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Πρόλογος

Στην παρούσα ειδική ερευνητική εργασία γίνεται βιβλιογραφική ανασκόπηση και διε-

ρεύνηση των βασικών θεωριών ενοποίησης πέρα από το Καθιερωμένο Πρότυπο της
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τριμελούς επιτροπής για τις εξαιρετικές παρατηρήσεις τους.

Επίσης, αισθάνομαι την ανάγκη να ευχαριστήσω πολλούς ακόμα ανθρώπους που

συμμετείχαν, είτε έμπρακτα είτε γενικώς υποστηρικτικά στην εκπόνηση της παρούσας

εργασίας. ΄Ενα μεγάλο ευχαριστώ, οφείλω στον κ. Ζιούτα Κωνσταντίνο, ομότιμο

Καθηγητή του τμήματος Φυσικής του Πανεπιστημίου Πατρών και εκπρόσωπο του

πειράματος CAST στο CERN για τις πολύ χρήσιμες συμβουλές του, αλλά και για

την γενικότερη υποστήριξη του σε όλα τα έτη των μεταπτυχιακών μου σπουδών.

Επιπλέον, ευχαριστώ ιδιαιτέρως την Μητροπούλου Φωτεινή και τον Μαρούδα

Σπυρίδωνα, για την ψυχολογική και ηθική υποστήριξη τους καθώς και την βοήθεια

τους στον ορθογραφικό έλεγχο και την γενικότερη διαμόρφωση της παρούσας ερ-

γασίας. Πρέπει ακόμα να ευχαριστήσω τους μεταπτυχιακούς συμφοιτητές μου του

τμήματος Φυσικής καθώς και τους πολυάριθμους φίλους και συνεργάτες από το

CERN οι οποίοι συνέβαλλαν ο καθένας με τον δικό του ξεχωριστό τρόπο στην

δημιουργία ενός ευχάριστου κλίματος συνεργασίας και αλληλοκατανόησης. Τέλος,

ευχαριστώ από καρδιάς την οικογένεια μου για την κατανόηση, συμπαράσταση και
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Περίληψη

Μια από τις σημαντικότερες, αν όχι η σημαντικότερη θεωρία στην ιστορία της θε-

ωρητικής φυσικής υψηλών ενεργειών είναι το Καθιερωμένο Πρότυπο των Glashow,

Salam και Weinberg. ΄Ετσι, στο Κεφάλαιο 2, μετά την ιστορική εισαγωγή του

Κεφαλαίου 1 όπου εκτίθενται οι βασικές έννοιες της σύγχρονης και σωματιδιακής

φυσικής, αναλύουμε τα βασικά στοιχεία του καθιερωμένου προτύπου της σωματιδια-

κής φυσικής αλλά και τα εργαλεία που χρησιμοποιούνται στην για την επίτευξη της

ενοποίησης των ηλεκτρομαγνητικών και των ασθενών αλληλεπιδράσεων. Ο λόγος

για την επεξηγηματική πορεία που ακολουθούμε, είναι η κατανόηση του τρόπου με

τον οποίο επιτεύχθηκε η ενοποίηση αυτή αλλά και των ουσιωδών χαρακτηριστικών

της φυσικής της ενοποίησης. Η προσέγγιση αυτή, θέτει τις βάσεις και τα εργαλε-

ία για την ενοποίηση και των υπόλοιπων δυνάμεων κάτω από ένα κοινό μαθηματικό

πλαίσιο το οποίο σίγουρα θα περιλαμβάνει τις θεωρίες βαθμίδας σαν βασικό συστα-

τικό. Από τα μέσα της δεκαετίας του 1970, όπου ολοκληρώθηκε η διατύπωσή του,

η αντιπαράθεση του καθιερωμένου προτύπου με τα πειραματικά δεδομένα, μέχρι και

σήμερα, υπήρξε εξαιρετικά επιτυχημένη. Ωστόσο, όπως θα δούμε, παρά την μεγάλη

επιτυχία του, γρήγορα διαπιστώθηκε πως διακατέχεται και από σοβαρές αδυναμίες.

΄Ετσι, θα αναλύσουμε τα βασικά προβλήματα που το διέπουν, όπως ο αυθαίρετος α-

ριθμός των ελεύθερων παραμέτρων και το CP πρόβλημα, αλλά και τα φαινόμενα τα

οποία δεν μπορεί να εξηγήσει, όπως η σκοτεινή ύλη και ενέργεια αλλά και οι μάζες

των νετρίνων, έτσι ώστε να καταλάβουμε για ποιο λόγο η περαιτέρω ενοποίηση δεν

είναι απλά ένα νοητικό πρόβλημα της θεωρητικής και μαθηματικής φυσικής, αλλά ένα

καίριο θέμα που μπορεί να λύσει τα προβλήματα που διέπουν την μέχρι στιγμής πιο

επιτυχημένη θεωρία της σωματιδιακής φυσικής.

Η προσπάθεια να δοθούν απαντήσεις στα αναπάντητα ερωτήματα που δημιούργησε

το καθιερωμένο πρότυπο οδήγησε στην κατασκευή των Μεγαλοενοποιημένων Θεωρι-

ών. ΣτοΚεφάλαιο 3 περιγράφουμε τις βασικές μεγαλοενοποιημένες θεωρίες, όπως

η SU (5) και SO (10), που επιχειρούν να συνδέσουν τις ισχυρές αλληλεπιδράσεις με
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τις ηλεκτρασθενείς και να επιλύσουν ορισμένα βασικά προβλήματα του καθιερωμένου

προτύπου. Στο ίδιο κεφάλαιο αναδεικνύονται οι προβλέψεις που κάνουν οι θεωρίες

αυτές, όπως η διάσπαση του πρωτονίου και τα μαγνητικά μονόπολα, οι πειραματικές

προσπάθειες που γίνονται μέχρι σήμερα για την επιβεβαίωση ή απόρριψη τους, και η

παρουσίαση νέων προβλημάτων που εδραιώνονται, όπως το doublet-triplet πρόβλημα

και το πρόβλημα της ιεραρχίας.

΄Ετσι, οδηγούμαστε στοΚεφάλαιο 4, στο οποίο αναπτύσσεται μια από τις απο-

καλούμενες ως ομορφότερες θεωρίες της θεωρητικής φυσικής, της υπερσυμμετρίας,

η οποία επιλύει το πρόβλημα της ιεραρχίας σχετίζοντας μεταξύ τους τα μποζόνια και

τα φερμιόνια ως δύο όψεις του ίδιου νομίσματος. Η θεωρία αυτή ενοποιεί με έναν

εκπληκτικά όμορφο τρόπο διαφορετικές πτυχές της σωματιδιακής φυσικής αλλά και

επιλύει πολλά υπάρχοντα προβλήματα. Επίσης, θα δούμε με ποιο τρόπο η υπερσυμ-

μετρία επεκτείνει το καθιερωμένο πρότυπο στο MSSM αλλά και τα προβλήματα που

το διακατέχουν. Στην συνέχεια, θα αναφέρουμε την εφαρμογή της υπερσυμμετρίας

στις μεγαλοενοποιημένες θεωρίες και τις νέες προβλέψεις που λαμβάνουν χώρα. Ω-

στόσο, παρά τις επίμονες προσπάθειες η νέα αυτή συμμετρία δεν έχει επιβεβαιωθεί

πειραματικά και η τελική απάντηση αναμένεται από τα νέα πειράματα.

΄Ομως, ο βασικός σκοπός της φυσικής των στοιχειωδών σωματιδίων, ο οποίος

αποτελεί το δισκοπότηρο της θεωρητικής φυσικής, είναι η ενοποίηση όλων των θεμε-

λιωδών αλληλεπιδράσεων. Το καθιερωμένο πρότυπο αλλά και οι μεγαλοενοποιημένες

θεωρίες “αγνοούν” εντελώς τις βαρυτικές αλληλεπιδράσεις. Μια τέτοια θεωρία, που

θα περιγράφει όλες τις αλληλεπιδράσεις και όλα τα φυσικά φαινόμενα και σωματίδια,

ονομάζεται Θεωρία Των Πάντων, και κάποια βασικά χαρακτηριστικά της αλλά και

κάποιες υποσχόμενες υποψήφιες θεωρίες, όπως η θεωρία χορδών και η κβαντική

βαρύτητα βρόχων, σκιαγράφονται στο Κεφάλαιο 5. Πριν από αυτό όμως, παρα-

τίθενται συγκεντρωτικά τα συμπεράσματα των θεωριών ενοποίησης που περιγράψαμε

στα προηγούμενα κεφάλαια. Τέλος, κλείνουμε περιγράφοντας τους πειραματικούς

περιορισμούς που υπάρχουν από τα υπάρχοντα και μελλοντικά πειράματα αλλά και

τα μελλοντικά βήματα που θα ακολουθήσουν στην σωματιδιακή φυσική και φυσική

υψηλών ενεργειών τα επόμενα χρόνια.
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Abstract

One of the most important theory in the history of high energy theoretical physics

is the Standard Model of Glashow Salam and Weinberg. Thus, in Chapter 2,

after the historical introduction of Chapter 1 where the basic concepts of mod-

ern and particle physic are exposed, we analyze the key elements of the standard

model of particle physics, as well as the basic tools that are used to achieve the uni-

fication of electromagnetic and weak interactions. The reason for the explanatory

path that we follow, is to understand the way in which this unification is achieved,

and also the essential features of the physics of unification. This approach lays

the foundations and tools for the unification of the remaining forces under a com-

mon mathematical framework which will surely include gauge theories as a basic

ingredient. From the mid 70’s when it’s formulation was completed, until today,

the confrontation of the standard model with the experimental data, had been

extremely successful. However, as we shall see, despite it’s great success, it was

quickly realized that the standard model is also possessed by serious weaknesses.

Thus, we will analyze the main underlying problems, such as the arbitrary number

of free parameters and the CP problem, as well the variety of the phenomena that

it can not explain, such as dark matter, dark energy and the neutrino masses,

in order to understand why the idea of further unification is not just a mental

problem of theoretical and mathematical physics, but a key issue that can solve

the problems underlying the so far most successful theory of particle physics.

Trying to answer the remaining questions, that standard model created, led

us to the construction of Grand Unified Theories. In Chapter 3 we describe

the basic grand unified theories such as SU (5) and SO (10), which attempt to

unify the strong with the electroweak interactions and solve some of the standard

model issues. The same chapter, highlights the predictions of theses theories, such

as proton decay and and the existence of magnetic monopoles, the experimental

efforts made so far for a possible confirmation or rejection, as well as the new arisen
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difficulties such as the doublet-triplet problem and the famous hierarchy problem.

Thus, we are led to Chapter 4, in which we develop the so-called most beauti-

ful theory of theoretical physics, supersymmetry, which solves the hierarchy prob-

lem by associating with each other bosons and fermions as two sides of the same

coin. This theory unifies, in a surprisingly beautiful way, different aspects of par-

ticle physics and settles a variety of existing difficulties. Furthermore, we will

explore the way in which supersymmetry extends the standard model in MSSM

as well as the new obstacles that need to be overcome. Then, we examine the ap-

plication of supersymmetry in grand unified theories and the new predictions that

take place. Nevertheless, despite the vigorous efforts, this new symmetry has not

been experimentally confirmed, and the final verdict will be given by the current

or future experiments.

However, the main objective of elementary particle physics, which is the grail of

theoretical physics, is the unification of all fundamental interactions. The standard

model and most of the grand unified theories completely ignore the gravitational

interactions. A theory, which describes all interactions and all natural phenomena

and particles, is called Theory of Everything. Some basic features, and some

promising candidates such as string theory and quantum loop gravity are outlined

in Chapter 5. Before that, we summarize the conclusions of the unification

theories, described on the previous chapters. Lastly, we describe the experimental

limitation of the existing and future experiments and the future steps that will be

followed in particle and high energy physics in the upcoming years.
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Κεφάλαιο 1

Εισαγωγή

Στο τέλος του 19
ου

αιώνα η φυσική της εποχής εκείνης που ονομάζεται σήμερα κλα-

σική φυσική θεωρούνταν εδραιωμένη και ακλόνητη. Η κυρίαρχη φυσική γνώμη ήταν

πως όλα τα θεμελιώδη προβλήματα είχαν θεωρητικά λυθεί. Η μελέτη συγκεκριμένων

φαινομένων ήταν ζήτημα μονάχα κάποιας επιμέρους εφαρμογής των γνωστών θε-

μελιωδών αρχών και επίλυσης των γνωστών διαφορικών εξισώσεων που εκφράζουν

τους θεμελιώδεις νόμους της φύσης. Την πεποίθηση αυτή είχαν ενισχύσει, εκτός από

τις μεγάλες επιτυχίες της κλασικής μηχανικής στη μελέτη των ουρανίων σωμάτων,

και οι άλλοι κλάδοι της Φυσικής. Η κινητική θεωρία, για παράδειγμα, ενοποίησε τη

στατιστική μηχανική με τη θερμοδυναμική. Ομοίως η ηλεκτρομαγνητική θεωρία του

Maxwell ενοποίησε τα ηλεκτρικά και μαγνητικά φαινόμενα με τα οπτικά φαινόμενα,

δείχνοντας ότι το φως δεν ήταν τίποτε άλλο παρά ηλεκτρομαγνητική ακτινοβολία.

Γενικά μπορούμε να δούμε πως κατά την διάρκεια της ιστορίας της φυσικής, έχει

γίνει μεγάλη πρόοδος μέσω της ενοποίησης πτυχών της φύσης που ήταν φαινομενικά

διαφορετικές εκφάνσεις της φυσικής πραγματικότητας.

Στα τέλη όμως του 19
ου

αιώνα και στην αρχή του 20
ού

προέκυψαν πειραματικά

αποτελέσματα που δεν ήταν δυνατόν να ερμηνευθούν με την εφαρμογή των γνωστών

βασικών αρχών. ΄Ετσι, χρειάστηκε να αναθεωρηθούν οι βασικές αρχές γεγονός που

όπως θα δούμε οδήγησε σε δύο διαφορετικές επαναστάσεις στη φυσική. Οι επανα-

στάσεις αυτές της Κβαντομηχανικής και της θεωρίας της Σχετικότητας θα άλλαζαν

τελείως τον τρόπο με τον οποίο αντιλαμβανόμαστε την φυσική πραγματικότητα αλλά

και την άποψη μας για μια ενιαία περιγραφή της φύσης.
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

1.1 Κλασική φυσική

Η κλασική φυσική, μπορούμε να πούμε ότι χωρίζεται γενικά σε τρεις θεμελιώδους

κλάδους:

1. Κλασική Μηχανική.

2. Κλασική Θεωρία Πεδίων.

3. Κλασική Στατιστική Μηχανική.

1.1.1 Κλασική μηχανική

Η πρώτη σοβαρή προσπάθεια να ερμηνευτούν τα διάφορα φυσικά φαινόμενα κάτω

από μια ενιαία περιγραφή έγινε από τον Νεύτωνα τον 16
ο
αιώνα με την δημιουργία

και την καθιέρωση της Κλασικής Μηχανικής, η οποία μπορούσε να εξηγήσει μια

σειρά από φυσικές διεργασίες με την βοήθεια μερικών απλών και βασικών αρχών. Η

αρμοδιότητα της κλασικής μηχανικής είναι η μελέτη της κίνησης των υλικών σωμάτων

υπό την επίδραση δεδομένων δυνάμεων [1]. Το περιεχόμενο της συνοψίζεται στο νόμο

του Νεύτωνα:

F =
dp

dt
(1.1)

ο οποίος γνώρισε θεαματική επιβεβαίωση των προβλέψεων του τόσο στη μελέτη της

κίνησης γήινων σωμάτων όσο και στην περιγραφή των πλανητικών τροχιών [1].

Στο πλαίσιο της μηχανικής ανήκουν επίσης και όλα τα φαινόμενα που οφείλονται

στη σχετική κίνηση των δομικών μονάδων ενός συνεχούς μέσου υπό την επίδραση

των αμοιβαίων τους δυνάμεων (Κυματική και Μηχανική Ρευστών). Η εφαρμογή του

νόμου του Νεύτωνα 1.1 στο πρόβλημα της κυματικής διάδοσης οδηγεί στην γνωστή

κυματική εξίσωση:

∇2ϕ− 1

u2

∂2ϕ

∂t2
= 0 (1.2)

η οποία περιγράφει με ακρίβεια όλα τα μηχανική κύματα. Η μόνη περίπτωση που

έμενε να επιβεβαιωθεί ήταν η διάδοση των ηλεκτρομαγνητικών κυμάτων. ΄Ομως,

όπως αποδείχθηκε μέσω των πειραμάτων των Mickelson-Morley τα ηλεκτρομαγνητικά

κύματα, δεν μπορούν να αναχθούν σε μηχανική ταλάντωση κάποιου υλικού μέσου

όπως ο αιθέρας [2]. Σε αντίθεση επίσης με τα μηχανικά, αυτά μπορούν να διαδοθούν

και στο κενό.

Οι βασικές παραδοχές της Κλασικής Μηχανικής είναι [1]:
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1.1. Κλασική φυσική Μαρούδας Μάριος

• Τα υλικά σωματίδια κινούνται πάνω σε καλά καθορισμένες τροχιές πράγμα που

σημαίνει ότι μπορούμε με απόλυτη ακρίβεια να μελετήσουμε τόσο τη θέση όσο

και την ταχύτητα του σωματιδίου.

• Η ενέργεια και η ορμή των υλικών σωματιδίων είναι “καθαρά” εντοπισμένες.

• Φυσικά μεγέθη όπως η ενέργεια, η ορμή, η στροφορμή κλπ παίρνουν όλες τις

δυνατές τιμές εντός επιτρεπόμενων διαστημάτων, δηλαδή έχουμε ένα συνεχές

πεδίο τιμών.

• Η έννοια της “κβάντωσης”, είναι συνυφασμένη με καθαρά κυματικά μεγέθη,

όπως η συχνότητα και το μήκος κύματος των στάσιμων κυμάτων. Ωστόσο, τα

δυναμικά μεγέθη όπως η ενέργεια και η ορμή παίρνουν ένα συνεχές σύνολο

τιμών.

1.1.2 Κλασική θεωρία πεδίων

Η Κλασική Θεωρία των Πεδίων πραγματεύεται η μελέτη των θεμελιωδών δυναμικών

πεδίων, όπως το πεδίο βαρύτητας και το ηλεκτρομαγνητικό πεδίο [3, 4]. Η κλασική

θεωρία του πεδίου βαρύτητας συγκεντρώνεται στο νόμο της Παγκόσμιας ΄Ελξης:

F = G
m1m2

r2
r̂ (1.3)

Μετά την ανακάλυψη των ηλεκτρικών και μαγνητικών φαινομένων και ιδιαίτερα

του ηλεκτρικού φορτίου, η έρευνα των φυσικών φαινομένων αποκτά καινούριο εν-

διαφέρον. Μέχρι τον 19
ο
αιώνα οι επιστήμονες θεωρούσαν την ηλεκτρική και τη

μαγνητική δύναμη ως δυο τελείως διαφορετικές δυνάμεις. Οι εξισώσεις Maxwell ση-

ματοδότησαν και την πρώτη ενοποίηση δυνάμεων. Το ηλεκτρικό και το μαγνητικό

πεδίο αποδείχθηκε ότι αποτελούν τις δυο όψεις του ίδιου νομίσματος. Οι εξισώσεις

Maxwell εμπεριέχουν συμπυκνωμένους όλους τους νόμους του Ηλεκτρομαγνητισμο-

ύ [4]:

~∇ · ~E =
ρE (~r)

ε0

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µ0
~jE + µ0ε0

∂ ~E

∂t

(1.4)
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

Οι Εξ. 1.4 επαληθεύουν την κλασική κυματική εξίσωση. Η πιο σημαντική συνέπεια

τους είναι η διάδοση των ηλεκτρομαγνητικών κυμάτων στο κενό σύμφωνα με τους

νόμους της Κλασικής Κυματικής με ταχύτητα ίση με την ταχύτητα του φωτός. Στα

πλαίσια της Κλασικής Θεωρίας η αναγωγή των ηλεκτρομαγνητικών κυμάτων σε μη-

χανικές ταλαντώσεις είναι αδύνατη. Ως αποτέλεσμα υπάρχουν δυο ξεχωριστές και

αμοιβαία αποκλειόμενες φυσικές οντότητες: τα σωματίδια και τα κύματα, και κάθε

απόπειρα συνδυασμού έρχεται σε πλήρη αντίθεση με την κλασική φυσική.

1.1.3 Κλασική στατιστική μηχανική

Η Κλασική Μηχανική και Κλασική Θεωρία Πεδίων μπορεί να εξηγήσει τους νόμους

οποιουδήποτε φαινομένου μελετώντας την κίνηση του πλήθους των σωματιδίων υπό

την επίδραση των αμοιβαίων τους δυνάμεων. Ωστόσο, για ένα μακροσκοπικό σώμα

αυτά δεν ισχύουν καθώς:

• Ο αριθμός των σωματιδίων του μακροσκοπικού σώματος είναι της τάξεως του

1023
, και άρα η λύση των εξισώσεων της κίνησης είναι πρακτικά αδύνατη για

κάθε σωματίδιο ξεχωριστά.

• ΄Οσον αφορά τα θερμοδυναμικά μεγέθη, η περιγραφή της σωματιδιακής κίνησης

δεν είναι αναγκαία. Για παράδειγμα, για τον υπολογισμό της πίεσης του αερίου

αρκεί η γνώση του αριθμού των σωματιδίων και της κατανομής των ταχυτήτων

της. Δηλαδή, αρκεί η γνώση της στατιστικής κατανομής στο χώρο των θέσεων

και τον ορμών.

• Ο βασικός νόμος που διέπει τις μεταβολές των απομονωμένων μακροσκοπικών

συστημάτων, είναι ο νόμος αύξησης της εντροπίας, ο οποίο όμως δεν συνάγε-

ται από της εξισώσεις της μικροσκοπικής κίνησης οι οποίες είναι αναλλοίωτες

στην αντιστροφή του χρόνο καθώς οι μακροσκοπικές μεταβολές είναι μονής

κατεύθυνσης. ΄Αρα, ο νόμος αύξησης της εντροπίας θεωρείται ανεξάρτητος

θεμελιώδης νόμος της φύσης.

Ο “στατιστικός ορισμός” της εντροπίας διατυπώνεται ως εξής:

S = k logW (1.5)

όπου k η σταθερά του Boltzmann και W το στατιστικό βάρος μιας συγκεκριμένης

κατανομής μορίων στο χώρο των φάσεων. Το W ορίζεται ως ο αριθμός των συν-

δυασμών με τους οποίους μπορεί να πραγματοποιηθεί η θεωρούμενη κατανομή. Η
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1.2. Σύγχρονη φυσική Μαρούδας Μάριος

πιθανότερη κατανομή των μορίων είναι αυτή που μεγιστοποιεί την εντροπία, και η

οποία αντιστοιχεί στην κατάσταση θερμοδυναμικής ισορροπίας. Αυτή είναι:

dN

N
= Ae−E/kTdτ (1.6)

όπου dN/N είναι το ποσοστό των μορίων που βρίσκονται σε όγκο dτ και έχουν

ενέργεια E. Σύμφωνα με την Εξ. 1.6 η ποσότητα:

P = Ae−E/kT (1.7)

δίνει την πιθανότητα να έχει ένα σωματίδιο ενέργεια E σε θερμοκρασία T . Ο τύπος

αυτός είναι ο τύπος του Boltzmann και αποτελεί βασικό τύπο της Κλασικής Στατι-

στικής Μηχανικής.

Τέλος, ένας από τους βασικούς νόμους της Στατιστικής Μηχανικής η οποία με-

λετά τη μέση τιμή των φυσικών ιδιοτήτων πολύ μεγάλων συνόλων από ξεχωριστά

σωματίδια που κινούνται τυχαίως είναι το θεώρημα της ισοκατανομής το οποίο ορίζει

πως η ολική ενέργεια ενός μεγάλου πλήθους χωριστών σωματίων που ανταλλάσσουν

μεταξύ τους την ενέργεια τους με κρούσεις, κατανέμεται εξίσου (κατά μέσο όρο) σε

όλα τα σωμάτια.

1.2 Σύγχρονη φυσική

Μετά κι από την ανακάλυψη της ατομικής δομής της ύλης με το μοντέλο του Ruther-

ford (όπου το άτομο αποτελούνταν από έναν θετικά φορτισμένο πυρήνα και μερικά

αρνητικά φορτισμένα ηλεκτρόνια γύρω από αυτόν), πολλοί πίστευαν ότι είχαν ανα-

καλυφθεί όλα τα στοιχεία που θα επέτρεπαν την ερμηνεία των διαφόρων φαινομένων

του φυσικού κόσμου. Ωστόσο, γρήγορα βρέθηκαν ενδείξεις που άρχισαν να θέτουν

υπό αμφισβήτηση τους νόμους του Νεύτωνα και του Maxwell. Αυτές ήταν κυρίως

η σταθερότητα της ταχύτητας του φωτός και οι φασματικές γραμμές των ατόμων.

Παρατηρήθηκε δηλαδή, πως η ταχύτητα του φωτός παραμένει σταθερή ανεξάρτητα

από την ταχύτητα της πηγής που την εκπέμπει, σε πλήρη αντίθεση με τους νόμους

της κίνησης της Νευτώνειας μηχανικής. Επίσης, φάνηκε μέσα από παρατηρήσεις φα-

σμάτων διεγερμένων ατόμων, ότι τα φάσματα αυτά δεν είχαν μια συνέχεια, αλλά η

εκπομπή λάμβανε χώρα σε συγκεκριμένες χαρακτηριστικές συχνότητες. Αυτό όμως

ήταν παράλογο σύμφωνα με την θεωρία του Maxwell που προέβλεπε ότι ένα ηλε-

κτρόνιο που κινείται σε τροχιά γύρω από τον πυρήνα, και άρα επιταχύνεται, θα πρέπει
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

να εκπέμπει συνεχές φάσμα. Επίσης ένα τέτοιο άτομο θα έπρεπε να καταρρεύσει σε

χρόνο 10−6s. Η “σταθερότητα” οπότε του ατόμου αποτελούσε μυστήριο.

Μέσα από αυτές τις αντιφάσεις θεωρίας και πειράματος γεννήθηκαν δυο μεγάλες

επαναστατικές θεωρίες των αρχών του αιώνα μας, πού καθόρισαν την σύγχρονη φυ-

σική και αποτέλεσαν μερικά από τα μεγαλύτερα επιτεύγματα της θεωρητικής φυσικής.

Αυτές είναι η Ειδική Θεωρία της Σχετικότητας - ΕΘΣ όπως διατυπώθηκε από τον

Einstein το 1905 και η Κβαντική Θεωρία όπως διαμορφώθηκε από διάφορους φυσι-

κούς μεταξύ των οποίων οι Heisenberg, Born, Jordan, Pauli, Schrodinger και Bohr

κατά τα έτη 1924 − 1927. Οι θεωρίες αυτές άλλαξαν τον τρόπο που βλέπουμε το

Σύμπαν αλλά και μας έδωσαν δύο πολύ ισχυρά εργαλεία για την μελέτη του φυσι-

κού κόσμου. Συγκεκριμένα, φτάσαμε πιο κοντά σε μια ολοκληρωμένη κατανόηση

του φυσικού κόσμου, και στην ερμηνεία μιας σειράς από πειραματικά δεδομένα που

δεν ταίριαζαν με τις παλαιότερες αντιλήψεις. Οι βασικές θεμελιώδεις αρχές της Κβα-

ντικής Θεωρίας είναι ο κυματοσωματιδιακός δυϊσμός της ύλης και η διακριτότητα.

Αντίστοιχα, η ΕΘΣ ορίζει πως η ταχύτητας μετάδοσης μιας οποιαδήποτε δράσης δεν

μπορεί να υπερβεί την ταχύτητα του φωτός γεγονός που υποδηλώνει πως υπάρχει

τοπικότητα των παρατηρήσεων, δηλαδή, μια αλλαγή σε ένα σημείο στο χωρόχρονο

γίνεται αντιληπτή σε άλλα σημεία αργότερα, οπότε η παρατήρηση είναι συνάρτηση

της θέσης στον χωρόχρονο, και άρα χρειαζόμαστε την έννοια των πεδίων για την

περιγραφή της φύσης.

1.2.1 Θεωρία της σχετικότητας

Ειδική θεωρία της σχετικότητας

Η ΕΘΣ βασίζεται σε δύο θεμελιώδη αξιώματα:

1. Οι νόμοι της φυσικής είναι ίδιοι σε όλα τα αδρανειακά συστήματα αναφοράς.

Αυτό σημαίνει ότι βασικοί νόμοι, όπως ο
∑
F = ma, έχουν την ίδια μαθηματική

μορφή για όλους τους παρατηρητές που κινούνται με σταθερή ταχύτητα ο ένας

ως προς τον άλλο.

2. Η μετρούμενη τιμή της ταχύτητας του φωτός στο κενό είναι πάντα 3× 108m/s

και είναι ανεξάρτητη της κίνησης του παρατηρητή ή της κίνησης της φωτεινής

πηγής. Δηλαδή, η ταχύτητα του φωτός είναι η ίδια για όλους τους αδρανειακούς

παρατηρητές.

6



1.2. Σύγχρονη φυσική Μαρούδας Μάριος

Προκειμένου να ικανοποιηθούν αυτά τα αξιώματα, ο μετασχηματισμός συντεταγ-

μένων του Γαλιλαίου πρέπει να αντικατασταθεί από τον μετασχηματισμό Lorentz που

εκφράζεται από τις εξισώσεις:

x′ = γ (x− υt)

t′ = γ
(
t− υ

c2
x
)

y′ = y

z′ = z

(1.8)

όπου:

γ =
1√

1− υ2

c2

(1.9)

Σε αυτές τις εξισώσεις έχει υποτεθεί ότι το τονούμενο σύστημα κινείται με ταχύτητα

υ κατά μήκος των αξόνων xx′.

Η σχετικιστική σχέση για τον μετασχηματισμό της ταχύτητας είναι:

u′x =
ux − υ
1− uxυ

c2

(1.10)

όπου ux είναι η ταχύτητα ενός αντικειμένου, όπως αυτή μετριέται από το σύστημα S,

και u′x είναι η ταχύτητα όπως μετριέται από το σύστημα S ′.

Μερικές από τις συνέπειες της ΕΘΣ είναι οι εξής:

1. Ρολόγια που κινούνται σε σχέση με έναν παρατηρητή έχουν βραδύτερο ρυθ-

μό λειτουργίας κατά ένα παράγοντα γ. Αυτό το φαινόμενο είναι γνωστό ως

διαστολή του χρόνου, και εκφράζεται από την σχέση:

∆t =
∆t′√
1− υ2

c2

= γ∆t′ (1.11)

2. Τα κινούμενα αντικείμενα παρουσιάζουν συστολή στη διεύθυνση της κίνησης.

Δηλαδή, ένα αντικείμενο που κινείται με ταχύτητα υ έχει μετρούμενο μήκος

μικρότερο από το μήκος ηρεμίας του (ιδιομήκος) L′ κατά τον παράγοντα 1/γ.

Δηλαδή:

L = L′
√

1− υ2

c2
=
L′

γ
(1.12)

3. Γεγονότα τα οποία είναι ταυτόχρονα για έναν παρατηρητή δεν είναι ταυτόχρονα

για έναν άλλον παρατηρητή που κινείται σε σχέση με τον πρώτο, καθώς οι

μετρήσεις χρονικών διαστημάτων εξαρτώνται από το σύστημα αναφοράς στο

οποίο γίνεται η μέτρηση.
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

Συνοψίζοντας, μπορούμε να πούμε ότι η χρονική διάρκεια, το μήκος και το ταυτόχρονο

δεν είναι “απόλυτες έννοιες” στη σχετικότητα.

Επίσης η σχετικιστική έκφραση για την ορμή ενός σωματιδίου που κινείται με

ταχύτητα u είναι:

P = γmu (1.13)

ενώ η σχετικιστική έκφραση για την κινητική ενέργεια ενός σωματιδίου είναι:

K = γmc2 −mc2
(1.14)

όπου η ποσότηταmc2
καλείται ενέργεια ηρεμίας του σωματιδίου. Η συνολική ενέργεια

E ενός σωματιδίου σχετίζεται με τη μάζα μέσω της περίφημης σχέσης ισοδυναμίας

ενέργειας - μάζας:

E = γmc2
(1.15)

ενώ η σχετικιστική ορμή συνδέεται με την ολική ενέργεια μέσω της εξίσωσης:

E2 = p2c2 +
(
mc2

)2
(1.16)

Η ΕΘΣ έχει επιβεβαιωθεί από ένα μεγάλο πλήθος πειραμάτων και αποτελεί πλέον

μια καλά καθιερωμένη θεωρία, η οποία αποτελεί σταθερή βάση για κάθε θεωρία πεδίου

της Σύγχρονης Φυσικής.

Γενική θεωρία της σχετικότητας

Αργότερα όταν ο Einstein προχώρησε παραπέρα τις εξισώσεις ΕΘΣ, κατέληξε το 1916

σε μια νέα θεωρία για την βαρύτητα με την ονομασία Γενική Θεωρία της Σχετικότητας

- ΓΘΣ και η οποία αποτελούσε γενίκευση της ΕΘΣ. Στη θεωρία του Νεύτωνα, οι

σχέσεις που περιέγραφαν την δύναμη της βαρύτητας στηρίζονταν πάνω σε έννοιες

όπως αυτές του απόλυτου χώρου και χρόνου, έννοιες που η ΕΘΣ είχε ήδη ανατρέψει.

΄Αρα, ήταν απαραίτητη μια νέα θεώρηση της βαρύτητας.

Βασική αρχή της ΓΘΣ είναι η ισοδυναμία των επιταχυνόμενων συστημάτων ανα-

φοράς με συστήματα που ευρίσκονται εντός βαρυτικού πεδίου, η οποία ονομάζεται

αρχή της ισοδυναμίας. Δηλαδή, για έναν παρατηρητή που βρίσκεται μέσα σε ένα

εργαστήριο που υφίσταται ελεύθερη πτώση, θα πρέπει όχι μόνο τα αντικείμενα να

αιωρούνται σαν να μην υπήρχε βαρύτητα, αλλά και όλοι οι μη βαρυτικοί νόμοι της

φυσικής όπως ο ηλεκτρομαγνητισμός να λειτουργούν σαν να μην υπήρχε βαρύτητα.

Επίσης ισχύει και το αντίστροφο, δηλαδή σε ένα σύστημα αναφοράς όπου η βαρύτητα
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είναι αισθητή όπως σε ένα εργαστήριο πάνω στην επιφάνεια της Γης, τα αποτελέσματα

της βαρύτητας πάνω στους φυσικούς νόμους μπορούν να βρεθούν απλώς με μαθημα-

τικό τρόπο, δηλαδή με τον μετασχηματισμό των νόμων από ένα σύστημα ελεύθερης

πτώσης στο σύστημα αναφοράς του εργαστηρίου. Στον κλάδο των μαθηματικών που

είναι γνωστός ως διαφορική γεωμετρία, αυτό ισοδυναμεί με το να πούμε ότι ο χω-

ρόχρονος είναι καμπυλωμένος. Με άλλα λόγια, τα αποτελέσματα της βαρύτητας δεν

μπορούν να διακριθούν από τα αποτελέσματα που έχει κανείς όταν βρίσκεται μέσα σε

καμπυλωμένο χωρόχρονο.

΄Ετσι, σαν βασική ιδέα της ΓΘΣ, η γεωμετρία του χωρόχρονου καθορίζει την

επίδραση της βαρύτητας, με συνέπεια κάθε μάζα να παραμορφώνει τοπικά τη γεωμε-

τρία του χωρόχρονου και να επηρεάζει τις τροχιές των σωματιδίων σε σχετικά μικρές

αποστάσεις. Για παράδειγμα, ένα άστρο καμπυλώνει το χωροχρονικό συνεχές με τον

ίδιο τρόπο που αν τοποθετούσαμε μια μπάλα πάνω σε ένα τεντωμένο σεντόνι, αυτή

θα έκανε το σεντόνι να “βουλιάξει” στη συγκεκριμένη περιοχή (βλέπε Σχ. 1.1). Η

βασική σχέση της ΓΘΣ, η οποία ονομάζεται εξίσωση πεδίου του Einstein, είναι:

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.17)

Βασικές συνέπειες της αρχής της ισοδυναμίας είναι το φαινόμενο της ερυθράς με-

τατόπισης λόγω βαρύτητας αλλά και της εκτροπής του φωτός από ένα μαζικό σώμα

όπως ο ΄Ηλιος (βλέπε Σχ. 1.1). Η ανακάλυψη των φαινομένων αυτών όπως και η

“μετατόπιση του περιηλίου της τροχιάς του Ερμή”, αλλά και ενός μεγάλου πλήθους

πειραματικών ελέγχων, έχει καθιερώσει την ΓΘΣ ως την σωστή θεωρία της βα-

ρύτητας, η οποία ανέλαβε στην συνέχεια νέους ρόλους ως θεωρητικό εργαλείο στην

αστροφυσική και στην κοσμολογία αλλά και ως περιοχή διερεύνησης στην φυσική

στοιχειωδών σωματιδίων.

Σχήμα 1.1: Καμπύλωση του φωτός γύρω από ένα βαρύ αντικείμενο όπως περιγράφεται από την

ΓΘΣ.
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

1.2.2 Παλαιά κβαντική θεωρία

Τα τρία προβλήματα που προέκυψαν στην Κλασική Φυσική έμελλαν να αλλάξουν

δραματικά την άποψη μας για την φυσική πραγματικότητα. Τα πειράματα αυτά που

οδήγησαν στην αναθεώρηση της Κλασικής Φυσικής ήταν το “φάσμα μέλανος σώμα-

τος”, το “φωτοηλεκτρικό φαινόμενο” και το “φαινόμενο Compton”. Τα τρία αυτά

φαινόμενα μπόρεσαν και εξηγήθηκαν με την νεοσύστατη Κβαντική Θεωρία, κάνοντας

τις εξής υποθέσεις:

1. Σύμφωνα με τον Planck, οι ατομικοί ταλαντωτές που είναι υπαίτιοι για την ακτι-

νοβολία μέλανος σώματος είναι δυνατόν να έχουν μόνο διακριτές ή κβαντωμένες

ενέργειες. Οπότε, η ενέργεια ενός στάσιμου κύματος μέσα σε μια κοιλότητα

είναι κβαντωμένη. Κατά την θερμική εκπομπή ακτινοβολίας οι μόνες επιτρε-

πόμενες τιμές ενέργειας είναι ακέραια πολλαπλάσια της ποσότητας hv δηλαδή:

En = nhv, n = 0, 1, 2, 3, .... (1.18)

όπου η σταθερά h = 6.626 × 10−34Js ονομάζεται σταθερά του Planck ενώ η

ποσότητα hv ονομάζεται κβάντο ενέργειας και ο ακέραιος αριθμός n, καλείται

κβαντικός αριθμός για την συγκεκριμένη συχνότητα v του ταλαντωτή.

2. Για το φωτοηλεκτρικό φαινόμενο, θεωρήθηκε πως το φως (συχνότητας v) α-

ποτελείται από μια δέσμη φωτεινών πακέτων που ονομάζονται φωτόνια, καθένα

από τα οποία φέρει ενέργεια E = hv. Ο τύπος αυτός ονομάζεται τύπος του

Planck. Επίσης, κάθε φωτόνιο μπορεί να δώσει την ενέργεια του (και άρα να

εξάγει) σε ένα μόνο ηλεκτρόνιο, και η μεταφορά αυτής της ενέργειας γίνεται

ακαριαία.

3. Για την θεωρητική εξαγωγή του φαινομένου Compton, έπρεπε να υποτεθεί

πως η ηλεκτρομαγνητική ακτινοβολία αποτελείται από φωτόνια με ενέργεια που

δίνεται από τον τύπο του Planck. Τα φωτόνια αυτά όντας σωματίδια σκεδάζο-

νται από ελαφρώς δέσμια ατομικά ηλεκτρόνια που κινούνται με σχετικιστικές

ταχύτητες. Και φυσικά η ενέργεια και η ορμή πριν και μετά την σκέδαση είναι

διατηρούμενες ποσότητες.

Η εντυπωσιακή κβαντική αυτή θεωρία του φωτός και η υπόθεση των φωτονίων

έρχεται σε πλήρη αντίθεση με την Κλασική Θεωρία στα πλαίσια της οποία η ηλεκτρο-

μαγνητική ακτινοβολία έχει αποκλειστικά κυματικό χαρακτήρα χωρίς κανένα σωμα-

τιδιακό υπόβαθρο. ΄Ετσι, με την υπόθεση των φωτονίων το ηλεκτρομαγνητικό κύμα
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1.2. Σύγχρονη φυσική Μαρούδας Μάριος

έχει ταυτόχρονα κυματικό και σωματιδιακό χαρακτήρα. Οπότε, η σημερινή αποδεκτή

άποψη είναι ότι το φως έχει τόσο κυματικά όσο και σωματιδιακά χαρακτηριστικά, και

ότι αυτά τα χαρακτηριστικά από κοινού συγκροτούν μια συμπληρωματική αντίληψη

για το φως.

Το άτομο του Bohr

Το επόμενο βήμα, ήταν η εξήγηση της κίνησης των ηλεκτρονίων μέσα στο άτομο και

των πολύπλοκων γραμμικών φασμάτων εκπομπής των ατόμων μέσω της κβάντωσης

των ενεργειακών καταστάσεων του ατόμου του υδρογόνου. Η ευστάθεια των ατόμων

αλλά και ορισμένα φασματοσκοπικά δεδομένα εξηγήθηκαν με την ατομική θεωρία του

Bohr, ο οποίος βασίστηκε στα εξής αξιώματα:

1. Τα ηλεκτρόνια κινούνται γύρω από τον πυρήνα σε κυκλικές τροχιές που καθο-

ρίζονται από τους νόμου τους Coulomb και του Νεύτωνα.

2. Μόνο ορισμένες διακριτές τροχιές είναι σταθερές. Το ηλεκτρόνιο δεν ακτινο-

βολεί ενέργεια σε αυτές τις ξεχωριστές τροχιές, οι οποίες καθορίζονται από

την κβάντωση της στροφορμής. Συγκεκριμένα, επιτρέπονται μόνο εκείνες οι

κυκλικές τροχιές, για τις οποίες η στροφορμή του ηλεκτρονίου είναι ακέραιο

πολλαπλάσιο της σταθεράς του Planck:

ln = mυr = n~ (1.19)

3. ΄Ενα φωτόνιο συχνότητας f εκπέμπεται όταν ένα ηλεκτρόνιο μεταπηδά από μια

αρχική τροχιά ενέργειας En σε μια τελική τροχιά Em, όπου:

hv = En − Em (1.20)

Τα αξιώματα αυτά οδήγησαν σε κβαντωμένες τροχιές και κβαντωμένες ενέργειες για

ένα ηλεκτρόνιο που κινείται σε τροχιά γύρω από έναν πυρήνα με φορτίο +Ze, που

δίνονται από τις σχέσεις:

rn =
n2a0

Z
, En = −13.6Z2

n2
eV (1.21)

όπου n = 1, 2, 3, ... και a0 = ~2

mke2
= 0.529Α̊ που είναι η ακτίνα του Bohr. Δηλαδή,

οι ενεργειακές καταστάσεις των ατόμων είναι κβαντωμένες, με τις επιτρεπόμενες ε-

νέργειες να συνδέονται με την ακολουθία φασματικών όρων του κάθε ατόμου με την

σχέση:

En = −hvn, n = 1, 2, 3, ... (1.22)
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Μαρούδας Μάριος Κεφάλαιο 1. Εισαγωγή

Κάθε επιτρεπόμενη ενέργεια ορίζει μια “στάσιμη κατάσταση” στην οποία το άτομο

δεν ακτινοβολεί. Ακτινοβολία εκπέμπεται μόνο κατά την μετάβαση του ατόμου από

μια ανώτερη σε μια κατώτερη ενεργειακή στάθμη. ΄Ετσι, επειδή οι ενέργειες των ηλε-

κτρονίων είναι διακριτές, το φάσμα του ατόμου είναι “γραμμικό” και χαρακτηριστικό

του συγκεκριμένου ατόμου.

Υλικά κύματα

Στην συνέχεια, μετά την μεγάλη επιτυχία του ατομικού μοντέλου του Bohr για την ε-

ξήγηση των φασμάτων απλών ατόμων, προτάθηκε από τον Luis de Broglie η κυματική

φύση των υλικών σωμάτων. ΄Ετσι, διατυπώθηκε η περίφημη αρχή του κυματοσωμα-

τιδιακού δυϊσμού μας λέει ότι: ο κυματοσωματιδιακός δυϊσμός είναι ένα παγκόσμιο

χαρακτηριστικό της ύλης σε όλες τις μορφές της. Οι σχέσεις που συνδέουν τα κυ-

ματικά με τα σωματιδιακά χαρακτηριστικά είναι:

E = ~ω, p = ~k (1.23)

και είναι ίδιες τόσο για τα φωτόνια όσο και για τα μαζικά σωματίδια. ΄Ετσι, ένα

ηλεκτρόνιο είναι συνδεδεμένο με ένα βαθμιαία εξελισσόμενο κύμα, έτσι ώστε κάθε

ενέργεια να είναι επιτρεπτή. ΄Ενα όμως δεσμευμένο ηλεκτρόνιο χαρακτηρίζεται α-

πό ένα σταθερό κύμα που μπορεί να έχει μόνο μερικές καθορισμένες συχνότητες ή

ενεργειακές καταστάσεις. Βασικό χαρακτηριστικό του εκάστοτε κύματος είναι το

λεγόμενο μήκος κύματος:

λ =
h

p
(1.24)

Για να περιγράψουμε ένα σωματίδιο σωστά, πρέπει να χρησιμοποιήσουμε μια “επαλ-

ληλία υλικών κυμάτων” με κατάλληλα επιλεγμένα μήκη κύματος, πλάτη και φάσεις

ώστε να συμβάλλουν εποικοδομητικά σε μια περιορισμένη περιοχή του χώρου. Η

κυματοομάδα ή το κυματοπακέτο που προκύπτει μπορεί τότε να αποδειχθεί ότι οδεύει

με την ίδια ταχύτητα, όπως το κλασικό σωματίδιο. Επιπλέον, μια κυματοομάδα εντο-

πισμένη σε μια περιοχή ∆x περιέχει ένα εύρος κυματαριθμών ∆k, όπου ∆x∆k ≈ 1.

Επειδή όμως, p = ~k, αυτό συνεπάγεται ότι υπάρχει μια αρχή απροσδιοριστίας για τη

θέση και την ορμή:

∆p∆x ≥ ~ (1.25)

η οποία μας οδηγεί στο συμπέρασμα πως είναι αδύνατον να προσδιοριστεί ταυτόχρονα

και με απεριόριστη ακρίβεια η θέση και η ορμή ενός σωματιδίου. Επίσης, υπάρχει μια
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1.2. Σύγχρονη φυσική Μαρούδας Μάριος

αντίστοιχη αρχή απροσδιοριστίας η οποία θέτει ένα όριο στην ακρίβεια με την οποία

μπορεί να μετρηθεί η ενέργεια E ενός συστήματος σε ένα χρονικό διάστημα ∆t:

∆E∆t ≥ ~ (1.26)

η οποία ονομάζεται αρχής της απροσδιοριστίας ενέργειας - χρόνου.

1.2.3 Νέα κβαντική θεωρία

Η αρχική (παλαιά) Κβαντική Θεωρία εξελίχθηκε και ολοκληρώθηκε διαδοχικά στις

ολοκληρωμένες μορφές: Κβαντομηχανική, Σχετικιστική Κβαντομηχανική και Κβα-

ντική Θεωρία Πεδίου - ΚΘΠ, στοιχεία των οποίων θα δούμε και στην συνέχεια στην

ανάπτυξη των βασικών θεωριών ενοποίησης όπως το καθιερωμένο πρότυπο της σω-

ματιδιακής φυσικής. ΄Ετσι, πλέον κάτω από τον γενικό όρο Κβαντική Θεωρία (βλέπε

Σχ. 1.2) έχουμε τις εξής θεωρίες:

• Η Κβαντομηχανική αποτελεί την ολοκληρωμένη και θεμελιωμένη μορφή της

παλαιάς Κβαντικής Θεωρίας. Είναι μια σχετικά πλήρης φυσική θεωρία για την

περιγραφή σωματιδίων του μικρόκοσμου (δηλαδή σωμάτια με διάμετρο d < 1Α̊)

που κινούνται με ταχύτητες πολύ μικρότερες από την ταχύτητα του φωτός.

• Η Σχετικιστική Κβαντομηχανική συνδυάζει τις αρχές της Κβαντομηχανικής

και της ΕΘΣ. Η θεωρία αυτή δημιουργήθηκε για την περιγραφή σωματιδίων

του μικρόκοσμου με ταχύτητες μικρότερες αλλά όχι αμελητέες ως προς την

ταχύτητα του φωτός.

• Η ΚΘΠ μέσω της έννοιας του κβαντικού πεδίου, χρησιμεύει κυρίως για την περι-

γραφή αλληλεπιδράσεων μεταξύ σωματιδίων του μικρόκοσμου κατά τις οποίες

μεταβάλλεται η φύση ή/και το πλήθος των σωματιδίων. Κατά τις αλληλεπι-

δράσεις αυτές συμβαίνουν μετατροπές ενέργειας σε ύλη και αντιστρόφως όπως

προβλέπεται από την ΕΘΣ, και άρα η πρακτικά χρησιμότερη μορφή τη θεωρίας

είναι σχετικιστική.

• Η Κβαντική Βαρύτητα - ΚΒ η οποία συνδυάζει την ΓΘΣ με την ΚΘΠ. Η

θεωρία αυτή είναι ιδιαίτερα χρήσιμη στην κοσμολογία για την περιγραφή των

αρχικών σταδίων στην εξέλιξη του Σύμπαντος.

Σήμερα, η Κβαντομηχανική αποτελεί τη βάση σχεδόν κάθε θεωρίας όλων των

συστημάτων του μικρόκοσμου. Η νέα αυτή θεωρία εξηγεί:
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• Τη σωματιδιακή φύση της ακτινοβολίας.

• Την κυματική φύση των υλικών σωματιδίων.

• Την κβάντωση των τιμών των φυσικών μεγεθών.

Σχήμα 1.2: Η διαίρεση της φυσικής στους διάφορους κλάδους.

Η Κβαντομηχανική βασίζεται σε 5 θεμελιώδη αξιώματα:

1. Σε κάθε κατάσταση ενός φυσικού συστήματος αντιστοιχεί μια τετραγωνικά

ολοκληρώσιμη κυματοσυνάρτηση (η οποία περιγράφει τα υλικά κύματα). Η

κυματοσυνάρτηση δεν έχει άμεσο φυσικό νόημα, αλλά περιέχει όλες τις πειρα-

ματικά ελέγξιμες πληροφορίες για την κατάσταση του φυσικού συστήματος.
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2. Σε κάθε φυσικό μέγεθος A αντιστοιχεί ένας ερμιτιανός τελεστής Â, οι ιδιοσυ-

ναρτήσεις του οποίου αποτελούν ένα πλήρες σύνολο ιδιοσυναρτήσεων:

〈A〉 =

∫
ψ∗ (Aψ) dx (1.27)

Οι μόνες δυνατές τιμές που προκύπτουν από την μέτρηση του μεγέθους A ε-

ίναι οι ιδιοτιμές του Â, που μπορεί να είναι διακριτές ή συνεχείς αλλά σίγουρα

θα είναι πραγματικές λόγω της αυτοσυνάφειας. Αν το φυσικό μέγεθος εξαρ-

τάται από τις δυναμικές μεταβλητές της θέσης και της ορμής, η κατασκευή του

τελεστή A μπορεί να γίνει χρησιμοποιώντας τις αναπαραστάσεις:

r → r, p→ −i~∇ (1.28)

3. Η μέση τιμή των αποτελεσμάτων των μετρήσεων ενός φυσικού μεγέθους δίνεται

από:

〈A〉 =

∫
ψ∗
(
Âψ
)
dx (1.29)

όπου Â είναι ο τελεστής που αντιστοιχεί στο μέγεθος A. Σε μια κατάσταση

υπέρθεσης ψ =
∑
n

cnψn, η πιθανότητα εμφάνισης της ιδιοτιμής an που αντι-

στοιχεί στην ιδιοσυνάρτηση ψn είναι:

Pn = |cn|2 (1.30)

4. Η κατάσταση του φυσικού συστήματος μετά από μια μέτρηση δίνεται από την

ιδιοσυνάρτηση της ιδιοτιμής που μετρήθηκε. Αυτό αναφέρεται ως αρχή του

φιλτρατίσματος κατά την μέτρηση διότι από την επαλληλία πριν την μέτρηση, το

σύστημα μεταβαίνει στην κατάσταση ψ = cnψn μετά την μέτρηση υποθέτοντας

πως το αποτέλεσμα της μέτρησης ήταν η ιδιοτιμή an.

5. Η χρονική εξέλιξη της κατάστασης ενός κβαντομηχανικού συστήματος διέπεται

από την εξίσωση του Schrodinger:

i~
∂ψ

∂t
= Hψ (1.31)

όπου H ο τελεστής της χαμιλτονιανής του συστήματος.
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1.2.4 Στοιχειώδη σωμάτια και θεμελιώδεις δυνάμεις

΄Ετσι, βρέθηκε πως στο Σύμπαν υπάρχουν τουλάχιστον τέσσερις γνωστές βασικές

δυνάμεις που περιγράφουν όλα τα φυσικά φαινόμενα (βλέπε Πίνακα 1.1). Η βαρύτητα,

η ηλεκτρομαγνητική, η ασθενής και η ισχυρή πυρηνική δύναμη.

Οι βαρυτικές δυνάμεις εκδηλώνονται σε μακροσκοπική κλίμακα, δηλαδή στην

κλίμακα του ηλιακού συστήματα και των γαλαξιών, και έχουν σχέση με γεωμετρίες

καμπύλου χωρόχρονου και προβλήματα κοσμολογίας. Η εμβέλεια τους είναι άπειρη

με δυναμικό V (r) ∝ 1/r και δρα σε σώματα που έχουν μάζα. Οι ηλεκτρομαγνητικές

δυνάμεις εκδηλώνονται σε φαινόμενα όπως η ηλεκτρομαγνητική ακτινοβολία, γενικά,

και είναι υπεύθυνες για τη σταθερότητα ατόμων και μορίων καθώς και για τις χημικές

αντιδράσεις. ΄Εχουν επίσης άπειρη εμβέλεια, με το δυναμικό Coulomb να εξαρτάται

από V (r) ∝ 1/r. Οι ισχυρές πυρηνικές δυνάμεις ήταν απαραίτητες για να κατανοηθεί

η σταθερότητα του πυρήνα. Τα πρωτόνια πρέπει να κρατιόνται δέσμια σε μια μικρή

περιοχή της τάξης 10−13cm από δυνάμεις πολύ ισχυρότερες από τις ηλεκτρομαγνητι-

κές. Αυτές εκδηλώνονται σε φαινόμενα όπως η σταθερότητα του πρωτονίου (δέσμιες

καταστάσεις κουάρκ), η σταθερότητα των πυρήνων, καθώς επίσης η σχάση και η

σύντηξη. Οι ασθενείς δυνάμεις ήταν απαραίτητες για την κατανόηση της μετατροπής

ενός νετρονίου στον πυρήνα σε πρωτόνιο κατά την διάρκεια της αργής διαδικασίας

διάσπασης που είναι γνωστή σαν ακτινοβολία β (n → pe−νe). Οπότε, αυτές εκδη-

λώνονται σε φαινόμενα όπως η β-ακτινοβολία, η μη σταθερότητα του νετρονίου και

η διάσπαση μιονίου και πιονίου. Οι ασθενείς δυνάμεις έχουν την μικρότερη εμβέλεια

από όλες τις δυνάμεις, της τάξεως 10−16cm.

Οι τέσσερις αυτές δυνάμεις έπρεπε να εξηγήσουν, όλες μαζί, την ποικιλομορφία

των φυσικών φαινομένων και να μπορέσουν να κατασκευάσουν το Σύμπαν. Οι δια-

φορές ανάμεσα τους είναι πολλές. Είδαμε την διαφορά στην εμβέλεια αλλά υπάρχει

και διαφορά στην ένταση τους. Η ισχυρή αλληλεπίδραση είναι πιο δυνατή, ενώ η βα-

ρύτητα η πιο αδύναμη, μικρότερη και από την ασθενή. Η ηλεκτρομαγνητική βρίσκεται

ανάμεσα στην ισχυρή και την ασθενή. Η ενοποίηση όλων αυτών των γνωστών αλ-

ληλεπιδράσεων είναι ένα από τα βασικότερα προβλήματα της φυσικής. Ο ρόλος και

ο στόχος αυτής της ενοποίησης, είναι η περιγραφή όλων αυτών των δυνάμεων κάτω

από ένα κοινό μαθηματικό πλαίσιο που θα περιλαμβάνει στον πυρήνα του την ΚΘΠ

καθώς και τις ΕΘΣ και ΓΘΣ.
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Αλληλεπίδραση Σχετική ισχύς Εμβέλεια Μεσολαβητές

Ισχυρή 1 μικρή (≈ 1fm) Γκλουόνια g

Ηλεκτρομαγνητική 10−2
μεγάλη (∝ 1/r2

) Φωτόνιο γ

Ασθενής 10−9
μικρή (≈ 1fm) W±, Z

Βαρυτική 10−38
μεγάλη(∝ 1/r2

) Βαρυτόνιο

Πίνακας 1.1: Αλληλεπιδράσεις σωματιδίων με σχετική εμβέλεια και ένταση.

Η ιστορία των στοιχειωδών σωματιδίων έχει τις ρίζες της στην Αρχαία Ελληνι-

κή κοσμοθεωρία. Οι διακεκριμένοι ατομικοί φιλόσοφοι Δημόκριτος και Λεύκιππος,

πρώτοι διατύπωσαν τον 5
ο
αιώνα π.Χ. την άποψη ότι η ύλη αποτελείται από περαιτέρω

αδιαίρετα συστατικά τα οποία ονόμασαν άτομα και θεωρούνταν στοιχειώδη. ΄Ομως,

με την εξέλιξη της φυσικής επιστήμης, αλλά και των πειραματικών διατάξεων, κατά

την δεκαετία του 1970, τα θεωρούμενα στοιχειώδη σωμάτια ήταν εκατοντάδες.

Στην πορεία, μέσω της ανάπτυξης της Κβαντικής Θεωρίας, μπόρεσαν και ταξι-

νομήθηκαν με βάση τις ιδιότητες τους. ΄Ενας πρώτος χωρισμός είναι ανάλογα με το

σπιν τους. ΄Ετσι, έχουμε τα φερμιόνια τα οποία έχουν ημιακέραιο σπιν και υπακο-

ύν στην στατιστική Fermi-Dirac, και τα μποζόνια τα οποία έχουν ακέραιο σπιν και

υπακούν στην στατιστική Bose-Eisntein. ΄Ενας δεύτερος χωρισμός είναι ανάλογα

με το είδος της αλληλεπίδρασης που συμμετέχουν (βλέπε Σχ. 1.3). ΄Ετσι, για πα-

ράδειγμα, το πρωτόνιο και το νετρόνιο βρέθηκε πως είναι μέλη μιας μιας μεγάλης

οικογένειας σωματίων που ονομάζονται αδρόνια, τα οποία αλληλεπιδρούν διαμέσου

της ισχυρής δύναμης, ενώ το ηλεκτρόνιο και το αντίστοιχο νετρίνο ανήκουν σε μια

άλλη οικογένεια σωματίων που ονομάζονται λεπτόνια, τα οποία δεν αλληλεπιδρούν με

την διαμέσου της ισχυρής δύναμης. Στην συνέχεια, βρέθηκε από τον Murray Gell-

Mann πως τα αδρόνια δεν είναι “απλά” σωμάτια, αλλά “σύνθετα” και αποτελούνται

από άλλα στοιχειώδη σωμάτια που ονομάζονται κουάρκ. Η ασυνήθιστη ιδιότητα αυ-

τών των σωματιδίων είναι ότι έχουν κλασματικά φορτία. Επίσης, το μέγεθος τους

είναι μικρότερο από 10−16cm, και υπάρχουν 6 διαφορετικά ήδη (βλέπε Πίνακα 1.3).

Τα 6 κουάρκ και τα άλλα τόσα λεπτόνια, δεν φαίνεται να έχουν εσωτερική δομή και

έτσι θεωρούνται κυριολεκτικά σήμερα ως “στοιχειώδη σωμάτια”. Οι αλληλεπιδράσεις

μεταξύ κουάρκ και λεπτονίων μπορούν να ερμηνευτούν με την βοήθεια των τεσσάρων

παραπάνω δυνάμεων, οι οποίες μεταφέρονται από το ένα σωματίδιο στο άλλο με την

ανταλλαγή των κβάντα των αντίστοιχων πεδίων. Δηλαδή, μπορούμε να πούμε ότι
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φορείς των δυνάμεων είναι τα αντίστοιχα κβάντα. Συγκεντρωτικά, για τα μαζικά

σωμάτια, έχουμε τις εξής κατηγορίες (βλέπε Πίνακα 1.2):

• Τα λεπτόνια τα οποία συμμετέχουν στις ασθενείς αλληλεπιδράσεις, έχουν σπιν

1/2, είναι σημειακά και δεν αλληλεπιδρούν μέσω των ισχυρών αλληλεπιδράσεων.

Στην ομάδα αυτή συγκαταλέγονται τα ηλεκτρόνια τα μιόνια και τα νετρίνα. Τα

6 λεπτόνια και 6 αντι-λεπτόνια κατηγοριοποιούνται σε 3 οικογένειες (βλέπε

Πίνακα 1.2 ή Σχ. 2.3).

• Τα μεσόνια συμμετέχουν στις ισχυρές αλληλεπιδράσεις (αδρόνια), έχουν σπιν 0

ή ακέραιο, δεν είναι σημειακά, και η μάζα τους κυμαίνεται μεταξύ της μάζας του

ηλεκτρονίου και του πρωτονίου. Το ελαφρύτερο είναι το πιόνιο. Αποτελούνται

από ένα κουάρκ και ένα αντι-κουάρκ.

• Τα βαρυόνια τα οποία συμμετέχουν στις ισχυρές αλληλεπιδράσεις (αδρόνια),

έχουν σπιν ημιακέραιο, δεν είναι σημειακά και η μάζα τους είναι μεγαλύτερη

του πρωτονίου και του νετρονίου που είναι βαρυόνια. Με εξαίρεση το πρω-

τόνιο διασπώνται σε σωμάτια που περιλαμβάνουν και το πρωτόνιο. Τα βαρυόνια

αποτελούνται από τρία κουάρκ.

Σχήμα 1.3: Ο χωρισμός των σωματιδίων σε αδρόνια (βαρυόνια και μεσόνια) και λεπτόνια. Στην

παρένθεση δίνεται το είδος των σωματίων ανάλογα με τη στατιστική που ακολουθούν.
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1.2. Σύγχρονη φυσική Μαρούδας Μάριος

Κατηγορία Ονομασία Σύμβολο Αντι- Μάζα B Le Lµ Lτ S Χρόνος ζωής Βασικός

σωμάτιο ηρεμίας ζωής τρόπος

(MeV/c2) (s) διάσπασης

Φωτόνιο Φωτόνιο γ Το ίδιο 0 0 0 0 0 0 Σταθερό

Λεπτόνια

Ηλεκτρόνιο e− e+ 0.511 0 +1 0 0 0 Σταθερό

Νετρίνο (e) νe ν̄e 0(; ) 0 +1 0 0 0 Σταθερό

Μιόνιο (e) µ− µ+ 105.7 0 0 +1 0 0 2.20× 10−6 e−ν̄eνµ

Νετρίνο (μ) νµ ν̄µ 0(; ) 0 0 +1 0 0 Σταθερό

Ταυ (τ) τ− τ+ 1784 0 0 0 -1 0 < 4× 10−13 µ−ν̄µντ , e
−ν̄eντ

Νετρίνο (τ) ντ ν̄τ 0(; ) 0 0 0 -1 0 Σταθερό

Αδρόνια

Μεσόνια

Πιόνιο π+ π− 139.6 0 0 0 0 0 2.60× 10−8 µ+νµ

π0
Το ίδιο 135.0 0 0 0 0 0 0.83× 10−16 2γ

Καόνιο K+ K− 493.7 0 0 0 0 +1 1.24× 10−8 µ+νµ, π
+π0

K0
s K̄0

s 497.7 0 0 0 0 +1 0.89× 10−10 π+π−, 2π0

K0
L K̄0

L 497.7 0 0 0 0 +1 5.2× 10−8 π±e∓ν̄e, 3π
0, π±µ∓ν̄µ

΄Ητα η0
Το ίδιο 548.8 0 0 0 0 0 < 10−18 2γ, 3π

Βαρυόνια

Πρωτόνιο p p̄ 938.3 +1 0 0 0 0 Σταθερό (; )

Νετρόνιο n p̄ 939.6 +1 0 0 0 0 920 pe−ν̄e

Λάμδα Λ0 Λ̄0 1115.6 +1 0 0 0 -1 2.6× 10−10 pπ−, nπ0

Σίγμα Σ+ Σ̄− 1189.4 +1 0 0 0 -1 0.80× 10−10 pπ0, nπ+

Σ0 Σ̄0 1192.5 +1 0 0 0 -1 6× 10−20 Λ0γ

Σ− Σ̄+ 1197.3 +1 0 0 0 -1 1.5× 10−10 nπ−

Ξι Ξ0 Ξ̄0 1315 +1 0 0 0 -2 2.9× 10−10 Λ0π+

Ξ− Ξ+ 11321 +1 0 0 0 -2 1.64× 10−10 Λ0π−

Ωμέγα Ω− Ω+ 1672 +1 0 0 0 -3 0.82× 10−10 Ξ0π−,Ξ−π0,Λ
0
K−

Πίνακας 1.2: Ορισμένα σωματίδια και οι ιδιότητες τους με τα βασικά κανάλια διάσπασης.

Τέλος, στη σύγχρονη φυσική οι αλληλεπιδράσεις μεταξύ των σωματιδίων περι-

γράφονται από την ΚΘΠ, όπου οι αλληλεπιδράσεις των στοιχειωδών σωματιδίων ερ-

μηνεύονται μέσω της μεταξύ τους ανταλλαγής κάποιων σωματιδίων πεδίου ή κβάντα

πεδίου τα οποία ονομάζονται μποζόνια και έχουν ακέραιο σπιν. Για παράδειγμα, στην

περίπτωση της ηλεκτρομαγνητικής αλληλεπίδρασης, τα σωματίδια πεδίου είναι τα φω-

τόνια, και έτσι μπορούμε να πούμε ότι η ηλεκτρομαγνητική δύναμη διαδίδεται μέσω

των φωτονίων, τα οποία είναι κβάντα του ηλεκτρομαγνητικού πεδίου. Παρομοίως, η

ισχυρή δύναμη διαδίδεται μέσω των σωματιδίων πεδίου που ονομάζονται γκλουόνια

(gluons), η ασθενής δύναμη διαδίδεται μέσω των μποζονίων W και Z ενώ η βαρυτική

δύναμη διαδίδεται μέσω κβάντων του πεδίου βαρύτητας που ονομάζονται βαρυτόνια ή

γκραβιτόνια (gravitons). Οι βασικές αλληλεπιδράσεις, η εμβέλεια τους και η σχετική

τους ισχύς φαίνονται στον Πίνακα 1.1. Τέλος, να αναφέρουμε πως πέρα από τους

βασικούς νόμους διατήρησης της “ενέργειας”, της “γραμμικής ορμής”, της “στρο-

φορμής” και του “ηλεκτρικού φορτίου” υπάρχει και η διατήρηση του “βαρυονικού”

και “λεπτονικού αριθμού” που μας λένε πως ο συνολικός αριθμός των βαρυονίων και

λεπτονίων παραμένει σταθερός σε κάθε διεργασία.
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΄Ονομα Σύμβολο Σπιν Q B S C b t I I3

Πάνω u 1/2 +2/3 +1/3 0 0 0 0 +1/2 +1/2

Κάτω d 1/2 −1/3 +1/3 0 0 0 0 +1/2 −1/2

Παράδοξο s 1/2 −1/3 +1/3 −1 0 0 0 0 0

Χαριτωμένο c 1/2 +2/3 +1/3 0 +1 0 0 0 0

΄Ομορφο b 1/2 −1/3 +1/3 0 0 +1 0 0 0

Αληθινό t 1/2 +2/3 +1/3 0 0 0 +1 0 0

Πάνω ū 1/2 −2/3 −1/3 0 0 0 0 +1/2 −1/2

Κάτω d̄ 1/2 +1/3 −1/3 0 0 0 0 +1/2 +1/2

Παράδοξο s̄ 1/2 +1/3 −1/3 +1 0 0 0 0 0

Χαριτωμένο c̄ 1/2 −2/3 −1/3 0 −1 0 0 0 0

΄Ομορφο b̄ 1/2 +1/3 −1/3 0 0 −1 0 0 0

Αληθινό t̄ 1/2 −2/3 −1/3 0 0 0 −1 0 0

Πίνακας 1.3: Οι κβαντικοί αριθμοί των 6 κουάρκ και αντι-κουάρκ.

΄Αρα, όπως είδαμε, μέσω της ενοποίησης διαφορετικών πτυχών της φυσικής πραγ-

ματικότητας, η φυσική μπόρεσε αφενός και εξελίχθηκε, και αφετέρου έλυσε πολλά

από τα υπάρχοντα προβλήματα ή εμπόδια που εμφανίζονταν. Η ενοποίηση των ηλε-

κτρομαγνητικών δυνάμεων του Maxwell, και η ΕΘΣ η οποία ενοποίησε τους νόμους

του Maxwell με αυτούς του Νεύτωνα, αλλά και η ενοποίηση της ΕΘΣ με την Κβα-

ντομηχανική από τον Dirac που γέννησε την ΚΘΠ, αποτελούν πλέον κλασικά παρα-

δείγματα της ισχύος της έννοιας της ενοποίησης. ΄Ετσι, με τις επιτυχημένες αυτές

ενοποιήσεις να αποτελούν πλέον παρελθόν, παραμένουν οι υπόλοιπες θεμελιώδεις

αλληλεπιδράσεις των οποίων η πιθανή ενοποίηση κάτω από ένα ενιαίο μαθηματικό

πλαίσιο καθώς και η βαθύτερη κατανόηση τους, η οποία θα είναι σύμφωνη με τις

μικροσκοπικές και μακροσκοπικές παρατηρήσεις, φαίνεται πως αποτελεί φυσική αλλά

και μαθηματική απαίτηση.
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Κεφάλαιο 2

Το καθιερωμένο πρότυπο της

σωματιδιακής φυσικής

Το Καθιερωμένο Πρότυπο της Σωματιδιακής Φυσικής - (ΚΠ) είναι μια θεωρία της

φυσικής η οποία περιγράφει τις ισχυρές τις ασθενείς και τις ηλεκτρομαγνητικές αλ-

ληλεπιδράσεις, καθώς και τα στοιχειώδη σωμάτια τα οποία αποτελούν αυτό που α-

ποκαλούμε “ύλη”. Η ανάπτυξη του ήταν αναμφισβήτητα μια μεγάλη επιτυχία της

θεωρητικής φυσικής καθώς ενοποιούσε στην ουσία τον ηλεκτρομαγνητισμό με την

ασθενή πυρηνική δύναμη στην λεγόμενη “ηλεκτρασθενή δύναμη” και περιελάμβανε

επίσης και τις ισχυρές αλληλεπιδράσεις.

Το μοντέλο αυτό αναπτύχθηκε κατά την διάρκεια του 1970− 1973, και είναι μια

ΚΘΠ η οποία χρησιμοποιεί σαν συμμετρία βαθμίδας την GSM = SU(3)C×SU(2)L×
U(1)Y , με τρεις σταθερές ζεύξης g3, g2 και g1 αντίστοιχα. Με U (n) συμβολίζουμε

την μοναδιακή (unitary) συμμετρία στις n διαστάσεις, που έχει n2
γεννήτορες, ενώ

με SU (n) συμβολίζουμε την ειδική μοναδιακή συμμετρία (με ορίζουσα μονάδα) στις

n διαστάσεις με n2 − 1 γεννήτορες. Η SU(3)C είναι η ειδική μοναδιακή συμμετρία

στις 3 διαστάσεις, και έχει να κάνει με τον κβαντικό αριθμό του χρώματος. Διέπει

τις ισχυρές αλληλεπιδράσεις και χαρακτηρίζεται από n2−1 = 8 γεννήτορες που αντι-

στοιχούν σε 8 σωμάτια βαθμίδας, τους συγκολλητές (γκλουόνια) gi, i = 1, 2, ..., 8.

Η SU(2)L χαρακτηρίζεται αντίστοιχα από 3 γεννήτορες που αντιστοιχούν στα 3 σω-

μάτια βαθμίδας W+
, W−

και Z0
(με ηλεκτρικό φορτίο +1, −1, και 0 αντίστοιχα. Η

τρίτη και τελευταία συμμετρία U(1)Y αντιστοιχεί σε έναν απλό πολλαπλασιασμό με

μια βαθμωτή συνάρτηση. Τέτοιες συμμετρίες ονομάζονται αβελιανές συμμετρίες. Η

συμμετρία αυτή, έχει έναν γεννήτορα και ένα σωμάτιο βαθμίδας που είναι ηλεκτρικά
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ουδέτερο και αντιστοιχεί στο φωτόνιο.

Μέχρι σήμερα, σχεδόν όλες οι πειραματικές δοκιμές [5] που έχουν πραγματοποι-

ηθεί πάνω στις τρεις αλληλεπιδράσεις που περιγράφονται από το ΚΠ, συμφωνούν

με τις θεωρητικές προβλέψεις (βλέπε εδάφιο 2.3). ΄Ενα χαρακτηριστικό παράδειγμα

ήταν η πρόβλεψη των μποζονίων Z και W όπως και των μαζών τους, που αργότερα

επαληθεύτηκαν πειραματικά (βλέπε εδάφιο 2.3.2). Μια ακόμα επιτυχία του ΚΠ ήταν

η πρόβλεψη της ύπαρξης του top κουάρκ που βρέθηκε πειραματικά στα μέσα της

δεκαετίας του 1990 από τους ανιχνευτές “Collider Detector at Fermilab” (CDF)

και “D0” στο “Tevatron” (βλέπε εδάφιο 2.3.3). Τέλος, έχουμε την εύρεση του

“περιζήτητου” μποζονίου Higgs από τους ανιχνευτές “A Toroidal LHC Apparatus”

(ATLAS) και “Compact Muon Solenoid” (CMS) στο “European Organization for

Nuclear Research” (CERN) (βλέπε εδάφιο 2.3.4).

Παρόλα αυτά, το ΚΠ δεν περιλαμβάνει καμία περιγραφή των βαρυτικών αλληλεπι-

δράσεων αλλά και διακατέχεται από ένα πλήθος προβλημάτων (βλέπε εδάφιο 2.4) τα

οποία οι θεωρητικοί φυσικοί προσπάθησαν να αντιμετωπίσουν, όπως θα δούμε στα

επόμενα κεφάλαια, με διάφορες θεωρίες που ανέπτυξαν οι οποίες είτε επέκτειναν το

ΚΠ είτε αποτελούσαν εντελώς διαφορετικές προσεγγίσεις (βλέπε Κεφ. 3 και Κεφ.

4). Στην συνέχεια, θα δούμε κάποια βασικά χαρακτηριστικά του ΚΠ, τις μεγάλες

επιτυχίες του στις πειραματικές προβλέψεις, καθώς και τα κύρια προβλήματα που το

διέπουν, πολλά από τα οποία λύθηκαν από διάφορες θεωρίες οι οποίες αναπτύχθηκαν

τα επόμενα χρόνια.

2.1 Θεωρία πεδίου

2.1.1 Σχετικιστικές κυματικές εξισώσεις

Στην Κλασική Μηχανική μελετάται η κίνηση υλικών σημείων στο χώρο θεωρώντας

τις χωρικές συντεταγμένες qi ως συναρτήσεις του χρόνου t. ΄Ολη η πληροφορία για

την εξέλιξη της κίνησης περιέχεται στην λαγκρατζιανή L = L (q, q̇, t) με q̇i = dqi
dt

. Για

ένα απλό σωματίδιο υπό την επίδραση εξωτερικού δυναμικού ορίζεται ως η διαφορά

κινητικής και δυναμικής ενέργειας του συστήματος δηλαδή:

L = T (q̇)− V (q, t) (2.1)
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όπου T = 1
2
mq̇2

. Θεωρώντας το συναρτησιακό δράσης:

S [q (t)] =

t2∫
t1

L (q, q̇, t) dt (2.2)

τότε οι κλασικές εξισώσεις κίνησης των σωμάτων προκύπτουν από την αρχή της

ελαχίστου δράσης, δηλαδή από την απαίτηση, η διαδρομή που ακολουθεί το σύστημα,

να είναι αυτή για την οποία η δράση S παρουσιάζει ακρότατο για δεδομένες αρχικές

συνθήκες, δηλαδή:

δS [q]

δq (t)
= 0 (2.3)

Οι κλασικές εξισώσεις κίνησης που προκύπτουν ονομάζονται εξισώσεις Euler - La-

grange, και οι συντεταγμένες εξελίσσονται με βάση αυτές τις εξισώσεις:

qi = qi (t) , t ∈ [a, b]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

(2.4)

Στην Κλασική Μηχανική υπάρχει μία μόνο καθορισμένη διαδρομή μεταξύ δύο σημε-

ίων, η λεγόμενη “κλασική διαδρομή” η οποία καθορίζεται από την αρχή της ελάχιστης

δράσης. Η δράση εξαρτάται από όλη την μορφή της διαδρομής του σωματιδίου, και

έτσι αν δεν έχει οριστεί αυτή δεν είναι δυνατός ο υπολογισμός της.

Στην Κβαντομηχανική, όπως είδαμε, η εξέλιξη των συντεταγμένων με το χρόνο

είναι “στοχαστική”, γεγονός που σημαίνει ότι η εξέλιξη αυτή δεν προσδιορίζεται από

ένα σύστημα διαφορικών εξισώσεων. Οι συντεταγμένες θεωρούνται τυχαίες μετα-

βλητές. Οπότε, αντί για τις “διακεκριμένες” γενικευμένες συντεταγμένες qi έχουμε

“συνεχώς μεταβαλλόμενες” συντεταγμένες που είναι το ίδιο το πεδίο ψ (~x, t). Για την

ακρίβεια την θέση τους παίρνει η κυματοσυνάρτηση ψ (q), η οποία εξελίσσεται ντετερ-

μινιστικά. Αυτή ερμηνεύεται ως η πυκνότητα πιθανότητας πραγματοποίησης μέτρησης

των συντεταγμένων q σε μια πειραματική μέτρηση. Η εξέλιξη της κυματοσυνάρτησης

δίνεται από μια τροχιά στο χώρο των κυματοσυναρτήσεων, παραμετροποιημένη με το

χρόνο:

∂

∂t
ψ (q, t) = −iHψ (q, t) (2.5)

Ο τελεστής H είναι η χαμιλτονιανή του συστήματος και αντιστοιχεί στην ενέργεια

του συστήματος. ΄Ολα τα φυσικά μεγέθη, συμπεριλαμβανομένων και των χωρικών

συντεταγμένων, περιγράφονται από τελεστές που δρουν πάνω σε κυματοσυναρτήσεις.
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Στην ΚΘΠ τα σωματίδια σχετίζονται με πεδία φι (x) όπου i = 1, 2, ..., n που εξαρ-

τώνται από τις χωροχρονικές συντεταγμένες x = (x0, x1, x2, x3). ΄Ετσι, αντίστοιχα

στην κλασική θεωρία πεδίου όπου ασχολούμαστε με την εξέλιξη των πεδίων στο

χρόνο ορίζουμε μια αντίστοιχη λαγκρατζιανή L (φ, ∂jφ) η οποία περιέχει όλη την

πληροφορία για την εξέλιξη του πεδίου. Η λαγκρατζιανή πυκνότητα η οποία θα ονο-

μάζεται στο εξής απλά λαγκρατζιανή, έχει την μορφή:

L =

∫
d3xL (x) (2.6)

δηλαδή η λαγκραντζιανή είναι ίση με το ολοκλήρωμα της λαγκρατζιανής πυκνότητας

πάνω σε όλο τον χώρο. Στην συνέχεια, βρίσκουμε τις εξισώσεις κίνησης για το πεδίο

μέσω της αρχής ελαχίστου δράσης η οποία ορίζεται μαθηματικώς ως:

S [φ, φ1, φ2] =

t2∫
t1

dtL (t) =

∫
d4xL (x) (2.7)

και απαιτείται να παρουσιάζει ακρότατο για την τροχιά του πεδίου ϕ (t). Η διαμόρ-

φωση του πεδίου ορίζεται ως το σύνολο των τιμών του πεδίου για κάθε σημείο του

χώρου, δηλαδή μια δεδομένη επιλογή του φ. Οπότε, καταλήγουμε έτσι στην εξίσωση

Euler - Lagrange όπως αυτή διαμορφώνεται στην θεωρία πεδίου:

∂L

∂φ
− ∂µ

[
∂L

∂ (∂µφ)

]
= 0 (2.8)

Πολλές φορές είναι προτιμότερο, αντί για τις εξισώσεις ενός συστήματος, να

μελετήσουμε την λαγκρατζιανή από την οποία προκύπτουν. Αν εξασφαλίσουμε ότι

η λαγκρατζιανή είναι “βαθμωτή” ως προς τους μετασχηματισμούς Lorentz, τότε οι

αντίστοιχες εξισώσεις θα είναι συναλλοίωτες. Στην συνέχεια, θα δούμε τις βασικές

κυματικές εξισώσεις [6, 7].

Εξίσωση Klein - Gordon

Η εξίσωση Klein - Gordon για πραγματικά βαθμωτά (ή ψευδοβαθμωτά) πεδία φ (~x, t),

δηλαδή για σωμάτια με σπιν 0 και μάζας m, προκύπτει από την λαγκρατζιανή:

L =
1

2
(∂µφ) (∂µφ)− 1

2
m2φ2

(2.9)

Οπότε, αντικαθιστώντας στην Εξ. 2.8 παίρνουμε την εξίσωση:

∂µ∂
µφ−m2φ =

(
�2 −m2

)
φ = 0 (2.10)
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η οποία ονομάζεται εξίσωση Klein - Gordon, όπου:

� = ∇2 − 1

c2

∂2

∂t2
=
∑
µ,ν

ηµν∂µ∂ν (2.11)

όπου ηµν = ηµν με µ, ν = 0, 1, 2, 3 η μετρική του χώρου Minkowski.

Αντίστοιχα, η εξίσωση Klein - Gordon για μιγαδικά βαθμωτά (ή ψευδοβαθμωτά)

πεδία φ (~x, t) = φ1 (~x, t) + iφ2 (~x, t), προκύπτει από την λαγκρατζιανή:

L = − (∂µφ) (∂µφ)∗ −m2φφ∗ =

= − (∂µφ1) (∂µφ1)−m2φ2
1 − (∂µφ2) (∂µφ2)−m2φ2

2

(2.12)

Οπότε, αντικαθιστώντας στην Εξ. 2.8 παίρνουμε πάλι την εξίσωση:

∂µ∂
µφi −m2φi =

(
�2 −m2

)
φi = 0 (2.13)

όπου i = 1, 2, δηλαδή το μιγαδικό βαθμωτό πεδίο ταυτίζεται με 2 ανεξάρτητα πραγ-

ματικά βαθμωτά πεδία.

Εξίσωση Dirac

Η εξίσωση Dirac για φερμιονικά πεδία ψ, δηλαδή για σωμάτια με σπιν 1/2, προκύπτει

αν πάρουμε την λαγκρατζιανή:

L = iψ̄γµ∂µψ −mψ̄ψ

= −i
(
∂µψ̄

)
γµψ −mψ̄ψ

(2.14)

όπου το ψ είναι 4-διάστατο πεδίο (σπίνορας - spinor) τότε αντικαθιστώντας στην Εξ.

2.8 παίρνουμε την εξίσωση:

iγµ (∂µψ)−mψ = i
(
∂µψ̄

)
γµ +mψ̄ = 0 (2.15)

η οποία ονομάζεται εξίσωση Dirac.

Εξίσωση Proca

Για να παράξουμε την εξίσωση Proca για ανυσματικά πεδία δηλαδή για σωμάτια με

σπιν 1, ορίζουμε αρχικά τον τελεστή F µν = ∂µAν − ∂νAµ με µ, ν = 0, 1, 2, 3, και

στην συνέχεια παίρνουμε την λαγκρατζιανή:

L = − 1

16π
FµνFµν +

1

8π
m2AµAµ (2.16)

την οποία αντικαθιστώντας στην Εξ. 2.8, παίρνουμε την εξίσωση:

∂µFµν +m2Aν = 0 (2.17)

η οποία ονομάζεται εξίσωση Proca.
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Εξισώσεις Maxwell

Οι εξισώσεις Maxwell για ανυσματικά πεδία με m = 0, προκύπτουν διαλέγοντας την

λαγκρατζιανή:

L = − 1

16π
FµνF

µν − JµAµ (2.18)

τότε αντικαθιστώντας στην Εξ. 2.8 παίρνουμε:

∂µF
µν = 4πJν (2.19)

τις εξισώσεις Maxwell με πηγή Jµ. Από την Εξ. 2.19 συνεπάγεται επίσης η εξίσωση

συνέχειας:

∂νJ
ν = 0 (2.20)

2.1.2 Συμμετρίες και νόμοι διατήρησης

Η αρχή των μεταβολών που βασίζεται στην αρχή ελάχιστης δράσης έχει και μια άλλη

συνέπεια πέρα από την εξίσωση Euler - Lagrange. Αυτή έχει να κάνει με την δυνατή

ύπαρξη κάποιας συμμετρίας, δηλαδή με το γεγονός ότι η δράση μπορεί να παραμένει

αναλλοίωτη κάτω από ορισμένους μετασχηματισμούς των συντεταγμένων του χωρο-

χρόνου xµ και του πεδίου φ. Σε μια τέτοια περίπτωση, έχουμε μία ή περισσότερες

διατηρούμενες ποσότητες με την μορφή συνδυασμών των πεδίων και των παραγώγων

τους, που παραμένουν αναλλοίωτοι κάτω από τους μετασχηματισμούς αυτούς.

Θεώρημα Noether

Η σύνδεση ανάμεσα σε συμμετρίες και νόμους διατήρησης αποτελεί το θεώρημα

Noether και συνιστά μια από τις πιο σπουδαίες σχέσεις στην θεωρία πεδίου αλλά

και στην σωματιδιακή φυσική. ΄Εστω ένας απειροστός χωροχρονικός μετασχηματι-

σμός [8]:

xµ → x′µ + δaµ (2.21)

όπου η απειροστή μεταβολή δaµ είναι ανεξάρτητη του xµ. Η αναλλοιώτητα του

Poincare μας λέει ότι η δράση πρέπει να παραμείνει αναλλοίωτη κάτω από αυτόν

τον μετασχηματισμό. Οπότε, η αντίστοιχη αλλαγή στην λαγκρατζιανή θα είναι:

δL = L (x′)− L (x) = aµ∂µL (2.22)
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Επίσης, τα πεδία φ σε απειροστή μορφή μπορούν να γραφούν ως: φ (x) → φ′ (x) =

φ (x) + δφ (x). Θεωρώντας L (φ, ∂µφ) μπορούμε να γράψουμε:

δL =
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
δ (∂µφ) (2.23)

όπου:

δφ = φ (x′)− φ (x) = aµ∂µφ (2.24)

δ (∂µφ) = ∂µφ (x′)− ∂µφ (x) = aν∂ν (∂µφ) (2.25)

Εφαρμόζοντας τις Εξ. Euler - Lagrange 2.8 αλλά και τις Εξ. 2.24, 2.25 προκύπτει

ότι:

δL =

[
∂ν

∂L
∂ (∂νφ)

]
aµ∂µφ+

∂L
∂ (∂νφ)

aµ∂µ (∂νφ) = ∂ν
∂L

∂ (∂νφ)
aµ∂µφ (2.26)

Οπότε, από την Εξ. 2.22 και την Εξ. 2.26 έχουμε ότι:

aν∂µ

[
∂L

∂ (∂µφ)
∂νφ− gµνL

]
= 0 (2.27)

όπου gµν ο μετρικός τανυστής. Ορίζοντας τώρα τον τανυστή:

Θµν =
∂L

∂ (∂µφ)
(∂νφ)− gµνL (2.28)

όπου ν = 0, 1, 2, 3 ο οποίος λέγεται τανυστής ενέργειας - ορμής, έχουμε ισοδύναμα

ότι:

∂µΘµν (x) = 0 (2.29)

δηλαδή έχουμε έναν τοπικό νόμο διατήρησης.

Συγκεκριμένα, μπορούμε να δείξουμε από την Εξ. 2.28 ότι:

Θ00 =
∂L

∂ (∂0φ)

(
∂0φ
)
− g00L =

(
∂L
∂φ̇

)
φ̇− L = H (2.30)

οπότε η ολική ενέργεια είναι σταθερή:

H =

∫
d3xH =

∫
d3xΘ00

(2.31)

Με παρόμοιο τρόπο, μπορούμε να δείξουμε ότι τα στοιχεία Θ0k
σχετίζονται με πυ-

κνότητες ορμών. Οπότε, η ποσότητα Θµν
είναι ένα παράδειγμα διατηρούμενου τανυ-

στή Noether. Φυσικά, ο τανυστής ενέργειας - ορμής δεν είναι μονοσήμαντα ορισμένος

αφού και η λαγκρατζιανή δεν είναι μονοσήμαντα ορισμένη.
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΄Αρα, αν έχουμε μια δράση που είναι αναλλοίωτη ως προς μια συνεχή ομάδα με-

τασχηματισμών, αυτό ισοδυναμεί με την ύπαρξη νόμων διατήρησης στην θεωρία και

πιο συγκεκριμένα υπάρχει ένας νόμος διατήρησης για κάθε γεννήτορα ομάδας μετα-

σχηματισμών. ΄Ετσι, για παράδειγμα, αν η δράση είναι αναλλοίωτη ως προς χρονικές

μετατοπίσεις αυτό συνεπάγεται την Αρχή Διατήρησης της Ενέργειας (ΑΔΕ). Επίσης,

η αναλλοιώτητα ως προς μετατοπίσεις στο χώρο συνεπάγεται την Αρχή Διατήρησης

της Ορμής (ΑΔΟ) ενώ η αναλλοιώτητα ως προς στροφές στον τρισδιάστατο φυσικό

χώρο συνεπάγεται την Αρχή Διατήρησης της Στροφορμής (ΑΔΣ), όπως φαίνεται

και στον Πίνακα 2.1. Τέλος, η διατήρηση του ηλεκτρικού φορτίου οφείλεται στο

γεγονός ότι η δράση παραμένει αναλλοίωτη σε αυθαίρετες μετατοπίσεις της φάσης

των κυματοσυναρτήσεων των φορτισμένων σωματιδίων.

2.1.3 Μετασχηματισμοί βαθμίδας

Πεδίο Dirac

Αν πάρουμε, για παράδειγμα, την λαγκρατζιανή Dirac της Εξ. 2.14 μπορούμε να

δούμε ότι αυτή είναι αναλλοίωτη κάτω από τον μετασχηματισμό:

ψ → eiθψ (2.32)

ο οποίος ονομάζεται εκτεταμένος μετασχηματισμός βαθμίδας U (1) (global gauge

transformations) ή μετασχηματισμός βαθμίδας πρώτου είδους. ΄Ομως, αν η φάση

εξαρτάται από το χωροχρονικό σημείο δηλαδή:

ψ → eiθ(x)ψ (2.33)

ο οποίος ονομάζεται τοπικός μετασχηματισμός βαθμίδας U (1) (local gauge trans-

formations) ή μετασχηματισμός βαθμίδας δεύτερου είδους, τότε η λαγκρατζιανή δεν

παραμένει αναλλοίωτη, αφού:

∂µ
(
eiθψ

)
= i (∂µθ) e

iθψ + eiθ∂µψ (2.34)

΄Αρα:

L → L− (∂µθ) ψ̄γ
µψ (2.35)

΄Οπως θα δούμε στην συνέχεια, στην ΚΘΠ η μορφή μιας λαγκρατζιανής υπαγορεύε-

ται από το αναλλοίωτο κάτω από τοπικούς μετασχηματισμούς βαθμίδας. Επίσης, να
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αναφέρουμε πως όταν οι δυο ανωτέρω μετασχηματισμοί δεν είναι παρά απλοί πολλα-

πλασιασμοί με την φάση eiθ(x)
, οι αντίστοιχες συμμετρίες ονομάζονται αβελιανές.

