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We calculate the superconformal indices of the N = 2 superconformal field theories real-
ized on N coincident D3-branes in 7-brane backgrounds with constant axiodilaton via the
anti-de Sitter/conformal field theory correspondence. We include the finite-N corrections as
the contribution of D3-branes wrapped around 3-cycles in the internal space. We take only
single-wrapping contributions into account for simplicity. We also determine the orders of
the next-to-leading corrections that we do not calculate. The orders are relatively high, and
we obtain many trustworthy terms. We give the results for N = 1, 2, 3 explicitly, and find
nice agreement with known results.
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1. Introduction
The recent development of quantum field theory owes a lot to brane realization in string the-
ory and M-theory. Various theories are realized as theories on branes placed in appropriate
backgrounds. Such theories are often strongly coupled, and many of them do not have known
Lagrangian descriptions. The brane realization provides non-perturbative methods to analyze
such theories. One of the most effective methods is the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [1].

If a superconformal field theory (SCFT) is realized as the theory on N coincident branes, the
brane system is well described by supergravity in the large-N limit, and we can extract physical
information about the SCFT by studying the classical solution. For small N the quantum grav-
ity correction is expected to be important, and in general qualitative analysis becomes difficult.
Even so, it has been proposed in Ref. [2] that the finite-N correction to the superconformal in-
dex [3] can be calculated as the contribution of giant gravitons [4,5] without taking account of
quantum gravity.

In this paper we investigate 4D N = 2 supersymmetric theories realized on D3-branes put in
7-brane backgrounds with constant axiodilaton [6–9]. We denote a theory in this class by G[N],
where G = H0, H1, H2, D4, E6, E7, E8 is the type of 7-brane and N, which is called the rank
of the theory, is the number of D3-branes. Hn[N] (n = 0, 1, 2) are examples of a large class of
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Table 1. The brane setup.

0 1 2 3 X Y Z

7-brane ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
D3-branes ◦ ◦ ◦ ◦

Table 2. The deficit angle parameters αG of the 7-brane and the dimensions �G of Coulomb branch
operators.

G H0 H1 H2 D4 E6 E7 E8

αG
1
3

1
2

2
3 1 4

3
3
2

5
3

�G
6
5

4
3

3
2 2 3 4 6

theories called Argyres–Douglas theories [10,11] and En[N] (n = 6, 7, 8) are called Minahan–
Nemeschansky theories [12,13]. D4[N] is an SQCD with the gauge group Sp(N).

Let X, Y, and Z be the three complex coordinates of C3 transverse to the N D3-branes. The
7-brane is placed at Z = 0 (Table 1). The global symmetry of the SCFT is SU(2, 2|2) × G ×
SU(2)F, and its maximal compact bosonic subgroup is

U (1)H × SU (2)J × SU (2)J × SU (2)R × U (1)RZ × G × SU (2)F . (1)

The subscripts of the FU(1) and SU(2) factors are generators of the factors. H is the Hamilto-
nian and J and J are the angular momenta. U (1)RZ rotates the Z-plane, and SU(2)R × SU(2)F

rotates C2 spanned by X and Y. We also define RX = R + F and RY = R − F acting on the X-
and Y-planes for later convenience. G is the gauge symmetry realized on the 7-brane, and G =
H0, H1, and H2 are regarded as the trivial group, SU(2), and SU(3), respectively, as symmetry
groups. In addition, let U(1)A be the R-symmetry of the type IIB supergravity [14], which is
broken to its discrete subgroup due to the flux quantization.

The presence of the 7-brane induces the deficit angle παG on the Z-plane shown in Table 2,
and the Z-plane is restricted by

0 ≤ arg Z ≤ π (2 − αG ). (2)

The two boundary rays, Z = r and Z = reπ i(2−αG ) (r ∈ R≥0), are identified by the boundary
condition

O(r) = O(eπ i(2−αG )r) ≡ UαGO(r)U −1
αG

, UαG = eπ i(2−αG )(RZ− 1
2 A), (3)

for an arbitrary local operator O(Z). RZ and A are normalized so that the supercharges carry
RZ = ± 1

2 and A = ±1,1 and the N = 2 supersymmetry is generated by supercharges with
RZ − 1

2 A = 0. The globally defined coordinate Z�G corresponds to the Coulomb branch op-
erator with dimension �G = 2/(2 − αG). If G = D4, E6, E7, E8 then �G is an integer, and the
identification (3) can be regarded as the orbifolding by Z�G generated by UαG .

The system always contains a free hypermultiplet corresponding to the “center of mass” de-
grees of freedom along the X–Y directions. We exclude it from G[N]. Then, if N = 1, the SU(2)F

becomes ineffective and the flavor symmetry G × SU(2)F reduces to G. This fact will be useful
in the analysis of rank-one theories in Sect. 3.

1Our normalization convention for generators can be read off from Eq. (6).
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The BPS operator spectrum of G[∞] is studied in Refs. [15] and [16] by using the AdS/CFT
correspondence. The geometry is AdS5 × S5

αG
where S5

αG
is the singular space defined from S5

by the restriction (2) and the identification (3). The 7-brane worldvolume is AdS5 × S3, where
S3 is the singular locus of S5

αG
. In the orbifold case considered in Ref. [15] the internal space is

S5
αG

= S5/Z�G , and the Kaluza–Klein modes in the orbifold are obtained from those in S5 by
picking up Z�G invariant modes, whose quantum numbers satisfy

Rz − 1
2

A ∈ �GZ. (4)

The analysis in Ref. [15] was extended in Ref. [16] in two ways: The non-orbifold cases with G
= H0, H1, H2 were included by allowing fractional values of �G in Eq. (4), and fields living
on the 7-brane were taken into account to generate the spectrum of operators transformed
non-trivially under G. The comparison with known results found nice agreement.

The purpose of this paper is to extend these analyses to G[N] with finite N. We use the super-
conformal index [3]

I = tr

[
e2π i(J+J )qH+J̄y2JuRX

x uRY
y uRZ

z

rank G∏
i=1

xpi
i

]
(uxuyuz = 1)

= tr

[
e2π i(J+J )qH+J̄y2JuRZ−R

z u2F
rank G∏

i=1

xpi
i

] (
u =

√
ux

uy

)
(5)

to express the BPS spectrum concisely, where pi are Cartan generators of G. This index is asso-
ciated with the supercharge Q carrying the quantum numbers

(H, J, J, RX , RY , RZ, A) = (+ 1
2 , 0, − 1

2 , + 1
2 , + 1

2 , + 1
2 , +1

)
, (6)

and is contributed by operators saturating the corresponding bound

{Q,Q†} = H − 2J − RX − RY − RZ ≥ 0. (7)

The large-N index is given on the AdS side by

IKK
G = Pexp

(
igrav
G + ivec

G − ihyp
)
. (8)

The plethystic exponential Pexp is defined by

Pexp
∑

s

cs fs =
∏

s

(1 − fs)−cs, (9)

where fs are monomials of fugacities and cs are numerical coefficients.
ivec
G is the single-particle index of the gauge multiplet on the 7-brane. The mode expansion of

the vector multiplet on the 7-brane gives the representation [16]
∞⊕

l=0

B l+2
2 ,0(0,0) ⊗ [ l

2 ]F ⊗ RG
θ . (10)

We denote the irreducible G representation with the highest weight w by RG
w , and RG

θ is the
adjoint representation. The corresponding single-particle index is

ivec
G = q2uxuy − q3

(1 − q
3
2 y)(1 − q

3
2 y−1)(1 − qux)(1 − quy)

χG
θ , (11)

where χG
θ is the character of RG

θ . The explicit form of ihyp, the contribution of the center-of-
mass hypermultiplet, is

ihyp = q − q2uz

(1 − q
3
2 y)(1 − q

3
2 y−1)

(ux + uy). (12)
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igrav
G , the contribution of the gravity multiplet in the bulk, will be calculated in the following

sections.
For finite N, the index deviates from Eq. (8) at some order of the q expansion, and we are in-

terested in this finite-N correction. We use the method used in Refs. [2,17,18], which reproduces
the finite-N correction to the index of N = 4 SYM as the contribution of D3-branes wrapped
on the internal space. It has also been applied to more general theories [19–22]. For a large class
of 4D gauge theories with the dual geometry AdS5 × M the index is given by

