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We have updated nuclear weak rates relevant to the study of astrophysical processes in stars. 

Neutrino-induced reaction cross sections, electron-capture and β-decay rates at stellar 

environments are obtained with new shell-model Hamiltonians that prove to be successful in 

describing spin responses - Gamow-Teller and spin-dipole transitions - in nuclei. The cross 

sections and rates are applied to nucleosynthesis in supernovae, detection of νand nuclear 

URCA processes.   
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1.  Introduction 

 
We have updated nuclear weak rates which are important to the study of astrophysical 

processes in stars. ν-nucleus reaction cross sections on 
12

C [1], 
13

C [2], 
16

O [3], 
40

Ar [4], 
56

Fe, and 
56

Ni [5] have been updated and applied to nucleosynthesis in supernovae [1,3,5], 
ν detection [2-4] and study of ν properties such as mass hierarchies [6]. The total and 
partial cross sections for various channels are tabulated for 

12
C, 

13
C and

 16
O.  

Electron-capture and β-decay rates in pf-shell and sd-shell nuclei at stellar 
environments have been updated with GXPF1J [7] and USDB, respectively. They have 
been used to study synthesis of iron-group nuclei in type Ia supernovae [8], and nuclear 
URCA processes in degenerate O-Ne-Mg cores in stars with 8-10 solar masses [9,10]. 
Nuclear pairs, 

23
Na-

23
Ne and 

25
Mg-

25
Na, are found to be important for the cooling of the 

core, and the final fate of the stars is sensitive to the nuclear weak rates as well as their 
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mass. The rates for sd- and pf-shell nuclei are tabulated. 
Extension of the study to e-capture and β-decay rates for neutron-rich nuclei along 

and near N=50 is in progress, where evaluations of forbidden transitions in pf-gds shells 
become crucial. The rates are important for stellar core-collapse processes. The rates for 
nuclei in the island of inversion with sd-pf shells are important for nuclear URCA 
processes in the neutron star crusts. 
ν-induced reaction cross sections on light nuclei are discussed in Sect. 2. We 

discuss e-capture and β-decay rates in sd-shell and pf-shell nuclei in Sect. 3. The rates 
for neutron-rich nuclei, where two-major shells are involved, will be discussed in Sect. 
4. Summary is given in Sect. 5. 

   
2.  Neutrino-nucleus Reaction Cross Sections on Light Nuclei  
 
2.1 ν- 

12
C and ν-

13
C 

 
Neutrino-induced reactions on 

12
C and 

13
C at reactor and supernova ν energies are 

investigated by shell-model calculations with the SFO Hamiltonian, which can well 
reproduce the Gamow-Teller (GT) strength in 

12
C. Nucleosynthesis of light nuclei in 

supernovae is studied with the updated cross sections, and enhancement of the 
production yield of 

11
B and 

7
Li compared to previous studies is found [1]. ν-

13
C cross 

sections are also updated for solar and reactor ν [2] as well as for supernova ν [11]. 
Coherent elastic scattering cross sections are also evaluated for 

12
C and 

13
C and 

sensitivity to neutron distributions are investigated [11].  
 
2.2 ν-

16
O 

   ν-
16

O reactions, induced dominantly by spin-dipole transitions, are studied by 
shell-model calculations with the SFO-tls Hamiltonian [12], in which p-sd cross-shell 
matrix elements are improved with proper inclusion of the tensor forces. Charged- and 
neutral-current reaction cross sections in various channels are obtained, and applied to 
nucleosynthesis of 

11
B and 

11
C in supernovae through sizable αp emission channels [3]. 

Neutrino mass hierarchy dependence of the charged-current cross sections are studied 
for future detection of supernovae [6].  
 