΄Εστω q = φερμιονικό φορτίο, λ (x) ≡ − θ(x)
q

και:

L → L+
(
qψ̄γµψ

)
∂µλ (2.36)

για ψ → e−iqλ(x)ψ. Οπότε, για να είναι η LDirac αναλλοίωτη κάτω από τοπικούς

μετασχηματισμούς βαθμίδας πρέπει:

L = iψ̄γµ∂µψ −mψ̄ψ −
(
qψ̄γµψ

)
Aµ (2.37)

όπου Aµ → Aµ + ∂µλ.

Η λαγκρατζιανή πρέπει, οπότε, να περιέχει και έναν όρο για ελεύθερα ανυσματικά

πεδία βαθμίδας όπως στην Εξ. Proca 2.17. Ο όρος F µν = ∂µAν − ∂νAµ είναι

αναλλοίωτος σε αντίθεση όμως με τον όρο AνAν . Οπότε, για τα πεδία βαθμίδας

έχουμε m = 0 και άρα:

L = iψ̄γµ∂µψ −mψ̄ψ −
1

16π
F µνFµν −

(
qψ̄γµψ

)
Aµ (2.38)

με Jµ = q
(
ψ̄γµψ

)
Βλέπουμε οπότε ότι οι ολικοί με τους τοπικούς μετασχηματισμούς βαθμίδας δια-

φέρουν κατά τον όρο (∂µθ) ψ̄γ
µψ οπότε για να επιτύχουμε αναλλοίωτη λαγκρατζιανή

στους ολικούς μετασχηματισμούς αντικαθιστώντας το ∂µ με την συναλλοίωτη πα-

ράγωγο:

∂µ → Dµ ≡ ∂µ + iqAµ (2.39)

και απαιτούμε να ισχύει Aµ → Aµ + ∂µλ. Οπότε, ∂µψ → eiqλ [∂µ − iq (∂µλ)]ψ με

Dµψ → e−iqλDµψ.

Πεδίο Klein - Gordon

Αν πάρουμε τώρα τους μετασχηματισμούς βαθμίδας για το μιγαδικό πεδίο Klein -

Gordon δηλαδή την Εξ. 2.12, τότε βλέπουμε ότι η λαγκρατζιανή παραμένει αναλλο-

ίωτη κάτω από ολικούς μετασχηματισμούς βαθμίδας. Για να γενικεύσουμε την Klein

- Gordon ώστε να είναι αναλλοίωτη ως προς τοπικούς μετασχηματισμούς βαθμίδας

πρέπει έχουμε ζεύξη της Klein - Gordon με το ΗΜ πεδίο. ΄Αρα, πρέπει αρχικά να

κάνουμε την αντικατάσταση ∂µ → Dµ, και στην συνέχεια:

L = (Dµφ)∗ (Dµφ)−m2φ∗φ− 1

4
FµνF

µν =

= (∂µφ
∗ − iqAµφ∗) (∂µφ+ iqAµφ)−m2φ∗φ− 1

4
FµνF

µν
(2.40)
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΄Αρα, καταλήγουμε στο συμπέρασμα πως το αναλλοίωτο κάτω από τοπικούς με-

τασχηματισμούς βαθμίδας απαιτεί την παρουσία ενός ανυσματικού πεδίου Aµ. ΄Ετσι,

το αναλλοίωτο κάτω από τοπικούς μετασχηματισμούς βαθμίδας, για μια θεωρία με

ηλεκτρικά φορτισμένα σωματίδια, απαιτεί να υπάρχει ένα φωτόνιο και να έχουμε ηλε-

κτρομαγνητικές αλληλεπιδράσεις όπως αυτές που παρατηρούνται στην φύση.

2.1.4 Χαμιλτονιανή περιγραφή

Ορίζουμε την λεγόμενη συζυγή ορμή του πεδίου φ (x) ως εξής:

πφ (x) =
∂L

∂ [∂0φ (x)]
(2.41)

όπου L =
∫
d3xL. Στην συνέχεια, ορίζουμε την χαμιλτονιανή πυκνότητα:

H = πφ · (∂0φ)− L (2.42)

όπου η χαμιλτονιανή της θεωρίας ορίζεται ως H =
∫
d3xH. Οπότε, οι κλασικές

εξισώσεις κίνησης της θεωρίας γράφονται ως:

∂0φ (x) =
∂H

∂πφ (x)

∂0πφ (x) = − ∂H

∂φ (x)

(2.43)

Αγγύλες Poisson

Οι αγκύλες Poisson στην θεωρία πεδίου ορίζονται ως εξής:

{f (~x, t) , g (~x, t)}t=t′ =

=

∫
d3x′′

[
∂f (~x, t)

∂φ (~x′′, t′′)
· ∂g (~x′, t)

∂πφ (~x′′, t′′)
− ∂g (~x, t)

∂φ (~x′′, t′′)
· ∂f (~x′, t)

∂πφ (~x′′, t′′)

]
t=t′′=t′

(2.44)

Οπότε, οι κλασικές εξισώσεις κίνησης 2.43 της θεωρίας πεδίου γράφονται ως:

∂0φ (~x, t) = {φ (~x, t) , H}

∂0πφ (~x, t) = {πφ (~x, t) , H}
(2.45)

Πεδίο Klein - Gordon

Εφαρμόζοντας στην Εξ. 2.41 την περίπτωση για ένα βαθμωτό πεδίο με γενικό δυνα-

μικό V (φ), δηλαδή για μια λαγκρατζιανή της μορφής της Εξ. 2.9 προκύπτει:

πφ (~x, t) = 2∂0φ (~x, t) (2.46)
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Οπότε, μέσω της 2.42 έχουμε ότι:

HKG = (∂0φ)2 +
(
~∇φ
)
·
(
~∇φ
)

+ V (φ) (2.47)

Οι κλασικές εξισώσεις κίνησης 2.9 γράφονται αναλυτικά ως:(
∂2

0 −∇2 +m2
)
φ (x) = 0 (2.48)

Οι λύσεις της εξίσωσης Klein - Gordon είναι τα λεγόμενα επίπεδα μονοχρωματικά

κύματα της μορφής:

φ (x) eik
µxµ (2.49)

όπου kµ είναι το 4-κυματοδιάνυσμα. ΄Ομως, αντικαθιστώντας τις λύσεις στην Εξ. 2.48

βλέπουμε ότι το kµ δεν μπορεί να είναι εντελώς αυθαίρετο αλλά πρέπει να υπακούει

στην συνθήκη:

−
(
k0
)2

+
∣∣∣~k∣∣∣2 +m2 = 0

kµk
µ +m2 = 0

(2.50)

η οποία ονομάζεται συνθήκη mass - shell. Τώρα επειδή η εξίσωση Klein - Gor-

don είναι γραμμική τότε η γενική λύση προκύπτει ως υπέρθεση όλων των δυνατών

μονοχρωματικών κυμάτων ως:

φ (x) =

∫
dµ (k)

[
a (k) eik

µxµ + a∗ (k) e−ik
µxµ
]

(2.51)

όπου a (k), a∗ (k) συντελεστές Fourier. Προσδιορίζοντας στην συνέχεια, το μέτρο

ολοκλήρωσης, προκύπτει:

φ (x) =

∫
d3k

(2π)32ωk

[
a (k) eik

µxµ + a∗ (k) e−ik
µxµ
]

(2.52)

Δηλαδή, παρατηρούμε ότι το φ (x) γράφεται ως υπέρθεση επίπεδων μονοχρωματικών

κυμάτων με κυκλική συχνότητα ωk =

√
m2 +

∣∣∣~k∣∣∣2.
Στην συνέχεια, υπολογίζοντας την χαμιλτονιανή του πεδίου από την Εξ. 2.47

έχουμε ότι:

HKG =

∫
d3x

[
(∂0φ)2 +

(
~∇φ
)
·
(
~∇φ
)

+m2φ2
]
⇒

⇒ HKG =

∫
d3x

(2π)3α (k) a∗ (k)
(2.53)

δηλαδή η χαμιλτονιανή είναι μια συνεχής υπέρθεση άπειρου πλήθους αρμονικών τα-

λαντωτών στο χώρο των κυματοδιανυσμάτων {k} με κυκλικές συχνότητες ωk =√
m2 +

∣∣∣~k∣∣∣2.
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Ηλεκτρομαγνητικό πεδίο

Ομοίως εφαρμόζοντας στην Εξ. 2.41 την περίπτωση για ένα ελεύθερο ηλεκτρομα-

γνητικό πεδίο δηλαδή για μια λαγκρατζιανή της μορφής της Εξ. 2.18 χωρίς όμως

πηγές, δηλαδή Jµ = 0, προκύπτει:

πAµ = πµ = − 1

4π
F 0µ

(2.54)

Οπότε, μέσω της Εξ. 2.42 έχουμε ότι:

HEM =
1

8π

(∣∣∣ ~E∣∣∣2 +
∣∣∣ ~B∣∣∣2)− 1

4π
~E · ~∇A0 (2.55)

΄Αρα, με χρήση της σχέσης H =
∫
d3xH, προκύπτει ότι:

HEM =
1

8π

∫
d3x

(∣∣∣ ~E∣∣∣2 +
∣∣∣ ~B∣∣∣2) (2.56)

Στην βαθμίδα Lorentz ∂µA
µ = 0, οι πεδιακές εξισώσεις Maxwell χωρίς πηγές

είναι:

�Aµ (x) = 0 (2.57)

Οι λύσεις είναι επίπεδα μονοχρωματικά κύματα της μορφής:

Aµ (x) = εµ (k) eik
µxµ (2.58)

όπου εµ σταθερό 4-διάνυσμα. Οπότε, κατά αναλογία με Klein - Gordon η γενική

λύση της Εξ. 2.57 θα είναι υπέρθεση μονοχρωματικών κυμάτων υπό την προϋπόθεση

ότι έχουμε την συνθήκη mass shell kµk
µ + m2 = 0, οπότε ωk =

∣∣∣~k∣∣∣. Συνεχίζοντας

με την ίδια λογική προκύπτει ότι η γενική λύση έχει την μορφή:

Aµ (x) =

∫
d3k

(2π)32ωk
εµ (k)

[
a (k) eik

µxµ + a∗ (k) e−ik
µxµ
]

(2.59)

όπου στην προκειμένη περίπτωση επειδή έχοντας επιλέξει την βαθμίδα Lorentz ∂µA
µ =

0 δεν έχουμε πλήρως απαλείψει την ελευθερία μετασχηματισμών βαθμίδας, έτσι μπο-

ρούμε να επιλέξουμε και άλλους μετασχηματισμούς της μορφής δAµ = ∂µf που δεν

αλλάζουν την επιλογή βαθμίδας Lorentz αν �f = 0. Επιλέγοντας ταυτόχρονα α-

ξονική και βαθμίδα Coulomb προκύπτει ότι τα επίπεδα κύματα έχουν μόνο χωρικό

δείκτη, και άρα προκύπτει ότι ~k · ~ε (k) = 0 όπου τα ~ε (k) είναι διανύσματα πόλωσης

των επίπεδων κυμάτων που είναι κάθετα στη διεύθυνση διάδοσης του κύματος. Το

γεγονός αυτό υποδεικνύει ότι το φως είναι εγκάρσια πολωμένο και το πλήθος των

φυσικών βαθμών ελευθερίας του ηλεκτρομαγνητικού πεδίου είναι 2.
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Στην συνέχεια, υπολογίζοντας την χαμιλτονιανή του πεδίου έχουμε ότι:

HEM =
2∑

λ=1

∫
d3x

(2π)3α
(λ) (k) a(λ)∗ (k) (2.60)

δηλαδή είναι άπειρη συνεχής υπέρθεση αρμονικών ταλαντωτών με κυκλική συχνότητα

ωk για κάθε ~k και κάθε διάνυσμα πόλωσης.

2.1.5 Κανονική κβάντωση

Από τα ανωτέρω μπορούμε να δούμε ότι η ενέργεια της θεμελιώδους κατάστασης του

συστήματος μας είναι ίση με την ενέργεια της θεμελιώδους κατάστασης κάθε ταλα-

ντωτή, και επειδή έχουμε άπειρο πλήθος ταλαντωτών η ενέργεια αυτή είναι άπειρη.

Το σύστημα όμως έχει διάφορες ενεργειακές στάθμες, η διαφορά των οποίων είναι

πεπερασμένη. Οπότε, από το άπειρο πρέπει να εξάγουμε πεπερασμένα αποτελέσματα

για να μπορούμε να τα συγκρίνουμε με τα πειράματα.

Γενικότερα όταν έχουμε ζεύξη με άλλα πεδία, πρέπει να αναπτύξουμε μια θεωρία

διαταραχών, οι διορθώσεις της οποίας όμως όπως θα δούμε είναι πάλι άπειρες. ΄Ετσι,

για να μπορέσουμε να εξάγουμε πεπερασμένες φυσικές ποσότητες από το άπειρο,

ακολουθούμε μια διαδικασία που όπως θα δούμε (βλέπε εδάφιο 2.2.7) ονομάζεται

επακανονικοποίηση.

Χρονικά, η “πρώτη κβάντωση” έγινε όταν αντικαταστήσαμε τα παρατηρούμενα

φυσικά μεγέθη φ από τελεστές. Για να κατανοήσει όμως κάποιος σωστά τις σχε-

τικιστικές κυματικές εξισώσεις θα πρέπει να εγκαταλείψει την ερμηνεία τους σαν

εξισώσεις που επιδέχονται μονοσωματιδιακές λύσεις και να εισαχθεί η έννοια του

κβαντικού πεδίου, δηλαδή οι κυματοσυναρτήσεις των αντίστοιχων εξισώσεων να υ-

πόκεινται σε σχέσεις μετάθεσης ή αντιμετάθεσης ανάλογες με εκείνες της Κβαντομη-

χανικής. Αυτή ονομάστηκε “δεύτερη κβάντωση” όπου στην ουσία τα κβαντικά πεδία

παριστάνονται πλέον με τελεστές δημιουργίας και καταστροφής που δημιουργούν ή

καταστρέφουν σωματίδια [9].

Πραγματικό βαθμωτό πεδίο

΄Ενα πραγματικό βαθμωτό πεδίο στο κλασικό επίπεδο ορίζεται από την σχέση φ (x) =

φ∗ (x) όπου σύμφωνα με την αρχή της αντιστοιχίας του Bohr μπορεί να ερμηνευτεί

σαν η “αναμενόμενη τιμή” ενός κβαντομηχανικού τελεστή φ̂ (x) ως προς μια κατάλ-

ληλη κβαντομηχανική κατάσταση φ (x) =
〈∣∣∣φ̂ (x)

∣∣∣〉. Το κλασικό πεδίο φ (x) είναι
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πραγματικό και υπακούει στην εξίσωση Klein - Gordon, αρκεί ο τελεστής φ̂ (x) να

είναι ερμιτιανός και να ικανοποιεί επίσης την εξίσωση Klein - Gordon.

Η γενική λύση της Klein - Gordon είδαμε ότι γράφεται με την μορφή της Εξ. 2.52,

όπου a (k) είναι μια αυθαίρετη μιγαδική συνάρτηση. Στην ΚΘΠ τώρα που έχουμε το

κβαντικό πεδίο φ̂ (x) έχουμε κατά αναλογία:

φ̂ (x) =

∫
d3k

(2π)32ωk

[
â (k) eik

µxµ + â† (k) e−ik
µxµ
]

(2.61)

όπου τώρα â (k) ο συντελεστής είναι τελεστής και â† (k) είναι ερμιτιανός συζυγής

του. Στην συνέχεια, θα θεωρούμε πως φ (x), a (k) και a† (k) είναι τελεστές.

Η κβάντωση της μηχανικής βασίζεται στις κανονικές σχέσεις μετάθεσης του

Heisenberg:

[xi, pj] = iδij

[xi, xj] = [pi, pj] = 0
(2.62)

όπου pi = ∂L
∂ẋi

η κανονική ορμή. Σε αυτές τις σχέσεις η θέση και η ορμή μετρώνται

την ίδια χρονική στιγμή. Σε αναλογία με τις σχέσεις αυτές, στην ΚΘΠ έχουμε τις

σχέσεις:

[φ (~x, t) , π (~y, t)] = iδ (x− y)

[φ (~x, t) , φ (~y, t)] = [π (~x, t) , π (~y, t)] = 0
(2.63)

όπου η κανονική ορμή π (~x, t) ορίζεται εδώ σαν:

π (~x, t) =
∂L

∂φ̇ (~x, t)
(2.64)

Οι σχέσεις αυτές ονομάζονται κανονικές σχέσεις μετάθεσης ίσου χρόνου, και παίζουν

τον ίδιο ρόλο που παίζουν και οι κανονικές σχέσεις μετάθεσης του Heisenberg στην

κλασική Κβαντομηχανική.

Αντικαθιστώντας την Εξ. 2.61 στην Εξ. 2.46, αντιστρέφοντας τους μετασχημα-

τισμούς Fourier και στην συνέχεια παίρνοντας τον μεταθέτη προκύπτει ότι:

[a (k1) , a (k2)] =
[
a† (k1) , a† (k2)

]
= 0[

a (k1) , a† (k2)
]

= (2π)32ω1δ (k1 − k2)
(2.65)

Ορίζοντας στην συνέχεια τον τελεστή:

N (k) = a† (k) a (k) (2.66)
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βλέπουμε ότι ισχύουν οι σχέσεις μετάθεσης:

[N (k) , N (k′)] = 0[
N (k) , a† (k)

]
= a† (k)

[N (k) , a (k)] = −a (k)

(2.67)

Με βάση αυτές τις σχέσεις, αν είναι n (k), |n (k)〉 οι ιδιοτιμές, αντίστοιχα ιδιοκατα-

στάσεις του τελεστή N (k), τότε έχουμε:

N (k) |n (k)〉 = n (k) |n (k)〉

N (k) a† (k) |n (k)〉 = [n (k) + 1] a† (k) |n (k)〉

N (k) a (k) |n (k)〉 = [n (k)− 1] a (k) |n (k)〉

(2.68)

Αυτό σημαίνει ότι οι καταστάσεις a† (k) |n (k)〉, a (k) |n (k)〉 είναι ιδιοκαταστάσεις

του N (k) με ιδιοτιμές n (k) + 1, n (k) − 1 αντίστοιχα. Αυτό υποδεικνύει ότι ο

τελεστής N (k) είναι ο αριθμητικός τελεστής των σωματιδίων με ενέργεια ωk και

ορμή k. Επίσης, βλέπουμε ότι η δράση του a (k) μειώνει κατά 1 την ιδιοτιμή n (k)

ενώ η δράση του a† (k) αυξάνει την ιδιοτιμή n (k) κατά 1, πράγμα που σημαίνει ότι

οι ιδιοτιμές n (k) είναι ακέραιοι αριθμοί. ΄Ετσι, δικαιολογείται η ονομασία των a (k)

και a† (k) σαν τελεστές καταστροφής και δημιουργίας των κβάντων του πεδίου και

ολοκληρώνουν την δικαιολόγηση της ερμηνείας του N (k) σαν αριθμητικού τελεστή.

΄Ετσι, συμπληρώνεται η σωματιδιακή ερμηνεία της Κβαντικής Θεωρίας.

Είδαμε προηγουμένως ότι ένα κβαντικό πεδίο είναι ισοδύναμο με ένα άπειρο άθροι-

σμα αρμονικών ταλαντωτών. Η αναίρεση της απειρίας στην ενέργεια γίνεται με την

κανονική διάταξη (normal ordering), όπου οι τελεστές καταστροφής γράφονται δε-

ξιά των τελεστών δημιουργίας. ΄Οπως αναφέραμε η ενέργεια του πεδίου περιέχει

μια άπειρη συνεισφορά, που προέρχεται από το άθροισμα των ενεργειών της βασι-

κής κατάστασης των αρμονικών ταλαντωτών. Επειδή όμως το επίπεδο της μηδενικής

ενέργειας είναι αυθαίρετο, μπορούμε να αφαιρέσουμε μια τέτοια συνεισφορά χωρίς

φυσικές συνέπειες και να ορίσουμε την χαμιλτονιανή με χρήση της Εξ. 2.66 σαν:

H =

∫
d3k

(2π)32ωk
ωkN (k) (2.69)

Τότε η ενέργεια της βασικής κατάστασης είναι:

〈0|H |0〉 =

∫
d3k

(2π)32ωk
ωk 〈0| a† (k) a (k) |0〉 = 0 (2.70)

οπότε η απειρία αναιρείται.
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Μιγαδικό βαθμωτό πεδίο

΄Οπως ξέρουμε με ένα μιγαδικό βαθμωτό πεδίο περιγράφουμε ένα βαθμωτό σωματίδιο

και το αντι-σωματίδιο του, που χαρακτηρίζονται από αντίθετα φορτία. Επειδή το

κλασικό πεδίο δεν είναι πραγματικό, το κβαντικό πεδίο δεν θα είναι ερμιτιανό και έτσι

αντί για την Εξ. 2.61 έχουμε τώρα:

φ (x) =

∫
d3k

(2π)32ωk

[
a (k) eikx + b† (k) e−ikx

]
φ† (x) =

∫
d3k

(2π)32ωk

[
b (k) eikx + a† (k) e−ikx

] (2.71)

Τώρα οι κανονικές σχέσεις μετάθεσης ίσου χρόνου 2.63 και οι αντίστοιχες ερμι-

τιανές συζυγείς σχέσεις οδηγούν στις εξισώσεις:[
a (k1) , a† (k2)

]
= (2π)32ω1δ (k1 − k2)[

b (k1) , b† (k2)
]

= (2π)32ω1δ (k1 − k2)
(2.72)

ενώ όλοι οι υπόλοιποι μεταθέτες μηδενίζονται. ΄Ετσι, έχουμε εδώ δύο σύνολα τελε-

στών καταστροφής και δημιουργίας, τα a, a† και b, b†.

Εισάγοντας την κανονική διάταξη, βρίσκουμε για την χαμιλτονιανή ότι:

H =

∫
d3k

(2π)32ωk
ωk
[
a† (k) a (k) + b† (k) b (k)

]
(2.73)

Οπότε, τα a, a† ερμηνεύονται σαν τελεστές καταστροφής και δημιουργίας σωματιδίων,

και τα b, b† σαν τελεστές καταστροφής και δημιουργίας αντι-σωματιδίων, τα οποία

έχουν αντίθετο φορτίο αλλά ίδια μάζα.

Γράφοντας στην συνέχεια τους αριθμητικούς τελεστές:

Na (k) = a† (k) a (k)

Nb (k) = b† (k) b (k)
(2.74)

για σωματίδια και αντι-σωματίδια η έκφραση της χαμιλτονιανής γίνεται:

H =

∫
d3k

(2π)32ωk
ωk [Na (k) +Nb (k)] (2.75)

Πεδίο Dirac

Θεωρώντας και σε αυτή την περίπτωση το πεδίο Dirac σαν πεδιακό τελεστή, όπως

και στην περίπτωση του βαθμωτού πεδίου, γράφουμε την γενική λύση της εξίσωσης
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Dirac σαν επαλληλία επίπεδων κυμάτων με συντελεστές που είναι τελεστές:

ψ (x) =

∫
d3k

(2π)32k0

∑
s=1,2

[
as (k)u(s) (k) e−ikx + b†s (k) υ(s) (k) eikx

]
ψ̄ (x) =

∫
d3k

(2π)32k0

∑
s=1,2

[
a†s (k) ū(s) (k) eikx + bs (k) ῡ(s) (k) e−ikx

] (2.76)

όπου u(1,2)
και υ(1,2)

οι σπινοριακές λύσεις θετικής και αρνητικής ενέργειας, όπου η

ενέργεια συμβολίζεται ως E = k0. Σε αυτή την περίπτωση χρησιμοποιούμε διαφορε-

τικούς τελεστές a (k), b (k) για να μπορούμε να περιγράψουμε μη ερμιτιανά (δηλαδή

φορτισμένα) πεδία Dirac.

Από την λαγκρατζιανή του Dirac της Εξ. 2.14 παίρνουμε με βάση την Εξ. 2.41

την κανονική ορμή:

π (x) = iψ† (x) (2.77)

και άρα με χρήση της Εξ. 2.42 έχουμε:

H = ψ† (x) i
∂

∂t
ψ (x) (2.78)

Αντίθετα με την προηγούμενη περίπτωση του βαθμωτού πεδίου η χαμιλτονιανή δεν

είναι αναγκαστικά μια θετική ποσότητα πριν πάμε στην κβάντωση της θεωρίας. Α-

ντικαθιστώντας τα κβαντικά πεδία 2.76 στην Εξ. 2.78 βρίσκουμε για την ενέργεια

H =
∫
d3xH ότι:

H =

∫
d3k

(2π)32k0

k0

∑
s=1,2

[
a†s (k) as (k)− bs (k) b†s (k)

]
(2.79)

Σε αυτή τώρα την περίπτωση αντί για τις σχέσεις 2.72 ισχύουν οι σχέσεις:[
ar (k1) , a†s (k2)

]
= δrs(2π)32k0δ (k1 − k2)[

br (k1) , b†s (k2)
]

= δrs(2π)32k0δ (k1 − k2)
(2.80)

ενώ όλοι οι υπόλοιποι μεταθέτες μηδενίζονται.

Αυτό σημαίνει ότι, για να αφαιρέσουμε τώρα την ενέργεια μηδενικού σημείου

χρησιμοποιώντας την κανονική διάταξη στη χαμιλτονιανή, φροντίζουμε να αλλάξουμε

το “σημείο” κάθε όρου στον οποίο κάνουμε εναλλαγή τελεστών. ΄Αρα, έχουμε ότι:

H =

∫
d3k

(2π)32k0

k0

∑
s=1,2

[
a†s (k) as (k) + b†s (k) bs (k)

]
=

=

∫
d3k

(2π)32k0

k0

∑
s=1,2

[
Ns (k) + N̄s (k)

] (2.81)
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Ηλεκτρομαγνητικό πεδίο

Το ηλεκτρομαγνητικό πεδίο είναι η απλούστερη περίπτωση ανυσματικού πεδίου και

η κβάντωση του παρουσιάζει όλες τις ιδιαιτερότητες της κβάντωσης πεδίων με σπιν

1. Αυτές έχουν να κάνουν με τους μετασχηματισμούς βαθμίδας. Μπορούμε να εξε-

τάσουμε την κβάντωση του ηλεκτρομαγνητικού πεδίου είτε στην βαθμίδα Coulomb

είτε στην βαθμίδα Lorentz. Στην συνέχεια, θα εξετάσουμε την περίπτωση της βαθ-

μίδας Lorentz όμως το αποτέλεσμα είναι το ίδιο αν επιλέξουμε την βαθμίδα Coulomb.

Αναμένουμε να ισχύουν οι συναλλοίωτες σχέσεις μετάθεσης ίσου χρόνου:

[Aµ (~x, t) , πν (~y, t)] = igµνδ (~x− ~y)

[Aµ (~x, t) , Aν (~y, t)] = [πµ (~x, t) , πν (~y, t)] = 0
(2.82)

΄Ομως, από την Εξ. 2.54 βλέπουμε ότι π0 = 0, οπότε η πρώτη σχέση των Εξ. 2.82

δεν μπορεί να ικανοποιηθεί για την A0
.

΄Ετσι, προσθέτουμε στην λαγκρατζιανή έναν νέο όρο:

L = −1

4
FµνF

µν − ξ

2
(∂µA

µ)2
(2.83)

όπου ο όρος − ξ
2
(∂µA

µ)2
ονομάζεται όρος καθορισμού βαθμίδας, και είναι ιδιαίτερα

χρήσιμος στις μη αβελιανές θεωρίες βαθμίδας. Αλλά και πάλι έχουμε π0 = 0 στη

βαθμίδα Lorentz. Η λύση του προβλήματος δόθηκε από τους Gupta και Bleurer

οι οποίοι έδειξαν ότι πρέπει να απαιτήσουμε μόνο οι φυσικές καταστάσεις |ψ〉 να

ικανοποιούν την συνθήκη Lorentz δηλαδή η αναμενόμενη τιμή του ∂µA
µ
ως προς τις

φυσικές καταστάσεις να είναι μηδέν.

〈ψ| ∂µAµ |ψ〉 = 0 (2.84)

Οπότε, οι λύσεις παίρνουν την μορφή:

Aµ (x) =

∫
d3k

(2π)32ωk

∑
λ=0,1,2,3

ε(λ)
µ (k)

[
a(λ) (k) e−ikx + a(λ)† (k) eikx

]
(2.85)

όπου με λ = 0, 1, 2, 3 συμβολίζουμε τις τέσσερις δυνατές καταστάσεις πόλωσης. ΄Ε-

τσι, για ξ = 1 οι σχέσεις μετάθεσης 2.82:[
Ȧµ (~x, t) , Aν (~y, t)

]
= igµνδ (~x− ~y)[

a(λ) (k) , a(λ′)† (k′)
]

= −gλλ′(2π)32ωkδ (k − k′)
(2.86)
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ενώ όλοι οι άλλοι μεταθέτες είναι μηδέν.

Για τα εγκάρσια (λ = 1, 2) και τα διαμήκη (λ = 3) φωτόνια δεν υπάρχει κάποιο

πρόβλημα, όμως για τα βαθμωτά (ή χρονοειδή) φωτόνια (λ = 0) το αρνητικό σημείο

της δεύτερης σχέσης των Εξ. 2.86 δημιουργεί προβλήματα, καθώς η συνεισφορά

τους στην ενέργεια είναι αρνητική. ΄Ετσι, χρησιμοποιώντας και πάλι την μέθοδο των

Gupta και Bleurer προκύπτει ότι οι συνεισφορές των βαθμωτών και των διαμηκών

φωτονίων στην αναμενόμενη τιμή της χαμιλτονιανής ως προς φυσικές καταστάσεις

αλληλοεξουδετερώνονται και μένουμε τελικά μόνο με την συνεισφορά των εγκάρσιων

φυσικών φωτονίων. Οπότε, η έκφραση που προκύπτει για την χαμιλτονιανή είναι

τελικά:

HEM =

∫
d3k

(2π)32ωk
ωk

[∑
λ=1,2

a(λ)† (k) a(λ) (k)

]
(2.87)

Μαζικό ανυσματικό πεδίο - Proca

΄Εστω ένα ελεύθερο ουδέτερο μαζικό ανυσματικό πεδίο π.χ. το Zµ. Σε αυτή την

περίπτωση οι σχέσεις μετάθεσης γράφονται:[
Żi (~x, t) , Zj (~y, t)

]
= igijδ (~x− ~y)[

a(λ) (k) , a(λ′)† (k′)
]

= δλλ′(2π)32ωkδ (k − k′)
(2.88)

όπου το Zµ (x) αναπτύσσεται σαν:

Zµ (x) =

∫
d3k

(2π)32ωk

∑
λ=1,2,3

ε(λ)
µ (k)

[
a(λ) (k) e−ikx + a(λ)† (k) eikx

]
(2.89)

Μετά την κανονική διάταξη η χαμιλτονιανή παίρνει την μορφή:

H =

∫
d3k

(2π)32ωk
ωk

[ ∑
λ=1,2,3

a(λ)† (k) a(λ) (k)

]
(2.90)

Για ελεύθερα φορτισμένα μαζικά ανυσματικά πεδία, όπως τα W+
µ =

(
W−
µ

)†
, θα

έχουμε την ανάπτυξη:

W+
µ (x) =

∫
d3k

(2π)32ωk

∑
λ=1,2,3

ε(λ)
µ (k)

[
a(λ) (k) e−ikx + b(λ)† (k) eikx

]
(2.91)

Τέλος, οι τελεστές καταστροφής και δημιουργίας a, a† και b, b† για τα W+
και W−

σωματίδια, αντίστοιχα θα υπακούουν στις σχέσεις μετάθεσης:[
a(λ) (k) , a(λ′)† (k′)

]
=
[
b(λ) (k) , b(λ′)† (k′)

]
= δλλ′(2π)32ωkδ (k − k′) (2.92)
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2.1.6 Διαδότες και κορυφές

Μένει να υπολογίσουμε τις αναμενόμενες τιμές ως προς το κενό ενός γινομένου που

περιλαμβάνει ένα πεδίο σε διαφορετικά σημεία x και y. ΄Ετσι, για το ηλεκτρομαγνητικό

πεδίο Aµ βρίσκουμε στην βαθμίδα Lorentz ότι:

〈0|Aµ (x)Aν (y) |0〉 = −gµν
∫

d3k

(2π)32ωk
e−ik(x−y)

(2.93)

Στην συνέχεια, θα χρησιμοποιήσουμε το χρονολογικό γινόμενο δυο τελεστών, όπου

τοποθετούμε στα δεξιά τελεστές που αναφέρονται σε προγενέστερους χρόνους. Αυτό

ορίζεται ως:

T [Aµ (x)Aν (y)] =

{
Aµ (x)Aν (y)

Aν (y)Aµ (x)

για

για

x0 > y0

y0 > x0
(2.94)

Παρόμοια ορίζεται το χρονολογικό γινόμενο T για κάθε μποζονικό τελεστή. Βλέπου-

με επίσης ότι από τον ορισμό δεν υπάρχει εξάρτηση από το σύστημα αναφοράς.

Στην συνέχεια, ορίζουμε την συνάρτηση igµνDF (x− y) μέσω της ολοκληρωτικής

αναπαράστασης:

〈0|T [Aµ (x)Aν (y)] |0〉 = igµνDF (x− y) =

= lim
ε→0+

∫
d4k

(2π)4

−igµν
k2 + iε

e−ik(x−y)
(2.95)

η οποία μαζί με τον Fourier μετασχηματισμό της − igµν
k2+iε

ονομάζονται διαδότες Feyn-

man στο χώρο Minkowski και στο χώρο των ορμών αντίστοιχα, για ένα ελεύθερο

φωτονικό πεδίο. Η φυσική ερμηνεία του διαδότη Feynman συναρτήσει της εκπο-

μπής, διάδοσης και καταστροφής φωτονίων στην προκειμένη περίπτωση είναι η εξής:

Για x0 > y0
, η αναμενόμενη τιμή 〈0|Aµ (x)Aν (y) |0〉 παριστάνει ένα φωτόνιο που

δημιουργείται στο σημείο y και διαδίδεται μέχρι το σημείο x όπου και καταστρέφεται.

Ανάλογα μπορούμε να ορίσουμε τις αντίστοιχες εκφράσεις για ένα μαζικό ανυ-

σματικό πεδίο. Σε αυτή την περίπτωση ορίζεται ένα “τροποποιημένο” χρονολογικό

γινόμενο T ∗ για λόγους συναλλοιώτητας. ΄Ετσι, για τους διαδότες Feynman έχουμε:

〈0|T ∗ [Zµ (x)Zν (y)] |0〉 = lim
ε→0+

∫
d4k

(2π)4

i
(
−gµν + kµkν

M2
Z

)
k2 −M2

Z + iε
e−ik(x−y)

(2.96)

Για ένα βαθμωτό πεδίο (πραγματικό ή μιγαδικό) έχουμε:

〈0|T
[
φ (x)φ† (y)

]
|0〉 = i∆F (x− y) =

= lim
ε→0+

∫
d4k

(2π)4

i

k2 −m2 + iε
e−ik(x−y)

(2.97)
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Για το πεδίο Dirac που είναι φερμιονικό, ορίζουμε το χρονολογικό γινόμενο μέσω

της σχέσης:

T
[
ψ (x) ψ̄ (y)

]
=

{
ψ (x) ψ̄ (y)

−ψ̄ (y)ψ (x)

για

για

x0 > y0

y0 > x0
(2.98)

Οπότε, οι διαδότες Feynman γίνονται:

〈0|T
[
ψ (x) ψ̄ (y)

]
|0〉 = iSF (x− y) =

= lim
ε→0+

∫
d4p

(2π)4

i

p−m+ iε
e−ip(x−y)

= lim
ε→0+

∫
d4p

(2π)4

i (p+m)

p2 −m2 + iε
e−ip(x−y)

(2.99)

Σημειώνεται επίσης ότι οι συναρτήσεις DF (x− y), ∆F (x− y) και SF (x− y)

ικανοποιούν τις κυματικές εξισώσεις:

�2
xDF (x− y) = δ (x− y)(

�2
x +m2

)
∆F (x− y) = −δ (x− y)

(i∂x −m)SF (x− y) = δ (x− y)

(2.100)

δηλαδή είναι συναρτήσεις Green για τα πεδία Maxwell, Klein - Gordon και Dirac,

αντίστοιχα.

Για την μελέτη των αλληλεπιδράσεων, η ιδέα για τους διάφορους υπολογισμο-

ύς έγκειται στο να χρησιμοποιήσουμε μια ανάπτυξη σε σειρά ως προς τις σταθερές

ζεύξης των θεωριών βαθμίδας που αποτελούν μικρές παραμέτρους, με χρήση των

μεθόδων της θεωρίας διαταραχών. ΄Ετσι, μπορούμε να δούμε ότι μια στοιχειώδης

αλληλεπίδραση - κορυφή μπορεί να παρασταθεί γραφικά με ένα διάγραμμα στο οποίο

μπορούμε να έχουμε καταστροφή ή δημιουργία σωματιδίων ή αντι-σωματιδίων και

εκπομπή ή απορρόφηση κβάντων ακτινοβολίας. Περισσότερες λεπτομέρειες θα δούμε

στο εδάφιο 2.2.6.

2.2 Καθιερωμένο πρότυπο

2.2.1 Θεωρία Yang - Mills

Η θεωρία Yang - Mills είναι μια μη αβελιανή γενίκευση της ηλεκτρομαγνητικής θεω-

ρίας Maxwell και περιγράφει τις ασθενείς και τις ισχυρές αλληλεπιδράσεις. Οι θεωρίες

αυτές αρχικά ξεκίνησαν για να δώσουν μια ενοποιημένη περιγραφή των πρωτονίων και

των νετρονίων ως σωμάτια με σπιν 1/2 και παρόμοια μάζα.
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΄Εστω δυο πεδία με σπιν 1/2, ψ1 και ψ2, τότε η λαγκρατζιανή μπορεί να γραφεί

ως:

L = iψ̄γµ∂µψ −Mψ̄ψ (2.101)

όπου ψ =

(
ψ1

ψ2

)
, ψ̄ =

(
ψ̄1 ψ̄2

)
και M =

(
m1 0

0 m2

)
. Αν όμως m1 ≈ m2 =

m τότε:

L = iψ̄γµ∂µψ −mψ̄ψ (2.102)

η οποία μοιάζει με την Εξ. 2.14 Dirac για ένα σωμάτιο μάζας m. ΄Ομως, η εξίσωση

αυτή δεν αντιστοιχεί σε ένα σωμάτιο αλλά στην διπλέτα (doublet) ψ =

(
ψ1

ψ2

)
όπου

κάθε ψi είναι σπίνορας με 4 συνιστώσες.

Μετασχηματισμοί Βαθμίδας στις YM

Οι μετασχηματισμοί βαθμίδας εισάγονται ως 2×2 πίνακες SU (2) της μορφής ψ → Uψ

και ψ̄ → ψ̄U † με U = eiθI+~τ ·~a, όπου I είναι ο 2× 2 μοναδιαίος πίνακας.

Ο ολικός μετασχηματισμός βαθμίδας SU (2) είναι:

ψ = ei(~τ ·~a)ψ (2.103)

ενώ ο τοπικός μετασχηματισμός βαθμίδας SU (2) είναι:

ψ = Sψ (2.104)

όπου S = eiq~τ ·
~λ(x)

και ~λ (x) = −~a(x)
q

. Βλέπουμε ότι η L δεν είναι αναλλοίωτη

κάτω από SU (2) μετασχηματισμούς βαθμίδας. ΄Ετσι, ορίζουμε τα ανυσματικά πεδία

~Aµ ≡ (Aµ1 , A
µ
2 , A

µ
3) και την συναλλοίωτη παράγωγο Dµ ≡ ∂µ+ iq~τ · ~Aµ όπου Dµψ →

S (Dµψ). Οπότε, τελικά έχουμε ότι:

L = iψ̄γµDµψ −mψ̄ψ =

=
[
iψ̄γµ∂µψ −mψ̄ψ

]
−
(
qψ̄γµ~τψ

)
· ~Aµ

(2.105)

Επίσης, κάθε ~Aµ χρειάζεται τον κινητικό του όρο:

L = − 1

16π
~F µν · ~Fµν (2.106)

καθώς η μάζα Proca απαγορεύεται από τους τοπικούς μετασχηματισμούς βαθμίδας.

Οπότε, η πλήρης λαγκρατζιανή Yang - Mills είναι η:

L =
[
iψ̄γµ∂µψ −mψ̄ψ

]
− 1

16π
~F µν · ~Fµν −

(
qψ̄γµ~τψ

)
· ~Aµ (2.107)
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η οποία περιγράφει δύο ίσης μάζας πεδία Dirac που αλληλεπιδρούν με 2 άμαζα ανυ-

σματικά πεδία βαθμίδας.

Τα πεδία Dirac γεννούν 3 ρεύματα:

~Jµ = q
(
ψ̄γµτ̄ψ

)
(2.108)

΄Ετσι, οι μετασχηματισμοί βαθμίδας του πεδίου έχουν την μορφή:

~Aµ → ~Aµ + ∂µ~λ+ 2q
(
~λ× ~Aµ

)
~F µν → ∂µ ~A

ν − ∂ν ~Aµ + 2q
(
~λ× ~F µν

) (2.109)

2.2.2 Χρωμοδυναμική

Την ίδια διαδικασία θα ακολουθήσουμε στην συνέχεια για 3 σωμάτια. Δηλαδή, έχου-

με πάλι την λαγκρατζιανή τύπου Dirac:

L = iψ̄γµ∂µψ −mψ̄ψ (2.110)

όπου ψ =


ψr

ψb

ψg

, ψ̄ =
(
ψ̄r ψ̄b ψ̄g

)
και M =


mr 0 0

0 mb 0

0 0 mg

 με τις τρεις

μάζες ίσες, δηλαδή mr = mb = mg = m.

Μετασχηματισμοί βαθμίδας στις ισχυρές αλληλεπιδράσεις

Για ολικούς μετασχηματισμούς SU (3) έχουμε ψ → Uψ, U †U = I και ψ̄ → ψ̄U † με:

U = ei(θI+λ1·a1+λ2·a2+...+λs·as) (2.111)

Για τοπικούς τώρα μετασχηματισμούς βαθμίδας έχουμε ψ → S (x)ψ όπου:

S (x) = e−
i~λ·~φ(x)

q (2.112)

με ~λ · ~φ (x) = λ1 · φ1 (x) + ... + λ8 · φ8 (x). Βλέπουμε ότι η L είναι μη αναλλοίωτη

κάτω από SU (3) μετασχηματισμούς βαθμίδας. ΄Ετσι, εισάγουμε 8 ανυσματικά πεδία

βαθμίδας ~Aµ ≡ (Aµ1 , A
µ
2 , ..., A

µ
b ) και την συναλλοίωτη παράγωγο Dµ ≡ ∂µ + iq~λ · ~Aµ

όπου Dµψ → S (Dµψ). Οπότε, τελικά έχουμε ότι:

L = iψ̄γµDµψ −mψ̄ψ =

=
[
iψ̄γµ∂µψ −mψ̄ψ

]
−
(
qψ̄γµ~λψ

)
· ~Aµ

(2.113)

43



Μαρούδας Μάριος Κεφάλαιο 2. Το ΚΠ της σωματιδιακής φυσικής

΄Εχουμε επίσης του κινητούς όρους των γκλουονίων:

Lgluons = − 1

16π
~F µν · ~Fµν (2.114)

Οπότε, η πλήρης λαγκρατζιανή είναι η:

L =
[
iψ̄γµ∂µψ −mψ̄ψ

]
− 1

16π
~F µν · ~Fµν −

(
qψ̄γµ~λψ

)
· ~Aµ (2.115)

Στην περίπτωση αυτή έχουμε 8 ρεύματα:

~Jµ = q
(
ψ̄γµ~λψ

)
(2.116)

΄Ετσι, οι μετασχηματισμοί βαθμίδας του πεδίου έχουν την μορφή:

~Aµ → ~Aµ + ∂µ~φ+ 2q
(
~φ× ~Aµ

)
~F µν → ∂µ ~A

ν − ∂ν ~Aµ + 2q
(
~φ× ~F µν

) (2.117)

όπως ακριβώς στην θεωρία Yang - Mills.

2.2.3 Αυθόρμητο σπάσιμο συμμετρίας

Θεώρημα Goldstone

Στα προηγούμενα είδαμε πως μπορούμε να ερμηνεύσουμε τις ηλεκτρομαγνητικές και

τις ισχυρές αλληλεπιδράσεις. Τα πεδία όμως βαθμίδας αυτά δεν έχουν μάζα, οπότε

πρέπει να βρούμε έναν άλλο τρόπο να περιγράψουμε τις ασθενείς αλληλεπιδράσεις

που έχουν μικρή εμβέλεια. Για να γίνει αυτό χρειάζεται να εισαχθεί η έννοια του

αυθόρμητου σπασίματος συμμετρίας.

Υπάρχουν πολλά φυσικά συστήματα στα οποία η θεμελιώδης κατάσταση έχει μι-

κρότερη συμμετρία από την συμμετρία που παρουσιάζει το σύστημα. Το φαινόμενο

αυτό ονομάζεται αυθόρμητο σπάσιμο της συμμετρίας. Για παράδειγμα, έστω ότι

έχουμε μια λεπτή κατακόρυφη ράβδο την οποία συμπιέζουμε κατά μήκος της με μια

δύναμη F όπως φαίνεται στο Σχ. 2.1. Το σύστημα αυτό έχει μια κυλινδρική συμμε-

τρία γύρω από τον άξονα z. ΄Οταν όμως η δύναμη F υπερβεί μια κρίσιμη τιμή τότε

η ράβδος κάμπτεται όπως φαίνεται στο Σχ. 2.1. Αυτό συμβαίνει καθώς πέρα από

μια επιβράχυνση η ενέργεια στην θέση λυγισμού είναι μικρότερη από την ενέργεια

επιβράχυνσης. Η κυλινδρική συμμετρία του συστήματος στην θέση λυγισμού έχει

πλέον καταστραφεί. Αλλά η ράβδος μπορεί να λυγίσει σε οποιαδήποτε διεύθυνση στο
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επίπεδο x− y με την ίδια ενέργεια την οποία δεν μπορούμε να προβλέψουμε. Μπορο-

ύμε όμως να πούμε ότι η κυλινδρική συμμετρία που καταστράφηκε, εκφράζεται τώρα

με το ότι ο λυγισμός μπορεί να γίνει με την ίδια πιθανότητα σε όλες τις διευθύνσεις

κυλινδρικά γύρω από την ράβδο.

Σχήμα 2.1: Παραλληλισμός αυθόρμητου σπασίματος συμμετρίας με κατακόρυφη ράβδο υπό αξο-

νική θλίψη [10].

Στην ΚΘΠ το αυθόρμητο σπάσιμο της συμμετρίας γεννά σωμάτια με σπιν και

μάζα ηρεμίας μηδέν και τα οποία ονομάζονται μποζόνια Golsdstone. Πιο συγκεκριμένα

ισχύει το εξής θεώρημα:

΄Εστω ότι η θεωρία μας είναι συμμετρική ως προς μια ομάδα G με διαστάσεις N ,

ενώ η θεμελιώδης κατάσταση είναι συμμετρική από μια υποομάδα H με διαστάσεις M

όπου M < N . Τότε θα υπάρχουν N −M σωμάτια με σπιν και μάζα ηρεμίας μηδέν

τα οποία ονομάζονται μποζόνια Goldstone. Τα σωμάτια αυτά αντιστοιχούν στους

N −M σπασμένους γεννήτορες της G/H. Οπότε, το θεώρημα Goldstone μας λέει

ότι σε κάθε γεννήτορα αυθόρμητα σπασμένης συμμετρίας αντιστοιχεί ένα βαθμωτό

πεδίο μηδενικής μάζας που λέγεται πεδίο Goldstone ή πεδίο Nambu.

Σπάσιμο μιας ολικής αβελιανής συμμετρίας

΄Εστω ότι έχουμε ένα μιγαδικό βαθμωτό πεδίο φ = (φ1 + iφ2) /
√

2 το οποίο περι-

γράφεται από την λαγκρατζιανή:

L = −(∂µφ)∗ (∂µφ)− V (φ, φ∗) (2.118)

όπου το δυναμικό έχει την μορφή: V (φ, φ∗) = µ2φφ∗ + λ(φφ∗)2
.

Η λαγκρατζιανή αυτή είναι αναλλοίωτη κάτω από U (1) ολικούς μετασχηματισμούς

βαθμίδας του τύπου φ (x)→ eiθφ (x) και φ∗ (x)→ e−iθφ∗ (x). Η παράμετρος λ πρέπει
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να είναι μη αρνητική για να είναι το δυναμικό φραγμένο από κάτω, δηλαδή για να

υπάρχει θεμελιώδης κατάσταση. Θεωρούμε την περίπτωση λ > 0. Η λαγκρατζιανή

2.118 μπορει να γραφεί και ως:

L =
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 − 1

2
µ2
(
φ2

1 + φ2
2

)
− 1

4
λ
(
φ2

1 + φ2
2

)2
(2.119)

Το σχήμα του δυναμικού και η δομή της θεμελιώδους κατάστασης φαίνεται στο

Σχ. 2.2. Το σύνολο των θεμελιωδών καταστάσεων ταυτίζεται με τα ελάχιστα του

δυναμικού. Οπότε, παίρνοντας την παράγωγο του δυναμικού βλέπουμε ότι αν µ2 ≥ 0

τότε έχουμε μόνο μια θεμελιώδη κατάσταση την φ = 0 = φ∗ ενώ αν µ2 < 0 το

δυναμικό παρουσιάζει ελάχιστο κατά μήκος ενός κύκλου στο επίπεδο φ1 − φ2 με

ακτίνα υ, όπως φαίνεται στο Σχ. 2.2 τέτοια ώστε:

φ2
1 + φ2

2 = −µ
2

λ
= υ2

(2.120)

Δηλαδή, το σύνολο των θεμελιωδών καταστάσεων προσδιορίζεται ως |φ|2 = −µ2

2λ
> 0

Οπότε, βλέπουμε ότι αν µ2 ≥ 0 τότε υπάρχει μια και μοναδική θεμελιώδης κατάσταση

η οποία είναι αναλλοίωτη ως προς όλους τους μετασχηματισμούς βαθμίδας της L ενώ

αν µ2 < 0 τότε κάθε επιλογή θεμελιώδους κατάστασης δεν παραμένει αναλλοίωτη ως

προς τους μετασχηματισμούς βαθμίδας. ΄Αρα, έχουμε αυθόρμητα σπασμένη συμμετρία

[10].

Σχήμα 2.2: Το δυναμικό V = 1
2µ

2φ2 + 1
4λφ

4
για µ2 < 0 [10].

Για να αντιληφθούμε τι παριστάνει η λαγκρατζιανή 2.119, κάνουμε μια μετατόπιση

σε ένα από το σημεία στα οποία το δυναμικό γίνεται ελάχιστο. Χωρίς περιορισμό της
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γενικότητας επιλέγουμε το σημείο φ1 = υ, φ2 = 0 και εισάγουμε τα πεδία η και ξ από

την σχέση:

φ (x) =

√
1

2
[υ + η (x) + iξ (x)] (2.121)

Εισάγοντας έτσι την Εξ. 2.2.3 στην Εξ. 2.118 παίρνουμε ότι:

L′ = 1

2
(∂µξ)

2 +
1

2
(∂µη)2 − λυ2η +O (2.122)

όπου O σταθεροί και ανώτεροι όροι. ΄Ετσι, αν το πεδίο η έχει μάζα (ηρεμίας) mη

τότε στην λαγκρατζιανή πρέπει να εμφανίζεται ένας όρος της μορφής −1
2
m2
ηη

2
και

οποίος λέγεται όρος μάζας (mass term). Αυτό σημαίνει ότι ο τρίτος όρος της Εξ.

2.122 είναι όρος μάζας, και μας λέει ότι το πεδίο η έχει μάζα:

mη =
√

2λυ2 (2.123)

Οι όροι
1
2
(∂µξ)

2
και

1
2
(∂µη)2

παριστάνουν την κινητική ενέργεια των αντίστοιχων

πεδίων. Για το πεδίο ξ παρατηρούμε ότι έχει κινητική ενέργεια αλλά λείπει ο όρος

μάζας, δηλαδή η μάζα των κβάντων του πεδίου αυτού είναι μηδέν. Κάθε κβάντο του

πεδίου ξ οπότε είναι ένα μποζόνιο Goldstone δηλαδή ένα βαθμωτό με μηδενικής μάζας

ηρεμίας μποζόνιο. Η αναβάθμιση όμως της συμμετρίας σε τοπική, μας απαλλάσσει

από τα ανεπιθύμητα μποζόνια Goldstone.

Αυθόρμητο σπάσιμο τοπικής συμμετρίας και μηχανισμός Higgs

Κατά το αυθόρμητο σπάσιμο μιας τοπικής συμμετρίας φάσης εμφανίζονται δύο ειδών

μποζόνια με μηδενική μάζα ηρεμίας. Τα διανυσματικά μποζόνια λόγω της τοπικής

συμμετρίας φάσης, και τα βαθμωτά μποζόνια Goldstone που προκύπτουν από το αυ-

θόρμητο σπάσιμο της συμμετρίας. Σε αυτό το σημείο συμβαίνει ο μηχανισμός Higgs.

Τα βαθμωτά μποζόνια Goldstone συνδυάζονται με τα διανυσματικά μποζόνια της το-

πικής συμμετρίας με αποτέλεσμα τα τελευταία να αποκτούν μάζα, ενώ τα μποζόνια

Goldstone εξαφανίζονται. ΄Ετσι, καταφέρνουμε να δίνουμε μάζα στα διανυσματικά

μποζόνια χωρίς να καταστρέφεται η τοπική συμμετρία βαθμίδας η οποία είναι απαρα-

ίτητα για να εξασφαλίσουμε την επακανονικοποίηση της θεωρίας μας.

Θεωρούμε πάλι την λαγκρατζιανή 2.118 η οποία για µ2 < 0 παρουσιάζει αυθόρ-

μητο σπάσιμο συμμετρίας και αυτή την φορά απαιτούμε να είναι αναλλοίωτη από τον

τοπικό μετασχηματισμό φ (x) → eiθ(x)φ (x). ΄Ετσι, όπως έχουμε ήδη δει στο εδάφιο

2.1.3, αντικαθιστούμε την ∂µ με την συναλλοίωτη παράγωγο Aµ → Aµ + ∂µλ και

47



Μαρούδας Μάριος Κεφάλαιο 2. Το ΚΠ της σωματιδιακής φυσικής

άρα η Εξ. 2.118 γράφεται ως εξής:

L = (Dµφ)∗ (Dµφ)− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν
(2.124)

Στην συνέχεια, αναπτύσσουμε πάλι την λαγκρατζιανή γύρω από την θέση φ1 =

υ, φ2 = 0 εισάγοντας τα πεδία η και ξ από την Εξ. 2.121 οπότε έχουμε:

L =
1

2
(∂µξ)

2 +
1

2
(∂µη)2− λυ2η+

1

2
υ2q2AµA

µ + qυAµ∂
µξ − 1

4
FµνF

µν + ... (2.125)

Παρατηρούμε ότι στην ανωτέρω λαγκρατζιανή 2.125, εξακολουθεί να υπάρχει το

πεδίο Goldstone ξ και εμφανίζεται επίσης ο ανεπιθύμητος όρος qυAµ∂
µξ. Θα προσπα-

θήσουμε να απαλλαγούμε από τα παραπάνω ανεπιθύμητα καταφεύγοντας στο γεγονός

ότι η λαγκρατζιανή 2.125 είναι αναλλοίωτη στους τοπικούς μετασχηματισμούς βαθ-

μίδας. Εκτελούμε έναν μετασχηματισμό βαθμίδας όπου ορίζουμε σαν γωνία φάσης

θ (x) = − 1
υ
ξ (x). Οπότε, έχουμε ότι:

φ′ (x) = exp

[
−1

υ
ξ (x)

]
·
√

1

2
[υ + η (x) + iξ (x)] ≈

√
1

2
[υ + η (x)] (2.126)

και:

A′µ (x) = Aµ +
1

qυ
(∂µξ) (2.127)

Αντικαθιστώντας τις 2.126 και 2.127 στην 2.122 παίρνουμε τελικά ότι:

L′ = 1

2
(∂µη)2 − λυ2η2 +

1

2
υ2q2A′µA

′µ − 1

4
FµνF

µν + ... (2.128)

Στην Εξ. 2.128 παρατηρούμε ότι από τα τρία πεδία η, ξ και Aµ επιζούν μόνο τα δύο,

δηλαδή το η και το Aµ. ΄Ετσι, ο όρος λυ2η2
μας δίνει ένα βαθμωτό σωμάτιο με μάζα

ηρεμίας
√

2λυ2 που αντιστοιχεί στο πεδίο η. Ο όρος
1
2
υ2q2A′µA

′µ
μας δείχνει ότι

δώσαμε με δυναμικό τρόπο μάζα στο διανυσματικό μποζόνιο Aµ, η μάζα του οποίου

είναι υq. Το πεδίο ξ έχει εξαφανιστεί, πράγμα που σημαίνει ότι δεν υπάρχει πλέον

κανένα βαθμωτό μποζόνιο Goldstone. Αυτή ακριβώς είναι και η μεγάλη σπουδαιότητα

του μηχανισμού Higgs το ότι δηλαδή εξαφανίζει τα μποζόνια Goldstone και δίνει μάζα

σε διανυσματικά μποζόνια.

Τα πεδία τα οποία εκδηλώνουν αυθόρμητο σπάσιμο συμμετρίας ονομάζονται πεδία

Higgs και τα αντίστοιχα βαθμωτά μποζόνια που επιζούν, έχοντας μη μηδενική μάζα

ηρεμίας, ονομάζονται σωμάτια Higgs. Μπορούμε επίσης εύκολα να διαπιστώσουμε

ότι στο μηχανισμό Higgs διατηρούνται οι συνολικοί βαθμοί ελευθερίας καθώς ένα

διανυσματικό πεδίο με μηδενική μάζα ηρεμίας έχει 2 βαθμούς ελευθερίας, ενώ με μάζα
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διάφορη του μηδενός έχει 3. Τέλος, ένα βαθμωτό πεδίο έχει 1 βαθμό ελευθερίας.

Οπότε, βλέπουμε ότι ο βαθμός ελευθερίας του μποζονίου Goldstone απορροφάται

από το διανυσματικό πεδίο το οποίο παίρνει μάζα [10].

2.2.4 Θεωρία GSW

Η θεωρία Glashow-Salam-Weinberg (GSW theory) αποτελεί ένα μοντέλο ενοποίησης

των ηλεκτρασθενών αλληλεπιδράσεων. Σύμφωνα με τα παραπάνω, η θεωρία πεδίου

για ασθενείς αλληλεπιδράσεις θα πρέπει να είναι θεωρία Yang - Mills για SU (2) σε

ζεύξη με βαθμωτά πεδία ώστε να έχουμε αυθόρμητο σπάσιμο συμμετρίας, ενώ η θεω-

ρία πεδίου για ηλεκτρομαγνητικές αλληλεπιδράσεις θα πρέπει να είναι θεωρία Yang -

Mills για U (1). ΄Αρα, αναμένουμε μια ενοποιημένη θεωρία ηλεκτρασθενών αλληλεπι-

δράσεων να είναι μια θεωρία Yang - Mills με ομάδα μετασχηματισμού SU (2)×U (1)

σε ζεύξη με βαθμωτά πεδία με μερικό σπάσιμο συμμετρίας [11].

Οπότε, η θεωρία αυτή αφού περιέχει διανυσματικά πεδία, βαθμωτά πεδία και σπι-

νοριακά πεδία με ζεύξεις, θα περιγράφεται από την λαγκρατζιανή:

LGSW = L0 + L1 + L2 + L3 (2.129)

όπου:

L0 = −1

4

3∑
i=1

F (i)
µν (A)F µν(i) (A)− 1

4
Fµν (c)F µν (c) (2.130)

με Aiµ το SU (2) Yang-Mills πεδίο βαθμίδας και Cµ το U (1) πεδίο βαθμίδας.

L1 = −(Dµφ)† (Dµφ)− µ2φ†φ− λ
(
φ†φ
)2

(2.131)

με φ =

(
φ1

φ2

)
η διπλέτα μιγαδικών βαθμωτών πεδίων, και Dµ = ∂µ − iξTiA(i)

µ −

iξ′T4Cµ η συναλλοίωτη παράγωγος με σταθερές ζεύξης SU (2) και U (1) αντίστοιχα.

Επίσης, T1 = 1
2

(
0 1

1 0

)
, T2 = 1

2

(
0 −i
i 0

)
, T3 = 1

2

(
1 0

0 −1

)
είναι οι γεννήτο-

ρες της άλγεβρας SU (2), ενώ T4 = 1
2

(
1 0

0 1

)
είναι ο γεννήτορας της U (1) στην

αναπαράσταση που θεωρούμε με 2× 2 πίνακες.

L2 = iψ̄Lγ
µ
(
∂µ − iξTiA(i)

µ + iξ′T4Cµ
)
ψL + iψ̄Rγ

µ (∂µ + iξ′Cµ)ψR (2.132)

με ψL =

(
vL

lL

)
διπλέτα σπινόρων με αριστερόχειρο χαρακτήρα

〈
ψL = 1

2
(1− γS)ψ

〉
και ψR = lR μονέτα (singlet) σπινόρων με δεξιόχειρο χαρακτήρα

〈
ψR = 1

2
(1 + γS)ψ

〉
.
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Στην φύση l είναι οι σπίνορες των λεπτονίων l = e, µ, τ ενώ vR είναι τα αντίστοιχα

νετρίνα τους. Στην φύση δεν υπάρχουν δεξιόχειρα νετρίνα. Τέλος, έχουμε:

L3 = −ξl′′
(
ψ̄LφψR + ψ̄Rφ

†ψL
)

(2.133)

που περιγράφει την ζεύξη των σπινόρων με τα βαθμωτά πεδία (όροι ζεύξης Yukawa)

και ξl
′′
είναι η αντίστοιχη σταθερά ζεύξης.

Μετασχηματισμός βαθμίδας

Η λαγκτραζιανή 2.129 παραμένει αναλλοίωτη ως προς τους (τοπικούς) μετασχηματι-

σμούς βαθμίδας:

1. Ως προς την U (1):

Cµ (x)→ Cµ (x) +
1

ξ′
∂µθ4 (x)

φ (x)→ e
i
2
θ4(x)φ (x)

ψR (x)→ e−iθ4(x)ψR (x)

ψL (x)→ e−
i
2
θ4(x)ψL (x)

(2.134)

όπου θ4 (x) είναι η αντίστοιχη παράμετρος των U (1) μετασχηματισμών βαθμίδας

2. Ως προς την SU (2):

ASU(2)
µ (x)→ g−1 (x)ASU(2)

µ (x) g (x) +
i

ξ
g−1 (x) ∂µg (x)

φ (x)→ g−1 (x)φ (x)

ψR (x)→ ψR (x)

ψL (x)→ g−1 (x)ψL (x)

(2.135)

όπου g (x) = e−iθ1(x)T1−iθ2(x)T2−iθ3(x)T3 είναι στοιχείο της SU (2) ομάδας βαθ-

μίδας που έχει για γεννήτορες τους πίνακες Pauli T1, T2, T3 με αντίστοιχες

παραμέτρους θ1 (x), θ2 (x), θ3 (x).

Γωνία Weinberg

Ορίζουμε την γωνία Weinberg, θw, συναρτήσει των σταθερών ζεύξης ξ και ξ′ ως:

tan θw =
ξ′

ξ
(2.136)

οπότε
ξ√

ξ2+ξ′2
= cos θw και

ξ′√
ξ2+ξ′2

= sin θw
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Αυθόρμητο σπάσιμο συμμετρίας

΄Οταν οι παράμετροι του δυναμικού του βαθμωτού πεδίου είναι λ > 0 και µ2 < 0

έχουμε αυθόρμητο σπάσιμο της συμμετρίας βαθμίδας στη θεωρία GSW, και έτσι

SU (2) × U (1) → U(1)EM . Αφού το σπάσιμο της συμμετρίας γίνεται με διπλέτα

μιγαδικών πεδίων, ο χώρος των θεμελιωδών καταστάσεων είναι εκφυλισμένος σε μια

3-διάστατη σφαίρα που περιγράφεται από την εξίσωση φ†φ = −µ2

2λ
> 0 ή |φ1|2+|φ2|2 =

−µ2

2λ
. Θέτοντας φ1 = ϕ1 + iϕ3, φ2 = ϕ2 + iϕ3 όπου φ1, φ2, φ3 είναι πραγματικά

βαθμωτά πεδία έχουμε την 3-διάστατη σφαίρα των θεμελιωδών καταστάσεων:

ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4 = −µ
2

2λ
(2.137)

Για να εφαρμόσουμε τον μηχανισμό Higgs και να δούμε πως 3 από τα 4 διανυσματικά

πεδία της θεωρίας GSW παίρνουν μάζες επιλέγουμε την θεμελιώδη κατάσταση ως:

φ =

(
φ1

φ2

)
=

(
0

a+ χ (x)

)
(2.138)

όπου a =
√
−µ2

2λ
και χ (x) ένα πραγματικό βαθμωτό. Αφού:

Dµ = ∂µ − iξTiAiµ − iξ′T4Cµ (2.139)

εφαρμόζοντας στην Εξ. 2.131, και ξεχωρίζοντας τους όρους μαζών που εμφανίζονται

μετά από το αυθόρμητο σπάσιμο της συμμετρίας προκύπτει ότι:

− 1

4
ξ2a2A1

µA
µ1 − 1

4
ξ2a2A2

µA
µ2−

− 1

4

(
ξ2 + ξ′

2
)
a2 1√

ξ2 + ξ′2

(
−ξA3

µ + ξ′Cµ
) 1√

ξ2 + ξ′2

(
−ξAµ3 + ξ′cµ

)
+

+O · A(EM)
µ Aµ(EM)

(2.140)

ενώ για το πραγματικό βαθμωτό έχουμε ότι:

− (∂µχ) (∂µχ) + 2µ2χ2
(2.141)

΄Αρα, από την L0 + L1 (βλέπε Εξ. 2.130 και 2.131) προκύπτει από τον μηχανισμό

Higgs ότι έχουμε τα εξής πεδία:

• A(EM)
µ με μηδενική μάζα.

• W (±)
µ ή A

(1)
µ και A

(2)
µ με m2

W
(±)
µ

∼ −ξ2 µ2

2λ
.
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• Z(0)
µ με m2

Z
(0)
µ

∼ −
(
ξ2 + ξ′2

)
µ2

2λ
.

• χ με μάζα m2
χ ∼ 2µ2

.

΄Εχοντας ορίσει τους γραμμικούς συνδυασμούς των πεδίων βαθμίδας:

W (±)
µ (x) = A(1)

µ (x)± iA(2)
µ (x)

Z(0)
µ (x) =

1√
ξ2 + ξ′2

[
ξA(3)

µ (x)− ξ′Cµ (x)
]

A(EM)
µ (x) =

1√
ξ2 + ξ′2

[
ξ′A(3)

µ (x) + ξCµ (x)
] (2.142)

΄Αρα, με βάση την Εξ. 2.136 έχουμε ότι:

m
W

(±)
µ

= m
Z

(0)
µ

cos θw (2.143)

Δηλαδή, τα δύο διανυσματικά πεδία W
(±)
µ έχουν ίδιες μάζες, ενώ το διανυσματικό

Z
(0)
µ έχει διαφορετική. Οι συγκεκριμένες τιμές όπως θα δούμε μετρήθηκαν από τα

πειράματα στο CERN, όπως και η συγκεκριμένη τιμή της γωνίας Weinberg. Το

A
(EM)
µ έχει μηδενική μάζα και ταυτίζεται με το 4-διάνυσμα δυναμικού του ηλεκτρομα-

γνητικού πεδίου. Τέλος, το πεδίο Higgs, όπως θα δούμε στην συνέχεια, στο εδάφιο

2.3.4 βρέθηκε και αυτό το 2012 από το CERN.

Μάζες λεπτονίων

Στην αρχική διατύπωση της λαγκρατζιανής των GSW, τα σπινοριακά πεδία έχουν

μηδενική μάζα όπως φαίνεται στην L3 της Εξ. 2.133. ΄Ομως, με το αυθόρμητο

σπάσιμο της συμμετρίας οι όροι ζεύξης Yukawa δίνουν μάζες στα λεπτόνια της θεω-

ρίας. Εκτελώντας παρόμοιους υπολογισμούς με προηγουμένως και επιλέγοντας πάλι

την θεμελιώδη κατάσταση 2.138, προκύπτει ότι οι όροι Yukawa μετά το αυθόρμητο

σπάσιμο της συμμετρίας δίνουν όρους της μορφής:

− ξl′′a
(
l̄LlR + l̄RlL

)
+O = −ξl′′a

(
l̄l
)

+O (2.144)

όπου O όροι ζεύξεων του χ με l. Οπότε, τα λεπτόνια (l = e, µ, τ) παίρνουν μάζα:

ml = ξl
′′a (2.145)

ενώ τα αντίστοιχα νετρίνα παραμένουν με μηδενική μάζα αφού δεν γεννιούνται όροι

μαζών για αυτά.
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Ζεύξεις των A
(EM)
µ και Z

(0)
µ με τα λεπτόνια - Ουδέτερα ρεύματα

Αν μελετήσουμε την επιμέρους λαγκρατζιανή 2.132, μπορούμε να προσδιορίσουμε

τις ζεύξεις των λεπτονίων με τα διανυσματικά πεδία Z
(0)
µ και A

(EM)
µ . ΄Ετσι, εύκολα

προκύπτει ότι:

ψ̄Lγ
µ
(
ξT3A

(3)
µ − ξ′T4Cµ

)
ψL − ψ̄Rγµ (ξ′Cµ)ψR =

=− ξξ′√
ξ2 + ξ′2

l̄Lγ
µA(EM)

µ lL −
ξξ′√
ξ2 + ξ′2

l̄Rγ
µA(EM)

µ lR

+
ξ′2√
ξ2 + ξ′2

l̄Rγ
µZ(0)

µ lR +
1

2

ξ′2 − ξ2√
ξ2 + ξ′2

l̄Lγ
µZ(0)

µ lL

+
1

2

√
ξ2 + ξ′2v̄lγ

µZ(0)
µ vl

(2.146)

Από το αποτέλεσμα αυτό, παρατηρούμε ότι η θεωρία GSW προτείνει τα εξής:

1. Η ζεύξη του ηλεκτρομαγνητικού πεδίου A
(EM)
µ με σπίνορες είναι ίδια για σπίνο-

ρες με αριστερόχειρο (lL) ή δεξιόχειρο (lR) χαρακτήρα. Στην περίπτωση αυτή,

η σταθερά ζεύξης
ξξ′√
ξ2+ξ′2

θα πρέπει να ταυτίζεται με τη σταθερά ζεύξης του

ηλεκτρομαγνητικού πεδίου που είναι e, οπότε καταλήγουμε στον τύπο:

ξξ′√
ξ2 + ξ′2

= ξ sin θW = e (2.147)

2. Επίσης, το A
(EM)
µ έχει ζεύξη μόνο με τα λεπτόνια l και όχι με τα νετρίνα vl.

Αυτά τα αποτελέσματα είναι σύμφωνα με τα πειραματικά δεδομένα.

3. Το διανυσματικό Z
(0)
µ έχει ζεύξεις και με τα λεπτόνια l και με τα νετρίνα vl,

αφού εμφανίζονται όροι της μορφής l̄lγ
µZ

(0)
µ ll και v̄lγ

µZ
(0)
µ vl. Η ύπαρξη της

ζεύξης v̄lγ
µZ

(0)
µ vl είναι μια από τις χαρακτηριστικές προβλέψεις της θεωρίας

και ορίζει τις λεγόμενες αλληλεπιδράσεις ουδέτερου ρεύματος (neutral current

interactions).

2.2.5 Διακριτές και εσωτερικές συμμετρίες

Διακρίνουμε δύο ειδών συμμετρίες, τις εξωτερικές και τις εσωτερικές συμμετρίες. Οι

πρώτες είναι “συμμετρίες του χωρόχρονου”, ενώ οι δεύτερες αφορούν σε “εσωτερικές

παραμέτρους” των σωματιδιακών κυματοσυναρτήσεων όπως για παράδειγμα η φάση

μιας κυματοσυνάρτησης.
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Επίσης, έχουμε τις συνεχείς και τις διακριτές συμμετρίες. Οι συνεχείς συνδέονται

με μετασχηματισμού που παραμετροποιούνται με πραγματικούς αριθμούς, όπως μια

φάση, ενώ στις διακριτές συμμετρίες η παραμετροποίηση γίνεται με ακέραιους αριθ-

μούς. Στην περίπτωση των συνεχών συμμετριών οι αντίστοιχες ομάδες συμμετρίες

είναι συνεχείς ομάδες Lie και οδηγούν σε προσθετικούς κβαντικούς αριθμούς, όπως

το “ηλεκτρικό φορτίο” ή ο “βαρυονικός” και “λεπτονικός αριθμός”. Αντίθετα στις

διακριτές συμμετρίες αντιστοιχούν πεπερασμένες ομάδες, και οδηγούν έτσι σε πολλα-

πλασιαστικούς κβαντικούς αριθμούς, όπως για παράδειγμα η “ομοτιμία P” κατά την

αναστροφή του χώρου και η “συζυγία φορτίου C” κατά την εναλλαγή σωματιδίου-

αντι-σωματιδίου.

Τέλος, έχουμε τις ακριβείς συμμετρίες που οδηγούν σε ακριβώς διατηρήσιμες

ποσότητες ή κβαντικούς αριθμούς και τις προσεγγιστικές συμμετρίες που οδηγούν

μόνο σε “κατά προσέγγιση” νόμους διατήρησης.

Στον Πίνακα 2.1 βλέπουμε συγκεντρωτικά τους νόμους διατήρησης της σωματι-

διακής φυσικής.

Φυσική Ποσότητα Μετασχηματισμός Ακριβής Συμ. Αλληλεπιδράσεις

Ισχυρές Η/Μ Ασθενείς

Ενέργεια Μετατόπιση στο χρόνο ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ

Ορμή Μετατόπιση στο χώρο ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ

Στροφορμή Περιστροφή στο χώρο ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ

Ηλεκτρικό φορτίο U(1)EM μετ. βαθμίδας ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ

Βαρυονικός αριθμός B U(1)B εκτεταμένος μετ. ΝΑΙ ΝΑΙ ΝΑΙ

Λεπτονικός αριθμός L U(1)L εκτεταμένος μετ. ΝΑΙ ΝΑΙ ΝΑΙ

Ομοτιμία π Αναστροφή χώρου P : r → −r ΝΑΙ ΝΑΙ ΟΧΙ

Ομοτιμία φορτίου λC
Συζυγία φορτίου C:

σωματίδιο↔αντι-σωματίδιο ΝΑΙ ΝΑΙ ΟΧΙ

Αναστροφή χρόνου T : t→ −t ΝΑΙ ΝΑΙ ΟΧΙ

πλC
CP :

Συνδυασμένη δράση C και P ΝΑΙ ΝΑΙ ΟΧΙ

CPT :

Συνδυασμένη δράση C P και T ΝΑΙ ΝΑΙ ΝΑΙ ΝΑΙ

Ασθενές ισοτοπικό σπιν SU(2)L ΟΧΙ ΟΧΙ ΟΧΙ

Κβαντικός αριθμός γεύσης ΝΑΙ ΝΑΙ ΟΧΙ

Πίνακας 2.1: Νόμοι διατήρησης της φυσικής, και ισχύς στις διάφορες αλληλεπιδράσεις.
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Διακριτές συμμετρίες C, P και T

Ο μετασχηματισμός της συζυγίας φορτίου C χαρακτηρίζεται από το γεγονός ότι ένα

σωματίδιο αντικαθίσταται από το αντι-σωματίδιο του, που έχει αντίθετους όλους τους

προσθετικούς κβαντικούς αριθμούς (ηλεκτρικό φορτίο, βαρυονικός και λεπτονικός α-

ριθμός, παραδοξότητα κλπ). Το σπιν και η κατάσταση κίνησης δεν μεταβάλλονται.

Οι ισχυρές αλληλεπιδράσεις παραβιάζουν την συμμετρία C σε ποσοστό � 1%. Ο-

πότε, όλες οι ενδείξεις μέχρι σήμερα δείχνουν ότι οι ισχυρές και οι ηλεκτρομαγνη-

τικές αλληλεπιδράσεις σέβονται την συμμετρία C, σε αντίθεση όμως με τις ασθενείς

αλληλεπιδράσεις. Αυτό οφείλεται στο γεγονός ότι στη β-ακτινοβολία προτιμώνται

αριστερόστροφα ηλεκτρόνια και δεξιόστροφα ποζιτρόνια.

Ο μετασχηματισμός αναστροφής τους χώρου P χαρακτηρίζεται από το γεγονός

ότι θεωρούμε την ανάκλαση μιας φυσικής κατάστασης ως προς την αρχή των συντε-

ταγμένων. Δεχόμαστε ότι αυτός ο μετασχηματισμός δεν επηρεάζει τις “εσωτερικές”

ιδιότητες του σωματιδίου όπως ηλεκτρικό φορτίο, βαρυονικό, λεπτονικό αριθμό κλπ

που δεν συνδέονται άμεσα με τον φυσικό χωρόχρονο. Επίσης, η κατάσταση του σπιν

παραμένει αναλλοίωτη κάτω από τον μετασχηματισμό P ενώ αντίθετα η ορμή αλλάζει

σημείο. Πειραματικά έχει δειχθεί ότι οι ισχυρές και οι ηλεκτρομαγνητικές αλληλεπι-

δράσεις διατηρούν την ομοτιμία σε αντίθεση με τις ασθενείς αλληλεπιδράσεις.

Ο μετασχηματισμός της αναστροφής του χρόνου T εναλλάσσει τις χρονικές συ-

ντεταγμένες t και −t. ΄Ετσι, αντιστρέφει για παράδειγμα, την κατεύθυνση των ορμών.

Οπότε, οι ισχυρές και οι ηλεκτρομαγνητικές αλληλεπιδράσεις παραμένουν αναλ-

λοίωτες κάτων από τους μετασχηματισμούς C, P και T , όμως οι ασθενείς αλλη-

λεπιδράσεις παραβιάζουν και τις 3 αυτές συμμετρίες. Ωστόσο, παρά το γεγονός ότι

μπορεί να παραβιάζονται οι συμμετρίες αυτές μεμονωμένα σε μια σχετικιστική θεωρία,

το γινόμενο Θ = CPT θα πρέπει πάντα να είναι ένας μετασχηματισμός συμμετρίες.

΄Ετσι, το θεώρημα CPT ισχύει για κάθε (τοπική) ΚΘΠ που είναι αναλλοίωτη κάτω

από γνήσιους (χωρίς χωρική αναστροφή) μετασχηματισμούς Lorentz. Η συμμετρία

CPT εγγυάται ότι ένα σωματίδιο και το αντι-σωματίδιο του έχουν ίσες μάζες, ίσους

χρόνους ζωής, ίδιο σπιν, αλλά αντίθετους τους προσθετικούς κβαντικούς αριθμούς.

΄Οπως θα δούμε στην συνέχεια, στο εδάφιο 2.4.2, η συνδυασμένη συμμετρία CP

θα ίσχυε για 2 οικογένειες φερμιονίων και ένα πεδίο Higgs αλλά για τρεις οικο-

γένειες φερμιονίων ο πίνακας CKM (βλέπε Εξ. 2.205) δεν είναι πραγματικός, και

έτσι έχουμε παραβίαση της συμμετρίας CP . Η παραβίασή της CP από τις ασθενείς

αλληλεπιδράσεις αποδείχθηκε πειραματικά το 1964 από τους James W. Cronin και
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Val L. Fitch [12]. Τέλος, η Κβαντική Χρωμοδυναμική (Quantum Chromodynamics

- QCD), η οποία αποτελεί την επικρατέστερη θεωρία περιγραφής των ισχυρών αλλη-

λεπιδράσεων μεταξύ των κουάρκ και των γκλουονίων, δε φαίνεται να την παραβιάζει,

κάτι που αντιτίθεται στη θεωρητική πρόβλεψη, όπως θα δούμε στην συνέχεια στο

εδάφιο 2.4.2, γεγονός που αποτελεί ένα από τα βασικά προβλήματα του ΚΠ.

Εσωτερικές συμμετρίες

Για την περιγραφή του ΚΠ, όπως έχουμε ήδη δει, χρειαζόμαστε τρεις εσωτερικές

συμμετρίες με τις αντίστοιχες θεωρίες βαθμίδας. Καταρχάς, όλα τα στοιχειώδη σω-

μάτια φαίνεται να έχουν μια U (1) συμμετρία. Επειδή θέλουμε η συμμετρία αυτή να

είναι μια τοπική U (1) συμμετρία βαθμίδας, θα έχουμε ένα αντίστοιχο πεδίο βαθμίδας

Aµ.

Επίσης, όλα τα στοιχειώδη σωμάτια φαίνεται να έχουν μια δεύτερη εσωτερική συμ-

μετρία κάτω από ένα σύνολο τοπικών μετασχηματισμών βαθμίδας που σχηματίζουν

την ομάδα SU (2). Αυτή η συμμετρία είναι γνωστή σαν ηλεκτρασθενής συμμετρία,

και μας υποδεικνύει την ύπαρξη ενός πεδίου βαθμίδας για κάθε έναν από τους τρεις

γεννήτορες της ομάδας SU (2) τους οποίους ονομάζουμε W+
µ , W−

µ και Z0
. Η συμ-

μετρία αυτή χρησιμοποιήθηκε αρχικά για την περιγραφή του ισχυρού ισοτοπικού σπιν

το οποίο εισήχθη λόγω της ανάγκης να αντιστοιχίσουμε έναν “εσωτερικό” βαθμό

ελευθερίας στις δυο καταστάσεις του πρωτονίου και του νετρονίου που οι ισχυρές

πυρηνικές αλληλεπιδράσεις δεν μπορούσαν να διακρίνουν. Σήμερα όμως, χρησιμο-

ποιούμε την συμμετρία αυτή με την έννοια του ασθενούς ισοτοπικού σπιν. ΄Ετσι, οι

δεξιόστροφες συνιστώσες ψR = 1+γ5

2
ψ των λεπτονίων και των κουάρκ σχηματίζουν

αναπαραστάσεις με I = 0:

e−R, uR, dR,

µ−R, cR, sR,

τ−R , tR, bR,

(2.148)

ενώ οι αριστερόστροφες συνιστώσες ψL = 1−γ5

2
ψ σχηματίζουν αναπαραστάσεις με

I = 1/2:

L =

(
νe

e−

)
L

,

(
νµ

µ−

)
L

,

(
ντ

τ−

)
L

Q =

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

(2.149)
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Τα πεδία βαθμίδας που συνδέονται με τους SU (2) τοπικούς μετασχηματισμούς βαθ-

μίδας, σχηματίζουν μια I = 1 αναπαράσταση:

Wµ =


W 1
µ

W 2
µ

W 3
µ

 (2.150)

και οι ηλεκτρικά φορτισμένες καταστάσεις είναι:

W±
µ =

W 1
µ ∓ iW 2

µ√
2

W 0
µ = W 3

µ

(2.151)

Τέλος, όλα τα στοιχειώδη σωμάτια φαίνεται να έχουν μια τρίτη εσωτερική συμ-

μετρία κάτω από ένα σύνολο τοπικών μετασχηματισμών βαθμίδας που σχηματίζουν

την ομάδα SU (3), η οποία είναι γνωστή σαν συμμετρία χρώματος και έχει σχέση με

τις ισχυρές αλληλεπιδράσεις. Σε αυτή την περίπτωση έχουμε οκτώ πεδία βαθμίδας

Gµa , a = 1, 2, ..., 8 ένα για κάθε έναν από τους οκτώ γεννήτορες της ομάδας SU (3).

Τα μποζόνια αυτά ονομάζονται συγκολλητές (gluons) και το “χρώμα” είναι ο εσω-

τερικός κβαντικός αριθμός που μεταφέρει κάθε σωματίδιο και καθορίζει πως αυτό

αλληλεπιδρά με τους συγκολλητές. Οι κανόνες που ισχύουν είναι οι εξής:

• Τα λεπτόνια δεν φέρουν χρώμα.

• Για τα κουάρκ υπάρχουν τρία χρώματα, και έτσι τα κουάρκ σχηματίζουν τη

βασική αναπαράσταση ως προς το SU (3):

uR = (u1, u2, u3)R, dR = (d1, d2, d3)R, ...

Q =

(
u

d

)
L

=

(
u1 u2 u3

d1 d2 d3

)
L

, ...
(2.152)

• Τα συνηθισμένα σωματίδια, όπως πρωτόνιο, νετρόνιο, π μεσόνιο κλπ γίνονται

από συνδυασμούς κουάρκ όπως qqq ή qq̄. Κάθε ένα από τα κουάρκ μεταφέρει

κάποιο χρώμα αλλά τα χρώματα συνδυάζονται κατά τέτοιο τρόπο, έτσι ώστε τα

τελικά συνηθισμένα σωματίδια να μην έχουν χρώμα.

Ακόμα, μπορούμε να δούμε ότι ισχύει η σχέση:

Q = T3 +
Y

2
(2.153)
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ανάμεσα στο ηλεκτρικό φορτίο Q σε μονάδες e, την τρίτη συνιστώσα του ασθενούς

ισοτοπικού σπιν και το υπερφορτίο ενός σωματιδίου. Στον Πίνακα 2.2 μπορούμε να

δούμε τους αντίστοιχους κβαντικούς αριθμούς για την πρώτη οικογένεια των στοι-

χειωδών σωματιδίων σύμφωνα με το όσα έχουμε περιγράψει ανωτέρω.

Σωματίδιο T T3 Y Q = T3 + Y
2

L =

(
v

e

)
L

1/2

(
1/2

−1/2

)
−1

(
0

−1

)
eR 0 0 −2 −1

Q =

(
u

d

)
L

1/2

(
1/2

−1/2

)
13

(
2/3

−1/3

)
uR 0 0 4/3 2/3

dR 0 0 −2/3 −1/3

Πίνακας 2.2: Ασθενές ισοτοπικό σπιν, υπερφορτίο και ηλεκτρικό φορτίο για την πρώτη οικο-

γένεια στοιχειωδών σωματιδίων του ΚΠ [7].

Τέλος, πρέπει να αναφέρουμε ότι όλο το μαζικό περιεχόμενο του ΚΠ αποτελείται

από κουάρκ και λεπτόνια (βλέπε Σχ. 2.3). Συνολικά έχουμε 15 φερμιόνια Weyl στην

5 αναπαράσταση της ομάδας βαθμίδας με τους εξής κβαντικούς αριθμούς:

Q =

(
u1 u2 u3

d1 d2 d3

)
∼
(

3, 2,
1

6

)
uc =

(
uc1 uc2 uc3

)
∼
(

3̄, 1,−2

3

)
dc =

(
dc1 dc2 dc3

)
∼
(

3̄, 1,
1

3

)
L =

(
ν

e−

)
∼
(

1, 2,−1

2

)
ec ∼ (1, 1, 1)

vc ∼ (1, 1, 0)

(2.154)

όπου η πρώτη στήλη είναι αναπαράσταση κάτω από την SU (3), με 3, 3̄ και 1 αναπα-

ριστούν την θεμελιώδη, την αντι-θεμελιώδη και την μονέτα αντίστοιχα. Η δεύτερη

στήλη είναι αναπαράσταση κάτω από την SU (2), όπου το 2 αντιπροσωπεύει την θεμε-

λιώδη και το 1 την μονέτα. Τέλος, η τρίτη στήλη είναι το υπερφορτίο Y , ο γεννήτορας
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της U (1) που συνδέεται με το ηλεκτρικό φορτίο με την σχέση 2.153, όπου T3 είναι

γεννήτορας Cartan της SU (2). Συνήθως, δουλεύουμε μόνο με τα αριστερόστροφα

φερμιόνια, οπότε ο συνήθης συμβολισμός είναι Q και L που είναι τα αριστερόστροφα

φερμιόνια Weyl και u ≡
(
3, 1, 2

3

)
, d ≡

(
3, 1,−1

3

)
και e ≡ (1, 1,−1) που είναι τα

δεξιόστροφα φερμιόνια Weyl.

Σχήμα 2.3: Το στοιχειώδη σωματίδια του ΚΠ της σωματιδιακής φυσικής.

2.2.6 Διαγράμματα Feynman

Τα διαγράμματα Feynman είναι ένας απλός τρόπος παράστασης αντιδράσεων όπου

οι τροχιές των σωματιδίων περιγράφονται με γραμμές που έχουν φορά στο χώρο και

το χρόνο, ενώ οι αλληλεπιδράσεις με κόμβους, δηλαδή τομές μεταξύ των χωροχρο-

νικών γραμμών. Τα διαγράμματα αυτά χρησιμεύουν στην διευκόλυνση υπολογισμού

ορισμένων μεγεθών όπως το πλάτος πιθανότητας μιας αντίδρασης αλλά και του υπο-

λογισμού της ενεργού διατομής της. Για την ακρίβεια τα διαγράμματα Feynman είναι

μία δισδιάστατη χωροχρονική απεικόνιση των πλατών μετάβασης, όπως αυτά διαμορ-

φώνονται υπό την επίδραση ενός πεδίου χρησιμοποιώντας την θεωρία διαταραχών για

ορισμένη τάξη διόρθωσης.
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Οι κανόνες Feynman (διαδότες - κορυφές) καθορίζονται από την εκάστοτε μορφή

της λαγκρατζιανής. Στην πράξη οι διαδότες είναι το αντίστροφο του τελεστή που

εμφανίζεται στους όρους που είναι τετραγωνικοί ως προς τα πεδία, ενώ οι κορυφές

είναι ο συντελεστής των όρων αλληλεπίδρασης των πεδίων πολλαπλασιασμένος επί

i. ΄Ετσι, για μια ορισμένη φυσική διαδικασία αφού σχεδιάσουμε όλα τα συμβιβαστά

με τις αλληλεπιδράσεις της θεωρίας μας διαγράμματα που είναι τοπολογικά διαφορε-

τικά μεταξύ τους, ακολουθούμε τους κανόνες που θα δούμε στην συνέχεια για τον

υπολογισμό των αντίστοιχων αναλλοίωτων πλατών μετάβασης.

Γενικές ιδιότητες

Στην ουσία τα διαγράμματα Feynman είναι διαγράμματα παράστασης της διαδικα-

σίας αλληλεπίδρασης, όπου ο χρόνος εξελίσσεται οριζόντια και ο χώρος κατακόρυφα.

Επίσης, τα βέλη δείχνουν τη φορά κίνησης των σωματίων που πλησιάζουν ή απομα-

κρύνονται από τις κορυφές. Τέλος, εισερχόμενα σωμάτια ισοδυναμούν με εξερχόμενα

αντι-σωμάτια.

Σε κάθε κορυφή διαγραμμάτων Feynman διατηρούνται οι εξής κβαντικοί αριθμοί:

• Τετραορμή.

• Φορτίο.

• Βαρυονικός αριθμός.

• Λεπτονικός αριθμός.

Επίσης, η γεύση του κουάρκ διατηρείται στις παρακάτω αλληλεπιδράσεις:

• Ισχυρές.

• Ηλεκτρομαγνητικές.

• Ασθενείς μόνο όταν X = Z0
.

