise when trying to satisfy the
Smarr relation (9.1). We argued that smeared antibranes do not satisfy the Smarr relation without a
singular horizon in agreement with [162, 186, 189]. We extended these results to localised extremal
anti M2-branes in the CGLP background, and showed that these also cannot be regular while satisfying
the Smarr relation. The relation can however be satisfied for an extremal polarised antibrane, i.e. an
MS5-brane with induced antibrane charge. A crucial feature of the polarised brane is that the dipole
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p p
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Figure 9.3: The left figure represents a spherical black M2 horizon for which Qs vanishes. The right figure
depicts a non-extremal M5-brane with induced antibrane charge. For small horizon area we expect the latter to
be the dominant phase.

M5-charge is nonzero. We do therefore not find a contradiction with the probe results of Klebanov
and Pufu [161]. Let us stress that moving away from smeared branes and discussing fully localised
branes was crucial to reach this conclusion. Finally, by combining the probe results with ours, we give
boundary values for the form fields that could serve as starting points for numerical study of the full
supergravity solution.

We briefly discussed non-extremal antibranes where we expect at least two phases differing in their
horizon topology. We argued that an antibrane with trivial horizon area is unstable towards a black
ring-like state for a small horizon area. We leave a closer study of the different phases of antibranes
in flux backgrounds and their instabilities to future research. The technology used in this chapter
could also be employed to study black hole microstate backgrounds that make use of antibranes as
their method of breaking supersymmetry. The antibrane charge is carried by a non-supersymmetric
supertube that polarises and carries dipole charge. It would certainly be interesting to analyse whether
conditions posed by the Smarr relation can be used to evaluate the accuracy of probe calculations for
supersymmetric and non-supersymmetric supertubes.

9.A Appendix

9.A.1 ADM energy for p-branes in general backgrounds

In this appendix we extend the Komar integrals for asymptotically flat black branes of [194] to black
branes with arbitrary asymptotics. This is the Noether procedure presented for instance in [197],
namely the its Section 4.1.2, where it is explained that the Einstein-Hilbert action, as it is invariant
under general coordinate transformation, it let us define a Noether current which will help us to define
the Komar mass (in its Section 6.2). What is more important is that, in the same Section 4.1.2, we
are learned how to by adding boundary terms in the action this will we can correct or renormalize
conserved quantities that otherwise will be infinite. This method leads to Komar-like integrals and is
closely related to the approach of [198], which one can use to calculate the energy of a p-brane in
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D dimensions with an asymptotically flat transverse space [194]. So the moral of the history is that
the main ideas of [194] generalize to non-asymptotically flat p-branes in a natural way, by adding a
counter-term to the action that takes care of the infinite contribution of the background.

First of all, we consider the solution obtained by dimensionally reducing along the p spatial di-
mensions of the brane. The reason for doing this is that if we are willing to work with Komar surface
integrals, we have to acknowledge the fact that they are are uniquely defined for p = 0 (up to a nor-
malisation factor) as opposed to p > 0, where the formula for the energy density it is not an obvious
generalization of the p = 0 case, because there will be contributions of the brane tension as well [194].
Luckily it is easy to avoid this subtlety performing first the dimensional reduction and reach the p = 0
picture. To this end, we write the metric as a warped product

ds% = gU(x)da:[dx‘] + () gmn (y)dy™dy™ , (9.91)

with I, J =0,p+1,p+2,...,D—1and m,n = 1,2,...,p. We will assume that the solution is maximally
symmetric along the p spatial directions of the brane. In the D-dimensional theory, the Einstein-Hilbert
term in the action is

/dD PadPy\/—9D—p\/9p vP?R (9.92)

where gp_, and g, are the determinants of the (D — p) and p-dimensional metrics, respectively. Let us
now define

/ dPz/gR =

167 G(D) 167 G(D)

p
grjg =vb—r=2gr;. (9.93)

For this tilde metric g; s, one has

\/ —gpprD,p = \/—gD,pvp/QRpfp +(G-), (9.94)

where (- --) are terms containing the vector and scalar fields that we get from the metric when dimen-
sionally reducing. With the transformation to §;; we get the usual Einstein-Hilbert term in the reduced
action, with Newton’s constants related as usual through

P =cP? .vol,, Vo, = / 4Py /Gp - (9.95)