I = IKK
∑

�n

I�n, (13)

where IKK is the index of massless fields in AdS × M, and is given by Eq. (8) for the system of
interest. I�n is the contribution of wrapped D3-branes in the internal space M. �n = (n1, . . . , nd )
are wrapping numbers around appropriately chosen supersymmetric cycles in M. I�n is the index
of the brane system specified by �n, and is the product of two factors. One is the classical factor
Icl

�n determined by the energy and charges of the wrapped branes without excitation of fields on
them. The other factor is the index of the field theory realized on the brane system. For �n = �0 =
(0, . . . , 0) there are no wrapped branes and I�0 = 1. In the large-N limit the other contributions
decouple and the formula reduces to the large-N relation I = IKK, while for finite N I�n with∑

InI ≥ 1 give finite-N corrections.
In the case of N = 4 U(N) SYM we use three three-cycles in S5, defined by X = 0, Y = 0, and

Z = 0, and �n = (nx, ny, nz) [2,18]. Although S5 is replaced by S5
αG

in the system of interest, we
assume that the same choice of the three-cycles still works.

The classical factor is related to the volumes of the cycles. In the case of AdS5 × S5 it is given
as follows. Let �X = 0 be the dimension of the operator corresponding to a D3-brane wrapped
on the cycle X = 0. �Y = 0 and �Z = 0 are also defined. The RR flux N and the AdS5 radius L
are related by 2π2TD3L4 = N. According to the dictionary of the AdS/CFT correspondence,
this means �X = 0 = �Y = 0 = �Z = 0 = N, and a wrapped brane contributes ∼qN to the index.
If there are n such branes, the corresponding term is ∼qnN. By taking account of the R-charges
carried by wrapped branes we obtain the classical factor Icl

(nx,ny,nz ) = (qux)Nnx (quy)Nny (quz)Nnz .

If S5 is replaced by S5
αG

the volumes of the cycles are not all the same but are given by

�X =0 = �Y =0 = N, �Z=0 = �GN. (14)

Correspondingly, the classical factor becomes

Icl
(nx,ny,nz ) = (qux)nxN (quy)nyN (quz)nz�GN . (15)

Because �G > 1 for all G, the leading correction is given by I(1,0,0) and I(0,1,0), which are both
of the order of ∼qN. In this paper we focus only on these two corrections for simplicity, and
calculate the approximate finite-N index by

IAdS
G[N] = IKK

G (1 + I(1,0,0) + I(0,1,0)). (16)

We use the superscripts “AdS” to indicate that the results are obtained by this equation.
Equation (16) is not exact but there must be an error due to other contributions neglected in

Eq. (16):

IG[N] = IAdS
G[N] + (error). (17)

The source of the next-to-leading corrections determining the order of the error term in Eq.
(17) depends on G. For G = Hn the next-to-leading correction is I(0,0,1) ∼ q�GN , while for G
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= En the next-to-leading corrections are I(2,0,0) ∼ I(1,1,0) ∼ I(0,2,0) ∼ q2N . The G = D4 case is
marginal and all these contributions give corrections of the same order.

In the order estimation above we looked at only the classical factor (15) and neglected the
contribution of the field theory on the branes. The latter often starts from a positive order term
∝ qδG (δG > 0), and the order of I�n is raised by δG. We will call this the “tachyonic shift” for
reasons explained shortly. With the tachyonic shift the expected order of the error term is given
by

Hn : O(q�GN+δG ), D4, En : O(q2N+δG ). (18)

Let us briefly explain how to calculate I(1,0,0) and I(0,1,0). These two contributions are related
by the Weyl reflection ux↔uy, and we consider I(1,0,0), the contribution of a D3-brane wrapped
on X = 0. The theory realized on the brane is the supersymmetric U(1) gauge theory with the
defect along the intersection with the 7-brane. The contribution of the vector multiplet is given
by Pexp iD3(X =0)

G , where the single-particle index iD3(X =0)
G can be calculated by the mode analysis

on the wrapped D3-brane. The first few terms of the q-expansion of iD3(X =0)
G are

iD3(X =0)
G = 1

qux
+ uy

ux
+ · · · . (19)

A detailed derivation will be given in the following sections; see also Appendix B. The first term
has a negative exponent of q, and corresponds to the tachyonic mode with negative energy.
Such a mode exists because the cycle is topologically trivial and the wrapped brane can be
continuously unwrapped. According to the definition (9) the plethystic exponential is

Pexp iD3(X =0)
G = 1

1 − 1
qux

1

1 − uy

ux

· · · = − qux

1 − qux

1

1 − uy

ux

· · · . (20)

The first factor corresponding to the tachyonic mode gives the positive power of q. This is the
origin of the tachyonic shift in I(1,0,0). Similar shifts are expected in higher-order contributions,
too, and the δG in Eq. (18) are the tachyonic shifts in the next-to-leading corrections.

The defect contribution can be treated perturbatively only in the G = D4 case. Then, it turns
out that chiral fermions live on the defect and the Fock space forms the basic representation
of the affine D4 algebra. We calculate the defect contribution for G 
= D4 on the assumption
that the Fock space of the defect degrees of freedom is the basic representation of the affine G
algebra.

By combining the classical factor I(1,0,0) = (qux)N , the vector multiplet contribution (20), and
the defect contribution χ Ĝ(quy) we obtain

I(1,0,0) = (qux)Nχ Ĝ(quy) Pexp iD3(X =0)
G . (21)

This paper is organized as follows. In the next section we confirm that the method works well
for the D4 case. Namely, we compare Eq. (16) with the results on the gauge theory side and
confirm that the order of the error behaves like Eq. (18). Then, we move on to more interesting
G 
= D4 cases. We analyze the rank-one theories G[1] in Sect. 3. We find a good agreement with
the known results in the literature and determine δG, which will be used in the next section to
determine the orders of errors for N ≥ 2. In Sect. 4 we calculate the indices for N ≥ 2. Again,
the results are consistent with the known results. Section 5 is devoted to the conclusions and
discussion. The appendices include technical details and some explicit results.
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Table 3. Field contents of the Sp(N) SQCD. The anti-symmetric tensor representation of Sp(N) is not
irreducible for N ≥ 2 but contains a singlet. We exclude the singlet hypermultiplet from the definition of
D4[N].

Sp(N) SU(2)F D4

vector adj 1 1
hyper anti-sym 2 1
hyper fund 1 8v

2. D4[N]
2.1 Large-N limit
A D4 7-brane is an O7-plane accompanied by four D7-branes [6]. The field contents of the
Sp(N) gauge theory realized on the D3-branes are shown in Table 3. We can calculate the su-
perconformal index on the gauge theory side by using the localization formula for an arbitrary
N. For example, the result in the large-N limit is

ID4[∞] = 1 + q2
(

u2
z + χF

2 u−1
z + u−1

z χ
D4
28

)
+ q

5
2
(−uzχ

J
1

) + · · · , (22)

where χF
n and χJ

n are SU(2)F and SU(2)J characters

χF
n = un + un−2 + · · · + u−n, χJ

n = yn + yn−2 + · · · + y−n, (23)

and χG
n is the character of the n-dimensional irreducible G representation.