Κανόνες

Για τα εξωτερικά σωματίδια έχουμε τους εξής συμβολισμούς για τις διάφορες περι-

πτώσεις:

• Εξερχόμενο φερμιόνιο: ῡ(s) (p)

• Εξερχόμενο αντι-φερμιόνιο: υ(s) (p)

60



2.2. Καθιερωμένο πρότυπο Μαρούδας Μάριος

• Εισερχόμενο φερμιόνιο: υ(s) (p)

• Εισερχόμενο αντι-φερμιόνιο: ῡ(s) (p)

• Εισερχόμενο φωτόνιο: εµ (γ)

• Εξερχόμενο φωτόνιο: ε∗µ (γ)

Για τους διάφορους διαδότες έχουμε επίσης τα εξής:

• Λεπτόνια και κουάρκ:

= i
p−m+iε

= i(p+m)
p2−m2+iε

• Μαζικά ανυσματικά πεδία W±, Z0
:

=
i(−gµν+

pµpν

m2 )
p2−m2+iε

• Φωτόνιο:

=
i
(
−gµν+

pµpν

p2+iε

)
p2+iε

= iηµν
p2+iε

• Συγκολητές:

=
i
(
−gµν+

pµpν

p2+iε

)
p2+iε

δab

• Μποζόνιο Higgs:

= i
p2−m2+iε

Τέλος, για τις κορυφές ισχύουν οι εξής κανόνες:

1. Ηλεκτρασθενείς αλληλεπιδράσεις:

(αʹ) Αλληλεπιδράσεις φερμιονίων - μποζονίων:

ieQfγ
µ

ie
sin θW cos θW

[
T3fγ

µ (1−γ5)
2

]
−Qfsin

2θWγ
µ
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ie
sin θW

√
2
γµ (1−γ5)

2

ie
sin θW

√
2
Vijγ

µ (1−γ5)
2

ie
sin θW

√
2
V ∗ijγ

µ (1−γ5)
2

−imf
υ

(βʹ) Αλληλεπιδράσεις τριών ανυσματικών μποζονίων:

−ie
[
gµν(p1 − p2)λ + gνλ(p2 − p3)µ + gλµ(p3 − p1)ν

]

−ie cos θWsin θW

[
gµν(p1 − p2)λ + gνλ(p2 − p3)µ + gλµ(p3 − p1)ν

]

(γʹ) Αλληλεπιδράσεις τεσσάρων ανυσματικών μποζονίων:

−ie2 (2gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

−ie2 cos θW
sin θW

(2gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)
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−ie2 cos2θW
sin2θW

(2gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ie2 1
sin2θW

(2gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

(δʹ) Αλληλεπιδράσεις με μποζόνια Higgs :

igµν
2M2

W

υ

igµν
2M2

Z

υ

igµν
2M2

W

υ2

igµν
2M2

Z

υ2

−3i
M2
H

υ
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−3i
M2
H

υ2

2. Ισχυρές αλληλεπιδράσεις:

• Αλληλεπίδραση κουάρκ - συγκολητών:

ig3
λa

2
γµ

• Αλληλεπίδραση τριών συγκολητών:

g3fa1a2a3

[
gµν(p1 − p2)λ + gνλ(p2 − p3)µ + gλµ(p3 − p1)ν

]
• Αλληλεπίδραση τεσσάρων συγκολητών:

ig2
3 [fa1a2bfa3a4b (gµ1µ4gµ2µ3 − gµ1µ3gµ2µ4) + c.r] όπου

c.r κυκλική εναλλαγή

Με βάση τους ανωτέρω κανόνες μπορεί κανείς να υπολογίσει στο ΚΠ όλα τα

διαγράμματα δένδρου, δηλαδή διαγράμματα χωρίς κλειστούς βρόγχους. Για διαγράμ-

ματα με βρόγχους πρέπει να συμπεριληφθούν κανόνες Feynman και “μη φυσικά”

πεδία ακόμη και στη μοναδιαία βαθμίδα.

2.2.7 Ομαλοποίηση - Επακανονικοποίηση

΄Ενα βασικό πρόβλημα που μπορούμε να δούμε ότι δημιουργείται, είναι ότι η ενέργεια

των εικονικών σωματιδίων που δημιουργούνται μπορεί να πάρει οποιαδήποτε τιμή

και φαινομενικά παρατηρείται ότι τα σωμάτια αυτά δεν σέβονται την ΑΔΕ. Αυτό

όμως οφείλεται στην αρχή της αβεβαιότητας του Heisenberg: ∆E · ∆t = ~, όπου

για ∆t → 0 έχουμε ∆E → ∞. Οπότε, τα εικονικά σωματίδια μπορούν να έχουν

οποιαδήποτε ενέργεια ανεξάρτητα από την ενέργεια του διαδότη.
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Για την λύση του προβλήματος των απειρισμών, ακολουθούμε αρχικά την μέθο-

δο της ομαλοποίησης η οποία “απομονώνει” τους απειρισμούς των ολοκληρωμάτων

Feynman όπως υπολογίζονται για παράδειγμα από την Εξ. 2.93, και στην συνέχεια

την μέθοδο της επακανονικοποίησης η οποία “ακυρώνει” στην ουσία τους όρους που

προκαλούν τους απειρισμούς προσθέτοντας νέους κατάλληλους άπειρους όρους. ΄Ε-

τσι, προκύπτει ότι η Κβαντική Ηλεκτροδυναμική (Quantum Electrodynamics - QED)

όπως και η QCD είναι μια επακανονικοποιήσιμη θεωρία, η οποία μπορεί να δώσει α-

ποτελέσματα για φυσικά μεγέθη που δεν έχουν άπειρη τιμή και έτσι έχουν νόημα.

΄Ενα βασικό πρόβλημα που θα δούμε μετά είναι ότι μια ΚΘΠ που συμπεριλαμβάνει

και την βαρυτική αλληλεπίδραση εισάγοντας την με τον ίδιο τρόπο που γίνεται με τις

ηλεκτρασθενείς αλληλεπιδράσεις, δεν επιδέχεται επακανονικοποίηση.

Ο καλύτερος τρόπος για να ομαλοποιήσουμε ένα ολοκλήρωμα είναι η μέθοδος της

διαστατικής ομαλοποίησης (dimensional regularization). Η μέθοδος αυτή βασίζεται

στο γεγονός ότι η ύπαρξη απειρίας σε ένα ολοκλήρωμα εξαρτάται άμεσα από το

βαθμό του διαφορικού, και επομένως τον αριθμό των διαστάσεων του χωρόχρονου

n. Η βασική ιδέα είναι να υπολογίσουμε το ολοκλήρωμα στην περιοχή του αριθμού

των διαστάσεων του χωροχρόνου όπου αυτό είναι πεπερασμένο, και στη συνέχεια

κάνοντας αναλυτική επέκταση του αποτελέσματος να πάρουμε μια γενική έκφραση

που θα είναι συνάρτηση του n. Οι απειρίες θα εμφανιστούν έτσι με τη μορφή πόλων

και θα διαχωριστούν από το υπόλοιπο πεπερασμένο μέρος του ολοκληρώματος.

Επακανονικοποίηση της θεωρίας φ4

Σε αυτή την θεωρία χρειάζεται να θεωρήσουμε μόνο τρία πιθανά διαγράμματα τα

οποία βλέπουμε στο Σχ. 2.4. ΄Αρα, έχουμε τεσσάρων ειδών απειρισμούς κάθε ένας

από τους οποίους πρέπει να απορροφηθεί σε κάποια παράμετρο στην λαγκρατζιανή.

΄Ετσι, στο συγκεκριμένο παράδειγμα, τα ολοκληρώματα Feynman αντιμετωπίζονται

σαν ολοκληρώματα στον d-διάστατο χώρο των ορμών και στην συνέχεια παίρνουμε

το όριο του d στο 4. Η λαγκρατζιανή της θεωρίας αυτής στον τετραδιάστατο χώρο

έχει την μορφή [14]:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4

(2.155)

Ενώ στον d-διάστατο χώρο έχει την μορφή:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − µ4−dg

4!
φ4

(2.156)

όπου µ παράμετρος μάζας.

65



Μαρούδας Μάριος Κεφάλαιο 2. Το ΚΠ της σωματιδιακής φυσικής

Σχήμα 2.4: Τα 3 πιθανά διαγράμματα που μπορούμε να έχουμε και τα οποία ικανοποιούν την

σχέση D = 4−N ≥ 0⇒ N ≤ 4 [13].

Ο ελεύθερος διαδότης με ένα βρόγχο (βλέπε Σχ. 2.5) στον d-διάστατο χώρο έχει

την μορφή:

1

2
gµ4−d

∫
d4p

(2π)d
1

p2 −m2
=

= − ig

32π2
m2

(
4πµ2

−m2

)2− d
2

Γ

(
1− d

2

)
=

igm2

16π2ε
+ finite

(2.157)

όπου ε = 4− d με d→ 4.

Σχήμα 2.5: Συνεισφορά διαγραμμάτων μονού βρόγχου στον διαδότη.

Αντίστοιχα, για την αλληλεπίδραση με ένα βρόγχο στον d-διάστατο χώρο (βλέπε

Σχ. 2.6) έχουμε:

1

2
g2
(
µ2
)4−d

∫
d4p

(2π)d
1

(p2 −m2)
[
(p− q)2 −m2

] =

= −igµε
(

1− 3g

16π2ε

)
+ finite

(2.158)

όπου
ε
2

= 4− d με d→ 4.
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Σχήμα 2.6: Συνεισφορά διαγραμμάτων μονού βρόγχου στην αλληλεπίδραση.

Οπότε, σε επίπεδο λαγκρατζιανής προσθέτουμε τους όρους:

δL1 = − gm2

32π2ε
φ2 = −δm

2

2
φ2

(2.159)

και:

δL2 = − 1

4!

32g2µε

16π2ε
φ4 = −Bgµ

ε

4!
φ4

(2.160)

αντίστοιχα, οι οποίοι ονομάζονται counter terms. ΄Αρα, έχουμε επίσης αντίστοιχα:

Γr
(2) (p) = i

[
p2 −m2

i
−
(
igm2

16π2ε
+ finite

)
+
igm2

16π2ε

]
(2.161)

και:

Γr
(4) = −igµε

(
1− 3g

16π2ε

)
+ finite− i3g2µε

16π2ε
(2.162)

Οπότε, ενώ η απλή λαγκρατζιανή στις d-διαστάσεις έχει την μορφή 2.156, η γυμνή

λαγκρατζιανή έχει την μορφή:

LB =
1

2
(∂µφ)2 − m2 + δm2

2
φ2 − µεg +Bµεg

4!
φ4 ⇒

⇒LB =
1

2
(∂µφ)2 − m2

B

2
φ2 − gB

4!
φ4

(2.163)

όπου:

m2
B = m2 +

g

16π2ε
m2

(2.164)

η γυμνή μάζα και:

gB = gµε +
32g2µε

16π2ε
(2.165)

η γυμνή σταθερά ζεύξης, οι οποίες απειρίζονται.

Αν κάνουμε τώρα την αντικατάσταση µ → µ′ = esµ, οι συναρτήσεις Green

είναι αναλλοίωτες κάτω από μετασχηματισμούς του µ, οπότε µ d
dµ

Γ(n) = 0. ΄Αρα

µ d
dµ

Z
−n/2
φ Γr

(n) = 0 όπου Γr
(n)

η επακανονικοποιημένη συνάρτηση που εξαρτάται από
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τα µ, gB (µ), mB (µ) και Z
−n/2
φ η σταθερά επακανονικοποίησης. Οπότε, η εξίσωση

της ομάδας επακανονικοποίησης - ΟΕ (Renormalization Group - RG) είναι η:[
µ
∂

∂µ
+β (g)

∂

∂µ
− nγ (g) +mγm (g)

∂

∂m

]
Γr

(n) = 0 (2.166)

όπου γ (g) = µ ∂
∂µ

ln
√
Zφ και mγm (g) = µ∂m

∂µ
και:

β (g) = µ
∂g

∂µ
= µ

∂

∂µ

[
gµε

(
1 +

3g

16π2ε

)]
= lim

ε→0

[
εgµε +

3g2µε

16π2

]
=

3g2

16π2
(2.167)

Γενικά, ισχύει ο εξής τύπος για τον υπολογισμό της συνάρτησης β για την πε-

ρίπτωση ενός βρόγχου [15]:

β (g) =
(
16π2

)−1
g3

[
2

3
T (R) d (R) +

1

3
T (S) d (S)− 11

3
c (G)

]
(2.168)

όπου R είναι σωματίδια με σπιν 1/2, S είναι σωματίδια με σπιν 0, T = 1/2, d είναι η

πολλαπλότητα και c η διάσταση της ομάδας.

2.3 Πειραματική επαλήθευση

2.3.1 Ουδέτερα ρεύματα

΄Οπως είδαμε εν συντομία και στο εδάφιο 2.2.4, το μοντέλο των ηλεκτρασθενών αλλη-

λεπιδράσεων προέβλεπε νέου τύπου αλληλεπιδράσεις οι οποίες ονομάστηκαν ουδέτερα

ρεύματα. Αυτού του είδους οι αλληλεπιδράσεις παρατηρήθηκαν για πρώτη φορά στα

πειράματα του CERN στα μέσα της δεκαετίας του 1970 [16] και αποτέλεσαν την

πρώτη μεγάλη επιτυχία του ΚΠ.

Η έρευνα για την αναζήτηση διαδικασιών που περιελάμβαναν ουδέτερα ρεύμα-

τα ξεκίνησε με υψηλής ενέργειας δέσμες νετρίνων στις εγκαταστάσεις “Alternating

Gradient Synchrotron” (AGS) στο “Brookhaven National Laboratory” (BNL) αλ-

λά και στο CERN στο “Proton Synchrotron facility” (PS). Ωστόσο, τα πειράματα

δεν βρήκαν κανένα σήμα. Μάλιστα, το πείραμα “Heavy Liquid Bubble Chamber”

(HLBC) στο CERN έδωσε ένα αποθαρρυντικό όριο στην αναλογία ζεύξης ουδέτερων

ρευμάτων προς φορτισμένων ρευμάτων με την τιμή του να είναι μικρότερο από 3%.

Για την επιτυχή παρατήρηση αυτού του νέου είδους ρεύματος χρειάστηκε ένας

θάλαμος φυσαλίδων με το όνομα “Gargamelle”. ΄Ηταν μια κυλινδρική κατασκευή

με 4, 8 μέτρα μήκος, 2 μέτρα διάμετρο γεμάτη με 18 τόνους υγρό φρέον και περι-

τριγυρισμένη με 1000 τόνους βοηθητικό εξοπλισμό, ειδικά κατασκευασμένη για την

68



2.3. Πειραματική επαλήθευση Μαρούδας Μάριος

ανακάλυψη του ασθενούς ρεύματος. Ο Gargamelle αναζητούσε για ελαστικές αλ-

ληλεπιδράσεις ουδέτερων ρευμάτων μεταξύ νετρίνων-ηλεκτρονίων και αντι-νετρίνων-

ηλεκτρονίων:

νµ + e− → νµ + e−

ν̄µ + e− → ν̄µ + e−
(2.169)

Συγκεκριμένα, η κάθε δέσμη μιονικών νετρίνων σκεδάζονταν με ηλεκτρόνια του βα-

ρέως υγρού φρέον cF3Br που βρισκόταν στο θάλαμο φυσαλίδων Gargamelle. Τα

ηλεκτρόνια μετά την σκέδαση τους εκτοξεύοντας σε μικρές γωνίες (τυπικά μικρότε-

ρες από 5◦) ως προς την δέσμη νετρίνων με σχετικά μεγάλες ενέργειες E > 300MeV .

΄Αρα, το σήμα που αναζητούνταν ήταν χαρακτηριστικό.

Η ταυτοποίηση στην συνέχεια των ηλεκτρονίων πραγματοποιόταν μέσω της α-

κτινοβολίας πέδησης. Δηλαδή, κατά μήκος της τροχιάς του λάμβαναν χώρα ηλε-

κτρομαγνητικές αλληλεπιδράσεις μεταξύ του e− και των πυρήνων του υγρού. ΄Ετσι,

αυτά επιβραδύνονταν, με αποτέλεσμα την δημιουργία φωτονίων τα οποία μέσω δίδυ-

μης γένεσης κατέληγαν τελικά σε ένα χαμηλής ενέργειας ζεύγος e−e+
το οποίο και

κατέγραφε ο θάλαμος φυσαλίδων. Τόσο το αρχικό ηλεκτρόνιο, όσο και το ζεύγος

από την δίδυμη γένεση ιόνιζαν το υγρό και έτσι παράγονταν φυσαλίδες οι οποίες και

εμφανίζονταν στο φωτογραφικό φιλμ σαν τροχιές.

Για κάθε παλμό του επιταχυντή περίπου 109ν̄µ διέσχιζαν τον θάλαμο. Ο θάλαμος

φωτογραφιζόταν και έτσι από την ανάλυση των φωτογραφικών πλακών, παρατηρήθη-

καν μόλις 3 γεγονότα της σκέδασης ν̄µ + e− → ν̄µ + e− μεταξύ 1.4× 106
φωτογρα-

φιών. Στο Σχ. 2.7 φαίνεται μια τέτοια φωτογραφία. ΄Ετσι, από αυτά τα γεγονότα

αποδείχθηκε ότι υπάρχει αλληλεπίδραση ενός σωματιδίου χωρίς ισχυρό και ηλεκτρικό

φορτίο, η οποία συμβαίνει εξαιρετικά σπάνια και ο φορέας είναι ηλεκτρικά ουδέτερος.

΄Ομως, με την μέτρηση αυτή η μάζα του μποζονίου Z0
παραμένει άγνωστη. Η άμεση

ανακάλυψη του όπως θα δούμε (βλέπε εδάφιο 2.3.2) έγινε 6 χρόνια μετά, και έδωσε

στους εμπνευστές της ηλεκτρασθενούς θεωρίας Glashow, Salam και Weinberg το

βραβείο Νόμπελ για την πρόβλεψη των ασθενών ρευμάτων.

2.3.2 Μποζόνια W±
και Z0

Η εύρεση και ταυτοποίηση των μποζονίων της ηλεκτρασθενούς θεωρίας απαιτούσε

ενέργειας της τάξης μερικών εκατοντάδων GeV ώστε να παραχθούν και ένα πείρα-

μα συγκρουόμενων δεσμών ήταν απαραίτητο για ένα τέτοιο εγχείρημα. Για αυτό τον

λόγο κατασκευάστηκε ο επιταχυντής - συγκρουστής pp̄ (πρωτονίων-αντι-πρωτονίων)
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Σχήμα 2.7: Μια δέσμη νετρίνων, έχει διασχίσει το θάλαμο από κάτω. Τα νετρίνα είναι ηλεκτρικά

ουδέτερα, και γι΄ αυτό δεν αφήνουν ίχνη τροχιάς, όμως ένα ηλεκτρόνιο εμφανίζεται να ξεκινά από

ένα σημείο κοντά στο μέσο και δεξιά της εικόνας. Τα ηλεκτρόνια αυτά προήλθαν από έναν πυρήνα

του υγρού, που περιέχεται στο θάλαμο φυσαλίδων, ο οποίος συγκρούστηκε με ένα νετρίνο πολύ

μεγάλης ενέργειας, και έτσι το ηλεκτρόνιο ακτινοβολεί φωτόνια επιβραδυνόμενο. Στην συνέχεια

παρατηρούμε την τροχιά του ηλεκτρονίου και δυο ζεύγη e−e+ από δίδυμη γένεση που κάνουν

δύο εκπεμπόμενα φωτόνια. Η παρατήρηση αυτή καθώς και εκείνες άλλων όμοιων γεγονότων στον

Gargamelle, έδωσαν την πρώτη ένδειξη για την ύπαρξη αυτού του είδους σωματιδίου, το οποίο είχε

προβλεφθεί από την ηλεκτρασθενή θεωρία.

“Super Proton Synchrotron” (SPS) στο CERN. Τα δύο πειράματα - ανιχνευτές

που αναζητούσαν τα μποζόνια ονομάστηκαν “UA1” και “UA2” (UA: Underground

Area). Σε αυτά, ανελαστικές σκεδάσεις των pp̄ παρήγαγαν γεγονότα μέσω χρωμο-

δυναμικών διαδικασιών δηλαδή εξαϋλώσεων qq̄ → g.

Το 1983 πραγματοποιήθηκαν οι πολυπόθητες ανακαλύψεις των μποζονίων W+
,

W−
και Z0

. Οι τυπικές διαδικασίες παραγωγής των τριών αυτών μποζονίων σε

συγκρούσεις pp̄ είναι οι εξής:

qq̄ → Z0

ud̄→ W+

dū→ W−

(2.170)

Πολύ βασική συμβολή είχαν οι Carlo Rubbia επικεφαλής του UA1, και Simon van
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der Meer ο εμπνευστής της μεθόδου Stochaistic Cooling για την σταθεροποίηση των

συγκρουόμενων δεσμών. Το 1984 οι Carlo Rubbia και Simon van der Meer πήραν

το πρώτο βραβείο του CERN στην φυσική, για την συμβολή τους στην ανακάλυψη

των μποζονίων W και Z, των σωματιδίων φορέων της ασθενούς αλληλεπίδρασης.

Οι μάζες των τριών μποζονίων όπως μετρήθηκαν από ορισμένες τυπικές δια-

σπάσεις όπως:

W− → e−ν̄e

W+ → e+νe

Z0 → e−e+

(2.171)

από τα UA1 [17] και UA2 [18] είχαν τις αντίστοιχες τιμές:

MUA1
W = 81± 5GeV

MUA1
Z = 95.2± 2.5GeV

MUA2
W = 80+10

−6 GeV

MUA2
Z = 91.9± 1.3± 1.4GeV

(2.172)

Σήμερα, από τον συμψηφισμό πολλών πειραμάτων έχουμε τα ακόλουθα πολύ πιο

ακριβή αποτελέσματα για τις μάζες των μποζονίων [19]:

MW = 80.385± 0.015GeV

MZ = 91.1876± 0.0021GeV
(2.173)

Τέλος, τα πλάτη διασπάσεων έχουν τις τιμές [19]:

ΓW = 2.085± 0.042GeV

ΓZ = 2.4952± 0.0023GeV
(2.174)

2.3.3 Top κουάρκ

Το 1964 οι Gell-Mann και Zweig είχαν προτείνει την ύπαρξη των κουάρκ. Τα 5 πρώτα

κουάρκ είχαν ανακαλυφθεί από διάφορα πειράματα, ενώ το έκτο, το top κουάρκ είχε

προβλεφθεί από το ΚΠ για την συμπλήρωση της τρίτης γενιάς και ήταν το τελευταίο

κομμάτι του παζλ των γενιών των λεπτονίων. Η εμφάνιση του σε διαγράμματα Feyn-

man ανώτερης τάξης υπήρξε η βάση για την εκτίμηση της μάζας του. Η ανακάλυψη

του bottom κουάρκ το 1977 αποτέλεσε μια ισχυρή ένδειξη για την ύπαρξη του top,

και για την χρηματοδότηση πειραμάτων με στόχο την εύρεση του.
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Το πείραμα το οποίο ανακάλυψε πρώτο το top κουάρκ το 1995 ήταν το Tevatron

στο Fermilab με τους ανιχνευτές CDF [20] και D0 [21], στο οποίο συγκρούονται

δέσμες πρωτονίων και αντι-πρωτονίων με ενέργεια 900GeV η κάθε μία [22]. Τα

top κουάρκ μπορούν να παραχθούν μέσα από ασθενείς αλληλεπιδράσεις αλλά και σε

ζεύγη top-antitop. Το κυρίαρχο κανάλι είναι μέσω της ανταλλαγής ενός εικονικού

μποζονίου W ανάμεσα σε ένα ελαφρύ κουάρκ και ένα bottom κουάρκ (b-κουάρκ)

στο t-κανάλι και ένα δεύτερο είναι μέσω της ανταλλαγής ενός χρονοειδούς εικονικού

μποζονίου W στο s-κανάλι που παράγει ένα t-κουάρκ και ένα b-κουάρκ [23] όπως

βλέπουμε στο Σχ. 2.8.

Σχήμα 2.8: Κυρίαρχα διαγράμματα Feynman για μονή παραγωγή του top κουάρκ στο κανάλι s

(αριστερά) και t (δεξιά).

Λόγω της μεγάλης μάζας του το top κουάρκ ζει για πάρα πολύ μικρό χρονικό

διάστημα της τάξης των 5× 10−25s [24], ενώ για να αλληλεπιδράσει ισχυρά θα μεσο-

λαβούσε χρόνος ∼ 10−23s. ΄Αρα, η παρατήρηση του γίνεται έμμεσα από τα προϊόντα

της διάσπασης του. Η διάσπαση του συμβαίνει κυρίως ως εξής:

t→ W+b

t̄→ W−b̄
(2.175)

Τα μποζόνια W±
όμως από μόνα τους είναι ασταθή και διασπώνται το ίδιο γρήγορα

είτε σε ένα φορτισμένο λεπτόνιο και νετρίνο W → l+νl, είτε σε ένα κουάρκ και αντι-

κουάρκ (κυρίως W → ud̄ ή W → cs̄). Οπότε, αφού κάθε κουάρκ μπορεί να έχει

ένα από τα 3 φορτία χρώματος, υπάρχουν 6 πιθανά αδρονικά κανάλια διάσπασης, ενώ

υπάρχουν μόνο 3 λεπτονικά κανάλια διάσπασης [25].

Τα τελευταία αποτελέσματα τα οποία προέρχονται από τον συνδυασμό μετρήσεων

από τον Tevatron αλλά και από τον “Large Hadron Collider” (LHC) δίνουν τελικά

για την μάζα του t-κουάρκ την τιμή [19]:

mt = 173.21± 0.51± 0.71GeV (2.176)
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2.3.4 Μποζόνιο Higgs

΄Οπως έχουμε ήδη δει (βλέπε εδάφιο 2.2.4), η απλούστερη μορφή υλοποίησης του

μηχανισμού Higgs στο ΚΠ απαιτεί την ύπαρξη ενός ουδέτερου βαθμωτού σωματιδίου

του μποζονίου Higgs. ΄Ετσι, το μέχρι στιγμής μεγαλύτερο κενό στην θεωρία του ΚΠ

ήταν η μη εύρεση του μποζονίου Higgs η αναζήτηση του οποίου διήρκεσε περίπου

50 χρόνια. Η πολυπόθητη επιβεβαίωση της ύπαρξης του λεγόμενου “σωματιδίου του

θεού” έγινε τον Ιούνιο του 2012 όταν ανακοινώθηκε από το CERN η εύρεση ενός

σωματιδίου που μοιάζει εξαιρετικά στο Higgs με μάζα ∼ 126GeV .

Μηχανισμοί παραγωγής

Το Higgs είναι ένα ουδέτερο, χωρίς χρώμα σωμάτιο που αλληλεπιδρά μόνο με σω-

ματίδια που έχουν μάζα, και έτσι η διαδικασία παραγωγής του περιλαμβάνει πάντα

σωματίδια που έχουν μη μηδενική μάζα. Οι βασικοί τρόποι παραγωγής του, οι οποίοι

φαίνονται στο Σχ. 2.9, είναι οι εξής:

(αʹ) Μέσω σύντηξης γκλουονίων. Επειδή το Higgs δεν έχει χρώμα, η αντίδραση

γίνεται με ενδιάμεσο στάδιο όπου τα δυο γκλουόνια δίνουν ένα ζεύγος από κου-

άρκ και αντι-κουάρκ τα οποία έχουν χρώμα. Το top κουάρκ είναι το βαρύτερο

κουάρκ και έτσι η πιθανότητα το ενδιάμεσο σωματίδιο να είναι top κουάρκ είναι

μεγάλη. Στην συνέχεια, ακολουθεί η πιθανότητα να έχουμε bottom κουάρκ.

(βʹ) Για τους ίδιους λόγους γίνεται και αυτή η αντίδραση η οποία είναι μέσω δυο top

κουάρκ. ΄Ομως, αυτή η αντίδραση έχει μικρότερη ενεργό διατομή και πιθανότητα

να συμβεί, καθώς απαιτείται η παραγωγή και δυο top κουάρκ τα οποία έχουν

μάζα 175GeV .

(γʹ) Η αντίδραση με σύντηξη μποζονίων γίνεται διότι το Higgs αλληλεπιδρά με τα

διανυσματικά μποζόνια το οποία έχουν μάζα.

(δʹ) Το ίδιο συμβαίνει και με την αντίδραση μέσω ακτινοβολίας Higgs. Τα διανυ-

σματικά μποζόνια, επειδή έχουν μάζα μπορούν να συζευγχθούν με το Higgs,

και συνεπώς μπορούν να εκπέμψουν το Higgs με μία διαδικασία η οποία μοι-

άζει με την εκπομπή φωτονίων από ηλεκτρόνια. Για αυτό, η διαδικασία αυτή

ονομάζεται Higgs - Strachlung.

Στο Σχ. 2.10 βλέπουμε πως μεταβάλλεται η ενεργός διατομή του Higgs ανάλογα με

τον μηχανισμό παραγωγής.
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Σχήμα 2.9: Οι διάφοροι τρόποι παραγωγής σωματιδίου Higgs σε συγκρούσεις pp. (α) Σύντηξη

γκλουονίων (gluon fusion) (β) Παραγωγή με δύο top κουάρκ (top quark associated production).

(γ) Σύντηξη μποζονίων (vector boson fusion). (δ) Ακτινοβολία Higgs (Higgsstrachlung). Τα

αρχικά γκλουόνια ή κουάρκ είναι συστατικά των αρχικών πρωτονίων.

Σχήμα 2.10: Ενεργός διατομή παραγωγής του Higgs μέσω διαφόρων διαδικασιών παραγωγής

σαν συνάρτηση της μάζας του.

Διασπάσεις

΄Οπως έχουμε δει, το μποζόνιο Higgs είναι ένα ασταθές σωμάτιο που ζει ελάχιστα

κλάσματα του δευτερολέπτου προτού διασπαστεί σε άλλα σωματίδια. ΄Ετσι, στα πει-

ράματα μπορεί να εντοπισθεί μόνο μέσω της ανίχνευσης των προϊόντων της διάσπασης
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του. ΄Ετσι, το μποζόνιο Higgs αναμένεται να διασπάται σε διαφορετικούς συνδυασμο-

ύς σωματιδίων, ή “καναλιών διάσπασης” όπως ονομάζονται. Συγκεκριμένα, τα βασικά

κανάλια που παίζουν καθοριστικό ρόλο στην ανίχνευση του είναι τα εξής [26]:

H → γγ

H → ZZ → 4l

H → W+W− → l+νll
′−ν̄l′

(2.177)

Αυτά τα κανάλια, τα οποία φαίνονται στο Σχ. 2.11, παρέχουν την πιο υψηλή ακρίβεια

Σχήμα 2.11: Τα βασικά κανάλια διάσπασης του μποζονίου Higgs.

μέτρησης της μάζας του μποζονίου Higgs. Ωστόσο, το κανάλι το δύο φωτονίων δίνει

ένα μέτριο σήμα επί ενός εκτεταμένου αλλά μετρήσιμου υποβάθρου, ενώ το κανάλι

των τεσσάρων λεπτονίων δίνει ένα μικρό σήμα με πολύ χαμηλό υπόβαθρο.
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Επίσης, υπάρχουν τα κανάλια όπου το Higgs διασπάται σε φερμιόνια όπως τα:

H → bb̄

H → τ+τ−
(2.178)

τα οποία όμως έχουν μεγάλο υπόβαθρο και μικρή ακρίβεια μέτρησης της μάζας.

Ανίχνευση

΄Ετσι, από την ανάλυση των πειραματικών δεδομένων του LHC το 2012 και 2013

διαπιστώθηκε ότι αυτά τα κανάλια παρουσιάζουν σημαντικό στατιστικό μέγιστο στο

ίδιο σημείο στην μάζα των 126GeV περίπου [27, 28]. Συγκεκριμένα, για το κανάλι

H → γγ τα αποτελέσματα του πειράματος ATLAS όπως φαίνονται στο Σχ. 2.12,

έδειξαν ένα μέγιστο σε mH = 126.8GeV με ακρίβεια 7.4σ ενώ το CMS όπως φαίνεται

και στο Σχ. 2.13, έδειξαν μια περίσσεια σε μάζα mH = 125.4GeV με ακρίβεια 3.2σ.

Επίσης, για το κανάλι των τεσσάρων λεπτονίων, από το πείραμα ATLAS, βρέθη-

κε απόκλιση από το υπόβαθρο στην τιμή mH = 124.3GeV με ακρίβεια 6.7σ όπως

φαίνεται και στο Σχ. 2.14, ενώ το CMS παρατήρησε απόκλιση από το υπόβαθρο στην

τιμή mH = 125.8GeV με ακρίβεια 6.7σ όπως φαίνεται και στο Σχ. 2.15. Τα απο-

τελέσματα για κανάλια όπου είχαμε διασπάσεις σε φερμιόνια δεν τα παρουσιάζουμε,

καθώς η ακρίβεια ως επί το πλείστων είναι μικρότερη από 5σ, όμως ο αναγνώστης

μπορεί να ανατρέξει στις αναφορές [29–33].
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Σχήμα 2.12: Διάγραμμα της μάζας του μποζονίου Higgs στο κανάλι των δυο φωτονίων από το

πείραμα ATLAS [29].

Σχήμα 2.13: Διάγραμμα της μάζας του μποζονίου Higgs στο κανάλι των δυο φωτονίων από το

πείραμα CMS [34].
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Σχήμα 2.14: Διάγραμμα της μάζας του μποζονίου Higgs στο κανάλι των τεσσάρων λεπτονίων

από το πείραμα ATLAS [29].

Σχήμα 2.15: Διάγραμμα της μάζας του μποζονίου Higgs στο κανάλι των τεσσάρων λεπτονίων

από το πείραμα CMS [35].
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2.4 Βασικά προβλήματα

2.4.1 Μάζες νετρίνων

΄Οπως έχουμε δει, τα θεμελιώδη σωμάτια της ύλης ομαδοποιούνται σε 3 οικογένειες

ή αλλιώς γενιές, η οποίες χωρίζονται σε κουάρκ και λεπτόνια, όπως βλέπουμε στο

Σχ. 2.3. Συγκεκριμένα, τα νετρίνα υπάρχουν σε τρεις διαφορετικούς τύπους, που

ονομάζονται γεύσεις, είναι ηλεκτρικά ουδέτερα και έχουν σπιν 1/2. Ανάλογα με το

λεπτόνιο που παράγεται στις ασθενείς αντιδράσεις έχουμε και το αντίστοιχο ηλεκτρο-

νικό νετρίνο, μιονικό και ταυ για τα ηλεκτρονικά λεπτόνια, μιονικά και ταυ αντίστοιχα.

Τα τρία διαφορετικά νετρίνα συμπληρώνονται από τα αντι-νετρίνα τους.

Αντι-νετρίνα

Εφόσον τα νετρίνα είναι ηλεκτρικά ουδέτερα, θα μπορούσαν να είναι τα ίδια τα

αντι-σωμάτια τους, μια ιδιότητα που προτάθηκε πρώτα από τον Ettore Majorana

το 1937 [36]. Το νετρίνο θα μπορούσε να μετατραπεί σε ένα αντι-νετρίνο και α-

ντίστροφα αλλάζοντας τον προσανατολισμό της κατάστασης του σπιν του. Σε αυτή

την περίπτωση το νετρίνο θα ήταν ένα φερμιόνιο Majorana και θα ήταν το πρώτο

αυτού του είδους. Παραδείγματα μποζονίων Majorana είναι το ουδέτερο πιόνιο, το

φωτόνιο και το μποζόνιο Z τα οποία είναι ίδια με τα αντι-σωμάτια τους.

΄Ομως, τα νετρίνα Majorana και τα νετρίνα Dirac δρουν διαφορετικά κάτω από

CP μετασχηματισμούς, καθώς το πεδίο ενός νετρίνου Majorana είναι μια ιδιοκα-

τάσταση του CP μετασχηματισμού. Επίσης, η διάκριση ανάμεσα στα δύο αυτά είδη

νετρίνων δεν είναι μόνο θεωρητική. ΄Ενα μαζικό νετρίνο Dirac σε αντίθεση με ένα

νετρίνο Majorana θα είχε μη μηδενική μαγνητική ηλεκτρική διπολική ροπή (Electric

Dipole Moment - EDM), η οποία μπορεί να παρατηρηθεί πειραματικά. Η διαφορά α-

νάμεσα σε σωμάτια Majorana και Dirac υπάρχει μόνο αν η μάζα ηρεμίας τους είναι μη

μηδενική. Αν τα νετρίνα έχουν μάζα, τότε όπως θα δούμε μπορούν να εμφανισθούν

στην λαγκρατζιανή και Majorana και Dirac όροι μάζας.

Ελικότητα, μάζα και ΚΠ

Οι πειραματικές ενδείξεις δείχνουν ότι όλα τα παραγόμενα και τα παρατηρούμενα νε-

τρίνα έχουν αριστερόστροφες ελικότητες και όλα τα αντι-νετρίνα έχουν δεξιόστροφες

ελικότητες. Στο άμαζο όριο του ΚΠ αυτές είναι οι μόνες ελικότητες που υπάρχουν

και μόνο μία από τις δύο πιθανές ελικότητες παρατηρείται για το εκάστοτε σωμάτιο.
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Γενικά, υπάρχουν δύο πιθανοί όροι μάζας για τα φερμιόνια, όροι μάζας Dirac

και όροι μάζας Majorana. Οι όροι μάζας Dirac συνδέουν αριστερόστροφα πεδία με

δεξιόστροφα:

mDψ̄LψR + h.c (2.179)

όπου ψ̄L και ψR είναι αριστερόστροφα και δεξιόστροφα σπινοριακά πεδία Weyl α-

ντίστοιχα. Τέτοιοι όροι μάζας γεννιούνται μέσω των αλληλεπιδράσεων Yukawa με

το πεδίο Higgs. Οι όροι μάζας Majorana συνδέουν ένα αριστερόστροφο ή ένα δε-

ξιόστροφο πεδίο με τον εαυτό του. Αν ψR ένα μονήρες δεξιόστροφο πεδίο του ΚΠ

τότε ο όρος Majorana έχει την μορφή:

mM ψ̄
c
RψR

ψc = cψ̄T
(2.180)

όπου c ο πίνακας συζυγίας του φορτίου.

΄Ολα τα φερμιόνια μπορούν να έχουν όρους μάζας Dirac αλλά μόνο τα ουδέτερα

φερμιόνια μπορούν να έχουν όρους μάζας Majorana. Οπότε, στο ΚΠ όλα τα φερ-

μιόνια που έχουν μάζα, τα κουάρκ και τα φορτισμένα λεπτόνια έχουν όρους Dirac.

Αντίστοιχα, το ΚΠ δεν έχει όρους μάζας Dirac για νετρίνα. Επίσης, οι ασθενείς αλ-

ληλεπιδράσεις συζευγνύονται μόνο με αριστερόστροφα ρεύματα. ΄Αρα, δεξιόστροφα

νετρίνα δεν υπάρχουν στην λαγκρατζιανή του ΚΠ. ΄Αρα, όροι μάζας δεν μπορούν να

δημιουργηθούν στο ΚΠ όπως είδαμε και στο εδάφιο 2.2.4, το οποίο προβλέπει μόνο

αριστερόστροφα νετρίνα και δεξιόστροφα αντι-νετρίνα για κάθε γενιά.

Είναι βέβαια πιθανό τα αντίστοιχα ομόλογα σωμάτια (δεξιόστροφα νετρίνα και

αριστερόστροφα αντι-νετρίνα) να μην υπάρχουν. Αλλά αν υπάρχουν οι ιδιότητες τους

είναι διαφορετικές από αυτές των παρατηρούμενων νετρίνων και αντι-νετρίνων.

΄Αλλη μια υπόθεση του ΚΠ είναι ότι τα νετρίνα δεν μπορούν να αλλάξουν γεύση

και είναι άμαζα, άλλα όπως θα δούμε στην συνέχεια, το πειραματικά επιβεβαιωμένο

φαινόμενο της ταλάντωσης νετρίνων απαιτεί από τα νετρίνα να έχουν μη μηδενικές

μάζες, και να ταλαντώνονται ανάμεσα στις τρεις γεύσεις. Οπότε, για την περιγραφή

αυτών των φαινομένων απαιτείται “νέα φυσική”.

Ταλαντώσεις νετρίνων

Το 1965 ξεκίνησε ένα πείραμα για την μέτρηση της ροής των νετρίνων που προέρχο-

νται από τον ΄Ηλιο. Τα νετρίνα αυτά παράγονται από τις πυρηνικές διασπάσεις που

συμβαίνουν στο κέντρο του ηλίου. Τα νετρίνα αυτά προέρχονται από την λεγόμενη
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αλυσίδα pp όπου:

H1 +H1 → D2 + e+ + v,

D2 +H1 → He3 + γ . . .
(2.181)

Ο ΄Ηλιος στέλνει ένα μεγάλο πλήθος νετρίνων σε όλες τις διευθύνσεις. Κάθε δευ-

τερόλεπτο περίπου 6.5 × 1010
ηλιακά νετρίνα περνάνε από κάθε cm2

της Γης, [37].

Αφού όμως τα νετρίνα δεν απορροφώνται σχεδόν καθόλου από την μάζα της Γης, η

επιφάνεια της Γης που είναι αντίθετα από τον ΄Ηλιο δέχεται τον ίδιο αριθμό νετρίνων

με την πλευρά που είναι μπροστά στον ΄Ηλιο. Η θεωρητική πρόβλεψη για τα ηλιακά

νετρίνα έγινε από τον Jon Bahcall στο τέλος της δεκαετίας του 60 [38]. Η συμβολή

από την αλυσίδα pp είναι πολύ καλά καθορισμένη και αποτελεί το ≈ 99% της ροής

ηλιακών νετρίνων στην Γη. ΄Ομως, η πρόβλεψη του Bahcall ήρθε σε αντίθεση με

την πειραματική ανίχνευση των ηλιακών νετρίνων από τον Ray Davies το 1968. Πιο

συγκεκριμένα, τα ηλεκτρονικά νετρίνα που έρχονταν από τον ΄Ηλιο ήταν ανάμεσα στο

1/3, και στο 1/2 του αριθμού που προβλεπόταν από το ΚΠ. Αυτή η διαφορά έγινε

γνωστή ως το πρόβλημα των ηλιακών νετρίνων.

Το 1967 ο Bruno Pontecorvo [39,40] πρότεινε την πιθανότητα οι γεύσεις των νε-

τρίνων να μπορούν να αναμιχθούν. Το κβαντομηχανικό αυτό φαινόμενο ονομάστηκε

ταλάντωση νετρίνων καθώς η πιθανότητα αλλαγής μεταξύ δυο γεύσεων έχει ημιτο-

νοειδή εξάρτηση από το μήκος της διαδρομής που ακολουθούν. Συγκεκριμένα, η τα-

λάντωση αυτή προκύπτει από την ζεύξη ανάμεσα στην γεύση και στις ιδιοκαταστάσεις

της μάζας των νετρίνων. Οι τρεις καταστάσεις των νετρίνων που αλληλεπιδρούν με

τα φορτισμένα λεπτόνια στις ασθενείς αλληλεπιδράσεις, είναι η καθεμία μια διαφορε-

τική υπέρθεση των τριών καταστάσεων νετρίνων καθορισμένης μάζας. Καθώς ένα

νετρίνο διαδίδεται στον χώρο, οι κβαντομηχανικές φάσεις των τριών καταστάσεων

μαζών προχωρούν κατά ελαφρώς διαφορετικούς ρυθμούς λόγω μικρών διαφορών στις

μάζες των νετρίνων. Αυτό, έχει ως αποτέλεσμα ένα εναλλασσόμενο μίγμα κατα-

στάσεων μαζών όπως το νετρίνο διαδίδεται στον χώρο, το οποίο όπως αντιστοιχεί

σε ένα διαφορετικό μείγμα καταστάσεων γεύσεων. Μέσω αυτού του φαινομένου, τα

νετρίνα μπορούν και ταλαντώνονται ανάμεσα στις τρεις πιθανές γεύσεις καθώς ταξι-

δεύουν. Αυτό επιτρέπει σε ένα νετρίνο το οποίο είχε παραχθεί σαν ένα ηλεκτρονικό

νετρίνο, σε μια άλλη τοποθεσία να έχει πιθανότητα να ανιχνευθεί ως ένα μιονικό ή

ταυ νετρίνο. ΄Ετσι, εξηγήθηκε η διαφορά που υπήρχε ανάμεσα στον αριθμό των η-

λεκτρονικών νετρίνων που μετρούσαν στον πυρήνα του ΄Ηλιου, και στον αριθμό που

προβλέπονταν από την θεωρία.
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Ο μοναδιαίος μετασχηματισμός ο οποίος συσχετίζει την γεύση και τις ιδιοκατα-

στάσεις μάζας μπορεί να γραφεί ως:

|να〉 =
∑
i

Uαi |νi〉 (2.182)

και αντίστροφα:

|νi〉 =
∑
α

U∗αi |να〉 (2.183)

όπου |να〉 είναι ένα νετρίνο με καθορισμένη γεύση a = e, µ, τ και |νi〉 ένα νετρίνο με

καθορισμένη μάζα mi όπου i = 1, 2, 3, και Uai είναι ένα στοιχείο του πίνακα μίξης

Pontecorvo-Maki-Nakagawa-Sakata (PMNS).

Για την περίπτωση με 3 νετρίνα, έχουμε πίνακα 3 × 3 που μπορεί να παραμετρο-

ποιηθεί από 3 γωνίες μίξης θ12, θ23, θ13, και μια φάση παραβίασης CP δ:

Uai =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

Atmospheric︷ ︸︸ ︷ 1 0 0

0 c23 s23

0 −s23 c23


Cross - Mixing︷ ︸︸ ︷ c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13


Solar︷ ︸︸ ︷ c12 s12 0

−s12 c12 0

0 0 1


Majorana CP -
violating phases︷ ︸︸ ︷ eiα1/2 0 0

0 eiα2/2 0

0 0 1



=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 eiα1/2 0 0

0 eiα2/2 0

0 0 1


(2.184)

όπου cij = cos θij και sij = sin θij. Οι παράγοντες φάσης α1 και α2 έχουν νόημα

μόνο αν τα νετρίνα είναι Majorana και δεν μπαίνουν σε φαινόμενα ταλάντωσης. Ο

παράγοντας φάσης δ είναι μη μηδενικός μόνο αν τα η ταλάντωση νετρίνων παραβιάζει

την CP συμμετρία.

Δεδομένων των τριών μαζών των νετρίνων, μπορούμε να προσδιορίσουμε δύο

ανεξάρτητες τετραγωνικές διαφορές μαζών:

∆m2
12 = m2

1 −m2
2, (2.185)

∆m2
23 = m2

2 −m2
3. (2.186)

΄Εχει δειχθεί πειραματικά ότι |∆m2
12| � |∆m2

23| (πιο συγκεκριμένα έχει δειχθεί ότι

∆m2
12 ' 1

30
|∆m2

23|) και άρα:

∆m2
13 = m2

1 −m2
3 ≈ ∆m2

23. (2.187)
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Για την περίπτωση δυο νετρίνων, ο πίνακας μίξης μειώνεται σε 2×2 και χαρακτη-

ρίζεται μόνο από την γωνία μίξης θ:(
cos θ sin θ

− sin θ cos θ

)
. (2.188)

Σε απόσταση L από την πηγή, η πιθανότητα ένα νετρίνο να αλλάξει γεύση είναι:

Pa→b = sin2 (2θ) sin2

(
∆m2L

4E

)
(2.189)

σε φυσικές μονάδες και:

Pa→b = sin2 (2θ) sin2

(
1.27

∆m2L

E

GeV

eV2km

)
(2.190)

σε μονάδες SI. Να τονίσουμε εδώ πως οι ταλαντώσεις είναι ευαίσθητες μόνο στην

διαφορά των τετραγωνικών μαζών ∆m2
.

Για την περίπτωση μίξης τριών νετρίνων στην Εξ. 2.182 και Εξ. 2.183, είναι

πιθανά τρία διαφορετικά φάσματα μαζών [41]:

1. Normal spectrum (NS):

m1 < m2 < m3, ∆m2
12 � ∆m2

23, (2.191)

2. Inverted spectrum (IS):

m3 < m1 < m2, ∆m2
12 �

∣∣∆m2
13

∣∣ , (2.192)

3. Quasi-Degenerate spectrum (QD):

m1 ≈ m2 ≈ m3. (2.193)

Τα μέχρι στιγμής υπάρχοντα δεδομένα δεν επιτρέπουν τον προσδιορισμό για το ποιό

από τα ανωτέρω φάσματα πραγματοποιείται στην φύση.

Πειραματικές τιμές των παραμέτρων ταλάντωσης

Καταρχάς, εισάγουμε τους ορισμούς ηλιακές και ατμοσφαιρικές διαφορές τετρα-

γωνικών μαζών ∆m2
sol και ∆m2

atm, αντίστοιχα. Και για τα δύο φάσματα έχουμε

∆m2
12 = ∆m2

sol. Για ένα NS (IS) φάσμα έχουμε ∆m2
23 = ∆m2

atm (|∆m2
13| = ∆m2

atm).

83



Μαρούδας Μάριος Κεφάλαιο 2. Το ΚΠ της σωματιδιακής φυσικής

Τα ηλιακά νετρίνα προέρχονται από την πυρηνική σύντηξη που δίνει ενέργεια στον

΄Ηλιο και σε άλλα άστρα. Από την συνδυασμένη ανάλυση τριών νετρίνων όλων των

δεδομένων από πειράματα ηλιακών νετρίνων και από το “Kamioka Liquid Scintillator

Antineutrino Detector” (KamLAND) οι ηλιακές παράμετροι θ13 έχουν μετρηθεί [42]:

∆m2
sol = ∆m2

21 ∼ 7.50+0.19
−0.20 × 10−5eV2

(2.194)

tan2θsol = tan2θ12 ∼ 0.452+0.035
−0.033, (2.195)

και:

sin2θ13 = 0.020± 0.016. (2.196)

Πειράματα με ατμοσφαιρικά νετρίνα όπως το “Super - Kamioka Nucleon De-

cay Experiment” (Super-KamiokaNDE) μαζί με τα “KEK to Kamioka” (K2K) και

“Main Injector Neutrino Oscillation Search” (MINOS) long baseline accelerator

πειράματα νετρίνων έχουν προσδιορίσει τις ατμοσφαιρικές παραμέτρους [43]. Από

την ανάλυση δυο νετρίνων του MINOS νµ → νµ, είχαμε τις ακόλουθες τιμές:

∆m2
atm =

∣∣∆m2
31

∣∣ ≈ ∣∣∆m2
32

∣∣ = 2.32+0.12
−0.08 × 10−3eV2

(2.197)

και:

sin2 (2θatm) = sin2 (2θ23) > 0.90. (2.198)

Η τελευταία γωνία μίξης θ13 η οποία μετρήθηκε από το “Daya Bay Experiment”

[44], και το “Reactor Experiment for Neutrino Oscillations” (RENO) δίνουν μια

5.2σ απόδειξη για μια μη μηδενική τιμή του θ13 η οποία επαληθεύει τις προηγούμενες

μετρήσεις από το “Tokai to Kamioka” (T2K) [45], MINOS [46] και “Double Chooz”

[47]:

sin2 (θ13) = 0.024± 0.004. (2.199)

Στο Σχ. 2.16, μπορούμε να δούμε τις περιοχές που επιτρέπονται ή απορρίπτο-

νται για τις παραμέτρους ταλάντωσης των νετρίνων από τα διάφορα πειράματα. Οι

παράμετροι ταλάντωσης δ, α1, α2, το πρόσημο ∆m2
32 καθώς και οι απόλυτες τιμές

των μαζών των νετρίνων είναι μέχρι στιγμής άγνωστα.

2.4.2 CP πρόβλημα

Αν εξετάσουμε την λαγκρατζιανή της QCD:

L = −1

4
FµνF

µν − nfg
2θ

32π2
FµνF̃

µν + ψ̄(iγµDµ −meiθ
′γ5)ψ (2.200)
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Σχήμα 2.16: Περιοχές που επιτρέπονται ή απορρίπτονται για τις παραμέτρους ταλάντωσης των

νετρίνων από διάφορα πειράματα βασιζόμενοι σε ανάλυση δύο γεύσεων νετρίνων [48].

θα παρατηρήσουμε πως αυτή περιέχει φυσικούς όρους οι οποίοι μπορούν να παραβι-

άσουν την συμμετρία CP . Το ΚΠ δηλαδή περιέχει μια σταθερή γωνία θ η οποία δεν

έχει κάποια προτεινόμενη τιμή. Υπολογισμοί στο πλαίσιο του ΚΠ έδειξαν όμως ότι

αν η θ-παράμετρος στην Εξ. 2.200 δεν έχει μηδενική τιμή, τότε προκύπτει ότι η συμ-

μετρία CP μπορεί να παραβιαστεί. Δηλαδή, η ισχυρή πυρηνική δύναμη θα διατηρούσε

την συμμετρία CP μόνο αν η θ-παράμετρος μηδενιζόταν.

Η γωνία αυτή όμως επηρεάζει τον τρόπο με τον οποίο φαίνεται να κατανέμεται

το ηλεκτρικό φορτίο στο νετρόνιο. Συγκεκριμένα, η παραβίαση της CP συμμετρίας

έχει ως άμεση συνέπεια την ύπαρξη μετρήσιμης EDM στο νετρόνιο κάτι όμως που
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δεν έχει παρατηρηθεί. Για την ακρίβεια το πειραματικό όριο είναι:

|dn| < 10−25e · cm (2.201)

Αλλά δεδομένου ότι:

dn ∼ 10−16θe · cm (2.202)

προκύπτει για την θ-παράμετρο:

|θ| < 10−9
(2.203)

Δηλαδή, οι παρατηρήσεις μας μετρώντας αυτή την κατανομή φορτίου μας δείχνουν

ότι η γωνία είναι μηδέν με ακρίβεια ενός δισεκατομμυρίου, δηλαδή η συμμετρία CP

διατηρείται στις ισχυρές αλληλεπιδράσεις. ΄Ομως, λόγω κβαντικών φαινομένων η τιμή

της θ-παραμέτρου δεν μπορεί να είναι τόσο κοντά στο μηδέν. ΄Ετσι, πρέπει να υπάρχει

μια βαθύτερη εξήγηση για αυτό το πρόβλημα φυσικότητας το οποίο είναι γνωστό σαν

πρόβλημα θ ή Ισχυρό Πρόβλημα CP .

Επίσης, στις υψηλές ενέργειες η μη διατήρηση της CP συμμετρίας ευθύνεται

για την ασυμμετρία της παρουσίας ύλης και αντιύλης στο παρατηρούμενο Σύμπαν.

Δηλαδή, η παραβίαση CP , οδηγεί σε διαφορετική συμπεριφορά των σωματιδίων ύλης

και αντιύλης, το οποίο είναι ένα σημείο που ίσως αποδειχτεί “κλειδί” στην εξήγηση

της ασυμμετρίας ύλης και αντιύλης στο Σύμπαν. Λίγο μετά τη Μεγάλη ΄Εκρηξη -

ΜΕ (Big Bang), το Σύμπαν αποτελούνταν από ίσες ποσότητες ύλης και αντιύλης,

και δίχως την παραβίαση CP οι δύο μορφές ύλης θα είχαν εξαϋλωθεί, δημιουργώντας

ένα Σύμπαν γεμάτο μονάχα από ενέργεια. ΄Ομως, το γεγονός ότι παρατηρούμε ύλη

και όχι αντιύλη αυτό σημαίνει ότι πρέπει να υπήρχε μια ασυμμετρία ανάμεσα στις δυο

αυτές μορφές ύλης, δηλαδή πρέπει η CP συμμετρία να παραβιάζεται για να μπορεί το

Σύμπαν να υπάρχει στην μορφή που το παρατηρούμε σήμερα.

Η πιο διαδομένη λύση για αυτό το πρόβλημα δόθηκε από τους Helen Quinn και

Roberto Peccei το 1977 [49, 50], οι οποίοι έδειξαν ότι σπάζοντας την ολική συμμε-

τρία U(1)PQ στην κλίμακα fa (η οποία ονομάζεται κλίμακα Peccei-Quinn, ή σταθερά

διάσπασης αξιονίου) τότε η θ-παράμετρος, ανάγεται από σταθερά σε δυναμικό κβα-

ντικό πεδίο, το οποίο ονομάζεται αξιονικό πεδίο, και έτσι η τιμή της μηδενίζεται μέσω

κάποιας φυσικής διαδικασίας. Απόρροια όμως του νέου πεδίου ήταν η ύπαρξη ενός

νέου ψευδοβαθμωτού σωματιδίου, του αξιονίου (axion) [51, 52]. Στην ουσία δηλαδή

το αξιονικό πεδίο είναι μια αναπόφευκτη συνέπεια της πρότασης Peccei - Quinn προ-

κειμένου να εξηγηθεί το σπάσιμο της CP συμμετρίας. Συγκεκριμένα, το αξιονικό

πεδίο a (x), ακυρώνει τον όρο της Εξ. 2.200 που παραβιάζει την CP συμμετρία. Το
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ψευδοβαθμωτό πεδίο αλληλεπιδρά με τα γκλουόνια με βάση τον παραπάνω όρο και

το θ αντικαθίσταται από τον παράγοντα θ − a (x) /fa. Τα μοντέλα που περιγράφουν

αξιόνια με πολύ μικρή μάζα και χρόνο ζωής πρακτικά άπειρα ονομάζονται μοντέλα

αόρατων αξιονίων. Το πρώτο χρονικά και απλούστερο μοντέλο ήταν το KSVZ μο-

ντέλο. Το μοντέλο αυτό εισάγει νέα βαρέα φερμιόνια τα οποία έχουν φορτίο Peccei

- Quinn, δηλαδή τον απαραίτητο κβαντικό αριθμό για την αλληλεπίδραση με τα αξι-

όνια. Το αξιόνιο που περιγράφει αυτό το μοντέλο ονομάζεται αδρονικό. Το δεύτερο

μοντέλο είναι το DFSZ μοντέλο. Αυτό δεν απαιτεί επιπρόσθετα κουάρκ όπως το

άλλο μοντέλο αφού τα γνωστά κουάρκ και λεπτόνια φέρουν φορτίο Peccei - Quinn.

Η πρακτική διαφορά ανάμεσα στα δυο μοντέλα βασίζεται στο γεγονός ότι τα αξι-

όνια του δεύτερου μοντέλου μπορούν να αλληλεπιδρούν και με φορτισμένα λεπτόνια,

εκτός από νουκλεόνια και φωτόνια, όπως προβλέπει το μοντέλο KSVZ. Η ύπαρξη α-

ξιονίων προβλέπεται επίσης και από άλλες θεωρίες όπως στην θεωρία χορδών (βλέπε

εδάφιο 5.2.1), ή σε ορισμένες μεγαλοενοποιημένες θεωρίες (βλέπε εδάφιο 3.1.2) ενώ

στις θεωρίες της υπερσυμμετρίας (βλέπε Κεφ. 4) το αξιόνιο έχει και βαθμωτό και

φερμιονικό υπερ-ταίρι. Το φερμιονικό υπερ-ταίρι του είναι το αξίνο ενώ το βαθμωτό

ονομάζεται s-άξιον. Τα αξιόνια είναι ψευδοβαθμωτά μποζόνια, έχουν μηδενικό σπιν,

μηδενικό φορτίο και δεν υπακούν στην CP συμμετρία. Αλληλεπιδρούν 1010
φορές

πιο ασθενικά με την ύλη από ότι το νετρίνο άρα στην ουσία αλληλεπιδρούν μόνο

βαρυτικά με την ύλη, γεγονός που καθιστά την ανίχνευση τους εξαιρετικά δύσκολη,

αλλά ταυτόχρονα τα καθορίζει ως βασικούς υποψηφίους της ΣΥ [53] (βλέπε εδάφιο

2.4.5).

2.4.3 Ελεύθερες παράμετροι

Οι Cabibo-Kobayashi-Maskawa πρότειναν το 1973 6 τύπους κουάρκ αντί για την

μέχρι πρότινος πεποίθηση για 4, τα οποία κατανέμονται σε τρεις ομάδες. Οπότε, τα

φορτισμένα ρεύματα θα γράφονται στην μορφή:

Jµϕoρ = (ūc̄t̄) γµPL


d′

s′

b′

 = (ūc̄t̄) γµPLV


d

s

b

 (2.204)

όπου ο πίνακας V είναι ένας 3× 3 μοναδιακός πίνακας. ΄Ετσι, οι Cabibo, Kobayashi

και Maskawa πρότειναν για την πιθανότητα μετάβασης από το ένα κουάρκ j στο άλλο
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i τον λεγόμενο Cabibbo-Kobayashi-Maskaw (CKM) πίνακα:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

=


c12c13 s12s3 s13e

−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


(2.205)

όπου cij = cos θij και sij = sin θij με i, j = 1, 2, 3, οι τρεις γωνίες μίξης και δ

η σχετική φάση. Μπορούμε να διαλέξουμε τις πραγματικές γωνίες θ12, θ23, θ13 να

βρίσκονται στο πρώτο τεταρτημόριο, δηλαδή 0 ≤ θ12, θ23, θ13 ≤ π
2
. Επίσης, το c13

βρίσκουμε πειραματικά ότι αποκλίνει από την μονάδα μόνο στο πέμπτο δεκαδικό ψηφίο,

και άρα έχουμε ότι |Vus| = s12, |Vub| = s13 και |Vcb| = s23. Τέλος, η φάση δ βρίσκεται

στην περιοχή 0 ≤ δ ≤ 2π.

Οι τιμές των διαφόρων στοιχείων του πίνακα CKM προσδιορίζονται από τις α-

σθενείς διασπάσεις των σχετικών κουάρκ αλλά και από τις “βαθιά” ανελαστικές σκε-

δάσεις των νετρίνων. Οπότε, οι σημερινές τιμές του μέτρου των διαφόρων στοιχείων

του πίνακα είναι [19]:
0.97427± 0.00014 0.222536± 0.00061 0.00355± 0.00015

0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914± 0.00005

 (2.206)

Αυτές αντιστοιχούν σε τιμές των γωνιών s12 = 0.218−0.224, s23 = 0.032−0.048 και

s13 = 0.002−0.005. Μπορούμε έτσι να διακρίνουμε πως οι μεταβάσεις από οικογένεια

σε οικογένεια κατά μια μονάδα είναι μικρές, ενώ οι μεταβάσεις από οικογένεια σε

οικογένεια κατά δύο μονάδες είναι ακόμα μικρότερες.

Οπότε, συνοψίζοντας, βλέπουμε ότι στο ΚΠ υπάρχουν 18 ανεξάρτητες παράμετροι

των οποίων οι τιμές μπορούν να προσδιοριστούν μόνο πειραματικά. Αυτές συγκεντρω-

τικά είναι:

• 3 σταθερές ζεύξης: g1, g2, g3 ή ισοδύναμα e, sin θW , g3 ≡ gs.

• 2 μάζες μποζονίων βαθμίδας: MW , MZ .

• 3 μάζες λεπτονίων: me, mµ, mτ .

• 6 μάζες κουάρκ: mu, md, mc, ms, mt, mb.
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• 4 παράμετροι πίνακα CKM: θ12, θ23, θ13, δ.

Αν προσθέσουμε επίσης τις 4 παραμέτρους από τον PMNS πίνακα της Εξ. 2.184,

θ12, θ23, θ13, και την φάση παραβίασης CP , δCP , καθώς και την μάζα του μποζονίου

Higgs, mH , την τιμή της VEV Higgs, v αλλά και την θ-παράμετρο της Εξ. 2.200,

της QCD, έχουμε συνολικά 25 ελεύθερες παραμέτρους για τις τιμές των οποίων οι

τιμές δεν υπολογίζονται θεωρητικά.

2.4.4 Το πρόβλημα της ιεραρχίας

Στην σωματιδιακή φυσική το πρόβλημα της ιεραρχίας ανάγεται στο ερώτημα γιατί η

ασθενής αλληλεπίδραση είναι 1032
φορές ισχυρότερη από την βαρύτητα. Πιο τεχνικά

το ερώτημα γίνεται γιατί το μποζόνιο Higgs είναι τόσο ελαφρύτερο από ότι η μάζα

του Planck. Από την θεωρία αναμένεται πως οι μεγάλες κβαντικές διορθώσεις στο

τετράγωνο της μάζας του Higgs, θα έκαναν την μάζα τεράστια, συγκρίσιμη με την

κλίμακα στην οποία εμφανίζεται νέα φυσική, εκτός αν υπάρχουν απίστευτες λεπτές

ρυθμίσεις που “ακυρώνουν” τις τετραγωνικές διορθώσεις στην μάζα του Higgs.

Συγκεκριμένα, ότι οι κβαντικές διορθώσεις στο τετράγωνο της μάζας του μποζο-

νίου Higgs λόγω των κβαντικών διορθώσεων ενός βρόγχου, αποκλίνουν τετραγωνικά

ως προς την σταθερά αποκοπής Λ η οποία χαρακτηρίζει το όριο της ενέργειας πάνω

από την οποία αρχίζει να εκδηλώνεται η “νέα φυσική” πέρα από το ΚΠ:

δm2
H,W = O

(
g2

16π2

) Λ∫
0

d4k

k2
= O

(a
π

)
Λ2

(2.207)

Αν δεν υπάρχει “νέα φυσική” πριν την ενέργεια της μάζας Planck MP ∼ 1018GeV ,

τότε αναγκαστικά πρέπει να θεωρήσουμε ότι Λ → MP . Οπότε, για τέτοιες μεγάλες

τιμές του Λ οι διορθώσεις στην μάζα του Higgs είναι περίπου 30 τάξεις μεγέθους

μεγαλύτερες από τις φυσικές τιμές των μαζώνmH καιmW πράγμα που είναι αφύσικο.

Για αυτό το πρόβλημα αυτής της απόκλισης που εμφανίζεται ονομάζεται και πρόβλημα

της φυσικότητας [54].

Οι βασικές τετραγωνικές αποκλίσεις που συνεισφέρουν στην μάζα του Higgs στο

ΚΠ, όπως φαίνεται και στο Σχ. 2.17, είναι κυρίως από [55]:

• Μονού βρόγχου διαγράμματα με top κουάρκ, όπου − 3
8π2λ

2
tΛ

2 ∼ −(2TeV )2
.

• Μονού βρόγχου SU (2)×U (1) μποζόνια βαθμίδας, όπου
9

64π2 g
2Λ2 ∼ (700GeV )2

.
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• Του ιδίου του Higgs που “τρέχει” στον βρόγχο, όπου
1

16π2λ
2Λ2 ∼ (500GeV )2

.

΄Ολα τα υπόλοιπα διαγράμματα έχουν μικρότερη συνεισφορά επειδή εμπεριέχουν μι-

κρές σταθερές ζεύξης. Η ολική μάζα του Higgs στο τετράγωνο περιλαμβάνει το

άθροισμα των συνεισφορών από αυτούς τους βρόγχους καθώς και μια επιπέδου δέν-

δρου (tree level) παράμετρο μάζας στο τετράγωνο, δηλαδή:

m2
H = m2

tree − [100− 10− 5] (200GeV )2
(2.208)

Οπότε, για να έχει το Higgs μάζα μερικά GeV όπως έχει ήδη βρεθεί, απαιτείται

λεπτή ρύθμιση των tree level παραμέτρων της τάξης g2 ∼ O
(
10−28

)
. Δηλαδή, για

να αποκτήσουμε αναμενόμενη τιμή κενού (Vacuum Expectation Value - VEV) για

το Higgs στην ασθενή κλίμακα με λεπτές ρυθμίσεις μέχρι 10%, οι τρεις βρόγχοι

πρέπει να αποκόπτονται στις εξής κλίμακες: Λtop ≤ 2TeV , Λgauge ≤ 5TeV και

ΛHiggs ≤ 10TeV .

Σχήμα 2.17: Οι τετραγωνικές αποκλίσεις που συνεισφέρουν στην μάζα του Higgs από το top

κουάρκ, τα μποζόνια βαθμίδας και το ίδιο το Higgs σε μονούς βρόγχους στο ΚΠ.

Αν θεωρήσουμε πιο συγκεκριμένα τις γενικές συνεισφορές από ένα βαρύ φερμιόνιο

στις κβαντικές διορθώσεις της μάζας του βαθμωτού Higgs φ = Re (H − u) /
√

2 στο

ΚΠ (βλέπε Σχ. 2.18), όπου έχουμε την ζεύξη λf για τον όροHff̄ , τότε οι διορθώσεις
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δίνονται από:

Πf
φφ (0) = −

(
µ2
)(2−ω)

N (f)

∫
d2ωl

(2π)2ωTr

[(
i
λf√

2

)
i

/l −mf

(
i
λf√

2

)
i

/l −mf

]
=

= −2
(
µ2
)(2−ω)

N (f)λ2
f

∫
d2ωl

(2π)2ω

l2 +m2
f(

l2 −m2
f

)2 =

= −2N (f)λ2
f

∫
d2ωl

(2π)2ω

[
1

l2 −m2
f

+
2m2

f(
l2 −m2

f

)2

]
=

= 2N (f) i
λ2
f

4π2
m2
f

[
3

ε
+ 1 + 3 log

µ2

m2
f

]
(2.209)

όπου N (f) είναι ένας πολλαπλασιαστικός παράγοντας που έχει να κάνει με το χρώμα

του φερμιονίου f (για παράδειγμα N (t) = 3). Ο πρώτος όρος της τελευταίας σει-

ράς της Εξ. 2.209 αποκλίνει τετραγωνικά. Δηλαδή, αν λύσουμε τα ολοκληρώματα

βάζοντας σαν πάνω όριο το Λ ∼MPl τότε θα πάρουμε:

δm2
φ = −2N (f)

λ2
f

4π2
M2

Pl (2.210)

και οι κβαντικές διορθώσεις στην μάζα του Higgs είναι 30 τάξεις μεγέθους μεγαλύτε-

ρες από την μάζα του. Οι τετραγωνικές αποκλίσεις είναι καταστροφικές σε σχέση με

τις λογαριθμικές. Επίσης, το αποτέλεσμα της Εξ. 2.209 του Σχ. 2.18 δεν εξαρτάται

καθόλου από την γυμνή μάζα του πεδίου Higgs mφ. Αυτό συνδέεται με το γεγονός

ότι για mφ = 0 δεν έχουμε αύξηση της ομάδας συμμετρίας του μοντέλου. ΄Ετσι, δεν

υπάρχει μια συμμετρία που να προστατεύει την μάζα του Higgs από μεγάλες κβα-

ντικές διορθώσεις όπως για παράδειγμα υπάρχει η συμμετρία βαθμίδας U (1) για το

φωτόνιο.

Θα μπορούσε κανείς να μην δώσει φυσική σημασία στην ενέργεια Λ και να ακο-

λουθήσει το συνηθισμένο πρόγραμμα επακανονικοποίησης. ΄Ετσι, από την Εξ. 2.209

βλέπουμε ότι οι κβαντικές διορθώσεις θα είναι:

δm2
φ = 2N (f)

λ2
f

4π2
m2
f

[
1 + 3 log

µ2

m2
f

]
(2.211)

Εάν το mf είναι η μάζα κάποιο φερμιονίου του ΚΠ τότε η Εξ. 2.211 δίνει μικρές

διορθώσεις στην μάζα του πεδίου Higgs. Το ΚΠ όμως είναι μια ενεργή θεωρία πεδίου

η οποία περιγράφει την φυσική των στοιχειωδών σωματιδίων στις χαμηλές ενέργειες.

Στην περιοχή των υψηλών ενεργειών πιστεύεται πως υπάρχει μια άλλη θεμελιώδης
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θεωρία όπως κάποια GUT, όπως θα δούμε στην συνέχεια. Τότε θα μπορούσε η μάζα

του φερμιονίου να είναι της τάξης της ενέργειας αυτής και οι κβαντικές διορθώσεις

στην μάζα του Higgs να είναι τεράστιες. ΄Ετσι, όπως ήδη αναφέραμε, για να λυθεί το

πρόβλημα αυτό θα πρέπει να θεωρηθεί μια αφύσικη λεπτή ρύθμιση των παραμέτρων

της θεωρίας.

Σχήμα 2.18: Συνεισφορά από φερμιόνια και αντι-φερμιόνια στον διαδότη του μποζονίου Higgs

στο ΚΠ.

2.4.5 Σκοτεινή ύλη και σκοτεινή ενέργεια

Παρατηρήσεις στο Σύμπαν υποδεικνύουν πως μόνο το 4% της συνολικής μάζας του

Σύμπαντος μπορεί να είναι ορατό, δηλαδή βαρυονική ύλη. Περίπου το 23% υπολο-

γίζεται ότι αποτελείται από Σκοτεινή ΄Υλη - ΣΥ (Dark Matter) και το υπόλοιπο 73%

από Σκοτεινή Ενέργεια - ΣΕ (Dark Energy). Δηλαδή, το 96% του Σύμπαντος μας

είναι “σκοτεινό”. Οι λόγοι που μας οδήγησαν στην υπόθεση ύπαρξης της ΣΥ είναι

διάφοροι και βασίζονται σε ένα πλήθος θεωρητικών και παρατηρησιακών δεδομένων,

όπως θα δούμε εν συντομία παρακάτω. Το ΚΠ, σύμφωνα με τα όσα έχουμε μέχρι

στιγμής δει στις προηγούμενες ενότητες, δεν κάνει καμία πρόβλεψη για την ύπαρξη

αυτών των φυσικών ποσοτήτων ούτε μπορεί να τα εξηγήσει με βάση το σωματιδιακό

περιεχόμενο του. Οπότε, υπάρχει ανάγκη για την εύρεση άλλων θεωριών που θα

περιλαμβάνουν στις προβλέψεις τους, αλλά και θα εξηγούν με φυσικές διαδικασίες,

την ύπαρξη αυτού το 96% του Σύμπαντος μας.

Βασικές ενδείξεις για σκοτεινή ύλη

Η πρώτη παρατήρηση έγινε το 1933 όταν ο αστρονόμος Fritz Zwicky [56, 57] από

το California Institute of Technology, μελετώντας την κίνηση μιας ομάδας γαλαξι-
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ών στην Κόμη της Βερενίκης μέσω ερυθρομετατόπισης παρατήρησε ότι οι σχετικές

τροχιακές τους ταχύτητες ήταν υπερβολικά μεγάλες, της τάξης των 7000km/sec.

Αυτό όμως σημαίνει ότι η βαρυτική έλξη λόγω της ορατής ύλης στο εσωτερικό των

γαλαξιών δεν επαρκεί για να τους συγκρατήσει. Ο Zwicky υπολόγισε την μάζα του

εκάστοτε γαλαξία του σμήνους βασιζόμενος στην λαμπρότητα του, και έτσι στην

συνέχεια άθροισε όλες τις γαλαξιακές μάζες για να υπολογίσει η συνολική μάζα του

σμήνους. Στην συνέχεια ακολούθησε και έναν δεύτερο ανεξάρτητο υπολογισμό της

συνολικής μάζας του σμήνους μέσω του θεωρήματος virial από μετρήσεις της δια-

σποράς ταχυτήτων των γαλαξιακών μελών και της ακτίνας του πυρήνα του χώρου

όπου είναι κατανεμημένοι. Ο Zwicky παρατήρησε πως αυτός ο δεύτερος δυναμικός

υπολογισμός της μάζας του σμήνους ήταν 400 φορές μεγαλύτερος από τον αρχικό

του υπολογισμό που βασιζόταν στην λαμπρότητα των γαλαξιών. Το φαινόμενο αυτό

επιβεβαιώθηκε το 1937 από τον Sinclair Smith ο οποίος παρατήρησε επίσης πολύ

μεγάλες ταχύτητες στο σμήνος της Κόμης της Βερενίκης. Με αυτόν τον τρόπο οι

Zwicky και Smith διαπίστωσαν πως πρέπει να υπάρχει μάζα τουλάχιστον δεκαπλάσια

της ορατής ύλης στους γαλαξίες αυτούς έτσι ώστε να μπορεί δικαιολογήσει αυτές τις

τροχιακές ταχύτητες.

΄Ενα ακόμα παρατηρησιακό δεδομένο το οποίο υπέδειξε την ανάγκη ύπαρξης της

ΣΥ προκύπτει από τις καμπύλες περιστροφής των σπειροειδών γαλαξιών. Οι σπει-

ροειδείς γαλαξίες περιλαμβάνουν ένα μεγάλο πλήθος από αστέρες που διαγράφουν

τροχιές σχεδόν κυκλικές γύρω από το γαλαξιακό κέντρο. ΄Οπως ισχύει και για τις

τροχιές των πλανητών, έτσι και οι αστέρες με μεγαλύτερες γαλαξιακές τροχιές έχουν

μικρότερες τροχιακές ταχύτητες όπως προκύπτει από τον τρίτο νόμο του Keppler.

υ (r) =

√
GM (r)

r
(2.212)

Η Αμερικανή αστρονόμος Vera Rubin, εκτελώντας φασματικές μετρήσεις των γα-

λαξιών σε συστήματα σπειροειδών γαλαξιών κατέληξε στο γεγονός ότι οι καμπύλες

περιστροφής παραμένουν σταθερές μέχρι το όριο του φωτεινού δίσκου [58]. Το απο-

τέλεσμα αυτό είναι αντίθετο με την αναμενόμενη φθίνουσα μορφή της καμπύλης και

φαίνεται πως ισχύει για κάθε γαλαξία ανεξάρτητα του σχήματος και του περιβάλλο-

ντος του όπως φαίνεται στο Σχ. 2.19. Οι παρατηρήσεις της Rubin επιβεβαιώθηκαν

και από άλλους αστρονόμους για διάφορα συστήματα σπειροειδών γαλαξιών, οι οπο-

ίοι διαπίστωσαν ότι σε καμία περίπτωση δεν ακολουθείται ο τρίτος νόμος του Kep-

pler [59]. Δηλαδή, αντί να μειώνονται σε μεγάλες ακτίνες, οι τροχιακές ταχύτητες
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των αστέρων σε αυτά τα συστήματα παραμένουν απόλυτα σταθερές (βλέπε Σχ. 2.20)

γεγονός που υποδηλώνει ότι η μάζα που περιλαμβάνουν οι τροχιές μεγάλων ακτίνων

αυξάνεται. Το γεγονός αυτό ισχύει και για αστέρες που βρίσκονται σχετικά κοντά

στα όρια του γαλαξία. Αν και βρίσκονται κοντά στα άκρα του φωτεινού τμήματος

του γαλαξία, το τμήμα αυτό έχει μια κατανομή μάζας που φαινομενικά συνεχίζει πολύ

πέρα από τις περιοχές στις οποίες βρίσκονται αστέρες. ΄Ετσι, από τον συνδυασμό

φασματοσκοπικών και ορατών παρατηρήσεων φαίνεται πως τουλάχιστον το 70− 80%

της ύλης τέτοιων συστημάτων είναι σκοτεινή και βρίσκεται έξω από την περιοχή στην

οποία εκπέμπεται το μεγαλύτερο ποσοστό του φωτός σε αποστάσεις τουλάχιστον

δεκαπλάσιες από εκείνες της ορατής ύλης. Τέλος, η ΣΥ κατανέμεται διαφορετικά

από την ορατή ύλη καθώς βρίσκεται σε μια εκτεταμένη “άλω” η οποία περιβάλει τον

γαλαξία.

(αʹ) (βʹ)

Σχήμα 2.19: Τα πράσινα σημεία στο διάγραμμα αντιστοιχούν στις παρατηρούμενες ταχύτητες των

αντικειμένων που βρίσκονται σε τροχιά γύρω από τον νάνο σπειροειδή γαλαξία M33 σαν συνάρτηση

της απόστασης τους από το κέντρο του γαλαξία. Η κάτω καμπύλη στο διάγραμμα (διακεκομμένη

γραμμή) δείχνει την αναμενόμενη ταχύτητα των αντικειμένων στον M33 ανάλογα με την φωτεινή

ύλη στον γαλαξία. Η πράσινη γραμμή είναι η αναμενόμενη ταχύτητα για τα περιφερόμενα αντικείμενα

αν υπάρχει ΣΥ στον Μ33.

Σχήμα 2.20: Καμπύλη περιστροφής του γαλαξία NGC 6503 που μελετήθηκε από τους Begeman,

Broels και Sanders (1991), όπου φαίνονται και οι συνεισφορές στην καμπύλη από αέρια, φωτεινή

ύλη - δίσκο και ΣΥ στην άλω.

΄Ενας επίσης βασικός λόγος, είναι από τον προσδιορισμό της γεωμετρίας του

Σύμπαντος. Το ποσό της βαρυονικής ύλης που υπάρχει στο Σύμπαν δεν είναι ε-
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ύκολο να υπολογιστεί εξ ολοκλήρου από την ακτινοβολία που εκπέμπει. Για αυτό

τον λόγο βασιζόμαστε στις θεωρίες της πρώιμης πυρηνοσύνθεσης για την δημιουρ-

γία των ελαφρών στοιχείων. ΄Ετσι, προκύπτει ότι η πυκνότητα της βαρυονικής ύλης

είναι περίπου:

ΩB = 0.0449± 0.0028 (2.213)

Αλλά από παρατηρήσεις μέσω της κοσμικής μικροκυματικής ακτινοβολίας υποβάθρου

(ΚΑΜ) από δορυφόρους όπως ο “Cosmic Background Explorer” (COBE) και ο

“Wilkinson Microwave Anisotropy Probe” (WMAP) αλλά και από τον πρόσφατο

“Planck” προκύπτει ότι η τιμή της κοσμολογικής παραμέτρου Ω είναι [60]:

Ω0 = 1.02± 0.02 (2.214)

΄Αρα, η ορατή ύλη παρέχει μόνο 1 − 2% της μάζας που χρειάζεται για να είναι το

Σύμπαν μας κλειστό. Η συνολική πυκνότητα ύλης (βαρυονικής και μη βαρυονικής)

στο Σύμπαν συμπεριλαμβανομένης και της ΣΥ των ορατών γαλαξιών υπολογίζεται

από τις μετρήσεις του WMAP σε:

ΩM = ΩB + ΩΣΥ = 0.267± 0.026 (2.215)

Αλλά από τις διακυμάνσεις στην ΚΑΜ βρήκαμε την τιμή 2.214, οπότε για να είναι

το Σύμπαν μας κλειστό πρέπει να υπάρχει τουλάχιστον 50− 100 φορές περισσότερη

ποσότητα ΣΥ από αυτήν που έχουμε βρει με τις ανωτέρω μεθόδους [61].

Σχήμα 2.21: Διακυμάνσεις της θερμοκρασίας στην κοσμική ακτινοβολία υποβάθρου όπως με-

τρήθηκε από τον δορυφόρο Planck.
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Γενικά χαρακτηριστικά της σκοτεινής ύλης

Από τις ανωτέρω παρατηρήσεις για την ύπαρξη ΣΥ καταλήγουμε στις εξής ιδιότητες

τις οποίες πρέπει να έχει:

1. Να αλληλεπιδρά με την συνηθισμένη ύλη κυρίως βαρυτικά.

2. Να είναι ηλεκτρικά ουδέτερη, δηλαδή να μην αλληλεπιδρά ηλεκτρομαγνητικά

αλλιώς θα είχε ανιχνευτεί άμεσα.

3. Να μπορεί να συμμετέχει στις ασθενείς αλληλεπιδράσεις.

4. Οι αλληλεπιδράσεις μεταξύ των σωματιδίων ΣΥ θα πρέπει να είναι πολύ μικρές.

Η ενεργός διατομή θα πρέπει να είναι της τάξης μεγέθους σ ' 10−24cm2
. Εάν

υφίστατο αλληλεπίδραση μεταξύ σωματιδίων ΣΥ τότε αυτή θα καταστρεφόταν

βαρυτικά.

5. Να βρίσκεται παντού μέσα στο Σύμπαν με μεγαλύτερη όμως συγκέντρωση στην

άλω των γαλαξιών. Δηλαδή, η ΣΥ είναι ανόμοια κατανεμημένη στο Σύμπαν.

6. Να διαπερνά εύκολα πυκνή ύλη όπως τη Γη τον ΄Ηλιο κλπ. Δηλαδή, η αλ-

ληλεπίδραση ανάμεσα σε βαρυονική και ΣΥ πρέπει να είναι ελάχιστη. Αν η

ενεργός διατομή δεν ήταν μικρή τότε σήμερα θα είχαμε την ίδια κατανομή ΣΥ

και βαρυονικής ύλης.

Βασικές ενδείξεις για σκοτεινή ενέργεια

Το γεγονός ότι το Σύμπαν διαστέλλεται και δεν είναι στατικό διατυπώθηκε από τον

Βρετανό αστρονόμο Hubble ο οποίος βρήκε ότι όσο μεγαλύτερη είναι η απόσταση

ενός γαλαξία από εμάς τόσο μεγαλύτερη κατά μέσο όρο τείνει να είναι η ταχύτητα

απομάκρυνσης του από εμάς προς το ερυθρό. Σύμφωνα λοιπόν με τον νόμο του

Hubble η ταχύτητα απομάκρυνσης ενός γαλαξία είναι ανάλογη της απόσταση του

γαλαξία. Δηλαδή, το Σύμπαν διαστέλλεται με τέτοιο τρόπο ώστε η απόσταση μεταξύ

δυο οποιωνδήποτε γαλαξιών να αυξάνει σταθερά με τον χρόνο. Φυσικά, η διαστολή

σημαίνει ότι ο ίδιος ο χώρος ανάμεσα τους διαστέλλεται, και δεν απομακρύνονται

απλά μεταξύ τους. Η μαθηματική έκφραση του νόμου του Hubble δίνεται από την

σχέση:

υ = H0r (2.216)

όπου H0 είναι η σταθερά του Hubble, υ η ταχύτητα απομάκρυνσης και r η απόσταση.
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Το 1998 δυο επιστημονικές ομάδες που δούλευαν στο πρόγραμμα “Κοσμολογία

Σουπερνόβα” έφτασαν σε ένα παράξενο συμπέρασμα όταν μελετούσαν μακρινούς υ-

περκαινοφανείς τύπου Ια ως πρότυπα κεριά για την μέτρηση της απόστασης σε σχέση

με την μετατόπιση προς το ερυθρό. Υποθέτουμε ότι σε κάθε γαλαξία τα αντικε-

ίμενα αυτά έχουν τα ίδια μέσα απόλυτα μεγέθη με τον δικό μας Γαλαξία και ίσο

με M = −19.3. Οπότε, αφού γνωρίζουμε το απόλυτο μέγεθος τους μπορούμε να

συσχετίσουμε το σχετικό μέγεθος τους m με την απόσταση r από τον τύπο:

m−M = 5 log r − 5Au (2.217)

Συνεπώς μετρώντας το σχετικό τους μέγεθος μπορούμε να υπολογίσουμε την α-

πόσταση τους. Αυτού του τύπου οι υπερκαινοφανείς χρησίμευσαν για την μέτρηση

του ρυθμού διαστολής του Σύμπαντος σε διαφορετικούς χρόνους κατά την εξέλιξή

του. ΄Ομως, όσο πιο απόμακροι είναι οι γαλαξίες τόσο πιο πίσω στο χρόνο τους

βλέπουμε, και όπως προκύπτει από τον νόμο του Ηυββλε τόσο περισσότερο το φως

τους μετατοπίζεται προς το ερυθρό μέρος του φάσματος, με βάση την σχέση:

r =
c

H0

[
(z + 1)2 − 1

(z + 1)2 + 1

]
(2.218)

όπου z η ερυθρή μετατόπιση η οποία είναι ανάλογη της μετατόπισης του μήκους κύμα-

τος. ΄Ετσι, μετρώντας την φωτεινότητα και την ερυθρή μετατόπιση των υπερκαινοφα-

νών σε αυτούς του γαλαξίες μπορούμε να βρούμε το μέγεθος που είχε το Σύμπαν όταν

έγινε η έκρηξη του υπερκαινοφανούς και συνεπώς το ρυθμό διαστολής του Σύμπα-

ντος. Οι ομάδες αυτές διαπίστωσαν πως ο ρυθμός διαστολής του Σύμπαντος αντί

να ελαττώνεται, αυξάνεται. Αυτό είναι αντίθετο με την θεωρητική πρόβλεψη, καθώς

αφού η βαρύτητα η οποία είναι η κυρίαρχη μορφή δύναμης στο Σύμπαν είναι ελκτική,

τότε ένα Σύμπαν από ύλη ή ακτινοβολία θα έπρεπε να διαστέλλεται επιβραδυνόμε-

να. Οι υπολογισμοί όμως των παρατηρήσεων έδειξαν ότι το Σύμπαν επιταχύνεται τα

τελευταία 109
χρόνια. ΄Αρα, πρέπει να υπάρχει μια νέα ουσία η οποία να προκαλεί

βαρυτική άπωση και συνεπώς την επιταχυνόμενη διαστολή του Σύμπαντος. Η ουσία

αυτή πήρε το όνομα ΣΕ από τον κοσμολόγο Michael Turner [62,63].

Η δεύτερη ένδειξη για την ύπαρξη ΣΕ έγινε, όπως αναφέραμε, από την μελέτη

της ΚΑΜ [64] από όπου προκύπτει ότι για να έχουμε Ω0 ' 1 δεν αρκεί η ύπαρξη

ΣΥ αλλά όπως φαίνεται και από την Εξ. 2.214 πρέπει να υπάρχει ένα επιπρόσθετο

ΩΣΥ = 0.73.
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Γενικά χαρακτηριστικά της σκοτεινής ενέργειας

Από τις ανωτέρω παρατηρήσεις καταλήγουμε πως η ΣΕ πρέπει να έχει τις εξής χα-

ρακτηριστικές ιδιότητες:

1. Πρέπει να ασκεί αρνητική πίεση. ΄Οπως προκύπτει από την γενική σχετικότητα

η δύναμη της βαρύτητας καθορίζεται από τον συνδυασμό της ενεργειακής πυ-

κνότητας ρ και της πίεσης p από την σχέση ρ + 3p. Το άθροισμα αυτό ορίζει

την συνολική βαρυτική ενέργεια της ύλης και όλες οι μέχρι στιγμής γνωστές

μορφές ύλης έχουν ρ+3p > 0, οι οποίες προκαλούν επιβράδυνση, για να έχουμε

μια απωστική δύναμη και μια αρνητική πίεση θα πρέπει να ισχύει ρ+ 3p < 0.

2. Η ΣΕ δεν έχει μάζα και διαδίδεται ομοιόμορφα σε όλα το διάστημα όπου δρα

ως ένα είδος απωστικής δύναμης που ωθεί το Σύμπαν να διαστέλλεται επιτα-

χυνόμενα.

3. Αφού κατανέμεται ομοιόμορφα στο χώρο τίποτε δεν έλκεται ιδιαίτερα από αυ-

τήν, διότι απαντά παντού στην ίδια ποσότητα.

4. Συγκεκριμένα, έχει παντού την ίδια πυκνότητα ρΣE ' 10−26kg ·m−3
. ΄Ετσι, η

ΣΕ στο ηλιακό μας σύστημα έχει περίπου την μάζα ενός μικρού αστεροειδούς,

κάνοντας την εντελώς αδύνατη να επηρεάσει την κίνηση των πλανητών. Τα

αποτελέσματα της ξεχωρίζουν μόνο όταν μελετώνται τεράστιες κλίμακες.

2.4.6 Κβαντισμένο ηλεκτρικό φορτίο

Τα ηλεκτρικά φορτία όλων των γνωστών στοιχειωδών σωματιδίων είναι ακέραια πολ-

λαπλάσια του φορτίου του d-κουάρκ (βλέπε πχ Πίνακα 1.3 ή Πίνακα 2.2). Οπότε,

πειραματικά φαίνεται πως το ηλεκτρικό φορτίο είναι κβαντισμένο. ΄Ομως, θεωρητικά

δεν γνωρίζουμε με σιγουριά γιατί το ηλεκτρικό φορτίο είναι κβαντισμένο αφού το

υπερφορτίο είναι εντελώς αυθαίρετο.

Αν η ομάδα βαθμίδας είναι μια συμπαγής απλή ομάδα, τότε η αντίστοιχη θεωρία

βαθμίδας έχει μια μοναδική σταθερά ζεύξης, και οδηγεί φυσικά σε διακριτά φορτία.

Ωστόσο, μια θεωρία βαθμίδας, μιας αβελιανής ομάδας (που δεν κάνει διάκριση μετα-

ξύ σταθερών ζεύξης και φορτίων) μπορεί να συζευχθεί με τα πεδία με αυθαίρετες

σταθερές στην συναλλοίωτη παράγωγο. ΄Ετσι, υπάρχει πρόβλημα με την κβάντωση

του φορτίου στην U (1) θεωρία βαθμίδας καθώς δεν γνωρίζουμε γιατί το ηλεκτρικό

φορτίο είναι κβαντισμένο. Γνωρίζουμε ότι τα πεδία της ύλης με μια αβελιανή ομάδα
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βαθμίδας έχουν φορτία τα οποία είναι ακέραια πολλαπλάσια του e/3 όπου e το φορτίο

του ηλεκτρονίου. Οπότε, το πρόβλημα ανάγεται στην διαμάχη μεταξύ των παρατηρο-

ύμενων κβαντισμένων τιμών του ηλεκτρικού φορτίου και των θεωρητικά απεριόριστων

συνεχών τιμών των επιτρεπτών ηλεκτρικών φορτίων.

Ανά τα χρόνια υπήρχαν διάφορες θεωρίες οι οποίες προσπαθούν να δώσουν μια

εξήγηση αυτού του φαινομένου όμως μέχρι στιγμής δεν έχει αποδειχθεί καμία. Μια

τέτοια θεωρία έδωσε ο Dirac [65], το 1931 όπου έδειξε πως όταν πραγματοποιήσουμε

ζεύξη του Ηλεκτρομαγνητισμού με την Κβαντομηχανική, η ύπαρξη ενός μεμονωμένου

μαγνητικού μονόπολου που ονομάστηκε μονόπολο Dirac, αφ΄ ενός αποκαθιστά την

ασυμμετρία που υπάρχει μεταξύ ηλεκτρικού και μαγνητικού φορτίου στις εξισώσεις

του Maxwell, και αφ΄ εταίρου μπορεί να εξηγήσει την κβάντωση του ηλεκτρικού

φορτίου. Δηλαδή, μπορεί να εξηγήσει τον λόγο για τον οποία δεν παρατηρούμε

μεμονωμένα ηλεκτρικά φορτία με μη ακέραια πολλαπλάσια του στοιχειώδους φορτίου

του ηλεκτρονίου. Η περίφημη σχέση κβάντωσης του Dirac για το μαγνητικό φορτίο

g ενός μονόπολου έχει την μορφή:

eg =
n~c
2

(2.219)

με n = 1, 2, 3, ... όπου e το στοιχειώδες ηλεκτρικό φορτίο του ηλεκτρονίου και ~
η σταθερά του Planck. Η συνθήκη 2.219 μας λέει ότι εάν στο Σύμπαν υπάρχει

τουλάχιστον ένα μαγνητικό μονόπολο οποιουδήποτε μαγνητικού φορτίου g, τότε το

ηλεκτρικό φορτίο πρέπει απαραίτητα να είναι κβαντωμένο. Η ελάχιστη μάζα του

μονόπολου Dirac που προκύπτει από την συνθήκη κβάντωσης και είναι της τάξης

μεγέθους της μάζας του πρωτονίου.