Our solution is here just a point-like black hole, for which we can use the Noether approach in order
to compute its mass as explained in [197]. To do this, we need to find a one-form ¢ such that the
combination (d7 + ¢ A 7) vanishes asymptotically, and is identically zero for the background metric.
Here, 7 is the timelike Killing vector of the tilde metric. To find this (, we can can evaluate 7 for the

background:
(D=2)
i = Goodt = e 22" dt (9.96)
. 2(D 2) 14B
dn = Dy 2dA AT, (9.97)
where ¢24” is the warp factor of the background solution. This implies that
__2D=2) 4um
¢ = D o 2dA (9.98)
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We are now in state of calculating the ADM energy. It is given by [197, 194]

1 D—p—2
167Gy P D —p—3"

M:Nf;D_p(dﬁJrg/\ﬁ), N=— (9.99)

This formula follows from adding a total derivative d*xp_,( to the original Lagrangian [197], which
will serve as a counter-term for the infinite contribution of the background to the energy. We remark
that

(D—p—4)

Fp_p(dt Adr) =e Dz Aup_, (dtAdr). (9.100)

- — 205 .
Further, we know that 7; = eP-r=2""1, so our expression for the mass becomes

M= NfepA xD_p [dn—i— %Hd(QA) An+CAnl. (9.101)
For the next step, we need the following relation:®
*pdyt A AdyP Adt Adr = e PAxp , dt Adr, (9.105)
so that
M:N]{esz*DdylA_..AdypA dn+D+p_2d(2A)An+§An . (9.106)

Finally, recalling our definitions of the one forms associated with the spatial Killing vectors
Xi = gady' = e*dy’ (9.107)

we get

1 f{ [ 1
M=————¢4p [AdgANMA--Adg+ —=————d AN A---AN)
167G\ " D-p-3 '

FEANAM A AN (9.108)

where we defined D 5

—p—
=—C. 9.109
€=p— 3¢ (9.109)
For our set-up, we have
¢ =dlogH . (9.110)
®We normalise the Hodge operators in different dimensions by demanding volp = vol, A volp_,, where

volp = /gpdt Adr Ady* A+ Ady? AdzPT2 A AdaP ™ (9.102)
vol, = \/gpdy' A - Ady” (9.103)
volp_p = \/gp_pdt Adr Ada""? Ao AdzP 7T (9.104)
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9.A.2 Surface gravity and horizon area

In this appendix we derive the form of the x.A term appearing in (9.46) in a general set-up, with that
equation being a special case. Let us consider a static metric of the form

ds? = —e2fMggodt? + g datdz” 4 e 2INar? 4 gijdz'da? | (9.111)

where p,v = 1,...,pand i,j = p+ 2,...,D — 1. The factor e?/ vanishes at the horizon, while the
component o is regular.

For the timelike Killing vector with components & = 4/, the surface gravity « is defined as

Kk =+/0,VOrV , V= /=&, (9.112)
with both terms evaluated at the horizon. Clearly for the metric at hands
V =+ve2l gy , (9.113)

so that at the horizon

2 _ (8r€2f)2grrg()0 - (8r€2f)2§00

LY = ¢"" (O, — 11
0, Vo'V =g (0,V) 17 1 , (9.114)
where we have taken into account the fact that there ¢2f — 0. Hence
1
K= 5\/gooare%‘ . (9.115)
Next, we have
dn = d(—ezfgoodt) = —§00(6r62f)d7“ Adt . (9.116)
Therefore
*D d77 AXN A A )\p = —\/§00<ar62f)\/% VOlD_Q_p (9.117)
= —2k,/gp volp_o_, (9.118)
at the horizon, so that
j{ *D dT]/\)\l/\'--/\)\pI —2kAeff (9.119)
H
with
At = 7{ Vpvolp_o_p . (9.120)
H

In the main text we avoid writing explicitly the subscript of Aeg.
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9.A.3 M2 charge of the CGLP background

The total M2 charge of the background as measured at the UV can be computed by integrating G
along the base of the cone for large values of the radial coordinate p. Asymptotically, from (9.15) we
see that

H(p) ~co+ 2%3%m2p_% : (9.121)

At the UV, the component F; of G7 with all its legs on the base of the cone is
Fr~2:3Tm2p % xgdp. (9.122)
As explained in [161], it is useful to perform the coordinate transformation

1
33 s

p= 1 7‘§, (9123)
in which the metric of the cone becomes ds§ = dr? + r*dV%,. Then we find
Fr = 273m*r ™ xgdr . (9.124)

From the form of the metric, it is clear that xgdr = r7volvs’2. The volume of the base is calculated in
[199], and it turns out to be equal to 337*/27. Therefore the total M2 Maxwell charge of the CGLP

background is
0 8174 m? M?