It is easy to reproduce the large-N index (22) by using Eq. (8) on the AdS side. ivect
D4

and ihyp

are given in Eqs. (11) and (12), and igrav
D4

is obtained as follows.
The supergravity Kaluza–Klein modes in AdS5 × S5 form a series of psu(2, 2|4) repre-

sentations B
1
2 , 1

2
[0,n,0](0,0) (n = 1, 2, 3, …) [23,24].2 After the supersymmetry is broken to N = 2

by the 7-brane, these are decomposed into irreducible su(2, 2|2) × SU(2)F representations
Bm

2 ,r(0,0) ⊗ [ m
2 ]F and Cm

2 ,r(0,0) ⊗ [ m
2 ]F , where [s]F is the spin s SU(2)F representation and m and r

are integers (see Appendix A). We need to pick up Z2 invariant ones from them. The compo-
nents in these representations carry

Rz − 1
2

A = r, (24)

and the orientifold projection leaves only representations with r ∈ 2Z. By summing up their
contributions we obtain

igrav
D4

=
∞∑

n=0

∑
m

i(Bm
2 ,2n(0,0))χ

F
m +

∞∑
n=0

∑
m

i(Cm
2 ,2n(0,0))χ

F
m

= 1
2

(
qux

1 − qux
+ quy

1 − quy
+ quz

1 − quz
− q

3
2 y

1 − q
3
2 y

− q
3
2 y−1

1 − q
3
2 y−1

)

+ 1
4

(
(1 + qux)(1 + quy)(1 − quz)(1 + q

3
2 y)(1 + q

3
2 y−1)

(1 − qux)(1 − quy)(1 + quz)(1 − q
3
2 y)(1 − q

3
2 y−1)

− 1

)
. (25)

IKK
D4

obtained by substituting Eqs. (25), (11), and (12) for Eq. (8) is shown in Eq. (D1d), and
it agrees with Eq. (22).

2We use the notation in Ref. [25] for N = 2 and N = 4 superconformal representations.
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2.2 Finite-N corrections
Let us consider the finite-N case. In the following we often set all fugacities except for q to 1 to
save space. We will use “ ◦= ” to express the unrefinement. For example, the Kaluza–Klein index
(D1d), which is identical with Eq. (22), is expressed as follows:

IKK
D4

◦= 1 + 32q2 − 2q
5
2 + 31q3 + 62q

7
2 + 556q4 − 4q

9
2 + 1117q5 + · · · . (26)

Let us compare this with the results for N = 1, 2, 3 calculated on the gauge theory side:

ID4[1]
◦= 1 + 29q2 − 2q

5
2 − 28q3 + 60q

7
2 + 298q4 − 60q

9
2 − 587q5 + · · ·

ID4[2]
◦= 1 + 32q2 − 2q

5
2 + 27q3 + 62q

7
2 + 467q4 − 6q

9
2 + 632q5 + · · ·

ID4[3]
◦= 1 + 32q2 − 2q

5
2 + 31q3 + 62q

7
2 + 551q4 − 4q

9
2 + 998q5 + · · · . (27)

We find that the finite-N corrections start at qN + 1:

ID4[1] − IKK
D4

◦= −3q2 − 59q3 − 2q
7
2 − 258q4 − 56q

9
2 − 1704q5 − 566q

11
2 + · · · ,

ID4[2] − IKK
D4

◦= −4q3 − 89q4 − 2q
9
2 − 485q5 − 54q

11
2 − 3671q6 − 588q

13
2 + · · · ,

ID4[3] − IKK
D4

◦= −5q4 − 119q5 − 2q
11
2 − 712q6 − 52q

13
2 − 5648q7 − 590q

15
2 + · · · . (28)

The refined expression for the leading terms in Eq. (28) is

ID4[1] − IKK
D4

= −qN+1u
− N+1

2
z χF

N+1 + · · · . (29)

We want to reproduce this finite-N correction as the contribution of wrapped D3-branes. Let
us first consider I(1,0,0), the contribution of a D3-brane on X = 0. We have to consider fields
arising from two kinds of strings: 3-3 strings and 3-7 strings.

3-3 strings give an N = 4 vector multiplet on the wrapped D3-brane. Its fluctuation modes
belong to two series of representations of unbroken supersymmetry. Due to a similarity to the
bulk modes we use similar notation BD3(X =0)

m,r and CD3(X =0)
m,r for these representations; see Ap-

pendix B for details. The values of RZ − 1
2 A carried by the components of these representations

are

RZ − 1
2

A = r. (30)

We obtain iD3(X =0)
D4

by summing up all contributions from BD3(X =0)
m,r and CD3(X =0)

m,r with r ∈ 2Z:

iD3(X =0)
D4

=
∞∑

n=0

∑
m

i
(
BD3(X =0)

m,2n

)
+

∞∑
n=0

∑
m

i
(
CD3(X =0)

m,2n

)

= 1
2

(
(1 + q−1u−1

x )(1 + q
3
2 y)(1 + q

3
2 y−1)

(1 + quz)(1 − quy)
− (1 − q−1u−1

x )(1 − q
3
2 y)(1 − q

3
2 y−1)

(1 − quz)(1 − quy)

)
.

(31)

The q-expansion of Eq. (31) and its plethystic exponential have the forms (19) and (20), respec-
tively.

We also have the contribution from 3-7 strings. Because there are eight DN directions only
chiral fermions appear on the intersection. They couple to the gauge symmetry on the D3-
brane and the D4 symmetry on the 7-brane. An important fact is that the U(1) gauge symmetry
on the D3-brane is broken to Z2 along the intersection with the O7-plane just like the gauge
symmetry on a type I D-string. The Z2 gauged fermion system is nothing but the free field
realization of the D̂4 current algebra, and the contribution to the index is the character of the
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basic representation:

χ D̂4 (quy) = 1
2

(Zζ=1 + Zζ=−1), Zζ ≡ Pexp

(
− (quy)

1
2

1 − quy
ζχ

D4
8v

)
. (32)

We note that we adopted the anti-periodic boundary condition for the fermions. This is neces-
sary to obtain the triality invariant spectrum required by the S-duality invariance of the index
[26,27].

Equation (21), with Eqs. (31) and (32), gives

I(1,0,0) = − (qux)N+1

1 − uy

ux

(
1 + q

(
ux + u2

zu−1
x − uz + u2

yu−1
x + uyχ

D4
28

)
+ · · ·

)
. (33)

The contribution of a D3-brane around the Y = 0 cycle, I(0,1,0), is obtained from this by the
Weyl reflection ux↔uy. We can easily see that the leading term (29) is reproduced:

− (qux)N+1

1 − uy

ux

− (quy)N+1

1 − ux
uy

= −qN+1u
− N+1

2
z χF

N+1. (34)

It will turn out that this term exists not only for G = D4 but also for all G. Some higher-order
terms are also correctly reproduced, and the results of the numerical calculation are

ID4[1] − IAdS
D4[1]

◦= −10q5 + 20q
11
2 − 2124q6 + 2028q

13
2 − 28 273q7 + 22 214q

15
2 + · · · ,

ID4[2] − IAdS
D4[2]

◦= −20q7 + 40q
15
2 + · · · ,

ID4[3] − IAdS
D4[3]

◦= −35q9 + · · · . (35)

The orders of these errors agree with Eq. (18) with δD4 = 3, and this suggests that the method
works well for D4[N].

3. Rank-one theories
Now, let us apply our method to more interesting cases with G 
= D4. The Kaluza–Klein con-
tribution (8) is again calculated by using ivec

G in Eq. (11), ihyp in Eq. (12), and igrav
G given by

igrav
G =

∞∑
n=0

∑
m

i(Bm
2 ,�Gn(0,0))χ

F
m +

∞∑
n=0

∑
m

i( Cm
2 ,�Gn(0,0))χ

F
m . (36)

The results for IKK
G are shown explicitly in Appendix D.