Η εξίσωση του Dirac μπορεί να αποδειχθεί εύκολα χρησιμοποιώντας έναν διαφο-

ρετικό δρόμο από αυτόν που χρησιμοποίησε ο Dirac με χρήση της υπεραγωγιμότητας.

Υποθέτουμε αρχικά ότι υπάρχει ένα μαγνητικό μονόπολο που αντιστοιχεί σε μαγνη-

τικό φορτίο g. Οι ιδιότητες του μαγνητικού πεδίου που δημιουργεί το μαγνητικό

μονόπολα θα είναι ανάλογες με τις ιδιότητες του ηλεκτρικού πεδίου που δημιουργεί

ένα σημειακό φορτίο q. Συνεπώς αφού η ένταση του ηλεκτρικού πεδίου που δημιουρ-

γεί ένα σημειακό φορτίο βρίσκεται από την σχέση:

E =
1

4πε0

q

r2
(2.220)

Ανάλογα για την ένταση του μαγνητικού πεδίου που δημιουργεί ένα σημειακό μαγνη-

τικό μονόπολο με μαγνητικό φορτίο q θα είναι:

B =
1

4πε0

g

r2
(2.221)
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Αν διαθέτουμε έναν υπεραγώγιμο βρόγχο και το μαγνητικό μονόπολο περάσει μέσα

από αυτόν, τότε η μεταβολή της μαγνητικής ροής θα δημιουργήσει ένα μόνιμο ηλε-

κτρικό ρεύμα στο βρόγχο. Καθώς το μονόπολο πλησιάζει το βρόγχο, η μεταβολή της

μαγνητικής ροής θα επάγει ένα ηλεκτρικό ρεύμα, του οποίου το μαγνητικό πεδίο B

θα αντιστέκεται στο πλησίασμα του μονόπολου. ΄Οταν τελικά το μονόπολο εξέλθει

από τον βρόγχο το επαγωγικό ρεύμα θα συνεχίσει να έχει την ίδια φορά, έτσι ώστε

να δημιουργεί ένα μαγνητικό πεδίο που θα αντικαθιστά το ελαττούμενο μαγνητικό

πεδίο του μονόπολου όπως φαίνεται και στο Σχ. 2.22:

Σχήμα 2.22: Σχηματική απεικόνιση της μετάβασης ενός μαγνητικού μονόπολου με μαγνητικό

φορτίο g, από έναν υπεραγώγιμο βρόγχο.

Η συνολική μαγνητική ροή που διέρχεται μέσα από τον κυκλικό βρόγχο είναι στην

ουσία ίδια με την μαγνητική ροή που διασχίζει μια σφαιρική επιφάνεια που περιέχει

το μαγνητικό μονόπολο g θα είναι:

Φ =
µ0

4π

g

r2
· 4πr2 = µ0g (2.222)

Το 1961 όμως ανακαλύφθηκε πειραματικά ότι η μαγνητική ροή που διέρχεται διαμέσου

ενός υπεραγώγιμου ρευματοφόρου βρόγχου είναι κβαντισμένη [66]. Η διέλευση του

μονόπολου διαμέσου ενός υπεραγώγιμου βρόγχου δημιουργεί μόνιμο ηλεκτρικό ρεύμα

στο βρόγχο. Εφόσον η κβαντωμένη μαγνητική ροή διαμέσου του βρόγχου εξαρτάται

100



2.4. Βασικά προβλήματα Μαρούδας Μάριος

από το εν λόγω ρεύμα, το οποίο με τη σειρά του εξαρτάται από την κίνηση των ηλε-

κτρονίων, τότε τα ηλεκτρόνια πρέπει να βρίσκονται σε διακριτές ενεργειακές στάθμες.

Αυτό θυμίζει το άτομο του υδρογόνου και την αρχή του Bohr, η οποία λέει ότι ένα

ηλεκτρόνιο που κινείται σε κυκλική τροχιά ακτίνας r πρέπει να ικανοποιεί την σχέση:

mυr = n
h

2π
(2.223)

όπου n ακέραιος. Στην περίπτωση του υπεραγώγιμου βρόγχου μπορούμε να θεω-

ρήσουμε ότι τα ηλεκτρόνια κινούνται σε κυκλική τροχιά μέσα σε ένα ομογενές μα-

γνητικό πεδίο εξαιτίας της δύναμης Lorentz που παίζει τον ρόλο της κεντρομόλου

επιτάχυνσης:

Bυe = m
υ2

r
(2.224)

΄Ετσι, συνδυάζοντας τις Εξ. 2.223 και 2.224 προκύπτει ότι:

Φ = B
(
πr2
)

= n
h

2e
(2.225)

Συνεπώς η μαγνητική ροή που διέρχεται μέσα από έναν ρευματοφόρο βρόγχο είναι

κβαντωμένη, το κβάντο της οποίας είναι περίπου 2·10−15T ·m2
. Οπότε, συνδυάζοντας

τις σχέσεις 2.222 και 2.225 παίρνουμε:

µ0ge =
nh

2
(2.226)

που δεν είναι τίποτα άλλο παρά η περίφημη συνθήκη κβάντωσης του Dirac για το

μαγνητικό φορτίο του μονόπολου 2.219 σε μονάδες S.I.

΄Ομως, μέχρι στιγμής δεν έχει βρεθεί κανένα μαγνητικό μονόπολα στα διάφορα

πειράματα που φαίνονται στο Σχ. 2.23, και έτσι έχουν δοθεί κάτω όρια. ΄Αλλες

θεωρίες που προβλέπουν την ύπαρξη μαγνητικών μονόπολων, είναι οι Μεγαλοενο-

ποιημένες Θεωρίες (GUTs) τις οποίες θα δούμε στο επόμενο κεφάλαιο (βλέπε εδάφιο

3.2.3) καθώς και θεωρίες που περιλαμβάνουν την ύπαρξη επιπλέον διαστάσεων [67],

όπως η θεωρία χορδών (βλέπε εδάφιο 5.2.1). Φυσικά, τα μονόπολα που προβλέπονται

από αυτές τις θεωρίες είναι διαφορετικά καθώς είναι πολύ πιο βαριά από τα αντίστοι-

χα μονόπολα του Dirac. Για τα μονόπολα αυτά (από επιπλέον διαστάσεις και θεωρία

χορδών) δεν θα δούμε περισσότερες λεπτομέρειες, καθώς ξεπερνά τα όρια αυτής της

εργασίας, όμως ο αναγνώστης μπορεί να ανατρέξει στις αναφορές [68–72].
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Σχήμα 2.23: ΄Ορια ενεργών διατομών συναρτήσει της μάζας των μαγνητικών μονόπολων όπως

προκύπτει από άμεσες ανιχνεύσεις με χρήση επιταχυντών (συνεχόμενες γραμμές) και έμμεσων ανι-

χνεύσεων (διακεκομμένες γραμμές) [73].

2.4.7 Γενιές στοιχειωδών σωματιδίων

Σύμφωνα με το ΚΠ, όπως έχουμε δει και στο εδάφιο 2.4.3, υπάρχουν τρεις γενιές

στοιχειωδών σωματιδίων κουάρκ και λεπτονίων (βλέπε Σχ. 2.3). Κάθε γενιά απο-

τελείται συγκεκριμένα από δύο λεπτόνια και δύο κουάρκ. Ανάμεσα στις γενιές τα

σωμάτια διαφέρουν ως προς τον κβαντικό αριθμό της γεύσης, και την μάζα τους,

όμως οι αλληλεπιδράσεις τους είναι πανομοιότυπες. Από τις τρεις γενιές σωματιδίων,

μόνο η πρώτη είναι σταθερή, δηλαδή αυτή που περιέχει τα up και down κουάρκ,

τα ηλεκτρόνια και τα ηλεκτρονικά νετρίνα. Δεν φαίνεται να υπάρχει ανάγκη για τις

άλλες δύο γενιές στον κόσμο που μας περιβάλλει, παρόλα αυτά οι γενιές αυτές υπάρ-

χουν. Οι φυσικές θεωρίες δεν έχουν καμία εξήγηση για την ύπαρξη των άλλων δύο

ασταθών γενεών. Δηλαδή, το ΚΠ δεν εξηγεί γιατί υπάρχουν τρεις γενιές κουάρκ-

λεπτονίων και όχι λιγότερες ή περισσότερες. Επίσης, δεν υπάρχουν σοβαροί αυστηροί

περιορισμοί οι οποίοι να αποκλείουν την πιθανότητα να υπάρχουν παραπάνω γενιές με

βαρύτερα σωμάτια οι οποίες μέχρι τώρα δεν έχουν παρατηρηθεί [74,75]. Τα πειράματα

βέβαια μέχρι στιγμής συνηγορούν στην ύπαρξη 3 και όχι περισσότερων γενεών.
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2.4.8 Ισχυρές αλληλεπιδράσεις και βαρύτητα

΄Ενα βασικό επίσης ερώτημα είναι το πως θα ενοποιηθεί η θεωρία για την βαρύτη-

τα (δηλαδή η ΓΘΣ) με την θεωρία για τις άλλες αλληλεπιδράσεις (δηλαδή το ΚΠ).

Προσπάθειες για την διατύπωση μιας θεωρίας ΚΒ θα συζητήσουμε αργότερα (βλέπε

εδάφιο 5.2). ΄Ενα βασικό πρόβλημα όπως θα δούμε στην συνέχεια είναι ότι μια θε-

ωρία για την ΚΒ είναι “μη επακανονικοποιήσιμη”. Επίσης, μια βασική διαφορά για

παράδειγμα ανάμεσα στις ηλεκτρομαγνητικές δυνάμεις και στις δυνάμεις βαρύτητας

έγκειται στο ότι δυο όμοια ηλεκτρικά φορτία απωθούνται ενώ δυο όμοια βαρυτικά

φορτία, πχ δυο μάζες, έλκονται. Αυτό οφείλεται στο γεγονός ότι στη θεωρία πεδίου

η απαίτηση να είναι η ενέργεια μια θετικά καθορισμένη ποσότητα συνεπάγεται ότι

μόνο θεωρίες με άρτια σπιν οδηγούν σε έλξη όμοιων φορτίων ενώ θεωρίες με περιττό

σπιν οδηγούν σε άπωση.

Πέρα από το γεγονός ότι η βαρύτητα δεν περιλαμβάνεται, η ισχυρή αλληλεπίδρα-

ση δεν αναμιγνύεται ούτε με την ασθενή ούτε με την ηλεκτρομαγνητική με κανέναν

τρόπο. ΄Ομως, παρά την ανάμιξη που επιτυγχάνεται των δύο τελευταίων (ηλεκτρα-

σθενής αλληλεπίδραση), είναι λάθος να μιλάμε για ενοποίηση, αφού η κάθε μία χα-

ρακτηρίζεται από διαφορετική σταθερά σύζευξης ακόμα και μετά την ανάμιξή τους.

Η ανεπάρκεια λοιπόν του ΚΠ να εδραιωθεί σαν μία θεωρία ενοποίησης μας α-

νάγκασε να κινηθούμε σε θεωρίες πέρα από το ΚΠ και να θεωρήσουμε το τελευταίο

(λόγω των επιτυχιών του) ως ένα ενδιάμεσο βήμα προς μία πιο θεμελιώδη θεωρία,

η οποία να μπορεί να ανταποκριθεί στις παραπάνω προσδοκίες και να λύνει όλα τα

προαναφερθέντα προβλήματα.
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Κεφάλαιο 3

Μεγαλοενοποιημένες θεωρίες

Μετά και την ανακάλυψη του μποζονίου Higgs (βλέπε εδάφιο 2.3.4) το ΚΠ θεωρείται

πως είναι πλήρες και πως αποτελεί μια καλή προσέγγιση μέχρι τις τωρινές υψηλές

ενέργειας, όμως δεν μπορεί να θεωρηθεί ως τελική θεωρία της φύσης. ΄Οπως α-

ναφέρθηκε στο εδάφιο 2.4, υπάρχει ένα μεγάλο πλήθος προβλημάτων τα οποία μας

υποδεικνύουν ότι το ΚΠ δεν είναι η τελική θεωρία και άρα πρέπει να συνεχίσουμε να

αναζητούμε θεωρίες και άλλες ομάδες που θα μας περιγράφουν καλύτερα την φυσική

πραγματικότητα.

Πιο συγκεκριμένα, πολλά από τα προβλήματα του ΚΠ μπορούν να ξεπεραστούν

αν θεωρήσουμε ότι η ομάδα συμμετριών SU(3)C ×SU(2)L×U(1)Y είναι μέλος μιας

μεγαλύτερης ομάδας G, δηλαδή:

G ⊃ SU(3)C × SU(2)L × U(1)Y (3.1)

Με αυτό τον τρόπο, όπως θα δούμε, περιορίζονται οι ελεύθερες παράμετροι του

ΚΠ (βλέπε εδάφιο 2.4.3) αλλά και προβλέπεται η κβάντωση του ηλεκτρικού φορτίου

(βλέπε εδάφιο 2.4.6). ΄Ενα άλλο χαρακτηριστικό που πρέπει να έχουν οι θεωρίες

αυτές είναι πως πρέπει, εκτός του να λύνουν κάποια από τα υπάρχοντα προβλήματα

του ΚΠ, να συνδέουν διαφορετικά φαινόμενα, όπως η διάσπαση του πρωτονίου, οι

μάζες των φερμιονίων και οι συμμετρίες βαθμίδας.

Οι θεωρητικές προσπάθειες για την εύρεση μιας τέτοιας υποομάδας υπήρξαν αρ-

κετά έντονες και οδήγησαν στις σύγχρονες Μεγαλοενοποιημένες Θεωρίες Βαθμίδας

(Grand Unified Theories - GUT). Αυτές, προβλέπουν πως σε ενέργειες της τάξης

των 1013GeV προκύπτει η ενοποίηση των ισχυρών αλληλεπιδράσεων με τις ηλεκτρα-

σθενείς που έλειπε από το ΚΠ (βλέπε εδάφιο 2.4.8). Το γεγονός αυτό όμως μας
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υποδεικνύει ότι η άμεση επαλήθευση τους είναι πρακτικά αδύνατη καθώς η ενεργεια-

κή αυτή κλίμακα της ενοποίησης είναι τέτοια που κάνει την άμεση πειραματική επα-

λήθευση της ενοποίησης ανέφικτη σε αντίθεση με τις ηλεκτρασθενείς δυνάμεις όπου

η επαλήθευση έγινε μέσω της ανακάλυψης των ενδιάμεσων ανυσματικών μποζονίων

(βλέπε εδάφιο 2.3.2). ΄Ομως, όπως θα δούμε στην συνέχεια, η ενοποίηση μπορεί να

επαληθευθεί έμμεσα μέσω των συνεπειών της στις χαμηλές ενέργειες, όπως η ύπαρ-

ξη μαγνητικών μονόπολων (βλέπε εδάφιο 3.2.3), αλλά και η διάσπαση του πρωτονίου

(βλέπε εδάφιο 3.2.1).

3.1 Βασικές θεωρίες

3.1.1 SU (5)

Κοιτώντας όλες τις πιθανότητες, καταλήγουμε στο γεγονός ότι δεν έχουμε πολλές

επιλογές αν θέλουμε να ενσωματώσουμε και το ΚΠ στην ομάδα μας. ΄Εχουμε λοιπόν

9 υποψήφιες ομάδες: SU(2)4
, SO(5)2

, G2
2, SO(8), Sp(8), F4, SU(3)2

και SU (5).

Οι πρώτες δύο απορρίπτονται καθώς δεν περιέχουν μια SU(3), ενώ οι επόμενες πέντε

δεν έχουν μιγαδικές αναπαραστάσεις και άρα δεν μπορούν να αναπαράγουν το σωμα-

τιδιακό περιεχόμενο του ΚΠ με την παρατηρούμενη χειραλική δομή. Τέλος, η ομάδα

SU(3)2
θα μπορούσε να δουλέψει αλλά δεν μπορούμε να καθορίσουμε έναν γεννήτορα

ηλεκτρικού φορτίου χωρίς να προσθέσουμε μια εκτενή λίστα από μαζικά πεδία εκτός

του ΚΠ. Από την άλλη, η SU (5) μας επιτρέπει να θεωρήσουμε μόνο μαζικά πεδία

του ΚΠ και με τους σωστούς κβαντικούς αριθμούς.

΄Ετσι, η μικρότερη επέκταση του ΚΠ που μπορεί να γίνει προς μια GUT, δηλαδή

η ομάδα με το μικρότερο σωματιδιακό περιεχόμενο, βασίζεται στην ομάδα SU (5).

Οπότε, η μικρότερη λειτουργική ομάδα G της σχέσης 3.1 είναι η SU (5), από όπου

έχουμε

SU (5)→ SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q (3.2)

Το μοντέλο αυτό επεξεργάστηκε το 1973 από τους Glashow και Georgi [76]. Στο

πρότυπο αυτό, το ενοποιημένο πεδίο των τριών βασικών αλληλεπιδράσεων χρειάζεται

για την διάδοση του 52 − 1 = 24 ενδιάμεσους φορείς. Από αυτούς, οι 12 είναι οι

γνωστοί μας φορείς των τριών βασικών αλληλεπιδράσεων, δηλαδή το φωτόνιο γ των

ηλεκτρομαγνητικών, τα μποζόνια W±
και Z0

των ασθενών πυρηνικών δυνάμεων και

τα γκλουόνια gi, i = 1, ..., 8 των ισχυρών πυρηνικών δυνάμεων. Υπάρχουν άρα 12
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νέοι μεσάζοντες οι οποίοι συμβολίζονται με X και Y και τα αντι-σωμάτια τους X̄ και

Ȳ . Τα σωμάτια X και Y , όπως και οι συγκολλητές, είναι έγχρωμα, είναι μέλη της

αντι-τριάδας χρώματος και έχουν ηλεκτρικό φορτίο ίσο με 4/3 και 1/3 αντίστοιχα,

ενώ παίρνουν την μάζα τους από το σπάσιμο της συμμετρίας SU (5).

Επίσης, στο πρότυπο SU (5) τα φερμιόνια κατατάσσονται σε πεντάδες ή δεκάδες

οι οποίες ονομάζονται πολλαπλότητες της συμμετρίας βαθμίδας του πεδίου (όπως

οι τριάδες των έγχρωμων κουάρκ στις ισχυρές αλληλεπιδράσεις και οι δυάδες των

λεπτονίων στις ασθενείς). Σε αυτή την περίπτωση όμως στην ίδια πεντάδα μπορεί

να συνυπάρχουν κουάρκ και λεπτόνια πράγμα, που μας δείχνει ότι μπορεί να υπάρξει

μετασχηματισμός ενός κουάρκ σε λεπτόνιο και το αντίστροφο, κάτι που παραβιάζει

την διατήρηση τόσο του βαρυονικού όσο και του λεπτονικού αριθμού. Οι μετασχη-

ματισμοί αυτοί γίνονται για τον ίδιο λόγο που τα κουάρκ μιας τριάδας ή τα λεπτόνια

μιας δυάδας μπορούν να μετασχηματίζονται το ένα στο άλλο μέσω των φορέων των

αντίστοιχων αλληλεπιδράσεων. Φορείς αυτού του μετασχηματισμού είναι τα νέα ανυ-

σματικά μποζόνια X και Y .

Δομή

Κάτω από την SU (3)×SU (2)×U (1) η αναπαράσταση 10 της SU (5) αποσυντήθεται

σε:

10 =

(
3, 2,

1

6

)
⊕
(

3∗, 1,−2

3

)
⊕ (1, 1, 1) (3.3)

ενώ για τις άλλες αναπαραστάσεις έχουμε ότι:

5 =

(
3, 1,−1

3

)
⊕
(

1, 2,
1

2

)
5∗ =

(
3∗, 1,

1

3

)
⊕
(

1, 2,−1

2

) (3.4)

΄Ετσι, στο μοντέλο αυτό οι τρεις γενιές φερμιονίων του ΚΠ, δηλαδή όλα τα κουάρκ

και τα λεπτόνια, περιλαμβάνονται στις αναπαραστάσεις 10F και 5̄F της SU (5) όπου:

5̄F =



dc1

dc2

dc3

e−

−ve


L

, 10F =



0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0


L

(3.5)
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Οι αναπαραστάσεις αυτές κατηγοριοποιούνται με το δείκτη L για να δειχθεί ότι όλα

τα πεδία είναι αριστερόστροφα. Τα δεξιόστροφα πεδία του ΚΠ έχουν γίνει συζυ-

γή (με τον δείκτη c) έτσι ώστε να μπουν μαζί με τα αριστερόστροφα πεδία σε μια

αριστερόστροφη αναπαράσταση. Το δεξιόστροφο νετρίνο δεν εμφανίζεται σε αυτές

αναπαραστάσεις και άρα πρέπει να εισαχθεί σε μια έξτρα μονέτα κάτω από την SU (5).

΄Οπως θα δούμε, στον τομέα Higgs ένα βαθμωτό πεδίο φ στην 24 μπορεί να

χρησιμοποιηθεί για να σπάσει την SU (5) στην συμμετρία του ΚΠ και να δώσει

μεγάλες μάζες της τάξης των ∼ 1016GeV στα βαθμωτά μποζόνια. Επίσης, δύο

υπερπεδία Hu και Hd στις 5 και 5̄ συμπεριλαμβάνονται στο μοντέλο τα οποία δίνουν

μάζες στα φερμιόνια μέσω ζεύξεων με Yukawa.

Λαγκρατζιανή

΄Οπως και στο ΚΠ, η λαγκρατζιανή του SU (5) μπορεί να σπάσει σε διαφορετικούς

τομείς:

L = Lgauge + LFint + LSint + Lyuk − V (3.6)

όπου:

Lgauge = −1

4
AαµνAαµν (3.7)

Μπορούμε να γράψουμε τον πίνακα όλων των μποζονίων βαθμίδας στην μορφή

Ãµ =
24∑

α=12

Aαµ
λα

2
(3.8)

ενώ στην μορφή πίνακα θα έχουμε:

Ãµ =



G1
1µ + 2Bµ√

30
G1

2µ G1
3µ X1c

µ Y 1c
µ

G2
1µ G2

2µ + 2Bµ√
30

G2
3µ X2c

µ Y 2c
µ

G3
1µ G3

2µ G3
3µ + 2Bµ√

30
X3c
µ Y 3c

µ

X1
µ X2

µ X3
µ

Zµ√
2
−
√

3
10
Bµ W+

µ

Y 1
µ Y 2

µ Y 3
µ W−

µ −Zµ√
2
−
√

3
10
Bµ


(3.9)

Για την θεμελιώδη αναπαράσταση 5 η συναλλοίωτη παράγωγος έχει την μορφή:

Dµ = ∂µ + ig5Ãµ (3.10)

ενώ για την αντι-συμμετρική αναπαράσταση 10 η συναλλοίωτη παράγωγος θα είναι

διαφορετική:

Dµψ = ∂µψ + ig5

{
Ãµψ + ψÃTµ

}
(3.11)
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΄Ετσι, υπολογίζοντας τους κανόνες μετασχηματισμού των διανυσματικών πεδίων

έτσι ώστε η λαγκρατζιανή να είναι αναλλοίωτη κάτω από SU (5) μετασχηματισμούς

καταλήγουμε στην κατασκευή των όρων που περιέχουν συναλλοίωτες παραγώγους

για τα φερμιονικά πεδία:

LF = i
1

2
Tr
{
ψ̄10Dψ10

}
+ iψ̄5̄Dψ5̄ =

1

2
iT r

{
ψ̄10∂ψ10

}
+ iψ̄5̄∂ψ5̄ + LFint (3.12)

LFint = −g5Tr
{
ψ̄10γ

µÃµψ10

}
+ g5ψ̄5̄γ

µÃTµψ5̄ (3.13)

Βλέπουμε έτσι ότι τα μποζόνια βαθμίδας του ΚΠ δεν εισάγουν κάτι νέο στις αλληλεπι-

δράσεις του ΚΠ, ενώ ταXµ, Yµ αποτελούν μια SU (2) διπλέτα και μια SU (3) τριπλέτα

(triplet) και άρα μπορούν να συνδέσουν μια λεπτονική “γραμμή” με μια “γραμμή”

κουάρκ, γεγονός το οποίο δεν συμβαίνει στο ΚΠ. Αυτές οι αλληλεπιδράσεις όπως θα

δούμε είναι υπεύθυνες για ένα είδος διάσπασης πρωτονίου.

Τέλος, είναι χρήσιμο να χωρίσουμε τον Πίνακα 3.9 με τα μποζόνια βαθμίδας, στο

ΚΠ και τις νέες αλληλεπιδράσεις:

Ãµ = ÃSMµ +
1√
2



X1c
µ Y 1c

µ

X2c
µ Y 2c

µ

X3c
µ Y 3c

µ

X1
µ X2

µ X3
µ

Y 1
µ Y 2

µ Y 3
µ


≡ ÃSMµ + ÃXµ (3.14)

Τομέας Higgs και δυναμικό

Ο μικρότερος τομέας Higgs μπορεί να κατασκευαστεί από δυο βαθμωτές αναπαρα-

στάσεις: μία 24 και μία 5. Η 24H θα χρησιμοποιηθεί για να σπάσει την SU (5) ενώ

η 5H περιέχει την διπλέτα Higgs του ΚΠ και άρα θα σπάσει το ΚΠ στον ηλεκτρομα-

γνητισμό. Η 24H είναι στην συζυγή ή αυτοπροσαρτημένη (adjoint), αναπαράσταση

και άρα δεν σπάει την τάξη της ομάδας SU (5), η οποία είναι ίδια με αυτή της ομάδας

του ΚΠ [77].

΄Εχουμε οπότε για τις δύο αναπαραστάσεις ότι:

24H =
24∑
α=1

φαλα (3.15)

και:

5H =

(
T

H

)
(3.16)
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όπου T είναι η SU (3) τριπλέτα χρώματος.

Ο όρος συναλλοίωτης παράγωγου για το πεδίο 5H είναι τετριμμένος, ενώ για το

24H πρέπει να μετασχηματίζεται ως:

(DµΦ)′ = UDµΦU † (3.17)

οπότε, προκύπτει ότι η σωστή έκφραση για την συναλλοίωτη παράγωγο είναι:

Dµ24H = ∂µ24H + ig5

[
Ãµ,24H

]
(3.18)

΄Ετσι, οι δύο όροι παραγώγου είναι:

LS =
1

2
Tr
{

(Dµ24H)† (Dµ24H)
}

+ (Dµ5H)† (Dµ5H) (3.19)

΄Ετσι, παίρνουμε το δυναμικό:

V = V (24H) + V (5H) + V (24H ,5H) (3.20)

όπου από τους μη παραγωγήσιμους όρους της 24H έχουμε:

V (24H) = −µ
2

2
Tr
{
242

H

}
+
a

4
Tr
{
242

H

}2
+
b

4
Tr
{
244

H

}
+
c

3
Tr
{
243

H

}
(3.21)

και από τους αντίστοιχους της 5H :

V (5H) = −µ
2
5

2

(
5†H5H

)
+
a5

4

(
5†H5H

)2

(3.22)

ενώ οι όροι που έχουν ταυτόχρονα και H και Φ δίνουν:

V (24H ,5H) = α5†H5HTr
{
242

H

}
+ β5†H242

H5H + c15
†
H24H5H (3.23)

Αυθόρμητο σπάσιμο συμμετρίας

Για να είναι η θεωρία μας ρεαλιστική πρέπει να σπάσουμε αυθόρμητα το πεδίο βαθμίδας

SU (5) στο ΚΠ. Το πεδίο που θα δράσει για αυτή την διαδικασία είναι το 24 βαθμωτό

πεδίο Φ. Η ομάδα μας θα σπάσει όταν το βαθμωτό Φ πάρει μια μη εξαφανιζόμενη

VEV, Φ0 = 〈Φ〉 η οποία θα σπάσει την ομάδα σε μια συγκεκριμένη διεύθυνση η οποία

περιορίζεται από το δυναμικό 3.21.

Για το δυναμικό 3.21 υπάρχουν τρία ακρότατα τα οποία μπορούν να γραφούν ως:

〈24H〉 =


υ√
30
diag (2, 2, 2,−3,−3)

υ41diag (1, 1, 1, 1,−4)

diag (0, 0, 0, 0, 0)

 (3.24)
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όπου το πρώτο σπάει στο ΚΠ, το δεύτερο σε SU (4) × U (1), ενώ το τελευταίο

ακρότατο δεν σπάει την SU (5). Οπότε, παίρνοντας το πρώτο ακρότατο, το δυναμικό

3.21 για την ελάχιστη περίπτωση, όπου c = 0, γίνεται:

V (υ) = −1

2
µ2υ2 +

(
7b

30
+ a

)
υ2

4
(3.25)

Οπότε, η εξίσωση κίνησης είναι:

∂V

∂υ
= υ

[
−µ2 +

(
7b

30
+ a

)
υ2

]
= 0 (3.26)

της οποίας λύση είναι η:

υ2 =
30µ2

30a+ 7b
(3.27)

η οποία είναι ελάχιστη, μόνο αν:

30a+ 7b > 0, µ2 > 0 (3.28)

Αξίζει να αναφέρουμε επίσης πως η VEV για την γενική περίπτωση, όπου c 6= 0,

είναι:

υ2 = 30

(
c±

√
c2 + 4 (30a+ 7b)µ2

60a+ 14b

)2

(3.29)

Σε αυτή την περίπτωση όμως δεν έχουμε μια μοναδική ελάχιστη διάταξη για το δυνα-

μικό, γεγονός που κάνει τα πράγματα πιο περίπλοκα. Για το ελάχιστο μοντέλο όμως

μπορούμε να χρησιμοποιούμε την σχέση 3.27.

Μάζες συζυγών Higgs

Αφού σπάμε κατά την διεύθυνση του υπερφορτίου, πρέπει να δούμε τι συμβαίνει και

στα άλλα πεδία του συζυγούς. ΄Εχουμε τεσσάρων ειδών πεδία στο συζυγές: Μια

οκταπλέτα SU (3), μια SU (2) τριπλέτα, μια διάταξη λεπτοκουάρκ και μια μονέτα.

΄Ετσι, μπορούμε να αναπαραστήσουμε το βαθμωτό συζυγές σαν:

24H = ΣO ⊕ ΣT ⊕ ΣX ⊕ ΣX̄ ⊕ ΣS ⇒
24H → O (8, 1, 0) + T (1, 3, 0) +X

(
3, 2,−5

6

)
+ X̄

(
3̄, 2, 5

6

)
+ S (1, 1, 0)

(3.30)

Το συζυγές μπορεί να σχηματιστεί σε μπλοκ μορφή:

Σ =

(
3× 3 3× 2

2× 3 2× 2

)
(3.31)
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οπότε τα ανωτέρω πεδία μπορούμε να τα γράψουμε ως:

Σ =

(
O X

X̄ T

)
+

(
1 +

S

υ

)
〈Σ〉 (3.32)

Γράφοντας αναλυτικά τον πίνακα, μπορούμε να πάρουμε μόνο ένα στοιχείο κάθε ανα-

παράστασης, ενώ τα αλλά στοιχεία πρέπει να έχουν την ίδια μάζα αφού η συμμετρία

του ΚΠ διατηρείται ακόμα. ΄Ετσι, χρησιμοποιώντας μια κοινή κανονικοποίηση για

όλα τα πεδία παίρνουμε ότι:

Σ =



2υ+S√
30

+ O√
2

0 0 X 0

0 2υ+S√
30
− O√

2
0 0 0

0 0 −2υ+S√
30

0 0

X̄ 0 0 −3υ+S√
30

+ T√
2

0

0 0 0 0 −3υ+S√
30
− T√

2


(3.33)

από όπου προκύπτει ότι:

m2
O =

b

6
υ2

m2
T =

2b

3
υ2

m2
X = m2

X̄ = 0

m2
S = 2µ2

(3.34)

• Για να υπάρχει σταθερή λύση πρέπει το b να είναι μη αρνητικό.

• Για b = 0 έχουμε 23 άμαζα πεδία όπως προκύπτει από το θεώρημα Nambu -

Goldstone αφού
24×23

2
− 23×22

2
= 23.

• Για b > 0 τα συνηθισμένα μποζόνια Goldstone από το σπάσιμο της SU (5) είναι

τα X, X̄, όπου 24− 12 = 12.

Μάζες διανυσματικών μποζονίων

Λόγω του όρου της συναλλοίωτης παραγώγου του βαθμωτού πεδίου της Εξ. 3.19, η

παραμένουσα VEV θα παράγει μάζες για κάποια από τα μποζόνια βαθμίδας.

Οι μάζες των διανυσματικών μποζονίων μπορούν να υπολογιστούν, όπως σε κάθε

μηχανισμό Higgs, μέσω των κινητικών όρων των αντίστοιχων Higgs δηλαδή μέσω της

συναλλοίωτης παραγώγου. ΄Ομως, όπως είδαμε, η συναλλοίωτη παράγωγος για ένα
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συζυγές βαθμωτό πεδίο δίνεται από την σχέση 3.18 οπότε ο όρος αλληλεπίδρασης θα

είναι:

L24
H =

1

2
Tr
{

(Dµ24H)† (Dµ24H)
}

=

=
1

2
Tr
{

(∂µ24H + ig5 [Aµ,24H ])† (∂µ24H + ig5 [Aµ,24H ])
} (3.35)

ο οποίος όταν αποκτήσει VEV γίνεται:

L〈24H〉 =
1

2
Tr
{

(ig5 [Aµ, 〈24H〉])† (ig5 [Aµ, 〈24H〉])
}

(3.36)

από όπου μπορούμε να υπολογίζουμε τους όρους μάζας:

L〈24H〉 = LXm =
5

6
g2

5υ
2
(
X i
µX

iµ + Y i
µY

iµ
)

(3.37)

οπότε το φάσμα μαζών που παίρνουμε από την VEV για τα διανυσματικά πεδία έχουν

την μορφή:

M2
X = M2

Y =
5

6
g2

5υ
2

(3.38)

που σημαίνει ότι μόνο τα βαθμωτά μποζόνια που δεν ανήκουν στο ΚΠ παίρνουν

μάζα δηλαδή τα X και Y , ενώ η εναπομείνουσα συμμετρία βαθμίδας είναι το ΚΠ. Τα

υπόλοιπα μποζόνια βαθμίδας του ΚΠ θα πάρουν μάζα στην συνέχεια από το σπάσιμο

της ηλεκτρασθενής συμμετρίας.

Τομέας Yukawa

Στο ΚΠ τα αριστερόστροφα φερμιόνια είναι διπλέτες και τα δεξιόστροφα φερμιόνια

είναι μονέτες, έτσι ώστε η χειραλικότητα τους να είναι η προφανής. Στο ελάχιστο

SU (5) μοντέλο, οι φερμιονικές μάζες προκύπτουν μέσω των ζεύξεων Yukawa των

φερμιονίων με το ελαφρύ Higgs της Εξ. 3.16. Το πεδίο αυτό μπορεί να δώσει μάζα

λοιπόν σε όλα τα φερμιόνια μέσω της επακανονικοποιήσιμης αλληλεπίδρασης Yukawa:

LY = 5̄FY510F5∗H +
1

8
ε510FY1010F5H + h.c. (3.39)

ενώ αν γράψουμε την αναλλοιώτητα Lorentz η ακριβής σχέση μπορεί να γραφεί ως:

LY = 5̄
T
FCY510F5∗H +

1

8
ε510TFCY1010F5H + h.c. (3.40)

Υπολογίζοντας στην συνέχεια τους όρους Yukawa με το ελαφρύ Higgs ΚΠ έχουμε:

5̄FY510F5∗H =
(
dc ε2L

)
Y5

(
ε3u

c Q

−QT ε2e
c

)(
T ∗

H∗

)
= ε2LY5ε2e

cH∗ +QY T
5 d

cH∗ + (T -terms)

(3.41)
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γεγονός που σημαίνει ότι στην MGUT έχουμε:

me = md (3.42)

δηλαδή ότι, Yd = Y T
e , ο Yukawa πίνακας μάζας για τα κάτω κουάρκ είναι απλά

ο ανάστροφος του Yukawa πίνακα μάζας για τα φορτισμένα λεπτόνια. Παρόμοιες

συνθήκες ισχύουν για τις υπόλοιπες γενιές, δηλαδή ms = mµ και mb = mτ στην

κλίμακα ενοποίησης MGUT . Από αυτές τις σχέσεις μπορεί να προκύψει ότι:

ms

md

=
mµ

me

(3.43)

Χρησιμοποιώντας τα πειραατικά δεδομένα [19], βρίσκουμε ότι:

ms

md

' 21,
mµ

me

' 207 (3.44)

Δηλαδή, η συνθήκη 3.43 δεν ισχύει στην φύση αφού δεν συμβαδίζει με τα πειρα-

ματικά αποτελέσματα. Για την διόρθωση αυτού του προβλήματος μπορεί να εισαχθεί

το 45-διάστατο Higgs στο επακανονικοποιήσιμο επίπεδο ή μπορεί να εισαχθούν 5-

διάστατοι τελεστές όπως για παράδειγμα 5̄
c
Y

(1)
5 10F

(
Φ
Λ
5H
)∗

[78,79]. Για παράδειγμα,

αν πάρουμε μια επιπλέον 45-διάστατη αναπαράσταση Higgs τότε οι σχέσεις μαζών

γίνονται:

mµ = 3ms, 3me = md, mτ = mb (3.45)

οπότε έχουμε τελικά ότι:

ms

md

=
1

9

mµ

me

(3.46)

το οποίο συμβαδίζει με τα πειραματικά γεγονότα. Το θέμα όμως είναι ότι με την

εισαγωγή τέτοιων όρων, μπορεί να έχουμε αρκετή ελευθερία ώστε να πάρουμε τους

σωστούς τομείς Yukawa, ωστόσο η προβλεψιμότητα μας μειώνεται όσο πηγαίνουμε

πέρα από το ελάχιστο μοντέλο.

Οι αλληλεπιδράσεις Yukawa για τα πάνω κουάρκ με τα Higgs ΚΠ μπορούν να

προκύψουν από τον δεύτερο όρο στην Yukawa λαγκρατζιανή. Συγκεκριμένα, έχουμε:

ε510TFY1010F5H = εijklm
(
10TF

)
Y1010klF 5mH (3.47)

οπότε για να πάρουμε τους όρους Yuakawa ΚΠ χρειαζόμαστε τις δύο τελευταίες

καταχωρήσεις στο H που αντιστοιχούν με τον περιορισμό του δείκτη m σε m = 4, 5.

΄Ετσι, αλλάζουμε τους δείκτες της SU (5) με τέτοιο τρόπο ώστε να έχουμε τρεις
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SU (3) δείκτες α, β, γ = 1, ..., 3 και δύο SU (2) δείκτες a, b = 1, 2 προσέχοντας

φυσικά να μην ξεχάσουμε όρους κατά την αναδιάταξη:

− εijklm
(
10ijF

)
Y1010klF 5mH → −2εαβγεab10αβF

(
Y10 + Y T

10

)
10γαF 5bH (3.48)

Οπότε, τελικά παίρνουμε:

− 2εαβγεab10αβF
(
Y10 + Y T

10

)
10γαF 5bH = −4Q

(
Y10 + Y T

10

)
ucε2H (3.49)

που σημαίνει ότι:

Yu = Y T
u (3.50)

δηλαδή ο πίνακας μάζα Yukawa για τα πάνω κουάρκ είναι συμμετρικός. Το γεγονός

αυτό δεν είναι τόσο περιοριστικό όσο η Εξ. 3.42, αλλά είναι περισσότερο περιοριστικό

από ότι παίρνουμε στο ΚΠ το οποίο δεν περιορίζει καθόλου τους πίνακες Yukawa.

3.1.2 SO (10)

Τα μοντέλα SO (10) περιέχουν περισσότερες επιλογές από ότι τα SU (5) για τις

αναπαραστάσεις που μπορούν να περιέχουν το ΚΠ. Υπάρχουν φυσικά και άλλες πε-

ριπτώσεις όπου εισάγονται επιπλέον ολικές συνεχείς και διακριτές συμμετρίες. Η

ομάδα SO (10) η οποία είναι τάξης 5 προτάθηκε αρχικά από τις αναφορές [80, 81],

και δεν περιέχει ανωμαλίες. Υπάρχουν δύο τύποι αναπαραστάσεων της SO (10), και

των SO (N) γενικά, η τανυστική και η σπινοριακή. Η πρώτη μοιάζει με αυτή που

χρησιμοποιούσαμε στην SU (5), στην οποία όμως δεν υπάρχουν διαφορές ανάμεσα

στους πάνω και στους κάτω δείκτες. Για παράδειγμα, ο συνδυασμός:

MijkNijPk (3.51)

όπου επαναλαμβανόμενοι δείκτες “τρέχουν” από 1 έως 10, είναι αναλλοίωτος κάτω

από την SO (10). Η άλλη σημαντική αναπαράσταση της SO (10) και η οποία χρησι-

μοποιείται και περισσότερο, είναι η 16-διάστατη σπινοριακή η οποία μπορεί να απο-

συντεθεί κάτω από την SU (5) σαν:

16 = 10 + 5̄ + 1 (3.52)

έτσι ώστε κάθε μη αναγώγιμη (irreducible) 5̄ + 10 αναπαράσταση του μοντέλου

Georgi - Glashow να συνδυάζεται σε μια μη αναγώγιμη αναπαράσταση της SO (10).

Αυτός είναι και ο λόγος που οι ανωμαλίες της 5̄ και της 10 “ακυρώνονται”. Η
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αναπαράσταση αυτή ενοποιεί κάθε οικογένεια φερμιονίων με την προσθήκη ενός δε-

ξιόστροφου νετρίνου ανά οικογένεια. Δηλαδή, κάθε οικογένεια αριστερόστροφων

φερμιονίων αντιστοιχίζεται σε έναν 16-διάστατο μιγαδικό σπίνορα, όπου το 16ο στοι-

χείο είναι μονέτα και είναι το δεξιόστροφο νετρίνο:

16F = (Q, uc, dc, L, νc, ec) (3.53)

Δηλαδή, η 16 μπορεί να περιέχει τις μαζικές καταστάσεις του ΚΠ (βλέπε Πίνακα

3.1) και ταυτόχρονα να περιέχει μαζικά νετρίνα. Επίσης, από τους 45 γενήτορες της

SO (10), οι 24 είναι αυτοί της υποομάδας SU (5). Οι άλλοι 21 γεννήτορες σχετίζονται

ή διαφοροποιούνται ανάμεσα στις 10, 5̄ και 1 της Εξ. 3.52. Με αυτόν τον τρόπο

διαφορετικοί τύποι Yukawa μπορούν να συνδεθούν. Οπότε, μπορούμε να πάρουμε

από την SO (10) διάφορους περιορισμούς για τις ζεύξεις Yukawa στο ΚΠ. ΄Ομως,

μόνο τρεις τύποι Yukawa είναι πιθανοί:

16× 16 = 10 + 120 + 126 (3.54)

Δηλαδή, ο πιο γενικός τομέας Yukawa περιέχει γενικά τις 10, 120 και 126 αδιάστα-

τες αναπαραστάσεις Higgs που συζευγνύονται με σπινοριακές διγραμμικές αναπαρα-

στάσεις.

SU (5) αναπαράσταση Κατάσταση Y Δείκτες χρώματος Ασθενείς δείκτες

1 νc 0 −−− −−

10

e+ 2 −−− ++

ur 1/3 +−− −+

dr 1/3 +−− +−
ub 1/3 −+− −+

db 1/3 −+− +−
uy 1/3 −−+ −+

dy 1/3 −−+ +−
ūr −4/3 −+ + −−
ūb −4/3 +−+ −−
ūy −4/3 + +− −−

5̄

d̄r 2/3 −+ + ++

d̄b 2/3 +−+ ++

d̄y 2/3 + +− ++

νe −1 + + + −+

e −1 + + + +−

Πίνακας 3.1: Τα διάφορα φερμιόνια και οι κβαντικοί τους αριθμοί στην 16-διάστατη σπινοριακή

αναπαράσταση της SO (10) [19].
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Ομάδες αποσύνθεσης

Η SO (10) έχει ένα πλήθος από τρόπους με τους οποίους μπορεί να σπάσει και αυτό

είναι ένα στοιχείο που την κάνει πιο πλούσια από την SU (5). Οι τρόποι αυτοί είναι:

SO (10)→



SU (5)→ ...

SU (5)× U (1)→ ...

SU(3)C × SU(2)L × U(1)Y → ...

SO (6)× SO (4)→ SU (4)× SU(2)L × SU(2)R → ...

SU (4)× SU(2)L × U(1)R → ...

SU(3)C × SU(2)L × U(1)R × U (1)→ ...


(3.55)

Από αυτές τις πιθανότητες, οι δυο περισσότερο μελετημένες περιπτώσεις είναι οι:

SO (10)→ SU (5)× U(1)

SO (10)→ GPS = SU(4)C × SU(2)L × SU(2)R
(3.56)

Στην πρώτη περίπτωση παίρνουμε είτε την Georgi - Glashow SU (5) περίπτωση, αν

το QEM δίνεται μόνο σε όρους γεννητόρων της SU (5), είτε την flipped SU (5), αν

το QEM είναι μερικώς στην U(1) [82, 83]. Ενώ στην δεύτερη περίπτωση έχουμε την

συμμετρία Pati-Salam: GPS [84].

Τομέας Yukawa

Με βάση την Εξ. 3.54 η πιο γενική λαγκρατζιανή Yukawa που μπορεί να γραφεί

είναι:

LY = 16F
(
Y1010H + Y120120H + Y126126H

)
16F + h.c. (3.57)

όπου Y10 και Y120 είναι μιγαδικοί συμμετρικοί πίνακες ενώ ο Y120 είναι μιγαδικός

αντισυμμετρικός πίνακας.

΄Ενα βασικό ερώτημα είναι επίσης ποιος είναι ο ελάχιστος αριθμός αναπαραστάσε-

ων Higgs που χρειάζονται στον τομέα Yukawa έτσι ώστε να έχουμε μια ρεαλιστική

θεωρία. Με μόνο μία αναπαράσταση Higgs δεν υπάρχει μίξη φερμιονίων, καθώς ένας

πίνακας Yukawa μπορεί πάντα να διαγωνοποιείται στρέφοντας τα 16F πεδία, άρα

πρέπει να υπάρχουν τουλάχιστον δύο αναπαραστάσεις. Συνολικά, με την χρήση των
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10H , 120H και 126H έχουμε 6 πιθανούς συνδυασμούς [85]:

(1) 10H + 126H

(2) 120H + 126H

(3) 10H + 120H

(4) 10H + 10H

(5) 120H + 120H

(6) 126H + 126H

(3.58)

από τους οποίους κρατάμε τις τρεις πρώτες περιπτώσεις, αφού οι τρεις τελευταίοι

απορρίπτονται καθώς προβλέπουν λάθος σχέσεις μαζών. Για παράδειγμα, η περίπτωση

(4) προβλέπει ότι Md = Me, η περίπτωση (6) προβλέπει Md = −3Me, ενώ στην (5)

η αντισυμμετρικότητα της Y120 υπονοεί ότι m1 = 0 (πρώτη γενιά) και m2 = −m3

(δεύτερη και τρίτη γενιά). Επίσης, να σημειώσουμε πως στην περίπτωση (3) η έλλειψη

της 126H σημαίνει ότι τα νετρίνα είναι Dirac και οι μάζες τους σχετίζονται με αυτές

των φορτισμένων λεπτονίων, γεγονός που είναι λάθος. Για την διόρθωση αυτού του

προβλήματος πρέπει να εισαχθεί η διγραμμική 16H16H η οποία παίζει τον ρόλο της

126H .

Η κατανόηση των φερμιονικών μαζών είναι ευκολότερη στην γλώσσα Pati-Salam.

Οπότε, αν αποσυνθέσουμε τις βασικές αναπαραστάσεις κάτω από την GPS (και όχι

κάτω από το ΚΠ) έχουμε:

10 = (2, 2, 1) + (1, 1, 6)

16 = (4, 2, 1) + (4̄, 1, 2)

120 = (2, 2, 15) + (2, 2, 1) + (1, 1, 10) +
(
1, 1, 10

)
+ (1, 3, 6) + (3, 1, 6)

126 = (2, 2, 15) +
(
3, 1, 10

)
+ (1, 3, 10) + (1, 1, 6)

126 = (2, 2, 15) +
(
1, 3, 10

)
+ (3, 1, 10) + (1, 1, 6)

210 = (1, 1, 1) + (2, 2, 6) + (3, 1, 15) + (1, 3, 15) + (2, 2, 10) +
(
2, 2, 10

)
+ (1, 1, 15)

45 = (3, 1, 1) + (1, 3, 1) + (2, 2, 6) + (1, 1, 15)

(3.59)

όπου οι αριστερόστροφες και οι δεξιόστροφες διπλέτες είναι στις:

(4, 2, 1) =

(
ν u1 u2 u3

e d1 d2 d3

)

(4̄, 1, 2) =

(
νc uc1 uc3 uc3

ec dc1 dc2 dc3

) (3.60)
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Παρατηρούμε επίσης ότι τα λεπτόνια είναι απλά το τέταρτο χρώμα. Κάνοντας στην

συνέχεια τους υπολογισμούς για τις μάζες των λεπτονίων, χρησιμοποιώντας επίσης

το γεγονός ότι:

Y10 = Y T
10, Y126 = Y T

126, Y120 = −Y T
120 (3.61)

βρίσκουμε ότι με την χρήση όλων των πεδίων Higgs 10H , 120H και 126H έχουμε:

Mu = 〈2, 2, 1〉u10 Y10 + 〈2, 2, 15〉u126 Y126 + (〈2, 2, 1〉u120 + 〈2, 2, 15〉u120)Y120

Md = 〈2, 2, 1〉d10 Y10 + 〈2, 2, 15〉d126 Y126 +
(
〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

)
Y120

Ml = 〈2, 2, 1〉d10 Y10 − 3 〈2, 2, 15〉d126 Y126 +
(
〈2, 2, 1〉d120 − 3 〈2, 2, 15〉d120

)
Y120

MνD = 〈2, 2, 1〉u10 Y10 − 3 〈2, 2, 15〉u126 Y126 + (〈2, 2, 1〉u120 − 3 〈2, 2, 15〉u120)Y120

MνR = 〈1, 3, 10〉Y126

M II
νL

=
〈
3, 1, 10

〉
Y126

(3.62)

όπουMu, Md, Ml, MνD , MνR , M
II
νL

αναπαριστούν αντίστοιχα τους πίνακες μαζών του

πάνω κουάρκ, του κάτω κουάρκ, των φορτισμένων λεπτονίων, του νετρίνου Dirac,

του δεξιόστροφου νετρίνου και το αριστερόστοφου νετρίνου. Ο πίνακας μάζας M II
νL

του αριστερόστροφου νετρίνου καλείται τύπου II seesaw επειδή η προκύπτουσα VEV

για
〈
3, 1, 10

〉
είναι μικρή, αφού

〈
3, 1, 10

〉
≈ M2

W

MGUT
.

Αν οπότε πάρουμε την περίπτωση (1) από τις περιπτώσεις 3.59, τότε με βάση την

Εξ. 3.57 παίρνουμε τις εξής σχέσεις για τις φερμιονικές μάζες [86]:

Mu = c0M0 + c1M1

Md = M0 +M1

Ml = M0 − 3M1

MνD = c0M0 − 3c1M1

MνR = 〈1, 3, 10〉Y126

M II
νL

=
〈
3, 1, 10

〉
Y126

(3.63)

όπου:

M0 = 〈2, 2, 1〉d10 Y10

M1 = 〈2, 2, 15〉d126 Y126

c0 =
〈2, 2, 1〉u10

〈2, 2, 1〉d10

c1 =
〈2, 2, 15〉u126

〈2, 2, 15〉d126

(3.64)
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Επίσης, από τα ανωτέρω προκύπτει για τον πίνακα μαζών των νετρίνων η σχέση:

Mν = MνL −MνDM
−1
νR
MνD (3.65)

Αν πάρουμε την φυσική προσέγγιση θq = Vcb = 0 βρίσκουμε ότι:

c0 =
mc (mτ −mb)−mt (mµ −ms)

msmτ −mµmb

≈ mτ

mb

(3.66)

το οποίο είναι προφανώς πολύ μεγαλύτερο από 1.

Οπότε, παρατηρούμε ότι το 10H δεν μπορεί να είναι πραγματικό αφού σε αυτή την

περίπτωση θα είχαμε μόνο μια SU(2)L διπλέτα στην (2, 2, 1) και άρα |〈2, 2, 1〉u10| =∣∣∣〈2, 2, 1〉d10

∣∣∣ που σημαίνει ότι |c0| = 1. ΄Αρα, το 10H πρέπει να είναι μιγαδικό όπως

και στην υπερσυμμετρική θεωρία που θα δούμε στο εδάφιο 4.3.2. Το γεγονός αυτό

εισάγει νέες ζεύξεις Yukawa το οποίο κάνει την θεωρία λιγότερο προβλέψιμη. ΄Ομως,

κάποιες προβλέψεις όπως η συσχέτιση της ενοποίηση b − τ με την μεγάλη γωνία

ατμοσφαιρικής μίξης στον μηχανισμό seesaw τύπου II παραμένουν. Στην μη υπερ-

συμμετρική θεωρία η b− τ ενοποίηση αποτυγχάνει καθώς προβλέπει mτ ∼ 2mb. Για

να είναι ρεαλιστική, η θεωρία απαιτεί μηχανισμό seesaw τύπου I ή μια μίξη και των

δύο πιθανοτήτων.

Αν στην συνέχεια πάρουμε την περίπτωση (2) από τις περιπτώσεις 3.59, τότε

αφού η Y120 είναι αντισυμμετρική, αυτό σημαίνει ότι θα έχουμε μόνο 3 νέες μιγαδικές

ζεύξεις πάνω από την Y126 [86]. Σε αυτή την περίπτωση οπότε παίρνουμε:

Mu = c1M1 + c2M2

Md = M1 +M2

Ml = c3M2 − 3M1

MνD = c4M2 − 3c1M1

(3.67)

όπου:

M1 = 〈2, 2, 15〉d126 Y126

M2 =
(
〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

)
Y120

c1 =
〈2, 2, 15〉u126

〈2, 2, 15〉d126

c2 =
〈2, 2, 1〉u120 + 〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

c3 =
〈2, 2, 1〉d120 − 3 〈2, 2, 15〉d120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

c4 =
〈2, 2, 1〉u120 − 3 〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

(3.68)
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Είναι εύκολο να δούμε πως και σε αυτή την περίπτωση υπάρχει ανάγκη τα πεδία

Higgs να είναι και εδώ μιγαδικά, όπως και στην περίπτωση με το 10H . Αυτό πραγ-

ματοποιείται ευκολότερα εισάγοντας μια νέα U(1)PQ συμμετρία η όποια όπως είδαμε

στο εδάφιο 2.4.2 έχει ως υποπροϊόν την ύπαρξη ενός υποψηφίου ΣΥ που ονομάζεται

αξιόνιο. Η συνεισφορά του τύπου I μηχανισμού seesaw δίνει στα ελαφριά νετρίνα τον

πίνακα μάζας:

M I
N = −MT

νD
M−1

νR
MνD ∝ 9c2

1M1 − c2
4M2M

−1
1 M2 (3.69)

ενώ η συνεισφορά του τύπου II είναι:

M II
N ∝M1 (3.70)

Αναλύοντας στην συνέχεια μόνο την δεύτερη και τρίτη γενιά μπορούμε να πάρουμε

αλγεβρικές εκφράσεις που θα μας δώσουν μια πιο καθαρή φυσική σημασία. ΄Ετσι, στην

βάση που ο M1 είναι διαγώνιος πραγματικός και μη αρνητικός, για την περίπτωση με

τις δύο γενιές:

M1 ∝

(
sin2θ 0

0 cos2θ

)
(3.71)

ο πιο γενικός πίνακας φορτισμένων φερμιονίων μπορεί να γραφεί στην μορφή:

Mf = µf

(
sin2θ i (sin θ cos θ + εf )

−i (sin θ cos θ + εf ) cos2θ

)
(3.72)

όπου f = D,U,E αντιπροσωπεύει φορτισμένα φερμιόνια και το εf εξαφανίζεται για

αμελητέες δεύτερης γενιάς μάζες, αφού |εf | ∝ mf2
mf3

. Επιπλέον ο παράγοντας µf κα-

θορίζει τον παράγοντα μάζας της τρίτης γενιάς. ΄Ετσι, κάνοντας τους υπολογισμούς

έχουμε τις εξής προβλέψεις:

1. ΄Οσον αφορά τις μάζες των νετρίνων, με την χρήση των Εξ. 3.69, 3.70, και

χρησιμοποιώντας συγκεκριμένη μορφή των 2 × 2 πινάκων, προκύπτει ότι ο

μηχανισμός seesaw τύπου I και τύπου II οδηγούν στην ίδια δομή:

M I
N ∝M II

N ∝M1 (3.73)

έτσι ώστε στην επιλεγμένη βάση ο πίνακας μάζας νετρίνων να είναι διαγώνιος.

Βλέπουμε ότι η γωνία θ αναγνωρίζεται ως η λεπτονική (ατμοσφαιρική) γω-

νία μίξης θA μέχρι όρους της τάξης |εE| ≈ mµ
mτ

. Για τις μάζες των νετρίνων

βρίσκουμε από την Εξ. 3.71 ότι:

m2
3 −m2

2

m2
3 +m2

2

=
cos 2θA

1− sin22θA/2
+O (|ε|) (3.74)
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Η εξίσωση αυτή δείχνει ότι ο εκφυλισμός των μαζών νετρίνων μετράται από το

μεγάλο μέγεθος της ατμοσφαιρικής γωνίας μίξης θA.

2. Η αναλογία της μάζας του λεπτονίου ταυ και του κάτω κουάρκ προκύπτει ότι

είναι:

mτ

mb

= 3 + 3 sin 2θARe [εE − εU ] +
(∣∣ε2

∣∣) (3.75)

Το αποτέλεσμα αυτό δεν είναι σωστό κατά βάση καθώς η προέκταση από το

ΚΠ οδηγεί στην πρόβλεψη mτ ≈ 2mb. ΄Ομως, διάφορα φαινόμενα μπορούν να

μεταβάλλουν αυτό το συμπέρασμα όπως για παράδειγμα η κατάλληλη επιλογή

των φάσεων, οι διορθώσεις τάξης ε μπορούν να δώσουν 10% μείωση έτσι ώστε

η μεγάλη Dirac Yukawa ζεύξη να παράξει ένα φαινόμενο 10 − 20%, παρόμοιο

με αυτό που μπορούμε να προβλέψουμε με την ανάλυση με όλες τις 3 γενιές.

Σε κάθε περίπτωση αναμένουμε το mb να προκύψει όσο το δυνατόν μικρότερο.

3. Η μίξη κουάρκ προκύπτει ότι είναι:

|Vcb| = |cos 2θA (εD − εU)|+O
(∣∣ε2

∣∣) (3.76)

Η εξίσωση αυτή δείχνει την επιτυχημένη συνύπαρξη μικρών και μεγάλων γωνι-

ών μίξης. Για να δουλέψει ποσοτικά, το |cos 2θA| πρέπει να είναι όσο το δυνατόν

μεγαλύτερο, δηλαδή το θA πρέπει να είναι όσο το δυνατόν πιο μακριά γίνεται

από την μέγιστη τιμή 45◦. Για συγκεκριμένη αριθμητική πρόβλεψη, πρέπει να

προστεθούν επίσης οι βρόγχοι καθώς και τα φαινόμενα της πρώτης γενιάς.

Τέλος, είναι χρήσιμο να γράψουμε το ηλεκτρικό φορτίο σαν συμμετρικό συνδυα-

σμό των γεννητόρων της SO (10):

Qem = T3L + T3R +
B − L

2
(3.77)

όπου T3L,R είναι οι ιδιοτιμές του τρίτου γεννήτορα της SU(2)L,R, όπου στην θεμελι-

ώδη αναπαράσταση για παράδειγμα από τον πίνακα Pauli τ3/2:

T3 =
1

2

(
1 0

0 −1

)
(3.78)

ενώ αντίστοιχα το B−L είναι αντίστοιχο στον τελευταίο 15ο γεννήτορα της SU(4)c

όπου στην θεμελιώδη αναπαράσταση είναι για παράδειγμα:

B − L
2

=
1

3


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 (3.79)
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3.1.3 ΄Αλλες θεωρίες

Ομάδα SU (6)

Μια ακόμα επιλογή για επέκταση του ΚΠ είναι μέσω της ομάδας SU (6) [87]. Η

ομάδα αυτή έχει τάξη 5, δηλαδή ίδια με την ομάδα SO (10), πράγμα που σημαίνει ότι

θα παρέχει μια νέα εναλλακτική για την πραγματοποίηση μεγάλης ενοποίησης πέρα

από το κλασικό μοντέλο SO (10). Επίσης, έχοντας μεγαλύτερη τάξη και από την

SU (5) σημαίνει ότι η ομάδα αυτή έχει περισσότερες κλίμακες στις οποίες μπορεί να

σπάσει πριν από την SU(3)C × SU(2)L × U(1)Y . ΄Οπως θα δούμε αυτό είναι ένα

σημαντικό στοιχείο για την αποφυγή γρήγορης διάσπασης πρωτονίου την οποία θα

εξετάσουμε στο εδάφιο 3.2.1.

΄Ενα από τα σημαντικότερα στοιχεία για μια οποιαδήποτε θεωρία μεγάλης ενοποίη-

σης είναι ο καθορισμός του σπασίματος της συμμετρίας. Στην περίπτωση της SU (6)

έχουμε διάφορες πιθανότητες για να σπάσουμε την συμμετρία. Για παράδειγμα:

SU (6)→


SU (5)× U (1)

SU (2)× SU (2)× SU (2)× U (1)× U (1)

SU (3)× SU (3)× U (1)

 (3.80)

Η πρώτη επιλογή είναι ξεκάθαρα παρόμοια με την γνωστή SU (5) GUT η οποία

ακολουθείται από το μοτίβο σπασίματος SU (5)→ SU (3)×SU (2)×U (1) ώστε να

προκύψει το ΚΠ. Αυτό το μοτίβο, ήταν από τα πρώτα που είχαν προταθεί [88], και ήταν

από τις δημοφιλέστερες GUT θεωρίες, όμως πλέον δεν προτιμάται λόγω της πολύ

γρήγορης διάσπασης του πρωτονίου που προβλέπει. Η δεύτερη επιλογή σπασίματος

μπορεί εύκολα να απορριφθεί λόγω του ότι δεν μπορεί να συμπεριλαμβάνει το ΚΠ.

Οπότε, μπορούμε να διαλέξουμε για μελέτη την τρίτη επιλογή ως ρεαλιστικό τρόπο

σπασίματος. ΄Ετσι, σε αυτό το στάδιο μπορούμε να σπάσουμε την SU (6) σε δύο

στάδια:

SU (6)→ SU(3)C × SU(3)H × U(1)C

→ SU(3)C × SU(2)L × U(1)B × U(1)C

(3.81)

όπου τοH αποτελεί έναν καινούριο κβαντικό αριθμό που θα ονομάζουμε υπερ-ισοσπίν.

Επίσης, ο συνδυασμός των κβαντικών αριθμών που εισάγονται από τις U(1)B και

U(1)C θα αναπαράγει το γνωστό υπερφορτίο που σχετίζεται με την U(1)Y στην

ηλεκτρασθενή θεωρία.

Οι θεμελιώδεις αναπαραστάσεις της SU (6) είναι η 6 και η αντισυμμετρική της

6̄. ΄Ενα τανυστικό γινόμενο των δυο αναπαραστάσεων δίνει 6 × 6̄ = 21 + 15.
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Ακολουθώντας στην συνέχεια την γενική απαίτηση για αναίρεση των ανωμαλιών

από τον συνδυασμό των αναπαραστάσεων των φερμιόνιων σε κάθε ομάδα SU (N),

διαλέγουμε τον συνδυασμό 2·6+15. Η δεύτερη 6-διάστατη αναπαράσταση προκύπτει

από την αποσύνθεση της 21 στο ανωτέρω τανυστικό γινόμενο. ΄Αρα, καταλήγουμε

πως τα φερμιόνια πρέπει να αντιστοιχηθούν σε αυτές τις δύο πολλαπλέτες 6 και 15.

΄Οσον αφορά τους γεννήτορες, η SU (6) αφού είναι τάξεως 5 θα πρέπει να έχει 5

γεννήτορες που θα καθορίζουν την “υποάλγεβρα Cartan”. Δηλαδή, πρέπει να υπάρ-

χουν 5 γεννήτορες με μη μηδενικά διαγώνια στοιχεία. Αυτοί μπορούν να καθοριστούν

με ένα κοινό τρόπο ορίζοντας:

Fi ≡
1

2
λi (3.82)

με i = 1, 2, ..., 35 οι οποίοι ικανοποιούν την σχέση [Fi, Fj] = ifijkFk όπου fijk είναι

η σταθερά δομής. Αξίζει εδώ να κάνουμε τις εξής επισημάνσεις:

• Οι “τύπου Gell-Mann” πίνακες λ27,...,34 με τα μη μηδενικά στοιχεία στο κάτω

αριστερό 3× 3 μπλοκ αναπαριστούν την SU(3)H στο πρώτο σπάσιμο της συμ-

μετρίας. Αυτό διαμορφώνει τον νέο κβαντικό αριθμό υπερ-ισοσπίν.

• Αφού η SU (6) περιλαμβάνει την SU (5) σαν υποομάδα, ο λ̄24 πρέπει να συμπε-

ριλαμβάνεται σε έναν 6 × 6 πίνακα ο οποίος είναι γραμμικός συνδυασμός των

λ34 και λ35, δηλαδή:

c34λ34 +c35λ35 =
2√
15



1 0

1 0

1 0

−3
2

0

−3
2

0

0 0 0 0 0 0


=

(
λ̄24 0

0 0

)
(3.83)

• Ο λ35 αναπαριστά τα υπερφορτία που υπάρχουν στην ισχυρή και την ασθενή

δύναμη με αντίθετα πρόσημα. Αυτό δείχνει την ιδιότητα των αλληλεπιδράσεων

μικρής και μεγάλης εμβέλειας. Το είδος αυτού του υπερφορτίου, το ονομάζουμε

C-υπερφορτίο.

• Το υπερφορτίο που εισάγεται από τον λ34 υπάρχει μόνο στον ασθενή τομέα και

ονοματίζουμε B-υπερφορτίο.

Καθώς η SU(3)C διατηρείται μέχρι την χαμηλή ενεργειακή κλίμακα, δεν υπάρχει

κάποια καινούρια φυσική συνέπεια στον έννοια του κβαντικού αριθμού. Αν εστιάσουμε
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στους γεννήτορες της SU(3)H που ευθύνονται για την ηλεκτρασθενή αλληλεπίδραση,

θα δούμε πως η σχέση Gell-Mann-Okubo του ΚΠ Q = I3 + 1
2
Y , όπως αναφέρεται

στην Εξ. 2.153, μετασχηματίζεται ως:

Q = IH3 +
1

2
Y

= I3 + [∆I3 · (∆YB + ∆YC)] +
1

2
(YB + YC)

(3.84)

Τέλος, με βάση τη σχέση 3.84 καθορίζουμε το σωματιδιακό περιεχόμενο της

θεωρίας μας. ΄Ολα τα φερμιόνια πρέπει να μπουν στον συνδυασμό των 6 και 15

πολλαπλοτήτων. ΄Ετσι, έχουμε ότι:

(
ψ6
)i
R

=



dir

dib

dig

(li)
+

−(νil )
c

Nli


R

(3.85)

για την 6-πλέτα και για την 15-πλέτα:

(
ψ15
)ij
L

=
1√
2



0
(
uig
)c −(uib)

c −uir −dir −djr
−
(
uig
)c

0 (uir)
c −uib −dib −djb

(uib)
c −(uir)

c
0 −uig −dig −djg

uir uib uig 0 (lj)
+ −(li)

+

dir dib dig −(lj)
+

0 (Nli)
c

djr djb djg (li)
+ −(Nli)

c 0


L
(3.86)

όπου ui = u, c, t, di = d, s, b, li = e, µ, τ , Nli = Ne, Nµ, Nτ και r, g, b αναπαριστούν

τα χρώματα. Τα Nl είναι τα νέα φερμιόνια με ουδέτερα φορτία. Να σημειώσουμε

επίσης πως i, j αναπαριστούν την γενιά και ο συνδυασμός τους πάει κυκλικά (i, j) :

(1, 2)→ (2, 3)→ (3, 1). Τέλος, L και R είναι οι τελεστές προβολής L ≡ 1
2

(1− γ5),

R ≡ 1
2

(1 + γ5).

Να σημειώσουμε εδώ αρχικά πως καθορίζουμε τα όμοια φερμιόνια για δύο 6-

πλέτες για την “ακύρωση” ανωμαλιών. Επίσης, το μοντέλο αυτό προβλέπει την

ύπαρξη ενός νέου ουδέτερου φερμιονίου Nl για να συμπληρωθούν οι πολλαπλότητες.

Το εξωτικό αυτό φερμιόνιο μπορεί να μεταφραστεί ως το βαρύ νετρίνο Majorana

που θα ενεργοποιήσει φυσικά τον μηχανισμό seesaw. Φυσικά, το προαναφερθέν είναι
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το ελάχιστο σωματιδιακό περιεχόμενο, δηλαδή έχουμε την ελάχιστη SU (6) θεωρία,

οπότε φυσικά θα μπορούσαν να παρθούν και περιπτώσεις με περισσότερα εξωτικά

φερμιόνια όπως στην [88].

Τέλος, αν γράψουμε τις Εξ. 3.85 και 3.86 ξεχωριστά για κάθε γενιά έχουμε:

(
ψ6
)1

R
=



dr

db

dg

e+

−(νe)
c

Ne


R

,
(
ψ6
)2

R
=



sr

sb

sg

µ+

−(νµ)c

Nµ


R

,
(
ψ6
)3

R
=



br

bb

bg

τ+

−(ντ )
c

Nτ


R

(3.87)

(
ψ15
)12

L
=

1√
2



0 (ug)
c −(ub)

c −ur −dr −sr
−(ug)

c 0 (ur)
c −ub −db −sb

(ub)
c −(ur)

c 0 −ug −dg −sg
ur ub ug 0 µ+ −e+

dr db dg −µ+ 0 (Ne)
c

sr sb sg e+ −(Ne)
c 0


L

,

(
ψ15
)23

L
=

1√
2



0 (cg)
c −(cb)

c −cr −sr −br
−(cg)

c 0 (cr)
c −cb −sb −bb

(cb)
c −(cr)

c 0 −cg −sg −bg
cr cb cg 0 τ+ −µ+

sr sb sg −τ+ 0 (Nµ)c

br bb bg µ+ −(Nµ)c 0


L

,

(
ψ15
)31

L
=

1√
2



0 (tg)
c −(tb)

c tr −br −dr
−(tg)

c 0 (tr)
c −tb −bb −db

(tb)
c −(tr)

c 0 −tg −bg −dg
tr tb tg 0 e+ −τ+

br bb bg −e+ 0 (Nτ )
c

dr db dg τ+ −(Nτ )
c 0


L

(3.88)
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Ομάδα SU (8)

Το πρόβλημα των γεύσεων ή της δομής των γενεών το οποίο είδαμε στο εδάφιο

2.4.7 μπορεί να λυθεί με την εισαγωγή μιας τοπικής συμμετρίας όπως για παράδειγμα

της οριζόντιας (horizontal) συμμετρίας βαθμίδας. ΄Ετσι, μια απευθείας επέκταση της

SU (5) είναι το μοντέλο SU (8) το οποίο είναι το ελάχιστο μοντέλο που απαιτείται

ώστε να εμπεριέχει την SU(3)H [89, 90].

Το μοντέλο αυτό για να είναι ρεαλιστικό πρέπει να ακυρώνει τις ανωμαλίες. Γνω-

ρίζουμε ότι η m αντισυμμετρική αναπαράσταση μιας SU (N) δίνεται από:

A (N,m) =
(N − 2m) (N − 3)!

(N −m− 1)! (m− 1)!
(3.89)

Οπότε, για την περίπτωση της SU (8) έχουμε για κάθε αναπαράσταση τις εξής ανω-

μαλίες:

8→ 1

28→ 2

56→ 3

(3.90)

Οπότε, για να μην έχουμε ανωμαλίες μπορούμε να διαλέξουμε είτε: 8R + 28R + 56L,

είτε: 8L + 28L + 56R. Η αποσύνθεση της SU (8) με βάση την SU (5) × SU(3)H

είναι:

8 = (1, 3) + (5, 1)

28 = (10, 1) + (5, 3) + (1, 3̄)

56 = (10, 3) + (5, 3̄) + (10, 1) + (1, 1)

(3.91)

Στο μοντέλο αυτό οπότε μια γενιά είναι η 5R + 10L. Αυτές όμως περιέχονται στην

28 και 56 σαν τριπλέτες της SU (3). ΄Ετσι, η ελικότητα γίνεται 8R, 28R και 56L, και

έτσι έχουμε το ελάχιστο μοντέλο με το μικρότερο πλήθος πεδίων. Τέλος, πρέπει να

διαλέξουμε έναν τελεστή φορτίουQ. Για να αποφύγουμε εξωτικά σωμάτια διαλέγουμε

τον ίδιο τελεστή φορτίου με το SU (5) μοντέλο, δηλαδή:

Q = diag

(
−1

3
,−1

3
,−1

3
, 1, 0, 0, 0, 0

)
(3.92)

Για το σωματιδιακό περιεχόμενο των 8R, 28R και 56L έχουμε:

8R = (z1, z2, z3,M
c
1 , L

c
1, F1, F2, F3)R (3.93)
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28R =



0 f c3 −f c2 f1 x1 d1 s1 b1

−f c3 0 f c1 f2 x2 d2 s2 b2

f c2 f c1 0 f3 x3 d3 s3 b3

−f1 −f2 −f3 0 M ec µc τ c

−x1 −x2 −x3 −M 0 νce νcµ νcτ

−d1 −d2 −d3 −e −νe 0 F c
3 −F c

2

−s1 −s2 −s3 −µ −νµ −F c
3 0 F c

1

−b1 −b2 −b3 −τ −ντ F c
2 −F c

1 0


R

(3.94)

καθώς και τον Πίνακα 3.2.

Δείκτης Σωματίδιο Q SU(3)C × SU (2) × SU(3)H

αβ εαβγf
c
γ −2

3
(3̄, 1, 1)

α4

α5

fα

xα

2
3

−1
3

(3, 2, 1)

α1 di −1
3

(3, 1, 3)

4i

5i

ei

νi

1

0
(1, 2, 3)

ij εijkF
c
k 0 (1, 1, 3̄)

αβγ

ijk

M3

L2

−1

0

(1, 1, 1)

(1, 1, 1)

αβ4

αβ5
εαβγ

(
ycτ

gcγ

) {
1
3

−2
3

}
(3̄, 2, 1)

α45 gα
2
3

(3, 1, 1)

α4i

α5i

(
uαi

dαi

) {
2
3

−1
3

}
(3, 2, 3)

4ij

5ij
εijk

(
M c

k

N c
k

) {
1

0

}
(1, 2, 3̄)

αij εijkxka −1
3

(3, 1, 3̄)

αβi εαβγu
c
γi −2

3
(3̄, 1, 3)

45i eci 1 (1, 1, 3)

Πίνακας 3.2: Σωματιδιακό περιεχόμενο και αντίστοιχες ιδιότητες της 56L αναπαράστασης της

SU (8). α, i είναι οι δείκτες χρώματος SU(3)C και SU(3)H αντίστοιχα. Επίσης, di = (d, s, b),

ei = (e, µ, τ), νi = (νe, νγ , ντ ), f , x, F και M2 είναι τα νέα κουάρκ και λεπτόνια. Τέλος, x1 = x,

x2 = y, x3 = z, M c
k = (M c

1 ,M
c
2 ,M

c
3 ), N c

k = (N c
1 , N

c
2 , N

c
3 ) [90].
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Το μοντέλο αυτό περιέχει συνολικά 92 πεδία. Τα περισσότερα από τα φερμιόνια,

εκτός από τα συνηθισμένα 45 σωμάτια, πρέπει να είναι υπερβαρέα. Επίσης, ανάλογα

με το πως αναγνωρίζουμε τα σωμάτια και τα αντι-σωμάτια, εμφανίζονται ένα, τρία ή

πέντε νέα άμαζα σωμάτια εκτός από τα συνηθισμένα νετρίνα. Στην συνέχεια, εκτός

από τα 24 μποζόνια του SU (5) έχουμε 39 διανυσματικά μποζόνια, καθώς 82−1 = 63

(βλέπε Πίνακα 3.3). Η εμφάνιση του Aµ είναι χαρακτηριστική κάθε θεωρίας με τοπική

οριζόντια συμμετρία και προκαλεί την αλλαγή της γεύσης σε διαγράμματα επιπέδου

δένδρου. Το μοντέλο επίσης περιέχει νέα φορτισμένα διανυσματικά μποζόνια Zµ, V
+
µ

τα οποία είναι νέοι μεσολαβητές της CP παραβίασης.

Επίσης, πρέπει να αναφέρουμε ότι η SU (8) μπορεί να σπάσει στην SU(3)C×U (1)

με διάφορους τρόπους [90]:

SU (8)→



SU (7)× U (1)

SU (6)× SU (2)× U (1)

SU (5)× SU (3)× U (1)

SU (4)× SU (4)× U (1)

SU (7)

SU (6)× U (1)

SU (5)× SU (2)× U (1)

SU (4)× SU (3)× U (1)



(3.95)

Για τις μάζες των μποζονίων βαθμίδας έχουμε γενικά ότι:

1014GeV ' mXµ(Yµ) ' mVµ ' mZµ (3.96)

mAµ ≤ mZµ (3.97)

όπου τα Xµ και Yµ είναι τα υπερβαρέα μποζόνια της SU (5). Για την μάζα του Aµ

γνωρίζουμε ότι πρέπει να είναι βαρύ έτσι ώστε να περιορίζεται το ουδέτερο ρεύμα

αλλαγής γεύσης (Flavour Changing Neutral Current - FCNC). ΄Ετσι, ένα κάτω

όριο που μπορεί να δοθεί είναι:

mAµ ≥ 104GeV (3.98)

129



Μαρούδας Μάριος Κεφάλαιο 3. Μεγαλοενοποιημένες θεωρίες

Δείκτης Μποζόνιο βαθμίδας Q SU(3)C × SU (2) × SU(3)H

ij Aµ 0 (1, 1, 8)

αi Zµ −1
3

(3, 1, 3)(
4i

5i

) (
V +
µ

V 0
µ

) (
1

0

)
(1, 2, 3)

Bµ 0 (1, 1, 1)

Πίνακας 3.3: Τα 39 νέα μποζόνια βαθμίδας της SU (8). Η ταξινόμηση τους γίνεται σύμφωνα με

τον κανόνα μετασχηματισμού σε σχέση με την SU(3)C × SU (2)× SU(3)H . Τα αντι-σωμάτια δεν

παρουσιάζονται σε αυτόν τον πίνακα [90].

Ομάδα E6

Οι ομάδες SO (n), SU (n), και Sp (2n) είναι μέλη μιας άπειρης ακολουθίας. Δηλαδή,

δεν υπάρχει κάποιος γενικός λόγος, που η θεωρία SU (5), πρέπει να είναι καλύτερος

υποψήφιος για GUT από ότι η SU (6), SU (7) κλπ κλπ. Εκτός όμως αυτών των

ομάδων, υπάρχουν οι ασυνήθιστες ομάδες Lie (exceptional simple Lie groups) οι

οποίες είναι μοναδικές και είναι μόνο πέντε στον αριθμό: G2, F4, E6, E7, και E8.

Από αυτές τις ομάδες, η G2 δεν είναι αρκετά μεγάλη ώστε να συμπεριλαμβάνει το ΚΠ

σαν υποομάδα. Από τις υπόλοιπες ομάδες, η E8 παρόλο που η μικρότερη διαστατικά

αναπαράσταση είναι η αυτοπροσαρτημένη αναπαράσταση, η διάσταση της είναι 248 και

άρα απαιτείται ένα τεράστιο πλήθος από μποζόνια βαθμίδας και φερμιόνια. Η ομάδα

αυτή είναι τάξεως 6 με 78 γεννήτορες, οι περισσότεροι από τους οποίους πρέπει

να σπάσουν σε πολύ μεγάλη μάζα αφήνοντας άσπαστους τους 12 γεννήτορες του

ΚΠ [91].

Μόνο η θεμελιώδης 27 αναπαράσταση (και η συζυγής της) ικανοποιεί την απα-

ίτηση να έχουμε μόνο 1, 3, και 3∗ αναπαραστάσεις της υποομάδας χρώματος [92,93]

στην E6, όπου [94]:

27 =

(
Q, uc, ec, L, dc, νc

H, gc, Hc, g, Sc

)
(3.99)

με:

H =

(
N

E

)
, Hc =

(
N

E

)c

(3.100)

και g είναι η χρωματιστή SU (2) μονέτα. Στην Εξ. 3.99 η πάνω γραμμή είναι είναι

μάζες της 16 = 10 + 5̄ + 1 και τα κάτω στοιχεία είναι εξωτικά της 10 = 5̄ + 5 και
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1 αντίστοιχα. Ενω τα N και N c
παίζουν τον ρόλο των Hu και Hd αντίστοιχα.

Κάτω από τη “μέγιστη” (maximal) ομάδα SU(3)C ×SU (3)×SU (3) η 27 και η

αυτοπροσαρτημένη αναπαράσταση μετασχηματίζονται ως:

27→ (1, 3∗, 3)⊕ (3, 3, 1)⊕ (3∗1, 3∗)

78→ (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕ (3, 3∗, 3∗)⊕ (3∗, 3, 3)
(3.101)

Μια άλλη ενδιαφέρουσα υποομάδα είναι η SO (10) × U (1). Κάτω από την SO (10)

έχουμε:

27→ 16 + 1 + 10

78→ 45 + 16 + 16∗ + 1
(3.102)

Τα περισσότερα E6 μοντέλα χρησιμοποιούν την μιγαδική 27-διάστατη αναπα-

ράσταση για τα αριστερόστροφα φερμιόνια. Τα μοντέλα αυτά μπορούν να χωριστούν

σε δύο κατηγορίες ανάλογα με τον αν δίνουν έμφαση στην SU(3)C×SU (3)×SU (3)

ή στην SO (10) υποομάδα.

Τα μοντέλα της πρώτης κατηγορίας είναι περισσότερο οικονομικά στο πλήθος των

φερμιονίων, με όλα τα αριστερόστροφα φερμιόνια να αντιστοιχίζονται σε δύο 27. Τα

μοντέλα αυτά περιέχουν δύο κουάρκ φορτίου 2/3 (u, c), τέσσερα κουάρκ φορτίου

−1/3 (d, s, b, h), τέσσερα λεπτόνια φορτίου −1 (e−, µ−, τ−, M−
) και δέκα νετρίνα

(νeL, ν
µ
L, ν

τ
L, ν

M
L , νcτL , νcML , αceL , αcµL , βeL, β

µ
L). Οι προβλέψεις που γίνονται είναι [91]:

• Δεν υπάρχει t κουάρκ.

• Υπάρχει ένα τέταρτο φορτισμένο λεπτόνιο.

• Τα ουδέτερα ρεύματα τ−, M−
είναι καθαρά διανυσματικά.

• Τα συνηθισμένα νετρίνα θα είναι μαζικά, και θα υπάρχουν επιπλέον ουδέτερα

λεπτόνια τα οποία θα είναι γενικά πολύ βαριά.

• Μίξη ανάμεσα στα d, b, h, και s και ανάμεσα στα e, µ, τ , και M οδηγεί

γενικά σε FCNC. Αν η μίξη των b και h με τα d και s περιορίζεται με κάποιο

τρόπο ώστε να αποφευχθούν FCNC τότε τα b και h δεν θα μπορούσαν να

διασπαστούν μέσω των συνηθισμένων SU (2) × U (1) φορτισμένων ρευμάτων

ασθενών αλληλεπιδράσεων.

΄Εχει προταθεί πως ο κυρίαρχος μηχανισμός σπασίματος συμμετρίας οφείλεται σε μια

αυτοπροσατημένη αναπαράσταση Higgs στην οποία τα στοιχεία (1, 8, 1) και (1, 1, 8)

έχουν VEV κατά μήκος των διευθύνσεων των υπερφορτίων των δύο ομάδων SU (3).
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Σε αυτή την περίπτωση E6 → SU(3)c × SU(2)L × U(1)L. Στοιχεία των ίδιων

ή επιπλέων αυτοπροσαρτημένων αναπαραστάσεων στις “διευθύνσεις” 3 και 6 των

υποομάδων SU (2), ή άλλων αναπαραστάσεων Higgs μπορούν να σπάσουν επιπλέον

την συμμετρία στην GSM = SU(3)c × SU (2) × U (1), για παράδειγμα. Σε κάθε

περίπτωση, θεωρείται πως τα μποζόνια που προκαλούν νουκλεονική διάσπαση είναι

παρόμοια με αυτά των μοντέλων SU (5) και SO (10).

Η άλλη κατηγορία μοντέλων βασίζεται στην υποομάδα SO (10) × U (1). Τα μο-

ντέλα συμπεριλαμβάνουν τις κανονικές SU(2)L × U (1) αναθέσεις για τα ελαφριά

φερμιόνια, εισάγοντας επιπλέον βαρέα φερμιόνια. Καθένα από τα 27 φερμιόνια α-

ποσυντίθεται κάτω από την SO (10) σε 16 + 1 + 10. Η 16 είναι η καθιερωμένη

SO (10) αναπαράσταση για μία οικογένεια φερμιονίων ενώ η SO (10) μονέτα είναι

ένα ουδέτερο λεπτόνιο EL. Το EL μπορεί να συνδυαστεί με την SU (5) μονέτα νcL

για να δημιουργήσει ένα μαζικό σωματίδιο Dirac όπως προτάθηκε από τους Georgi

και Νανόπουλο. Τα φερμιόνια στην 10 θεωρούνται με κάποιο τρόπο ότι λαμβάνουν

μεγάλη μάζα. Τουλάχιστον τρεις 27 απαιτούνται για να συμπεριληφθούν οι γνω-

στές οικογένειες φερμιονίων. Η φυσική στα περισσότερα από αυτά τα μοντέλα είναι

παρόμοια με το SO (10) μοντέλο.

Για παράδειγμα, στο μοντέλο [95] η E6 σπάει στο GSM από τις 351S και 351′A

αναπαραστάσεις Higgs. ΄Ετσι, σε αυτό το μοντέλο τα φερμιόνια που δεν χρειάζονται

(τα 10, EL και νcL) σχηματίζουν μια διανυσματοειδή αναπαράσταση όσον αφορά την

ομάδα του ΚΠ. Εκεί θα λάβουν υπερβαρέες αναλλοίωτες μάζες από τα ίδια πεδία

Higgs που σπάνε την E6. Τα άλλα 15 φερμιόνια μπορούν να λάβουν μάζες μόνο από

το 27-διάστατο Higgs το οποίο σπάει το GSM → SU(3)C×U(1)EM και άρα αναμένε-

ται να έχουν μικρή VEV. ΄Αρα, φαίνεται πως το μοτίβο των μαζών των φερμιονίων

είναι δεμένο με την (ανεξήγητη μέχρι στιγμής) ιεραρχία των μαζών των μποζονίων

βαθμίδας.

Επιπρόσθετα, ο πίνακας μαζών που παράγεται στην 27 για τα ελαφριά φερμιόνια

υπονοεί ότι Me = Md όπως στα μοντέλα SU (5) και SO (10) Ωστόσο, σε αυτή την

περίπτωση υπάρχου μεγάλες μη διαγώνιες ζεύξεις ανάμεσα στα ελαφρυά και στα βαριά

φερμιόνια (που παράγονται από τις 351 και 351′) οι οποίες μπορούν να αλλάξουν την

πρόβλεψη:

md

ms

=
me

mµ

(3.103)

Δυστυχώς όμως, η επιθυμητή συσχέτιση ανάμεσα στιςmb καιmτ θα χαθεί, εκτός από

την περίπτωση μερικών ειδικών-συγκεκριμένων ορίων των παραμέτρων της θεωρίας.
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Τέλος, έχει παρατηρηθεί [95,96] πως το απαιτούμενο σπάσιμο της συμμετρίας στο

E6 μοντέλο μπορεί να εφαρμοστεί από τις αναπαραστάσεις (27∗,351,351′) Higgs

που εμπεριέχονται στο ευθύ γινόμενο 27 × 27 (Η χρήση συζυγούς δεν απαιτείται).

Αυτό το χαρακτηριστικό δεν συμπεριλαμβάνεται στα μοντέλα SU (5) και SO (10),

και είναι ενδιαφέρον καθώς προτείνει πως το σπάσιμο της συμμετρίας μπορεί να είναι

δυναμικό με τα πεδία Higgs να αντικαθίστανται από δέσμιες καταστάσεις φερμιονίων-

αντι-φερμιονίων. Για παράδειγμα, τα πεδία που μετασχηματίζονται σαν 16× 1 κάτω

από την SO (10) υποομάδα μπορούν να σπάσουν την E6 στην SU (5) ή τα πεδία που

μετασχηματίζονται σαν 10 × 10 περιλαμβάνουν ένα συζυγές της SU (5) (στην 351

ή 351′ της E6) το οποίο μπορεί να σπάσει την SU (5) στην GSM .

3.2 Προβλέψεις

3.2.1 Διάσπαση πρωτονίου και παραβίαση βαρυονικού

αριθμού

Στο ΚΠ ο βαρυονικός και ο λεπτονικός αριθμός διατηρούνται καθώς δεν μπορούμε

να γράψουμε όρους παραβίασης σε διαγράμματα Feynman δένδρου. ΄Ετσι, λέμε ότι

ο βαρυονικός και ο λεπτονικός αριθμός είναι “τυχαίες” συμμετρίες του ΚΠ και δεν

χρειάζονται να εισαχθούν, αλλά προκύπτουν από το πεδιακό περιεχόμενο και την

απαίτηση της βάθμωσης και της αναλλοιώτητας Lorentz. Οπότε, οι κβαντικοί αυτοί

αριθμοί διατηρούνται και άρα δεν μπορούν να υπάρξουν βρόγχοι που να παράγουν

μη μηδενικό ρυθμό διάσπασης νουκλεονίων ή μαζών νετρίνων. Στις GUT αντίθετα

διαφορετικές αναπαραστάσεις του ΚΠ βρίσκονται στις ίδιες πολλαπλότητες όποτε ο

βαρυονικός και ο λεπτονικός αριθμός δεν διατηρούνται ακόμα και σε διαγράμματα

δένδρου, οπότε δεν απαγορεύει τίποτα το πρωτόνιο να διασπάται. Συγκεκριμένα, οι

διάφορες διασπάσεις πρωτονίων και νετρονίων που μπορούν να πραγματοποιηθούν

στα διάφορα κανάλια, είναι οι εξής (Βλέπε Σχ. 3.1):

p→ e+π0

p→ e+ρ0

p→ e+ω0

p→ e+η

p→ ν̄π+

p→ ν̄ρ+

p→ ν̄K+

cn→ e+π−

n→ e+ρ−

n→ νω0

n→ ν̄π0

n→ ν̄µK
0

(3.104)
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Σχήμα 3.1: Διάφορες διασπάσεις πρωτονίου μέσω ανταλλαγής των μποζονίων βαθμίδας X και

Y [97].