M2

9.A.4 ADM energy for D-branes

In this appendix we present a general derivation of the ADM energy for Dp-branes immersed in flux
backgrounds of type II supergravity with p + 1-dimensional maximally symmetric spacetime. We as-
sume a background three-form flux H3 and (6 — p)-form flux Fs_,, which are internal and support a
smooth asymptotically Ricci flat metric. We also allow for a fluctuating internal (8 — p)-form Fg_,,.
Asymptotically AdS metrics can be treated in a similar way as was done in the chapter.

Once the Dp-brane is introduced into the game, we expect a backreaction onto the metric and the
form fields. The metric splits into the worldvolume metric and a transverse part

ds? = e (e di? + da?) + dsi, | (9.126)
where ¢ and z, span the worldvolume coordinates of the antibrane.
The trace reversed Einstein equation (in Einstein frame) along the brane worldvolume is
1 -3 —1
Ruy = ~1¢ (267l + (7 = p)e™= | Fup 2 + (5= p)e" = | Fsy ) gy (9.127)

The form field equations can be written in terms of the magnetic dual forms

dFpyy = 0, (9.128)
dFpys —H3NFpys = 0, (9.129)
dHr + nFsp Ao(Fpn) = 0, (9.130)
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where = (—1)? and the operator o reverses all form indices. The forms in these equations are related
to the ones in the Einstein equation by the usual duality rules

-3 —1
H7 = e*¢ *10 H R Fp+2 = epT‘z’ *10 J(Fgfp) s Fp+4 = epT¢’ *10 O’(F(g,p) . (9131)

Using the form equations above we write a set of globally defined gauge potentials:

Fp+2 = -nNn O'(Volp_;,_l) AN dAO y (9.132)
Fp+4 = —-n O’(VOlp+1) AN [dAQ + HA()] R (9.133)
H7 = n V01p+1 AN [dA5_p — 77F6+pA0] . (9134)

The existence of these potentials is not affected by the presence of the anti-Dp brane or its polarised
states. We can now rewrite the right hand side of the Einstein equation as

ol (26 9H + (7 = p)el IR 2 + (5= ple 902 By )
= —V01p+1 Ad (—2A5_p ANH — (7 — p)AO Fg_p - (5 — p)AQ AN Fﬁ_p) . (9.135)

Since we want to end up with a ADM energy density we redefine the potentials we work with. Finally
using the form of the metric the worldvolume Einstein equations can now be written as two PDEs

d (e(p+1)A+f *9_p df) = O , (9.136)
d (e(p+1)A+f xg_p dA — B) - 0. (9.137)

where .
B = -5 [245—p NH + (T =)Ao Fs—p+ (5= p)A2 A Foy] - (9.138)

Evaluating the general ADM energy density formula (9.34) we obtain

11
= _- PHDA+AS L0 116dA - 2(8 — p)d 13
167GN T —p Joo *9—p [16dA +2(8 — p)d ] (9.139)

The equations (9.136-9.137) allow us to move the integration surface down to the horizon

1
67GvE = = f (el 1644+ 2(8 — p)df) + 168} - # 108
- H - 0
(9.140)

At infinity we expect that As_,, Ao — 0 while the Ay — 1. The last term will therefore give the Dp
charge of the background, and we can normalise this away in the same way as in the main text by
including a counter-term in the action. Here we will simply drop this finite term from the expression.
The first term in the integrand gives the surface gravity times the area as explained in appendix 9.A.2.

This leaves us with 3 A 1 168
_ . 141
£ 7—p87rGN+167rGNf[§q7—p N

At this stage we define local gauge potentials at the horizon

dBQ = H3 5 dB5,p = 77F67p . (9142)

121



9. Antibranes Metastable States in M-theory

These can be used to rewrite B at the horizon
168 = *2(A5_p + AoBg,_p) A Hs — (7 — p)AO Fg_p — (5 — p)(AQ + A(]BQ) A F6_p ,

where 5 92
F_ =Fy p,———ByANF43_,— —Bs_,ANH
8—p 8—p 7 2 6—p 7 5—p 3

and is closed. The Einstein equations imply that on a regular horizon”’
Hr ) Fpya, Fpyo
go to zero, which implies that the forms
Ay, As_p+AoBs—p, Azx+ AgBo
are closed when restricted to the horizon. This implies that on the horizon we can write

A5_p + AOB5_p = ws—p + €xact, As + AgBy = ws + exact ,

(9.143)

(9.144)

(9.145)

(9.146)

(9.147)

where ws_, and wy are harmonic. Repeating the same arguments as in the main text, i.e. identifying
the Poincaré duals of the harmonic forms and defining the chemical potentials as their proportionality

factors, we are left with

_8—p kA
- T—p81Gy

+ ®ppQpp + Pp(p12)@p(p+2) T PrssEnss -

(9.148)

All the terms in this expression are analogous to the ones we discussed in the main text. (Q)p, is the

Page charge, defined as the integral of Fg_p over the horizon.