I(1,0,0) is calculated by Eq. (21) with the single-particle index

iD3
G =

∞∑
n=0

∑
m

i
(
BD3(X =0)

m
2 ,�Gn

)
+

∞∑
n=0

∑
m

i
(
CD3(X =0)

m
2 ,�Gn

)
. (37)

Concerning the defect contribution, we assume that it is the character χ Ĝ of the basic repre-
sentation of affine algebra Ĝ based on the result in the D4 case (see Appendix C for the explicit
form of χ Ĝ). We obtain the following results:

IAdS
H0[1] = 1 + u

6
5
z q

6
5 − u

1
5
z χJ

1 q
17
10 + u

− 4
5

z q
11
5 + u

12
5

z q
12
5 + u

6
5
z χJ

1 q
27
10 +u

29
5

z q
14
5 + · · · , (38a)

IAdS
H1[1] = 1 + u

4
3
z q

4
3 − u

1
3
z χJ

1 q
11
6 + u−1

z χ
H1
3 q2 + u

− 2
3

z q
7
3 + u

8
3
z q

8
3 + u

4
3
z χJ

1 q
17
6 −

(
1 + χ

H1
3

)
q3

− u
5
3
z χJ

1 q
19
6 +

(
−u

1
3
z +u

19
3

z − u
1
3
z χJ

2

)
q

10
3 + · · · , (38b)
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IAdS
H2[1] = 1 + u

3
2
z q

3
2 +

(
−u

1
2
z χJ

1 + u−1
z χ

H2
8

)
q2 + u

− 1
2

z q
5
2 +

(
−1 + u3

z + u
3
2
z χJ

1 − χ
H2
8

)
q3

+
(
−u

1
2
z + u−1

z χJ
1 − u2

zχ
J
1 − u

1
2
z χJ

2 + u−1
z χ

H2
8 χJ

1

)
q

7
2

+
(

2uz + u4
z+u7

z + u
− 1

2
z χJ

1 + u−2
z χ

H2
27

)
q4 + · · · , (38c)

IAdS
D4[1] = 1 + (

u2
z + u−1

z χ
D4
28

)
q2 − uzχ

J
1 q

5
2 − χ

D4
28 q3 + (

u−1
z + u2

z + u−1
z χ

D4
28

)
χJ

1 q
7
2 + (

u4
z

− uzχ
J
2 + u−2

z χ
D4
300

)
q4 + ( − 1 − u3

z − χ
D4
28

)
χJ

1 q
9
2 + (

2u−1
z +u−1

z χF
4 + u2

zχ
F
2 + u5

z

+ u−1
z χJ

2 + u2
zχ

J
2 − u−1

z χ
D4
28 + u−1

z χJ
2 χ

D4
28 − u−1

z χ
D4
300 − u−1

z χ
D4
350

)
q5 + · · · , (38d)

IAdS
E6[1] = 1 + u−1

z χ
E6
78 q2 + ( − 1 + u3

z − χ
E6
78

)
q3 + (

u−1
z − u2

z + u−1
z χ

E6
78

)
χJ

1 q
7
2 + (

2uz

+ u−2
z χ

E6
2430

)
q4 + ( − 2 + u3

z − χ
E6
78

)
χJ

1 q
9
2 + (

2u−1
z +u−1

z χF
4 − u2

z + u−1
z χJ

2

− u2
zχ

J
2 − u−1

z χ
E6
78 + u−1

z χJ
2 χ

E6
78 − u−1

z χ
E6
2430 − u−1

z χ
E6
2925

)
q5 + · · · , (38e)

IAdS
E7[1] = 1 + u−1

z χ
E7
133q2 + ( − 1 − χ

E7
133

)
q3 + (

u−1
z + u−1

z χ
E7
133

)
χJ

1 q
7
2 + (

uz + u4
z

+ u−2
z χ

E7
7371

)
q4 + ( − 2 − u3

z − χ
E7
133

)
χJ

1 q
9
2 + (

2u−1
z +u−1

z χF
4 + u2

z + u−1
z χJ

2

− u−1
z χ

E7
133 + u−1

z χJ
2 χ

E7
133 − u−1

z χ
E7
7371 − u−1

z χ
E7
8645

)
q5 + · · · , (38f)

IAdS
E8[1] = 1 + u−1

z χ
E8
248q2 + ( − 1 − χ

E8
248

)
q3 + (

u−1
z + u−1

z χ
E8
248

)
χJ

1 q
7
2 + (

uz + u2
zχ

E8
27 000

)
q4

+ ( − 2 − χ
E8
248

)
χJ

1 q
9
2 + (

2u−1
z +u−1

z χF
4 + u−1

z χJ
2 − u−1

z χ
E8
248 + u−1

z χJ
2 χ

E8
248

− u−1
z χ

E8
27 000 − u−1

z χ
E8
30 380

)
q5 + · · · . (38g)

Because we took only the leading corrections into account these results have errors, and it is
important to determine their orders. Even without comparing these with the known results, we
can find terms that cannot be correct. There are two types of such impossible terms. The first
type includes terms depending on the SU(2)F fugacity u. Because SU(2)F symmetry decouples
in the N = 1 case the index must be u-independent. Indeed, many u-dependent terms appearing
in IKK

G shown in Appendix D are drastically canceled by the single-wrapping contributions. For
example, the u-dependent term q2u−1

z χF
2 appearing in IKK

G for all G is canceled by the leading
term of the finite-N correction (34) with N = 1. Even so, there still exist terms with non-trivial
SU(2)F characters χF

n>0, which must be canceled by higher-order corrections. The second type
of impossible terms is terms diverging in the Coulomb branch limit:

q → 0 with qu−2
x , qu−2

y , quz, y fixed. (39)

In this limit the q-expansion of I(1,0,0) includes diverging terms originating from the diverging
factor (qux)−1 in i(BD3(X =0)

m
2 ,r ) (see Eq. (B2)). Such diverging terms appearing in Eq. (38) must

also be canceled by higher-order corrections. The impossible terms in Eq. (38) are underlined.
The lowest-order impossible terms appearing in Eq. (38) are

u3
z (uzq)4�G−2 for G = H0, H1, H2, u−1

z χF
4 q5 for G = D4, E6, E7, E8. (40)

(In addition, we have another impossible term u2
zχ

F
2 q5 in the D4 case.) If we assume that these

are the lowest-order error terms, we can read off the tachyonic shifts for the next-to-leading
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Table 4. The differences between results in Eq. (38) calculated by the approximate formula (16) and the
previously known results in the references are shown.

Theory IG[1] − IAdS
G[1] Refs.

H0[1] = (A1, A2) −u
29
5

z q
14
5 + · · · [28]

H1[1] = (A1, A3) −u
19
3

z q
10
3 + · · · [29]

H2[1] = (A1, D4) −(
u4

z + u7
z

)
q4 + · · · [30]

D4[1] −(
u−1

z + u−1
z χF

4 + u2
zχ

F
2 + u5

z

)
q5 + · · ·

E6[1] −(
u−1

z + u−1
z χF

4

)
q5 + · · · [31]

E7[1] −(
u−1

z + u−1
z χF

4

)
q5 + · · · [32]

E8[1] ? unknown

corrections

δHn = 3�G − 2, δD4 = δEn = 3 (41)

by comparing Eqs. (18) and (40). Indeed, by comparing Eq. (38) and the known results in the
literature, we can confirm that this is the case except for G = E8, for which the superconformal
index is not known; see Table 4.

It is also instructive to consider some limits simplifying the structure of the index [33]. The
Hall–Littlewood index is defined by taking the limit

q → 0 with qux, quy, q ≡ qu
− 1

2
z , y fixed. (42)

In this limit the Kaluza–Klein contribution becomes

IKK
G |HL = Pexp

( ∞∑
k=2

qk (
χF

k + χF
k−2χ

G
θ

)) = 1 + q2 (
χF

2 + χG
θ

) + q3 (
χF

3 + χF
1 χG

θ

) + · · · .(43)

By using iD3(X =0)
G |HL = 1

qu
1

1−qu−1 and χ Ĝ(qu−1) = 1 + qu−1χG
θ + · · · , we obtain

I(1,0,0) + I(0,1,0)|HL = −q2χF
2 − q3 (

χF
3 + χF

1 χG
θ

) + · · · . (44)

We can easily see that the u-dependent terms shown in Eqs. (43) and (44) at the order of q2 and
q3 cancel. This cancellation also occurs at q4 and q5, and we find the first u-dependence at q6.
We obtain the following result:

IAdS
G[1] |HL = 1 + q2χG

θ + q4χG
2θ+q6(u − dep.) + · · · . (45)

We can also calculate the Schur index in a similar way. The Schur index is defined from the

superconformal index by setting y = q
1
2 u−1

z , and is a function of q = qu
− 1

2
z , u, and G fugacities.