Στην συνέχεια, θα δούμε πως προκύπτουν αναλυτικά οι τελεστές που συνει-

σφέρουν στην διάσπαση πρωτονίου στο Georgi-Salam μοντέλο. Η κύρια συνεισφορά

προέρχεται από την αλληλεπίδραση βαθμίδας, δηλαδή από τον κινητικό όρο των φερ-

μιονίων. Οι αλληλεπιδράσεις αυτές περιγράφονται στην Εξ. 3.13 ενώ θα χρησιμοποι-

ήσουμε και τον πίνακα για τα λεπτοκουάρκ μποζόνια βαθμίδας της Εξ. 3.14. ΄Ετσι,

έχουμε:

Lint = LSM + LX (3.105)

Στην συνέχεια θα μελετήσουμε την πιθανότητα για διάσπαση πρωτονίου μέσω των

Yukawa αλληλεπιδράσεων που προέρχονται από τις βαθμωτές τριπλέτες χρώματος,

των οποίων η λαγκρατζιανή δίνεται στην Εξ. 3.39. Οι νέες αλληλεπιδράσεις που

επηρεάζουν τα φερμιόνια λόγω των μποζονίων λεπτοκουάρκ είναι οπότε:

LX = −g5Tr
{

10Fγ
µÃXµ 10F

}
+ g55̄Fγ

µ
(
ÃXµ

)T
5̄F (3.106)

Γράφουμε επίσης:

ÃXµ =
1√
2

(
0 Xc

µ

Xµ 0

)
(3.107)

έτσι ώστε:

Xc
µ →

(
Xc
µ

)α
a
, Xµ → (Xµ)αa (3.108)

όπου a είναι ο SU (3) δείκτης και α είναι ο SU (2)L. Τέλος, οι 10F και 5̄F γράφονται

στην μπλοκ μορφή των Εξ. 3.5. Οπότε, χρησιμοποιώντας τον συνηθισμένο κανόνα

μετασχηματισμού:

T̂ a5c = −T aT5c (3.109)

όπου T a είναι οι SU (5)C γεννήτορες στην θεμελιώδη αναπαράσταση (πίνακες Gell-

Mann), ενώ για την δύο δεικτών αντισυμμετρική 10:

T̂ a10 = T a10− 10TT aT (3.110)
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που δίνει λόγω της αντισυμμετρικότητας της 10:

1

2
Tr
(
10T̂ a10

)
= Tr

(
10T a10

)
(3.111)

παίρνουμε την λαγκρατζιανή:

LXY =
g5√

2

[(
dc
)α
γµεabL

b − ecεbaγµQαb + Q̄βaγ
µεαβγucγ

]
[Xµ]aα +

+
g5√

2

[(
L̄
)
b
εbaγµdcα − Q̄bαγ

µεabec + εγβα(uc)
γ
γµQaβ

] [
Xc
µ

]α
a

(3.112)

όπου οι πρώτοι μισοί όροι μπορούν να διαβαστούν σαν το ερμιτιανό συζυγές των

δεύτερων μισών όρων.

Στην συνέχεια, για τις αλληλεπιδράσεις που προκύπτουν από Yukawa έχουμε τους

όρους 3.39. Κάνοντας παρόμοιες πράξεις και παίρνοντας την Εξ. 3.47 και ορίζοντας

m = α, όπου α = 1, 2, 3, παίρνουμε:

1

8
ε510FY1010FH → −

1

2
εabεαβγ (Qαa)Y10

(
Qβb
)
T γ − 1

2
ecY10u

c
γT

γ − 1

2
ucY10e

c
γT

γ

(3.113)

και βάζοντας αυτό μαζί με τους Y5 όρους στο T παίρνουμε τους όρους Yukawa που

φέρονται από το T :

LT = (−ε2LY5Q+ dcY5ε3u
c)T ∗ −

(
1

2
ε2ε3QY10Q+ ecY10u

c

)
T + h.c. (3.114)

Παρατηρούμε πως ούτε η Εξ. 3.112 ούτε η 3.114 αποτελούνται μόνο από όρους

παραβίασης λεπτονικού ή βαρυονικού αριθμού. Αλλά οι νέοι κανόνες Feynmann που

σπάνε τον B και L διατηρούν το ∆ (B − L). Αυτό σημαίνει πως έχουμε μια νέα

συμμετρία που είναι τυχαία, με τον ίδιο τρόπο που οι B και L διατηρούνται στο ΚΠ

κατά τύχη και όχι από απαίτηση.

d = 6 τελεστές για διάσπαση πρωτονίου

Στις χαμηλές ενέργειες ο διαδότης αυτών των στοιχείων που φέρουν την διάσπαση

του πρωτονίου θα καταρρεύσει σε μια τεσσάρων-φερμιονίων ενεργή αλληλεπίδραση.

Οι εξισώσεις κίνησης για ένα πεδίο φ δίνονται από την Εξ. 2.8. Αν το πεδίο είναι

βαρύ, τότε οι όροι παραγώγου θα είναι πολύ μικροί και έτσι οι εξισώσεις κίνησης

μπορούν να δοθούν από την σχέση:

∂L
∂φ

= 0 (3.115)
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Οπότε, θα κάνουμε τους υπολογισμούς που απαιτούνται για τα λεπτοκουάρκ μποζο-

νικά πεδία και για τη βαθμωτή τριπλέτα χρώματος. Καταρχάς όσον αφορά τα νέα

μποζόνια βαθμίδας, προσθέτουμε στην λαγκρατζιανή 3.112, τον όρο μάζας:

LMX
= −M

2
X

2

(
Xc
µ

)α
a

(Xµ)aα (3.116)

έτσι ώστε όλη η πληροφορία για τα πεδία λεπτοκουάρκ καθώς και όλες οι σχετικές αλ-

ληλεπιδράσεις να περιέχονται στην LXY +LMX
. Υπολογίζοντας στην συνέχεια τους

ενεργούς τελεστές για τα πεδία λεπτοκουάρκ παίρνοντας τις αντίστοιχες παραγώγους

έχουμε:(
Xc
µ

)α
a

=
2√
2

g5

M2
X

{(
dc
)a
γµεabL

b − ecεbaγµQαb + Q̄βaγµε
αβγucγ

}
(3.117)

και για το ερμιτιανό συζυγές του:

(Xµ)aα =
2√
2

g5

M2
X

{(
L
)
b
εbaγµd

c
α − Q̄bαγµε

abec + εγβα(uc)
γ
γµεabL

b
}

(3.118)

Αντικαθιστώντας στην συνέχεια τις Εξ. 3.117 και 3.118 στην λαγκρατζιανή αλληλε-

πίδρασης 3.112 και αφού διατηρήσουμε μόνο τους όρους παραβίασης βαρυονικού και

λεπτονικού αριθμού, παίρνουμε τους εξής d = 6 τελεστές:

Ld=6 =
g5

M2
X

εαβγ(uc)
α
γµQ

αβ
{

(ec) εabγ
µQγb +

(
dc
)γ
γµεabL

b
}

+ h.c. (3.119)

Αν, για παράδειγμα, πάμε στην συνέχεια στο συγκεκριμένο κανάλι διάσπασης

πρωτονίου:

p→ π0e+
(3.120)

που φαίνεται στο Σχ. 3.1 στο (α), οι συνεισφορές που προκύπτουν σε αυτή τη

διαδικασία είναι:

OI =
g2

5

M2
X

εαβγ(uc)
α
γµu

β (ec) γµdγ

OII =
g2

5

M2
X

εαβγ(uc)
α
γµu

β
(
dc
)γ
γµe

(3.121)

Μια εκτίμηση οπότε που προκύπτει για το πλάτος είναι [98]:

Γp→π0e+ ∼ a2
5

m5
p

M2
X

(3.122)

από όπου μπορούμε, ανάλογα με τα πειραματικά όρια για τον χρόνο ζωής του πρω-

τονίου, να δώσουμε μια αναμενόμενη τιμή για την μάζα των λεπτοκουάρκ μποζο-

νίων. Παίρνοντας, για παράδειγμα, τp→π0e+ ∼ 1034ys και για α5 ∼ 1/40 και mp =
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0.938GeV , παίρνουμε για τις μάζες των υπερβαρέων μποζονίων βαθμίδας ότι:

MX ∼ 4× 1015GeV (3.123)

Κάνοντας την ίδια διαδικασία για τις τριπλέτες χρώματος, θεωρούμε τον όρο

μάζας:

LmT = −m2
TT
∗T (3.124)

τον οποίο προσθέτουμε στους όρους αλληλεπίδρασης 3.114. Στην συνέχεια, ολοκλη-

ρώνουμε το πεδίο μας και κρατάμε μόνο τους όρους που παραβιάζουν τον λεπονικό

και βαρυονικό αριθμό, οπότε παίρνουμε:

LTd=6 =
1

2m2
T

(QY10Q) (LY5Q)− 1

m2
T

(dcY5u
c) (ecY10u

c) + h.c. (3.125)

Οι τελεστές που προκύπτουν έχουν την γενική μορφή:

LTd=6 =
1

2m2
T

Y10Y5QQQe (3.126)

που σημαίνει ότι η m2
T είναι λιγότερο περιορισμένη από τα λεπτοκουάρκ μποζόνια

βαθμίδας, και ο λόγος είναι ότι οι τομείς Yukawa για την πρώτη γενιά από τους

οποίους το κουάρκ φτιάχνεται, είναι πολύ μικροί, της τάξης του ≤ 0.01, το οποίο

χαλαρώνει την m2
T κατά 4 περίπου τάξεις μεγέθους, οπότε παίρνουμε ότι:

m2
T ≥ 1012GeV (3.127)

Παρατηρούμε επίσης πως στην Εξ. 3.125 υπάρχει μια αντισυμμετρική δομή στους

αριθμούς χρώματος βαθμίδας αφού ο φορέας κουβαλάει αριθμό χρώματος τύπου κου-

άρκ και ο μόνος τρόπος να κατασκευάσουμε ένα QQ+QL αναλλοίωτο χρώμα είναι να

αντισυμμετροποιήσουμε το χρώμα. Αυτό θα χαλαρώσει όμως τον ρυθμό διάσπασης

αφού θα συνεισφέρει μόνο το αντισυμμετρικό μέρος των Yukawa.

Στο SO (10) μοντέλο η τάξη μεγέθους της ζωής του πρωτονίου δίνεται από την

σχέση:

τp→e+π0 =
M4

X

α2
Um

5
p

(3.128)

οπότε μπορούμε να κάνουμε μια πρώτη πρόβλεψη:

τp→e+π0 ∼ 5× 1036ys (3.129)
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Η διάσπαση πρωτονίου και εδώ μπορεί να προκύψει από τις βαθμωτές τριπλέτες

χρώματος που περιέχονται στην 126H αναπαράσταση. Οι συνεισφορές αυτές είναι

της τάξης:

Γ =
g2
Tm

5
p

m4
T

(3.130)

όπου gT είναι το αποτέλεσμα των ζεύξεων των Higgs με τα φερμιόνια στα πλάτη για

την διάσπαση πρωτονίου. ΄Ομως, πρέπει να είμαστε πιο προσεκτικοί καθώς υπάρχουν

πολλών ειδών βαθμωτά σωμάτια, όλα από τα οποία δεν μπορεί να είναι εκφυλισμένα.

Σε αντίθεση με την SU (5), η SO (10) ομάδα δεν έχει ένα μοναδικό σπάσιμο της

συμμετρίας της με ένα “βήμα” στο ΚΠ. ΄Ετσι, θα σπάσει πρώτα σε μια υποομάδα και

μετά στο ΚΠ. Ο τρόπος που θα σπάσει η συμμετρία επηρεάζει και τον χρόνο ζωής του

πρωτονίου, και οι ενεργειακές κλίμακες των ενδιάμεσων μαζών θα εισάγουν σφάλματα

στις προβλέψεις για τον χρόνο ζωής του πρωτονίου. Μπορούμε οπότε να γράψουμε

ότι:

τp = τ (0)
p Fp (3.131)

όπου το Fp δηλώνει την αβεβαιότητα που προκύπτει από “threshold” διορθώσεις αλλά

και από τα πειραματικά σφάλματα αs, αEM και sin2θW . Επίσης, μπορούμε να δούμε

ότι:

τp→e+π0 =
5

8

(
α
SU(5)
U

α
SO(10)
U

)2

× 4.5× 1029±0.7

(
MU

2.1× 1014GeV

)4

ys (3.132)

΄Ενας χρόνος ζωής που μπορεί υπολογιστεί για τέσσερα διαφορετικά κανάλια σπα-

σίματος, με α
SU(5)
U ≈ α

SO(10)
U έχει ως αποτέλεσμα [99]:

τp→e+π0 ∼ 1030−40ys (3.133)

3.2.2 Βαρυονική ασυμμετρία

Τα βαρέα μποζόνια βαθμίδας που είναι υπεύθυνα για την ενοποιημένη δύναμη δεν

μπορούν να παραχθούν από συμβατικούς επιταχυντές, όμως ενέργειες πάνω από

1015GeV , είναι πολύ εύκολα προσεγγίσιμες κατά τις πρώτες στιγμές του Σύμπαντος

μας. Αυτό θα μπορούσε να οδηγήσει σε επικράτηση της ύλης ενάντια στην αντιύλη

ακριβώς εκείνες τις στιγμές, καθώς τα μποζόνια X και Y μπορούν να διασπαστούν

σε καθαρή ύλη. Για παράδειγμα, η διαδικασία:

X → uu (3.134)
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επιτρέπεται καθώς το φορτίου του μποζονίου X είναι 4/3. ΄Οπως προτάθηκε από

τον Sakharov [100], μια τέτοια επικράτηση της ύλης είναι πιθανή αν ταυτόχρονα οι

συμμετρίες C και CP παραβιάζονται, αν ο βαρυονικός αριθμός B παραβιάζεται και

αν η διαδικασία περνά από μια φάση “μη ισορροπίας”. Και οι τρεις αυτές συνθήκες

είναι πιθανές στο μοντέλο SU (5). Η φάση “μη ισορροπίας” συμβαίνει αν το θερμό

Σύμπαν ψύχεται, και φτάνει σε μια θερμοκρασία πολύ χαμηλή για να παράξει τα

μποζόνια X και Y , και άρα μόνο οι διασπάσεις τους είναι πιθανές. Αφού η CP

παραβίαση αναμένεται να είναι μικρή, η περίσσεια της ύλης ενάντια στην αντιύλη θα

είναι μικρή και οπότε η περισσότερη ύλη θα εξαϋλωθεί με την την αντιύλη και θα

παραχθεί ένα μεγάλο πλήθος από φωτόνια. Αυτό θα εξηγούσε τον λόγο για τον

οποίο ο αριθμός των φωτονίων σε σχέση με τα βαρυόνια είναι τόσο μεγάλος:

Nγ

Nb

≈ 1010
(3.135)

Ωστόσο, αργότερα παρατηρήθηκε πως η ηλεκτρασθενή φάση μετάβασης μπορεί

να εκμηδενίσει οποιαδήποτε περίσσεια (B + L) που παράγεται από τις GUT. ΄Ετσι,

αυτό που πρέπει να εξηγηθεί είναι η παρατηρούμενη βαρυονική ασυμμετρία από την

ηλεκτρασθενή βαρυογέννεση [101].

3.2.3 Μαγνητικά μονόπολα

Το 1974 οι Gerard ’t Hooft και Alexander Polyaknov έδειξαν πως στην σπασμένη

φάση μιας GUT υπάρχουν τοπολογικά σταθερές κλασικές λύσεις που φέρουν μαγνη-

τικό φορτίο κάτω από μια άσπαστη συμμετρία U (1) [102, 103]. Αυτά τα μαγνητικά

μονόπολα έχουν μάζα της τάξης:

mmonop =
MGUT

aGUT
' 1016GeV (3.136)

και παράγονται κατά την διάρκεια της φάσης μετάβασης της GUT στο πρώιμο Σύμπαν.

Για παράδειγμα, το σπάσιμο της SU (5) παράγει ένα μονόπολο με μαγνητικό φορτίο

Q = 2π
e

και μάζα mmonop = MU

αU
[104].

Στην πραγματικότητα η ύπαρξη των μαγνητικών μονόπολων δεν είναι συγκεκρι-

μένα μόνο στην SU (5) GUT. Αντ’ αυτού είναι μια αναπόφευκτη ιδιότητα της μεγάλης

ενοποίησης. Οποιαδήποτε θεωρία περιγράφει τις ισχυρές και ηλεκτρασθενείς δυνάμεις

σαν μία μεγαλοενοποιημένη αλληλεπίδραση θα έχουν και ’t Hooft-Polyakov μονόπολα,

όπως αποδεικνύεται μέσω των μαθηματικών της τοπολογίας [105, 106]. Μια ακόμα
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ιδιότητα είναι ότι αυτή η τεράστια μάζα σημαίνει ότι τα μονόπολα των GUT θα μπο-

ρούσαν να έχουν παραχθεί μόνο κατά τη στιγμή της ΜΕ. Αν έχει συμβεί αυτό τότε

είναι πολύ πιθανό να υπάρχει κάποιο υψηλότερο νόημα στην κβάντωση του ηλεκτρι-

κού και του μαγνητικού φορτίου. Η μάζα αυτών των μονόπολων είναι αρκετή για

το κλείσιμο του Σύμπαντος, και για την επιλογή των μονόπολων ως υποψηφίους για

την ΣΥ, όμως δεν παρατηρήθηκε ποτέ πειραματικά. Επίσης, να αναφέρουμε πως αυτά

τα βαριά μονόπολα αλληλεπιδρούν με την συνηθισμένη ύλη αρκετά διαφορετικά από

ότι τα ελαφριά μονόπολα του Dirac (βλέπε εδάφιο 2.4.6) [65]. Λόγω της μεγάλης

μάζας τους, οι αλληλεπιδράσεις τους με ελαφριά άτομα δεν θα ήταν επαρκείς έτσι

ώστε να εμποδίσουν την κίνηση τους. Οπότε, ένα αργά κινούμενο μονόπολο που θα

έπεφτε προς την Γη θα διείσδυε στην επιφάνεια της πολύ εύκολα αφού τίποτα δεν θα

μπορούσε να το εμποδίσει.

Κοσμολογικό πρόβλημα

Η ενοποίηση στις θεωρίες GUT πραγματοποιείται σε πολύ υψηλές ενέργειες, και

συνεπώς στο πρώιμο Σύμπαν στο οποίο υπήρχαν αυτές οι ενέργειες, οι αλληλεπι-

δράσεις ήταν ενοποιημένες. Στη συνέχεια, με την ελάττωση της θερμοκρασίας και

την συνεπαγόμενη μείωση της ενέργειας οι δυνάμεις αυτές διαχωρίστηκαν. ΄Ετσι, το

Σύμπαν περνά από τη συμμετρική του φάση στη μη συμμετρική και συνεπώς εμφα-

νίζεται ένας μεγάλος αριθμός τοπολογικών ατελειών ανάμεσα τους και τα μαγνητικά

μονόπολα (βλέπε Σχ. 3.2). Προφανώς αυτό συμβαίνει λόγω του ότι σε πολύ μεγάλες

κλίμακες τα πεδία Higgs δεν αλληλεπιδρούν μεταξύ τους ώστε να ευθυγραμμιστούν,

οπότε προσανατολίζονται τυχαία. ΄Ετσι, η ερμηνεία των μαγνητικών μονόπολων μπο-

ρεί να πραγματοποιηθεί πέραν των κλασικών μεθόδων, μέσα από τα μαθηματικά της

τοπολογίας.

Συγκεκριμένα, δείχθηκε από τους John Preskill [107] και Yakov Borisovich Zel-

dovich [108] πως στο πρώιμο Σύμπαν όταν μια συμμετρία των GUT καταρρέει στις

διακριτές ισχυρές και ηλεκτρασθενείς θεωρίες, αναμένεται μεγάλη παραγωγή μονόπο-

λων. Για παράδειγμα, αν υποθέσουμε ότι έχουμε την ομάδα SU (5), τότε στο πρώιμο

Σύμπαν θα έπρεπε να είχαμε την εξής μετάβαση:

SU (5)
1015GeV→
10−35s

SU(3)C × [SU(2)L × U(1)Y ]
102GeV→
10−9s

SU(3)C × U(1)EM (3.137)

Σε αυτή την περίπτωση τα μαγνητικά μονόπολα που θα παράγονταν σαν σημειακές

τοπολογικές ατέλειες στην GUT αλλαγής φάσης, θα ήταν περίπου ένα για κάθε
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“casual domain”. Στην κλασική κοσμολογία αυτό οδηγεί σε πάρα πολλά μονόπολα.

Η σημερινή πυκνότητα μονόπολων θα ήταν [109]:

ρmonop ' 5× 10−18g/cm3
(3.138)

ενώ η κρίσιμη πυκνότητα είναι:

ρcrit ' 5× 10−29g/cm3
(3.139)

Το πρόβλημα δεν ήταν πλέον το αν θα υπήρχε ένα μαγνητικό μονόπολο, αλλά το

γεγονός ότι θα έπρεπε να είναι υπερβολικά πολλά. Το γεγονός όμως ότι μέχρι τότε δεν

είχε παρατηρηθεί ούτε ένα μαγνητικό μονόπολο δημιουργούσε τεράστια προβλήματα

στις GUT. Το πρόβλημα αυτό ονομάστηκε πρόβλημα των μονόπολων. Συγκεκριμένα,

όπως δείξαμε προβλέπεται ότι η πυκνότητα μονόπολων σήμερα θα πρέπει να είναι 1011

φορές την κρίσιμη πυκνότητα του Σύμπαντος μας σύμφωνα με το μοντέλο της ΜΕ:

nmonop ≥
1

VH,GUT
=

(
4

3
πr3

H,GUT

)−1

→ ρmonop ' 1011ρcrit (3.140)

Οπότε, τα μαγνητικά μονόπολα πρέπει να έχουν παραχθεί σε έναν μη αποδεχόμενα

τεράστιο αριθμό στο πρώιμο Σύμπαν, εκτός εάν υπάρχει κάποιος μηχανισμός ο οπο-

ίος να περιορίζει την παραγωγή τους ή να αυξάνει την εξαΰλωση ζευγών μονόπολων-

αντι-μονόπολων. Το πρόβλημα αυτό είναι ένα βασικό κίνητρο για ένα πληθωριστικό

Σύμπαν το οποίο εισάγει μια εποχή γρήγορου πληθωρισμού μετά την φάση μετάβασης

της GUT. Αυτό θα είχε σαν συνέπεια την αραίωση της πυκνότητας μονόπολων όσο η

θερμοκρασία επαναθέρμανσης είναι κάτω από την MGUT [110]. Επίσης, όπως δείχθη-

κε, αν η μεταβολή φάσης των θεωριών GUT, κατά την οποία παράγονται μονόπολα,

είναι ίδια με εκείνη που οδηγεί στον πληθωρισμό, τότε η θεωρία του Alan Guth ε-

ξασφαλίζει, μέσω του πληθωρισμού, ότι στο ορατό Σύμπαν σήμερα θα έχει απομείνει

το πολύ ένα μονόπολο. Δηλαδή, τα καθιερωμένα μοντέλα του πληθωρισμού λύνουν

το πρόβλημα των μονόπολων, υιοθετώντας την άποψη ότι ο “σπόρος” από τον οποίο

προήλθε όλο το ορατό Σύμπαν, ήταν μια κβαντική διακύμανση, τόσο μικρή που το

πολύ να περιείχε μόνο ένα μονόπολο. Το μονόπολο αυτό, υπάρχει ακόμα εκεί έξω,

κάπου στο Σύμπαν, αλλά είναι εξαιρετικά απίθανο ότι θα βρεθεί κάποια στιγμή στην

τροχιά μας. Σαν συνέπεια μπορεί στην πραγματικότητα να υπάρχουν άλλες περιοχές

του χωρόχρονου πέρα από το ορατό Σύμπαν οι οποίες δεν υπέστησαν διόγκωση με

την ίδια ταχύτητα με την δική μας “φυσαλίδα” από την οποία προήλθε το Σύμπαν.

Μπορεί να ζούμε δηλαδή σε μια τοπική περιοχή (η οποία είναι ολόκληρο το παρα-

τηρήσιμο Σύμπαν) ενός πολύ μεγαλύτερου Σύμπαντος. Με άλλα λόγια, μπορούμε
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να πούμε ότι αν η περίοδος του πληθωρισμού συνέβη, κάτω από την θερμοκρασία

όπου μαγνητικά μονόπολα μπορούν να παραχθούν, τότε αυτό θα έλυνε το πρόβλη-

μα, καθώς τα μονόπολα θα απομακρύνονταν μεταξύ τους όσο το Σύμπαν γύρω τους

διαστέλλεται και έτσι θα μειωνόταν η παρατηρούμενη πυκνότητα τους κατά πολλές

τάξεις μεγέθους [111].

΄Αλλες πιθανές λύσεις είναι η μείωση των μέσω: “domain walls” (που θα ανα-

φέρουμε και στο εδάφιο 4.2.4) [112], “U (1) ηλεκτρομαγνητικό σπάσιμο συμμετρίας

σε υψηλή θερμοκρασία” [113] ή “μη επαναφορά της GUT συμμετρίας” [114]. Τέλος,

αξίζει να αναφέρουμε πως έχει δειχθεί ότι τα μονόπολα GUT μπορούν επίσης να

καταλύσουν την διάσπαση του πρωτονίου [115–117].

Σχήμα 3.2: Σχηματισμός τοπολογικών ατελειών.

3.2.4 Κβάντωση του φορτίου

Στο ΚΠ τα κουάρκ και τα λεπτόνια είναι και τα δύο στοιχειώδη σωμάτια χωρίς κάποια

εσωτερική δομή. ΄Ομως, μετά από την ανάλυση που έχει γίνει από τις GUT έχει γίνει

σαφές ότι μπορεί απλά να είναι δύο όψεις του ίδιου νομίσματος, όπως για παράδειγμα

εκτείνοντας την ομάδα SU (3) της κβαντικής χρωμοδυναμικής ώστε να συμπεριλαμ-

βάνει λεπτόνια σαν τέταρτο χρώμα. Η πλήρης Pati-Salam ομάδα βαθμίδας είναι η

GPS με τις καταστάσεις της μιας οικογένειας [(Q,L) , (Qc, Lc)] να μετασχηματίζο-

νται σαν [(4, 2, 1) , (4̄, 1, 2)] όπου τα Qc = (dc, uc), Lc = (ec, νc)είναι διπλέτες κάτω

από την SU(2)R. ΄Ετσι, το ηλεκτρικό φορτίο δίνεται από την Εξ. 3.77 ενώ η SU(4)C

περιέχει την υποομάδα SU(3)C × (B − L). ΄Ετσι, το ηλεκτρικό φορτίο είναι κβαντι-
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σμένο αφού συμπεριλαμβάνεται σε μια μια αβελιανή ομάδα βαθμίδας. Επίσης, το νc

δεν έχει κβαντικούς αριθμούς ΚΠ και άρα είναι τελείως στείρο και εισάγεται για να

συμπληρώσει την SU(2)R λεπτονική διπλέτα. Η επιπλέον αυτή κατάσταση, όπως θα

δούμε, είναι επιθυμητή όταν θεωρούμε μάζες νετρίνων.

΄Ετσι, από το γεγονός ότι τα κουάρκ και τα λεπτόνια μπαίνουν στην ίδια πολλα-

πλέτα, τα φορτία πρέπει να σχετίζονται αφού το ίχνος κάθε γεννήτορα πρέπει να είναι

μηδέν. Για παράδειγμα, ο τελεστής φορτίου στην θεμελιώδη αναπαράσταση μας δίνει:

TrQ = Tr (qd̄, qd̄, qd̄, e, 0) = 0 (3.141)

Δηλαδή, το ηλεκτρικό φορτίου του d-κουάρκ πρέπει να είναι το 1/3 του φορτίου του

ηλεκτρονίου. Παρόμοια βρίσκουμε ότι το φορτίο του u-κουάρκ πρέπει να είναι τα 2/3

του φορτίου του ποζιτρονίου έτσι ώστε το τελικό φορτίο του πρωτονίου p = uud να

είναι ακριβώς αντίθετο με το φορτίο του ηλεκτρονίου.

3.2.5 Πρόβλεψη σταθερών ζεύξεων

Στο ΚΠ οι σταθερές ζεύξης g1, g2 και g3 είναι αυθαίρετες. Αντίθετα μια βασική

πρόβλεψη του μοντέλου SU (5) είναι η ακριβής τιμή της γωνίας Weinberg της Εξ.

2.136 η οποία στο ΚΠ δεν μπορεί να υπολογιστεί. Το γεγονός αυτό οφείλεται στο

ότι οι γεννήτορες είναι όλοι μέρος της ίδιας απλής ομάδας, οπότε οι σταθερές ζεύξης

σχετίζονται μεταξύ τους για Q2 ≥M2
X . ΄Ετσι, έχουμε ότι:

sin2θW =
g′2

g′2 + g2
=

g2
1

g2
1 + 5

3
g2

2

→
Q2≥M2

x

3

8
(3.142)

΄Ενας απευθείας υπολογισμός του sin2θW μπορεί να προκύψει από την σχέση:

sin2θW =
e2

g2
=

∑
a

(t3a)
2

∑
a

(qa)
2 =

Tr(T3)2

Tr (Q2)
(3.143)

όπου τα αθροίσματα εκτείνονται σε όλα τα πεδία σε μια αναπαράσταση. Φυσικά, κάθε

αναπαράσταση θα έδινε τα ίδια αποτελέσματα. Η σχέση αυτή προκύπτει από:

eQ = g5Q̂

gT3 = g5T̂3

(3.144)

όπου οι Q̂ και T̂3 είναι κατάλληλα κανονικοποιημένοι γεννήτορες της SU (5). Ει-

σάγοντας στην συνέχεια τα νούμερα από την πενταπλέτα της SU (5) έχουμε ότι:

Tr(T3)2

Tr (Q2)
=

21
4

31
9

+ 1
=

3

8
(3.145)
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Οπότε, απο τις Εξ. 3.143 και 3.145 προκύπτει ότι sin2θ
SU(5)
W = 3/8 = 0.375.

Το πρόβλημα είναι ότι υπάρχει μεγάλη ασυμφωνία της ανωτέρω θεωρητικής τιμής

με την πειραματική τιμή sin2θexp
W ' 0.23 σε χαμηλές ενέργειες. ΄Ετσι, αρχικά το

μοντέλο SU (5) τέθηκε υπό αμφισβήτηση, μέχρι που παρατηρήθηκε πως το “τρέξιμο”

των σταθερών ζεύξεων ανάμεσα στην κλίμακα ενοποίησης και τις χαμηλές ενέργειες

μπορεί να μειώσει σημαντικά την τιμή της sin2θW . Πρέπει επίσης να τονίσουμε πως η

πρόβλεψη της Εξ. 3.142 δεν είναι μόνο για το SU (5) μοντέλο αλλά για κάθε μοντέλο

που έχει τις SU(3)C×SU(2)L×U(1)Y σαν υποομάδες, υπονοώντας ότι οι Q, T3 και

YW είναι γεννήτορες με μηδενικά ίχνη και άρα οδηγούν στις ανωτέρω προβλέψεις.

Η ίδια πρόβλεψη, δηλαδή ότι sin2θW = Tr(T3)2

Tr(Q)2 = 3/8 όταν Q2 ' M2
, γίνεται και

από το απλό μοντέλο E6, αν η ομάδα E6 σπάει στην GSM σε υψηλές ενέργειες [113].

Επίσης, τα φαινόμενα επακανονικοποίησης είναι επίσης ίδια έτσι ώστε sin2θW ' 0.20

σε χαμηλές ενέργειες. ΄Εχει προταθεί πως αν το μοντέλο E6 σπάσει σε μεγαλύτερη

ομάδα από το GSM , όπως για παράδειγμα στο SU(3)c×SU(2)L×U(1)L×SU(2)R×
U(1)R ή στο SU(3)c×SU(2)L×SU(2)R×U(1)′ και στην συνέχεια σπάσει στο GSM

σε χαμηλές ενέργειες, θα οδηγήσει σε μεγαλύτερες τιμές του sin2θW στην τάξη του

0.25− 0.30.

3.3 Πειραματικές προσπάθειες

3.3.1 Σταθερότητα πρωτονίου

Το θέμα της σταθερότητας του πρωτονίου, που αναπτύξαμε στο εδάφιο 3.2.1, απασχο-

λεί την επιστημονική κοινότητα για πάνω από 70 χρόνια [98]. Την περίοδο 1929−1949

ο κανόνας της διατήρησης του βαρυονικού αριθμού δημιουργήθηκε από τους Weyl,

Stueckelberg και Wigner [118–120], και η πρώτη πειραματική ιδέα προτάθηκε από

τον Goldhaber το 1954 [121]. Η βασική ιδέα ήταν ότι η διάσπαση του νουκλεονίου

θα άφηνε το στοιχείο Th232
σε μια διεγερμένη και διασπάσιμη κατάσταση, και άρα η

σύγκριση του μετρούμενου χρόνου ζωής με αυτόν για αυθόρμητη διάσπαση μπορούσε

να χρησιμοποιηθεί για την διάσπαση του νουκλεονίου. Αυτή η τεχνική παρήγαγε ένα

κάτω όριο στον χρόνο ζωής του πρωτονίου της τάξης τp > 1.4 × 1018ys. Η πρώτη

άμεση έρευνα για διάσπαση του πρωτονίου έγινε από τους Reines, Cowan και Gold-

haber με την χρήση ενός υγρού ανιχνευτή σπινθηρισμών 300 λίτρων [122], και το

όριο που τέθηκε ήταν τp > 1× 1021ys για τα ελεύθερα πρωτόνια και τp > 1× 1022ys

για τα δέσμια νουκλεόνια.
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Μετά από την μεγάλη θεωρητική ανάπτυξη κατά τον 19
ο
αιώνα στην πρόβλεψη

της διάσπασης πρωτονίου, κατασκευάστηκαν διάφορα μεγάλα πειράματα για την ε-

ύρεση οποιασδήποτε πειραματικής ένδειξης. Τα βασικά πειράματα είναι τα “Kolar

Gold Field” (KGF) [123], “Nucleon Stability Experiment” (NUSEX) [124], FRE-

JUS [125], “SOUDAN” [126], “Irvine-Michigan-Brookhaven” (IMB) [127] και το

Kamiokande [128]. Τα πειράματα αυτά είναι είτε καλορίμετρα (πχ ο “SOUDAN”)

είτε τύπου Cherenkov (IMB, Kamiokande). ΄Ολα τα πειράματα έδωσαν αρνητικά α-

ποτελέσματα καθώς δεν βρήκαν κανένα υποψήφιο γεγονός για διάσπαση πρωτονίου

αλλά έδωσαν κάτω όρια για τα διάφορα “κανάλια” (modes) διάσπασης του πρωτονίου

(βλέπε εδάφιο 3.104). Κατά την δεκαετία του 1990, ο μεγαλύτερος υγρός ανιχνευτής

Cherenkov για την διάσπαση το πρωτονίου και για τις ιδιότητες των ατμοσφαιρικών

και ηλιακών νετρίνων ήταν ο Super-Kamiokande [129]. Ο ανιχνευτής αυτός είναι

ένας δακτύλιος που περιέχει 50ktons εξαιρετικά καθαρού νερού που συγκρατείται σε

μια κυλινδρική δεξαμενή από ανοξείδωτο χάλυβα 1km κάτω από ένα ορυχείο στις

Ιαπωνικές ΄Αλπεις. Ο ευαίσθητος αυτός όγκος νερού χωρίζεται σε δύο κομμάτια.

Ο εξωτερικός ανιχνευτής πάχους 2m παρατηρείται από 1885 φωτοπολαπλασιαστι-

κούς σωλήνες διαμέτρου 20cm. ΄Οταν σχετικιστικά σωμάτια περνούν από το νερό

εκπέμπουν ακτινοβολία Cherenkov σε γωνία περίπου 42◦ από την διεύθυνση κίνησης

του σωματιδίου. Μετρώντας έτσι το φορτίο που παράγεται σε κάθε φωτοπολλαπλα-

σιαστή και το χρόνο που αυτό συλλέγεται, είναι πιθανό να επανακατασκευαστεί η

θέση και η ενέργεια του γεγονότος καθώς και η ορμή του εκάστοτε φορτισμένου

σωματίου στο γεγονός.

Το Σχ. 3.5 δίνει τα πειραματικά κάτω όρια για την διάσπαση πρωτονίου τα τελευ-

ταία 50 χρόνια. Επίσης, φαίνεται η δύναμη των ανιχνευτών Cherenkov στην βελτίωση

των ορίων. ΄Ετσι, αφού ο Super-Kamiokande είναι αυτή τη στιγμή το πιο ευαίσθητο

πείραμα θα εξετάσουμε εν συντομία τις ενδείξεις για διάσπαση πρωτονίου σε αυτό το

συγκεκριμένο πείραμα.

΄Ενα από τα πιο απλά κανάλια, είναι το p → e+π0
. Στο Σχ. 3.3 βλέπουμε μια

σχηματική αναπαράσταση μιας ιδανικής διάσπασης αυτού του είδους. Το ποζιτρόνιο

e+
και το ουδέτερο πιόνιο π0

φεύγουν σε διαφορετικές διευθύνσεις. Το ποζιτρόνιο

ξεκινάει έναν ηλεκτρομαγνητικό καταιγισμό (shower) που οδηγεί σε ένα απομονωμένο

δακτύλιο. Το π0
σχεδόν αμέσως διασπάται σε δύο φωτόνια τα οποία θα συνεχίσουν

και θα ξεκινήσουν καταιγισμούς δημιουργώντας δύο επικαλυπτόμενους δακτύλιους.

Γενικά, τα πραγματικά γεγονότα θα διαφέρουν από αυτή την ιδανική περίπτωση κα-
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Σχήμα 3.3: Η ιδανική περίπτωση της διάσπασης p→ e+π0
στον Super-Kamiokande [130].

θώς το πιόνιο μπορεί να σκεδαστεί ή να απορροφηθεί ολοκληρωτικά πριν φύγει από

τον πυρήνα. Επιπλέον, το πρωτόνιο στον πυρήνα μπορεί να έχει κάποια ορμή λόγω

κίνησης Fermi. Αυτά τα δύο φαινόμενα, η αλληλεπίδραση πιονίου - πυρήνα και η κίνη-

ση Fermi, χαλούν την ισορροπία της επαναδημιουργημένης ορμής. Επίσης, το πιόνιο

μπορεί να διασπαστεί ασυμμετρικά, δηλαδή το ένα φωτόνιο μπορεί να πάρει πάνω από

την μισή ενέργεια του πιονίου αφήνοντας στο δεύτερο φωτόνιο ένα θολό ή τελείως

αόρατο δακτύλιο. ΄Ετσι, όλα αυτά τα φαινόμενα πρέπει να λαμβάνονται υπόψιν στο

σήμα που λαμβάνεται. Το Super-Kamiokande ψάχνει επίσης για το κανάλι p→ K+ν̄

κοιτώντας για τα προϊόντα από τους δύο βασικούς κλάδους της διάσπασης του K+

(βλέπε Σχ. 3.4). Στην περίπτωση K+ → µ+νµ, όταν το διασπώμενο πρωτόνιο είναι

στο
16O, ο πυρήνας μένει σαν ένα διεγερμένο

15N . Μετά την αποδιέγερση εκπέμπεται

ένα φωτόνιο ενέργειας 6.3MeV (βλέπε Σχ. 3.4 δεξιά).

(αʹ) (βʹ)

Σχήμα 3.4: Η ιδανική περίπτωση της διάσπασης p → K+ν̄ στον Super-Kamiokande, για την

περίπτωση K+ → π+π0
(αριστερά) και K+ → µ+νµ (δεξιά) [130].

΄Ενα επιπλέον βασικό στοιχείο για τις διασπάσεις πρωτονίου αφορά τα υποστρώμα-

τα. Υπάρχουν τριών ειδών υποστρώματα γεγονότων ατμοσφαιρικών νετρίνων, τα
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οποία σχετίζονται με τις αναζητήσεις διασπάσεων πρωτονίου. Το πρώτο, είναι τα

γεγονότα με ανελαστικά φορτισμένα ρεύματα: νN → Ne, µ + nπ, όπου ένα νετρίνο

αλληλεπιδρά με ένα νουκλεόνιο στο νερό και παράγει ένα ορατό λεπτόνιο και ορισμένα

πιόνια. Αυτό μπορεί να μιμηθεί διάφορα είδη διασπάσεων όπως το p → e+π0
. Το

δεύτερο είδος είναι ουδέτερα ρεύματα παραγωγής πιονίων: νN → νNnπ, με μόνα

παρατηρήσιμα προϊόντα τα πιόνια. Τέλος, υπάρχουν τα γεγονότα με ημιελαστικά

(quasi elastic) φορτισμένα ρεύματα νN → Nµ, e, τα οποία μοιάζουν με p → K+ν̄.

Στον Πίνακα 3.4, έχουμε τα πιο πρόσφατα κάτω όρια για τους χρόνους ζωής των

πρωτονίων. Από αυτόν τον πίνακα, μπορούμε να παρατηρήσουμε πως το μεγαλύτερο

κάτω όριο περιέχεται στο κανάλι p → e+π0
, ενώ επίσης τα κανάλια p → e+γ και

p→ µ+γ έχουν πολύ μεγάλους περιορισμούς.

Τα πιο πρόσφατα όρια που δόθηκαν από το Super-Kamiokande για ορισμένα

κανάλια με 90% ακρίβεια είναι τα εξής [132]:

τp→e+π0 > 1.0× 1034ys

τp→K+ν̄ > 3.3× 1033ys

τp→K0µ+ > 1.3× 1033ys

τp→K0e+ > 1.0× 1033ys

(3.146)

΄Οπως θα δούμε και στην συνέχεια, η διάσπαση του πρωτονίου μπορεί να δώσει

λεπτομέρειες για θεμελιώδεις αλληλεπιδράσεις σε εξαιρετικά μικρές κλίμακες και δρα

σαν ένα εργαλείο για την εξερεύνηση των μεγάλων ενοποιήσεων, της φυσικής της

κλίμακας Planck, της ΚΒ, την θεωρία χορδών και την θεωρία Μ (βλέπε εδάφιο

5.2.1). Οπότε, είναι σημαντική η ύπαρξη νέων πειραμάτων για αναζήτηση διάσπασης

του πρωτονίου αλλά και για βελτίωση των ήδη υπαρχόντων ορίων. ΄Ετσι, έχουν προ-

ταθεί αρκετά καινούρια πειράματα που βασίζονται κυρίως σε δυο τεχνικές: αυτή των

ανιχνευτών “ακτινοβολίας Cherenkov” και η χρήση “ευγενών αερίων” όπως το “Liq-

uid Argon Time Projection Chamber” (LAr TPC). Πειράματα με την χρήση της

1
ης

τεχνικής, είναι το ενός μεγατόνου HYPER-K [134], το “Underground Nucleon

decay and Neutrino Observatory” (UNO) [135] με 650kt νερό, το 3M με 1000kt

νερό [136], και το Ευρωπαϊκό “MEgaton Mass PHYSics” (MEMPHYS) με ένα με-

γάτονο στο Frejus [137]. Με την 2
η
τεχνική, έχουμε το “Imaging Cosmic And Rare

Underground Signal” (ICARUS) [138] και το “Liquid Argon Neutrino and Nucleon

Decay Detector” (LANNDD) το οποίο είναι ένα 100kt υγρού αργού TPC στην Α-

μερική [139]. Τέλος, υπάρχει και το “Low Energy Neutrino Astronomy” (LENA)

όπου ο ανιχνευτής αποτελείται από 50kt υγρών σπινθηριστών [140]. Τα πειράματα
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Κανάλι τp
[
1030ys

]
p→ invisible 0.21

p→ e+π0 1600

p→ µ+π0 473

p→ νπ+ 25

p→ e+η0 313

p→ µ+η0 126

p→ e+ρ0 75

p→ µ+ρ0 110

p→ νρ+ 162

p→ e+ω0 107

p→ µ+ω0 117

p→ e+K0 150

p→ e+Ko
S 120

p→ e+Ko
L 51

p→ µ+K0 120

p→ µ+Ko
S 150

p→ µ+Ko
L 83

p→ νK+ 670

p→ e+K∗(892) 84

p→ νK∗(892) 51

p→ e+γ 670

p→ µ+γ 478

Πίνακας 3.4: Πειραματικά κάτω όρια για τον χρόνο ζωής του πρωτονίου για διάφορα κανάλια

[131].

αυτά είτε θα βρουν την διάσπαση του νετρονίου είτε θα βελτιώσουν τα υπάρχοντα

κάτω όρια και θα απορρίψουν ένα μεγάλο πλήθος από προτεινόμενα μοντέλα.

3.3.2 Μαγνητικά μονόπολα

Μερικά από τα γενικά χαρακτηριστικά των μαγνητικών μονόπολων (βλέπε εδάφιο

3.2.3) είναι:

1. Το στοιχειώδες μαγνητικό φορτίο είναι: g = hc
2e

= 137e
2

= 3.29 × 10−8cgs =
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Σχήμα 3.5: Πειραματικά κάτω όρια για τον χρόνο ζωής του πρωτονίου [133].

68.53.

2. Η σταθερά σύζευξης είναι: a = e2

hc
' 1/137, ενώ η αδιάστατη σταθερά σύζευξης

είναι: a = g2

hc
' 34.25.

3. Η ενέργεια W από το μαγνητικό πεδίο είναι: B ·W = ngBI = n×20.5keV/G ·
cm.

4. Η ταχύτητα των βαρέων μονόπολων από τις GUT είναι: 10−4 < β < 10−1
.

5. Θεωρείται γενικά πως αναζητείται σωματίδιο που φέρει δύο είδη φορτίου.

6. Η μάζα τους δεν έχει προσεγγιστεί ακόμα αλλά υπάρχουν εκτιμήσεις συνδυα-

στικά με την ακτίνα και του ηλεκτρικού φορτίου: rmonop = g2

mmonopc2
= e2

mec2
.

Από αυτά προκύπτει mmonop = g2me
e2
' n× 2.4GeV/c2

. Από άλλες άμεσες και

έμμεσες έρευνες γίνεται φανερό με 95% ακρίβεια, πως mmonop > 850GeV . Σε

κάθε περίπτωση ξεπερνάει κατά πολύ την μάζα του ηλεκτρονίου η οποία είναι

0.5MeV .

7. Για τα πολύ αργά μονόπολα, δηλαδή για β < 10−4
, δεν παρατηρείται διέγερση

ατόμων, αλλά χάνεται ενέργεια από ελαστικές κρούσεις με άτομα και πυρήνες,
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καθώς μετατρέπεται σε ελαστικές δονήσεις στο υλικό ή σε υπέρυθρη ακτινοβο-

λία.

8. Για μονόπολα που διέρχονται από υπεραγώγιμους δακτυλίους, θα υπάρξει με-

ταβολή της ροής ΦB και
dE
dx
' 42MeV/cm ανεξάρτητα της ταχύτητας.

΄Οσον αφορά την αλληλεπίδραση με την ύλη, γνωρίζουμε ότι κινούμενα φορτι-

σμένα σωμάτια τα οποία κινούνται στην ύλη αλληλεπιδρούν με τα άτομα του υλικού.

Η αλληλεπίδραση αυτή διεγείρει ή ιονίζει τα άτομα. Αυτό δημιουργεί μια απώλεια

ενέργειας του σωματιδίου που διαδίδεται διαμέσου της ύλης. Γνωρίζουμε ότι ισχύει η

σχέση Bethe - Bloch η οποία περιγράφει την απώλεια ενέργειας ανά απόσταση φορ-

τισμένων σωματιδίων που διαδίδονται στην ύλη. Η σχέση αυτή εκφράζεται ως εξής

για το μαγνητικό φορτίο:

− dE

dx
= K

Z

A
g2

[
ln

2mec
2β2γ2

Im
+
K |g|

2
− 1

2
−B (g)

]
(3.147)

Η σχέση αυτή μας δείχνει ότι ο ιονισμός αυξάνεται με το μαγνητικό φορτίο και

μειώνεται με την ταχύτητα β πράγμα που μας δίνει μια μοναδική υπογραφή για την

εύρεση του μαγνητικού μονόπολου από πειραματικές διατάξεις. ΄Ετσι, ο ιονισμός ενός

σχετικιστικού μονόπολου είναι (ng)2
φορές μεγαλύτερη από αυτόν ενός σχετικιστικού

πρωτονίου 4700n2
όπου n = 1, 2, 3, ....

΄Οσον αφορά την απώλεια ενέργειας παρουσία ύλης, γνωρίζουμε ότι η αλληλε-

πίδραση του μαγνητικού φορτίου ενός μαγνητικού μονόπολου με πυρηνικά μαγνη-

τικά δίπολα μπορεί να οδηγήσει στο σχηματισμό ενός μονόπολου-πυρήνα δέσμιου

συστήματος. Αυτό μπορεί να επηρεάσει την απώλεια ενέργειας στην ύλη και την ε-

νεργό διατομή για κατάλυση της διάσπασης του πρωτονίου από μαγνητικά μονόπολα.

Μια δέσμια κατάσταση μονόπολου-πρωτονίου μπορεί να παραχθεί μέσω της διαδικα-

σίας M + p→ (M + p)bound + γ. Δέσμιες καταστάσεις μονόπολου-πυρήνα μπορούν

να υπάρξουν για πυρήνες με μεγάλο γυρομαγνητικό λόγο [141].

• ΄Ενα γρήγορα κινούμενο μαγνητικό μονόπολο με ταχύτητα υ > 10−2c συμπερι-

φέρεται σαν ένα αντίστοιχο ηλεκτρικό φορτίο (Ze)2
eq = g2β2

.

• Για αργά σωμάτια, είναι σημαντικό να ξεχωρίσουμε την ενέργεια που χάνεται σε

ιονισμό ή σε διέγερση των ατόμων και μορίων του μέσου (ηλεκτρονική απώλεια

ενέργειας) από αυτή που χάνεται σε κινητική ενέργεια ανάδρασης ατόμων ή

πυρήνων (ατομική ή πυρηνική απώλεια ενέργειας). Η ηλεκτρονική απώλεια

ενέργειας υπερισχύει για ηλεκτρικά ή μαγνητικά φορτισμένα σωμάτια με β >
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10−2
. Η dE/dx μαγνητικών μονόπολων με 10−4 < β < 10−3

είναι κυρίως λόγω

διεγέρσεων των ατόμων. ΄Ενα μονόπολο που περνάει από ένα άτομο όπως το

4He2 μπορεί να παράξει “level mixings” και διασταυρώσεις (Drell effect). Η

επίδραση αυτή μπορεί να χρησιμοποιηθεί για πρακτική ανίχνευση παρατηρώντας

τον ιονισμό που προκαλείται από μεταβάσεις ενέργειας από διεγερμένα άτομα

He σε πολύπλοκα μόρια με μικρό δυναμικό ιονισμού (Penning effect).

• Τα μαγνητικά μονόπολα με ταχύτητες υ < 10−4c, δεν μπορούν να διεγείρουν

άτομα αλλά μπορούν να χάσουν ενέργεια σε ελαστικές κρούσεις με άτομα ή με

πυρήνες. Η ενέργεια αυτή απελευθερώνεται στο μέσο στην μορφή ελαστικών

δονήσεων και/ή υπέρυθρη ακτινοβολία.

• Αν ένα μονόπολο περάσει από έναν υπεραγωγό θα υπάρχει αλλαγή της μαγνη-

τικής ροής ΦB = 2π~c
e

, που δίνει
dE
dx
' 42MeV/cm, το οποίο είναι ανεξάρτητο

του β.

• Για β < 10−4
, η κυρίως απώλεια ενέργειας στη Γη, είναι λόγω ελαστικής

σκέδασης μονόπολου-ατόμων, απώλεια ρεύματος στροβιλισμού (eddy current

losses) και nuclear stopping power. Η Γη, πρέπει να μπορεί να σταματήσει

GUT μονόπολα με β ≤ 10−4
. Από παρόμοιες εκτιμήσεις για άλλα ουράνια

σώματα καταλήγουμε στο ότι τα μονόπολα μπορούν να σταματήσουν αν οι

ταχύτητες τους είναι: για το φεγγάρι β ≤ 5× 10−5
, για τον Δία β ≤ 3× 10−4

,

και για τον ΄Ηλιο β ≤ 10−3
.

Κοσμολογικά και αστροφυσικά όρια

Το πρώτο όριο προέρχεται απαιτώντας η σημερινή πυκνότητα μάζας των μαγνητι-

κών μονόπολων να είναι μικρότερη από την κριτική πυκνότητα του Σύμπαντος ρcrit.

Οπότε, για μαγνητικά μονόπολα με μάζα mmonop ' 1017GeV παίρνουμε το όριο:

F =
nmonopc

4π
β < 3× 10−12h2

0β
[
cm−2s−1sr−1

]
(3.148)

Το όριο αυτό είναι συνεπές για μονόπολα που είναι ομοιόμορφα κατανεμημένα στο

Σύμπαν. Αν τα μονόπολα όμως βρίσκονται συναθροισμένα σε γαλαξίες τότε το όριο

αυτό μπορεί να είναι πολύ μεγαλύτερο [109].

΄Ενα αυστηρό όριο είναι το όριο Parker στην ροή μονόπολων το οποίο έχει να κάνει

με το μαγνητικό πεδίο του Γαλαξία μας [142]. Επειδή το μαγνητικό πεδίο του γαλαξία

μας επιταχύνει μονόπολα, η ενεργειακή πυκνότητα U = B2

8π
που αποθηκεύεται στο
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πεδίο θα διαχέεται με ρυθμό
dU
dt
' 〈gnv ·B〉, όπου n η πυκνότητα των μονόπολων.

Απαιτώντας η ενέργεια του πεδίου να μην εξαντλείται ουσιαστικά σε χρόνο τ της

τάξης 108
χρόνια, που απαιτείται για την ανάπλαση του πεδίου παίρνουμε το όριο:

F =
nmonopυ

4π
≤ B

32π2gτ
' 10−16cm−2s−1sr−1

(
B

3× 10−6G

)(
108ys

τ

)
(3.149)

΄Ενα χρήσιμο χαρακτηριστικό αυτού του ορίου στη ροή είναι ότι φαίνεται να είναι

ανεξάρτητο από την μάζα του μονόπολου [105].

Υποθέτοντας την ύπαρξη ενός διαγαλαξιακού μαγνητικού πεδίου της τάξης BIG '
3 × 10−8G στην τοπική ομάδα γαλαξιών με χρόνο επαναδημιουργίας (regeneration

time) τIG ' 109ys και εφαρμόζοντας την ίδια αιτιολόγηση με ανωτέρω παίρνουμε

ένα πιο αυστηρό όριο το οποίο όμως είναι λιγότερο αξιόπιστο καθώς το διαγαλαξιακό

πεδίο δεν είναι με ακρίβεια καθορισμένο [109].

Τέλος, οι παράξενοι αστέρες A4 έχουν το μαγνητικό τους πεδίο B ' 103G σε διε-

ύθυνση αντίθετη από αυτή που αναμένεται λόγω της περιστροφής τους. ΄Ενα μαγνη-

τικό μονόπολο με ταχύτητα β ≤ 103
θα μπορούσε να σταματήσει στους A4 αστέρες.

Οπότε, ο αριθμός των μαγνητικών μονόπολων σε έναν τέτοιο αστέρα θα αυξανόταν

με τον χρόνο αν δεν λάβουμε υπόψιν μας εξαΰλωση μονόπολων-αντι-μονόπολων μέσα

στον αστέρα. Τα μονόπολα αυτά θα επιταχύνονταν στο μαγνητικό πεδίο, το οποίο

σαν συνέπεια θα μηδενιζόταν με το πέρασμα του χρόνου. Επαναλαμβάνοντας έτσι

το επιχείρημα Parker, μπορούμε να λάβουμε ισχυρά όρια, που όμως δεν βασίζονται

σε ξεκάθαρες υποθέσεις. Μπορούμε να εφαρμόσουμε παρόμοιους περιορισμούς στον

υπεραγώγιμο πυρήνα αστέρων νετρονίων, και έτσι το πεδίο που επιβιώνει ενός Palsar

μπορεί να μας δώσει ένα άνω όριο στην ροή μονόπολων στην γειτονιά του Palsar. Το

όριο θα είναι ιδιαίτερα αυστηρό για την συγκεκριμένη περίπτωση του Palsar PSR

1937 + 214 [109].

Ανίχνευση με κοσμικές ακτίνες

Η μεγάλη μάζα των μαγνητικών μονόπολων που προβλέπονται από τις θεωρίες GUT

δεν μπορεί να παραχθεί από κανέναν επιταχυντή. ΄Ετσι, τόσο μεγάλα μαγνητικά μο-

νόπολα μπορούν να παραχθούν στις πρώτες στιγμές του Σύμπαντος και μπορούν

να ανιχνευθούν στις διεισδυτικές κοσμικές ακτίνες. Τα μονόπολα που παράγονται

από τις θεωρίες GUT καταλύουν την διάσπαση των πρωτονίων, φαινόμενο που ε-

ίναι μια βασική πρόβλεψη των θεωριών GUT. Αυτά τα μαγνητικά μονόπολα όπως

έχουμε αναφέρει μπορούν να περιέχονται στην διεισδυτική ΚΑΜ ενώ αναμένεται να
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προκύπτουν ισοτροπικά από όλες τις διευθύνσεις και να έχουν τυπικές γαλακτικές

ταχύτητες 10−3c αν είναι παγιδευμένα στον γαλαξία μας. Τα μαγνητικά μονόπολα

που είναι παγιδευμένα στο ηλιακό μας σύστημα ή σε υπερσμήνη γαλαξιών μπορούν

να ταξιδεύουν με τυπικές ταχύτητες της τάξης 10−4c και 10−2c αντίστοιχα.

Η αναζήτηση τέτοιων μαγνητικών μονόπολων GUT είναι από τα βασικά αντικείμε-

να μελέτης του “Monopole, Astrophysics and Cosmic Ray Observatory” (MACRO)

[143]. Οι περισσότεροι σημερινοί ανιχνευτές σωματιδίων, που μεταξύ άλλων αναζη-

τούν μαγνητικά μονόπολα, τοποθετούνται κάτω από την επιφάνεια της Γης έτσι ώστε

να υπάρχει ελάχιστη ροή σωματιδίων κοσμικής ακτινοβολίας η οποία επηρεάζει οποιο-

δήποτε σήμα μαγνητικών μονόπολων. ΄Ετσι, και ο MACRO βρίσκεται στην σήραγγα

του Gran Sasso στην Ιταλία, ο οποίος κατασκευάστηκε το 1989 με τεράστιο εμ-

βαδό 2 τάξης μεγέθους μεγαλύτερο από τον συνδυασμό όλων των προηγούμενων

ανιχνευτών μονόπολων (76.6 × 12 × 9.3 [m3]), ενώ παρείχε μια συνολική αποδοχή

των 10000m2sr σε μια ισοτροπική ροή σωματιδίων. Ο ανιχνευτής αυτός χρησιμο-

ποιεί τριών ειδών υπο-ανιχνευτές και μπορεί να ανιχνεύει τον ιονισμό που προκαλούν

διερχόμενα κοσμικά σωματίδια με ενέργεια τέτοια ώστε να ιονίσει άτομα του εσωτερι-

κού του ανιχνευτή. Σε όλα τα χρόνια της λειτουργίας του μέχρι το 2001 δεν βρέθηκε

κάποιο υποψήφιο γεγονός μαγνητικού μονόπολου, όμως τέθηκαν άνω όρια στη ρο-

ή τους με ακρίβεια 90%. Τα άνω όρια αυτά είναι τα καλύτερα όρια που υπάρχουν

για άμεση αναζήτηση μαγνητικών μονόπολων GUT. Το άνω όριο για την ροή των

μαγνητικών μονόπολων καθιερώθηκε στα [144]:

1.4× 10−16cm−2s−1sr−1
(3.150)

για ταχύτητες 4× 10−5 < β = υ
c
< 1.

Ανίχνευση με τηλεσκόπια νετρίνων

Τα μαγνητικά μονόπολα μάζας ως και 1014GeV μπορούν να επιταχύνονται σε σχε-

τικιστικές ταχύτητες από γαλαξιακά και εξωγαλαξιακά μαγνητικά πεδία. Κατά την

διάδοση ενός μαγνητικού μονόπολου σε διηλεκτρικό μέσο εκπέμπεται ακτινοβολία

Cherenkov από τα μοριακά δίπολα του μέσου, όπως ακριβώς συμβαίνει και κατά την

περίπτωση ενός κινούμενου ηλεκτρικά φορτισμένου σωματίου. Κατά την διάδοση ε-

νός μαγνητικού μονόπολου με ταχύτητα u ' c και μαγνητικό φορτίο g = e/2a στο

διηλεκτρικό μέσο, ο αριθμός των φωτονίων Cherenkov που εκπέμπεται είναι κατά

8300 φορές μεγαλύτερος από τον αριθμό των εκπεμπόμενων φωτονίων Cherenkov

153



Μαρούδας Μάριος Κεφάλαιο 3. Μεγαλοενοποιημένες θεωρίες

που εκπέμπονται κατά την διάδοση ενός κινούμενου ηλεκτρικού φορτίου στο μέσο.

Το γεγονός αυτό έχει ως αποτέλεσμα ένα χαρακτηριστικό πειραματικό σήμα σε ένα

τηλεσκόπιο νετρίνων. ΄Ετσι, κατά την διάδοση ενός μαγνητικού μονόπολου στο νερό

ή στον πάγο που περιβάλλει ένα μεγάλο τηλεσκόπιο νετρίνων, ένας μεγάλος αριθμός

από φωτόνια θα πρέπει να συλλεχθούν από τους φωτοπολλαπλασιαστές του ανιχνευ-

τή. Το νερό και ο πάγος είναι απαραίτητα στοιχεία των τηλεσκοπίων νετρίνων καθώς

περιορίζουν τα μιόνια που προέρχονται από τις κοσμικές ακτίνες σε χαμηλά σχετικά

επίπεδα, έτσι ώστε ο ανιχνευτής να μπορεί να ξεχωρίσει το σήμα από τον θόρυβο.

΄Ενα τηλεσκόπιο νετρίνων είναι το “Antarctic Impulsive Transient Antenna”

(ANITA) το οποίο βρίσκεται σε ένα τεράστιο μπαλόνι στην ανταρκτική και μπορεί να

ανιχνεύσει μεταξύ άλλων μαγνητικό μονόπολα, έχει θέσει ως άνω όριο το 1/10000

του ορίου Parker, για μονόπολα που κινούνται κοντά στην ταχύτητα του φωτός [145].

΄Αλλα τηλεσκόπια νετρίνων είναι το “Antarctic Muon And Neutrino Detector Array”

(AMANDA) που βρίσκεται στους πάγους της Ανταρκτικής [146] και το “Baikal Deep

Underwater Neutrino Telescope” (BDUNT) το οποίο βρίσκεται στη Βαϊκάλη, την

βαθύτερη λίμνη της Γης (1.6km) στη Σιβηρία [147]. Τα τηλεσκόπια αυτά δεν έχουν

ανιχνεύσει κάποιο μαγνητικό μονόπολο, όμως έχουν παράγει νέα μειωμένα ανώτατα

όρια για την ροή αργά κινούμενων μαγνητικών μονόπολων [73] (βλέπε Σχ. 3.6)

Προς το παρόν η έρευνα για την αναζήτηση μαγνητικών μονόπολων συνεχίζεται

και από άλλα τηλεσκόπια νετρίνων όπως ο διάδοχος του AMANDA, το “IceCube” το

οποίο βρίσκεται στους πάγους της Ανταρκτικής και είναι το μεγαλύτερο μέχρι στιγμής

τηλεσκόπιο νετρίνων καθώς περιέχει ένα κυβικό χιλιόμετρο πάγου [148]. Υπάρχουν

επίσης και άλλα πειραματικά τηλεσκόπια νετρίνων όπως είναι το “Astronomy with a

Neutrino Telescope and Abyss environmental RESearch” (ANTARES) έξω από την

Toulon στη Γαλλία [149], το “Neutrino Ettore Majorana Observatory” (NEMO)

στα ανοικτά της Σικελίας [150] και το “Neutrino Extended Submarine Telescope

with Oceanographic Research” (NESTOR) το οποίο βρίσκεται στην Πύλο στο βα-

θύτερο σημείο της Μεσογείου το οποίο ονομάζεται “φρέαρ των Οινουσσών” [151].

Τελικός στόχος όλων αυτών των προσπαθειών, στα πλαίσια του προγράμματος “Cu-

bic Kilometre Neutrino Telescope” (KM3NeT), είναι η κατασκευή ενός Ευρωπαϊκού

υποθαλάσσιου τηλεσκοπίου νετρίνων με όγκο ενός κυβικού χιλιομέτρου το οποίο θα

κατασκευαστεί στη Μεσόγειο. Η θέση στην οποία θα κατασκευαστεί το τηλεσκόπιο

αυτό, θα επιλεχθεί ανάμεσα από εκείνες στις οποίες τη στιγμή αυτή ολοκληρώνονται

τα τρία πειραματικά τηλεσκόπια νετρίνων ANTARES, NEMO και NESTOR.
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Σχήμα 3.6: ΄Ανω όρια ροής μαγνητικών μονόπολων με 95% ακρίβεια από διάφορα πειράματα [143].

Ανίχνευση με SQUID

Το μόνο πείραμα το οποίο βρήκε κάποιο σήμα μαγνητικού μονόπολου είναι το πε-

ίραμα του Blas Cabrera [152]. Η θεωρητική ιδέα που προέρχεται από τις εξισώσεις

του Maxwell, που είναι και ο πιο απλός τρόπος ανίχνευσης μαγνητικού μονόπολου,

ήταν πως αν ένα μονόπολο διαχύσει έναν συρμάτινο βρόγχο τότε θα προκαλέσει μια

ροή ρεύματος εξ’ επαγωγής λόγω του μεταβαλλόμενου μαγνητικού πεδίου. ΄Ετσι, το

ολικό ρεύμα που επάγεται εξαρτάται μόνο από το μαγνητικό φορτίο του μονόπολου.

Ο Cabrera χρησιμοποίησε την υπεραγωγιμότητα για να κατασκευάσει έναν ανιχνευτή

έτσι ώστε να μπορεί να παρατηρήσει ένα ξεκάθαρο σήμα ενός μεμονωμένου μονόπο-

λου που δεν παράγεται από κανένα άλλο σωματίδιο (βλέπε Σχ. 3.8). Συγκεκριμένα,

χρησιμοποίησε έναν υπεραγώγιμο βρόγχο τεσσάρων σπειρών, με εμβαδό επιφάνειας

20cm2
ο οποίος μπορεί να αναζητήσει ακόμα και πολύ μικρές μαγνητικές πηγές. Οι

κατασκευές αυτές με υπεραγώγιμους συρμάτινους βρόχους ονομάζονται “Supercon-

ducting Quantum Interference Device” (SQUID). ΄Ετσι, κατασκεύασε έναν ανιχνευ-

τή στο Stanford ο οποίος δεν επηρεαζόταν από το γήινο μαγνητικό πεδίο και ο οποίος

αναζητούσε την ύπαρξη ενός μονόπολου μέσω του περιοδικού ελέγχου της χρονικής

εξέλιξης της ροής ρεύματος στον βρόγχο. Η μόνη καταγραφή ρεύματος στην συσκευή
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πραγματοποιήθηκε στις 14 Φεβρουαρίου του 1982 (ημέρα του Αγίου Βαλεντίνου). Η

ροή μάζας που υπολογίστηκε οδήγησε σε μια πυκνότητα μονόπολων στην Γαλαξιακή

΄Αλω με μάζα 1016GeV . ΄Οπως αναφέρθηκε το “γεγονός του Βαλεντίνου”, είχε αβε-

βαιότητα μόλις 5% (βλέπε Σχ. 3.7). Το γεγονός όμως αυτό δεν επαναλήφθηκε σε

κανέναν άλλο ανιχνευτή και συνεπώς το σήμα αυτό θεωρήθηκε ως τυχαία διακύμανση

και όχι ως ανακάλυψη.

Μια παραλλαγή του αρχικού πειράματος του Cabrera προκειμένου να μειωθεί

η πιθανότητα τυχαίων διακυμάνσεων ενός υπεραγωγού η οποία μπορεί να φανεί ως

σήμα ενός μονόπολου, έγινε στην γεωμετρική σχεδίαση του ανιχνευτή. Ο ανιχνευτής

αυτός αντί για έναν βρόγχο χρησιμοποιούσε έξι ανεξάρτητους βρόγχους στις έδρες

ενός κύβου. Οπότε, αναγκαστικά ένα διερχόμενο μονόπολο θα περνούσε ακριβώς από

δύο βρόγχους με αποτέλεσμα την ίδια χρονική στιγμή να υπάρχει ένα αναμενόμενο

σήμα που συνδέεται με την τιμή του ρεύματος στους δύο βρόγχους χωρίς αυτό το σήμα

να μπορεί να μιμηθεί από άλλες διακυμάνσεις. Μέχρι σήμερα δεν έχει παρατηρηθεί

κανένα σήμα μονόπολων, γεγονός που μειώνει κατά πολύ την συνολική ροή κοσμικών

μονόπολων που περνούν από την Γη σε: 4×10−14monopoles/cm2s. Δηλαδή, οι μάζες

των μονόπολων στην άλω θα πρέπει να είναι mmonop > 1021GeV .

Σχήμα 3.7: Το διάσημο σήμα Cabrera. Τα δεδομένα δείχνουν (a) την τυπική σταθερότητα και

(b) το γεγονός για το υποψήφιο μαγνητικό μονόπολο [152].
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Σχήμα 3.8: Αναπαράσταση των μαγνητικών γραμμών καθώς ένα μονόπολο περνά από έναν

υπεραγώγιμο δακτύλιο. ΄Οταν το μονόπολο είναι ακόμα μακριά από τον δακτύλιο (άνω απεικόνιση),

το μαγνητικό του πεδίο είναι το συμμετρικό πεδίο ενός σημειακού μαγνητικού φορτίου. ΄Οσο το

μονόπολο πλησιάζει τον υπεραγώγιμο δακτύλιο, το πεδίο διαταράσσεται. Η διατάραξη συνεχίζεται

όσο το μονόπολο περνά μέσα από τον δακτύλιο, όπου αφήνει κάποιες δυναμικές γραμμές. Μετά την

διάβαση, έχουμε της δυναμικές γραμμές ενός μαγνητικού φορτίου συν τις παγιδευμένες γραμμές

γύρω από το πηνίο.

3.4 Βασικά προβλήματα και πιθανές λύσεις

3.4.1 Doublet - Triplet splitting

Το πρόβλημα αυτό είναι χαρακτηριστικό των GUT. Η διπλέτα Higgs του ΚΠ όταν

συμπεριλαμβάνεται σε μια αναπαράσταση GUT, συνήθως συμπεριλαμβάνει τριπλέτες

χρώματος οι οποίες ευθύνονται για την διάσπαση του πρωτονίου. Για παράδειγμα,

στο SU (5) μοντέλο το Higgs μένει στην θεμελιώδη αναπαράσταση και η τριπλέτα T

157



Μαρούδας Μάριος Κεφάλαιο 3. Μεγαλοενοποιημένες θεωρίες

έχει ζεύξεις Yukawa οι οποίες έχουν την μορφή:

LY (T ) = T ∗ (LY5Q− dcY5u
c)−

(
1

2
QY10Q+ ucY10e

c

)
T (3.151)

Η τριπλέτα είναι βαριά και η ανταλλαγή της οδηγεί στην αλληλεπίδραση Fermi:

Ld=6 =
1

2M2
T

(QY10Q)
(
QY T

5 L
)

+
1

M2
T

(dcY5u
c) (ucY10e

c) (3.152)

Αφού τα νουκλεόνια αποτελούνται από κουάρκ της πρώτης γενιάς, οι αντίστοιχοι

Yukawa έχουν τυπικά τέτοια τάξη ώστε:

yuyd
M2

T

≤ 1

M2
GUT

(3.153)

και άρα:

MT ≥ 1012GeV (3.154)

Από την άλλη μεριά, η διπλέτα Higgs, δηλαδή ο εταίρος αυτής της βαριάς μονέτας,

έχει έναν αρνητικό όρο, δηλαδή μια βαριά τριπλέτα χρώματος και μια ελαφριά ασθενής

διπλέτα από την ίδια πολλαπλέτα είναι δύσκολο να προκύψουν με φυσικό τρόπο.

Αυτό είναι το λεγόμενο Doublet-Triplet splitting πρόβλημα (DT). Παρόλο που θα

μπορούσαμε να εκπληρώσουμε αυτές τις συνθήκες, δηλαδή να έχουμε μια ελαφριά

διπλέτα και μια βαριά τριπλέτα από την ίδια πολλαπλέτα, αυτό απαιτεί λεπτή ρύθμιση

των παραμέτρων του μοντέλου, εκτός και αν εργασθούμε σε πιο περίπλοκες θεωρίες

με μη ελάχιστη διαρρύθμιση.

Η αλληλεπίδραση ανάμεσα στο Higgs που είναι υπεύθυνο για το σπάσιμο της

SU (5) (το 24H), και στο Higgs που είναι υπεύθυνο για το ηλεκτρασθενές σπάσιμο

(το 5H), έχει την μορφή:

5∗H (a24H + b) 5H (3.155)

Μόλις το βαρύ Higgs αποκτήσει μια VEV από τις περιπτώσεις 3.24, οι μάζες των δύο

μερών των στοιχειωδών πολλαπλοτήτων χωρίζονται ως εξής:(
2a

υ√
30

+ b

)
|T |2 +

(
−3a

υ√
30

+ b

)
|H|2 = M2

T |T |
2 +M2

H |H|
2

(3.156)

΄Ετσι, προκύπτει ότι:

b = M2
H + 3a

υ√
30

=
3

5
M2

T +O
(
M2

H

)
(3.157)

Αλλά για να έχουμε O
(
M2
H

M2
T

)
≈ 10−20

λόγω της Εξ. 3.29, απαιτείται λεπτή ρύθμιση

των παραμέτρων της λαγκρατζιανής.
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Υπάρχουν διάφοροι τρόποι για την επίλυση αυτού του προβλήματος [153–155],

αλλά δυστυχώς κανένα ελάχιστο μοντέλο δεν έχει τέτοιες λύσεις. ΄Αρα, χρειαζόμα-

στε μη ελάχιστες γενικεύσεις αλλά και την υπερσυμμετρία (βλέπε πχ εδάφιο 4.3.1)

έτσι ώστε να σταθεροποιηθεί. Τέτοιες λύσεις συνήθως δεν κάνουν συγκεκριμένες

προβλέψεις, πράγμα που σημαίνει ότι δεν μπορούν να διαφοροποιηθούν πειραματικά

στις χαμηλές ενέργειες από τα ελάχιστα μοντέλα ή τα μοντέλα με λεπτή ρύθμιση.

3.4.2 Μάζες νετρίνων και σταθερές ζεύξης

Το απλό Georgi - Glashow μοντέλο απορρίπτεται γιατί προβλέπει λάθος σταθερές

ζεύξης στην κλίμακα MZ , δηλαδή οι 3 σταθερές ζεύξης του ΚΠ δεν ενοποιούνται.

Αν μια ομάδα είναι απλή, τότε η αντίστοιχη GUT θα πρέπει να έχει μόνο μια σταθερά

ζεύξης πριν από το αυθόρμητο σπάσιμο της συμμετρίας. Οι τρεις σταθερές ζεύξης του

ΚΠ εξαρτώνται από την ενέργεια και στην SU (5) βρίσκονται κοντά στα ∼ 1015GeV ,

όμως δεν έχουμε ενοποίηση σε ένα μοναδικό σημείο. Επίσης, το μοντέλο αυτό έχει

το ίδιο πρόβλημα με το ΚΠ, δηλαδή προβλέπει άμαζα νετρίνα. Αυτό συμβαίνει καθώς

αν γράψουμε έναν ενεργό τελεστή Weinberg:

LSU(5)
Weinberg = y

SU(5)
ij

(5cF i5H)
(
5H5cFj

)
M

+ h.c. (3.158)

τότε το όριο αποκοπής (cutoff) M δεν μπορεί να είναι μικρότερο από το MGUT αν

θέλουμε η θεωρία μας να έχει νόημα στην κλίμακα ενοποίησης. ΄Ομως, λόγω περιορι-

σμών από την διάσπαση του πρωτονίου, όπως έχουμε δει, πρέπει MGUT ≥ 1016GeV .

Επίσης, λόγω διαταρακτικών υποθέσεων y ≤ 1, οπότε οι μάζες των νετρίνων προ-

κύπτουν πολύ μικρές.

Τα προβλήματα αυτά μπορούν να ξεπεραστούν αν εισάγουμε νέους βαθμούς ελευ-

θερίας. Για παράδειγμα, μπορούμε να εισάγουμε στο μοντέλο SU (5) το φερμιονικό

συζυγές 24F [156,157], το οποίο κάτω από το ΚΠ αποσυντίθεται σε:

24F = S (1, 1, 0) + T (1, 3, 0) +O (8, 1, 0) +X

(
3, 2,−5

6

)
+ X̄

(
3̄, 2,

5

6

)
(3.159)

Επίσης, η 24H επίσης αποσυντίθεται με παρόμοιο τρόπο. ΄Ετσι, έχουμε την ακόλουθη

πιθανότητα για “ελαφριές” καταστάσεις:

• Για spin = 0: TH (1, 3, 0) , OH (8, 1, 1) , Hc
(
3, 1,−1

3

)
• Για spin = 1/2: T (1, 3, 0) , O (8, 1, 1) , X

(
3, 2,−5

6

)
, X̄
(
3̄, 2, 5

6

)
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Αν θέλουμε ενοποίηση δεν έχουμε πολλά περιθώρια για τις μάζες. Για να πάρουμε

ελαφρύτερες τριπλέτες και οκταπλέτες στην 24F χρειαζόμαστε υψηλότερης τάξης

τελεστές, και έτσι η μέγιστη μάζα για το λεπτοκουάρκ είναι mX ≈
M2
GUT

Λ
όπου Λ

είναι η παράμετρος αποκοπής για το μοντέλο SU (5) και είναι τουλάχιστον 100MGUT

για να είναι διαταρακτικό. ΄Αρα, μπορούμε να δείξουμε ότι:

mT ≈ 1TeV (3.160)

Επίσης, μπορούμε να δείξουμε ότι όσο ψηλότερη είναι η μάζα της τριπλέτας, τόσο

μικρότερη είναι η GUT κλίμακα που σημαίνει τόσο ταχύτερη είναι η διάσπαση του

πρωτονίου.

Για το πρόβλημα των μαζών των νετρίνων έχουμε δύο υποψηφίους για φορείς του

μηχανισμού see-saw, την φερμιονική μονέτα S (see-saw τύπου I) και την φερμιονική

τριπλέτα T (see-saw τύπου II). Συζευγνύονται με τα λεπτόνια του ΚΠ ως:

LY uk = yiTLiTH + yiSLiSH (3.161)

για να δώσουν τον πίνακα μάζας των νετρίνων:

mij
ν =

υ2

2

(
yiTy

j
T

MT

+
yiSy

j
S

MS

)
(3.162)

όπου MT,S είναι οι μάζες της τριπλέτας και της μονέτας. Ο πίνακας αυτός έχει τάξη

2 και άρα το μοντέλο προβλέπει ένα μαζικό νετρίνο.

Η ασθενής φερμιονική τριπλέτα T = (T+, T 0, T−) διασπάται μέσω ασθενών αλ-

ληλεπιδράσεων κυρίως σε ένα λεπτόνιο και ένα μποζόνιο βαθμίδας:

T± → W±ν

T± → Z0e±

T 0 → W±e∓

T 0 → Z0ν

(3.163)

με πλάτος διάσπασης περίπου:

ΓT ≈ |yT |2mT (3.164)

Ο ρυθμός διάσπασης εξαρτάται από τις ίδιες ζεύξεις Yukawa που είναι υπεύθυνες για

την μάζα των νετρίνων. Ο LHC θα μπορούσε να δώσει πληροφορίες για τις μέχρι

στιγμές μη μετρημένες παραμέτρους του τομέα νετρίνου.
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΄Ενας δεύτερος τρόπος να λυθεί το πρόβλημα της απλής SU (5) είναι, όπως θα

δούμε στην συνέχεια, με χρήση της υπερσυμμετρίας (βλέπε εδάφιο 4.3.1). Αντίθε-

τα το μοντέλο SO (10) όμως προβλέπει ενοποίηση των σταθερών ζεύξεων με ή

χωρίς την χρήση υπερσυμμετρίας καθώς χρειάζεται απλά την ύπαρξη μιας ενδιάμε-

σης κλίμακας όπως της Pati-Salam SU (4) × SU(2)L × SU(2)R ή της Left-Right

SU(3)C × SU(2)L × SU(2)R × U(1)B−L ανάμεσα στις MW και MGUT .

΄Οσον αφορά το μοντέλο SO (10), είναι προφανές πως ο μηχανισμός see-saw είναι

είτε τύπου I είτε τύπου II, απαιτεί την 126 καθώς περιέχει και την (1, 3, 10) της

οποίας η VEV μπορεί να δώσει μάζα στο νR (τύπου I) και την
(
3, 1, 10

)
η οποία

περιέχει μια μονέτα χρώματος, B − L = 2 πεδία ∆L, τα οποία μπορούν να δώσουν

άμεσα μια μικρή μάζα στο νL (τύπου II) της Εξ. 3.62. Αυτό μπορεί να φανεί

απευθείας από την αποσύνθεση:

126→ 1 + 5 + 15 + 45 + 50 (3.165)

Η 1 της SU (5) ανήκει στην (1, 3, 10) της GPS και δίνει μάζα στο νR ενώ η 15

αντιστοιχεί στην
(
3, 1, 10

)
και δίνει απευθείας μάζα στο νL. Φυσικά, η 126H μπορεί να

είναι ένα θεμελιώδες πεδίο, ή ένας συνδυασμός δύο 16H πεδίων, ή μπορεί να προκύψει

από μια 10H και δυο 45-διάστατες αναπαραστάσεις βαθμίδας. ΄Ετσι, ο τρόπος που

θα πάρουμε τους τομείς Yukawa καθορίζει και τον τρόπο που θα αποδοθούν οι μάζες

των φερμιονίων [86,158].
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Κεφάλαιο 4

Υπερσυμμετρία

Οι υπερσυμμετρικές θεωρίες εισάγουν πέρα από τις συνηθισμένες συμμετρίες που

υπάρχουν στη φύση (Lorentz και Poincare) και οποίες χαρακτηρίζουν τη δομή του

τετραδιάστατου χωροχρονικού συνεχούς, μια νέα “επαναστατική” συμμετρία, γνωστή

ως υπερσυμμετρία (supersymmetry - SUSY) [159–161].

Η θεωρία αυτή αναπτύχθηκε στην προσπάθεια μας να λυθεί το πρόβλημα της

ιεραρχίας (βλέπε εδάφιο 2.4.4) εισάγοντας ένα μποζόνιο για κάθε φερμιόνιο που υ-

πάρχει στο ΚΠ και αντίστροφα, γεγονός που αποτελεί ένα είδος ενοποίησης ύλης

και δύναμης. Δηλαδή έχουμε πλέον μια ενιαία εικόνα ύλης και δύναμης, όπου τα

στοιχειώδη σωμάτια δεν χωρίζονται πλέον σε φερμιόνια ύλης και μποζόνια φορείς

αλληλεπιδράσεων, αλλά το καθένα μπορεί να βρεθεί και στους δύο ρόλους. ΄Οπως

γρήγορα διαπιστώθηκε, η υπερσυμμετρία μπορεί να παράσχει λύση και σε ένα πλήθος

από άλλα προβλήματα (βλέπε εδάφιο 4.1) όπως η ΣΥ για την οποία παρέχει έναν

καλό υποψήφιο.

Η υπερσυμμετρία μπορεί να εφαρμοστεί στο ΚΠ (βλέπε εδάφιο 4.1.5) αλλά και

στις GUT θεωρίες (βλέπε εδάφιο 4.3) λύνοντας σε μεγάλο βαθμό το πρόβλημα της

γρήγορης διάσπαση του πρωτονίου που αναφέραμε στο εδάφιο 3.2.1. Παρόλα αυ-

τά υπάρχουν διάφοροι τρόποι να εφαρμοστεί η υπερσυμμετρία στις θεωρίες αυτές,

και όπως θα δούμε παραμένουν ορισμένα θεωρητικά προβλήματα που πρέπει να επι-

λυθούν πριν την τελική μας κατάληξη σχετικά με την υπερσυμμετρία (βλέπε εδάφιο

4.2.4). Το μεγαλύτερο βέβαια πρόβλημα μέχρι στιγμής είναι, όπως θα δούμε, η έλλει-

ψη πειραματικής επαλήθευσης καθώς μέχρι στιγμής, παρόλη την μεγάλη πειραματική

δραστηριότητα, δεν έχει βρεθεί κανένα υποψήφιο υπερσυμμετρικό σωμάτιο στους δι-

άφορους ανιχνευτές σε ενέργειες μέχρι 1TeV (βλέπε εδάφιο 4.4).
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Παρόλα αυτά, για τους λόγους που θα δούμε στην συνέχεια (βλέπε εδάφιο 4.1),

η υπερσυμμετρία παραμένει από τις σημαντικότερες και ισχυρότερες θεωρίες μέχρι

στιγμής, και άρα, λόγω και ελλείψει πειστικών εναλλακτικών δυνατοτήτων (βλέπε

εδάφιο 5.1.2), δεν μπορούμε να την εγκαταλείψουμε ακόμα.

4.1 Γενικά στοιχεία και κίνητρα

Σε μια υπερσυμμετρική θεωρία, δεν υπάρχουν μόνο μετασχηματισμοί μεταξύ των κα-

ταστάσεων των σωματιδίων με διαφορετική ενέργεια και ορμή, αλλά υπάρχουν και

μετασχηματισμοί καταστάσεων των σωματιδίων με διαφορετικό σπιν. ΄Οπως γνω-

ρίζουμε στη στατιστική φυσική τα διάφορα σωμάτια ανάλογα με την συμπεριφορά

τους χωρίζονται σε μποζόνια με ακέραιο σπιν και σε φερμιόνια με ημιακέραιο σπιν.

Η υπερσυμμετρία είναι μια συμμετρία ακριβώς ανάμεσα στις δυο αυτές κατηγορίες

σωματίων, και προβλέπει ότι για κάθε φερμιόνιο θα πρέπει να υπάρχει στη φύση ένα

μποζόνιο και αντίστροφα, όπου εκτός από την διαφορά τους στο σπιν θα έχουν κοινά

όλα τα υπόλοιπα χαρακτηριστικά τους. Δηλαδή, για κάθε σωμάτιο που έχει σπιν j

θα υπάρχει ένα υπερσυμμετρικό σωμάτιο με σπιν j − 1/2 και το οποίο θα ονομάζεται

s-σωμάτιο (συπερσψμμετρις-παρτιςλε). Οπότε, εκτός από τα γνωστά μας λεπτόνια

που έχουν σπιν s = 1/2 θα πρέπει να υπάρχουν στη φύση και σωμάτια με τα ίδια

ακριβώς χαρακτηριστικά αλλά με σπιν s = 0. Τα νέα αυτά σωμάτια ονομάστηκαν

υπερλεπτόνια (sleptons) ή s-λεπτόνια και συμβολίζονται με ẽ ⇔ s-ηλεκτρόνιο, ν̃ ⇔
s-νετρίνο κλπ. Με τον ίδιο τρόπο έχουμε τους υπερσυμμετρικούς συντρόφους των

κουάρκ, οι οποίοι ονομάζονται υπερκουάρκ (squarks) ή s-κουάρκ και συμβολίζονται

με q̃ (βλέπε Σχ. 4.1).

Οι ενδιάμεσοι φορείς έχουν και αυτοί τους υπερσυμμετρικούς συντρόφους τους.

Το φωτόνιο έχει το φωτίνο γ̃ (με σπιν s = 1/2), το βαρυτόνιο έχει το βαρυτίνο G̃

(με σπιν s = 3/2), οι συγκολλητές τους συγκολλητίνους ή γκλουίνους (gluinos) g̃

(με σπιν s = 1/2), τα W̃±
και Z̃0

(με σπιν s = 1/2). Επίσης, για τα σωμάτια Higgs

έχουμε τα Higgsinos, H̃. Μόνο που εδώ απαιτούνται δύο δυάδες:

H1 =
(
H+

1 , H
0
1

)
H2 =

(
H+

2 , H
0
2

) (4.1)

΄Αρα, έχουμε και δύο δυάδες Higgsinos
(
H̃1, H̃2

)
. Οπότε, παρατηρούμε πως υπάρ-

χει ένας πολλαπλασιασμός των στοιχειωδών σωματιδίων, κάτι που όμως δεν είναι

καθόλου φυσικό καθώς δεν παρατηρούνται στις εκάστοτε ενεργειακές κλίμακες.
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΄Ετσι, η υπερσυμμετρία δεν είναι μια ακριβής συμμετρία της φύσης: για παράδειγμα

δεν υπάρχει σωμάτιο με σπιν 0, ίδια μάζα και ίδιο φορτίο με αυτό του ηλεκτρονίου.

Για αυτόν ακριβώς τον λόγο, η υπερσυμμετρία θα πρέπει να είναι παραβιασμένη, με

την έννοια ότι οι τιμές των μαζών των υπερσυμμετρικών σωματιδίων θα είναι δια-

χωρισμένες από τις συνήθεις τιμές των μαζών του ΚΠ. ΄Ετσι, αν κάποιος ορίσει τον

κβαντικό αριθμό R (R-ομοτιμία):

R ≡ (−1)3B+L+2S
(4.2)

ο οποίος είναι ακριβής υπό την προϋπόθεση ότι ο βαρυονικός και ο λεπτονικός αριθμός

διατηρούνται, τότε για τα συνηθισμένα σωμάτια το R θα είναι άρτιο ενώ για τους

υπερσυμμετρικούς εταίρους τους, το R θα είναι περιττό. Σωματίδιο με περιττό αριθμό

R δεν έχουν ακόμα παρατηρηθεί.

Σχήμα 4.1: Στα αριστερά φαίνονται τα σωματίδια του ΚΠ ενώ δεξιά φαίνεται το μικρότερο

σωματιδιακό περιεχόμενο που προβλέπεται από τις υπερσυμμετρικές θεωρίες.

4.1.1 Κίνητρα

Ενοποίηση των σταθερών ζεύξεων

Οι τιμές των σταθερών ζεύξεων εξαρτώνται από την κλίμακα που γίνεται η μέτρηση.

Η εξέλιξη της σταθεράς με την ενέργεια εξαρτάται από την υποκείμενη ομάδα αλλά

και από το περιεχόμενο ύλης της θεωρίας. ΄Ετσι, η ένταση της εκάστοτε σταθεράς

αυξομειώνεται με την ενέργεια ανάλογα με την περίπτωση. Στο ΚΠ οι τρεις σταθερές

ζεύξης g′, g και gs δεν συναντώνται σε ένα σημείο και αυτό είναι ένα βασικό πρόβλημα
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για την ενοποίηση που επιζητούμε. Συγκεκριμένα, στο ΚΠ οι τρεις σταθερές ζεύξης

έχουν τις τιμές [162]:

a1 =
5

3

g′2

4π
=

5a

3cos2θW

a2 =
g2

4π
=

a

sin2θW

a3 =
g2
s

4π

(4.3)

όπου g′, g και gs είναι οι συνηθισμένες U (1), SU (2) και SU (3) σταθερές ζεύξης

και a η σταθερά λεπτής υφής. Ο παράγοντας 5/3 στον ορισμό του a1 εισάγεται για

λόγους κανονικοποίησης των γεννητόρων.

Αντικαθιστώντας τις πειραματικές τιμές [19]:

α−1
em (MZ) = 127.916± 0.015

sin2θW (MZ) = 0.23116± 0.00013

α3 (MZ) = 0.1184± 0.0007

(4.4)

βρίσκουμε για τις σταθερές ζεύξης ότι:

a1 (MZ) ' 0.016, a2 (MZ) ' 0.032, a3 (MZ) ' 0.118 (4.5)

΄Ετσι, έχουμε ότι gs > g > g′ το οποίο ισχύει και στις GUT. Θεωρώντας ότι το

ΚΠ ισχύει μέχρι την κλίμακα ενοποίησης, χρησιμοποιούμε τις εξισώσεις της ΟΕ για

τις τρεις ζεύξεις:

dα̃i
dt

= biα̃
2
i (4.6)

όπου α̃i = αi
4π

και t = log
(
Q2

µ2

)
, και οι στεθερές του ΚΠ bi είναι:

bi =


b1

b2

b3

 =


0

−22/3

−11

+NFam


4/3

4/3

4/3

+NHiggs


1/10

1/6

0

 (4.7)

όπουNFam είναι ο αριθμός των φερμιονικών γενεών των πολλαπλέτων ύλης καιNHiggs

ο αριθμός των διπλετών Higgs. Για το ελάχιστο ΚΠ χρησιμοποιούμε NFam = 3 και

NHiggs = 1 το οποίο μας δίνει:

bi =


41/10

−19/6

−7

 (4.8)
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Η λύση της Εξ. 4.6 έχει την απλή μορφή:

α̃−1
i

(
Q2
)

=
1

α̃i (µ2)
− bi log

(
Q2

µ2

)
(4.9)

Το αποτέλεσμα αυτό φαίνεται στο Σχ. 4.2 (αριστερά) το οποίο δείχνει την εξέλιξη

των αντίστροφων ζεύξεων σαν συνάρτηση του λογαρίθμου της ενέργειας. Σε πρώτη

τάξη η εξέλιξη γίνεται ευθεία γραμμή σε αυτή την παρουσίαση, ενώ οι διορθώσεις

δεύτερης τάξης είναι μικρές και δεν έχουν κάποια ορατή απόκλιση από την ευθεία

γραμμή. ΄Ετσι, βλέπουμε ότι στο ΚΠ η ενοποίηση σε ένα σημείο είναι αδύνατη.