3.  Electron-capture and β-decay Rates of Nuclei within One-major Shells 

3.1 sd-shell  

Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at 
high densities and high temperatures relevant to the final evolution of electron- 
degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M☉. The rates are 
important to determine the final fate of the stars, whether they end up with 
electron-capture supernovae or Fe core-collapse supernovae. The rates obtained by 
shell-model calculations with the USDB Hamiltonian are provided in tables with fine 
enough meshes at various densities and temperatures [10]. Effects of Coulomb 
corrections on the rates are taken into account. The rates for pairs with A = 23 and 25 
are important for nuclear URCA processes that determine the cooling rate of the 
O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the 
core-contraction and heat generation rates in the core. 
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3.2 pf-shell 

Electron-capture and β-decay rates in pf-shell nuclei have been updated with the use 
of the GXPF1J Hamiltonian, which can describe the GT strengths of Ni and Fe isotopes 
quite well [7]. The rates are applied to study nucleosynthesis of iron-group elements in 
type Ia supernovae. An over-production problem of the elements for the previous single- 
particle rates disappears for the updated shell-model rates, in particular, for the 
supernova model of delayed detonation after deflagration [8]. The updated rates are 
provided in the REACLIB database.   

4. Electron-capture and β-decay Rates of Nuclei with Two-major Shells 

4.1 sd-pf shell in the island of inversion 

Electron-capture and β-decay rates are evaluated for nuclei in the island of inversion, 

where excitations of nucleons from sd-shell to pf-shell play important roles. 

Neutron-rich Ne and Mg isotopes are studied with an interaction obtained with the 

extended Kuo-Krenciglowa (EKK) method [13] from chiral N
3
LO interaction and 

Fujita-Miyazawa three-body forces. Large admixtures of pf-shell components with both 

2p-2h and 4p-4h excitations are found in 
32

Mg, and energy spectra in 
31

Mg are well 

reproduced; the ground state is 1/2
+
 consistent with the observation. The weak rates for 

the 
31

Mg-
31

Al pair, which are important for the URCA process in neutron star crusts 

[14], are evaluated, and the URCA density is assigned to be at log10(ρYe) =10.14 [15].           

4.2 pf-gds shell for 
78

Ni 

Electron-captures in neutron-rich nuclei near the N=50 closed neutron shell are 
pointed out to be important for core-collapse process in stars [16]. The e-capture rates 
for 

78
Ni are evaluated by shell-model with pf-gds shell. The shell-model calculation is 

an extension of that for pf-g9/2d5/2 configuration with the use of the modified A3DA 
interaction [17]. Here, up to 5p-5h excitations outside filling configurations of 

78
Ni are 

taken into account with full pf-gds shells. Dominant contributions come from the 
spin-dipole transitions. The spin-dipole strengths in 

78
Ni are shown in Fig. 1. Sum of the 

strengths for J
π
 = 0

-
, 1

-
 and 2

-
 are 11.60, 19.89 and 12.57 fm

2
, respectively, which 

exhaust 95%, 96% and 79% of the sum-values, respectively.  
Electron-capture rates on 

78
Ni obtained by the shell-model calculations with pf-gds 

configuration space at densities ρYe ～10
9
 -10

12
 g cm

-3 (Ye = proton fraction) and 
temperatures T = (1-5)×10

10
 K are shown in Fig. 2. Calculated results are compared 

with those of an RPA calculation with the SG2 interaction [19]. The same Q value for 
the shell-model is used for the RPA calculation. Similar rates are obtained for the two 
methods. 

 
5. Summary 

 
Neutrino-nucleus reaction cross sections, e-capture and β-decay rates in stellar 

environments have been updated with the use of new shell-model Hamiltonians. The 
new rates are applied to nucleosynthesis in supernovae, nuclear URCA processes, 
evolution of stars, and ν detection. We have provided these updated cross sections and 
rates in tables so that they can be used for studies of astrophysical processes sensitive to 
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the weak rates. 

 

Fig. 1.  Spin-dipole strengths in 
78

Ni obtained     Fig. 2.  Electron capture rates on 78Ni obtained 

with the modified A3DA interaction with pf-gds      with shell-model (pf-gds) and RPA calculations. 

shells.                              

.  
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