We obtain

IAdS
G[1] |Sch = 1 + q2χG

θ + q4 (
1 + χG

θ + χG
2θ

) +q6(u − dep.) + · · · . (46)

Unlike the superconformal index these limits of the index do not acquire a contribution from
the Z = 0 cycle, and the next-to-leading corrections should be of the order of q2N+δG . Equa-
tions (45) and (46) suggest that the higher-order corrections start at q6. We can confirm this by
comparing Eqs. (45) and (46) with known results [34–39]. This means that the tachyonic shift
for the Hall–Littlewood index and the Schur index is

δG = 4 (47)

for all G.
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4. Higher-rank theories
An advantage of the method using AdS/CFT is that we can deal with higher-rank theories in
the same way as the rank-one theories. In this section we show the results for N = 2 and N =
3. Many of these have been calculated in the literature [40–43], and our results are consistent
with them.

We determine the orders of the error terms, which are indicated by underlines in the following
results, by using the tachyonic shifts (41) for the superconformal index and Eq. (47) for the
Hall–Littlewood index and Schur index. Namely, the orders of the error terms for rank N are

O(q�G (N+3)−2) (G = Hn), O(q2N+3), (G = D4, En) (48)

for the superconformal index and

O(q2N+4) (49)

for the Hall–Littlewood and Schur indices.
Some of the following results in this section are consistent with the results of Refs. [40–43],

and the others are newly obtained in this paper. We will use “ ◦,!= ” to express the new results (as
well as the unrefinement of the fugacities).

4.1 Superconformal index

IAdS
H0[2]

◦,!= 1 + q
6
5 − 2q

17
10 + 3q2 + 3q

11
5 + 2q

12
5 − 2q

27
10 − 4q

29
10 − 4q3 − q

16
5 + 5q

17
5

+ 8q
7
2 + 2q

18
5 + 4q

37
10 − 6q

39
10 +5q4 + · · · , (50a)

IAdS
H1[2]

◦,!= 1 + q
4
3 − 2q

11
6 + 6q2 + 3q

7
3 + 2q

8
3 − 2q

17
6 − q3 − 4q

19
6 + 2q

10
3 + 14q

7
2

+ 5q
11
3 − 2q

23
6 + 15q4 − 6q

25
6 + q

13
3 − 6q

9
2 +7q

14
3 + · · · , (50b)

IAdS
H2[2]

◦,!= 1 + q
3
2 + 9q2 + 3q

5
2 + 4q3 + 27q

7
2 + 41q4 + 17q

9
2 + 81q5+183q

11
2 + · · · , (50c)

IAdS
D4[2]

◦= 1 + 32q2 − 2q
5
2 + 27q3 + 62q

7
2 + 467q4 − 6q

9
2 + 632q5 + 1924q

11
2

+ 3702q6 + 2326q
13
2 +8420q7 + · · · , (50d)

IAdS
E6[2]

◦,!= 1 + 81q2 + 75q3 + 162q
7
2 + 3166q4 + 148q

9
2 + 4863q5 + 12 812q

11
2

+ 78 247q6 + 21 552q
13
2 +158 937q7 + · · · , (50e)

IAdS
E7[2]

◦,!= 1 + 136q2 + 129q3 + 274q
7
2 + 9049q4 + 258q

9
2 + 14 616q5 + 36 722q

11
2

+ 389 749q6 + 63 772q
13
2 +825 721q7 + · · · , (50f)

IAdS
E8[2]

◦,!= 1 + 251q2 + 244q3 + 504q
7
2 + 31128q4 + 490q

9
2 + 53756q5 + 125504q

11
2

+ 2539245q6 + 229488q
13
2 +5896389q7 + · · · (50g)
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IAdS
H0[3]

◦,!= 1 + q
6
5 − 2q

17
10 + 3q2 + 3q

11
5 + 2q

12
5 − 2q

27
10 − 4q

29
10 + 2q

16
5 + 7q

17
5 + 8q

7
2

+ 3q
18
5 − 2q

37
10 − 10q

39
10 + q4 − 8q

41
10 + q

21
5 + 11q

22
5 + 2q

9
2 + 15q

23
5 + 10q

47
10

+ 4q
24
5 − 2q

49
10 + 10q5 − 22q

51
10 −21q

26
5 + · · · , (51a)

IAdS
H1[3]

◦,!= 1 + q
4
3 − 2q

11
6 + 6q2 + 3q

7
3 + 2q

8
3 − 2q

17
6 + 3q3 − 4q

19
6 + 5q

10
3 + 14q

7
2

+ 7q
11
3 − 8q

23
6 + 22q4 − 10q

25
6 + 13q

13
3 + 17q

14
3 + 4q

29
6 + 43q5 − 14q

31
6

− 15q
16
3 + 60q

11
2 + 7q

17
3 + 32q

35
6 +81q6 + · · · , (51b)

IAdS
H2[3]

◦,!= 1 + q
3
2 + 9q2 + 3q

5
2 + 8q3 + 30q

7
2 + 58q4 + 44q

9
2 + 111q5 + 259q

11
2

+ 374q6 + 462q
13
2 +1000q7 + · · · , (51c)

IAdS
D4[3]

◦= 1 + 32q2 − 2q
5
2 + 31q3 + 62q

7
2 + 551q4 − 4q

9
2 + 998q5 + 1976q

11
2

+ 6661q6 + 2862q
13
2 + 17 537q7 + 35 482q

15
2 + 64 679q8

+ 84 630q
17
2 +220 412q9 + · · · , (51d)

IAdS
E6[3]

◦,!= 1 + 81q2 + 79q3 + 162q
7
2 + 3397q4 + 156q

9
2 + 6408q5 + 13 274q

11
2

+ 99 165q6 + 25 290q
13
2 + 273 109q7 + 570 728q

15
2 + 2283 657q8

+ 1549 838q
17
2 +8097 884q9 + · · · , (51e)

IAdS
E7[3]

◦,!= 1 + 136q2 + 133q3 + 274q
7
2 + 9445q4 + 266q

9
2 + 18 101q5 + 37 520q

11
2

+ 450 243q6 + 72 362q
13
2 + 1271 046q7 + 2647 564q

15
2 + 16686 266q8

+ 7415 174q
17
2 +61 224 202q9 + · · · , (51f)

IAdS
E8[3]

◦,!= 1 + 251q2 + 248q3 + 504q
7
2 + 31869q4 + 498q

9
2 + 62258q5 + 126992q

11
2

+ 2747126q6 + 249498q
13
2 + 7961389q7 + 16282232q

15
2 + 181906110q8

+ 47084068q
17
2 +691172658q9 + · · · . (51g)

4.2 Hall–Littlewood index

IAdS
H0[2]|HL

◦,!= 1 + 3q2 + 5q4 + 7q6+30q8 + · · · , (52a)

IAdS
H1[2]|HL

◦= 1 + 6q2 + 6q3 + 20q4 + 28q5 + 65q6 + 80q7+242q8 + · · · , (52b)

IAdS
H2[2]|HL

◦= 1 + 11q2 + 16q3 + 65q4 + 142q5 + 355q6 + 700q7+1779q8 + · · · , (52c)
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IAdS
D4[2]|HL

◦= 1 + 31q2 + 56q3 + 495q4 + 1468q5 + 6269q6 + 19 680q7+66 611q8 + · · · ,

(52d)

IAdS
E6[2]|HL

◦= 1 + 81q2 + 156q3 + 3320q4 + 11 178q5 + 98 440q6

+ 401 280q7+2356 455q8 + · · · , (52e)

IAdS
E7[2]|HL

◦= 1 + 136q2 + 266q3 + 9315q4 + 32 830q5 + 449 050q6

+ 2026 080q7+17 206 093q8 + · · · , (52f)

IAdS
E8[2]|HL

◦,!= 1 + 251q2 + 496q3 + 31 625q4 + 116 248q5 + 2747 875q6

+ 13 624 000q7+187 007 628q8 + · · · . (52g)

IAdS
H0[3]|HL

◦,!= 1 + 3q2 + 4q3 + 6q4 + 10q5 + 17q6 + 18q7 + 31q8 + 38q9+76q10 + · · · ,(53a)