΄Αρα, ενοποίηση μπορεί να προκύψει μόνο αν υπάρχει “νέα φυσική” ανάμεσα στην

ηλεκτρασθενή και την κλίμακα Planck.

Στην περίπτωση της υπερσυμμετρίας, οι καμπύλες των καμπυλών εξέλιξης μετα-

βάλλονται. Συγκεκριμένα, οι σταθερές bi της Εξ. 4.6 γίνονται:

bi =


b1

b2

b3

 =


0

−6

−9

+NFam


2

2

2

+NHiggs


3/10

1/2

0

 (4.10)

΄Ετσι, χρησιμοποιώντας NFam = 3 και NHiggs = 2 στο ελάχιστα υπερσυμμετρικό

μοντέλο παίρνουμε:

bi =


33/5

1

−3

 (4.11)

΄Ετσι, προκύπτει ότι στην υπερσυμμετρία λαμβάνουμε μια τέλεια ενοποίηση αν οι υ-

περσυμμετρικές μάζες είναι της τάξης του 1TeV . Αυτό φαίνεται και στο Σχ. 4.2

(δεξιά) όπου τα υπερσυμμετρικά σωμάτια θεωρείται πως συνεισφέρουν ενεργά στις

σταθερές ζεύξης μόνο για ενέργειες πάνω από την τυπική κλίμακα μάζας της υπερ-

συμμετρίας, η οποία προκαλεί αλλαγή στην κλίση των γραμμών κοντά στο 1TeV . Για

να έχουμε έτσι ενοποίηση βρίσκουμε ότι [163]:

MSUSY = 103.4±0.9±0.4GeV

MGUT = 1015.8±0.3±0.1GeV

α−1
GUT = 26.3± 1.9± 1.0

(4.12)

όπου αGUT =
g2
3

4π
. Το πρώτο σφάλμα στις σχέσεις 4.12, προκύπτει από την αβεβαι-

ότητα στην σταθερά ζεύξης ενώ το δεύτερο λόγω της αβεβαιότητας στον “χωρισμό

των μαζών” (mass splittings) ανάμεσα στα υπερσυμμετρικά σωμάτια.

167



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

Σχήμα 4.2: Εξέλιξη των αντιστρόφων των σταθερών ζεύξεων στο ΚΠ (αριστερά) και στην υπερ-

συμμετρική επέκταση του ΚΠ (MSSM) (δεξιά). Μόνο στην δεξιά περίπτωση, δηλαδή με την χρήση

της υπερσυμμετρίας έχουμε ενοποίηση. Τα υπερσυμμετρικά σωμάτια αναμένεται να συνεισφέρουν

μόνο πάνω από την ενεργή υπερσυμμετρική κλίμακα MSUSY περίπου 1TeV , το οποίο προκαλεί αλ-

λαγή στην κλίση της εξέλιξης των σταθερών. Το πάχος των γραμμών αναπαριστά το σφάλμα στις

σταθερές ζεύξης [162].

Οι χ2
κατανομές της MSUSY και MGUT φαίνονται στο Σχ. 4.3, όπου:

χ2 =
3∑
i=1

(
α−1
i − α−1

GUT

)2

σ2
i

(4.13)

Για τα υπερσυμμετρικά μοντέλα το DR (dimensional reduction scheme) σχήμα,

το οποίο είναι σχήμα μη εξαρτώμενο από την μάζα, είναι το πιο κατάλληλο σχήμα

επακανονικοποίησης [164]. Σε αυτό το μοτίβο, όλα τα όρια θεωρούνται σαν απλο-

ύ βήματος προσεγγίσεις, και η ενοποίηση προκύπτει αν και τα τρία α συναντώνται

ακριβώς σε ένα σημείο. Το σημείο συνάντησης αντιστοιχεί στην μάζα των βαρέων

μποζονίων βαθμίδας. Οι ζεύξεις MS (minimal subtraction scheme) και DR δια-

φέρουν κατά:

1

αDRi
=

1

αMS
i

− Ci
12π

(4.14)

όπου Ci είναι οι τετραγωνικοί “τελεστές Casimir” της ομάδας (Ci = N για SU (N)

και Ci = 0 για U (1) έτσι ώστε το α1 να παραμένει το ίδιο).

Να σημειώσουμε επίσης πως η ενοποίηση των τριών καμπυλών σε ένα σημείο

δεν είναι τετριμμένη όσο φαίνεται από την ύπαρξη των τριών ελευθέρων παραμέτρων

(MSUSY , MGUT , και αGUT ) καθώς η εισαγωγή νέων σωματιδίων επηρεάζει και τις
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Σχήμα 4.3: Οι χ2
κατανομές της MSUSY και MGUT .

τρεις καμπύλες ταυτόχρονα και άρα γεννά ισχυρές συσχετίσεις ανάμεσα στις κλίσεις

των τριών γραμμών. Ωστόσο, η ενοποίηση δεν αποδεικνύει την ύπαρξη της υπερσυμ-

μετρίας. Η πραγματική απόδειξη θα ήταν η παρατήρηση των υπερσωματιδίων.

Λύση του προβλήματος της ιεραρχίας

Το βασικό πρόβλημα της ιεραρχίας προέρχεται από την εμφάνιση δύο διαφορετικών

κλιμάκων V � υ σε μια θεωρία GUT. Πιο συγκεκριμένα για να πάρουμε το απαιτο-

ύμενο μοτίβο για το αυθόρμητο σπάσιμο της συμμετρίας χρειαζόμαστε:

mH ∼ υ ∼ 102GeV

mΣ ∼ V ∼ 1016GeV
(4.15)

δηλαδή, διαιρώντας τις Εξ. 4.15 προκύπτει ότι:

mH

mΣ

∼ 10−14GeV � 1 (4.16)

όπου H και Σ τα πεδία Higgs που είναι υπεύθυνα για το αυθόρμητο σπάσιμο της

SU (2) και των GUT ομάδων, αντίστοιχα. ΄Ετσι, αυτός ο μικρός αριθμός δεν μπορεί

να προκύψει με φυσικό τρόπο.

Το δεύτερο κομμάτι της ιεραρχίας σχετίζεται με την διατήρηση της ιεραρχίας.

Δηλαδή, ακόμα και αν πάρουμε μια ιεραρχία όπως στην Εξ. 4.15, οι ακτινοβολούσες

διορθώσεις (radiative corrections) θα την εξαφανίσουν. Αν δούμε τις διορθώσεις

στην μάζα του ελαφριού Higgs θα δούμε ότι είναι ανάλογη με την μάζα στο τετράγω-

νο του βαρέως σωματιδίου (βλέπε Σχ. 4.4). Αυτή η διόρθωση χαλάει την ιεραρχία.
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΄Ομως, αυτή η πολύ ακριβής ακύρωση με ακρίβεια ∼ 10−14
απαιτεί λεπτή ρύθμιση

των σταθερών ζεύξεων. ΄Οπως έχουμε δει στο εδάφιο 2.4 οι επακανονικοποιήσιμες

κβαντικές θεωρίες πεδίου με βαθμωτά σωμάτια, όπως π.χ. ο τομέας Higgs των ενο-

ποιημένων θεωριών βαθμίδας παρουσιάζουν τετραγωνικές αποκλίσεις σε τάξη ενός

βρόγχου και υψηλότερης όσον αφορά τις βαθμωτές μάζες. Αντίθετα με τις λογα-

ριθμικές αποκλίσεις που σχετίζονται με τις φερμιονικές μάζες, οι οποίες μπορούν

να εξαφανιστούν εκμεταλλευόμενοι τις χειραλικές συμμετρίες, δεν υπάρχει προφανής

συμμετρία που να μπορεί να ελέγξει τις αποκλίσεις που σχετίζονται με τις μάζες των

βαθμωτών σωματίων. Με άλλα λόγια οι μάζες στα σωμάτια του ΚΠ είναι ανάλογες

της κλίμακας στην οποία σπάει η συμμετρία της ηλεκτρασθενής δύναμης, η οποία με

την σειρά της είναι ανάλογη της μάζας του βαθμωτού πεδίου υπεύθυνου για το σπάσι-

μο της συμμετρίας. Το πρόβλημα της ιεραρχίας βρίσκεται στο ότι αυτά τα βαθμωτά

πεδία αντίθετα με τα φερμιόνια και τα διανυσματικά μποζόνια, δεν προστατεύονται

από το να πάρουν υψηλές μάζες από καμία συμμετρία του ΚΠ και έτσι είναι δύσκολο

να κατανοηθεί γιατί οι μάζες τους και άρα και οι μάζες όλων των άλλων δεν είναι

κοντά στην MU .

Σχήμα 4.4: Ακτινοβολούσες διορθώσεις στην μάζα του ελαφριού Higgs.

Από την άλλη πλευρά, η υπερσυμμετρία η οποία συζευγνύει φερμιόνια και μπο-

ζόνια, παρέχει στις βαθμωτές μάζες 2 πηγές για τις τετραγωνικές αποκλίσεις τους,

μία με θετικό πρόσημο η οποία προέρχεται από το βαθμωτό βρόγχο και μια με αρνη-

τικό πρόσημο από το φερμιονικό βρόγχο. ΄Ετσι, οι αποκλίσεις εξαφανίζονται με την

χρήση αυτής της ιδιότητας της υπερσυμμετρίας που συνδέει τις σταθερές ζεύξης και

μάζες μποζονίων και φερμιονίων (βλέπε Σχ. 4.5). Δηλαδή, στην υπερσυμμετρική εκ-

δοχή του ΚΠ όλες οι μάζες του ΚΠ δένονται με την ενεργειακή κλίμακα στην οποία

σπάει η συμμετρία. Αφού όμως η υπερσυμμετρία μετατίθενται με την ηλεκτρασθενή

συμμετρία, οι ιδιότητες του μετασχηματισμού των γνωστών σωματίων και των υπερ-

συμμετρικών εταίρων τους πρέπει να είναι οι ίδιοι και με το μέρος της λαγκρατζιανής

που σπάει την υπερσυμμετρία και θα πρέπει να σέβονται την ηλεκτρασθενή συμμετρία.
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Σχήμα 4.5: Ακύρωση των τετραγωνικών όρων - αποκλίσεων από την υπερσυμμετρία.

Η ακύρωση πραγματοποιείται στην περίπτωση της άσπαστης υπερσυμμετρίας λόγω

του ακόλουθου κανόνα αθροίσματος που σχετίζει τις μάζες των υπερσυμμετρικών

εταίρων: ∑
bosons

m2 =
∑

fermions

m2
(4.17)

και παραβιάζεται όταν η υπερσυμμετρία σπάει. Στην συνέχεια, η ακύρωση υφίσταται

μέχρι την κλίμακα σπασίματος της υπερσυμμετρίας MSUSY αφού:

∑
bosons

m2 −
∑

fermions

m2 = M2
SUSY (4.18)

η οποία δεν πρέπει να είναι πολύ μεγάλη ≤ 1TeV για να είναι η λεπτή ρύθμιση φυσική.

Αν πάρουμε την μάζα του μποζονίου Higgs και θεωρώντας πως οι ακτινοβολούσες

διορθώσεις στην μάζα του Higgs να μην ξεπερνούν την ίδια την μάζα, για λόγους

συνέπειας της θεωρίας διαταραχών, έχουμε:

δM2
h ∼ g2M2

SUSY ∼M2
h (4.19)

Οπότε, αν Mh ∼ 102GeV και g ∼ 10−1
, χρειαζόμαστε MSUSY ∼ 103GeV για να

ισχύει η 4.19. ΄Αρα, πάλι σαν γενική εκτίμηση παίρνουμε ότι MSUSY ∼ 1TeV όπως

με την ενοποίηση των σταθερών ζεύξεων.

Για να δούμε πιο συγκεκριμένα πως δουλεύει ο μηχανισμός επίλυσης του προ-

βλήματος της ιεραρχίας μέσω των επιπλέον συνεισφορών στο Πφφ (0) από τους υ-

περσυμμετρικούς εταίρους των φερμιονίων τα οποία είναι μποζόνια, θεωρούμε δύο
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Σχήμα 4.6: Συνεισφορά από τον υπερσυμμετρικό εταίρο f̃ του φερμιονίου f στον διαδότη του

μποζονίου Higgs. Το f̃ είναι είτε f̃L είτε f̃R.

μιγαδικά βαθμωτά τα οποία συζευγνύονται με το πεδίο Higgs ως εξής:

Lφf̃ =
1

2
λ̃fφ

2

(∣∣∣f̃L∣∣∣2 +
∣∣∣f̃R∣∣∣2)+ υλ̃fφ

(∣∣∣f̃L∣∣∣2 +
∣∣∣f̃R∣∣∣2)+

(
λf√

2
Afφf̃Lf̃

∗
R + h.c.

)
(4.20)

όπου υ ' 246GeV η VEV. Η παρουσία του δεύτερου όρου στην Εξ. 4.20, οφείλεται

στην παραβίαση της ηλεκτρασθενούς συμμετρίας βαθμίδας SU (2) × U(1)Y και για

αυτό το λόγο η ζεύξη του συνδέεται με αυτήν του πρώτου όρου. Η ζεύξη Af του

τελευταίου όρου είναι τυχαία. Επιπλέον μαζί με τα διαγράμματα του Σχ. 2.18 θα

έχουμε και τα διαγράμματα του Σχ. 4.6 μέσα στα οποία θα υπάρχουν τα πεδία f̃L και

f̃R. Αναλυτικά οι διορθώσεις του Σχ. 4.6 θα είναι:

Πf̃
φφ (0) =−

(
µ2
)(2−ω)

λ̃fN
(
f̃
)∫ d2ωl

(2π)2ω

[
1

l2 −m2
f̃L

+
1

l2 −m2
f̃R

]
+

+
(
µ2
)(2−ω)

(
λ̃fυ

)2

N
(
f̃
)∫ d2ωl

(2π)2ω

 1(
l2 −m2

f̃L

)2 +
1(

l2 −m2
f̃R

)2

+

+
(
µ2
)(2−ω)|λfAf |2N

(
f̃
)∫ d2ωl

(2π)2ω

 1(
l2 −m2

f̃L

)(
l2 −m2

f̃R

)


(4.21)

Ο πρώτος όρος της Εξ. 4.21 ο οποίος προέρχεται από το αριστερό διάγραμμα του

Σχ. 4.6 περιέχει τετραγωνικές αποκλίσεις οι οποίες απαλείφονται με αυτές της Εξ.

2.210 μόνο αν:

N
(
f̃L

)
= N

(
f̃R

)
= N (f)

λ̃f = −λ2
f

(4.22)

Φυσικά, πρέπει λ̃f < 0 ώστε το δυναμικό να είναι δεσμευμένο στις χαμηλότερες τιμές

του. Επίσης, να σημειώσουμε πως η διαγραφή των τετραγωνικών αποκλίσεων δεν
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απαιτεί κανένα περιορισμό στις μάζες mf̃L
, mf̃R

καθώς και στην ζεύξη Af . Αθρο-

ίζοντας τώρα τα διαγράμματα των Σχ. 2.18 και 4.6 και θεωρώντας για απλότητα ότι

mf̃L
= mf̃R

= mf̃ έχουμε:

Πf+f̃
φφ (0) = i

λ2
fN (f)

16π2

[
−2m2

f

(
1− log

m2
f

µ2

)
+ 4m2

f log
m2
f

µ2
+

]
[

+2m2
f̃

(
1− log

m2
f̃

µ2

)
− 4m2

f log
m2
f̃

µ2
−

]
[
−|Af |2 log

m2
f̃

µ2

] (4.23)

όπου έχουμε χρησιμοποιήσει την σχέση του ΚΠ: mf =
λfυ√

2
. Είναι προφανές από την

Εξ. 4.23 ότι οι κβαντικές διορθώσεις στην μάζα του Higgs θα μηδενίζονται αν και

μόνο αν ισχύει:

mf̃ = mf

Af = 0
(4.24)

Παραβίαση της υπερσυμμετρίας θα σημαίνει και παραβίαση των Εξ. 4.24. Αν παρα-

βιάσουμε την δεύτερη σχέση 4.24, αφήνοντας το Af να έχει μια μικρή τιμή τότε από

την Εξ. 4.23 θα έχουμε:

Πf+f̃
φφ (0) = −i

λ2
fN (f)

16π2
|Af |2 log

m2
f̃

µ2
(4.25)

Το Af θα πρέπει οπότε να είναι της τάξης 100 − 1000GeV για να έχουμε μικρές

συνεισφορές στην μάζα του Higgs. Το ίδιο θα πρέπει να συμβαίνει και με την πρώτη

συνθήκη 4.24. Δηλαδή, αν είναι m2
f̃

= m2
f +δ2

τότε το δ θα πρέπει να είναι της τάξης

του MZ για να μην βρεθούμε και πάλι αντιμέτωποι με το πρόβλημα της ιεραρχίας.

Αυτή η απόδειξη για την μη ύπαρξη τετραγωνικών αποκλίσεων στις υπερσυμμετρικές

θεωρίες στο επίπεδο του ενός βρόγχου μπορεί να επεκταθεί σε όλες τις τάξεις της

θεωρίας διαταραχών χρησιμοποιώντας την μέθοδο των υπερδιαγραμμάτων.

Ελαφρύτερος υπερσυμμετρικός εταίρος και σκοτεινή ύλη

΄Οπως ήδη αναφέραμε, και όπως θα δούμε αναλυτικότερα παρακάτω,στην υπερσυμμε-

τρία εισάγεται μια διακριτή Z2 συμμετρία η R-ομοτιμία. Η συμμετρία αυτή διατηρείται

σε όλες τις αλληλεπιδράσεις, δηλαδή επιτρέπονται μόνο οι αλληλεπιδράσεις για τις

οποίες πριν και μετά την αλληλεπίδραση ο αριθμός των υπερσυμμετρικών εταίρων της

συνηθισμένης ύλης παραμένει ίδιος. Με τον ορισμό 4.2, η R-ομοτιμία η οποία είναι
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πολλαπλασιαστικός κβαντικός αριθμός έχει την τιμή R = +1 για τα γνωστά σωμα-

τίδια του καθιερωμένου προτύπου και R = −1 για τους υπερσυμμετρικούς εταίρους

τους πράγμα το οποίο σημαίνει ότι τα υπερσυμμετρικά σωματίδια μπορούν να δη-

μιουργούνται μόνο σε ζευγάρια με αλληλεπιδράσεις με τα κανονικά σωματίδια. Αυτό

έχει ως συνέπεια ο ελαφρύτερος υπερσυμμετρικός εταίρος (Lightest Supersymmetric

Particle - LSP) της συνηθισμένης ύλης να μην μπορεί να διασπαστεί σε κανένα συ-

στατικό αφού κατά την διάσπαση του η R-ομοτιμία θα πρέπει να διατηρείται. ΄Οσον

αφορά τα χαρακτηριστικά αυτού του σωματιδίου παρατηρούμε πως εκτός του γεγο-

νότος ότι δεν διασπάται, σε πολλές περιπτώσεις έχει εξαιρετικά μεγάλο χρόνο ζωής,

μεγαλύτερο ακόμα και από την ηλικία του Σύμπαντος, αλλά και αλληλεπιδρά πολύ

ασθενώς με την συνηθισμένη ύλη [165]. Αυτό το σωματίδιο μπορεί να αποτελέσει

έναν καλό υποψήφιο ΣΥ καθώς η μάζα ενός τέτοιου LSP, όπως προκύπτει από τα

πιο απλά υπερσυμμετρικά μοντέλα [166], μπορεί να οδηγήσει σε μια πυκνότητα ίση με

την πυκνότητα κλεισίματος. Η αναμενόμενη αυτή μάζα είναι [167]:

10GeV/c2 ≤ mLSP ≤ 1000GeV/c2
(4.26)

Τέλος, το πιο εντυπωσιακό γεγονός του LSP είναι ότι, όταν επιλύουμε τις εξισώσεις

φτάνοντας χρονικά στην ΜΕ προκειμένου να διαπιστώσουμε τι ποσοστό του υλικού

αυτού έχει διατηρηθεί μέχρι σήμερα, βρίσκουμε πως το ποσοστό αυτό είναι σχεδόν

ίσο με το ποσοστό που αντιστοιχεί στην ΣΥ. Το γεγονός αυτό υποδηλώνει πως ο

LSP αν υπάρχει είναι ένας πολύ καλός υποψήφιος για την ΣΥ.

Φυσικά, για να είναι ένας LSP υποψήφιος ΣΥ πρέπει να είναι Weakly Inter-

acting Massive Particle (WIMP), δηλαδή να αλληλεπιδρά μόνο μέσω της ασθενής

αλληλεπίδρασης και της βαρύτητας. Αυτό σημαίνει ότι ο υποψήφιος LSP πρέπει να

είναι ηλεκτρικά ουδέτερος καθώς αλλιώς θα αλληλεπιδρά ηλεκτρομαγνητικά και θα

εκπέμπει φως, αλλά και να μην έχει χρώμα, δηλαδή να μην αλληλεπιδρά μέσω της

ισχυρής πυρηνικής δύναμης. Με αυτούς τους περιορισμούς, τα βασικότερα LSP που

μπορούν να αποτελούν υποψηφίους ΣΥ μπορεί να είναι: το ελαφρύτερο neutralino,

το gravitino, ή το ελαφρύτερο s-νετρίνο [168]. Φυσικά, πέρα από αυτά τα βασικά

LSP υπάρχουν και άλλοι υποψήφιοι ΣΥ που προκύπτουν για παράδειγμα από θεωρίες

με επιπλέον συμμετρίες όπως είναι οι βαθμωτοί εταίροι των νετρίνων, το βαρύ νετρίνο

Dirac, αλλά και κάποιο ουδέτερο εξωτικό σωμάτιο [169].

Τέλος, να αναφέρουμε πως ο τρόπος που τα LSP βρέθηκαν γύρω από τους γα-

λαξίες έτσι ώστε να μπορέσουν να σχηματίσουν την απαιτούμενη “άλω” που θα εξη-

γήσει την παρατηρούμενη γρήγορη περιστροφή των γαλαξιών, περιγράφεται πλήρως
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από την κοσμολογία. Στο πρώιμο Σύμπαν, όπου η θερμοκρασία ήταν υψηλή και όλα

τα σωμάτια είχαν σχετικιστική συμπεριφορά, η ύλη επικρατούσε της αντιύλης και τα

LSP βρίσκονταν σε θερμοδυναμική ισορροπία με τα υπόλοιπα σωματίδια. Καθώς το

Σύμπαν διαστελλόταν και άρχισε να ψύχεται, τα σωμάτια του ΚΠ έχαναν ενέργεια

ακτινοβολώντας και έτσι η ύλη συμπυκνωνόταν σε βαρυόνια που μαζί με τα ελεύθερα

λεπτόνια και τα LSP αποτελούσαν το σωματιδιακό περιεχόμενο του Σύμπαντος. Τα

τελευταία δεν διαθέτουν κάποιο μηχανισμό ταχείας απώλειας ενέργειας και έτσι δια-

τηρούν σταθερές τις υψηλές ενέργειες τους σε όλη την φάση ψύξης του Σύμπαντος.

Με το πέρας του χρόνου, όταν η θερμοκρασία και οι ενέργειες επέτρεπαν το σχηματι-

σμό δομών αστέρων και γαλαξιών από την ύλη δημιουργώντας έτσι ισχυρούς πυρήνες

βαρυτικής έλξης, τα βαρέα LSP μπορούσαν να συγκεντρωθούν γύρω από τους γα-

λαξίες σε σφαιρικούς σχηματισμούς σταθερής πυκνότητας, όπου συνεχίζουν να μην

αλληλεπιδρούν παρά μόνο βαρυτικά με την φωτεινή ύλη. Αν το πλήθος των βαρυο-

νίων και των πολύ μαζικότερων LSP είναι συγκρίσιμο τότε εξηγείται αποτελεσματικά

η γρήγορη περιστροφή των γαλαξιών και κατά συνέπεια και η ΣΥ.

Ενοποίηση με βαρύτητα

Μια σημαντική ιδιότητα της υπερσυμμετρίας είναι ότι διαδοχικές εφαρμογές του με-

τασχηματισμού φερμιονίου-μποζονίου ισοδυναμεί με ένα μετασχηματισμό Poincare.

Φυσικά, ένας μετασχηματισμός Poincare είναι ένας μετασχηματισμός Lorentz συν

μετατόπιση.

Η ΓΘΣ αντιστοιχεί σε τοπική συμμετρία της ομάδας Poiancare και το βαρυτόνιο

που έχει σπιν 2 είναι το αντίστοιχο πεδίο βαθμίδας. ΄Ετσι, η τοπική υπερσυμμετρία

θα περιέχει μεταξύ των άλλων πεδίων βαθμίδας και το βαρυτόνιο. Αυτό σημαίνει

ότι η τοπική υπερσυμμετρία περιλαμβάνει και την θεωρία βαρύτητας του Einstein.

Για τον λόγο αυτό η τοπική αυτή υπερσυμμετρία ονομάζεται συνήθως υπερβαρύτητα

(supergravity). Η υπερβαρύτητα υπόσχεται ότι θα ενοποιήσει την βαρύτητα με τις

υπόλοιπες τρεις θεμελιώδεις δυνάμεις.

Στην απλούστερη μορφή της υπερβαρύτητας στο βαρυτόνιο με σπιν 2 αντιστοιχεί

το gravitino με σπιν 3/2. Για να πραγματοποιηθεί όμως η ενοποίηση με τις άλλες

δυνάμεις, πρέπει να επεκταθεί η υπερβαρύτητα ώστε να περιλαμβάνει και σωμάτια με

σπιν μικρότερο από 3/2. Στην διευρυμένη αυτή υπερβαρύτητα όλα τα σωμάτια θα

συνδέονται μεταξύ τους με υπερσυμμετρικούς μετασχηματισμούς.

΄Εχει αποδειχθεί ότι μόνο 8 βιώσιμες διευρυμένες θεωρίες υπερβαρύτητας υπάρ-
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χουν. Στον πίνακα 4.1 μπορούμε να δούμε το πλήθος των σωματίων που περιλαμβάνει

κάθε μια από τις θεωρίες αυτές στα διάφορα σπιν.

Θεωρία Σπιν 0 Σπιν 1/2 Σπιν 1 Σπιν 3/2 Σπιν 2

N = 1 1 1

N = 2 1 2 1

N = 3 1 3 3 1

N = 4 2 4 6 4 1

N = 5 10 11 10 5 1

N = 6 30 26 16 6 1

N = 7 70 56 28 7 1

N = 8 70 56 28 8 1

Πίνακας 4.1: Θεωρίες υπερβαρύτητας και πλήθος σωματιδίων σε διάφορα σπιν [10].

Μεγάλη κλίμακα

΄Οπως είδαμε και σε προηγούμενο εδάφιο (βλέπε 3.3.1), τα όρια για τον χρόνο ζωής

του πρωτονίου απαιτούν η κλίμακα ενοποίησης να είναι πάνω από 1015GeV , το οποίο

ισχύει στο MSSM. Επιπλέον, πρέπει να θεωρήσουμε και διάσπαση πρωτονίου μέσω

διαφορετικών διαδικασιών όπως φαίνεται στο Σχ. 4.7. Αυτές δημιουργούν έναν

ισχυρό περιορισμό στην μίξη του τομέα Higgs όπως θα δούμε και αργότερα [170,171].

Σχήμα 4.7: Παράδειγμα διασπάσεων πρωτονίου στο ελάχιστα υπερσυμμετρικό μοντέλο μέσω

ανταλλαγής wino και higgsino [97].

4.1.2 ΄Αλγεβρα της υπερσυμμετρίας

Βασικό συστατικό όλων των φυσικών θεωριών, είναι όπως γνωρίζουμε η συναλλοι-

ώτητα τους κάτω από την ομάδα Poincare, της οποίας γεννήτορες είναι η ορμή Pµ
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(μετατοπίσεις) και η γωνιακή ορμή Pµν (στροφές και ωθήσεις). Αυτοί ικανοποιούν

την άλγεβρα Lie:

[Pµ, Pν ] = 0

[Mµν , Pλ] = −i (ηµλPν − ηνλPµ)

[Mµν ,Mσλ] = −i (ηµσMµλ + ηνλMµσ − ηµλMνσ − ηνσMµλ)

(4.27)

η οποία δημιουργεί την Poincare ομάδα Lie με δέκα παραμέτρους. Από το θεώρημα

των Coleman, Mantula [172] ξέρουμε ότι είναι αδύνατο να αναμίξεις εσωτερικές

συμμετρίες με την συμμετρία Poincare με ένα πολύπλοκο τρόπο. Συγκεκριμένα, αν

Gi είναι οι γεννήτορες μιας εσωτερικής συμμετρίας, τότε αυτοί μετατίθενται με τους

γεννήτορες Pµ και Mµν :

[Pµ, Gi] = [Mµν , Gi] = 0 (4.28)

΄Ομως, στο θεώρημα αυτό χρησιμοποιούνται μόνο σχέσεις μετάθεσης. ΄Ομως, υ-

πάρχουν και πιο σύνθετες αλγεβρικές δομές που κλείνουν κάτω από μεταθέτες και

αντιμεταθέτες και ονομάζονται Grade Lie Algebras (GLA). Τα άρτια στοιχεία μιας

τέτοιας άλγεβρας υπακούν τις συνηθισμένες σχέσεις μετάθεσης και τα περιττά σε

σχέσης αντιμετάθεσης μεταξύ τους και μετάθεσης με τα περιττά. ΄Οταν χρησιμοποι-

ηθούν τέτοιες δομές τότε το θεώρημα των Coleman, Mantula γενικεύεται ώστε η

άλγεβρα Poincare να επεκτείνεται στην άλγεβρα της υπερσυμμετρίας. Ουσιαστικά

αυτό είναι και το περιεχόμενο του θεωρήματος Haag-Lopuszanski-Sohnious [173].

Η απλούστερη επέκταση της άλγεβρας Poincare είναι η N = 1 υπερσυμμετρία, η

οποία περιέχει εκτός από τους Pµ και Mµν (άρτια στοιχεία), τέσσερα νέα σπινοριακά

φορτία Qi
α σαν περιττά στοιχεία. Μια ακόμα επέκταση είναι να έχουμε περισσότερα

σπινοριακά φορτία Qi
α και την παρουσία η όχι κεντρικών φορτίων. ΄Ετσι, αν Qi

α είναι

φορτία με δύο συνιστώσες (σπίνορες Weyl) τότε έχουμε την άλγεβρα:[
Pµ, Q

i
α

]
=
[
Pµ, Q̄

i
a

]
= 0{

Qi
α, Q

j
β

}
=
{
Q̄i
α̇, Q̄

j

β̇

}
= 0[

Mµν , Q
i
α

]
= −

(
σµνQ

i
)
α{

Qi
α, Q̄

j
β

}
= 2δijσµ

αβ̇
Pµ

(4.29)

όπου σµ ≡ (1, σi), σ̄µ ≡ (1− σi) ενώ οι δείκτες i, j παίρνουν τιμές από 1 μέχρι

N , όπου N είναι ο συνολικός αριθμός των υπερσυμμετριών. Τα φορτία μπορούν να

ικανοποιούν και σχέσεις αντιμετάθεσης της μορφής:{
Qi
α, Q

j
β

}
= εαβZ

ij
(4.30)
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όπου [Zij, G] = 0 για κάθε στοιχείο της GLA. Η πρώτη από τις Εξ. 4.29 δηλώνει

ότι οι σπίνορες είναι αναλλοίωτοι κάτω από μετατοπίσεις, ενώ η τρίτη ότι τα Qi
α

μετασχηματίζονται σαν σπίνορες κάτω από την ομάδα Poincare.

Υπερχώρος και υπερπεδία

Για να μπορέσουν να κατασκευαστούν μοντέλα είναι απαραίτητος ένας φορμαλισμός

στον οποίο η υπερσυμμετρία να ισχύει κατά ανάλογο τρόπο με την αναλλοιώτητα

Lorentz στον τετραδιάστατο χώρο. ΄Ετσι, ο χώρος Minkowski επεκτείνεται στον υ-

περχώρο, στοιχεία του οποίου είναι οι υπερσυντεταγμένες που περιέχουν τις γνωστές

4 χωροχρονικές συντεταγμένες και 4 σταθερούς (ανεξάρτητους του xµ) αντιμεταθε-

τικούς αριθμούς Grassmann θα, θ̄α̇, με α, α̇ = 1, 2. Είναι φανερή η επιθυμία να

κρατηθεί μια συμμετρία μεταξύ του συνηθισμένου χώρου και του φερμιονικού. Για

αυτό εισάγονται 4 φερμιονικές συντεταγμένες. ΄Ενα σημείο στον υπερχώρο συμβο-

λίζεται οπότε ως
(
xµ, θ, θ̄

)
. Οι μεταβλητές Grassmann έχουν τις εξής ιδιότητες:

{θα, θα} =
{
θ̄α̇, θ̄α̇

}
=
{
θα, θ̄α̇

}
= 0∫

dθα = 0∫
θαdθα = 1

(4.31)

Κάτω από τους υπερσυμμετρικούς N = 1 μετασχηματισμούς και με παραμέτρους του

μετασχηματισμού να είναι τα ξ και ξ̄, οι συντεταγμένες του υπερχώρου μετασχημα-

τίζονται σαν:

xµ → x′µ = xµ + iθσµξ̄ − iξσµθ̄

θ → θ′ = θ + ξ

θ̄ → θ̄′ = θ̄ + ξ̄

(4.32)

Οι δείκτες Weyl “ανεβοκατεβαίνουν”, όπως είναι γνωστό, με την βοήθεια του αντι-

συμμετρικού τανυστή εαβ:

εαβ =

(
0 1

−1 0

)
(4.33)

Οπότε, κάθε σπίνορας Weyl γράφεται ως:

ψα = εαβψβ, ψα = εαβψ
β

ψ̄α̇ = εα̇β̇ψβ̇, ψ̄α̇ = εα̇β̇ψ
β̇

(4.34)
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Οι ψα μετασχηματίζονται σύμφωνα με την
(

1
2
, 0
)
αναπαράσταση, ενώ οι ψ̄α̇ σύμφωνα

με την
(
0, 1

2

)
. Επίσης, ορίζεται ο σπίνορας Dirac:

ψD =

(
xα

ψ̄α̇

)
(4.35)

και ο σπίνορας Majorana:

ψM =

(
xα

x̄α̇

)
(4.36)

Το εσωτερικό γινόμενο δύο σπινόρων ορίζεται ως:

ψx = ψαx
α = ψαxα = xψ (4.37)

αφού:

ψαx
α = εαβψ

βxα = −εαβxαψβ = εβαx
αψβ = xαψα (4.38)

Ομοίως:

ψ̄x̄ = ψ̄αx̄
α = ψ̄αx̄α = x̄ψ̄ (4.39)

Τα στοιχεία των πινάκων Pauli είναι:

σµ
ββ̇

= εβ̇α̇εβασ̄
µαα̇, σ̄µαα̇ = εα̇β̇εαβσµ

ββ̇
(4.40)

Χρήσιμες είναι επίσης οι σχέσεις:

θαθβ = −1

2
εαβθθ, θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄,

(
θσµθ̄

) (
θσν θ̄

)
=

1

2
θθθ̄θ̄gµν (4.41)

Οπότε:

− 1

2
εαβθθ = −1

2
εαβεcdθcθd = −1

2

(
δβc δ

α
d − δαc δcd

)
θcθd = θαθβ (4.42)

και: (
θσµθ̄

) (
θσν θ̄

)
= θασµ

αβ̇
θ̄β̇θcσν

cḋ
θ̄ḋ = −θασµ

αβ̇
θcθ̄β̇σν

cḋ
θ̄ḋ =

= −σµ
αβ̇
σν
cḋ
θαθcθ̄β̇ θ̄ḋ =

1

2
θθθ̄θ̄gµν

(4.43)

Ορίζεται, επίσης, ο τελεστής:

L
(
xµ, θ, θ̄

)
= exp

{
ixµPµ + iθQ+ iθ̄Q̄

}
(4.44)

ο οποίος είναι ένας πεπερασμένος υπερσυμμετρικός μετασχηματισμός και δρα πάνω

σε συναρτήσεις που ορίζονται στον υπερχώρο. Ο πολλαπλασιασμός δύο τέτοιων
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στοιχείων της ομάδας της υπερσυμμετρίας, χρησιμοποιώντας την φόρμουλα Baker-

Hausdorff:

exp {a} exp {b} = exp

{
a+ b+

1

2
[a, b]

}
(4.45)

αφού για τις μεταβλητές Grassmann ισχύει [a, [a, b]] = 0 και
[
iξQ, iθ̄Q̄

]
= 2ξσµ

αβ̇
θ̄β̇Pµ,

μας δίνει:

L
(
α, ξ, ξ̄

)
L
(
xµ, θ, θ̄

)
= exp

{
iaµPµ + iξQ+ iξ̄Q̄+ ixµPµ + iθQ+ iθ̄Q̄+

}{
+

1

2

[
iaµPµ + iξQ+ iξ̄Q̄+ ixµPµ + iθQ+ iθ̄Q̄

]}
=

= L′
(
x′µ, θ

′, θ̄′
)

=

= exp
{
i
[
αµ + xµ + i

(
ξσµθ̄ − θσµξ̄

)]
Pµ + i (θ + ξ)Q+ i

(
θ̄ + ξ̄

)
Q̄
}

(4.46)

δηλαδή δυο διαδοχικοί υπερσυμμετρικοί μετασχηματισμοί έχουν ως αποτέλεσμα μια

χωροχρονική μετατόπιση.

Τα αντικείμενα πάνω στα οποία δρα ο τελεστής L είναι τα λεγόμενα υπερπεδία. Ο-

πότε, υπερπεδίο είναι μια συνάρτηση του υπερχώρου, πχ Φ
(
x, θ, θ̄

)
. ΄Ετσι, οι Salam

και Strathdee πρότειναν ότι μια συνάρτηση Φ
(
x, θ, θ̄

)
των συνιστωσών του υπερ-

χώρου, που ονόμασαν υπερπεδίο, μπορεί να θεωρηθεί ο γεννήτορας των στοιχείων

των υπερπολλαπλοτήτων. Η γενικότερη μορφή που μπορεί να έχει το υπερπεδίο στην

N = 1 υπερσυμμετρία είναι:

Φ
(
x, θ, θ̄

)
= φ (x) + θψ (x) + θ̄χ (x) + θ2M (x) + θ̄2N (x) +

+ θσµθ̄Vµ (x) + θ2θ̄λ̄ (x) + θ̄2θα (x) + θ̄2θ2D (x)
(4.47)

όπου τα φ, ψ, χ, M (x), N (x), Vµ (x), λ̄ (x), α (x), D (x) είναι οι συνιστώσες του

υπερπεδίου. Υπάρχουν 16 πραγματικοί μποζονικοί και 16 πραγματικοί φερμιονικοί

βαθμοί ελευθερίας. Εναλλακτικά, ένα γενικό υπερπεδίο Φ μπορεί να εκφρασθεί συ-

ναρτήσει παραμέτρων Grassmann 4 στοιχείων οι οποίες ικανοποιούν την συνθήκη

Majorana. Οπότε, μπορεί να γραφεί:

S (x, θ) = C (x)− i [θγ5ω (x)]− i

2

(
θ̄γ5θ

)
M (x)− 1

2

(
θ̄θ
)
N (x) +

+
i

2

(
θ̄γ5γµθ

)
V µ (x)− i

(
θ̄γ5θ

){
θ̄

[
λ (x) +

1

2
/∂ω (x)

]}
−

− 1

4

(
θ̄γ5θ

) [
D (x) +

1

2
C (x)

] (4.48)

όπου δυνάμεις του θ μεγαλύτερες του 4 είναι μηδέν, δηλαδή:

θn = 0, n ≥ 5 (4.49)
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Συνήθως, αρκεί να θεωρηθούν απειροστοί υπερσυμμετρικοί μετασχηματισμοί:

δS ((α, ᾱ)) Φ =
[
iαAQA + iᾱȦQ̄

Ȧ
]

(4.50)

δS(α, ᾱ)Φ
(
x, θ, θ̄

)
=

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− i
(
ασµθ̄ − θσµᾱ

) ∂

∂xµ

]
Φ
(
x, θ, θ̄

)
(4.51)

όπου α, ᾱ είναι οι μεταβλητές Grassmann. Από τις σχέσεις 4.50 και 4.51 προκύπτει

η εξής αναπαράσταση για τους γεννήτορες της υπερσυμμετρίας:

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ

Q̄α̇ = − ∂

∂θα̇
+ θβσµβα̇∂µ

(4.52)

Η κατασκευή αυτών των γεννητόρων σε διαφορική μορφή, έγινε εφικτή λόγω της ε-

πέκτασης του απλού χωροχρόνου στον υπερχώρο. Φυσικά, οι υπερσυμμετρικοί μετα-

σχηματισμοί παράγονται από αυτούς τους κβαντικούς τελεστές Q οι οποίοι αλλάζουν

τις φερμιονικές καταστάσεις σε μποζονικές και αντίστροφα:

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 (4.53)

Εισάγουμε επίσης τις υπερσυμμετρικές συναλλοίωτες παραγώγους Dα, δηλαδή συ-

ναλλοίωτες παραγώγους κάτω από υπερσυμμετρικούς μετασχηματισμούς:

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ

D̄α̇ = − ∂

∂θα̇
− θβσµβα̇∂µ

(4.54)

με την ιδιότητα όταν αυτός δράσει σε υπερπεδίο να δώσει άλλο υπερπεδίο:

[Dα, δS] =
[
D̄α̇, δS

]
= 0 (4.55)

Οι χειραλικές αναπαραστάσεις των παραπάνω, οι οποίες θα χρειαστούν στην συνέχεια,

μας δίνουν:

δS (α, ᾱ) ΦL =

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
+ 2iθσµᾱ∂µ

]
ΦL

δS (α, ᾱ) ΦR =

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− 2iασµθ̄∂µ

]
ΦR

DL =
∂

∂θ
+ 2iσµθ̄∂µ, D̄L = − ∂

∂θ̄

D̄R = − ∂

∂θ̄
− 2iθσµ∂µ, DR =

∂

∂θ

(4.56)

Μεταξύ των αναπαραστάσεων L και R ισχύει η σχέση:

Φ
(
x, θ, θ̄

)
= ΦL

(
xµ + iθσµθ̄, θ, θ̄

)
= ΦR

(
xµ − iθσµθ̄, θ, θ̄

)
(4.57)
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4.1.3 Χειραλικά και διανυσματικά υπερπεδία

Χειραλικά υπερπεδία

Τα υπερπεδία μπορούν να είναι δύο ειδών. Το πρώτο είδος υπερπεδίου είναι τα χειρα-

λικά (chiral) υπερπεδία [174,175]. Το όνομα προκύπτει από το γεγονός ότι τα φερμι-

όνια του ΚΠ είναι χειραλικά που σημαίνει ότι οι αριστερόστροφες και δεξιόστροφες

συνιστώσες μετασχηματίζονται διαφορετικά κάτω από την SU (2) × U(1)Y . ΄Ετσι,

χρειαζόμαστε υπερπεδία με μόνο δύο φυσικούς φερμιονικούς βαθμούς ελευθερίας,

τα οποία μπορούν να περιγράψουν την αριστερόστροφη ή δεξιόστροφη συνιστώσα

ενός φερμιονίου του ΚΠ. Φυσικά, τα ίδια τα υπερπεδία θα έχουν μποζονικούς ετα-

ίρους, τα υπερφερμιόνια ή s-φερμιόνια. ΄Ετσι, τα πεδία αυτά χαρακτηρίζονται από τον

περιορισμό:

D̄αΦL = 0, DαΦR = 0 (4.58)

Ορίζουμε στην συνέχεια τις νέες μεταβλητές:

yµ = xµ + iθσµθ̄

θ′ = θ

θ̄′ = θ̄

(4.59)

Με βάση αυτές τις συντεταγμένες οι συναλλοίωτες παράγωγοι γίνονται:

D̄α̇ = − ∂

∂θα̇

Dα =
∂

∂θα
+ 2iσµ

αβ̇
θ̄β̇

∂

∂yµ

(4.60)

οπότε ισχύουν οι σχέσεις:

D̄α̇y
µ = 0, D̄α̇θ

β = 0 (4.61)

Οπότε, δεν έχουμε θ̄ εξάρτηση στην ΦL. Οπότε, για ένα αριστερόστροφο πεδίο

μπορούμε να γράψουμε ότι:

ΦL (yµ, θ) = A (y) +
√

2θψ (y) + θθF (y) (4.62)

όπου ο παράγοντας
√

2 μπαίνει για λόγους κανονικοποίησης. ΄Ετσι, το θ έχει μόνο

δύο συνιστώσες οι οποίες αντιμετατίθενται. Για αυτό δεν υπάρχει όρος με τρεις ή

περισσότερους παράγοντες θ. Τα πεδία A και F είναι μιγαδικά βαθμωτά ενώ το ψ

είναι σπίνορας Weyl. Αρχικά, φαίνεται το ΦL να έχει τέσσερις μποζονικούς βαθμούς
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ελευθερίας και μόνο δύο φερμιονικούς. ΄Ομως,. δεν αναπαριστούν όλα τα μποζονικά

πεδία φυσικούς βαθμούς ελευθερίας. Αν εκφράσουμε το χειραλικό αυτό υπερπεδίο

συναρτήσει των αρχικών συντεταγμένων τότε:

ΦL

(
x, θ, θ̄

)
= A (x) + i

(
θσµθ̄

)
∂µA (x)− 1

4
θθθ̄θ̄∂µA (x) +

+
√

2θψ (x)− i√
2

(θθ) θα̇∂µψ
α (x)σµ

αβ̇
εα̇β̇ + θθF (x)

(4.63)

Η μεταβλητή Grassmann θ έχει διάσταση σε μονάδες μάζας: −1
2
. Δίνοντας στο

βαθμωτό πεδίο A διάσταση +1, θα πρέπει το φερμιονικό πεδίο ψ να έχει την συνη-

θισμένη διάσταση +3
2
και το βαθμωτό πεδίο F την ασυνήθιστη διάσταση μάζας +2.

Το υπερπεδίο Φ έχει διάσταση +1.

Κάτω από έναν απειροστό υπερσυμμετρικό μετασχηματισμό, οι συνιστώσες του

χειραλικού υπερπεδίου με χρήση των Εξ. 4.56 μετασχηματίζονται ως:

δφ =
√

2αψ μποζόνιο → φερμιόνιο

δψ =
√

2αF (y) + i
√

2σµᾱ∂µφ φερμιόνιο → μποζόνιο

δF = −i
√

2∂µψσ
µᾱ F → ολική παράγωγος

(4.64)

Δηλαδή, η υπερσυμμετρία μετατρέπει τα μποζόνια σε φερμιόνια και αντίστροφα. ΄Ετσι,

η συνιστώσα θθ του αριστερόστροφου πεδίου θα παραμείνει αναλλοίωτη κάτω από

υπερσυμμετρικούς μετασχηματισμούς.

Αντίστοιχα, το δεξιόστροφο υπερπεδίο (ή αντι-χειραλικό υπερπεδίο) αναπτύσσεται

ως εξής:

ΦR

(
y†µ, θ

)
= A† (y) +

√
2θ̄ψ̄

(
y†
)

+ θ̄θ̄F
(
y†
)

(4.65)

όπου ο σπίνορας ψ̄ είναι τώρα ένας δεξιόστροφος σπίνορας Weyl. Επίσης, τώρα ισχύει

yµ† = xµ − iθσµθ̄ (4.66)

ενώ αν εκφράσουμε το πεδίο συναρτήσει των αρχικών συντεταγμένων έχουμε:

ΦR

(
x, θ, θ̄

)
= A† (x)− i

(
θσµθ̄

)
∂µA

† (x)− 1

4
θθθ̄θ̄∂µA† (x) +

+
√

2θ̄ψ̄ (x) +
i√
2

(
θ̄θ̄
)
θα̇∂µψ̄

α (x)σµ
αβ̇
εα̇β̇ + θ̄θ̄F † (x)

(4.67)

Να αναφέρουμε επίσης, ότι κάθε τυχαία συνάρτηση ενός χειραλικού υπερπεδίου

είναι επίσης ένα υπερπεδίο:

W (Φi) = W
(
Ai +

√
2θψi + θθFi

)
=

= W (Ai) +
∂W

∂Ai

√
2θψi + θθ

(
∂W

∂Ai
Fi −

1

2

∂2W

∂AiAj
ψiψj

) (4.68)
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Η αναλυτική συνάρτηση W (Ai) ονομάζεται υπερδυναμικό (superpotential).

Διανυσματικά υπερπεδία

Τα χειραλικά υπερπεδία μπορούν να περιγράψουν μποζόνια με σπιν 0 και φερμιόνια με

σπιν
1
2
, όπως για παράδειγμα τα λεπτόνια, τα κουάρκ του ΚΠ και τα μποζόνια Higgs.

Για να περιγράψουμε τα διανυσματικά μποζόνια του ΚΠ τα οποία έχουν σπιν 1, πρέπει

να εισάγουμε τα διανυσματικά υπερπεδία V , τα οποία ικανοποιούν την συνθήκη [176]:

V
(
x, θ, θ̄

)
= V †

(
x, θ, θ̄

)
(4.69)

Σε μορφή συνιστωσών το διανυσματικό υπερπεδίο γράφεται:

V
(
x, θ, θ̄

)
= C (x) + iθχ− iθ̄χ̄+

i

2
θ2 (M + iN)− i

2
θ̄2 (M − iN)−

− θσµθ̄Vµ + iθ2θ̄

(
λ̄+

i

2
σ̄µ∂µχ

)
−

− iθ̄2θ

(
λ+

i

2
σ̄µ∂µχ̄

)
+

1

2
θ2θ̄2

(
D − 1

2
∂µ∂

µC

) (4.70)

όπου τα C, M , N και D είναι πραγματικά βαθμωτά πεδία, τα χ και λ είναι σπίνορες

Weyl και το Vµ είναι το διανυσματικό πεδίο το οποίο και χαρίζει το όνομα του σε

όλο το υπερπεδίο. Το διανυσματικό φερμιόνιο λ είναι ο υπερσυμμετρικός εταίρος του

διανυσματικού πεδίου Vµ. Αν το Vµ περιγράφει ένα διανυσματικό μποζόνιο, τότε το

V πρέπει να μετασχηματίζεται σαν την αυτοπροσαρτημένη αναπαράσταση της ομάδας

βαθμίδας.

Αρκετές από τις συνιστώσες του διανυσματικού υπερπεδίου 4.70 μπορούν να α-

παλειφθούν αν χρησιμοποιήσουμε τον μετασχηματισμό βαθμίδας V → V + Λ + Λ†,

όπου τα Λ, Λ† είναι χειραλικά και αντι-χειραλικά υπερπεδία. Διαλέγοντας μια βαθμίδα

(βαθμίδα Wess-Zumino) με C = M = N = χ = 0, το διανυσματικό υπερπεδίο 4.70

μπορεί να γραφεί:

V = −θσµθ̄Vµ + θ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D V 2 =

1

2
VµV

µθ2θ̄2V 3 = 0 (4.71)

Σε αυτή την βαθμίδα ισχύει ακριβώς exp {V } = 1 + V + V 2
, επίσης η βαθμίδα αυτή

παραβιάζει την υπερσυμμετρία αλλά όχι την αβελιανή συμμετρία βαθμίδας, Vµ (x) →
Vµ (x)+∂µϕ (x). Είναι δηλαδή το ανάλογο της μοναδιακής βαθμίδας (unitary gauge)

με την έννοια ότι αφαιρεί αρκετούς αφύσικους βαθμούς ελευθερίας. Αν δοθεί η

φυσική διάσταση μάζας +1 στο Vµ, τότε αυτό σημαίνει ότι θα έχουμε διάσταση μάζας
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+3
2
στο φερμιονικό πεδίο λ, ενώ το D θα έχει την ασυνήθιστη διάσταση μάζας +2

όπως ακριβώς η F συνιστώσα του χειραλικού υπερπεδίου. Η συνιστώσα D λέγεται

και θ2θ̄2
συνιστώσα. Το διανυσματικό υπερπεδίο V είναι αδιάστατο. Κάτω από

έναν υπερσυμμετρικό μετασχηματισμό η D συνιστώσα γίνεται μια ολική παράγωγος

κάποιος ποσότητας, αφού

δD = −ασµ∂µλ̄+ ᾱσµ∂µλ (4.72)

΄Αρα, το
∫
d4xD είναι ένα υπερσυμμετρικά αναλλοίωτο αντικείμενο, γεγονός που θα

είναι χρήσιμο στην κατασκευή της υπερσυμμετρικής N = 1 λαγκρατζιανής.

Ορίζουμε στην συνέχεια τα χειραλικά υπερπεδία:

Wα = −1

4
D̄D̄DαV W̄α̇ = −1

4
DDD̄α̇V (4.73)

Οι ποσότητες αυτές αποτελούν την γενίκευση του ηλεκτρομαγνητικού τανυστή στον

υπερχώρο και είναι αναλλοίωτες κάτω από τους αβελιανούς μεταχηματισμούς βαθ-

μίδας. Επίσης, μπορεί να δειχθεί ότι είναι αναλλοίωτοι κάτω από το μετασχηματισμό

Wess-Zumino. Ακόμα, το Wα αφού είναι χειραλικό υπερπεδίο:

D̄ȦWA = −1

4
D̄Ȧ

(
D̄D̄

)
DAV = 0

DAWȦ = −1

4
DA (DD) D̄ȦV = 0

(4.74)

αφού D̄3 = 0. Για την αναλλοιώτητα κάτω από το μετασχηματισμό Wess-Zumino

έχουμε:

WA′ = −1

4
D̄D̄DAV

′ = −1

4
D̄D̄DA

(
V + Φ + Φ†

)
(4.75)

Αφού όμως D, D̄ είναι γραμμικοί τελεστές, έχουμε:

WA′ = −1

4
D̄D̄DAV −

1

4
D̄D̄DAΦ− 1

4
D̄D̄DAΦ† =

= WA −
1

4
D̄D̄DAΦ = WA −

1

4
D̄ȦD̄

ȦDAΦ− 1

4
D̄ȦDAD̄

ȦΦ =

= WA −
1

4
D̄Ȧ

{
D̄Ȧ, DA

}
Φ

(4.76)

αφού D̄ȦΦ = 0. Οπότε WA = W ′
A. ΄Ετσι, στην βαθμίδα Wess-Zumino έχουμε:

WA = −iλA (y) + θAD −
i

2
(σµσ̄νθ)AFµν + θ2

(
σµ∂µλ̄

)
A

(4.77)

όπου Fµν = ∂µVν − ∂νVµ ο γνωστός ηλεκτρομαγνητικός τανυστής. Επειδή όπως

αναφέραμε το διανυσματικό υπερπεδίο ανήκει στην αυτοπροσαρτημένη αναπαράσταση

της ομάδας βαθμίδας, για αυτό θα ισχύει:

V = VAT
A, TA† = TA (4.78)
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΄Ενας γενικός μη αβελιανός μετασχηματισμός ενός διανυσματικού υπερπεδίου είναι:

e−gV → e−iΛegV eiΛ (4.79)

όπου Λ = ΛAT
A
, με:

WA =
1

8
D̄2egVDAe

−gV
(4.80)

μεWA → W ′
A = e−iΛWAe

iΛ
. Υπο μορφή συνιστωσών ο μη αβελιανός τανυστής είναι:

WA = Tα
[
−iλαA + θAD

α − i

2
(σµσ̄νθ)AF

α
µν + θ2σµDµλ̄

α

]
(4.81)

όπου Fα
µν = ∂µV

α
ν − ∂νV α

µ + fabcV b
µV

c
ν και Dµλ̄

α = ∂µλ̄
α + fabcV b

µ λ̄
c
.

4.1.4 Υπερσυμμετρικές λαγκρατζιανές

΄Εχει ήδη αναφερθεί ότι η υψηλότερης τάξης συνιστώσα ενός υπερπεδίου μετασχη-

ματίζεται κάτω από μετασχηματισμούς υπερσυμμετρίας σε μια ολική παράγωγο. ΄Ενα

χωροχρονικό ολοκλήρωμα μιας τέτοιας ποσότητας είναι επομένως αναλλοίωτο κάτω

από υπερσυμμετρικούς μετασχηματισμούς. Αυτή η βασική ιδιότητα είναι το κριτήριο

σύμφωνα με το οποίο κατασκευάζονται υπερσυμμετρικές λαγκρατζιανές. ΄Ετσι, για

την κατασκευή μιας υπερσυμμετρικής σύζευξης διαφόρων υπερπεδίων, απλά θεωρε-

ίται ότι το τελικό υπερπεδίο δημιουργείται από τον πολλαπλασιασμό των συνιστωσών

υψηλότερης τάξης. ΄Ομως, το υψηλότερης τάξης πεδίο προκύπτει από ολοκλήρωση

ως προς τις μεταβλητές Grassmann θ και θ̄. Οπότε, η υπερσυμμετρική δράση είναι:

S =

∫
d4x

∫
d4θL =

∫
d4x

∫
d2θd2θ̄L (4.82)

όπου L η υπερσυμμετρική λαγκρατζιανή πυκνότητα (υπερσυμμετρική μέχρι μια ολική

παράγωγο). Φυσικά, θα πρέπει η δράση να είναι αναλλοίωτη κάτω από υπερσυμμε-

τρικούς μετασχηματισμούς, δηλαδή:

δS = δ

∫
d4xL (x) = 0 (4.83)

για την ικανοποίηση της οποίας, το L (x) από μόνο του πρέπει να μετασχηματίζεται

σαν μια ολική παράγωγος. Είδαμε όμως ότι η F και D συνιστώσα ενός χειραλικού

και ενός διανυσματικού υπερπεδίου ικανοποιούν αυτήν την συνθήκη, και άρα μπορούν

να χρησιμοποιηθούν στην κατασκευή της λαγκρατζιανής:

S =

∫
d4x

(∫
d2θLF +

∫
d2θd2θ̄LD

)
(4.84)
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όπου τα LF και LD είναι γενικά τα χειραλικά και διανυσματικά υπερπεδία και δίνουν

τους λεγόμενους F και D-όρους αντίστοιχα.

Πρέπει, για να ισχύει κάποια δράση της μορφής 4.82, να επιβληθούν συνθήκες

στα υπερπεδία από τα οποία αποτελείται. Για ένα υπερπεδίο S (x, θ), η μόνη υπερ-

συμμετρική κινητική δράση η οποία είναι διγραμμική στα S, S∗ και δεν περιλαμβάνει

πάνω από δύο παραγώγους των συνιστωσών πεδίων είναι:

S ∼
∫
d4x[S∗S]D (4.85)

Οπότε, λόγω της Εξ. 4.48, η ζητούμενη D συνιστώσα θα είναι:

[S∗S]D =− ∂µC∗∂µC −
1

2
(ω̄γµ∂µω) +

1

2
[(∂µω̄) γµω] +

+ C∗D +D∗C − (ω̄λ)−
(
λ̄ω
)

+M∗M +N∗N − V ∗µ V µ
(4.86)

Οι τετραγωνικοί όροι ως προς το C, ω θα μπορούσαν να περιγράψουν κινητικούς

όρους άμαζων πεδίων με σπιν 0 και
1
2
. ΄Ομως, οι όροι που περιέχουν τα D, λ έχουν

την καταστροφική απαίτηση στα τροχιακά ολοκληρώματα να μηδενίζουν τα C, ω. Ο-

πότε, για αυτό επιβλήθηκαν στο γενικό υπερπεδίο διάφορες συνθήκες δημιουργώντας

καινούρια υπερπεδία που οδηγούν σε σωστές, από φυσική άποψη, δράσεις.

Λόγω της παρουσίας χειραλικών υπερπεδίων έχουμε μια ακόμα δυνατότητα για

την κατασκευή υπερσυμμετρικών δράσεων. Μελετώντας τον κανόνα μετασχηματι-

σμού 4.64, βλέπουμε ότι ο υπερσυμμετρικός μετασχηματισμός αλλάζει τον F όρο του

αριστερόστροφου υπερπεδίου κατά μία παράγωγο, έτσι ώστε το ολοκλήρωμα κάθε

F -όρου του υπερπεδίου να είναι υπερσυμμετρικό. ΄Ετσι, σε αυτή την περίπτωση μια

υπερσυμμετρική δράση θα έχει την μορφή:

S =

∫
d4x[f (ΦL)]F +

∫
d4x [f (ΦL)]∗F +

1

2

∫
d4x[K]D (4.87)

όπου τα f (ΦL), K είναι συναρτήσεις των βασικών αριστερόστροφων και γενικών

υπερπεδίων που ορίσαμε νωρίτερα. Αν το f (ΦL) εκφραστεί ως μια συνάρτηση μόνο

των βασικών αριστερόστροφων υπερπεδίων και όχι συναρτήσει των υπερπαραγώγων

τους ή των χωροχρονικών παραγώγων τους, τότε αυτό είναι γνωστό ως υπερδυναμικό.

Η συνάρτηση K είναι γενικά μια πραγματική βαθμωτή συνάρτηση και των αριστε-

ρόστροφων και των δεξιόστροφων υπερπεδίων καθώς και των υπερπαραγώγων τους

και των χωροχρονικών παραγώγων τους. Αυτή η συνάρτηση είναι γνωστή ως δυνα-

μικό Kahler. Να σημειώσουμε επίσης ότι επειδή τα χειραλικά υπερπεδία δεν έχουν

D όρους, δύο K που διαφέρουν κατά ένα χειραλικό υπερπεδίο συνεισφέρουν το ίδιο
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στην δράση. Τέλος, με βάση το ανωτέρω δυναμικό, τα υπερπεδία μπορούν να ζουν

σε χώρο που ορίζεται από την μετρική

gij =
∂2K (φ, φ∗)

∂φi∂φj
(4.88)

Να τονίσουμε επίσης ότι για μια επακανονικοποιήσιμη θεωρία, η μορφή που θα έχουν

τα K και f (ΦL) δεν είναι τυχαία αλλά περιορίζεται από μια συμμετρία που ονομάζεται

συμμετρία-R. Αυτή η συμμετρία δρα πάνω στα χειραλικά υπερπεδία ως εξής:

RΦ (x, θ) = Φ′ (x, θ) = e2inαΦ
(
x, e−iαθ

)
RΦ† (x, θ) = Φ′† (x, θ) = e−2inαΦ†

(
x, eiαθ̄

) (4.89)

Οι συνιστώσες των πεδίων κάτω από αυτή τη συμμετρία μετασχηματίζονται σαν:

A→ e2inαA

ψ → e2i(n− 1
2)αψ

F → e2i(n−1)αF

(4.90)

Εφόσον είναι θ → e+iαθ και d2θ → e−2iαd2θ θα πρέπει ο χαρακτήρας-R των υπερπε-

δίων σε κάθε όρο f (ΦL) να αθροίζεται στην μονάδα. Ομοίως το K θα πρέπει να είναι

ουδέτερο κάτω από την R. Τα διανυσματικά υπερπεδία είναι πραγματικά και έτσι δεν

υπάρχει φυσική συμμετρία R για αυτά.

΄Οπως θα δούμε και στην συνέχεια, πολλές φορές χρειαζόμαστε μη επακανονικο-

ποιήσιμες λαγκρατζιανές της γενικής μορφής:

L = 2Re[f (Φ)]F +
1

2
[K (Φ,Φ∗)]D (4.91)

όπου σε αυτή την περίπτωση το υπερδυναμικό f είναι τυχαία συνάρτηση αριστε-

ρόστροφων πεδίων αλλά όχι των παραγώγων τους, και το δυναμικό Kahler είναι μια

τυχαία συνάρτηση των Φ, Φ∗ αλλά όχι των παραγώγων τους. Αυτή η περίπτωση

προκύπτει στις ενεργές θεωρίες πεδίου, των οποίων οι συμμετρίες αποκλείουν κάθε

επακανονικοποιήσιμη αλληλεπίδραση, ή στις οποίες οι επακανονικοποιήσιμες αλληλε-

πιδράσεις είναι πάρα πολύ μικρές.

Τα πεδία ύλης βρίσκονται σε χειραλικές πολλαπλότητες οι οποίες κάτω από μετα-

σχηματισμούς βαθμίδας μετασχηματίζονται ως:

Φ→ e−igΛΦ (4.92)
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με Λ = ΛαTα, όπου Λα
χειραλικά υπερπεδία και Tα οι γεννήτορες της αναπαράστασης

τους Φ. Τα πεδία βαθμίδας ανήκουν σε διανυσματικές υπερπολλαπλότητες V α
. Αν

V = V αTα είναι η D συνιστώσα
(
θθθ̄θ̄

)
της έκφρασης:∫

d4x
[
Φ†egvΦ

]
(4.93)

τότε είναι υπερσυμμετρικά αναλλοίωτη κάτω από μετασχηματισμούς βαθμίδας μόνο

αν το V μετασχηματίζεται ως:

egV → e−igΛ
†
egV eigΛ (4.94)

Το κανονικοποιημένο μέρος της κινητικής ενέργειας των πεδίων βαθμίδας και των

υπερσυμμετρικών συντρόφων τους περιέχεται στην υπερσυμμετρική ερμιτιανή δράση:

1

4g2

∫
d4x {Tr(WαWα)θθ + h.c.} (4.95)

Η συνολική δράση, η οποία είναι και υπερσυμμετρικά αναλλοίωτη και κάτω από μετα-

σχηματισμούς βαθμίδας, συμπεριλαμβανομένων και των πεδίων ύλης έχει την μορφή:

SSUSY =

∫
d4xLSUSY =

=

∫
d4x

{
1

4g2
[Tr(WαWα)θθ + h.c.] +

∑
i

(
Φ†ie

gV Φi

)
θθθ̄θ̄

+ [f(Φi)θθ + h.c.]

}
(4.96)

όπου f (Φi) είναι το υπερδυναμικό και μια χειραλική συνάρτηση του ορίσματος της,

f (Φi) = ciΦi +
mij

2
ΦiΦj +

λijk
3!

ΦiΦjΦk (4.97)

με ci, mij, λijk συντελεστές που σέβονται την συμμετρία βαθμίδας. Μπορεί να δειχθεί

ότι η απαραίτητη συνθήκη για επακανονικοποιήσιμη δράση απαγορεύει την ύπαρξη

στην λαγκρατζιανή δυνάμεων του Φ μεγαλύτερων από 3. Στην βαθμίδα Wess-Zumino

η λαγκρατζιανή είναι επακανονικοποιήσιμη και μπορεί να εκφραστεί συναρτήσει των

συνιστωσών (g → 2g):

LSUSY =− 1

4

(
Fα
µν

)2
+

(
i

2
λ̄ασ̄µDµλ

α + h.c.

)
+ (DµAi)

† (DµAi) +
i

2

(
ψ̄iσ̄

µDµψi + h.c.
)

− 1

2

[
∂2f (A)

∂Ai∂Aj
ψiψj + i

√
2
∂Dα

∂Ai
ψiλ

α + h.c.

]
− V

(
F, F †, D

) (4.98)
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όπου:

Dµ

(
ψi

Ai

)
=
(
∂µ − igTαV α

µ

)( ψi

Ai

)
Dµλ

α = ∂µλ
α + gfabcV b

µλ
c

Fα
µν = ∂µV

α
ν − ∂νV α

µ + gfabcV b
µV

c
ν

(4.99)

με fabc σταθερές δομής. Το V
(
F, F †, D

)
ονομάζεται βαθμωτό δυναμικό και στην

υπερσυμμετρία είναι πάντα θετικά ορισμένο, και δίνεται από την σχέση:

V
(
F, F †, D

)
=
∑
i

F †i Fi +
1

2

∑
α

(Dα)2
(4.100)

όπου τα “βοηθητικά” (auxiliary) πεδία F , F †, Dα
που εμφανίζονται, καθορίζονται

από τις εξισώσεις κίνησης:

F †i = −∂f (A)

∂Ai
, Dα = −g

∑
i

(
A†iT

(α)Ai

)
(4.101)

Εάν είναι γνωστή η συμμετρία βαθμίδας, τότε από την Εξ. 4.98 μπορούμε να κα-

τασκευάσουμε το αντίστοιχο υπερσυμμετρικό μοντέλο. Επίσης, μπορούμε να κατα-

σκευάσουμε τους κανόνες Feynman της N = 1 υπερσμμετρικής θεωρίας, χρησιμο-

ποιώντας υπερπεδία αντί για τα συνηθισμένα πεδία. Σε κάθε βαθμωτό Ai (2 βαθμοί

ελευθερίας) αντιστοιχεί ένα φερμιόνιο Weyl και σε κάθε διανυσματικό μποζόνιο V α
µ

ένα φερμιόνιο βαθμίδας (gaugino) λ(α)
. Τα λ(α)

ανήκουν στην αυτοπροσαρτημένη

αναπαράσταση της ομάδας βαθμίδας όπως ακριβώς και τα μποζόνια βαθμίδας. Οι

ιδιοτιμές των μαζών για φερμιόνια και μποζόνια, ικανοποιούν τον κανόνα:

StrM2 ≡ SupertraceM2 =
∑
i

(−1)2j (2j + 1)m2
j = 0 (4.102)

Δηλαδή, μποζόνια και φερμιόνια έχουν την ίδια μάζα. Τέλος, αν η ομάδα βαθμίδας

περιέχει μια U(1)Y ομάδα που χαρακτηρίζεται από μια σταθερά gY τότε μπορεί να

έχει έναν επιπλέον όρο στην λαγκρατζιανή:

δL = ξYDY ≡ 2ξY V
(Y )
∣∣
θθθ̄θ̄

(4.103)

και η εξίσωση κίνησης για το DY είναι:

DY = −gY
∑
i

YiA
†
i − ξY (4.104)

Ο όρος αυτός ονομάζεται όρος Fayet-Iliopoulos [177].
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4.1.5 Παραβίαση της υπερσυμμετρίας

Σε μια υπερσυμμετρική θεωρία θα πρέπει να ικανοποιείται η Εξ. 4.24, δηλαδή θα

πρέπει οι μάζες των υπερσυμμετρικών εταίρων να είναι ίσες με τις συνηθισμένες

μάζες του ΚΠ. Αυτό βέβαια δεν είναι ρεαλιστικό, καθώς δεν παρατηρούνται στην

φύση, σε αυτές τις ενεργειακές κλίμακες. ΄Ετσι, είναι φανερό ότι η υπερσυμμετρία

δεν είναι μια ακριβής συμμετρία και θα πρέπει να είναι παραβιασμένη. Παρόλα αυτά,

σε πολλές περιπτώσεις αποδεικνύεται ότι το αυθόρμητο σπάσιμο δημιουργεί μια ε-

νεργό λαγκρατζιανή στις χαμηλές ενέργειας η οποία είναι υπερσυμμετρική εκτός από

συγκεκριμένους ήπιους όρους (soft terms) που την παραβιάζουν. Το ήπιο σπάσιμο

επιτυγχάνεται προσθέτοντας όρους στην λαγκρατζιανή οι οποίοι δεν εισάγουν τετρα-

γωνικές αποκλίσεις. Με τον όρο “ήπιοι” εννοούμε ότι οι νέοι αυτοί όροι διατηρούν

την διαγραφή των τετραγωνικών αποκλίσεων και δεν γεννούν καινούριες. Αναλυτικοί

υπολογισμοί δείχνουν ότι εισάγοντας όρους μάζας για τους βαθμωτούς υπερσυμμε-

τρικούς εταίρους όπως επίσης και τριγραμμικές ζεύξεις για αυτούς, οι τετραγωνικές

αποκλίσεις συνεχίζουν να απαλείφονται. Το αποτέλεσμα αυτό ισχύει σε όλες τις

τάξεις της θεωρίας διαταραχών. Επίσης, έχει αποδειχθεί ότι η πιο γενική θεωρία η

οποία δεν χαρακτηρίζεται από τετραγωνικές αποκλίσεις είναι η υπερσυμμετρία με έναν

περιορισμένο αριθμό από ήπιους όρους [178–180]. Ουσιαστικά, οι όροι που μπορούν

να προστεθούν που σπάνε την υπερσυμμετρία είναι οι εξής [181]:

m2AA†, m2
(
A2 + A†2

)
, g

(
A3 + A†3

)
mgλλ (4.105)

όπου το A δηλώνει ένα μιγαδικό βαθμωτό πεδίο και το λ ένα φερμιόνιο βαθμίδας.

Μια συμμετρία που σπάει λόγω της παρουσίας των όρων αυτών λέμε ότι είναι ήπια

σπασμένη. Να σημειώσουμε επίσης ότι απαγορεύεται να προσθέσουμε όρους μάζας

για τα φερμιόνια, πέρα από αυτούς που ήδη υπάρχουν στο υπερδυναμικό.

Από την άλγεβρα της υπερσυμμετρίας, που έχουμε ήδη μελετήσει στο εδάφιο

4.1.2, προκύπτει ότι η χαμιλτονιανή του συστήματος δίνεται από την σχέση:

H = P 0 =
1

4

2∑
α=1

(
Q†αQα +QαQ

†
α

)
≥ 0 (4.106)

Το P 0
είναι άθροισμα τετραγώνων και άρα είναι μια θετικά ορισμένη ποσότητα. Αν

για μια φυσική κατάσταση η ενέργεια είναι μηδέν τότε αυτή είναι βασική κατάσταση

του συστήματος και η υπερσυμμετρία δεν έχει σπάσει, και αντίστροφα, αν η βασική

κατάσταση του συστήματος είναι υπερσυμμετρική, τότε Qα |0〉 = Q̄α̇ |0〉 = 0, οπότε
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η Εξ. 4.106 δίνει Evac = 〈0|H |0〉 = 0. Δηλαδή, με άλλα λόγια, η υπερσυμμετρία θα

είναι αυθόρμητα σπασμένη αν και μόνο αν, η ενέργεια του κενού είναι θετική (βλέπε

Σχ. 4.8) [182]. Η Εξ. 4.106 προκύπτει ως εξής:

{
QA, Q̄Ḃ

}
= 2σµ

AḂ
Pµ ⇒

{
QA, Q̄Ḃ

}
(σ̄ν)ḂA = 2

(
σµ
AḂ

)
(σ̄ν)ḂAPµ =

= 2Tr [σµσ̄ν ]Pµ = 4ηµνPµ = 4Pν
(4.107)

και για ν = 0 είναι:

P 0 = H =
1

4

{
QA, Q̄Ḃ

} (
σ̄0
)ḂA

=
1

4

(
Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2

)
(4.108)

αφού σ̄0 = I2×2. ΄Ετσι λοιπόν, ένα υπερσυμμετρικό κενό υπονοεί ότι τα υπερφορτία

QA, Q̄Ȧ εξαφανίζουν το κενό, Evac = 〈0|H |0〉 = 0. Συνεπώς, για μια θεωρία με βαθ-

μωτά υπερπεδία μπορεί να μην υπάρχει σπάσιμο της υπερσυμμετρίας ούτε εσωτερικής

συμμετρίας, αλλά μπορεί και να συμβαίνει σπάσιμο κάποιας εσωτερικής συμμετρίας

αλλά όχι της υπερσυμμετρίας. Υπάρχει επίσης και η περίπτωση κατά την οποία η

υπερσυμμετρία είναι σπασμένη, ενώ η ενέργεια κενού είναι διάφορη του μηδενός.

Η ενέργεια κενού της θεωρίας μελετάται από το δυναμικό για το οποίο η έκφραση

στο επίπεδο δένδρου είναι η Εξ. 4.98. Είναι ένα άθροισμα θετικά ορισμένων όρων

και το αυθόρμητο σπάσιμο της υπερσυμμετρίας απαιτεί Vmin ≡ f 2 > 0 που σημαίνει

ότι 〈Fi〉 6= 0 ή/και 〈Dα〉 6= 0 στο ελάχιστο. ΄Οταν 〈Fi〉 6= 0 το σπάσιμο ονομάζεται

σπάσιμο τύπου F (O’ Raifeartaigh) και όταν 〈Dα〉 6= 0 σπάσιμο τύπου D (Fayet-

Iliopoulos).

Σαν παράδειγμα, μπορούμε να δούμε, ότι είναι δυνατόν από τις Εξ. 4.100, 4.101

να προκύψει ενα δυναμικό της μορφής:

V (x, y) =
∑
i

|fi (x)|2 +
∑
n

∣∣∣∣∣∑
i

yi
∂fi (x)

∂xn

∣∣∣∣∣ (4.109)

Το δυναμικό ελαχιστοποιείται διαλέγοντας τα xn έτσι ώστε να ελαχιστοποιείται ο

πρώτος όρος. ΄Οτι τιμές και να δίνει αυτό στο xn, ο δεύτερος όρος μπορεί πάντα

να ελαχιστοποιηθεί παίρνοντας yi = 0. Είτε η υπερσυμμετρία μπορεί να σπάσει

αυθόρμητα είτε όχι, αυτά τα μοντέλα έχουν την παράξενη ιδιότητα να υπάρχουν πάντα

διευθύνσεις στο χώρο των υπερπεδίων στις οποίες το ελάχιστο του δυναμικού να

είναι επίπεδο. ΄Ετσι, οποιεσδήποτε τιμές xn0 του xn ελαχιστοποιούν τον πρώτο όρο,

ο δεύτερος όρος μηδενίζεται όχι μόνο για yi = 0 αλλά και για κάθε διάνυσμα σε μια
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διεύθυνση κάθετη σε όλα τα διανύσματα:

(un)i =

[
∂fi (x)

∂xn

]
x=x0

(4.110)

Αν υπάρχουν NX υπερπεδία Xn και NY υπερπεδία Yi με NY > NX , τότε τα un δεν

μπορούν να αναπτύξουν τον χώρο των y και έτσι θα υπάρχουν τουλάχιστον NY −NX

“επίπεδες διευθύνσεις”. ΄Ετσι, όταν αναφέρουμε D και F “επίπεδες διευθύνσεις”

εννοούμε τα πεδία για τα οποία οι D, F -όροι μηδενίζονται στο δυναμικό 4.100. Για

παράδειγμα, στο δυναμικό 4.100 μπορεί να ελαχιστοποιηθεί ο πρώτος όρος για κάποιο

〈Ai〉, ενώ ο δεύτερος όρος μπορεί να μηδενιστεί όχι μόνο για 〈Ai〉 = 0 αλλά και

για κάθε Ai κάθετο στο Tα 〈Ai〉. Θα μπορούσαμε να πούμε ότι η υπερσυμμετρία

σπάει εάν υπάρχουν Ai για τα οποία μερικές συμμετρίες βαθμίδας είναι σπασμένες

Tα 〈Ai〉 6= 0. Αυτό όμως δεν συμβαίνει, όχι μόνο στην προσέγγιση δένδρου, αλλά

σε καμία τάξη της θεωρίας διαταραχών, κάτι που προκύπτει από τα διαταρακτικά

μη επακανονικοποιήσιμα θεωρήματα. ΄Ετσι, συμπερασματικά αναφέρουμε ότι αν η

υπερσυμμετρία είναι ή όχι αυθόρμητα σπασμένη είναι ένα θέμα απόλυτα ισοδύναμο

με την ερώτηση αν το κενό έχει θετικά ορισμένη ενέργεια ή μηδέν. Η παραπάνω

επιχειρηματολογία με την ενέργεια κενού φαίνεται στο Σχ. 4.8.

Σχήμα 4.8: Η ενέργεια κενού ως κριτήριο για την αυθόρμητη παραβίαση της υπερσυμμετρίας.
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4.2 Ελάχιστα υπερσυμμετρικό καθιερωμένο

πρότυπο

4.2.1 Βασικά στοιχεία

Το κίνητρο για την αρχική εισαγωγή της υπερσυμμετρίας σε ενέργειες της τάξεως

της κλίμακας στην οποία παραβιάζεται η ηλεκτρασθενής συμμετρία, ήταν η απαλοιφή

των τετραγωνικών αποκλίσεων. Αυτό οδηγεί και στην λύση του προβλήματος της

ιεραρχίας (βλέπε εδάφιο 2.4.4) όπως περιγράψαμε αναλυτικά στο εδάφιο 4.1.1. ΄Ενας

άλλος βασικός λόγος βασίζεται στο θεώρημα [173], το οποίο μας λέει ότι η μεγα-

λύτερη συμμετρία που μπορεί να έχει μια ΚΘΠ είναι ένα γινόμενο μιας συμμετρίας

βαθμίδας, μιας συμμετρίας Poincare και της υπερσυμμετρίας. Οι δύο πρώτες συμ-

μετρίες ικανοποιούνται στο ΚΠ, οπότε το ερώτημα είναι αν η τρίτη συμμετρία που

επιτρέπεται από το θεώρημα των Haag, Sohnious, Lopuszanski μπορεί να μας δώσει

μια πληρέστερη και καλύτερη περιγραφή της φύσης.

΄Οπως έχουμε ήδη δει στο εδάφιο 4.1.5, η δράση ενός υπερσυμμετρικού προτύπου

θα πρέπει να έχει όρους οι οποίοι σέβονται την υπερσυμμετρία αλλά και επιπλέον

ήπιους όρους οι οποίοι την παραβιάζουν χωρίς όμως την δημιουργία τετραγωνικών

αποκλίσεων. Το επόμενο θέμα, είναι να δούμε το πως παραβιάζεται η ηλεκτρασθενής

συμμετρία SU (2) × U (1). ΄Ομως, όπως φαίνεται αυτή η παραβίαση είναι εντελώς

ανεξάρτητη από την παραβίαση της υπερσυμμετρίας. Ωστόσο, το γεγονός ότι οι

μάζες των υπερσωματιδίων θα πρέπει να έχουν τιμές γύρω από την ηλεκτρασθενή

κλίμακα, μας κάνει να υποψιαζόμαστε ότι οι δύο παραβιάσεις συνδέονται μεταξύ τους.

Και όντως, όπως θα δούμε, όταν η υπερσυμμετρία είναι παραβιασμένη, τότε και η

ηλεκτρασθενής συμμετρία SU (2) × U (1) θα είναι παραβιασμένη σαν αποτέλεσμα

κβαντικών διορθώσεων.

Καθορισμός του μοντέλου

΄Οπως είναι φανερό και από το όνομα του, το Ελάχιστα Υπερσυμμετρικό Καθιερω-

μένο Πρότυπο (Minimal Supersymmetric Standard Model - MSSM), το οποίο ανα-

πτύχθηκε το 1981, είναι μια υπερσυμμετρική εκδοχή του ΚΠ, όπου με τον όρο απλό

εννοούμε ότι θέλουμε την ύπαρξη όσο το δυνατόν λιγότερων υπερπεδίων [183–185].

Αφού τα πεδία της ύλης (κουάρκ και λεπτόνια) στο ΚΠ ανήκουν σε διαφορετική ανα-

παράσταση της ομάδας συμμετρίας από τα μποζόνια βαθμίδας, θα πρέπει και εδώ να
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αντιστοιχούν σε διαφορετική αναπαράσταση των υπερπεδίων. Για παράδειγμα, κανένα

φερμιόνιο του ΚΠ δεν μπορεί να ταυτισθεί με τον υπερσυμμετρικό εταίρο ενός μπο-

ζονίου βαθμίδας (gaugino). Μια γενιά του ΚΠ περιγράφεται στο MSSM από πέντε

χειραλικά υπερπεδία: Το Q το οποίο περιέχει τις SU (2) δυάδες των κουάρκ και των

υπερσυμμετρικών εταίρων τους s-κουάρκ, τα U c
και Dc

που περιέχουν τις μονάδες

των κουάρκ και s-κουάρκ, το L το οποίο περιέχει τις SU (2) δυάδες των λεπτονίων

και των s-λεπτονίων, και το Ec
υπερπεδίο που περιέχει την μονάδα λεπτονίων και

s-λεπτονίων. Φυσικά, χρειαζόμαστε τρεις γενιές για να περιγράψουμε όλη την ύλη

του ΚΠ. ΄Ολες οι χειραλικές υπερπολλαπλότητες του MSSM φαίνονται στον Πίνακα

4.2.

Υπερπεδία Συστατικά SU(3)C × SU(2)L × U(1)Y

Qi,α
r

(
ũ

d̃

)
L

,

(
u

d

)
L

(
3, 2, 1

6

)
Dc
r,α d̃c, dc

(
3̄, 1,−2

3

)
U c
r,α ũc, uc

(
3̄, 1, 1

3

)
Ec
r ẽc, ec (1, 1, 1)

Lir

(
ν̃e

ẽ

)
L

,

(
νe

e

)
L

(
1, 2,−1

2

)
H i

1

(
H̃0

1

H̃−1

)
,

(
H0

1

H−1

) (
1, 2,−1

2

)
H i

2

(
H̃+

2

H̃0
2

)
,

(
H+

2

H0
2

) (
1, 2, 1

2

)

Πίνακας 4.2: Οι χειραλικές υπερπολλαπλότητες του MSSM όπου r, s, t, ... = 1, 2, 3 οι δείκτες

της οικογένειας των κουάρκ και λεπτονίων, i, j, k = 1, 2 οι δείκτες της αναπαράστασης SU (2) και

α, β, γ = 1, 2, 3 οι δείκτες της SU (3) αναπαράστασης.

Για τις αλληλεπιδράσεις των μποζονίων βαθμίδας χρειαζόμαστε διανυσματικά υ-

περπεδία. Συγκεκριμένα, χρειαζόμαστε 8 gluinos G̃(R)
σαν εταίρους των 8 γκλουο-

νίων της κβαντικής χρωμοδυναμικής, 3 winos W̃ (Γ)
σαν εταίρους των μποζονίων βαθ-

μίδας της SU (2) και ένα bino B̃ σαν εταίρο του μποζονίου βαθμίδας της συμμετρίας

U (1). Τα winos και τα binos δεν είναι γενικά φυσικές ιδιοκαταστάσεις των μαζών.

Θα αναμιγνύονται με άλλα πεδία που έχουν το ίδιο φορτίο αλλά διαφορετικούς κβα-

ντικούς αριθμούς κάτω από την συμμετρία SU (2)× U(1)Y . ΄Ολες οι διανυσματικές
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υπερπολλαπλότητες φαίνονται στον Πίνακα 4.3.

Υπερπεδία Συστατικά SU(3)C × SU(2)L × U(1)Y

V1 B̃, Bµ (1, 1, 0)

V
(Γ)

2 W̃ (Γ),W (Γ) (1, 3, 0)

V
(R)

3 G̃(R), G
(R)
µ (8, 1, 0)

Πίνακας 4.3: Οι διανυσματικές υπερπολλαπλότητες του MSSM όπου R,S,Q, ... = 1, ..., 8 οι

δείκτες της ομάδας SU (3) και A,B,Γ = 1, 2, 3 οι δείκτες της ομάδας SU (2).

Οι υπερσυμμετρικές θεωρίες Yang-Mills περιέχουν οπότε δύο βασικούς τύπους

πεδίων:

• Τις διανυσματικές πολλαπλότητες βαθμίδας (λα, V α
µ ) στην αυτοπροσαρτημένη

αναπαράσταση της ομάδας βαθμίδας G.

• Τις πολλαπλότητες ύλης σε μια επιλεγμένη αναπαράσταση της G (Ai, ψi), με τα

Ai, ψi να βρίσκονται στα χειραλικά υπερπεδία, όπου Ai μιγαδικά βαθμωτά πεδία

και ψi φερμιονικά πεδία.

΄Ετσι, στην περίπτωση όπου τα πεδία του μοντέλου είναι αυτά των Πινάκων 4.2, 4.3.

είναι:

Ai : L̃i,αr , Q̃i,α
r , Ũ c

r,α, D̃
c
r,α, Ẽ

c
r , H

i
1, H

i
2 → μποζόνια s = 0

ψi : Li,αr , Qi,α
r , U c

r,α, D
c
r,α, E

c
r , H̃

i
1, H̃

i
2 → φερμιόνια s =

1

2

λα : B̃, W̃ , G̃→ φερμιόνια s =
1

2

(4.111)

Οπότε, βασιζόμενοι στην Εξ. 4.98 και χρησιμοποιώντας τα παραπάνω πεδία προκύπτει

η λαγκρατζιανή του MSSM άμεσα. ΄Αρα, το υπερδυναμικό του MSSM που προκύπτει

το οποίο σέβεται την διατήρηση του λεπτονικού και του βαρυονικού αριθμού είναι:

W = Y rs
u Qj,α

r U c
s,αH

i
2εij + Y rs

d Qj,α
r Dc

s,αH
i
1εij + Y rs

e LjrE
c
sH

e
1εij + µεijH

i
1H

j
2 (4.112)

Οι πίνακες Yu,d,e έχουν διάσταση 3×3 και γενικά είναι μιγαδικοί. Οι δείκτες r, s, ... =

1, 2, 3 μας δείχνουν την οικογένεια των κουάρκ και των λεπτονίων, ενώ οι δείκτες

i, j, ... = 1, 2 και α, β, ... = 1, 2, 3 συμβολίζουν τις αναπαραστάσεις της ομάδας SU (2)

και SU (3) αντίστοιχα. Στην πραγματικότητα, θα μπορούσαμε να προσθέσουμε και

επιπλέον όρους στην Εξ. 4.112 οι οποίοι θα είναι αναλλοίωτοι κάτω από την συμμετρία
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βαθμίδας SU (3)× SU (2)× U (1) αλλά και επακανονικοποιήσιμοι:

W ′ =
1

2
λrstL

i
rL

j
sE

c
t εij + λ′rstL

i
rQ

j,α
s Dc,α

t εij +
1

2
λ′′rstU

c,α
r Dc,β

s Dc,γ
t εαβγ + krL

i
rH2i

(4.113)

Τέτοιοι όροι όμως οδηγούν στην παραβίαση του βαρυονικού και του λεπτονικού α-

ριθμού και οδηγούν σε γρήγορη διάσπαση του πρωτονίου όπως φαίνεται και στο Σχ.

4.9. Συνήθως, σε αυτές τις περιπτώσεις γίνεται η υπόθεση ότι κάποιες συμμετρίες

απαγορεύουν την εμφάνιση τέτοιου είδους όρων. Προφανώς αυτές οι συμμετρίες μπο-

ρεί να είναι ο λεπτονικός και ο βαρυονικός αριθμός. Ωστόσο, υπάρχουν αμφιβολίες

σχετικά με το αν είναι πιθανό να έχουμε ακριβείς συνεχείς εκτεταμένες συμμετρίες.

Σχήμα 4.9: Διάγραμμα το οποίο συνεισφέρει στην διάσπαση του πρωτονίου όταν η R-ομοτιμία

είναι παραβιασμένη.

R-ομοτιμία

Παρ΄ όλα αυτά, οι όροι 4.113 μπορούν να αποφευχθούν αν επιβάλουμε μια διακριτή

εκτεταμένη συμμετρία που ονομάζεται R-ομοτιμία (R-parity), η οποία ορίζεται ως:

R = (−1)3B+L+S
(4.114)

όπου B ο βαρυονικός αριθμός με:

B (Qr) = +
1

3
, B (U c

r , D
c
r) = −1

3
, B (Lr, E

c
r) = 0 (4.115)

και L ο λεπτονικός αριθμός με:

L (Lr) = +1, L (Ec
r) = −1, L (Qr, U

c
r , D

c
r) = 0 (4.116)

ενώ S είναι το γνωστό σπιν του σωματιδίου. ΄Ετσι, για παράδειγμα, το ηλεκτρόνιο

έχει R = 1 ενώ το s-ηλεκτρόνιο έχει R = −1. Το ίδιο συμβαίνει για όλα τα σωματίδια

και τα υπερσωματίδια.

197



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

Η R-ομοτιμία δεν απαγορεύει όρους με διάσταση d > 4 οι οποίοι παραβιάζουν τον

λεπτονικό και βαρυονικό αριθμό. Η ύπαρξη κάποιου μηχανισμού σε υψηλή κλίμακα

M που σχετίζεται με αυτή την παραβίαση οδηγεί σε τελεστές που εμφανίζονται στην

ενεργό λαγκρατζιανή του ΚΠ με συντελεστές ∼ Md−4
. Στην μη υπερσυμμετρική

εκδοχή του ΚΠ, αυτοί είναι διάστασης 6 [186,187] ενώ στην υπερσυμμετρική εκδοχή

υπάρχουν και διάστασης 5 [188,189]. Οι υπερσυμμετρικοί τελεστές διάστασης 5 που

μπορούν να σχηματιστούν από χειραλικά υπερπεδία είναι της μορφής (Φ∗ΦΦ)D και

(ΦΦΦΦ)F καθώς και οι ερμιτιανοί συζυγείς αυτών. Δεν θεωρούνται τελεστές που

περιέχουν παραγώγους ή πεδία βαθμίδας γιατί αυτοί δεν προσφέρουν καμία πρόσθετη

πιθανότητα για μη διατήρηση λεπτονικού ή βαρυονικού αριθμού. Οι όροι διάστασης 5

που διατηρούν την R-ομοτιμία είναι:

(LLH2H2)F (4.117)(
LẼH∗2

)
D
, (Q,DH∗2 )D,

(
Q, ŨH∗1

)
D
,
(
QQŨD

)
F
,
(
QŨLẼ

)
F

(4.118)

(QQQL)F ,
(
Ũ ŨD̃Ẽ

)
F

(4.119)

Ο όρος 4.117 είναι η υπερσυμμετρική εκδοχή του τελεστή διάστασης 5 που θα δώσει

μια μικρή μάζα στα νετρίνα σε ορισμένες θεωρίες [186,187]. Οι τελεστές 4.119 προ-

σφέρουν καινούριους μηχανισμούς για την παραβίαση του βαρυονικού και του λεπτο-

νικού αριθμού. Φυσικά, είναι πιθανό οι διαδικασίες που υποθέτουν την παραβίαση του

βαρυονικού αριθμού να απαγορεύονται λόγω της ύπαρξης κάποιου νόμου διατήρησης.