“Here we make use of the fact that the D-branes in question are at finite temperature, which regularises their horizon. All

extremal D-branes have singular horizon except for the D3-brane.
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Part IV

Prospect

“Some people see things that are and ask, Why? Some
people dream of things that never were and ask, Why
not? Some people have to go to work and don’t have
time for all that.”

— George Carlin
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Chapter 10
Epilogue

In this section, we discuss our most relevant results in the context of how do they complement ongoing
research, the puzzles that they leave open, and possible future studies where they can be used as a
starting point.

10.1 Non-supersymmetric Black Holes Holography

The understanding of the microscopics of general asymptotically flat black holes in four- and five-
dimensions (which includes the Kerr black hole) remains incomplete. Our focus in this thesis was the
subtracted geometry program, where we concluded that further study is needed on its holographic
properties. It is desirable to know what is the underlying structure giving rise to behavior that, in
principle, one would attach to a dual CFTs.

As we have shown in Part II, the quasinormal frequencies of static subtracted geometries qualita-
tively depart from the BTZ black hole spectrum, casting doubts then on the subtracted geometry/CFT,
conjecture. However, it is important to remember that this result holds only for static (non-rotating)
subtracted black holes. Adding rotation is a natural generalization of our work, and it would help to
increase the knowledge over the underlying structure of the subtracted geometry/CFTs. It would also
be interesting to study the conformal properties of subtracted geometries in the magnetic frame, which
after an uplift are locally a product of AdS3 and a sphere. If this non-uplifted subtracted geometry also
shows non-conformal features, just as in the electric frame, it would be interesting to see how the uplift
restores the conformal symmetry.

Another interesting research direction is the holographic study of subtracted geometries. Sub-
tracted geometries have non-standard time scaling, reminiscent of Schrodinger [200, 86] and hy-
perscaling violating Lifshitz spacetimes [87]. These non-relativistic spacetimes are known for their
applications to condensed matter systems via the gauge/gravity duality [201, 202, 203]. They also
extend our knowledge of this duality beyond the traditional AdS/CFT, allowing a better understanding
of the holographic relation between field theories and gravity. It is interesting then to see if subtracted
geometries can make contributions in the same fashion of the above-mentioned non-relativistic space-
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times.

10.2 Metastable Nonsupersymmetric Vacua

In Part III of this thesis, we discussed metastable states in string theory. Related to this, we consider
that there are two studies interesting to pursue. One is to apply the same method used in chap-
ter 8 and 9 to scrutinize supergravity configurations consisting of antibrane charged supertubes on
supersymmetric black holes microstate geometries. At the probe level, this configuration gives rise
to non-supersymmetric stable and metastable states [126], in an analogous way to the NS5 or M5
branes systems studied in part III. These supertube configurations are interpreted as non-extremal
black holes microstates geometries [126], which are needed to test the fuzzball proposal beyond ex-
tremality. However, these probe results are just a proxy for supergravity solutions; the existence of
a full solution awaits to be proven. The method used in this thesis can give valuable insights into
the existence of a full solution by pointing out which boundary conditions allow for a physical solu-
tion. This investigation is a natural continuation of our findings related to the NS5 and M5 brane cases.

Regarding the proof of the existence of the NS5, M5 or supertube non-supersymmetric (meta)stable
state solutions, though technically challenging, we are positive about numerical techniques that might
be able to prove/disprove the existence of these solutions. In this thesis, we gave valuable input
by showing a method useful for finding the boundary conditions that physical antibrane metastable
states should satisfy. These boundary conditions are an important ingredient in their further numerical
construction. Interesting findings on finite temperature smeared M2 branes in asymptotically CGLP
backgrounds have been revealed in [160], where it has been shown that negatively charged smeared
M2 black branes do not exist. This can be interpreted as that the unphysical singularity of the anti-M2
branes cannot be cloaked behind a horizon, agreeing with our findings in chapter 9. We hope that
similar numerical techniques will be applied to the localized antibrane settings studied in chapters 8
and 9. This would give valuable insight about the existence of antibranes metastable states, which in its
ten-dimensional version, is relevant for de Sitter construction with supersymmetry breaking antibranes
in string theory.
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