IAdS
H1[3]|HL

◦= 1 + 6q2 + 10q3 + 30q4 + 58q5 + 147q6 + 258q7 + 548q8

+ 952q9+1876q10 + · · · , (53b)

IAdS
H2[3]|HL

◦= 1 + 11q2 + 20q3 + 90q4 + 218q5 + 698q6 + 1618q7 + 4300q8

+ 9588q9+22 634q10 + · · · , (53c)

IAdS
D4[3]|HL

◦= 1 + 31q2 + 60q3 + 580q4 + 1858q5 + 9457q6 + 33 066q7 + 131 755q8

+ 444 502q9+1543 882q10 + · · · , (53d)

IAdS
E6[3]|HL

◦= 1 + 81q2 + 160q3 + 3555q4 + 12 958q5 + 121 447q6 + 556 958q7 + 3563 694q8

+ 17 126 502q9+90 513 091q10 + · · · , (53e)

IAdS
E7[3]|HL

◦= 1 + 136q2 + 270q3 + 9715q4 + 36 718q5 + 514 230q6 + 2592 258q7

+ 22 872 825q8 + 128 145 440q9+885 685 093q10 + · · · , (53f)

IAdS
E8[3]|HL

◦,!= 1 + 251q2 + 500q3 + 32370q4 + 125498q5 + 2966497q6 + 16098498q7

+ 221148375q8 + 1420026502q9+14229178180q10 + · · · . (53g)

4.3 Schur index

IAdS
H0[2]|Sch

◦,!= 1 + 3q2 + 9q4 + 2q5 + 22q6 + 6q7+62q8 + · · · , (54a)
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IAdS
H1[2]|Sch

◦= 1 + 6q2 + 6q3 + 27q4 + 36q5 + 113q6 + 162q7+471q8 + · · · , (54b)

IAdS
H2[2]|Sch

◦= 1 + 11q2 + 16q3 + 77q4 + 160q5 + 498q6 + 1056q7+2950q8 + · · · , (54c)

IAdS
D4[2]|Sch

◦= 1 + 31q2 + 56q3 + 527q4 + 1526q5 + 7292q6 + 23 002q7+86 239q8 + · · · ,(54d)

IAdS
E6[2]|Sch

◦= 1 + 81q2 + 156q3 + 3402q4 + 11 336q5 + 105 163q6

+ 425 412q7+2656 809q8 + · · · , (54e)

IAdS
E7[2]|Sch

◦= 1 + 136q2 + 266q3 + 9452q4 + 33 098q5 + 467 818q6

+ 2095 624q7+18 564 678q8 + · · · , (54f)

IAdS
E8[2]|Sch

◦,!= 1 + 251q2 + 496q3 + 31 877q4 + 116 746q5 + 2811 378q6

+ 13 865 742q7+195 272 132q8 + · · · . (54g)

IAdS
H0[3]|Sch

◦,!= 1 + 3q2 + 4q3 + 10q4 + 16q5 + 36q6 + 56q7 + 110q8

+ 176q9+327q10 + · · · , (55a)

IAdS
H1[3]|Sch

◦= 1 + 6q2 + 10q3 + 37q4 + 70q5 + 208q6 + 410q7 + 1008q8

+ 2000q9+4501q10 + · · · , (55b)

IAdS
H2[3]|Sch

◦= 1 + 11q2 + 20q3 + 102q4 + 240q5 + 869q6 + 2120q7 + 6276q8

+ 15 220q9 + +40 356q10 + · · · , (55c)

IAdS
D4[3]|Sch

◦= 1 + 31q2 + 60q3 + 612q4 + 1920q5 + 10 568q6 + 36 968q7 + 157 850q8

+ 548 848q9 + +2039 418q10 + · · · , (55d)

IAdS
E6[3]|Sch

◦= 1 + 81q2 + 160q3 + 3637q4 + 13 120q5 + 128 408q6 + 583 360q7

+ 3908 179q8 + 18 828 800q9 + +103 829 612q10 + · · · , (55e)

IAdS
E7[3]|Sch

◦= 1 + 136q2 + 270q3 + 9852q4 + 36 990q5 + 533 401q6 + 2666 510q7

+ 24 354 958q8 + 136 003 400q9 + +972 032 920q10 + · · · , (55f)

IAdS
E8[3]|Sch

◦,!= 1 + 251q2 + 500q3 + 32622q4 + 126000q5 + 3030748q6 + 16351000q7

+ 229826870q8 + 1468558000q9 + +15077246917q10 + · · · . (55g)
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5. Conclusions and discussion
In this paper we have calculated the superconformal indices of the N = 2 theories realized by
D3-7-brane systems. We first confirmed that the method works well in the D4 case, for which
we can perturbatively calculate the index both on the gauge theory side and on the AdS side,
and then we applied the same method to more interesting cases with G 
= D4. The results are
consistent with known results in the literature, and some of them are new and give predictions.

In this paper we focused only on I(1,0,0) and I(0,1,0), the contributions of single-wrapping
D3-branes around two cycles X = 0 and Y = 0, for simplicity. To improve our results we need
to include higher-order contributions. The orders of the next-to-leading corrections are given
in Eq. (48) for the superconformal index and in Eq. (49) for the Schur and Hall–Littlewood
indices. For the latter, the Z = 0 cycle does not contribute and multiple-wrapping D3-branes
with nx + ny ≥ 2 give the higher-order corrections. As was studied in Refs. [17] and [18], in order
to calculate multiple-wrapping contributions, we need to choose very carefully the integration
contours in the holonomy integrals. In addition, we need to take account of the current algebra
localized on the intersection of the D3-brane and the 7-brane. In the case of the superconformal
index, the Z = 0 cycle also contributes. If nz D3-branes are wrapped around the cycle, the theory
realized on the worldvolume is G[nz], and perturbative treatment is not possible except for the
D4 case. Although direct calculation of such a contribution is difficult, it may be possible to
extract some information about them from the error obtained in our analysis. For example,
the tachyonic shifts δHn = 3�G − 2 in Eq. (41) should be somehow interpreted in Hn[1] on the
wrapped D3.

Recently, an expansion similar to Eq. (13) was proposed in Ref. [44] for Lagrangian gauge
theories based on the direct analysis in gauge theories. Unlike the multiple expansion (13) the
expansion in Ref. [44] is a simple expansion. It is interesting whether such a simple expansion
exists for non-Lagrangian theories like those that we have studied in this paper.

Another important direction is to consider more complicated background geometries. Al-
though only a limited class of Argyres–Douglas theories are realized by the D3-7-brane sys-
tems, more general Argyres–Douglas theories can be realized [45] as class S theories [46,47],
and some supergravity solutions have been proposed [48–50]. It would be interesting to study
to what extent the method can be applied in such, more complicated, backgrounds.
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Appendix A. Gravity multiplet

Kaluza–Klein modes of gravity multiplets in AdS5 × S5 belong to the representationsB
1
2 , 1

2
[0,n,0](0,0)

(n = 1, 2, 3, …). We use the notation in Ref. [25] for superconformal representations. Each of
them are constructed by acting N = 4 supercharges on the lowest-energy states belonging to
the SU(4)R representation [0, n, 0]. The SU (2)R × SU (2)F × U (1)RZ decomposition of this
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representation is

[0, n, 0] →
⊕

m+k+l=n

(m
2 , m

2

)
k−l (A1)

where the direct sum is taken over partitions of n into three non-negative integers m, k, and l.
The N = 2 representations are obtained by acting supercharges on the representations appear-
ing in Eq. (A1). Although there may be other superconformal representations whose primaries
do not belong to Eq. (A1), such representations do not contribute to the index and we can ne-
glect them. Furthermore, only representations with l = 0 and l = 1 contribute to the index. The
supersymmetry completions of the relevant representations are(m

2 , m
2

)
k → Bm

2 ,k(0,0) ⊗ [m
2

]
F ,

(m
2 , m

2

)
k−1 → Cm

2 ,k−1(0,0) ⊗ [m
2

]
F . (A2)