Μια τέτοια θεωρία είναι η θεωρία χορδών την οποία θα δούμε περιγραφικά στο επόμε-

νο κεφάλαιο (βλέπε εδάφιο 5.2.1), όπου είναι εναντίον της διατήρησής του βαρυονικού

αριθμού ως βασική εκτεταμένη συνεχής συμμετρία, όμως τίποτα δεν απαγορεύει οι

τελεστές 4.119 να διαγράφονται λόγω μιας Z3 συμμετρίας [190].

Κανένα από τα κουάρκ και τα λεπτονικά πεδία του ΚΠ δεν ανήκουν στην συζυγή

αναπαράσταση της SU (3)×SU (2)×U (1), έτσι δεν είναι μπορούν να είναι υπερσυμ-

μετρικοί εταίροι γνωστών διανυσματικών μποζονίων και για αυτό ορίστηκαν να περι-

έχονται σε χειραλικά βαθμωτά υπερπεδία. Ορίστηκαν οπότε τα Ui, Di, Ũi, D̃i, Ei, Ẽi

σαν τα υπερπεδία των οποίων οι συνιστώσες ψL είναι τα γνωστά αριστερόστροφα

πεδία των κουάρκ και αντι-κουάρκ, λεπτονίων και αντι-λεπτονίων. Να σημειώσουμε

επίσης, ότι χρειάζονται 2 διπλέτες Higgs για να δοθούν οι απαραίτητες μάζες των φερ-

μιονίων. Ο λόγος είναι πως η υπερσυμμετρία δεν επιτρέπει την χρήση του μιγαδικού

συζυγή στην κατασκευή του υπερδυναμικού. Επίσης, τα 2 πεδία Higgs χρειάζονται

έτσι ώστε να επιτευχθεί και η απαραίτητη διαγραφή των ανωμαλιών.
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Πλήρης λαγκρατζιανή του MSSM

Βασιζόμενοι στην Εξ. 4.98, και χρησιμοποιώντας το υπερδυναμικό 4.112 θεωρώντας

ότι οι 3 × 3 πίνακες Yukawa Y rs
e,d,u είναι διαγώνιοι, Y rs

e,d,u = δrsY
rs
e,u,d (όχι άθροισμα

στα r, s), μπορούμε να γράψουμε για την λαγκρατζιανή του MSSM:

LMSSM = LKIN + LINT + LSUSY + LSOFT + LGF + LGHOSTS (4.120)

όπου:

LKIN =− 1

4
Fα
µνF

αµν +

(
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2
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√
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(4.124)

όπου τ (Γ)
και λ(R)

οι γνωστοί πίνακες Pauli και Gell-Mann αντίστοιχα.

LGF =
1

2
ξ(∂µBµ)2 +

1

2
ξ
(
∂µW

(Γ)
µ

)2
+

1

2
ξ
(
∂µG

(R)
µ

)2
(4.125)

LGHOSTS = c̄
(Γ)
2

[
−∂2δΓE − g2εΓ∆E∂

µW (∆)
µ

]
c

(E)
2 +

+ c̄
(R)
3

[
−∂2δRQ − g2f

RSQ∂µG(S)
µ

]
c

(Q)
3

(4.126)
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Πιο συγκεκριμένα, αν στο MSSM αναπτύξουμε όλα τα πεδία, τότε οι υπόλοιποι

μη αναπτυγμένοι όροι της λαγκρατζιανής παίρνουν την εξής πλήρη μορφή:

LKIN =− 1
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(4.130)

Το βαθμωτό δυναμικό του MSSM έχει συνεισφορές από τους υπερσυμμετρικούς

F -όρους από τον πρώτο όρο της Εξ. 4.100, από υπερσυμμετρικούς D-όρους από τον

δεύτερο όρο της Εξ. 4.100, καθώς και από όρους από το μέρος της λαγκρατζιανής

που σπάει την υπερσυμμετρία. Οπότε, έχουμε ότι:

V = VF + VD + VSOFT (4.131)

Μπορούμε να μεταβούμε απευθείας στις ιδιοκαταστάσεις μαζών των διανυσματι-

κών μποζονίων αν αντικαταστήσουμε την συναλλοίωτη παράγωγο Dµ:
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2

(
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µ T

+ +W−
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Zµ
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όπου φυσικά:
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)
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(4.133)

e η ζεύξη του ηλεκτρομαγνητισμού και:

g2 =
e

sin θW
, sin2θW =

g2

g2 + g2
2

(4.134)

Το υπερφορτίο Y , η τρίτη συνιστώσα του ισοσπίν T3 και το φορτίο Q = T3 + Y
2

του

κάθε σωματίου φαίνεται στον Πίνακα 4.4.
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Πεδία
Y
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2

1
2
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Πίνακας 4.4: Το υπερφορτίο Y , η τρίτη συνιστώσα του ισοσπίν T3 και το φορτίο Q = T3 + Y
2

του κάθε σωματίου στο MSSM.

Η επιλογή του δυναμικού της Εξ. 4.112 οδηγεί στην διατήρηση της R-ομοτιμίας.

Να σημειώσουμε επίσης πως οι αλληλεπιδράσεις που περιγράφονται από τις Εξ. 4.127

και 4.128 περιέχουν μόνο όρους από άρτιο αριθμό από υπερσωμάτια και το ίδιο συμ-

βαίνει και από τις αλληλεπιδράσεις που παράγονται από το δυναμικό 4.129, και 4.130.

Αυτό σημαίνει ότι στο MSSM τα υπερσωμάτια θα παράγονται κατά ζεύγη. Για πα-

ράδειγμα θα μπορούσαμε να πάρουμε ένα ζευγάρι από s-ηλεκτρόνια από την διάσπαση

ενός μποζονίου Z, όπως φαίνεται και από την Εξ. 4.127. Μερικές από τις νέες αυτές

αλληλεπιδράσεις φαίνονται στα Σχ. 4.10 και 4.11.

Σχήμα 4.10: Μερικές από τις κορυφές οι οποίες γεννιούνται από τους υπερσυμμετρικούς όρους

της Εξ. 4.127. ΄Ολες οι κορυφές είναι ανάλογες της σταθεράς της ισχυρής ζεύξης g3.

Τέλος, ένα υπερσυμμετρικό σωματίδιο μπορεί να διασπαστεί μόνο σε περιττό α-

ριθμό από άλλα υπερσωμάτια και σε οποιοδήποτε αριθμό από σωματίδια του ΚΠ. Για
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Σχήμα 4.11: Μερικές από τις κορυφές οι οποίες γεννιούνται από το υπερδυναμικό 4.112 του

MSSM. ΄Ολες οι κορυφές είναι ανάλογες με την ζεύξη Yuakawa. Παρατηρούμε επίσης τον άρτιο

αριθμό των υπερσωματίων σε κάθε κορυφή.

παράδειγμα ένα s-κουάρκ θα πρέπει να διασπάται σε ένα higgsino και σε ένα κουάρκ

μέσω αλληλεπιδράσεων Yukawa όπως φαίνεται στο Σχ. 4.11 και όπως περιγράφεται

από την Εξ. 4.128. ΄Ετσι, στο MSSM το ελαφρύτερο υπερσυμμετρικό σωμάτιο (LSP)

δεν θα μπορεί να διασπαστεί παραπέρα. Αυτή η παρατήρηση μπορεί να μας οδηγήσει

στον διαχωρισμό των υπερσυμμετρικών σωματιδίων από τα συνήθη σωμάτια στους

επιταχυντές, καθώς αν όλα τα υπερσωμάτια διασπώνται τελικά σε ένα τουλάχιστον

LSP και κάποιο αριθμό από σωματίδια του ΚΠ τότε κάθε υπερσυμμετρικό γεγονός

θα συνοδεύεται από απώλεια ενέργειας.

4.2.2 Αυθόρμητο σπάσιμο της ηλεκτρασθενούς συμμε-

τρίας

Η ηλεκτρασθενής συμμετρία SU (2) × U(1)Y πρέπει, όπως γνωρίζουμε, να σπάσει

αυθόρμητα. Για αυτό το λόγο θεωρούνται 2 πεδία Higgs:

H1 =

(
H0

1

H−1

)
, H2 =

(
H+

2

H0
2

)
(4.135)

Επίσης, είναι απαραίτητο το βαθμωτό δυναμικό να έχει το απόλυτο ελάχιστο του

μακριά από το μηδέν. Το βαθμωτό δυναμικό της Εξ. 4.131, για την περίπτωση που

εξαρτάται μόνο από τα πεδία Higgs, έχει την μορφή:

V = VF + VD + VSOFT =
(
m2
H1

+ µ2
)
|H1|2 +

(
m2
H2

+ µ2
)
|H2|2+

+ µBεijH
j
1H

i
2 + µBεijH̄

j
2H̄

i
1+

+
1

8

(
g2 + g2

2

) (
|H2|2 − |H1|2

)2
+
g2

2

2

∣∣H+
2 H1

∣∣2 (4.136)

όπου συνήθως ορίζουμε m1 = m2
H1

+ µ2
και m2 = m2

H2
+ µ2

. Επειδή αναζητούμε

το ελάχιστο εκεί που η ηλεκτρομαγνητική θεωρία παραμένει αναλλοίωτη, θεωρούμε
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μόνο ουδέτερα πεδία. Αυτό επιτυγχάνεται με έναν SU (2) μετασχηματισμό βαθμίδας

επιλέγοντας 〈H−〉 = 〈H+〉 = 0. Οπότε:

H1 =

(
υ1

0

)
, H2 =

(
0

υ2

)
(4.137)

Για αυτές τις διευθύνσεις, το δυναμικό γράφεται:

V =
g2 + g2

2

8

(
υ2

2 − υ2
1

)2
+ (υ2υ1)

(
µ2 +m2

H2
−Bµ

−Bµ µ2 +m2
H1

)(
υ2

υ1

)
(4.138)

Για να μπορέσουν οπότε τα μποζόνια Higgs να αποκτήσουν VEV θα πρέπει η ορίζου-

σα:

det

(
µ2 +m2

H2
−Bµ

−Bµ µ2 +m2
H1

)
< 0 (4.139)

να είναι αρνητική. Ωστόσο, υπάρχει κίνδυνος η διεύθυνση υ2 = υ1, στην οποία ο

πρώτος όρος τέταρτης τάξης του δυναμικού μηδενίζεται, να μην περιορίζεται με κάτω

όριο. Για να μην συμβεί αυτό πρέπει:

µ2 +m2
H2

+ µ2 +m2
H1
> 2µB (4.140)

οπότε με αυτή την συνθήκη, τα m1, m2 δεν μπορούν να πάρουν αρνητικές τιμές.

Οπότε, γράφοντας στην συνέχεια την Εξ. 4.139 συναρτήσει των m1, m2 έχουμε:

m2
1m

2
2 < (µB)2

(4.141)

Οι συνθήκες 4.140, 4.141 δεν ικανοποιούνται ταυτόχρονα για m2
1 = m2

2. Επιπλέον

αυτό ισχύει και όταν οι υπερσυμμετρικές συνεισφορές στα m2
1, m

2
2 είναι οι ίδιες.

Κάθε διαφορά στις δύο αυτές ποσότητες πρέπει να οφείλεται σε συνεισφορές που

προέρχονται από το μέρος της λαγκρατζιανής το οποίο σπάει την υπερσυμμετρία.

Δηλαδή, στο MSSM υπάρχει σχέση μεταξύ του σπασίματος μιας συμμετρίας βαθμίδας

και του σπασίματος της υπερσυμμετρίας, καθώς το σπάσιμο μιας συμμετρίας βαθμίδας

δεν είναι δυνατό χωρίς το σπάσιμο της υπερσυμμετρίας.

Η μάζα του Z διανυσματικού μποζονίου βαθμίδας παίρνει την σωστή της τιμή για:

υ2 =
υ√
2

sin β, υ1 =
υ√
2

cos β, υ ∼ 250GeV (4.142)

΄Αρα, η ελαχιστοποίηση του δυναμικού 4.138 μέσω της σχέσης
∂V
∂υ2

= ∂V
∂υ1

= 0, με

χρήση των 4.142 θα δώσει:

µ2 = −M
2
Z

2
+
m2
H1
−m2

H2
tan2β

tan2β − 1

2Bµ =
(
2µ2 +m2

H2
+m2

H1

)
sin 2β

(4.143)
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Μηχανισμός διαστατικής μετάλλαξης

Η απλή υπερσυμμετρική εκδοχή του ΚΠ μπορεί να οδηγήσει σε σπάσιμο της ηλε-

κτρασθενής συμμετρίας μέσω κβαντικών διορθώσεων, όταν η υπερσυμμετρία είναι

παραβιασμένη [191–193]. Το ενεργό δυναμικό Higgs σε τάξη ενός βρόγχου, μπορεί

να εκφρασθεί σαν άθροισμα του δυναμικού σε επίπεδο δένδρου συν τις κβαντικές

διορθώσεις που προέρχονται από το άθροισμα των διαγραμμάτων ενός βρόγχου με

μηδενικές εξωτερικές ορμές:

V1loop = Vtree (Q) + ∆V1 (Q) (4.144)

όπου το δεύτερο μέλος είναι ανεξάρτητο από την ενέργεια Q στο επίπεδο του ενός

βρόγχου. Η διόρθωση ενός βρόγχου δίνεται από την σχέση:

∆V1 (Q) =
1

64π2
Str

{
M4

(
ln
M2

Q2
− 3

2

)}
=

=
1

64π2

∑
p

(−1)2sp (2sp + 1)m4
p

(
ln
M2

p

Q2
− 3

2

) (4.145)

όπου M2
οι πίνακες μαζών στο τετράγωνο, οι οποίοι εξαρτώνται από τα πεδία και

m2
p είναι οι ιδιοτιμές των μαζών του p σωματιδίου με σπιν sp. Το δυναμικό Higgs σε

επίπεδο δένδρου είναι:

Vtree (Q) = m2
1H
†
1 (Q)H1 (Q) +m2

2H
†
2 (Q)H2 (Q) +

+m2
3 (Q)

[
H i

1 (Q)Hj
2 (Q) εij + h.c.

]
+

+
1

8
g2 (Q)

[∣∣H2
1 (Q)

∣∣2 − ∣∣H2
2 (Q)

∣∣2]2

+

+
1

8
g2

2 (Q)

[
|H1 (Q)|4 + |H2 (Q)|4 + 4

∣∣∣H†1 (Q)H2 (Q)
∣∣∣2]+

+
1

8
g2

2 (Q)
[
−2|H1 (Q)|2|H2 (Q)|2

]
(4.146)

όπου:

m2
1 (Q) = m2

H1
(Q) + µ2 (Q)

m2
2 (Q) = m2

H2
(Q) + µ2 (Q)

m2
3 (Q) = µ (Q)B (Q)

(4.147)

Οι παράμετροι στο δυναμικό θεωρούνται ως “τρέχων”, δηλαδή μεταβάλλονται με την

κλίμακα σύμφωνα με τις εξισώσεις της ΟΕ. Επειδή η κλίμακα στην οποία σπάσει η

ηλεκτρασθενής συμμετρία είναι μικρή, θα πρέπει να χρησιμοποιηθεί η ΟΕ έτσι ώστε
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να εξελιχθούν οι παράμετροι του δυναμικού σε μια βολική κλίμακα, όπως η MZ , όπου

είναι γνωστές οι πειραματικές τιμές των σταθερών ζεύξης.

Πιο συγκεκριμένα, αν ορίσουμε:

m̄2
i = m2

i +
∂∆V1

∂υ2
i

(4.148)

με υ1 = 〈H0
1 〉, υ2 = 〈H0

2 〉 και:

∂∆V1

∂υ2
i

=
1

32π2

∑
p

(−1)2sp (2sp − 1)m2
p

(
ln
m2
p

Q2
− 1

)
∂m2

p

∂υ2
i

(4.149)

τότε η ελαχιστοποίηση του δυναμικού θα μας δώσει τις συνθήκες:

1

2
M2

Z =
m̄2

1 − m̄2
2tan2β

tan2β − 1

sin 2β = − 2µB

m̄2
1 + m̄2

2

(4.150)

όπου:

M2
Z (Q) =

1

2

[
g2 (Q) + g2

2 (Q)
] [
υ2

1 (Q) + υ2
2 (Q)

]
tan β =

υ2

υ1

(4.151)

Αυτό που αποδεικνύεται από την αριθμητική λύση των εξισώσεων, είναι ότι η πα-

ράμετρος m2
2 μπορεί να πάρει αρνητικές τιμές σε χαμηλές ενέργειες αν και μόνο αν η

μάζα του top κουάρκ είναι αρκετά μεγάλη. Επιπλέον η μάζα m1 καθώς και οι μάζες

των s-κουάρκ και s-λεπτονίων παραμένουν θετικές σε όλο το φάσμα ενεργειών. Η

εξέλιξη των μαζών σε σχέση με την ενέργεια φαίνεται στο Σχ. 4.12.

΄Ετσι, από την Εξ. 4.146, η ενέργεια Qb στην οποία λαμβάνει χώρα η παραβίαση

της ηλεκτρασθενούς συμμετρίας, καθορίζεται από την συνθήκη:

m2
1 (Qb) +m2

2 (Qb)−m4
3 (Qb) = 0 (4.152)

΄Αρα, αν δώσουμε κατάλληλες τιμές στις ελεύθερες παραμέτρους της θεωρίας τότε

μπορούμε να λάβουμε την σωστή μάζα για το διανυσματικό μποζόνιο βαθμίδας MZ

που παρατηρούμε και πειραματικά.

Στο επίπεδο δένδρου μπορούμε να θεωρήσουμε την κρίσιμη ενέργεια Qs. ΄Οπως

φαίνεται και από την Εξ. 4.146, το δυναμικό δεν μπορεί να είναι φραγμένο από κάτω

αν ισχύει:

m2
1 (Qs) +m2

2 (Qs)− 2
∣∣m2

3 (Qs)
∣∣ < 0 (4.153)
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Από την συνθήκη 4.152 συμπεραίνουμε ότι θα ισχύει m2
1 +m2

2 ≤ 0, και άρα θα πρέπει

η συνθήκη 4.153 να ισχύει για ενέργειες Qs < Qb (βλέπε Σχ. 4.13).

Επίσης, πρέπει να αναφέρουμε πως για να έχουμε απαλοιφή των τετραγωνικών

αποκλίσεων θα πρέπει να έχουμε ότι MSUSY ∼ 1TeV . ΄Ετσι, θα έχουμε 3 περι-

πτώσεις:

1. MSUSY < Qs < Qb

2. Qs < MSUSY < Qb

3. Qs < Qb < MSUSY

Στην πρώτη περίπτωση υπάρχει φαινομενολογικό πρόβλημα καθώς το φάσμα των μα-

ζών είναι αρκετά χαμηλό και αποκλείεται από το πείραμα [194]. Στην τρίτη περίπτωση,

για ενέργειες μικρότερες από MSUSY , τα υπερσυμμετρικά σωματίδια αποζευγνύονται

από την θεωρία και παγώνουν σε αυτή την ενέργεια. ΄Ομως, σε αυτή την ενέργεια το

πρόσημο της μάζας m2
2 δεν έχει αλλάξει, και συνεπώς δεν θα έχουμε παραβίαση της

ηλεκτρασθενούς συμμετρίας (βλέπε Σχ. 4.12). ΄Ετσι, μένει η δεύτερη περίπτωση με

την οποία και θα ασχοληθούμε.

Να τονίσουμε επίσης ότι η επιτυχία του μηχανισμού εξαρτάται από την ζεύξη

Yukawa του top κουάρκ και κατά συνέπεια από την μάζα του top κουάρκ. Για να

γίνει η μάζα m2
2 αρνητική ώστε να πυροδοτηθεί η παραβίαση της ηλεκτρασθενούς

συμμετρίας, και να ικανοποιηθούν οι συνθήκες 4.150, θα πρέπει η μάζα του top

κουάρκ να είναι μεγαλύτερη από 65GeV [191] γεγονός που επιβεβαιώνει την επιτυχία

της θεωρίας μας αφού η μάζα του top κουάρκ βρέθηκε πειραματικά στην τιμή: mt =

173.21± 0.51± 0.71GeV [19].

Σε όλη την διαδικασία της ελαχιστοποίησης του δυναμικού ασχοληθήκαμε μόνο

με ελάχιστα τα οποία παραβιάζουν την SU(2)L×U (1) συμμετρία. Θα πρέπει να προ-

σέχουμε ώστε να αποφύγουμε άλλα ελάχιστα τα οποία παραβιάζουν άλλες συμμετρίες

της θεωρίας, όπως για παράδειγμα την συμμετρία φορτίου SU(3) ή την διατήρηση του

ηλεκτρικού φορτίου. Απαραίτητες συνθήκες για να συμβαίνει αυτό είναι:

A2
u < 3

(
m2
Q̃

+m2
Ũc

+m2
H2

)
A2
d < 3

(
m2
Q̃

+m2
D̃c

+m2
H1

)
A2
e < 3

(
m2
L̃

+m2
Ẽc

+m2
H1

) (4.154)

΄Οπως φαίνεται και από το Σχ. 4.13, όταν αθροίσουμε τους λογαριθμικούς όρους

από το ενεργό δυναμικό μέσω των εξισώσεων της ΟΕ για τις παραμέτρους m2
1 και m2

2
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Σχήμα 4.12: Η εξέλιξη των μαζών των βαθμωτών σωματιδίων του MSSM. Η μάζα m2
2 =

m2
H2

+ µ2
παίρνει αρνητικές τιμές σε χαμηλές ενέργειες της τάξεως των 1TeV και πυροδοτεί την

παραβίαση της ηλεκτρασθενούς συμμετρίας.

τότε εμφανίζεται μια ενέργεια Qb παραβίασης της ηλεκτρασθενούς συμμετρίας η οποία

θα καθορίσει την τιμή της υ2 ≡ υ2
1 + υ2

2 από τις συνθήκες ελαχιστοποίησης 4.150.

΄Ετσι, μπορούμε χάρη στις εξισώσεις ελαχιστοποίησης 4.150 να αντικαταστήσουμε

κάποιες παραμέτρους με κάποιες άλλες. Για παράδειγμα οι 4.150 είναι ανεξάρτητες

της ενέργειας Q στο επίπεδο ενός βρόγχου, και άρα μπορούμε να διαλέξουμε Q = MZ

και να τις λύσουμε ως προς µ (MZ) και B (MZ) και να πάρουμε τις Εξ. 4.143. Οπότε,

από αυτές τις εξισώσεις μπορούμε να αντικαταστήσουμε την παράμετρο µ με την μάζα

MZ και την παράμετρο B με την αδιάστατη παράμετρο tan β αποδίδοντας έτσι στο

MSSM την έννοια της διαστατικής μετάλλαξης (dimesional transmutation). Πρέπει

209



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

Σχήμα 4.13: Οι συνθήκες παραβίασης της ηλεκτρασθενούς συμμετρίας και της αστάθειας σε

σχέση με την ενέργεια Q. Στην ενέργεια MG όπου οι ζεύξεις ενοποιούνται θεωρούμε κοινές μάζες

M0 για τα s-κουάρκ, M1/2 για τα gauginos και A0 για τις τριγραμμικές ζεύξεις. Με κατάλληλη

επιλογή αυτών των παραμέτρων παίρνουμε την πειραματική μάζα για το διανυσματικό μποζόνιο Z

στην ενέργεια Q = MZ όπως φαίνεται από τις συνθήκες ελαχιστοποίησης 4.150.

να παρατηρήσουμε τέλος από τις Εξ. 4.143, ότι το πρόσημο του µ είναι αυθαίρετο

στο MSSM.

4.2.3 Σωματιδιακό περιεχόμενο

Τομέας Higgs

Μετά από το σπάσιμο της ηλεκτρασθενούς συμμετρίας, 3 από τους 8 βαθμούς ελευθε-

ρίας που περιέχονται στις δυάδες H1, H2 “τρώγονται” από τις διαμήκεις συνιστώσες

των διανυσματικών μποζονίων βαθμίδας W±
και Z. Οι 5 φυσικοί βαθμοί ελευθερίας

που απομένουν φτιάχνουν ένα ουδέτερο ψευδοβαθμωτό, CP -περιττό μποζόνιο Higgs

A0
, δύο ουδέτερα, CP -άρτια, βαθμωτά h0

, H0
και ένα φορτισμένο μποζόνιο Higgs

H±. Οι πίνακες μαζών στο επίπεδο δένδρου για τις καταστάσεις Higgs μπορούν να

κατασκευαστούν εύκολα αν πάρουμε τις δεύτερες παραγώγους του δυναμικού στο

απόλυτο κενό της θεωρίας. ΄Ετσι, το φυσικό ψευδοβαθμωτό μποζόνιο Higgs A0
κα-

τασκευάζεται από τα φανταστικά μέρη H0
1 , H

0
2 , ενώ και ο πίνακας μαζών, στην βάση(

ImH0
1√

2
,

ImH0
2√

2

)
, όπως προκύπτει από την Εξ. 4.138 είναι:

M2
I =

(
−m2

3 tan β −m2
3

−m2
3 −m2

3 cot β

)
(4.155)
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όπου έχουμε χρησιμοποιήσει μια εναλλακτική μορφή των εξισώσεων ελαχιστοποίη-

σης:

m2
1 = −m2

3 tan β − 1

2
M2

Z cos 2β

m2
2 = −m2

3 cot β +
1

2
M2

Z cos 2β
(4.156)

Επίσης, ισχύει ότι detM2
I = 0. Η αντίστοιχη μηδενική ιδιοτιμή είναι το ουδέτερο

εν-δυνάμει μποζόνιο Goldstone:

G0 =
1

2

(
cos βImH0

1 − sin βImH0
2

)
(4.157)

Το φυσικό ψευδοβαθμωτό A0
είναι ορθογώνιο στο G0

, δηλαδή:

A0 =
1

2

(
sin βImH0

1 + cos βImH0
2

)
(4.158)

με μάζα:

m2
A = 2µ2 +m2

H2
+m2

H1
= − 2m2

3

sin 2β
(4.159)

΄Οταν m2
3 → 0 τότε και m2

A → 0. ΄Ενα τέτοιο άμαζο ψευδοβαθμωτό αξιόνιο αποκλε-

ίεται από το πείραμα. Μπορούμε να παραβιάσουμε την συμμετρία SU (2) × U (1) με

φαινομενολογικά αποδεκτό τρόπο εάν και μόνο αν m2
3 6= 0, το οποίο σημαίνει µ 6= 0.

Αυτό σημαίνει ότι είναι απαραίτητο να εισάγουμε μια μάζα τόσο στον τομέα που παρα-

βιάζει την υπερσυμμετρία όσο και στον τομέα που την διατηρεί. Μια τέτοια σύνδεση

όμως φαίνεται αρκετά μυστηριώδης. Σε αυτό το µ-πρόβλημα όπως θα δούμε έχουν

προταθεί διάφορες λύσεις.

Τα ουδέτερα βαθμωτά μποζόνια Higgs προέρχονται από μίξεις από τα πραγματικά

μέρη των H0
1 και H0

2 . Ο σχετικός πίνακας, στην βάση

(
ReH0

1√
2
,

ReH0
2√

2

)
, όπως προκύπτει

από την Εξ. 4.138 είναι:

M2
R =

(
−m2

3 tan β +M2
Zcos2β m2

3 − 1
2
M2

Z sin 2β

m2
3 − 1

2
M2

Z sin 2β −m2
3 cot β +M2

Zsin2β

)
(4.160)

Σε αυτή την περίπτωση ισχύει ότι detM2
R = m2

AM
2
Zcos22β το οποίο πάει στο 0 όταν

mA → 0, ή MZ → 0 ή όταν tan β → 0. Κάθε ένα από τα τρία αυτά όρια οδηγεί στην

ύπαρξη ενός άμαζου μποζονίου Higgs (τουλάχιστον στο επίπεδο δένδρου). Γενικά,

οι ιδιοτιμές του πίνακα M2
R είναι:

m2
H0,h0 =

1

2

[
m2
A +M2

Z ±
√

(m2
A +M2

Z)
2 − 4M2

Zm
2
Acos22β

]
(4.161)
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από όπου προκύπτει ότι:

mh0 ≤ min (mA,MZ) |cos 2β| (4.162)

Εκ΄ πρώτης όψης, το MSSM φαίνεται να προβλέπει ότι το ένα από τα δύο ουδέτερα

μποζόνια Higgs έχει μάζα μικρότερη από τοMZ . Η πηγή αυτού του ορίου έρχεται από

το γεγονός ότι οι ζεύξεις των μποζονίων Higgs στην Εξ. 4.146 δεν είναι τίποτα άλλο

από τις ζεύξεις βαθμίδας. Στην περίπτωση του ΚΠ αυτές οι ζεύξεις είναι άγνωστες

και για αυτό τον λόγο δεν έχουμε αντίστοιχο περιορισμό.

Ωστόσο, ο περιορισμός 4.162 δέχεται κβαντικές διορθώσεις στο επίπεδο του ενός

βρόγχου κυρίως από συνεισφορές με top κουάρκ και του υπερσυμμετρικού εταίρου

του (s-top) [195–201]. Σε λογαριθμική προσέγγιση (leading log approximation) ο

περιορισμός 4.162 τροποποιείται σαν:

m2
h0 ≤M2

Zcos22β +
3m4

t

32π2sin2βM2
W

log
mt̃1mt̃2

m2
t

(4.163)

όπου mt̃1 και mt̃2 είναι οι μάζες των δύο αντίστοιχων ιδιοκαταστάσεων του s-top.

Αριθμητικά, θα έχουμε:

mh0 ≤ 130GeV (4.164)

εάν υποθέσουμε πως οι μάζες mt̃1 και mt̃2 δεν υπερβαίνουν το 1TeV και επίσης

mt ' 185GeV . Επίσης, έχει δειχθεί [201] πως έχουμε και μια επιπλέον συνεισφορά

από τους μη λογαριθμικούς όρους γύρω στα 10GeV και από αυτή τοποθετείται το

πάνω όριο στην Εξ. 4.164.

Το τελευταίο φυσικό μποζόνιο Higgs είναι το φορτισμένο H± με μάζα που προ-

κύπτει από την Εξ. 4.138:

m2
H± = M2

W +m2
A (4.165)

που είναι πάντα βαρύτερο από το μποζόνιο W με M2
W =

g2
2υ

2

2
. Αποδεικνύεται επίσης

και αριθμητικά πως στην περίπτωση όπου M2
A � M2

Z , οι μάζες των A, H, H± είναι

πολύ κοντά η μία στην άλλη.

Να αναφέρουμε εδώ, πως η πρόσφατη ανακάλυψη από τον LHC ενός μποζονίου

που μοιάζει με το Higgs του ΚΠ με μάζα 126GeV [27, 28] δείχνει πως αυτή η κα-

τάσταση πρέπει να αναγνωριστεί με την h0
, παρόλο που παραμένει η πιθανότητα, η

κατάσταση 126GeV να αναγνωριστεί ως το H0
[202,203].
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Μάζες υπερφερμιονίων

Αν αγνοήσουμε τις μίξεις από s-φερμιόνια διαφορετικών γενεών κάθε πίνακας μαζών

θα έχει διάσταση 2×2. ΄Ετσι, θα έχουμε συνεισφορές από F -όρους, D-όρους και από

τους ήπιους όρους παραβίασης της υπερσυμμετρίας. Στην βάση
(
t̃, t̃c
)
θα έχουμε:

M2
t̃ =

(
m2
t +m2

Q̃
+
(

1
2
− 2

3
sin2θW

)
M2

Z cos 2β −mt (At + µ cot β)

−mt (At + µ cot β) m2
t +m2

Ũc
+ 2

3
sin2θWM

2
Z cos 2β

)
(4.166)

Η Εξ. 4.166 περιγράφει επίσης τους πίνακες M2
ũ και M2

c̃ με την αλλαγή t → u και

t→ c αντίστοιχα. Τα μη διαγώνια στοιχεία είναι σημαντικά στην τρίτη γενιά καθώς

είναι ανάλογα του mt. Ο πίνακας 4.166 μπορεί να διαγωνοποιηθεί από τον πίνακα Kt̃

με ένα μετασχηματισμό ομοιότητας:

KT
t̃ M

2
t̃Kt̃ =

(
m2
t̃1

0

0 m2
t̃2

)
(4.167)

Οι νέες ιδιοκαταστάσεις μαζών t̃1 και t̃2 συνδέονται με τις παλιές t̃ και t̃c ως εξής:(
t̃1

t̃2

)
= KT

t̃

(
t̃

t̃c

)
(4.168)

όπου:

KT
t̃ =

(
cos θt̃ sin θt̃

− sin θt̃ cos θt̃

)
(4.169)

Οι ιδιοτιμές m2
t̃1

και m2
t̃2

δίνονται από:

m2
t̃1,t̃2

=
1

2

(
2m2

t +m2
Q̃

+m2
Ũc

+
1

2
M2

Z cos 2β

)
±

± 1

2

√[
m2
Q̃
−m2

Ũc
+

(
1

2
− 4

3
sin2θW

)
M2

Z cos 2β

]2

+ 4m2
t (At + µ cos β)2

(4.170)

με:

tan 2θt̃ =
−2mt (At + µ cot β)

m2
Q̃
−m2

Ũc
+
(

1
2
− 4

3
sin2θW

)
M2

Z cos 2β
(4.171)

Ο υπολογισμός του πίνακα μαζών του s-bottom είναι ανάλογος με αυτόν που

ακολουθήσαμε για τον M2
t̃
. Στην βάση

(
b̃, b̃c

)
έχουμε:

M2
b̃

=

(
m2
b +m2

Q̃
−
(

1
2
− 1

3
sin2θW

)
M2

Z cos 2β −mb (Ab + µ tan β)

−mb (Ab + µ tan β) m2
b +m2

D̃c
− 1

3
sin2θWM

2
Z cos 2β

)
(4.172)
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Με τον ίδιο τρόπο όπως και πριν θα έχουμε για τις ιδιοκαταστάσεις μαζών b̃1 και b̃2

ότι:

m2
b̃1,b̃2

=
1

2

(
2m2

b +m2
Q̃

+m2
D̃c
− 1

2
M2

Z cos 2β

)
±

± 1

2

√[
m2
Q̃
−m2

D̃c
−
(

1

2
+

2

3
sin2θW

)
M2

Z cos 2β

]2

+ 4m2
b(Ab + µ tan β)2

(4.173)

με:

tan θb̃ =
−2mt (Ab + µ tan β)

m2
Q̃
−m2

D̃c
−
(

1
2

+ 2
3
sin2θW

)
M2

Z cos 2β
(4.174)

Πάλι με τον ίδιο τρόπο, ο πίνακας μαζών για τα s-λεπτόνια στην βάση (τ̃ , τ̃ c)

μπορεί να γραφεί ως:

M2
τ̃ =

(
m2
τ +m2

L̃
+
(
−1

2
sin2θW

)
M2

Z cos 2β −m2
τ (Aτ + µ tan β)

−m2
τ (Aτ + µ tan β) m2

τ +m2
Ẽc
− sin2θWM

2
Z cos 2β

)
(4.175)

όπου οι φυσικές μάζες των s-λεπτονίων είναι:

m2
τ̃1,τ̃2

=
1

2

(
2m2

τ +m2
L̃

+m2
Ẽc
− 1

2
M2

Z cos 2β

)
±

± 1

2

√[
m2
L̃
−m2

Ẽc
+

(
−1

2
+ 2sin2θW

)
M2

Z cos 2β

]2

+ 4m2
τ (Aτ + µ tan β)2

(4.176)

με:

tan 2θτ̃ =
−2mτ (Aτ + µ tan β)

m2
L̃
−m2

Ẽc
+
(
−1

2
+ 2sin2θW

)
M2

Z cos 2β
(4.177)

Η φυσική μάζα για το s-νετρίνο είναι:

m2
ν̃ = m2

L̃
+

1

2
M2

Z cos 2β (4.178)

Να αναφέρουμε επίσης πως η παρατήρηση ενός μποζονίου Higgs σε μάζα 126GeV

[27,28] υποδεικνύει πως υπάρχει ένα άνω όριο στο MSSM στην κλίμακα μάζας η οποία

χαρακτηρίζει τα top s-κουάρκ στην κλίμακα των 10− 106TeV [204–206].

Μάζες των charginos

Ο πίνακας μαζών των charginos, ο οποίος προέρχεται από μίξεις των φορτισμένων

gauginos και higgsinos από τους παρακάτω όρους μάζας της λαγκρατζιανής:

Lmasscharginos = −
(
W̃−, iH̃−1

)
Mc

(
W̃+

iH̃+
2

)
+ h.c. (4.179)
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όπου έχει οριστεί W̃± ≡ W̃ (1)∓W̃ (2)
√

2
, είναι:

Mc =

(
M2 −

√
2MW sin β

−
√

2MW cos β µ

)
(4.180)

Η διαγωνοποίηση του μη συμμετρικού πίνακα 4.180 θα μας δώσει:

UMcV
† =

(
mχ̃c1

0

0 mχ̃c2

)
(4.181)

΄Ετσι, μπορούμε να γράψουμε για την λαγκρατζιανή ότι:

Lmasscharginos = −mχ̃1x̃1x̃1 −mχ̃2x̃2x̃2 (4.182)

Να αναφέρουμε επίσης ότι οι Dirac καταστάσεις των charginos x̃1,2 δίνονται από:

x̃1 ≡

(
λ+

1

λ̄−1

)
, x̃2 ≡

(
λ+

2

λ̄−2

)
(4.183)

όπου οι σπίνορες Weyl λ±1,2 σχετίζονται με τα W̃±
, iH̃−1 , iH̃+

2 σύμφωνα με τις σχέσεις:

V

(
W+

iH̃+
2

)
≡

(
λ+

1

λ+
2

)
,

(
W̃−, iH̃−1

)
U † ≡

(
λ−1 , λ

−
2

)
(4.184)

Μάζες των neutralinos

Η παραβίαση της συμμετρίας SU (2) × U (1) οδηγεί επίσης σε μίξη των gaugi-

nos με τα higgsinos. Ειδικότερα, ο πίνακας μάζας των neutralinos, στην βάση(
B̃, W̃ (3), iH̃0

1 , iH̃
0
2

)
, γράφεται ως:

MN =


M1 0 MZ cosβ sin θW −MZ sinβ sin θW

0 M2 −MZ cosβ cos θW MZ sinβ cos θW

MZ cosβ sin θW −MZ cosβ cos θW 0 −µ
−MZ sinβ sin θW MZ sinβ cos θW −µ 0


(4.185)

Ο πίνακας μαζών 4.185 μπορεί να διαγωνοποιηθεί από τον πίνακα O σύμφωνα με τον

μετασχηματισμό ομοιότητας:

OTMNO = Diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
(4.186)

και οι ιδιοκαταστάσεις του θα είναι:
χ̃0

1

χ̃0
2

χ̃0
3

χ̃0
4

 = OT


B̃

W̃ 3

iH̃0
1

iH̃0
2

 (4.187)
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4.2.4 Βασικά προβλήματα

Ο συνολικός αριθμός των φυσικών παραμέτρων που καθορίζουν το MSSM στην πιο

γενική του μορφή είναι αρκετά μεγάλος, κυρίως λόγω του τομέα ήπιου σπασίματος

της υπερσυμμετρίας. Στην περίπτωση τριών γενιών από κουάρκ και λεπτόνια καθώς

και οι υπερσυμμετρικοί εταίροι, δηλαδή οι βαθμωτές μάζες στο τετράγωνο που σπάνε

την υπερσυμμετρία m2
Q̃
, m2

Ũ
, m2

D̃
, m2

L̃
και m2

Ẽ
είναι ερμιτιανοί 3 × 3 πίνακες καθώς

και οι A-όροι AU ,AD, και AE είναι αντίστοιχα μιγαδικοί 3× 3 πίνακες. Επίσης, m1,

m2, m3, B και µ είναι γενικά μιγαδικοί παράμετροι. Επίσης, όπως και στο ΚΠ οι

ζεύξεις Yukawa Higgs-φερμιονίων, λf (f = u, d, e) είναι επίσης μιγαδικοί 3×3 πίνακες

που σχετίζονται με τους πίνακες μαζών των κουάρκ και λεπτονίων μέσω της σχέσης

Mf = λfυf . Ωστόσο, όλοι αυτοί οι παράμετροι δεν είναι φυσικοί. Κάποιοι από αυτούς

μπορούν να διαγραφούν εκφράζονται τις ιδιοκαταστάσεις αλληλεπιδράσεων με όρους

ιδιοκαταστάσεων μάζας, με ένα κατάλληλο επαναπροσδιορισμό των MSSM πεδίων

ώστε να εξαφανισθούν οι αφύσικοι βαθμοί ελευθερία. Από τους 124 όρους, οι 18

αντιστοιχούν σε παραμέτρους του ΚΠ, 1 αντιστοιχεί στην παράμετρο του τομέα Higgs

(το ανάλογο της μάζας Higgs του ΚΠ) και 105 είναι καθαρά νέες παράμετροι του

μοντέλου. Οι τελευταίες περιλαμβάνουν: 5 πραγματικές παραμέτρους και 3 φάσεις

παραβίασης CP στον τομέα gaugino και higgsino αντίστοιχα, 21 μάζες s-κουάρκ και

s-λεπτονίων, 36 πραγματικές γωνίες μίξης που καθορίζουν τις ιδιοκαταστάσεις μάζας

των s-κουάρκ και s-λεπτονίων, και 40 φάσεις παραβίασης CP που εμφανίζονται στις

αλληλεπιδράσεις s-κουάρκ και s-λεπτονίων.

Στην πιο γενική του μορφή το MSSM με τις 124 παραμέτρους δεν είναι μια φαι-

νομενολογικά βιώσιμη θεωρία σχεδόν σε όλο τον παραμετρικό της χώρο. Αυτό

προκύπτει από παρατηρήσεις που δείχνουν πως ο παραμετρικός χώρος του MSSM

περιλαμβάνει:

• Μη διατήρηση των ξεχωριστών λεπτονικών αριθμών Le, Lµ και Ltau.

• “Μη συμπιεσμένα” ουδέτερα ρεύματα αλλαγής γεύσεων (FCNCs).

• Νέες πηγές CP παραβίασης που δεν είναι συνεπείς με τα πειραματικά όρια.

Για παράδειγμα, όπως θα δούμε και στην συνέχεια πιο αναλυτικά, το MSSM πε-

ριέχει πολλές νέες πηγές CP παραβίασης [207]. Συγκεκριμένα, στην υπερσυμμετρία

ασθενής κλίμακας, κάποιοι συνδυασμοί των μιγαδικών φάσεων των παραμέτρων μα-

ζών των gaugino, A όρων και µ πρέπει να είναι μικρότεροι από 10−2 − 10−3
για

να αποφευχθούν EDM για το νετρόνιο, ηλεκτρόνια και τα άτομα σε αντίθεση με τα
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παρατηρούμενα γεγονότα. Η μη παρατήρηση FCNCs θέτει επιπλέον περιορισμούς

στα μη διαγώνια στοιχεία των πινάκων μαζών των s-κουάρκ και s-λεπτονίων και των

A-όρων. ΄Ετσι, σχεδόν όλος ο παραμετρικός χώρος του MSSM απορρίπτεται εκτός

από ορισμένες ξεχωριστές περιοχές. Επίσης, το MSSM είναι και θεωρητικά ατελές,

καθώς δεν παρέχει καμία εξήγηση για την προέλευση των παραμέτρων σπασίματος

της υπερσυμμετρίας. Επίσης, δεν υπάρχει εξήγηση της επιλογής των παραμέτρων που

οδηγούν στο σπάσιμο της ηλεκτρασθενής συμμετρίας. Αυτό που στην ουσία χρειάζε-

ται είναι μια θεμελιώδης θεωρία σπασίματος της υπερσυμμετρίας, η οποία θα παρέχει

μια λογική για το σύνολο των ήπιων παραμέτρων σπασίματος της υπερσυμμετρίας και

θα ήταν συνεπής με όλους τους φαινομενολογικούς περιορισμούς.

Η επιτυχημένη ενοποίηση των SU (3)×SU (2)×U (1) ζεύξεων βαθμίδας δείχνει

πως η υψηλής ενέργειας δομή της θεωρίας μπορεί να είναι αρκετά απλούστερη από

αυτήν που φαίνεται στην χαμηλής ενέργειας περίπτωση. Αυτό θα το δούμε και στην

συνέχεια στις υπερσυμμετρικές GUT (βλέπε εδάφιο 4.3). ΄Ετσι, η δυναμική που κα-

θορίζει την πιο γενική θεωρία στις υψηλότερες ενέργειες χρησιμοποιείται για να δώσει

μια ενεργή σπασμένη συμμετρική θεωρία στην TeV κλίμακα. ΄Ετσι, μια κατάλληλη

επιλογή για την δυναμική υψηλής ενέργειας, θα ήταν αυτή που δίνει μια θεωρία TeV

κλίμακας που ικανοποιεί όλους τους σχετικούς φαινομενολογικούς περιορισμούς.

Υπάρχει ένα πλήθος θεωριών που δίνουν ένα φαινομενολογικά βιώσιμο MSSM

με λιγότερες παραμέτρους. Αυτό γίνεται θεωρώντας μια απλούστερη δομή των όρων

που παραβιάζουν ήπια την υπερσυμμετρία σε μια τυπική ενεργειακή κλίμακα MX που

μπορεί να είναι η MGUT ή η MPl. Χρησιμοποιώντας τις εξισώσεις της ΟΕ μπο-

ρούν να προκύψουν οι χαμηλής ενέργειας MSSM παράμετροι που είναι σχετικοί με

την φυσική επιταχυντών. Οι αρχικές συνθήκες στην κατάλληλη υψηλή ενεργειακά

κλίμακα για τις εξισώσεις της ΟΕ εξαρτώνται από τον μηχανισμό με τον οποίο το

σπάσιμο της υπερσυμμετρίας επικοινωνεί με την ενεργή χαμηλής ενέργειας θεωρία.

Τέτοια παραδείγματα είναι μοντέλα όπου το σπάσιμο της υπερσυμμετρίας φέρεται από

“βαρύτητα” (Gravity-Mediated Supersymmetry Breaking) [208, 209], από “βαθ-

μίδα” (Gauge-Mediated Supersymmetry Breaking) [165,210] και από “ανωμαλίες”

(Anomaly-Mediated Supersymmetry Breaking) [211,212]. Σε ορισμένες από αυτές

τις προσεγγίσεις, μία από τις διαγώνιες παραμέτρους μάζας Higgs στο τετράγωνο

γίνεται αρνητική από την εξέλιξη της ΟΕ [192]. Σε τέτοια μοντέλα, το ηλεκτρασθε-

νές σπάσιμο της συμμετρίας παράγεται με “ακτινοβολία”, και η προκύπτουσα κλίμακα

σπασίματος της ηλεκτρασθενής συμμετρίας σχετίζεται με την κλίμακα της χαμηλής
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ενέργειας σπασίματος της υπερσυμμετρίας. Παράδειγμα μοντέλων όπως το CMSSM

και το pMSSM θα δούμε στο εδάφιο 4.4.4. Στην συνέχεια, θα μελετήσουμε πιο α-

ναλυτικά τα δυο προβλήματα που αναφέραμε παραπάνω, δηλαδή το υπερσυμμετρικό

FCNC και CP πρόβλημα.

Υπερσυμμετρικό πρόβλημα γεύσεων και A-όροι

Τα νέα σωμάτια που προβλέπονται από την υπερσυμμετρία γενικά παραβιάζουν τις

συμμετρίες γεύσης του ΚΠ οδηγώντας σε μεγάλες συνεισφορές σε διαδικασίες παρα-

βίασης γεύσης [213–217]. Ο λόγος είναι ότι γενικά οι όροι μάζας για τα s-κουάρκ και

s-λεπτόνια δεν χρειάζεται να σέβονται τις αντίστοιχές συμμετρίες γεύσης του ΚΠ.

Πιο συγκεκριμένα, αν δούμε τις Εξ. 4.166, 4.172, και 4.173 θα δούμε ότι τα μη δια-

γώνια στοιχεία είναι ανάλογα με τις αντίστοιχες μάζες κουάρκ και εξαρτώνται από το

tan β, τους A-όρους που σπάνε ήπια την υπερσυμμετρία και την higgsino παράμετρο

μάζας µ. Οι μη διαγώνιοι αυτοί όροι μπορούν να παραβιάζουν την γεύση. ΄Ομως,

τέτοιες διαδικασίες παραβίασης γεύσεων περιορίζονται πολύ αυστηρά από διαδικασίες

όπως: K0 − K̄0
μίξη και µ → eγ [218]. Δηλαδή, με άλλα λόγια, οι πίνακες βαμω-

τών μαζών 4.166, 4.172, και 4.173 δεν είναι απαραίτητα διαγώνιοι στην βάση όπου οι

αντίστοιχοι πίνακες μαζών κουάρκ είναι διαγώνιοι.

΄Ολες οι προσπάθειες επίλυσης του υπερσυμμετρικού προβλήματος γεύσεων βα-

σίζονται στον περιορισμό των μη-διαγώνιων στοιχείων στους πίνακες μαζών των s-

κουάρκ και s-λεπτονίων. Υπάρχουν διάφοροι τρόποι για να αποφύγουμε αυτούς τους

χαμηλής ενέργειας περιορισμούς στην υπερσυμμετρία. Ο πρώτος καλείται παγκοσμι-

ότητα (universality) των ήπιων παραμέτρων. Δηλαδή, οι πίνακες βαθμωτών μαζών

να είναι ανάλογοι με τον μοναδιαίο πίνακα, δηλαδή: m2
Q,m

2
U ,m

2
D ∝ 1. ΄Ετσι, όποια

στροφή και να γίνει για να πάμε στην βάση όπου οι μάζες των κουάρκ είναι διαγώνιες,

οι μοναδιαίοι πίνακες μένουν οι ίδιοι, και άρα τα μη-διαγώνια στοιχεία δεν παράγονται

ποτέ. Υπάρχουν πολλές προτάσεις για την παραγωγή παγκόσμιων βαθμωτών μαζών

είτε από τον μηχανισμό που φέρει το σπάσιμο της υπερσυμμετρίας όπως από “βαθ-

μίδα” [219,220], από “ανωμαλίες” [221–223] ή από “gaugino” [224–226] είτε από “μη

αβελιανές συμμετρίες γεύσεων” [227–233].

Η δεύτερη περίπτωση ονομάζεται ευθυγράμμιση (alignment) των πινάκων μαζών

των κουάρκ και s-κουάρκ έτσι ώστε οι s-κουάρκ μάζες να είναι σχεδόν διαγώνιες

στην ίδια βάση όπου οι μάζες των κάτω κουάρκ είναι διαγώνιες [234]. Λόγω όμως

του CKM πίνακα αυτό είναι απίθανο να γίνει για τις μάζες και των κάτω κουάρκ
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και των πάνω κουάρκ. Αφού οι φαινομενολογικοί περιορισμοί στον τομέα του πάνω

κουάρκ είναι πιο ασθενείς από τον τομέα του κάτω κουάρκ, αυτή η επιλογή θα έλυνε

πολλούς από τους περιορισμούς χαμηλής ενέργειας.

Τέλος, υπάρχει η πιθανότητα η οποία καλείται αποσύζευξη (decoupling) η οποία

θεωρεί πως οι υπερσυμμετρικοί εταίροι πρώτης και δεύτερης γενιάς είναι πολύ πιο

βαριοί από TeV , ενώ οι υπερσυμμετρικοί εταίροι τρίτης γενιάς αλλά και τα gaugino

μένουν στην κλίμακα των 100GeV ώστε να κρατήσουν την ιδιοενέργεια του Higgs

αρκετά χαμηλά [235,236]. Παρόλο που αυτή η ιδέα πάσχει από ένα γενικό πρόβλημα

λεπτής ρύθμισης [237], έχουν κατασκευαστεί πολλά μοντέλα που πετυχαίνουν έναν

τέτοιο χωρισμό του φάσματος μαζών [238–242].

Συγκεντρωτικά, οι βασικές λύσεις που υπάρχουν στην βιβλιογραφία για το υπερ-

συμμετρικό πρόβλημα γεύσεων ή υπερσυμμετρικό FCNC πρόβλημα είναι οι εξής:

• “Παγκοσμιότητα γεύσεων” σε υψηλή κλίμακα [243,244].

• Σπάσιμο υπερσυμμετρίας από “βαθμίδα” [219,220].

• Σπάσιμο υπερσυμμετρίας από “ανωμαλίες” [221–223].

• Σπάσιμο υπερσυμμετρίας από “gaugino” [224–226].

• Σπάσιμο υπερσυμμετρίας από “mirage” [245].

• “Ευθυγράμμιση” [234].

• “Αποσύζευξη” [238–242].

• Σπάσιμο υπερσυμμετρίας από “ gaugino-assisted ανωμαλία” [246].

• “Μοντέλα Nelson - Strassler” [247,248].

Υπερσυμμετρικό CP πρόβλημα

Οι όροι στην λαγκρατζιανή του MSSM πρέπει να είναι έστω και σε προσέγγιση CP

αναλλοίωτοι, έτσι ώστε οι φάσεις που παραβιάσουν την CP συμμετρία να είναι μικρο-

ί. Γενικά όμως, το MSSM περιέχει μιγαδικές παραμέτρους, δηλαδή μιγαδικές φάσεις

που οδηγούν σε μεγάλη CP παραβίαση γεγονός που δημιουργεί πρόβλημα με τα

υπάρχοντα πειραματικά όρια καθώς έχουν σημαντικές φαινομενολογικές συνέπειες.

Συγκεκριμένα, αν θεωρήσουμε το MSSM με παγκόσμιες μάζες s-φερμιονίων και με

τριγραμμικές βαθμωτές ζεύξεις σπασίματος υπερσυμμετρίας ανάλογες με τις αντίστοι-

χες ζεύξεις Yukawa, τότε έχουμε 4 νέες φάσεις CP παραβίασης, πέρα από τις δύο
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του ΚΠ (δKM και θQCD). Οι φάσεις αυτές προέρχονται από τις υπερσυμμετρικές

παραμέτρους µ, mg̃, A και B, όπου µ η παράμετρος μάζας από τον διγραμμικό όρο

µH1H2 του υπερδυναμικού 4.112, ενώ οι άλλοι τρεις προκύπτουν στον τομέα που είναι

υπεύθυνος για το ήπιο σπάσιμο της υπερσυμμετρίας 4.124, όπου με mg̃ είναι η μάζα

gaugino, A η τριγραμμική βαθμωτή ζεύξη και B η διγραμμική βαθμωτή ζεύξη. Από

αυτές τις 4, μόνο 2 συνδυασμοί φάσεων είναι φυσικοί [249]. Αυτό μπορεί να φανεί,

παρατηρώντας πως με απουσία non-gauge αλληλεπιδράσεων υπάρχουν δυο επιπλέον

U (1) εκτεταμένες συμμετρίες στο MSSM, μια R-συμμετρία και μια Peccei-Quinn

συμμετρία. Αυτό σημαίνει ότι μπορούμε να δούμε τις διάφορες παραμέτρους (με δι-

άσταση) σαν spurions (με φορτία όπως φαίνονται στον Πίνακα 4.5) που σπάνε τις

συμμετρίες και άρα δίνουν κανόνες επιλογής. Οι φυσικές παρατηρούμενες ποσότητες

μπορούν να εξαρτώνται μόνο από συνδυασμούς παραμέτρων που είναι ουδέτεροι κάτω

και από τις δύο U (1). Εδώ έχουμε τρεις ανεξάρτητους συνδυασμούς:

mg̃µ
(
B2∗) , Aµ

(
B2∗) , A∗mg̃ (4.188)

Ωστόσο, μόνο δύο από τις φάσεις τους είναι ανεξάρτητες:

φA = Arg [A∗mg̃] , φB = Arg
[
mg̃µ

(
B2∗)]

(4.189)

Στην πιο γενική περίπτωση που θεωρούμε μη-παγκόσμιους ήπιους όρους υπάρχει

μια ανεξάρτητη φάση φAi για κάθε γεύση κουάρκ και λεπτονίου. Επιπρόσθετα, τα

μιγαδικά μη διαγώνια στοιχεία στους πίνακες μαζών των s-φερμιονίων μπορούν να

παράξουν και επιπλέον πηγές CP παραβίασης.

Η πιο σημαντική συνεισφορά των δύο φάσεων φA και φB είναι στις EDM. Για

παράδειγμα, η συνεισφορά από διαγράμματα gluino ενός βρόγχου στην EDM του

κάτω κουάρκ είναι [250,251]:

dd = Md
eα3

18πM4
SUSY

(|Amg̃| sinφA + tan β |µmg̃| sinφB) (4.190)

όπου έχουμε πάρει:

m2
Q ∼ m2

D ∼ m2
g̃ ∼ Λ2

(4.191)

για τις μάζες των αριστερόστροφων και δεξιόστροφων s-κουάρκ και gluino. Επίσης,

ορίζουμε ως συνήθως:

tan β =
〈H0

2 〉
〈H0

1 〉
(4.192)
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Παρόμοια διαγράμματα ενός βρόγχου γενούν χρωμοηλεκτρικές διπολικές ροπές. Οι

EDM και οι χρωμοηλεκτρικές διπολικές ροπές των ελαφριών κουάρκ (u, d, s) αποτε-

λούν την κύρια πηγή EDM του νετρονίου, και δίνουν [252]:

dN ∼ 2

(
100GeV

MSUSY

)
sinφA,B × 10−23ecm (4.193)

όπου MSUSY είναι όπως και πριν η γενική κλίμακα της υπερσυμμετρίας. Οπότε, το

πειραματικό όριο dN < 0.29 × 10−25ecm [19], παραβιάζεται για O (1) φάσεις, εκτός

αν οι μάζες των υπερσυμμετρικών εταίρων είναι πάνω από O (1TeV ). Εναλλακτικά

για ελαφριές υπερσυμμετρικές μάζες, οι νέες φάσεις πρέπει να είναι < O
(
10−2

)
. Να

σημειώσουμε επίσης πως μπορούμε να θεωρήσουμε το πραγματικό όριο ασθενέστερο

από αυτό, λόγω της θεωρητικής αβεβαιότητας στην εκτίμηση των αδρονικών στοιχε-

ίων πινάκων που οδηγούν στην Εξ. 4.193 [253]. ΄Ομως, είτε οι φάσεις είναι μικρές

είτε τα s-κουάρκ είναι βαριά, απαιτείται μια λεπτή ρύθμιση της τάξης του 10−2
για

να αποφευχθούν πολύ μεγάλες dN . Αυτό ονομάζεται υπερσυμμετρικό CP πρόβλη-

μα [252,254–261].

Εκτός του dN , οι υπερσυμμετρικές CP φάσεις συνεισφέρουν και σε ατομικές και

πυρηνικές EDM [252]. Οι πρώτες είναι επίσης ευαίσθητες σε φάσεις στον λεπτονικό

τομέα, ενώ οι τελευταίες δίνουν επιπλέον περιορισμούς στις φάσεις από τον τομέα

κουάρκ.

Παράμετροι U(1)PQ U(1)R

mg̃ 0 −2

A 0 −2

B2 −2 −2

µ −2 0

H1 1 1

H2 1 1

Qū −1 1

Qd̄ −1 1

Ll̄ −1 1

Πίνακας 4.5: Peccei-Quinn και R φορτία των spurions και των πεδίων του MSSM [262,263].

Οι περισσότεροι συγγραφείς θέτουν απλά φA = φB = 0, θεωρώντας πως προ-

κύπτει από τον μηχανισμό σπασίματος της υπερσυμμετρίας η οποία επιβάλει στα φA
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και φB να εξαφανιστούν. Γενικά, πολλές από τις ανωτέρω λύσεις για το υπερσυμμετρι-

κό FCNC πρόβλημα λύνουν και το υπερσυμμετρικό CP πρόβλημα. Για παράδειγμα,

όταν έχουμε σπάσιμο συμμετρίας που φέρεται από αλληλεπιδράσεις βαθμίδας σε μια

κλίμακα ΛS � ΛF τότε γίνεται κατανοητό πως και τα A και mg̃ προκύπτουν από την

ίδια πηγή U(1)R σπασίματος. ΄Ετσι, αφού το φA μετράει την σχετική φάση μεταξύ

των A και mg̃ σε αυτή την περίπτωση θα εξαφανιζόταν φυσικά, αφού θα έχουμε

πως arg (A) = arg (mg̃). Σε κάποια μοντέλα έχει δειχθεί πως με ανάλογο μηχα-

νισμό επίσης το φB = 0 μπορεί να εξαφανισθεί [264, 265]. Είναι επίσης πιθανό να

ισχύουν αντίστοιχες συνοριακές συνθήκες όταν το σπάσιμο της υπερσυμμετρίας “ε-

πικοινωνεί” με τον “παρατηρήσιμο” τομέα μέχρι την κλίμακα Planck [208, 266–268].

Η κατάσταση βέβαια από θεωρητικής άποψης είναι λιγότερο υπό έλεγχο. Επίσης,

υπάρχει η πιθανότητα να έχουμε “κυριαρχία” από dilaton στο σπάσιμο της υπερσυμ-

μετρίας [269,270].

Η πιο σημαντική συνέπεια αυτού του είδους συνοριακών συνθηκών για τους

ήπιους όρους, που ονομάζονται ακριβής παγκοσμιότητα (exact universality) [243,244]

είναι η ύπαρξη του υπερσυμμετρικού ανάλογου του μηχανισμού GIM που δρα στο

ΚΠ. Η φάση CP παραβίασης του CKM πίνακα μπορεί να δώσει τους ήπιους όρους

μέσω της εξέλιξης της ΟΕ μόνο με μια ισχυρή συμπίεση από τις μάζες ελαφριών

κουάρκ [249].

΄Ετσι, τα διαγράμματα gluino συνεισφέρουν στις κουάρκ EDM όπως στην Εξ.

4.190 αλλά με σημαντικά συμπιεσμένη ενεργή φάση:

φAd ∼
(

ts
16π2

)4

Y 4
t Y

2
c Y

2
b J (4.194)

όπου ts = log ΛS
MW

το οποίο προκύπτει από την εξέλιξη της ΟΕ από την ΛS στην

ηλεκτρασθενή κλίμακα, Yi είναι οι ζεύξεις Yukawa και:

J = Im (VudVtbV
∗
ubV

∗
td) ' 2× 10−5

(4.195)

είναι το αναλλοίωτο μέτρο της CP παραβίασης στον CKM πίνακα [271]. Παρόμοια

συνεισφορά προκύπτει από τα διαγράμματα chargino. Η προκύπτουσα EDM είναι

[262]:

dN ≤ 10−31ecm (4.196)

Αυτό το μέγιστο μπορεί να προκύψει μόνο από πολύ μεγάλο tan β ∼ 60, ενώ για

μικρά tan β ∼ 1, το dN είναι περίπου 5 τάξεις μεγέθους μικρότερο. Αυτή η κλίμακα

για το dN είναι πολύ κάτω από τα σημερινά πειραματικά όρια (∼ 10−25ecm).
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Το πρόβλημα επίσης λύνεται αν η CP είναι μια προσεγγιστική συμμετρία που

σπάει από μια μικρή παράμετρο της τάξης του 10−3
. Αυτή είναι μια από τις πιθα-

νές λύσεις στην τάξη υπερσυμμετρικών μοντέλων με ΛF ≤ ΛS, όπου οι ήπιες μάζες

είναι γενικά μη-παγκόσμιες, και έτσι δεν περιμένουμε η παραβίαση γεύσης και CP

να περιορίζεται στους πίνακες Yukawa. Τα περισσότερα μοντέλα όπου οι ήπιοι όροι

προκύπτουν στην κλίμακα Planck (ΛS ∼ MPl) ανήκουν σε αυτή την τάξη. Επίσης,

έχουμε λύση σε αυτό το πρόβλημα με τον μηχανισμό ευθυγράμμισης [234] όπου οι

s-κουάρκ πίνακες μαζών έχουν μια δομή αλλά έχουν λόγο να είναι διαγώνιοι στην

βάση που καθορίζεται από τους κουάρκ πίνακες μαζών. Αυτό προκύπτει σε μοντέλα

με αβελιανές οριζόντιες συμμετρίες [234,272]. Τέλος, μια ακόμα λύση στο υπερσυμ-

μετρικό CP πρόβλημα αλλά και στο FCNC πρόβλημα είναι μέσω της Minimal Flavor

Violation (MFV) υπόθεσης [273–277], όπου η παραβίαση γεύσης και CP θεωρούνται

πως περιγράφονται πλήρως από τον CKM πίνακα ακόμα και σε θεωρίες πέρα από το

ΚΠ. Ωστόσο, η MFV θεώρηση δεν παρέχει από μόνη της κανένα περιορισμό στην

παρουσία νέων φάσεων παραβίασης CP , οπότε η θεώρηση πως η CKM φάση παρέχει

την μόνη πηγή για CP παραβίαση ακόμα και σε νέες θεωρίες ικανοποιώντας την MFV

αρχή δεν είναι γενική και άρα περιοριστική προσέγγιση [278,279]. Φυσικά, υπάρχουν

και άλλες λύσεις [280] οι οποίες περιλαμβάνουν ειδικούς μηχανισμούς που μειώνουν

τις EDM όπως με “καταστολή μάζας” [281, 282] ή με “μηχανισμό ακύρωσης” που

ελέγχει τις συνέπειες μεγάλων φάσεων CP στις EDM [255, 283–287]. Συγκεκρι-

μένα, για τον μηχανισμό “ακύρωσης”, οι φάσεις μπορούν να είναι μεγάλες και άρα να

επηρεάζουν μια πληθώρα από CP φαινόμενα τα οποία μπορούν να παρατηρηθούν σε

χαμηλής ενέργειας πειράματα και σε επιταχυντές.

Το µ πρόβλημα

΄Ενα από τα βασικότερα προβλήματα σε υπερσυμμετρικές θεωρίες όπως στο MSSM

είναι το πρόβλημα µ, το οποίο αφορά το πώς καταλαβαίνουμε τις παραμέτρους τις

θεωρίας [288]. Η υπερσυμμετρική παράμετρος μάζας Higgs εμφανίζεται στο υπερδυ-

ναμικό 4.112 ως µH1H2. Η παράμετρος αυτή, είναι απαραίτητο να εφοδιάσει με μάζα

τους φερμιονικούς συμμετρικούς εταίρους των μποζονίων Higgs, δηλαδή τα higgsi-

nos, και εισέρχεται επίσης και στο βαθμωτό δυναμικό των μποζονίων Higgs. Για να

εξασφαλίσουμε ότι τα H1 και H2 δεν παίρνουν μηδενική VEV μετά το σπάσιμο της

ηλεκτρασθενούς συμμετρίας, το µ πρέπει να είναι της ίδιας τάξης μεγέθους με την

ηλεκτρασθενή κλίμακα, δηλαδή πολλές τάξεις μεγέθους μικρότερη από την κλίμακα
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Planck που είναι η φυσική κλίμακα αποκοπής. Οι ήπιοι υπερσυμμετρικοί όροι πρέπει

να είναι επίσης της ίδιας τάξης μεγέθους με την ηλεκτρασθενή κλίμακα. Αυτό όμως

είναι ένα πρόβλημα φυσικότητας. Δεν υπάρχει δηλαδή λόγος αυτές οι κλίμακες να

είναι τόσο μικρότερες από την κλίμακα αποκοπής. Επίσης, δεν μπορεί να εξηγηθεί

γιατί οι αντίστοιχες κλίμακες από τους υπερσυμμετρικούς όρους και το μ πρόβλημα

στο υπερδυναμικό είναι της ίδιας τάξης μεγέθους αν και έχουν τόσο διαφορετικές

προελεύσεις. Με άλλα λόγια, η µ παράμετρος όντας η μόνη παράμετρος που έχει

διάσταση στον τομέα που διατηρεί την υπερσυμμετρία, θα περιμέναμε να είναι είτε

μηδέν είτε στην κλίμακα Planck O
(
1019

)
GeV . Σε επίπεδο δένδρου,το MSSM δίνει

την σχέση 4.143, όπου mH1 και mH2 είναι οι ήπιοι παράμετροι μάζας Higgs. Αν αυτές

οι μάζες είναι στην ηλεκτρασθενή κλίμακα (TeV ), στην ίδια κλίμακα πρέπει να είναι

και το µ αφού περιορισμοί από τον “Large Electron-Positron Collider” (LEP) στο

CERN στις μάζα του chargino απαιτούν µ 6= 0.

Για την λύση του µ προβλήματος έχουν προταθεί μέχρι σήμερα αρκετές θεω-

ρίες [269,288–293]. Μια απλή λύση είναι να προωθηθεί η παράμετρος µ σε δυναμικό

πεδίο σε επεκτάσεις του MSSM που περιέχουν επιπλέον μονήρη βαθμωτά πεδία τα ο-

ποία δεν αλληλεπιδρούν με τα υπόλοιπα πεδία του MSSM εκτός από τις δύο διπλέτες

Higgs. ΄Ετσι, έχουμε διάφορα μοντέλα με επιπλέον μονήρη Higgs πεδία τα οποία

δίνουν μια δυναμική λύση στο µ πρόβλημα. Το δυναμικό πεδίο το οποίο παίρνει μια

VEV παράγει μια ενεργή παράμετρο µ η οποία σχετίζεται με μια νέα συμμετρία. Η

μίξη με τις επιπλέον βαθμωτές καταστάσεις αλλάζει τις μάζες και τις ζεύξεις των φυ-

σικών μποζονίων Higgs. ΄Ετσι, έχουμε διάφορες φαινομενολογικές επιπτώσεις λόγω

της ύπαρξης ενός επιπλέον βαθμωτού για τις μάζες Higgs, τις ζεύξεις, τις διασπάσεις

και τους τρόπους παραγωγής τους [294]. Τέτοια μοντέλα είναι το Next-to-Minimal

Supersymmetric Standard Model (NMSSM) [295,296], το Minimal Nonminimal Su-

persymmetric Standard Model (MNSSM) [297] ή το nearly Minimal Supersymmet-

ric Standard Model (nMSSM), το U(1)′-extended Minimal Supersymmetric Stan-

dard Model (UMSSM) [298,299] και το Secluded U(1)′-extended Minimal Supersym-

metric Standard Model (sMSSM) [300]. ΄Ενας τυπικός όρος hsĤu ·ĤdŜ που παράγει

το µ βρίσκεται στα υπερδυναμικά αυτών των μοντέλων τα οποία φαίνονται στον Πίνα-

κα 4.6. Αφότου το πεδίο S πάρει μια VEV, η ενεργή παράμετρος µ αναγνωρίζεται

ως:

µeff = hs 〈S〉 (4.197)

όπου 〈S〉 είναι η VEV του μονήρους πεδίου.
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Μοντέλο Συμμετρία Υπερδυναμικό CP -άρτιες CP -περιττές Φορτισμένα

MSSM − µĤu · Ĥd H0
1 , H

0
2 A0

2 H±

NMSSM Z3 hsŜĤu · Ĥd + k
3
Ŝ3 H0

1 , H
0
2 , H

0
3 A0

1, A
0
2 H±

nMSSM ZR
5 , Z

R
7 hsŜĤu · Ĥd + ξFM

2
nŜ H0

1 , H
0
2 , H

0
3 A0

1, A
0
2 H±

UMSSM U(1)′ hsŜĤu · Ĥd H0
1 , H

0
2 , H

0
3 A0

2 H±

sMSSM U(1)′ hsŜĤu · Ĥd + λSŜ1Ŝ2Ŝ3 H0
1 , H

0
2 , H

0
3 , H

0
4 , H

0
5 , H

0
6 A0

1, A
0
2, A

0
3, A

0
4 H±

Πίνακας 4.6: Τα μποζόνια Higgs του MSSM και μερικών επεκτάσεων του. Συμβολίζουμε την

μονή CP -περιττή κατάσταση στο MSSM και στο UMSSM σαν A0
2 για ευκολότερη σύγκριση με τα

υπόλοιπα μοντέλα [294].

Το καθοριστικό στοιχείο κάθε μοντέλου είναι η συμμετρία που επιτρέπεται από

το υπερδυναμικό. Το NMSSM έχει μια διακριτή Z3 συμμετρία που επιτρέπει τον

όρο S3
. Η ύπαρξη οποιασδήποτε διακριτής συμμετρίας επιτρέπει με την σειρά της

την ύπαρξη περιοχών τοίχων (domain walls) οι οποίοι όπως έχουν δειχθεί μπορούν

να θεωρηθούν και ως πηγή της ΣΕ [301, 302]. Οι περιοχές τοίχων χωρίζουν τις

περιοχές του χωρόχρονου που έχουν διαφορετική τοπολογία κενού. Τα απλούστερα

μοντέλα υποθέτουν ότι πρέπει να υπάρχουν πολλές τέτοιες περιοχές τοίχων οι οποίες

συνδυάζονται για να φτιάξουν ένα δίκτυο. Οι περιοχές τοίχων αποδεικνύεται πως

εμφανίζονται αναπόφευκτα στην θεωρία πεδίων, και συγκεκριμένα σε μοντέλα τα

οποία περιλαμβάνουν αυθόρμητο σπάσιμο κάποιας διακριτής συμμετρίας. Επίσης, οι

περιοχές τοίχων και γενικότερα η “στέρεα” ΣΕ είναι συμβατές με παρατηρήσεις σε

δομές κοσμολογικής κλίμακας. Τέλος, στο NMSSM η καταστατική εξίσωση p = wρ,

της ΣΕ αναμένεται να έχει w = −2/3 το οποίο όμως δεν φαίνεται να προτιμάται από

ανάλυση του WMAP που δείχνει ότι w = −1.062+0.128
−0.079 [64].

Οι περιοχές τοίχων μπορούν να εξαφανιστούν αν η Z3 συμμετρία σπάει από υψη-

λότερους διαστασιακά τελεστές αλλά αυτοί μπορούν να οδηγήσουν σε πολύ μεγάλους

αποσταθεροποιήσιμους tadpole τελεστές [303,304]. Ωστόσο, υπάρχει και πάλι μια πι-

θανότητα για την αποφυγή αυτού του προβλήματος [305]. Το nMSSM το οποίο

περιέχει μια ZR
5 ή ZR

7 συμμετρία, έχει έναν tadpole όρο του S που σπάει τις δια-

κριτές συμμετρίες και άρα είναι ελεύθερο από περιοχές τοίχων [306, 307]. Τέλος,

μια επιπλέον U(1)′ συμμετρία επιτρέπεται από διάφορες θεωρίες πέραν του ΚΠ που

συμπεριλαμβάνουν: ορισμένες GUT [91, 308], “επιπλέον διαστάσεις” [309], “υπερ-

χορδές” [310], “little Higgs” [311–313], “δυναμικό σπάσιμο συμμετρίας (dynamical

symmetry breaking)” [314] και “μηχανισμό Stueckelberg” [315–317]. Τα UMSSM

και sMSSM επεκτείνει το MSSM με μια επιπλέον U(1)′ συμμετρία ή οποία περιέχει το
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αντίστοιχο νέο μποζόνιο βαθμίδας Z ′ το οποίο μπορεί να αναμιχθεί με το ΚΠ αφού

οι συμμετρίες σπάσουν. Παρόλο που η συνεχής U(1)′ συμμετρία δεν περιέχει περιο-

χές τοίχων, το UMSSM μπορεί να απαιτεί εξωτικά πεδία για να ακυρώσει χειραλικές

ανωμαλίες που σχετίζονται με την U(1)′ συμμετρία. Υπάρχουν επίσης περιορισμοί

στο UMSSM από αυστηρά πειραματικά όρια στην μίξη Z−Z ′. Η μάζα του Z ′ πρέπει

να είναι μεγαλύτερη από 600− 900GeV για να συμβαδίζει με τα πειραματικά όρια.

Το πεδιακό περιεχόμενο Higgs φαίνεται στον Πίνακα 4.6. Στο MSSM έχουμε

τις δυο συνηθισμένες διπλέτες Higgs οι οποίες δίνουν δύο CP -άρτιες (H0
1 , H

0
2 ), μια

CP -περιττή κατάσταση (A0
2) και ένα ζευγάρι από φορτισμένα (H±) μποζόνια Higgs.

Τα υπόλοιπα μοντέλα που επεκτείνουν το MSSM περιέχουν επιπλέον CP -άρτια και

CP -περιττά μποζόνια Higgs, ή ένα Z ′ μποζόνιο βαθμίδας ανάλογα με το μοντέλο.

Το sMSSM περιέχει τρεις επιπλέον μονέτες που επιτρέπουν 6 CP -άρτιες και 4 CP -

περιττές καταστάσεις Higgs. Ωστόσο, τα επιπλέον πεδία Higgs αποσυζευγνύονται αν

το λ είναι μικρό και οι VEV 〈S1〉 , 〈S2〉 , 〈S3〉 είναι μεγάλες. Το όριο αποσύζευξης

διαγράφει τους D-όρους στον πίνακα μάζας για τα πεδία S, H0
d και H0

u και δίνει ένα

μοντέλο παρόμοιο με το nMSSM με 3 CP -άρτιες και 2 CP -περιττές καταστάσεις

Higgs.

4.3 Υπερσυμμετρικές μεγαλοενοποιημένες θε-

ωρίες

Οι υπερσυμμετρικές μεγαλοενοποιημένες θεωρίες (Supersymmetric Grand Unified

Theories - SUSY GUTs), είναι μια επέκταση των μη-υπερσυμμετρικών μεγαλοενο-

ποιημένων θεωριών με την χρήση της υπερσυμμετρίας σαν επιπλέον συμμετρία. Η

βασική διαφορά μεταξύ αυτών των δύο τάξεων θεωριών ενοποίησης είναι η χαμηλής

ενέργειας ενεργή θεωρία. Η χαμηλής ενέργεια ενεργή θεωρία πεδίου σε μια υπερσυμ-

μετρική GUT θεωρείται πως ικανοποιεί την N = 1 υπερσυμμετρία μέχρι κλίμακες της

τάξεως της ασθενής κλίμακας, εκτός από την συμμετρία βαθμίδας του ΚΠ. ΄Αρα, το

φάσμα τους περιλαμβάνει όλες τις καταστάσεις του ΚΠ συν τους υπερσυμμετρικούς

εταίρους. Επιπλέον, περιλαμβάνει ένα ζευγάρι (η περισσότερα) από διπλέτες Higgs,

μια διπλέτα που θα δώσει μάζα σε κουάρκ πάνω τύπου και η άλλη στα κουάρκ κάτω-

τύπου και στα φορτισμένα λεπτόνια. Επίσης, χρειάζονται δύο διπλέτες με αντίθετα

υπερφορτία Y , για την ακύρωση “τριγωνικών φερμιονικών ανωμαλιών”. Τέλος, είναι

σημαντικό να αναγνωρίσουμε πως μια χαμηλής ενέργειας υπερσυμμετρική κλίμακα
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σπασίματος (η κλίμακα στην οποία οι υπερσυμμετρικοί εταίροι και τα σωματίδια του

ΚΠ λαμβάνουν μάζα) είναι απαραίτητη για να διορθώσει το πρόβλημα της ιεραρχίας.

Τα βήματα που πρέπει να ακολουθήσουμε για την κατασκευή μιας υπερσυμμετρι-

κής GUT είναι τα εξής:

1. Επιλογή μιας ομάδας συμμετρίας G που θα περιέχει την ομάδα του ΚΠ SU (3)×
SU(2)C×U(1)Y σαν υποομάδα. Αυτή μπορεί να είναι μία μοναδική ομάδα όπως

η SU (5), SO (10), E6, είτε γινόμενο διαφόρων ομάδων όπως η SU (3)×SU (3)

ή η SU (4)×SU(2)L×SU(2)R η οποία όπως έχουμε ήδη δει ονομάζεται Pati-

Salam.

2. Καθορισμός του σωματιδιακού περιεχομένου του μοντέλου. Για παράδειγμα

για τα φερμιόνια και τα μποζόνια Higgs διαλέγουμε αμείωτες αναπαραστάσεις

της ομάδας βαθμίδας, ενώ τα μποζόνια βαθμίδας μετασχηματίζονται στην αυτο-

προσαρμοσμένη. Αν τα σωμάτια του MSSM δεν χωρούν σε μια αναπαράσταση

πρέπει να χωριστούν σε διάφορες ή πρέπει να προστεθούν νέα σωμάτια. Για

παράδειγμα ένα θεμιτό σωμάτιο είναι το δεξιόστροφο νετρίνο, του οποίου η

ύπαρξη μεγαλώνει την συμμετρία με την έννοια ότι όλα τα φερμιόνια εμφα-

νίζονται σε αριστερόστροφη και δεξιόστροφη εκδοχή. Σε πολλές περιπτώσεις

υπάρχει ανάγκη για περισσότερα από δύο πεδία Higgs έτσι ώστε να σπάσει

η GUT συμμετρία και η ηλεκτρασθενής συμμετρία αλλά και για να δοθούν

μάζες στα φερμιόνια και στα μποζόνια βαθμίδας που να είναι συμβατές με τις

πειραματικές τιμές. Τέλος, όταν αντιστοιχίζονται φερμιόνια σε συγκεκριμένες

αναπαραστάσεις πρέπει να λάβουμε υπόψιν μας να μην υπάρχουν ανωμαλίες

βαθμίδας.

3. Καταγραφή των κινητικών όρων για τα φερμιόνια, τα Higgs και τα μποζόνια

βαθμίδας (και τα αντίστοιχα υπερσυμμετρικά). Η συναλλοίωτη παράγωγος (για

την περίπτωση της μιας ομάδας βαθμίδας) έχει την μορφή Dµ = ∂µ − igAaµT a,
όπου g η ζεύξη βαθμίδας, Aaµ τα διανυσματικά μποζόνια βαθμίδας και T a οι

γεννήτορες της ομάδας βαθμίδας με a = 1, 2, ....., dimLie (G).

4. Καταγραφή του υπερδυναμικούW για τα βαθμωτά πεδία και τις αλληλεπιδράσεις

Yukawa, έχοντας υπόψιν μας ότι όλοι οι όροι πρέπει να είναι επακανονικοποι-

ήσιμοι και αναλλοίωτοι κάτω από μετασχηματισμούς Lorentz και βαθμίδας. Το

υπερδυναμικό είναι υπεύθυνο για το σπάσιμο της συμμετρίας βαθμίδας στο ΚΠ

και οι όροι Yukawa θα δώσουν μάζα στα φερμιόνια μετά το σπάσιμο της συμ-
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μετρίας.

5. Καθορισμός του ελαχίστου του βαθμωτού δυναμικού επιβάλλοντας μηδενισμό

των F -όρων, δηλαδή Fi = ∂W
∂Φi

= 0, όπου Φi τα βαθμωτά πεδία που εμφανίζονται

στο W . Ο F -όρος πρέπει να εξαφανιστεί αν θεωρήσουμε ότι η υπερσυμμετρία

υπάρχει και σε ενέργειες κάτω από την GUT κλίμακα. Αυτή είναι μεγάλη

απλοποίηση σε υπολογισμούς που προκύπτει από την υπερσυμμετρία, ενώ σε

μη υπερσυμμετρικές θεωρίες η εύρεση της VEV του Higgs είναι πιο περίπλοκη.

6. Υπολογισμός μαζών και ζεύξεων στην ασθενή κλίμακα με χρήση των εξισώσε-

ων της ΟΕ της θεωρίας. Οι σχέσεις μεταξύ των παραμέτρων που προκύπτουν

από την θεωρία θα ισχύουν στην GUT κλίμακα. Για να πάρουμε σχέσεις για

την ασθενή κλίμακα πρέπει να ληφθεί υπόψιν το “τρέξιμο” των παραμέτρων.

Η μορφή των εξισώσεων της ΟΕ καθορίζεται από το σωματιδιακό περιεχόμενο

της θεωρίας. Αν υπάρχουν ενδιάμεσες ενεργειακές κλίμακες εκεί που εμφα-

νίζονται νέα σωμάτια, οι εξισώσεις της ΟΕ θα αλλάξουν σε αυτές τις κλίμακες.

Κατά προσέγγιση, η αλλαγή αυτή συχνά θεωρείται πως συμβαίνει ακαριαία, με

την μορφή για παράδειγμα μιας Θ-συνάρτησης.

Στην συνέχεια, θα μελετήσουμε τις βασικές υπερσυμμετρικές μεγαλοενοποιημένες

θεωρίες οι οποίες είναι η υπερσυμμετρική SU (5) και η υπερσυμμετρική SO (10) και

θα δούμε τις βασικές φαινομενολογικές τους συνέπειες αλλά και κάποια από τα προ-

βλήματα που τις διακατέχουν και πιθανές λύσεις τους. Φυσικά, όλες οι GUT θεωρίες

μπορούν να έχουν υπερσυμμετρικές προεκτάσεις καθώς και διαφορετικές φαινομε-

νολογίες χαμηλών ενεργειών ανάλογα με τη συμμετρία που τις περιγράφει. Οπότε,

εκτός από τις SU (5) και SO (10) υπάρχουν και εναλλακτικές θεωρίες με ενδια-

φέροντα χαρακτηριστικά όπως η “υπερσυμμετρική E6” [318, 319], η “υπερσυμμετρι-

κή SU (6)” [320, 321], “η υπερσυμμετρική SU (7)” [322, 323], “το υπερσυμμετρικό

flipped SU (5) μοντέλο” [324–327], και άλλες [328].

4.3.1 Υπερσυμμετρική SU (5)

΄Οπως είδαμε και στο εδάφιο 3.1.1 αλλά και στο 3.4 υπάρχουν ορισμένα προβλήματα,

τα οποία δεν μπορούν να ξεπεραστούν από τις καθιερωμένες GUT και για αυτό

χρειάζονται την χρήση υπερσυμμετρίας. Το πρώτο απλό παράδειγμα που προτάθηκε

είναι το ελάχιστα υπερσυμμετρικό SU (5) μοντέλο [243], το οποίο θα δούμε στην

συνέχεια.

228



4.3. Υπερσυμμετρικές μεγαλοενοποιημένες θεωρίες Μαρούδας Μάριος

Το υπερδυναμικό πρέπει να είναι ολομορφικό στα βαθμωτά στοιχεία των χειραλι-

κών υπερπεδίων. ΄Οπως είδαμε και νωρίτερα, αυτός είναι και ένας λόγος που εισάγουμε

μία δεύτερη διπλέτα Higgs στο MSSM. ΄Ετσι, διαλέγουμε για το υπερδυναμικό W της

SU (5) να έχει την μορφή [329]:

W = WY +Wh +WSB +W ′
(4.198)

όπου ο τομέαςWY περιέχει τις ζεύξεις Yukawa, Wh είναι ο “κρυφός τομέας” (hidden

sector) που περιέχει ήπιους όρους που σπάνε την υπερσυμμετρία, WSB είναι ο τομέας

που είναι υπεύθυνος για το σπάσιμο της συμμετρίας, και W ′
είναι ο τομέας που είναι

υπεύθυνος για τους όρους που σπάνε την R-ομοτιμία.

΄Ετσι, συγκεκριμένα η δομή Yukawa που είναι υπεύθυνη για τις μάζες στα φερ-

μιόνια δεν αλλάζει, με την μόνη διαφορά ότι τώρα έχουμε δύο θεμελιώδεις αναπαρα-

στάσεις Higgs H5̄ και H5, οι οποίες χρειάζονται για ακύρωση των ανωμαλιών και μη

μηδενικές ζεύξεις Yukawa για τους πάνω και κάτω τομείς:

WY = 5̄FY510FH5̄ +
1

8
ε510FY1010FH5 (4.199)

όπου ο δείκτης F υποδηλώνει μαζικές (φερμιονικές) πολλαπλέτες. Επίσης, δεν μπο-

ρούμε να έχουμε στο υπερδυναμικό το πεδίο και το μιγαδικό συζυγές του, και άρα

χρειαζόμαστε δύο Higgs ΚΠ, που σημαίνει ότι χρειαζόμαστε δύο SU (5) Higgs, ένα

στη θεμελιώδη αναπαράσταση και ένα στην αντι-θεμελιώδη αναπαράσταση:

H5 =

(
T i

H i

)
, H5̄ =



T c1

T c2

T c3

H−

−H0


(4.200)

Επίσης, για τον WSB έχουμε ότι:

WSB = zTrΦ + xTrΦ2 + yTrΦ3 + λH5̄ΦH5 +MH5̄H5Φ (4.201)

Παρόλο που TrΦ = 0, ο όρος zTrΦ εμφανίζεται στο υπερδυναμικό σαν ένας “πολ-

λαπλασιαστής Lagrange” για να ενισχύσει αυτό τον περιορισμό κατά την ελαχιστο-

ποίηση του δυναμικού.

΄Εχουμε έτσι, στην συνέχεια, το εξής σπάσιμο συμμετρίας:

SU (5)× SUSY → 〈Φ〉 6= 0→ GSM × SUSY (4.202)

229



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

Για την μελέτη του, πρέπει να υπολογίσουμε τους F όρους και να τους μηδενίσουμε

έτσι ώστε να διατηρηθεί η υπερσυμμετρία στην ασθενή κλίμακα. ΄Αρα, πρέπει:

0 = Tr

(
∂W

∂φij

)
(4.203)

όπου:

∂W

∂φij
= zδij + 2xΦi

j + 3yΦi
kΦ

k
j (4.204)

΄Αρα, παίρνοντας 〈TrΦ〉 = 0 προκύπτει η σχέση:

z = −3

5
y
〈
TrΦ2

〉
(4.205)

Αν στην συνέχεια θεωρήσουμε ότι Diag 〈Φ〉 = (a1, a2, a3, a4, a5) παίρνουμε τις α-

κόλουθες εξισώσεις: ∑
i

ai = 0

z + 2xai + 3ya2
i = 0

(4.206)

με i = 1, ..., 5. Οπότε, έχουμε 5 εξισώσεις με 2 παραμέτρους. ΄Αρα, έχουμε τρεις δια-

φορετικές επιλογές για τα ai που μπορούν να ικανοποιήσουν της ανωτέρω εξισώσεις:

1.

〈Φ〉 = 0 (4.207)

Στην περίπτωση αυτή, η SU (5) συμμετρία παραμένει άσπαστη.

2.

diag 〈Φ〉 = (a, a, a, a,−4a) (4.208)

όπου η SU (5) συμμετρία σπάει στην SU (4)× U (1), και μπορεί να βρεθεί ότι

a = 2x
9y
.

3.

diag 〈Φ〉 =

(
b, b, b,−3

2
b,−3

2
b

)
(4.209)

όπου αυτή είναι επιθυμητή περίπτωση καθώς η SU (5) σπάει στην ομάδα βαθ-

μίδας SU(3)C×SU(2)L×U(1)Y του ΚΠ. Σε αυτήν την περίπτωση, παίρνουμε

b = 4x
3y

και οι παράμετροι x διαλέγονται να είναι της τάξης MU . Επίσης, στο

υπερσυμμετρικό όριο όλα τα κενά είναι εκφυλισμένα.
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Μάζες φερμιονίων

Το ενεργό υπερδυναμικό για τον μαζικό τομέα σε χαμηλές ενέργειες θα έχει την

μορφή:

Wmatter = huQHuu
c + hdQHdd

c + hlLHde
c + µHuHd (4.210)

όπου τα hd και hl προκύπτουν από την T 5̄H̄ ζεύξη και ικανοποιεί την συνθήκη

hd = hl. Παρομοίως το hu προκύπτει από την ζεύξη TTH και άρα ικανοποιεί τον

περιορισμό hu = hTu . Να σημειώσουμε επίσης πως κανένας από αυτούς τους περιορι-

σμούς δεν εμφανίζεται στο ΚΠ.