Both k and m run over non-negative integers. Representations with k = 0 and k = 1 have special
structure and they are denoted in Ref. [25] as follows:

Bm
2 ,0(0,0) = B̂m

2
, Bm

2 ,1(0,0) = D̂m
2 (0,0), Cm

2 ,−1(0,0) = D m
2 (0,0), Cm

2 ,0(0,0) = Ĉm
2 (0,0). (A3)

For the analysis of G = Hn we need to extend the range of k [16] to fractional values. The
unitarity requires k = 0 or k ≥ 1. This means r = 0 or r ≥ 1 for Bm

2 ,r(0,0) and r = −1 or r ≥
0 for Cm

2 ,r(0,0). For each value of r the contribution of the representations in Eq. (A2) with all
allowed values of m to the index are as follows:∑

m

i
(
Bm,0(0,0)

)
χF

m = 1
(mom)

[{
1 − quz

(1 − qux)
(
1 − quy

) + quz

}
− 1

]
,

∑
m

i
(
Bm,1(0,0)

)
χF

m = 1
(mom)

[
(quz)

(
1 − q

1
2 y±1u−1

z

) {
(1 − quz)

(1 − qux)
(
1 − quy

) + quz

}
+ q3

]
,

∑
m

i
(
Bm,r>1(0,0)

)
χF

m = (quz)r

(
1 − q

1
2 yu−1

z

) (
1 − q

1
2 y−1u−1

z

)
mom

{
1 − quz

(1 − qux)
(
1 − quy

) + quz

}
,

∑
m

i
(
Cm,−1(0,0)

)
χF

m = − 1
(mom)

q2uxuy (1 − quz)

(1 − qux)
(
1 − quy

) ,

∑
m

i
(
Cm,0(0,0)

)
χF

m = − (quz)

(
1 − q

1
2 y±1u−1

z

)
(mom)

q2uxuy (1 − quz)

(1 − qux)
(
1 − quy

) ,

∑
m

i
(
Cm,r>0(0,0)

)
χF

m = − (quz)r+1

(
1 − q

1
2 yu−1

z

) (
1 − q

1
2 y−1u−1

z

)
(mom)

q2uxuy (1 − quz)

(1 − qux)
(
1 − quy

) , (A4)

where (mom) is the momentum factor

(mom) = (1 − q
3
2 y)(1 − q

3
2 y−1). (A5)

Appendix B. Fluctuation modes on D3
Let us consider a D3-brane wrapped on X = 0. The single-particle index for the fields living
on the wrapped brane in S5 without deficit angle was calculated in Ref. [2] by using variable
changes from the index of the boundary N = 4 vector multiplet. The explicit mode expansion
is given in Ref. [18]. Let us first review the derivation and then we consider the effect of 7-branes.

The existence of a D3-brane wrapped on X = 0 respects only supercharges with quan-
tum numbers H = RX, and it breaks the superconformal algebra usp(2, 2|4) to psu(2|2) ×
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Table B1. Quantum numbers of the ground state and Q and Q used as raising
operators.

H J J RX RY RZ A

Q + 1
2 ± 1

2 0 + 1
2 + 1

2 − 1
2 −1

Q + 1
2 0 + 1

2 + 1
2 − 1

2 − 1
2 +1

R− 0 0 0 0 +1 −1 0
|X∗〉 
 − 1 0 0 −1 0 
 0

Table B2. Fluctuation modes on a D3-brane wrapped on X = 0.

Rep. H J J RX RY RZ A Range

BD3(X =0)
m,r Rm

−|X ∗〉 m + r − 1 0 0 −1 m r 0
QRm

−|X ∗〉 m + r − 1
2 ± 1

2 0 − 1
2 m + 1

2 r − 1
2 −1 r ≥ 1

Q2Rm
−|X ∗〉 m + r 0 0 0 m + 1 r − 1 −2 r ≥ 2

CD3(X =0)
m,r QRm

−|X ∗〉 m + r + 1
2 0 + 1

2 − 1
2 m − 1

2 r + 1
2 +1 m + r ≥ 0

QQRm
−|X ∗〉 m + r + 1 ± 1

2 + 1
2 0 m r 0 r ≥ 0

Q2QRm
−|X ∗〉 m + r + 3

2 0 + 1
2 + 1

2 m + 1
2 r − 1

2 −1 r ≥ 1

psu(2|2). One of the psu(2|2) contains SU (2)J × SU (2) RZ−RY
2

and the other contains SU (2)J ×
SU (2) RZ+RY

2
as the bosonic subgroups. There are eight supercharges with positive conformal di-

mension: Q and Q belonging to the bi-fundamental representations of SU (2)J × SU (2) RZ−RY
2

and SU (2)J × SU (2) RZ+RY
2

, respectively.
We want to construct short multiplets of excitations on the wrapped D3-brane. We apply Q

and Q (and SU(2) lowering operators) as raising operators on a ground state to form the whole
multiplet. Because all components of Q and Q carry RX = + 1

2 , the ground state must carry
minimum RX in the multiplet. We can use modes of X∗ and denote the corresponding ground
state by |X∗〉. There are different modes described by scalar S3 harmonics on the wrapped D3.
They are labeled by integer 
 = 0, 1, 2, …, and belong to [ 


2 ,


2 ] of SU (2) RZ−RY

2
× SU (2) RZ+RY

2
. We

start from the SU (2) RZ−RY
2

× SU (2) RZ+RY
2

highest-weight state that carries RZ−RY
2 = RZ+RY

2 = 

2 ,

or, equivalently, RZ = 
, RY = 0. By applying raising operators on this state we obtain a psu(2|2)
× psu(2|2) multiplet for each 
.

Due to the shortening conditions, we use only supercharges that do not increase either RZ−RY
2

or RZ+RY
2 . Only two from Q and two from Q satisfy this condition. Furthermore, we are inter-

ested in BPS operators saturating the bound (7), and hence we use only supercharges carrying
{Q,Q†} = 0. This condition excludes one of two components in Q. For the same reason we do
not use the SU (2) RZ+RY

2
lowering operator. As a result, we can use two components of Q, one

component of Q, and the SU (2) RZ−RY
2

lowering operator R− in the construction of the repre-
sentation. We show the quantum numbers of these operators and the ground state in Table B1.

A general state in the multiplet is schematically given as

QpQ
q
Rm

−|X ∗〉, p = 0, 1, 2, q = 0, 1. (B1)

The introduction of the 7-brane at Z = 0 breaks the supersymmetry Q, and as a result the
states in Eq. (A6) split into two types of representations: BD3(X =0)

m,r and CD3(X =0)
m,r ; see Table B2

for the states in each representation. The contributions of these representations to the index
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are as follows:∑
m

i
(
BD3(X =0)

m,0

)
= (qux)−1 1

1 − quy
,

∑
m

i
(
BD3(X =0)

m,1

)
= (quz) (qux)−1 1 − q

1
2 y±1u−1

z

1 − quy
,

∑
m

i
(
BD3(X =0)

m,r>1

)
= (quz)r (qux)−1

(
1 − q

1
2 yu−1

z

) (
1 − q

1
2 y−1u−1

z

)
1 − quy

,

∑
m

i
(
CD3(X =0)

m,r=−1

)
= − quy

1 − quy
+ 1,

∑
m

i
(
CD3(X =0)

m,r=0

)
= − (quz)

1 − q
1
2 y±1u−1

z

1 − quy
,

∑
m

i
(
CD3(X =0)

m,r≥0

)
= − (quz)r+1

(
1 − q

1
2 yu−1

z

) (
1 − q

1
2 y−1u−1

z

)
1 − quy

. (B2)

Appendix C. Current algebra
We consider the current algebra of a simple Lie algebra G:[

Ja
m, Jb

n

] = i fabcJc
m+n + kmδa,bδm+n,0, (C1)

where fabc are the structure constants of G. k is the level, and we are interested in the basic
representation of the algebra, the Fock space constructed on a G-singlet ground state |0〉 with
k = 1.

The first few terms are

χ Ĝ = 1 + qχθ + q2
(

(χθ )2
sym − χ2θ + χθ

)
+ · · · , (C2)

where (χθ )2
sym is the character of the symmetric product representation: (χθ )2

sym(x) = (χθ (x)2 +
χθ (x2))/2. The first term and the second term correspond to the ground state |0〉 and the first
excited states Ja

−1|0〉, respectively. The third term corresponds to two types of grade 2 states:

J{a
−1Jb}

−1|0〉, Ja
−2|0〉. (C3)

The former belong to the symmetric product of two copies of the adjoint representation, which
is decomposed into irreducible representations as

(Rθ ⊗ Rθ )sym = R2θ + · · · + R0. (C4)

We denote the representation with the highest weight w by Rw, and θ is the highest weight of
the adjoint representation. With the commutation relation (C1) we can easily show that states
in R2θ are null states. By subtracting the null state contribution from the contribution of Eq.
(C3) we obtain the q2 term in Eq. (C2). Higher-order terms in χ Ĝ can be effectively obtained
by the free field realization:

χ Ĝ(q, x) =
∑

p∈�G
q

p2

2 xp∏∞
n=1(1 − qn)r

, r = rank G. (C5)

�G is the root lattice of G. x collectively represents r fugacities, and xp = ∏r
i=1 xpi

i . We show
the first few terms of χ Ĝ(q, 1) for the seven types of G:
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χ Ĥ0 = 1,

χ Ĥ1 = 1 + χ
H1
3 q + (

1 + χ
H1
3

)
q2 + (

1 + 2χ
H1
3

)
q3 + (

2 + 2χ
H1
3 + χ

H1
5

)
q4

+ (
2 + 4χ

H1
3 + χ

H1
5

)
q5 + (

4 + 5χ
H1
3 + 2χ

H1
5

)
q6 + · · · , (C6a)

χ Ĥ2 = 1 + χ
H2
8 q + (

1 + 2χ
H2
8

)
q2 + (

2 + 3χ
H2
8 + χ

H2
10 + χ

H2

10

)
q3

+ (
3 + 6χ

H2
8 + χ

H2
10 + χ

H2

10
+ χ

H2
27

)
q4 + (

4 + 10χ
H2
8 + 3χ

H2
10 + 3χ

H2

10
+ 2χ

H2
27

)
q5

+ (
8 + 16χ

H2
8 + 5χ

H2
10 + 5χ

H2

10
+ 5χ

H2
27

)
q6 + · · · , (C6b)

χ D̂4 = 1 + χ
D4
28 q + (

1 + χ
D4
28 + χ

D4
35V

+ χ
D4
35S

+ χ
D4
35C

)
q2 + (

1 + 4χ
D4
28 + χ

D4
35V

+ χ
D4
35S

+ χ
D4
35C

+ χ
D4
350

)
q3 + (

4 + 5χ
D4
28 + 3χ

D4
35V

+ 3χ
D4
35S

+ 3χ
D4
35C

+ χ
D4
300 + 3χ

D4
350

)
q4

+ (
4 + 12χ

D4
28 + 5χ

D4
35V

+ 5χ
D4
35S

+ 5χ
D4
35C

+ χ
D4
300 + 7χ

D4
350 + χ

D4
567V

+ χ
D4
567S

+ χ
D4
567C

)
q5 + (

9 + 18χ
D4
28 + 11χ

D4
35V

+ 11χ
D4
35S

+ 11χ
D4
35C

+ 5χ
D4
300 + 14χ

D4
350

+ 2χ
D4
567V

+ 2χ
D4
567S

+ 2χ
D4
567C

+ χ
D4
840V

+ χ
D4
840S

+ χ
D4
840C

)
q6 + · · · , (C6c)

χ Ê6 = 1 + χ
E6
78 q + (

1 + χ
E6
78 + χ

E6
650

)
q2 + (

1 + 2χ
E6
78 + 2χ

E6
650 + χ

E6
2925

)
q3 + (

2 + 4χ
E6
78

+ 4χ
E6
650 + χ

E6
2430 + χ

E6
2925 + χ

E6
5824 + χ

E6

5824

)
q4 + (

3 + 7χ
E6
78 + 7χ

E6
650 + χ

E6
2430

+ 4χ
E6
2925 + 2χ

E6
5824 + 2χ

E6

5824
+ χ

E6
34 749

)
q5 + (

6 + 11χ
E6
78 + 14χ

E6
650 + 3χ

E6
2430

+ 7χ
E6
2925 + χ

E6
3003 + χ

E6

3003
+ 4χ

E6
5824 + 4χ

E6

5824
+ 3χ

E6
34 749 + χ

E6
70 070

)
q6 + · · · , (C6d)

χ Ê7 = 1 + χ
E7
133q + (

1 + χ
E7
133 + χ

E7
1539

)
q2 + (

1 + 2χ
E7
133 + χ

E7
1463 + χ

E7
1539 + χ

E7
8645

)
q3

+ (
2 + 3χ

E7
133 + χ

E7
1463 + 3χ

E7
1539 + χ

E7
7371 + χ

E7
8645 + χ

E7
40 755

)
q4 + (

2 + 6χ
E7
133

+ 3χ
E7
1463 + 4χ

E7
1539 + χ

E7
7371 + 3χ

E7
8645 + 2χ

E7
40 755 + χ

E7
152 152

)
q5 + (

5 + 8χ
E7
133

+ 4χ
E7
1463 + 9χ

E7
1539 + 3χ

E7
7371 + 5χ

E7
8645 + 4χ

E7
40 755 + χ

E7
150 822 + 2χ

E7
152 152

+ χ
E7
365 750

)
q6 + · · · , (C6e)

χ Ê8 = 1 + χ
E8
248q + q2(1 + χ

E8
248 + χ

E8
3875

)
q + (

1 + 2χ
E8
248 + χ

E8
3875 + χ

E8
30 380

)
q3 + (

2

+ 3χ
E8
248 + 2χ

E8
3875 + χ

E8
27 000 + χ

E8
30 380 + χ

E8
147 250

)
q4 + (

2 + 5χ
E8
248 + 3χ

E8
3875

+ χ
E8
27 000 + 3χ

E8
30 380 + χ

E8
147 250 + χ

E8
779 247

)
q5 + (

4 + 7χ
E8
248 + 6χ

E8
3875 + 3χ

E8
27 000

+ 4χ
E8
30 380 + 2χ

E8
147 250 + 2χ

E8
779 247 + χ

E8
2450 240

)
q6 + · · · . (C6f)

Appendix D. Kaluza–Klein index
The bulk contributions calculated by Eq. (8) are shown below:

IKK
H0

= 1 + u
6
5
z q

6
5 − u

1
5
z χJ

1 q
17
10 + u−1

z χF
2 q2 + (

u
7
10
z χF

1 + u
− 4

5
z

)
q

11
5 + 2u

12
5

z q
12
5

+ (
u

6
5
z − u

− 3
10

z χF
1

)
χJ

1 q
27
10 − 2u

7
5
z χJ

1 q
29
10 + ( − 1 + u

− 3
2

z χF
3 − χF

2

)
q3 + · · · , (D1a)
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IKK
H1

= 1 + u
4
3
z q

4
3 − u

1
3
z χJ

1 q
11
6 + (

u−1
z χF

2 + u−1
z χ

H1
3

)
q2 + (

u
− 2

3
z + χF

1 u
5
6
z
)
q

7
3 + 2u

8
3
z q

8
3

+ ( − u
− 1

6
z χF

1 + u
4
3
z
)
χJ

1 q
17
6 + ( − 1 − χF

2 + u
− 3

2
z χF

3 − χ
H1
3 + u

− 3
2

z χF
1 χ

H1
3

)
q3

− 2u
5
3
z χJ

1 q
19
6 + (

u
− 7

6
z χF

1 − u
1
3
z + 2u

1
3
z χF

2 − uz
11
6 χF

1 − u
1
3
z χJ

2 + u
1
3
z χ

H1
3

)
q

10
3

+ (
u−1

z + u−1
z χF

2 + u−1
z χ

H1
3

)
χJ

1 q
7
2 + (
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