Η ενοποίηση των κουάρκ και λεπτονίων κάτω από τις ίδιες αναπαραστάσεις της

SU (5) οδηγεί σε συσχετίσεις ανάμεσα στις μάζες τους. ΄Ετσι, από την Εξ. 4.199 είναι

προφανές ότι το d-κουάρκ και το ηλεκτρόνιο παίρνουν την ίδια μάζα αφού μοιράζονται

τον ίδιο πίνακα ζεύξης Yukawa. Φυσικά, η ισότητα αυτή ισχύει μόνο στην κλίμακα

GUT. Αν οι πειραματικές τιμές για τις μάζες δοθούν στην ασθενή κλίμακα δοθούν

σαν αρχικές τιμές των RGE, μπορεί να βρεθεί πως στην GUT κλίμακα ισχύει η

σχέση:

md ≈ 3me (4.211)

Αυτό δείχνει ότι η πρόβλεψη md = me είναι λίγο αυστηρή. Μια ακόμα σχέση που

προβλέπεται από το μοντέλο και είναι ανεξάρτητη κλίμακας και άρα ισχύει και στην

ασθενή, είναι η:

md

mµ

=
me

ms

(4.212)

Η σχέση όμως αυτή είναι σε αντίθεση με τις πειραματικές παρατηρήσεις κατά παράγο-

ντα περίπου 15. Αυτό είναι ένα βασικό πρόβλημα του ελάχιστου SU (5) μοντέλου,

και μπορεί αποφευχθεί με την εισαγωγή στην θεωρίας μιας επιπλέον πολλαπλέτας

όπως η 45. ΄Ενας άλλο τρόπος επίλυσης είναι με την εισαγωγή ανωτέρων διαστα-

σιακά τελεστών, όπως
T 5̄ΦH5̄

Mpl
, που μπορεί να είναι της τάξης περίπου 0.1GeV και

μπορούν επίσης να χρησιμοποιηθούν για να διορθώσουν την πρόβλεψη για την μάζα

του μιονίου της SU (5).

Διάσπαση πρωτονίου από d = 6 και d = 5 τελεστές

Η παρουσία ταυτόχρονα κουάρκ και λεπτονίων στην ίδια πολλαπλέτα του SU (5)

μοντέλου οδηγεί σε διάσπαση πρωτονίου. Στην κλασική μη-υπερσυμμετρική SU (5)

υπάρχουν δύο ειδών διαγράμματα που οδηγούν σε διάσπαση πρωτονίου:
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• Ανταλλαγή μποζονίων βαθμίδας.

• Ανταλλαγή πεδίων Higgs.

Στην υπερσυμμετρία έχουμε εκτός από τη συνηθισμένη περίπτωση d = 6 (με την

συνεισφορά στην διάσπαση του πρωτονίου κυρίως των βαρέων μποζονίων βαθμίδας),

την συνεισφορά από την ανταλλαγή βαρέων Higgs τριπλετών χρώματος από την Hu,d
5 ,

όπου από τις Εξ. 4.200 παίρνουμε:

Hd
5 =

(
T c

Hd

)
, Hu

5 =

(
T

Hu

)
(4.213)

Στην συνέχεια, μέσω της Εξ. 4.199 για την επακανονικοποιήσιμη περίπτωση μπορο-

ύμε να βρούμε την ζεύξη αυτών των τριπλετών με τα χειραλικά φερμιόνια ΚΠ:

WY (T ) = T c (LY5Q− dcY5ε3u
c) +

(
1

2
QY10Q− ucY10e

c

)
T (4.214)

Αυτές οι τριπλέτες είναι βαριές και έχουν όρο μάζας:

−mTT
cT (4.215)

΄Ετσι, για τους d = 5 ενεργούς τελεστές που συνεισφέρουν στην διάσπαση του

πρωτονίου λύνοντας τις εξισώσεις κίνησης παίρνουμε:

Wd=5 =
1

2mT

ε3 (QY10Q)
(
QY T

5 L
)

+
1

mT

(dcY5u
c) (ucY10e

c)T (4.216)

Οι δύο τελεστές συνήθως καλούνται LLLL και RRRR κανάλια λόγω των πεδίων

που περιλαμβάνονται. Παραδείγματα αυτών βλέπουμε στο Σχ. 4.14. Οι τελεστές

αυτοί είναι διάστασης d = 5 σε λαγκρατζιανό επίπεδο και αυτό συνήθως σημαίνει

μεγαλύτερος ρυθμός διάσπασης από ότι σε μια d = 6 διαδικασία (βλέπε Εξ. 3.125).

Από μόνος του αυτός ο τελεστής δεν παράγει ακόμα διάσπαση πρωτονίου με αλλη-

λεπίδραση τεσσάρων-φερμιονίων σε διαγράμματα επιπέδου δένδρου, αλλά μόνο έναν

όρο παραβίασης βαρυονικού και λεπτονικού αριθμού μεταξύ δύο φερμιονίων και δύο s-

φερμιονίων, για παράδειγμα μεταξύ δύο κουάρκ και ένα s-λεπτόνιο και ένα s-κουάρκ.

Ωστόσο, μπορεί να κλειστεί με έναν βρόγχο από την ανταλλαγή για παράδειγμα ενός

gaugino ή Higgsino παράγοντας την συνηθισμένη τεσσάρων φερμιονίων αλληλεπίδρα-

ση. Παράδειγμα τέτοιου διαγράμματος βλέπουμε στο Σχ. 4.15.

Θεωρώντας, στην συνέχεια, ότι οι μάζες των s-φερμιονίων είναι μεγαλύτερες α-

πό αυτή του gluino αυτό δημιουργεί στην λαγκρατζιανή έναν d = 5 τελεστή της

232



4.3. Υπερσυμμετρικές μεγαλοενοποιημένες θεωρίες Μαρούδας Μάριος

Σχήμα 4.14: Διάσπαση πρωτονίου μέσω τελεστών διάστασης 5. Οι τελεστές αυτοί, προκύπτουν

από την ανταλλαγή λεπτοκουάρκ, που ακολουθείται από κλείσιμο με gaugino ή Higgsino.

Σχήμα 4.15: Ο ενεργός d = 5 τελεστής διάσπασης πρωτονίου κλεισμένος με έναν βρόγχο

ανταλλαγής gluino.

σχηματικής μορφής:

Ld=5 ∝
(
Y10Y5

mT

)(α3

4π

)(mḡ

m2
q̄

)
QQQL (4.217)

γεγονός που είναι παράξενο καθώς ένας τέτοιος τελεστής καταστέλλεται μόνο από

την αντίστροφη δύναμη της μάζας των βαρέων τριπλετών χρώματος αντί για το τε-

τράγωνο των μαζών των βαρέων μποζονίων βαθμίδας στους συνηθισμένους d = 6

τελεστές όπου Γ ∝ m−2
T (βλέπε Εξ. 3.126). Αυτό θα μπορούσε να ενισχύσει σημα-

ντικά τον ρυθμό διάσπασης [330,331]. Ωστόσο, υπάρχουν διάφοροι λόγοι που κάνουν

τον χρόνο ζωής του πρωτονίου αρκετά μεγάλο:

• Το πρωτόνιο αποτελείται από κουάρκ πρώτης γενιάς και άρα τουλάχιστον κάποιοι

από τους Yukawa που συμπεριλαμβάνονται θα είναι τυπικά μικροί.

• Λόγω της απαίτησης υψηλότερων διαστασιακά τελεστών για την λύση του προ-

βλήματος με τις λάθος σχέσεις μαζών, οι αντίστοιχοι Yukawa που εμφανίζονται

στον d = 5 τελεστή δεν χρειάζεται να συνδεθούν με τις μάζες των φερμιονίων

και άρα μπορούν να ακυρώσουν τις περιπτώσεις με μεγάλους ρυθμούς διάσπα-

σης.

233



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

• Παρόμοια αβεβαιότητα υπάρχει και στον τομέα s-κουάρκ, όπου οι γωνίες μίξης

δεν χρειάζεται να σχετίζονται με τις αντίστοιχες των φερμιονίων ακόμα αν

χρησιμοποιήσουμε τα πιο αυστηρά όρια από μεταβάσεις παραβίασης χρώματος.

• Λόγω μη επακανονικοποιήσιμων τελεστών στον τομέα Higgs, η οκταπλέτα

χρώματος και οι ασθενείς τριπλέτες μπορούν να είναι ελαφρύτερες από την

GUT κλίμακα. Οπότε, μπορούμε να προσαρμόσουμε μια μεγαλύτερη GUT

κλίμακα και μάζες των τριπλετών χρώματος και άρα θα έχουμε μεγαλύτερη

συμπίεση στον ρυθμό διάσπασης.

Γενικά όμως, η υπερσυμμετρία χειροτερεύει τους περιορισμούς στην μάζα της τρι-

πλέτας χρώματος.

Σχήμα 4.16: Γυμνοί ενεργοί d = 5 τελεστές διάσπασης πρωτονίου.

Οι d = 6 συνεισφορές για την διάσπαση πρωτονίου είναι γενικά λιγότερο σημα-

ντικοί στην υπερσυμμετρική περίπτωση αλλά εξαρτώνται λιγότερο από το μοντέλο σε

σχέση με τους d = 5 τελεστές. Από το μη διαγώνιο κομμάτι του πεδίου βαθμίδας

παίρνουμε τις συνεισφορές βαθμίδας οι οποίες βασικά εξαρτώνται μόνο από τις μάζες

των φερμιονίων. Οι υπόλοιποι d = 6 τελεστές που προέρχονται από τον τομέα Higgs

είναι λιγότερο σημαντικοί και εξαρτώνται αρκετά από το εκάστοτε μοντέλο. Οι d = 6

τελεστές διατηρούν το B − L και άρα το νουκλεόνιο διασπάται σε ένα μεσόνιο και

ένα αντι-λεπτόνιο. ΄Ετσι, θεωρώντας Yu = Y T
u , αν αναλύσουμε τους ρυθμούς διάσπα-

σης για τα διάφορα κανάλια λόγω της παρουσίας d = 6 τελεστών βαθμίδας υπό την
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παρουσία υπερβαρέων μποζονίων βαθμίδας, παίρνουμε τις γενικές εξισώσεις [332]:

Γp→K+ν̄ =

(
m2
p −m2

K

)2
8πf2

πm
3
p

A2
L|α|

2×

×
3∑
i=1

∣∣∣∣[ 2mp

3mB
D

]
c
(
νi, d, s

C
)

+

[
1 +

mp

3mB
(D + 3F )

]
c
(
νi, s, d

C
)∣∣∣∣2

Γp→π+ν̄ =
mp

8πf2
π

A2
L|α|

2 (1 +D + F )
3∑
i=1

∣∣c (νi, d, dC)∣∣2
Γp→ηe+β

=

(
m2
p −m2

η

)2
48πf2

πm
3
p

A2
L|α|

2(1 +D − 3F )2
{∣∣c (eβ, dC)∣∣2 + k4

1

∣∣c (eCβ , d)∣∣2}
Γp→K0e+β

=

(
m2
p −m2

K

)2
8πf2

πm
3
p

A2
L|α|

2

[
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1
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16πf2
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(4.218)

όπου mB είναι μια μέση βαρυονική μάζα που ικανοποιεί την σχέση mB ≈ mΣ ≈ mΛ,

ενώ D, F και α είναι οι παράμετροι της χειραλικής λαγκρατζιανής. Επίσης, το AL

λαμβάνει υπόψιν την επακανονικοποίηση από MZ σε 1GeV . Τέλος, νi = νe, νµ, ντ

και eβ = e, µ. Από τις ανωτέρω εξισώσεις λαμβάνουμε μόνο επτά σχέσεις για όλες

τις σταθερές των d = 6 τελεστών βαθμίδας που συνεισφέρουν στην διάσπαση του

νουκλεονίου. Αντικαθιστώντας τις σταθερές και χρησιμοποιώντας σχέσεις από τους

τομείς Yukawa του εκάστοτε μοντέλου μπορούμε να βρούμε συγκεκριμένες τιμές για

τους υπολογισμούς για τον χρόνο ζωής.

Η κλίμακα ενοποίησης είναι πάντα MGUT ≥ 1016GeV . Οπότε, ένα κάτω όριο που

μπορεί να τεθεί για τα δύο βασικά κανάλια διάσπασης από τις Εξ. 4.218 χρησιμοποι-

235



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

ώντας α = 0.015GeV 3
είναι [333]:

τp→π+ν̄ ≥ 8× 1035ys

τp→K+ν̄ ≥ 7.6× 1037ys
(4.219)

Τα κάτω όρια αυτά είναι πολύ συντηρητικά και ισχύουν για μια ελάχιστη υπερσυμ-

μετρική SU (5) με Yu = Y T
u . Αυτό σημαίνει πως αν θέλουμε να ελέγξουμε τις

προβλέψεις των d = 6 τελεστών στο ελάχιστα υπερσυμμετρικό SU (5) μοντέλο με

πειράματα επόμενης γενιάς, τα κάτω όρια πρέπει να βελτιωθούν τουλάχιστον κατά 4

τάξεις μεγέθους.

Θεωρώντας όμως το πιο αυστηρό όριο για την μάζα των τριπλετών χρώματος MT

που προέρχεται από τους d = 5 τελεστές, το οποίο είναι MT > 1017GeV προκύπτει

ότι η μάζα των υπερβαρέων μποζονίων είναι πάντα MX > 1017GeV και άρα οι χρόνοι

ζωής γίνονται:

τp→π+ν̄ ≥ 8× 1039ys

τp→K+ν̄ ≥ 7.6× 1041ys
(4.220)

Σε αυτή την περίπτωση δεν μπορούμε να ελέγξουμε το ελάχιστα υπερσυμμετρικό

SU (5) μοντέλο με τα μελλοντικά πειράματα ανίχνευσης διάσπασης πρωτονίου.

Βασικά προβλήματα

΄Ενα βασικό στοιχείο της υπερσυμμετρικής SU (5) είναι ότι το μοντέλο αυτό έχει

πολύ λίγες παραμέτρους και άρα κάνει πολλές προβλέψεις. Το MSSM έχει πάνω

από 100 παραμέτρους που σημαίνει ότι μπορεί να προσαρμόζεται σχετικά εύκολα

στα πειραματικά αποτελέσματα. ΄Ομως, αν το μοντέλο ενταχθεί στο υπερσυμμετρικό

SU (5) με υπερβαρύτητα “τύπου Polonyi” ο αριθμός των παραμέτρων μειώνεται σε

5.

Παρόλα αυτά όμως έχει και ένα πλήθος από προβλήματα τα οποία πρέπει να λυθούν

αν η θεωρία αυτή παρθεί ως μια πραγματική θεωρία της φύσης [329].

1. Σπάσιμο R-ομοτιμίας:

Υπάρχουν στο υπερδυναμικό επακανονικοποιήσιμοι όροι οποίοι σπάνε τον βα-

ρυονικό και τον λεπτονικό κβαντικό αριθμό:

W ′ = λabcTa5̄b5̄c (4.221)

Αν γραφούν σε όρους των στοιχείων των πεδίων, οδηγούμαστε σε όρους πα-

ραβίασης της R-ομοτιμίας του MSSM όπως οι LaLbe
c
c, QLd

c
και ucdcdc. Το
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νέο στοιχείο που προκύπτει είναι ότι υπάρχει μόνο μία παράμετρος ζεύξης λ

που περιγράφει και τους τρεις τύπους όρων, αλλά και ικανοποιεί την αντισυμ-

μετρία στους δύο δείκτες γενιών b, c. Ο συνολικός αριθμός των παραμέτρων

που σπάνε την R-ομοτιμία είναι 9 αντί για 45 του MSSM. Υπάρχουν επίσης

μη επακανονικοποιήσιμοι όροι της μορφής T 5̄5̄(Φ/MPl)
n55

, που είναι σημαντι-

κοί για n = 1, 2, 3, 4 και μπορούν να προσθέσουν διαφορετική πολυπλοκότητα

στην παραβίαση της R-ομοτιμίας. ΄Αρα, το υπερσυμμετρικό SU (5) δεν οδηγεί

σε έναν ελαφρύ υπερσυμμετρικό εταίρο που να είναι φυσικά σταθερός έτσι ώστε

να αποτελεί υποψήφιο ψυχρής ΣΥ.

2. DT πρόβλημα:

Το μαζικό πεδιακό περιεχόμενο του MSSM εμπεριέχεται επίσης στις πολλα-

πλέτες 5̄ και T . Επίσης, τα δύο υπερπεδία Higgs Hu και Hd του MSSM πρέπει

να προκύπτουν από τις πολλαπλέτες H και H̄. ΄Ετσι γράφουμε:

H =

(
ζu

Hu

)
, H̄ =

(
ζ̄d

Hd

)
(4.222)

Οπότε, από την Εξ. 4.201 αντικαθιστώντας την 4.209 παίρνουμε:

Weff = λ (b+M) ζuζ̄d + λ

(
−3

2
b+M

)
HuHd (4.223)

Αν διαλέξουμε:

3

2
b = M (4.224)

τότε οι άμαζες διπλέτες ΚΠ παραμένουν, ενώ κάθε άλλο σωμάτιο του SU (5)

παίρνει μεγάλη μάζα. ΄Ομως, η παράμετρος αυτή εισάχθηκε “με το χέρι” και δεν

προέκυψε με φυσικό τρόπο. ΄Η διαδικασία διαχωρισμού των τριπλετών χρώμα-

τος ζu,d από τις SU (2) διπλέτες Hu,d είναι το λεγόμενο DT πρόβλημα που

εμφανίζεται σε όλα τα GUT μοντέλα. Και ένα πλεονέκτημα των υπερσυμμετρι-

κών GUT είναι ότι αφού γίνει η λεπτή ρύθμιση σε επίπεδο δένδρου, το θεώρημα

μη-επακανονικοποίησης των υπερσυμμετρικών μοντέλων το διατηρεί σε όλες τις

τάξεις στην θεωρία διαταραχών.

΄Ετσι, για να παραχθούν ελαφριές διπλέτες του MSSM, πρέπει να υπάρχει λεπτή

ρύθμιση μεταξύ των δύο παραμέτρων 3/2λb και M στο υπερδυναμικό. ΄Οταν

όμως εφαρμόζεται σπάσιμο της υπερσυμμετρίας μέσω του μηχανισμού του κρυ-

φού τομέα, προκύπτει μια λαγκρατζιανή σπασίματος της υπερσυμμετρίας της
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μορφής:

LSB = AλH̄ΦH +BMH̄H + h.c. (4.225)

όπου τα σύμβολα είναι μόνο τα βαθμωτά στοιχεία των υπερπεδίων. Γενικά,

A 6= B και όταν τα Higgsinos παίρνουν λεπτή ρύθμιση για να πάρουν μάζα

στην ασθενή κλίμακα, η ίδια λεπτή ρύθμιση δεν αφήνει τις βαθμωτές διπλέτες

στην ασθενή κλίμακα. ΄Ετσι, έχουμε δύο πιθανές λύσεις:

• Η πρώτη είναι να εισάγουμε ένα μονήρες πεδίο S και να διαλέξουμε υπερ-

δυναμικό της μορφής:

WDT = 2H̄ΦH + SH̄H (4.226)

και έτσι μετά την ελαχιστοποίηση του υπερδυναμικού παίρνουμε αυτόματα:

〈S〉 = 3b (4.227)

που είναι η συνθήκη που κρατάει τις διπλέτες ελαφριές.

• Ο δεύτερος τρόπος, ο οποίος λειτουργεί και καλύτερα από τον πρώτο, είναι

να σπάσουμε την συμμετρία GUT με μια πολλαπλέτα όπου έχει ζεύξη στο

H και στο H̄ και άλλες πολλαπλέτες με τέτοιο τρόπο ώστε αφού η SU (5)

συμμετρία σπάσει, μόνο οι τριπλέτες χρώματος να συζευγνύονται και όχι

οι ασθενείς διπλέτες. ΄Ετσι, η διπλέτα προκύπτει με φυσικό τρόπο να είναι

ελαφριά. Για παράδειγμα, μπορούμε να προσθέσομε τις 50 και 50 (που

περιγράφονται αντίστοιχα από τα Θαβ
γδσ και Θ̄) και να αντικαταστήσουμε

την 24 με την 75 (που περιγράφεται με Σ) πολλαπλέτα. Η 75-διάστατη

πολλαπλέτα έχει μια μονέτα ΚΠ μέσα της έτσι ώστε σπάει την SU (5) στο

ΚΠ. Ταυτόχρονα, η 50 έχει μόνο μια τριπλέτα χρώματος και όχι διπλέτα.

΄Ετσι, η ζεύξη 50.75.5̄ επιτρέπει την ένωση των τριπλετών χρώματος από

την 50 και την 5̄ αφήνοντας την ασθενή διπλέτα στην H̄ ελαφριά. ΄Ετσι,

το υπερδυναμικό σε αυτή την περίπτωση γίνεται:

WG = λ1ΘΣH + λ2Θ̄ΣH̄ +MΘΘ̄ + f (Σ) (4.228)

Να αναφέρουμε επίσης ότι ο μηχανισμός αυτός μπορεί να λειτουργήσει και

σε άλλες ομάδες.
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3. Βαρυογέννεση:

΄Ενα επίσης θέμα του μοντέλου αυτού είναι ότι δεν παράγει την βαρυονική α-

συμμετρία του Σύμπαντος με απλό τρόπο. ΄Ετσι, αν η βαρυονική ασυμμετρία

παράγεται στην GUT κλίμακα όπως συνήθως γίνεται, πρέπει να υπάρχει ταυ-

τόχρονα μια λεπτονική ασυμμετρία έτσι ώστε η συμμετρία B−L να διατηρείται.

Ο λόγος για αυτό είναι ότι όλες οι αλληλεπιδράσεις των απλών υπερσυμμετρι-

κών μοντέλων διατηρούν την B−L συμμετρία. Σαν αποτέλεσμα, μπορούμε να

γράψουμε:

nB =
1

2
nB−L +

1

2
nB+L =

1

2
nB+L (4.229)

Το πρόβλημα είναι τότε ότι οι αλληλεπιδράσεις sphaleron που είναι σε ισορροπία

για 102GeV ≤ T ≤ 1012GeV , θα διαγράψουν το nB+L αφού παραβιάζουν τον

B + L κβαντικό αριθμό. ΄Ετσι, η βαρυονική ασυμμετρία στην GUT κλίμακα

δεν μπορεί να επιβιώσει κάτω από την ασθενή κλίμακα. Φυσικά, μπορούν να

παραχθούν βαρυόνια στην ασθενή κλίμακα μέσω των διαδικασιών sphaleron

αλλά δεν υπάρχει κάποιος προτεινόμενος πειστικός μηχανισμός.

4. Μάζες νετρίνων:

Φαίνεται πως όπως και στο απλό, έτσι και στο υπερσυμμετρικό μοντέλο SU (5)

δεν υπάρχει κάποιος φυσικός μηχανισμός παραγωγής μαζών νετρίνων παρόλο

που έχει προταθεί η χρήση αλληλεπιδράσεων που παραβιάζουν την R-ομοτιμία

για ακριβώς αυτό τον σκοπό. ΄Ετσι, πρέπει οι απαιτούμενες μικρές ζεύξεις τους

να εισαχθούν με το χέρι στο μοντέλο αυτό.

5. Εκφυλισμός κενού και φαινόμενα υπερβαρύτητας:

΄Ενα γενικό πρόβλημα των περισσότερων υπερσυμμετρικών GUT είναι ο εκφυ-

λισμός κενού που προκύπτει στην περίπτωση του SU (5) μοντέλου στο υπερ-

συμμετρικό όριο. Η SU (5) συμμετρία σπάει μέσω του 24 υπερπεδίου Higgs και

αφήνει τρία κενά: το SU (5), SU (4)×U (1), και SU(3)C×SU(2)L×U(1)Y με

την ίδια ενέργεια κενού. Το ερώτημα είναι πως το Σύμπαν καταλήγει στο ΚΠ.

Προκύπτει πως αν εισαχθούν φαινόμενα υπερβαρύτητας, τα τρία κενά έχουν

διαφορετικές ενέργειες που προκύπτουν από τον όρο
−3
M2
Pl
|W |2 στο ενεργό μπο-

ζονικό δυναμικό. Αν κάνουμε τους υπολογισμούς προκύπτει πως το κενό του

ΚΠ έχει την χαμηλότερη ενέργεια κενού. Αυτό όμως είναι παραπλανητικό κα-

θώς ο υπολογισμός γίνεται πριν τον μηδενισμό της κοσμολογικής σταθεράς.
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Αφού γίνει αυτός ο μηδενισμός, το ΚΠ λαμβάνει πράγματι την υψηλότερη ενέρ-

γεια κενού. Οπότε, το γεγονός αυτό παραμένει πρόβλημα. ΄Ενας τρόπος για να

αποφευχθεί αυτό, είναι να φανταστούμε πως το ΚΠ έχει κολλήσει στο “λάθος”

κενό, αλλά η πιθανότητα σήραγγας άλλων κενών είναι ασήμαντη ή τέτοια ώστε

ο χρόνο σήραγγας να είναι μεγαλύτερος από την ηλικία του Σύμπαντος. ΄Ε-

νας άλλος τρόπος να επιλυθεί το πρόβλημα εξ΄ αρχής είναι να σπάσει η SU (5)

συμμετρία από την 75 πολλαπλέτα και έτσι να μην έχουμε το SU (4)×U (1) κε-

νό. Αν επίσης προσθέσουμε στο υπερδυναμικό όρους της μορφής S (Σ2 −M2
U)

εξαλείφεται επίσης και το SU (5) κενό.

4.3.2 Υπερσυμμετρική SO (10)

Οι υπερσυμμετρικές επεκτάσεις των SO (10) μοντέλων έχουν επιπλέον επιθυμητά

στοιχεία έναντι του υπερσυμμετρικού SU (5) μοντέλου. Για παράδειγμα, όλα τα φερ-

μιόνια χωράνε σε μια σπινοριακή αναπαράσταση της SO (10), η σπινοριακή αναπα-

ράσταση αφού είναι 16-διάστατη περιέχει το δεξιόστροφο νετρίνο το οποίο οδηγεί

σε μη μηδενικές μάζες νετρίνων. Επίσης, η ομάδα βαθμίδας SO (10) είναι αριστερά-

δεξιά συμμετρική το οποίο έχει σαν συνέπεια την λύση του υπερσυμμετρικού CP

προβλήματος, της R-ομοτιμίας κλπ, του MSSM σε αντίθεση με το SU (5). Μερικά

από τα στοιχεία αυτά τα έχουμε ήδη δει στο προγενέστερο εδάφιο 3.1.2, κάποια άλλα

όμως θα τα δούμε στην συνέχεια.

Τα πρώτα υπερσυμμετρικά μοντέλα είχαν προταθεί το 1982 [334, 335] ακριβώς

μετά το υπερσυμμετρικό SU (5) μοντέλο [243], και καλούνταν ελάχιστα υπερσυμ-

μετρικά GUT μοντέλα (Minimal Supersymmetric GUT - MSGUT) ενώ σήμερα

έχουν εξελιχθεί και καλούνται νέα ελάχιστα υπερσυμμετρικά SO (10) μοντέλα (New

Minimal Supersymmetric GUT - NMSGUT) [336] αλλά βασίζονται ακόμα στο

210 + 126 + 126 Higgs. Τα μοντέλα αυτά έχουν περιγραφεί σε μεγάλο βαθμό

από διάφορους συγγραφείς [337–341]. Το γενικό NMSGUT μοντέλο έχει εξελι-

χθεί σε τέτοιο βαθμό που περιλαμβάνει τα γνωστά δεδομένα σωματιδιακής φυσικής

χαμηλής ενέργειας, ενώ ταυτόχρονα παρέχει έναν υποψήφιο ΣΥ αλλά και περιέχει

χαρακτηριστικά πληθωριστικής κοσμολογίας. Το μοντέλο αυτό θα το εξετάσουμε

στην συνέχεια, αφού δούμε πρώτα κάποια βασικά χαρακτηριστικά του.

Να αναφέρουμε επίσης ότι και τα δύο μοντέλα απαιτούν την ύπαρξη ταυτόχρονα

των υπερπολαπλλοτήτων 126 και 126. Η 126 από μόνη της μπορεί να παράγει τις

μάζες των δεξιόστροφων νετρίνων και δεν οδηγεί σε ανωμαλίες, όμως η VEV της
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οδηγεί σε μη-εξαφανιζόμενους D-όρους και άρα σε σπάσιμο της υπερσυμμετρίας.

΄Ετσι, εισάγοντας την 126, η υπερσυμμετρία μπορεί να διατηρηθεί σε μεγάλη κλίμακα

υποθέτοντας ότι 〈Σ〉 =
〈
Σ̄
〉
. Αυτές οι VEV είναι μονέτες SU (5) και άρα αφήνουν την

SU (5) άσπαστη, άρα χρειάζονται περισσότερα πεδία Higgs. Η ελάχιστη περίπτωση

είναι η αντισυμμετρική αναπαράσταση 210 [335]. Να σημειώσουμε ότι ούτε η 45 άλλα

ούτε και η 54 μπορούν από μόνες τους να δουλέψουν σε επακανονικοποιήσιμο επίπεδο

και άρα χρειάζονται και οι δύο μαζί [342], γεγονός που όμως οδηγεί σε περισσότερες

παραμέτρους στο υπερδυναμικό.

Το μοντέλο NMSGUT είναι μια επακανονικοποιήσιμη υπερσυμμετρική SO (10)

GUT, της οποίας οι Higgs χειραλικές υπερπολαπλέτες αποτελούνται από τους εξής

τανυστές: έχουμε τον 210 (Φijkl) που είναι αντισυμμετρικός τανυστής με 4 δείκτες,

τον 126 (Σijklm) και 126
(
Σ̄ijklm

)
που είναι μιγαδικοί πλήρως αντισυμμετρικοί τανυ-

στές, σπάνε την συμμετρία SO (10) στο MSSM μαζί με τα φερμιονικών μαζών Higgs

10 (Hi) και 120 (Θijk) που είναι πραγματικοί πλήρως αντισυμμετρικοί τανυστές με

1 και 3 δείκτες αντίστοιχα όπου i, j, k, l,m = 1, 2, ..., 10. Ο 126 παίζει διπλο ρόλο

καθώς δρα σαν τανυστής τύπου συζυγής πολλαπλέτας (Adjoint Multiplet - AM) αλ-

λά και σαν φερμιονικής μάζας Higgs (Fermion mass Higgs - FM) καθώς επιτρέπει

την παραγωγή ρεαλιστικά φορτισμένων φερμιονίων καθώς και μαζών και ζεύξεων

νετρίνων.

Η αρχική MSGUT θεωρία ήταν μια επακανονικοποιήσιμη γενικά υπερσυμμετρική

θεωρία στην οποία η 120-πλέτα Higgs δεν λαμβανόταν υπόψιν, και χρησιμοποιούνταν

οι πολλαπλότητες 10 και 126 για να ενταχθούν τα φερμιονικά δεδομένα. ΄Ομως, η

θεωρία αυτή δεν μπορούσε να εντάξει τις μάζες των νετρίνων σε έναν ρεαλιστικό

παραμετρικό χώρο με τον υπάρχων μηχανισμό seesaw. Συγκεκριμένα, στην MSGUT

το seesaw τύπου I “κυριαρχεί” από το τύπου II και οι μάζες του seesaw τύπου I

είναι μια τάξη μεγέθους μικρότερες από αυτές που απαιτούνται από τις ατμοσφαιρι-

κές ταλαντώσεις νετρίνων. Για την αποφυγή αυτού του προβλήματος το NMSGUT

χρησιμοποιεί την 120-πλέτα Higgs. ΄Ετσι, η CKM δομή και η φερμιονική ιεραρχία

παράγεται από την 120 μαζί με την 10. Οπότε, η αναπαράσταση 126 ελαφρύνεται

από το βάρος να εντάσσει τις μάζες των φορτισμένων φερμιονίων, αλλά βελτιώνει τις

μάζες νετρίνων από seesaw τύπου I μέσω των εξαιρετικά ασθενών ζεύξεων καθώς το

τύπου I είναι αντιστρόφως ανάλογο με την ζεύξη 126. Η τύπου II συνεισφορά στις

μάζες είναι απευθείας ανάλογη με την ζεύξη και έτσι μειώνεται ακόμα περισσότερο.
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Υπερδυναμικό και σπάσιμο της συμμετρίας

Το πλήρες υπερδυναμικό της θεωρίας που περιέχει τους όρους μάζας και τις τριγραμ-

μικές ζεύξεις δίνεται σχηματικά ως:

WNMSGUT = m
(
2102

)
+MH

(
102
)

+ λ
(
2103

)
+M

(
126 · 126

)
+

+ η
(
210 · 126 · 126

)
+ 10 · 210

(
γ126 + γ̄126

)
+MΘ (120 · 120) +

+ k (10 · 120 · 210) + ρ (120 · 120 · 210) +

+ ζ (120 · 126 · 210) + ζ̄
(
120 · 126 · 210

)
+

+ hAB (16A · 16B · 10) + fAB
(
16A · 16B · 126

)
+

+ gAB (16A · 16B · 120)

(4.230)

όπου hAB, fAB είναι συμμετρικοί μιγαδικοί πίνακες Yukawa ζεύξεων των 10, 126

πολλαπλετών Higgs με την 16A · 16B διγραμμική μάζα, και gAB είναι ο αντισυμμε-

τρικός μιγαδικός πίνακας για την ζεύξη της νέας αναπαράστασης Higgs 120 στην

16A · 16B λόγω των ιδιοτήτων της SO (10) “άλγεβρας Clifford”. ΄Ενας από τους

μιγαδικούς συμμετρικούς πίνακες μπορεί να γίνει πραγματικός και διαγώνιος με μια

επιλογή μιας SO (10) βάσης γεύσης. Οι μιγαδικοί Yukawa περιέχουν 3 πραγματικές

και 9 μιγαδικές, δηλαδή συνολικά 21 παραμέτρους.

Ο τρόπος σπασίματος της συμμετρίας στην NMSGUT είναι ίδιος με αυτόν στην

MSGUT. Αν δούμε την αποσύνθεση κάτω από την GPS της 120 (βλέπε Εξ. 3.59)

θα δούμε ότι δεν περιέχει καμία μονέτα ΚΠ. ΄Αρα, η 120-πλέτα δεν συμμετέχει στο

GUT κλίμακας σπάσιμο συμμετρίας όπου η SU(2)L × U(1)Y μένει άσπαστη.

Οι GUT κλίμακας VEV που σπάνε την SO (10) συμμετρία στην συμμετρία του

ΚΠ είναι οι εξής:

〈(1, 1, 15)〉210 : 〈φabcd〉 =
a

2
εabcdefεef

〈(3, 1, 15)〉210 :
〈
φabα̃β̃

〉
= ωεabεα̃β̃

〈(1, 1, 1)〉210 :
〈
φα̃β̃γ̃δ̃

〉
= pεα̃β̃γ̃δ̃

〈(3, 1, 10)〉126 :
〈
Σ̄1̂3̂5̂8̂0̂

〉
= σ̄〈(

3, 1, 10
)〉

126
: 〈Σ2̂4̂6̂7̂9̂〉 = σ

(4.231)

Για την διατήρηση της υπερσυμμετρίας, αν μηδενίσουμε τους D-όρους παίρνουμε την

συνθήκη |σ| = |σ̄|.

Από τους F -όρους καθορίζουμε το υπερσυμμετρικό κενό και έτσι παίρνουμε τις
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εξισώσεις:

2mp+ 6λω2 + ησσ̄ = 0

2ma+ 2λ
(
a2 + 2ω2

)
+ ησσ̄ = 0

2mω + 2λ (p+ 2a)ω + ησσ̄ = 0

σ [M + η (p+ 3a− 6ω)] = 0

(4.232)

από όπου παίρνουμε τα διάφορα κενά που διατηρούν την υπερσυμμετρία:

1. p = a = ω = σ = 0 που είναι το ελάχιστο το οποίο διατηρεί την SO (10).

2. p = a = −ω = −1
3
m
λ

και σ = 0. Το ελάχιστο αυτό έχει την SU (5) × U (1)

συμμετρία, όπως μπορεί να δειχθεί με τον ακριβή υπολογισμό των μαζών των

μποζονίων βαθμίδας.

3. p = a = −ω = − M
10η

και σσ̄ = M(10ηm−3λM)
50η3 . Αυτό είναι το SU (5) ελάχιστο

και περιλαμβάνει το προηγούμενο ελάχιστο αν
λM
ηm

= 10
3
.

4. p = ω = σ = 0 και a = −m
λ
. Προφανώς αυτό το ελάχιστο είναι το αριστερά-

δεξιά συμμετρικό SU(3)C × SU(2)L × SU(2)R × U(1)B−L ελάχιστο.

5. p = a = ω = −1
3
m
λ

και σ = 0. Αυτό είναι πάλι SU (5) × U (1) συμμετρικό,

αλλά με “ανεστραμμένες” (flipped) SU (5) αντιστοιχήσεις για τις σωματιδιακές

καταστάσεις.

6. p = 3m
λ
, a = −2m

λ
, ω = ±im

λ
και σ = 0. Το ελάχιστο αυτό έχει συμμετρία

SU(3)C × SU(2)L × U(1)R × U(1)B−L.

Μια σημαντική απλοποίηση της θεωρίας είναι ότι οι GUT κλίμακας VEV και

άρα το μαζικό φάσμα, μπορούν να εκφρασθούν με όρους μιας μοναδικής μιγαδικής

παραμέτρου x που είναι λύση της κυβικής εξίσωσης:

8x3 − 15x2 + 14x− 3 + ξ(1− x)2 = 0 (4.233)

όπου ξ = λM
ηm

. Οπότε, οι αδιάστατες VEV, τις οποίες γράφουμε με ∼ σε μονάδες
m
λ

είναι:

ω̃ = −x, ã =
x2 + 2x− 1

1− x
, p̃ =

x (5x2 − 1)

(1− x)2 ,

σ̃σ̃ =
2λx (1− 3x) (1 + x2)

η(1− x)2

(4.234)

Για γενικό x αυτό είναι το ελάχιστο που αντιστοιχεί στο ΚΠ. Δηλαδή, είναι η πε-

ρίπτωση (7). Αφού αποκτήσουμε όλες τις υπερβαρέες VEV σε όρους αυτής της
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παραμέτρου x μπορούμε να υπολογίσουμε το υπερβαρέο μαζικό φάσμα το οποίο προ-

κύπτει από το σπάσιμο της SO (10) συμμετρίας. Ας δούμε στην συνέχεια μερικές

περιπτώσεις για κάποιες τυπικές τιμές του x. Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι

περιπτώσεις x ∼ 0 και x ∼ 1, οι οποίες παρέχουν τις “αλυσίδες” για τις ενδιάμεσες

κλίμακες. Η πρώτη περίπτωση αντιστοιχεί στην αριστερά-δεξιά συμμετρία, ενώ η δε-

ύτερη δίνει μια ενδιάμεση Pati-Salam κλίμακα. Η λύση της 4.233 περιλαμβάνει τις

εξής περιπτώσεις:

• Η πιο τυπική περίπτωση που προκύπτει είναι το σπάσιμο με ένα βήμα. Για

παράδειγμα, αν λM ∼ ηm ⇒ ξ ∼ 1 παίρνουμε: ω ∼ −0.21m
λ
, a ∼ −0.67m

λ
,

p ∼ −0.27m
λ
, σ ∼ 0.51 m√

ηλ
που αντιστοιχεί σε σπάσιμο ενός βήματος της

SO (10)→MSSM .

• Για x = 1/3, αν ξ = −2
3
έχουμε την περίπτωση (5). Δηλαδή, σε αυτή την

περίπτωση το σ και άρα η κλίμακα των μαζών δεξιόστροφων νετρίνων είναι

μικρότερη από όλες τις άλλες VEV.

• Για x = 1/2, αν ξ = −5 έχουμε την περίπτωση (3).

• Για x = 0, αν ξ = 3 έχουμε την περίπτωση (4).

• Για x = ±i, αν ξ = −3 (1± 2i) έχουμε την περίπτωση (6).

Μάζες φερμιονίων

Το ολικό υπερδυναμικό της θεωρίας, όπως και στην SU (5), περιέχει όρους Yukawa,

αλληλεπιδράσεις των πεδίων Higgs, και υπερσυμμετρικούς όρους ήπιου σπασίματος.

΄Ετσι, όπως ήδη είδαμε, η απαίτηση μηδενισμού των F -όρων έτσι ώστε να διατηρηθεί

η υπερσυμμετρία κάτω από την GUT κλίμακα, δίνει το ελάχιστο του δυναμικού και

κατά συνέπεια την αναμενόμενη τιμή όλων των πεδίων Higgs των οποίων τα στοιχεία

των ηλεκτρασθενών διπλετών δίνουν μάζες στα φερμιόνια.

Αρχικά, μπορεί κάποιος να σκεφθεί ότι μόνο το πεδίο (2, 2, 1) στην 10 έχει VEV

στην ηλεκτρασθενή κλίμακα. ΄Ομως, είναι εύκολο να δούμε ότι τα (2, 2, 15) πεδία

στην 126 συνδυάζονται με τα (2, 2, 1) μέσω της αναμενόμενης τιμής του (1, 1, 15)

στην 210, που είναι της τάξης MGUT . Η τυπική ελάχιστη λεπτή ρύθμιση μας δείχνει

ότι ο συνδυασμός δύο L−R διπλετών είναι ελαφρύς και άρα και το (2, 2, 1) αλλά και

το (2, 2, 15) συνεισφέρουν μαζί στις μάζες των φερμιονίων.
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΄Ολες οι μάζες Dirac μπορούν να προκύψουν από γραμμικούς συνδυασμούς των

VEV των στοιχείων των 10 και 126, ενώ η μάζα Majorana για το δεξιόστροφο

νετρίνο προκύπτει από γραμμικό συνδυασμό των 10 και 126. Οι VEV που δίνουν

μάζα στα d-κουάρκ και στα φορτισμένα λεπτόνια, δείχνουν στην ίδια διεύθυνση και

στην περίπτωση ενός κυρίαρχου 126 στοιχείου είναι πιθανό να πάρουμε την σχέση:

md = 3me (4.235)

στην GUT κλίμακα που είναι σε συμφωνία με τις πειραματικές τιμές στην ηλεκτρα-

σθενή κλίμακα. Το 3 που βλέπουμε μπροστά από την μάζα φορτισμένου λεπτονίου

είναι μια “σταθερά Glebsch-Gordan”, που προκύπτει από την αποσύνθεση της 16 σε

τριπλέτες χρώματος και μονέτες.

Συγκεκριμένα, αν πάρουμε την περίπτωση (1) από τις επιλογές 3.58, δηλαδή 10+

126 με την χρήση όμως υπερσυμμετρίας αυτή τη φορά, θα δούμε ότι το υπερδυναμικό

Yukawa μπορεί να πάρει την μορφή [343]:

WY = Y1016F16F10H + Y12616F16F126H (4.236)

Οπότε, οι Εξ. 3.62 με τους πίνακες φερμιονικών μαζών παίρνουν τώρα την μορφή:

Mu = 〈2, 2, 1〉u10 Y10 + 〈2, 2, 15〉u126 Y126

Md = 〈2, 2, 1〉d10 Y10 + 〈2, 2, 15〉d126 Y126

Ml = 〈2, 2, 1〉d10 Y10 − 3 〈2, 2, 15〉d126 Y126

MνD = 〈2, 2, 1〉u10 Y10 − 3 〈2, 2, 15〉u126 Y126

MνR = 〈1, 3, 10〉Y126

M II
νL

=
〈
3, 1, 10

〉
Y126

(4.237)

και αν εκμεταλλευτούμε την συμμετρία των Y10 και Y126 μπορούμε να γράψουμε για

τον πίνακα μαζών των νετρίνων την σχέση:

Mν = MνL −MνDM
−1
νR
MνD (4.238)

όπου οι πρώτοι και οι δεύτεροι όροι αντιστοιχούν σε μηχανισμούς seesaw τύπου II

και τύπου I αντίστοιχα όπως και στην σχέση 3.65. Δηλαδή, η SU(2)W τριπλέτα

Higgs που είναι στην
(
3, 1, 10

)
με:

〈(
3, 1, 10

)〉
' M2

W

MGUT

(4.239)
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παρέχει μια απευθείας μάζα seesaw τύπου II για τα ελαφριά νετρίνα. ΄Αρα, όλοι οι

πίνακες μαζών φερμιονίων 4.237 προβλέπονται σε όρους δύο μιγαδικών συμμετρικών

πινάκων Yukawa και 6 VEV. Επιπρόσθετα, η μορφή των πινάκων 4.237 είναι απόλυτα

κατανοητή αν παρατηρήσουμε ότι η (2, 2, 1) είναι μια SU(4)C μονέτα με mq = ml και

η (2, 2, 15) είναι μια συζυγής SU(4)C , με ml = −3mq. Δηλαδή, ο παράγοντας −3

μπροστά από την Y126 στο Ml και στο MνD προέρχεται από την VEV της συζυγούς

15 της SU(4)C στην (2, 2, 15)H :

〈15C〉 ∝ diag (1, 1, 1,−3) (4.240)

γεγονός που δίνει με την σειρά του έναν παράγοντα −3 στα λεπτόνια σε αντιστοιχία

με τα κουάρκ.

Αν στην συνέχεια θεωρήσουμε πως το τύπου II “κυριαρχεί”, δηλαδή:

Mν ∝ y126 ∝Ml −Md (4.241)

έτσι ώστε [344]:

Mν = Ml −Md (4.242)

τότε αν δούμε την δεύτερη και τρίτη γενιά, στη βάση των διαγώνιων φορτισμένων

λεπτονίων Ml και για μικρή μίξη κάτω κουάρκ εde έχουμε:

Mν =

(
mµ −ms εde

εde mτ −mb

)
(4.243)

Προφανώς, για να έχουμε μεγάλη ατμοσφαιρική γωνία πρέπει να έχουμε mb ≈ mτ .

Αυτό δείχνει πως μια αυθόρμητα σπασμένη συμμετρία κουάρκ-λεπτονίων δίνει φυσικά

μικρές γωνίες μίξης για κουάρκ και λεπτόνια. ΄Ετσι, η θεωρία μας συνδέει μεγάλες

μίξεις λεπτονίων με μικρές μίξεις κουάρκ. Φυσικά, δεν υπήρχε κάποιος λόγος να

διαλέξουμε seesaw τύπου II. Θα μπορούσαμε οπότε να θέσουμε το ερώτημα αντίθετα

δείχνοντας πως το πειραματικό γεγονός mb ≈ mτ στην κλίμακα MGUT και η μεγάλη

θatm φαίνεται να “ευνοούν” το seesaw τύπου II. Με την ίδια προσέγγιση 2 με 3

γενιών, μπορεί να δειχθεί πως το τύπου I δεν μπορεί να “κυριαρχήσει” καθώς δίνει

μικρή θatm [343,345]. ΄Ετσι, σε αυτήν την θεωρία μπορεί να μπορεί να δειχθεί πως οι

δύο τύποι seesaw είναι μη ισοδύναμοι [343,345].

Διάσπαση πρωτονίου

΄Οσον αφορά την διάσπαση του πρωτονίου, αυτή είναι παρόμοια με την περίπτωση

της SU (5), δηλαδή η περίπτωση d = 5 διάσπασης έχει τον μεγαλύτερο ρυθμό ε-

κτός αν τα s-φερμιόνια είναι πολύ βαριά. Υπάρχουν ωστόσο περισσότερες τριπλέτες
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χρώματος που την μεταδίδουν. Αυτές υπάρχουν στις αναπαραστάσεις 10H , 126H ,

126H και 210H . Συνδυάζονται έτσι ώστε ο πίνακας μάζας τους δεν είναι σίγουρα

διαγώνιος. ΄Ομως, μόνο κάποια στοιχεία συζευγνύονται με τα φερμιόνια του ΚΠ και

άρα μόνο κάποια στοιχεία του αντίστροφου πίνακα μάζας είναι σημαντικά για διάσπα-

ση πρωτονίου. ΄Αρα, είναι πιθανό να δημιουργηθούν ακυρώσεις σε περίπτωση που ο

ρυθμός διάσπασης γίνει πολύ μεγάλος [346,347]. Για την ακρίβεια, μόνο οι τριπλέτες

χρώματος που ζουν στην 10H και στην 126H συνεισφέρουν άμεσα στην διάσπαση,

ενώ οι υπόλοιπες απλά συζευγνύονται με αυτές και ζουν στις 210H και 126H . Από

την άλλη πλευρά, η περίπτωση d = 6 είναι πολύ αργή και πιθανώς θα αργήσει να

επαληθευτεί, ενώ η d = 5 διάσπαση πρωτονίου είναι αρκετά γρήγορη.

Συγκεκριμένα, η d = 6 διάσπαση πρωτονίου δίνει τP (d = 6) ∝ M4
GUT ενώ η

d = 5 διάσπαση πρωτονίου δίνει τP (d = 5) ∝ M2
GUT . Φυσικά, αγνοούμε υψηλότε-

ρους διαστασιακά τελεστές της τάξης
MGUT

MPl
' 10−2 − 10−3

. Αν αυτοί υπάρχουν με

τις σταθερές τάξεως 1 τότε οι προβλέψεις μας αλλάζουν. Ωστόσο, η ύπαρξη
1

MPl

τελεστών δεν είναι αυτόματη. Τελεστές του τύπου:

Op
5 =

c

MPl

164
F (4.244)

επιτρέπονται στην SO (10) και δίνουν:

Op
5 =

c

MPl

[(QQQL) + (QcQcQcLc)] (4.245)

οι οποίοι είναι οι γνωστοί d = 5 τελεστές διάσπασης πρωτονίου, και για c ' O (1)

δίνουν τp ' 1023ys. Οπότε, για να συμβαδίζει με τα πειραματικά αποτελέσματα

απαιτείται:

c ≤ 10−6
(4.246)

Η “κυρίαρχη” περίπτωση είναι η p → K+ν̄i όπου ο ρυθμός διάσπασης που προ-

κύπτει, δίνεται από την εξίσωση [346]:

Γp→K+ν̄i =
mp

32π

(
1−

m2
K+

m2
p

)2
1

fπ

∣∣A (p→ K+ν̄i
)∣∣2 (4.247)

όπου mp = 0.938GeV είναι η μάζα του πρωτονίου, mK+ = 0.493GeV είναι η μάζα

του καονίου και fπ = 0.131GeV είναι η σταθερά διάσπασης του πιονίου, ενώ A είναι

το πλάτος διάσπασης της p→ K+ν̄i περίπτωσης.
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R-ομοτιμία και λεπτογέννεση

Η θεωρία καθορίζει μοναδικά της ενεργή θεωρία χαμηλής ενέργειας, που είναι η

MSSM με ακριβή R-ομοτιμία. ΄Οπως έχουμε δει η R-ομοτιμία παραμένει άσπαστη

στο πρώτο στάδιο σπασίματος της συμμετρίας. Το ερώτημα είναι τι συμβαίνει στο

χαμηλής ενέργειας σπάσιμο της υπερσυμμετρίας ή στην ηλεκτρασθενή κλίμακα. Για

την ακρίβεια πρέπει να γνωρίζουμε αν τα ελαφριά s-νετρίνα αποκτούν μια VEV και

άρα σπάνε την R-ομοτιμία. ΄Ενα αυθόρμητο σπάσιμο της R-ομοτιμίας μέσω μιας VEV

των s-νετρίνων θα είχε ως αποτέλεσμα την ύπαρξη ενός pseudo-Majoron με την μάζα

του αντιστρόφως ανάλογη με την μάζα του δεξιόστροφου νετρίνου. Αυτό όμως έχει

αποκλειστεί από το πλάτος διάσπασης του Z [348, 349]. Οπότε, αυτό σημαίνει ότι

δεν γίνεται να σπάσει η R-ομοτιμία αυθόρμητα στο MSSM όπου το Majoron είναι

αυστηρά άμαζο.

΄Αρα, η R-ομοτιμία διατηρείται σε όλες τις ενέργειες και άρα ο ελαφρύτερος υπερ-

συμμετρικός εταίρος είναι σταθερός και άρα μπορεί να είναι φυσικός υποψήφιος για

την ΣΥ.

΄Ενα σημαντικό στοιχείο γενικά του μηχανισμού seesaw και ειδικά της SO (10)

είναι ο μηχανισμός της λεπτογέννεσης [350]. Ο τρόπος λειτουργίας του σε αυτή

την θεωρία είναι αρκετά πολύπλοκος. Συνήθως, θεωρείται πως ο μηχανισμός seesaw

τύπου I είναι υπεύθυνος ταυτόχρονα για την μάζα των νετρίνων και για την λεπτο-

γέννεση. Αυτό όμως δεν είναι απαραίτητο να αληθεύει, και έτσι έχουμε ένα πλήθος

από περιπτώσεις που εξαρτώνται από το τι “κυριαρχεί” στις μάζες των νετρίνων και

τι είναι υπεύθυνο για την λεπτογέννεση.

4.4 Πειραματικά δεδομένα

4.4.1 Διασπάσεις υπερσυμμετρικών σωματιδίων

Για να ερευνήσουμε πειραματικά την υπερσυμμετρία πρέπει να γίνουν προβλέψεις και

υπολογισμοί που να βασίζονται στους κανόνες του Feynman. ΄Ετσι, έχουμε πρόσθετα

διαγράμματα Feynman διατηρώντας τους κανόνες του ΚΠ. Θεωρούμε καταρχάς ότι

τα υπερσυμμετρικά σωματίδια εμφανίζονται σε ζεύγη όπως επιβάλλει η διατήρηση της

R-ομοτιμίας. Επίσης, διατηρούμε τις σταθερές ζεύξης ίδιες με αυτές του ΚΠ. Οπότε,

έχουμε τα εξής βασικά στοιχεία που προκύπτουν από τα διαγράμματα:

• Τα υπερσωματίδια εμφανίζονται μόνο σε ζεύγη και γεννώνται από τα γνωστά
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σωματίδια του ΚΠ.

• Οι σταθερές ζεύξεων είναι ίδιες με το ΚΠ αφού τα νέα σωματίδια έχουν ίδια

φορτία και διαφέρουν μόνο σε σπιν και μάζα από τα γνωστά σωματίδια του ΚΠ.

• Η διάσπαση ενός υπερσυμμετρικού σωματιδίου περιέχει επίσης υπερσυμμετρικό

σωματίδιο.

• Το ελαφρύτερο υπερσυμμετρικό σωματίδιο LSP θα είναι σταθερό.

Οι διασπάσεις που πραγματοποιούν τα υπερσυμμετρικά σωματίδια όπως και οι

ρυθμοί παραγωγής τους εξαρτώνται από τις μάζες τους. Οι μάζες με την σειρά τους

εξαρτώνται από τον τρόπο που η υπερσυμμετρία παραβιάζεται. ΄Ετσι, επειδή ο μηχα-

νισμός αυτός είναι άγνωστος δεν μπορούμε να γνωρίζουμε τις ακριβείς ακολουθίες

διασπάσεων που τα υπερσυμμετρικά σωμάτια πραγματοποιούν, και έτσι θεωρούμε

όλες τις δυνατές περιπτώσεις.

Αν θεωρήσουμε ότι τα gluinos είναι βαρύτερα των s-κουάρκ (γεγονός που απα-

γορεύει την διάσπαση q̃ → q+ g̃) και ότι τα photinos είναι ελαφρύτερα των s-κουάρκ

τότε η κυρίαρχη διάσπαση των φορτισμένων s-φερμιονίων είναι η f̃ → f+ γ̃. Δηλαδή,

για παράδειγμα, θα έχουμε d̃→ d+ γ̃ ή µ̃→ µ+ γ̃. Τα τυπικά πλάτη διάσπασης των

υπερσωματιδίων μάζας M̃ είναι Γ̃ ' αM̃ , όπου αν απαιτήσουμε η υπερσυμμετρία να

λύνει το πρόβλημα της ιεραρχίας, δηλαδή οι μάζες των υπερσυμμετρικών σωματιδίων

να μην ξεπερνούν το 1TeV τότε προκύπτει ότι Γ̃ ' 1TeV οπότε ο χρόνος ζωής τους

θα είναι τ ' 10−20 sec. Δηλαδή, μέσα σε αυτό το ελάχιστο χρονικό διάστημα όλα

τα ασταθή υπερσυμμετρικά σωμάτια θα διασπαστούν σε ελαφρύτερα δίνοντας παράλ-

ληλα και άλλα γνωστά σωματίδια του ΚΠ. Η ακολουθία των διασπάσεων τους θα

τερματίζεται με την παραγωγή του LSP αν αυτό είναι σταθερό όπως υπαγορεύει η

διατήρηση της R-ομοτιμίας.

Πιθανές διασπάσεις

Αν θεωρήσουμε ως LSP το ελαφρύτερο neutralino Ñ1 τότε θεωρώντας πως τα

charginos και τα neutralinos είναι γραμμικοί συνδυασμοί των W±
, H±, B̃, W̃ 0

1 ,

H̃0
1 , H̃

0
2 έχουμε τις εξής περιπτώσεις:

1. Για τα neutralinos Ñi και τα charginos C̃i αν η μάζα των s-λεπτονίων l̃ και

των s-κουάρκ q̃ είναι αρκετά μικρή, τότε τα Ñi και C̃i μπορούν να διασπώνται

σε l̃ + l ή q̃ + q. Επιπλέον αν τα l̃ είναι ελαφρύτερα των q̃, τότε η συχνότερη

249



Μαρούδας Μάριος Κεφάλαιο 4. Υπερσυμμετρία

τελική κατάσταση θα είναι η l̃ + l. ΄Ολες οι δυνατές διασπάσεις των Ñi και C̃i

είναι οι εξής:

Ñi → ZÑj , WC̃j , h0Ñj , ll̃, νν̃,
[
A0Ñj , H

0Ñj , H
±C̃∓j , qq̃

]
C̃i →WÑj , ZC̃1, h0C̃1, lν̃, νl̃,

[
A0C̃1, H

0C̃1, H
±Ñj , qq̃

′
]

Ñi → ffÑj , Ñi → ff ′C̃j , C̃i → ff ′Ñj , C̃2 → ffC̃1

(4.248)

Τα κανάλια διασπάσεων που έχουμε στις αγκύλες είναι λιγότερο πιθανά για

λόγους κινηματικής. Στο Σχ. 4.17 φαίνονται τα διαγράμματα Feynmann για

κάποιες από τις παραπάνω διαδικασίες.

Σχήμα 4.17: Διάγραμμα Feynmann με διαδοχικές διασπάσεις των Ñi, C̃i και LSP Ñ1 στην

τελική κατάσταση.

2. Για τα s-λεπτόνια οι πιο πιθανές διαδικασίες διάσπασης είναι σε λεπτόνιο και

chargino ή neutralino:

l̃→ lÑi, l̃→ νC̃i, ν̃ → νÑi, ν̃ → lC̃i (4.249)

3. Για τα s-κουάρκ, αν η διάσπαση q̃ → qg̃ είναι κινηματικά επιτρεπτή, θα είναι

και η κυρίαρχη λόγω της ισχυρής ζεύξης που την χαρακτηρίζει. Διαφορετι-

κά τα s-κουάρκ διασπώνται σε κουάρκ και chargino ή neutralino: q̃ → qÑi,

q̃ → q′C̃i. Η διαδικασία που θα μας δώσει άμεσα LSP είναι η q̃ → qÑ1 ε-

ίναι και η προτιμητέα λόγω κινηματικής. ΄Ετσι, έχουμε συγκεντρωτικά τις εξής

δυνατότητες:

q̃ → qg̃, q̃ → qÑi, q̃ → q′C̃i (4.250)

Τέτοιες διαδικασίες φαίνονται στο Σχ. 4.18 ως τμήματα των διαγραμμάτων

Feynamn που παρουσιάζονται.
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4. Τα gluinos μπορούν να διασπαστούν σε δύο σωμάτια μόνο μέσω της διαδικασίας

g̃ → qq̃, αν οι μάζες τους το επιτρέπουν. Αν όλα τα s-κουάρκ είναι βαρύτερα

των gluinos τότε αυτό θα διασπαστεί μέσω ενός “δυνητικού” s-κουάρκ σε 3

σωματίδια. ΄Ολες οι δυνατές διαδικασίες είναι οι εξής:

g̃ → qq̃, g̃ → qqÑi, g̃ → qq′C̃i (4.251)

Σχήμα 4.18: Διάγραμμα Feynmann με διαδοχικές διασπάσεις των gluinos μέσω διαφόρων δυ-

νητικών ή κανονικών σωματιδίων και με το LSP στα τελικά προϊόντα.

4.4.2 Ανίχνευση υπερσυμμετρικών σωματιδίων

Για την ανίχνευση των υπερσυμμετρικών σωματιδίων πρέπει να μελετηθεί η αλληλε-

πίδραση τους με την ύλη. Λόγω των πολύ μικρών χρόνων ζωής που αναφέρθηκαν,

μόνο το LSP που δεν διασπάται μπορεί να αλληλεπιδράσει. Δεδομένου ότι δεν γνω-

ρίζουμε τις μάζες των υπερσυμμετρικών σωματιδίων, δεν μπορούμε να γνωρίζουμε

και ποιο είναι το ελαφρύτερο το οποίο θα αποτελεί το LSP. Ενδεικτικά θεωρούμε

ότι το LSP είναι το photino γ̃ το οποίο είναι μαζικό φερμιόνιο με σπιν 1/2 και είναι

υπερσυμμετρικός εταίρος του φωτονίου.

Αφού όλα τα υπερσυμμετρικά σωμάτια είναι βραχύβια, μετά από μια σύγκρουση

σωματιδίων σε υψηλές ενέργειες, μόνο τα κανονικά σωμάτια και το γ̃ θα διατρέξουν

τον ανιχνευτή μας. Το γ̃ θα αλληλεπιδράσει με τα κουάρκ των αδρονίων και θα τα

διεγείρει σε s-κουάρκ γ̃ + q → q̃. Η ενεργός διατομή αυτής της διαδικασίας είναι:

σ =
∑
q

q (x) σ̂ (ŝ) dx (4.252)

όπου x είναι το κλάσμα της ορμής του αδρονίου που φέρει το κουάρκ, q (x) είναι

η συνάρτηση δομής των κουάρκ, και ŝ είναι οι επιμέρους ενεργές διατομές για τις
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διάφορες δυνατές διαδικασίες της γ̃ + q → q̃, ενώ η άθροιση είναι πάνω σε όλα τα

κουάρκ του αδρονίου.

Το τετράγωνο της ολικής ενέργειας του συστήματος (γ̃ + q), στο κέντρο ορμής

του, είναι ŝ = M̃2
, όπου M̃ είναι η μάζα του κουάρκ. Επίσης, έχουμε ότι ŝ = xs,

όπου s είναι το τετράγωνο της ενέργειας του αδρονίου και του photino στο κέντρο

ορμής του συστήματος. Το στοιχείο πίνακα της διαδικασίας είναι προσεγγιστικά:

M = eqeūu (4.253)

όπου το φορτίο του κουάρκ είναι 2/3 ή −1/3. Αντικαθιστώντας τους σπίνορες με

την κατάλληλη μάζα ūu ' M̃ , βλέπουμε ότι η μερική ενεργός διατομή σ̂ είναι [351]:

σ̂ = πe2
qe

2δ
(
ŝ− M̃2

)
(4.254)

και χρησιμοποιώντας την σχέση ŝ = xs, παίρνουμε:

σ̂ = πe2
qe

2 1

s
δ

(
x− M̃2

s

)
(4.255)

Αντικαθιστώντας την Εξ. 4.255 στην ολική ενεργό διατομή 4.252 και ολοκληρώνο-

ντας παίρνουμε:

σ =
4π2α

M̃2

∑
q

e2
qxq (x) (4.256)

όπου έχουμε αντικαταστήσει s = M̃2

x
. Το άθροισμα είναι ακριβώς ο παράγοντας

μορφής F2 του αδρονίου οπότε:

σ =
4π2α

M̃2
F2

(
M̃2/s

)
(4.257)

Για τυπικές τιμές M̃2 ' MW ' 102GeV θεωρώντας ότι το κουάρκ ανήκει σε πρω-

τόνιο, δηλαδή M̃2 'MW ' 102GeV , F2 = 0.15, η ολική ενεργός διατομή είναι:

σ(γ̃q) ' 10−33cm2 ' 1nb (4.258)

δηλαδή η τιμή αυτή είναι μια τυπική τιμή ενεργού διατομής σκέδασης νετρίνου γεγο-

νός που σημαίνει ότι το γ̃ αλληλεπιδρά εξαιρετικά ασθενώς με την ύλη, όπως και το

νετρίνο, και άρα δεν θα αλληλεπιδράσει πρακτικά με τον ανιχνευτή. Αν θεωρήσου-

με άλλο σωμάτιο ως το LSP το αποτέλεσμα αυτό δεν αλλάζει σημαντικά. ΄Αρα, η

έρευνα εύρεσης υπερσυμμετρικών σωματίων στρέφεται στην ανίχνευση γεγονότων
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με απώλειες ενέργειας και ορμής. Τέτοιες απώλειες αποτυπώνονται στη μορφή των

κατανομών αναλλοίωτης μάζας των σωματιδίων που παράγονται σε αυτά τα γεγονότα.

Στους αδρονικούς επιταχυντές, τα σκεδαζόμενα παρτόνια μπορούν να παράξουν

υπερσυμμετρικά σωματίδια τόσο με ηλεκτρασθενείς όσο και με ισχυρές διαδικασίες.

Κοινό χαρακτηριστικό όλων των δυνατών διαδικασιών είναι η παραγωγή των υπερ-

συμμετρικών σωματιδίων σε ζεύγη. Κάθε γεγονός που παράγει δύο υπερσυμμετρικά

σωματίδια, δίνει ως τελική κατάσταση δυο LSP που θα διαφύγουν του ανιχνευτή.

΄Ετσι, κάθε υπερσυμμετρικό γεγονός θα έχει χαμένη ενέργεια τουλάχιστον:

ME = 2 (mLSP ) c2
(4.259)

Πειραματικά όμως, αυτό που μετράται σε έναν ανιχνευτή είναι η εγκάρσια ενέργεια

ενός σωματιδίου:

ET = E sin θ (4.260)

όπου θ η γωνία μεταξύ σωματιδιακής δέσμης και διεύθυνσης σκέδασης. ΄Ετσι, με-

τράμε στην ουσία την χαμένη εγκάρσια ενέργεια MET ενός γεγονότος. Γενικά, ένα

υπερσυμμετρικό γεγονός θα έχει:

n λεπτόνια +m αδρονικα jets +MET (4.261)

Υπάρχουν επίσης σημαντικές διαδικασίες της φυσικής του ΚΠ που δίνουν ίδια προ-

ϊόντα με την εκάστοτε υπό μελέτη διαδικασία και αποτελούν το υπόβαθρο της. Για να

βρούμε έτσι ένα σήμα “νέας φυσικής” πρέπει να το αναδείξουμε μέσα από ένα πλήθος

σημάτων παρόμοιων προϊόντων. Κυρίαρχο ρόλο στο υπόβαθρο παίζουν οι διασπάσεις

W και Z που δίνουν νετρίνα και άρα MET .

΄Ενα κλασικό υπερσυμμετρικό σήμα αποτελείται από γεγονότα με αδρονικά jets

καιMET , χωρίς όμως την παρουσία λεπτονίου ώστε να μειωθεί το πλούσιο υπόβαθρο

του ΚΠ. Το υπόβαθρο, μπορεί επίσης να περιοριστεί από την εφαρμογή συνθηκών

αποκοπής - απόρριψης γεγονότων.

΄Ενα άλλο πιθανό σήμα μπορεί να περιέχει τρία λεπτόνια, MET και ίσως και jets.

Αυτό αντιστοιχεί στην διαδικασία που περιγράφεται στο Σχ. 4.19. Πολλές διαφο-

ροποιήσεις σε αυτή την διαδικασία που μπορούν να πραγματοποιηθούν συνοδεύονται

συνήθως από υψηλής εγκάρσιας ορμής αδρονικά jets.

Μια ακόμα δυνατότητα παρατήρησης της υπερσυμμετρίας, με ελέγξιμο υπόβαθρο,

είναι με όμοιου φορτίου διλεπτονικό σήμα, MET και jets. Επίσης, μπορούμε να

έχουμε και το ίδιο με αντίθετου φορτίου λεπτόνια. Αυτό μπορεί να παραχθεί με την
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ακολουθία:

g̃ → qq̃, q̃ → qÑ2, Ñ2 → l±l̃, l̃→ l∓Ñ1

q̃ → qÑ2 → ql±l̃→ ql±l∓Ñ1

(4.262)

Το neutralino Ñ2 (ή αλλιώς χ̃0
2) όπου τελικά θα δώσει το επίσης ουδέτερο αλλά

ελαφρύτερο Ñ1 (ή αλλιώς χ̃0
1), ευθύνεται για το διαφορετικό πρόσημο των λεπτονίων.

Σχήμα 4.19: Διάγραμμα Feynmann με διαδοχικές διασπάσεις, τριλεπτονικό σήμα και MET .

4.4.3 Αποτελέσματα ανίχνευσης LSP

Συγκεκριμένα, όσον αφορά τους υποψηφίους LSP για ΣΥ, το s-νετρίνο έχει απο-

κλειστεί στο MSSM λόγω των ορίων για την ενεργό διατομή αλληλεπίδρασης των

σωματιδίων της ΣΥ με τη συνηθισμένη ύλη, όπως μετράται από πειράματα άμεσης

ανίχνευσης. Συγκεκριμένα, το s-νετρίνο αλληλεπιδρά μέσω ανταλλαγής Z μποζονίων

και έτσι θα έπρεπε να έχουν ανιχνευθεί μέχρι τώρα αν αποτελούσαν την ΣΥ.

Το gravitino είναι πιθανός υποψήφιος ΣΥ σε υπερσυμμετρικά μοντέλα στα οποία η

κλίμακα σπασίματος της υπερσυμμετρίας είναι χαμηλή, κοντά στα 100TeV . Σε τέτοια

μοντέλα το gravitino είναι πολύ ελαφρύ της τάξης του O (1eV ). Το gravitino πολλές

φορές αναφέρεται και ως super-WIMP καθώς η δύναμη αλληλεπίδρασης του είναι πο-

λύ ασθενέστερη από αυτές των άλλων υπερσυμμετρικών σωματιδίων υποψηφίων ΣΥ.

Για τον ίδιο λόγο, η άμεση θερμική παραγωγή του στο πρώιμο Σύμπαν δεν επαρκεί

για να εξηγήσει την παρατηρηθείσα αφθονία ΣΥ. ΄Ετσι, η προτεινόμενη πιθανότητα

είναι τα gravitinos να έχουν παραχθεί μέσω της διάσπασης του επόμενου ελαφρύτερου

υπερσυμμετρικού σωματιδίου (Next to Lightest Supersymmetric Particle - NLSP)

Ο πιο πιθανός υποψήφιος αυτή την στιγμή είναι το neutralino. Στα πιο πολλά μο-

ντέλα το ελαφρύτερο neutralino είναι κυρίως bino (εταίρος του U (1) πεδίου βαθμίδας
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που αντιστοιχεί στο ασθενές υπερφορτίο, δηλαδή του πεδίου B) με κάποιες προσμίξεις

από wino (εταίρος του πεδίου βαθμίδας που αντιστοιχεί στο ασθενές ισοσπίν, δηλαδή

του πεδίου SU (L)) και/ή ουδέτερου Higgsino. Γενικά, τα βαριά υπερσυμμετρικά σω-

μάτια, όπως και τα μαγνητικά μονόπολα είναι και αυτά πολύ δύσκολο να ανιχνευθούν

καθώς η μικρή κινητική τους ενέργεια της τάξεως

〈T 〉 ' 50KeV (4.263)

τα εμποδίζει να διεγείρουν άτομα ή πυρήνες. ΄Οσον αφορά την έμμεση ανίχνευση

του, το neutralino, διαπερνώντας τον ΄Ηλιο χάνει ενέργεια λόγω της αλληλεπίδρα-

σης του με πυρήνες ηλίου και πρωτόνια. ΄Ετσι, λόγω της μικρής τους κινητικής τους

ενέργειας πολλά από τα neutralinos δεν έχουν ταχύτητα μεγαλύτερη από την ταχύτη-

τα διαφυγής του ΄Ηλιου και έτσι παγιδεύονται. ΄Ομως, λόγω της εξαιρετικά υψηλής

θερμοκρασίας στο κέντρο του ΄Ηλιου τα neutralinos αντιδρούν μεταξύ τους και εξα-

ϋλώνονται. Στη συνέχεια, τα προϊόντα της εξαΰλωσης αλληλεπιδρούν με την σειρά

του με άλλα σωματίδια του πυρήνα του Ηλίου με αποτέλεσμα την παραγωγή νετρίνων

και αντι-νετρίνων πολύ μεγάλης ενέργειας τα οποία είναι ικανά να ανιχνευθούν εδώ

στην Γη με τους ήδη υπάρχοντες ανιχνευτές, όπως ο Super Kamiokande. Το κάτω

όριο της μάζας του neutralino σύμφωνα με τα αποτελέσματα του LEP2 είναι περίπου

18GeV , ενώ το άνω όριο ανάλογα με το μοντέλο για το σπάσιμο της υπερσυμμετρίας

σύμφωνα με θεωρητικούς υπολογισμούς κυμαίνεται από 500GeV −10TeV [352,353].

Για τα κάτω όρια, θα δούμε περισσότερες λεπτομέρειες για διάφορες περιπτώσεις στην

συνέχεια από τις αναζητήσεις του LHC.

4.4.4 Αποτελέσματα από επιταχυντές

Μέχρι στιγμής δεν υπάρχουν αποδείξεις για την ύπαρξη υπερσυμμετρίας στην ασθενή

κλίμακα από τα δεδομένα που έχουν αναλυθεί στο LHC. Τα τελευταία δεδομένα

έχουν αποκλείσει την ύπαρξη “χρωματιστών” υπερσυμμετρικών σωματιδίων (κυρίως

του gluino και των s-κουάρκ πρώτης γενιάς) με μάζες κάτω από 1TeV [354,355]. Τα

ακριβή όρια σχετίζονται με το εκάστοτε μοντέλο. Ωστόσο, υπάρχουν περιοχές του

παραμετρικού χώρου όπου ελαφριά s-κουάρκ και gluinos κάτω από 1TeV δεν έχουν

αποκλειστεί εντελώς.

Οι πειραματικοί περιορισμοί που έχουν δοθεί μέχρι στιγμής προέρχονται κυρίως α-

πό τις συγκρούσεις ηλεκτρονίου-ποζιτρονίου του LEP ο οποίος δούλευε στο CERN

ανάμεσα στο 1989 και 2000 με μέγιστη ενέργεια 209GeV , αλλά και από τις συ-
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γκρούσεις πρωτονίου-αντι-πρωτονίου στα πειράματα CDF και D0 στο Tevatron με

ενέργεια κέντρου μάζας μέχρι 1.96TeV . Ακόμα, είχαμε συγκρούσεις από τον συ-

γκρουστή “Hadron-Electron Ring Accelerator” (HERA) ηλεκτρονίων-πρωτονίου

με τα πειράματα H1 και “ZEUS” ανάμεσα στο 1992 και 2007 σε ενέργειες μέχρι

318GeV . Τέλος, αυτή την στιγμή “τρέχει” το σημαντικότερο μέχρι στιγμής πρόγραμ-

μα ανίχνευσης της υπερσυμμετρίας στον LHC στο CERN όπου με συγκρούσεις

πρωτονίου-πρωτονίου τα πειράματα ATLAS και CMS ανιχνεύουν γεγονότα σε ε-

νέργειες μέχρι 13TeV .

Σχήμα 4.20: Ενεργές διατομές για παραγωγή ζευγών διαφόρων υπερσυμμετρικών σωματιδίων

σαν συνάρτηση της μάζας τους στον LHC για ενέργεια κέντρου μάζας 8TeV . Οι τυπικές ενεργές

διατομές παραγωγής χρωματιστών s-κουάρκ και gluino είναι αρκετές τάξεις μεγέθους μεγαλύτερες

από αυτές των λεπτονίων ή των charginos [354].

΄Οπως έχουμε αναφέρει ήδη, ο μηχανισμός σπασίματος της υπερσυμμετρίας είναι

άγνωστος οπότε η γενική προσέγγιση από την πιο γενική ήπια υπερσυμμετρική λα-

γκρατζιανή προσθέτει ένα σημαντικό αριθμό από ελεύθερες παραμέτρους. Για το

MSSM, όπως είδαμε και στο εδάφιο 4.2.4, έχουμε 105 νέες παραμέτρους. Η φαινομε-

νολογική ανάλυση των ανιχνεύσεων της υπερσυμμετρίας για μείωση των παραμέτρων

256



4.4. Πειραματικά δεδομένα Μαρούδας Μάριος

δεν είναι εύκολη, ωστόσο, για πρακτική ερμηνεία των υπερσυμμετρικών αναζητήσεων

σε επιταχυντές έχουν ληφθεί υπόψιν διάφορες προσεγγίσεις που μειώνουν τον αριθμό

των ελεύθερων παραμέτρων. Μια προσέγγιση είναι να θεωρήσουμε έναν μηχανισμό

σπασίματος της υπερσυμμετρίας και να ελαττώσουμε τον αριθμό των παραμέτρων

μέσω της θεώρησης επιπλέον περιορισμών. Συγκεκριμένα, υπάρχουν εξηγήσεις των

πειραματικών δεδομένων σε περιορισμένα μοντέλα που το σπάσιμο της υπερσυμμε-

τρίας φέρεται από “βαρύτητα” [208, 209], από “βαθμίδα” [165, 210] και από “ανωμα-

λίες” [211,212].

Σχήμα 4.21: Ο παραμετρικός χώρος του μοντέλου CMSSM και διάφορα test points [356].

Το πιο δημοφιλές μοντέλο για επεξήγηση ανιχνεύσεων της υπερσυμμετρίας σε

επιταχυντές είναι το περιορισμένο MSSM (Constrained MSSM - CMSSM) ή αλλιώς

Minimal SUper GRAvity (MSUGRA) [170, 208, 357], το οποίο προέρχεται από την

υπερβαρύτητα. Η διαφορά του από το MSSM είναι ότι επιβάλλονται καθολικές συνο-

ριακές συνθήκες στις μάζες των gluinos, των βαθμωτών σωματιδίων καθώς και στις

τριγραμμικές σταθερές ζεύξης στην κλίμακα ενοποίησης. Αυτές είναι και οι μόνες
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πηγές ήπιας παραβίασης της υπερσυμμετρίας. Αυτό έχει ως αποτέλεσμα, το CMSSM

να περιγράφεται από 5 παραμέτρους:

m0, m1/2, A0, tan (β) , sign (µ) (4.264)

όπουm0 η κοινή μάζα των βαθμωτών s-φερμιονίων στην οποία τείνει η μάζα όλων των

s-κουάρκ και s-λεπτονίων σε ενέργειες κλίμακας GUT, m1/2, η κοινή μάζα των gaug-

inos σε αυτές τις ενέργειας, A0 η παράμετρος τριγραμμικής ζεύξης, tan (β) ο λόγος

των VEV του πεδίου Higgs για πάνω-τύπου και κάτω-τύπου φερμιόνια και sign (µ)

το πρόσημο της µ παραμέτρου μάζας του higgsino που καθορίζεται στην ηλεκτρα-

σθενή κλίμακα. Οι μάζες των υπερσυμμετρικών σωματιδίων εξαρτώνται κυρίως από

τις τιμές των m0 και m1/2 και λιγότερο από τις υπόλοιπες τρεις παραμέτρους. Αυτός

είναι και ο λόγος που συνήθως στις περισσότερες μελέτες του CMSSM δίνονται στις

τελευταίες σταθερές τιμές. Διαφορετικοί συνδυασμοί μαζών οδηγούν σε διαφορετική

φαινομενολογία και διαφορετικά κυρίαρχα σημεία παρατήρησης της υπερσυμμετρίας.

Το πλάνο του παραμετρικού χώρου φαίνεται στο Σχ. 4.21 μαζί με τα διάφορα ση-

μεία “test points” τα οποία μελετώνται. ΄Ετσι, τα CMSSM μοντέλα παρέχουν ένα

ευρύ φάσμα από πειραματικές ενδείξεις και άρα αποτελούν ένα χρήσιμο πλαίσιο για

σύγκριση επιδόσεων και ορίων των διάφορων πειραματικών μεθόδων.

Σχήμα 4.22: Ο παραμετρικός χώρος του μοντέλου CMSSM που επιτρέπεται από τα πειράματα

είναι με πράσινο χρώμα [358]. Η διακεκομμένη γραμμή γύρω από το όριο της επιτρεπόμενης περιοχής

είναι πρόβλεψη από το μοντέλο [359].
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Ωστόσο, οι σχέσεις που έχουν εισαχθεί στις παραμέτρους σπασίματος της υπερ-

συμμετρίας δεν καλύπτουν όλες τις κινηματικές υπογραφές και σχέσεις μαζών της

υπερσυμμετρίας. Σήμερα, ο επιτρεπόμενος παραμετρικός χώρος στο CMSSM έχει

μειωθεί σημαντικά από τα πειράματα ATLAS και CMS (βλέπε Σχ. 4.22). Αν συ-

γκρίνουμε όμως αυτόν τον παραμετρικό χώρο με τον αντίστοιχο που παραμένει από

άμεσες και έμμεσες παρατηρήσεις από πειράματα χωρίς επιταχυντές, βλέπουμε ότι

ίσως το CMSSM δεν είναι πλέον κατάλληλο πλαίσιο για τον χαρακτηρισμό των α-

ποτελεσμάτων από ανιχνεύσεις υπερσυμμετρίας στον LHC. Για αυτό τον λόγο τα

τελευταία χρόνια προσπαθούν να εισαχθούν πιο ελεύθερες προσεγγίσεις, όπως για

παράδειγμα μέσω του φαινομενολογικού-MSSM ή pMSSM [360,361]. Αυτό προκύπτει

από το MSSM χρησιμοποιώντας πειραματικά δεδομένα για να διαγράψει παραμέτρους

οι οποίοι είναι γενικά ελεύθεροι αλλά έχουν περιοριστεί σημαντικά από πειραματικές

μετρήσεις. Αυτή η προσέγγιση μειώνει τον αριθμό των ελεύθερων παραμέτρων σε 19

(βλέπε Σχ. 4.23). Τέλος, να αναφέρουμε πως υπάρχουν και τα απλοποιημένα μοντέλα

(simplified models) [362–365] τα οποία θεωρούν ένα περιορισμένο αριθμό παραγωγής

υπερσυμμετρικών σωματιδίων και διασπάσεων και αφήνουν ανοιχτή την πιθανότητα

να έχουμε διάφορες μάζες και παραμέτρους που να μεταβάλλονται ελεύθερα. Στην

συνέχεια, θα δούμε ορισμένα βασικά πειραματικά αποτελέσματα (βλέπε [354] για πε-

ρισσότερες λεπτομέρειες).

Σχήμα 4.23: Περίληψη του μοντέλου pMSSM από το πείραμα ATLAS. Κάθε κάθετη μπάρα είναι

μονοδιάστατη προβολή του κλάσματος των σημείων από μοντέλα που απορρίπτονται. Η χρωματική

κωδικοποίηση αντιπροσωπεύει το κλάσμα των σημείων από μοντέλα που απορρίπτονται για κάθε

υπερσυμμετρικό σωματίδιο.
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΄Ορια στις μάζες των s-κουάρκ και gluino

Τα gluino και s-κουάρκ φέρουν φορτίο χρώματος αφού είναι οι υπερσυμμετρικοί ε-

ταίροι των γκλουονίων και των κουάρκ του ΚΠ. Τα όρια στις μάζες των s-κουάρκ

είναι της τάξεως των 100GeV και έχουν δοθεί από τα πειράματα του LEP. Ωστόσο,

λόγω της “χρωματικής” παραγωγής αυτών των σωματιδίων σε αδρονικούς επιτα-

χυντές, τα πειράματα σε αδρονικούς επιταχυντές δίνουν καλύτερα όρια (βλέπε Σχ.

4.20). Σήμερα, τα όρια των πειραμάτων του LHC “κυριαρχούν” για την άμεση α-

ναζήτηση gluino και s-κουάρκ. Θεωρώντας διατήρηση της R-ομοτιμίας και πως τα

gluino είναι βαρύτερα από τα s-κουάρκ, τα s-κουάρκ θα διασπώνται κυρίως σε ένα

κουάρκ και ένα neutralino ή chargino, αν επιτρέπεται κινηματικά. Η διάσπαση αυτή

μπορεί να περιλαμβάνει το ελαφρύτερο neutralino (δηλαδή το LSP) ή ένα chargino,

αλλά ανάλογα με τις μάζες των gaugino μπορεί να περιλαμβάνει βαρύτερα neutralino

ή chargino. Για παραγωγή σε ζεύγη πρώτης και δεύτερης γενιάς s-κουάρκ οι πιο

απλές διασπάσεις περιλαμβάνουν δύο jets και χαμένη ορμή. Παρομοίως, παραγωγή

σε ζεύγη των gluino οδηγεί σε 4 jets και χαμένη ορμή. Στον Πίνακα 4.7 βλέπου-

με μια σχηματική επισκόπηση χαρακτηριστικών ενδείξεων τελικών καταστάσεων από

παραγωγή gluino και s-κουάρκ για διαφορετικές ιεραρχίες μαζών και θεωρώντας πως

οι διασπάσεις περιέχουν το ελαφρύτερο neutralino.

Ιεραρχία μαζών Βασική παραγωγή Κυρίαρχη διάσπαση Τυπικό σήμα

mq̃ � mg̃ q̃q̃, q̃q̃ q̃ → qχ̃0
1 ≥ 2jets+ Emiss

T +X

mq̃ ≈ mg̃ q̃g̃, q̃g̃ q̃ → qχ̃0
1 ≥ 3jets+ Emiss

T +X

g̃ → qq̃χ̃0
1

mq̃ � mg̃ g̃g̃ g̃ → qq̃χ̃0
1 ≥ 2jets+ Emiss

T +X

Πίνακας 4.7: Τυπικά πειραματικά σήματα σε αδρονικούς επιταχυντές για άμεση παραγωγή gluino

και πρώτης και δεύτερης γενιάς s-κουάρκ θεωρώντας διαφορετικές ιεραρχίες μάζας [354].

Τα όρια που έχουν τεθεί από πειράματα στο Tevaron για την μάζα των gluino,

θεωρούν το CMSSM με tan β = 5 (CDF) ή tan β = 3 (D0), A0 = 0 και µ < 0, και

έχουν βρει κάτω όρια περίπου 310GeV για όλες τις μάζες s-κουάρκ, ή 390GeV για

την περίπτωση mq̃ = mg̃ [366,367]. Το LHC, ωστόσο, έχει μειώσει και άλλο τα όρια

αυτά, ήδη από τον πρώτο χρόνο λειτουργίας του το 2010 (βλέπε Σχ. 4.24 και 4.25).
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Σχήμα 4.24: Συγκεντρωτικά, τα όρια του πειράματος ATLAS στο CERN για την μάζα του

gluino και neutralino για το Gtt απλοποιημένο μοντέλο σε ανάλυση για 8TeV [368].

Σχήμα 4.25: Συγκεντρωτικά, τα παρατηρούμενα και αναμενόμενα όρια του πειράματος CMS στο

CERN για διπλή παραγωγή του gluino [369].
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Μοντέλο Υπόθεση mq̃ mg̃

mq̃ ≈ mg̃ ≈ 1700 ≈ 1700

CMSSM all mq̃ − ≈ 1300

all mg̃ ≈ 1600 −
Απλοποιημένο μοντέλο mχ̃0

1
= 0, mq̃ ≈ mg̃ ≈ 1700 ≈ 1700

g̃q̃, g̃q̃ mχ̃0
1

= 0, all mq̃ − ≈ 1400

mχ̃0
1

= 0, all mg̃ ≈ 1400 −
Απλοποιημένα μοντέλα g̃g̃

g̃ → qq̃χ̃0
1 mχ̃0

1
= 0 − ≈ 1200

mχ̃0
1
>≈ 450 − no limit

g̃ → bb̃χ̃0
1 mχ̃0

1
= 0 − ≈ 1200

mχ̃0
1
>≈ 650 − no limit

g̃ → tt̃χ̃0
1 mχ̃0

1
= 0 − ≈ 1400

mχ̃0
1
>≈ 700 − no limit

Απλοποιημένα μοντέλα q̃q̃

q̃ → qχ̃0
1 mχ̃0

1
= 0 ≈ 800 −

mχ̃0
1
>≈ 300 no limit −

ũL → qχ̃0
1 mχ̃0

1
= 0 ≈ 450 −

mχ̃0
1
>≈ 100 no limit −

b̃→ bχ̃0
1 mχ̃0

1
= 0 ≈ 650 −

mχ̃0
1
>≈ 300 no limit −

t̃→ tχ̃0
1 mχ̃0

1
= 0 ≈ 700 −

mχ̃0
1
>≈ 250 no limit −

t̃→ bχ̃±1 mχ̃0
1

= 0 ≈ 700 −(
mχ̃±1

−mχ̃0 > 5GeV
)

mχ̃0
1
>≈ 300 no limit −

t̃→ bχ̃±1 mχ̃0
1

= 0 ≈ 500 −(
mt̃ −mχ̃± > 10GeV

)
mχ̃0

1
>≈ 200 no limit −

t̃→Wbχ̃0
1 mχ̃0

1
<≈ 200 ≈ 300 −(

mt̃ −mχ̃0 > mb +mW

)
t̃→ cχ̃0

1 mχ̃0
1
<≈ 200 ≈ 250 −(

mt̃ −mχ̃0 > mc

)
Πίνακας 4.8: Περίληψη των ορίων μαζών για τα gluino και s-κουάρκ, χρησιμοποιώντας διαφο-

ρετικές προσεγγίσεις, και θεωρώντας διατήρηση της R-ομοτιμίας. Οι μάζες στον πίνακα αυτό είναι

σε GeV [354].
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Μια περίληψη των σημαντικότερων ορίων μαζών s-κουάρκ και gluino για διάφορες

προσεγγίσεις, θεωρώντας διατήρηση της R-συμμετρίας, φαίνεται στον Πίνακα 4.8.

Για μάζες των gluino έχουμε παρόμοια όρια που κυμαίνονται από 1.2 − 1.4TeV και

προκύπτουν από διαφορετικές προσεγγίσεις μοντέλων. Ωστόσο, για μάζες neutralino

πάνω από 700GeV τα πειράματα ATLAS και CMS δεν μπορούν να θέσουν όρια

στην μάζα του gluino. Τέλος, τα όρια για άμεση παραγωγή s-κουάρκ εξαρτώνται

πολύ από το εκάστοτε μοντέλο. Συγκεκριμένα, για άμεση παραγωγή πάνω s-κουάρκ

υπάρχουν μεγάλες περιοχές στον παραμετρικό χώρο όπου μάζες κάτω από 0.5TeV

δεν μπορούν να απορριφθούν. Αυτό ισχύει επίσης για s-κουάρκ πρώτης και δεύτερης

γενιάς όταν θεωρείται μόνο ένα s-κουάρκ. Επιπρόσθετα, για μάζες neutralino πάνω

από 300GeV δεν έχει δοθεί από τον LHC κανένα όριο για άμεση παραγωγή s-κουάρκ.

Ο Πίνακας 4.7 δείχνει μια σχηματική περίληψη των χαρακτηριστικών σημάτων τελικών

καταστάσεων παραγωγής gluino και s-κουάρκ για διαφορετικές ιεραρχίες μάζας και

θεωρώντας πως οι διασπάσεις περιλαμβάνουν το ελαφρύτερο neutralino.

΄Ορια στις μάζες των chargino και neutralino

Τα charginos και τα neutralinos προέρχονται από την μίξη των φορτισμένων wino

και higgsino καταστάσεων και του ουδέτερου wino και higgsino καταστάσεων α-

ντίστοιχα. Η μίξη καθορίζεται από έναν περιορισμένο αριθμό παραμέτρων. Για τα

charginos είναι η παράμετρος μάζας του wino M2, η παράμετρος μάζας του higgsino

µ και η tan (β), ενώ για τα neutralinos είναι οι ίδιες παράμετροι συν η παράμετρος

μάζας του bino M1. Οι μαζικές καταστάσεις είναι 4 charginos χ̃+
1 , χ̃

−
1 , χ̃

+
2 και χ̃−2 ,

και 4 neutralinos χ̃0
1, χ̃

0
2, χ̃

0
3 και χ̃0

4 διατεταγμένα με αυξανόμενη μάζα. Ανάλογα

με την μίξη, η σύνθεση των neutralino και των chargino “κυριαρχείται” από συ-

γκεκριμένες καταστάσεις που ονομάζονται τύπου-bino (M1 � M2, µ), τύπου-wino

(M2 � M1, µ), ή τύπου-higgsino (µ � M1,M2). Αν θεωρηθεί ενοποίηση μαζών

gaugino στην κλίμακα GUT, προκύπτει στην ηλεκτρασθενή κλίμακα η σχέση:

M1 =
5

3
tan2θWM2 ≈ 0.5M2 (4.265)

όπου θW η ηλεκτρασθενή γωνία μίξης. Τα charginos και τα neutralinos δεν περιέχουν

φορτίο χρώματος και έχουν μόνο ηλεκτρασθενές ζεύξεις, αγνοώντας την βαρύτητα.

Τα αποτελέσματα του πειράματος CMS για ηλεκτρασθενείς αναζητήσεις gaugino

φαίνονται στο Σχ. 4.26. Τα αποτελέσματα του ATLAS είναι και αυτά παρόμοια όπως

φαίνεται στο Σχ. 4.27.
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Σχήμα 4.26: Συγκεντρωτικά, τα όρια για τις μάζες των chargino και neutralino όπως δίνονται

από το πείραμα CMS στο CERN [354].

Σχήμα 4.27: Συγκεντρωτικά, τα όρια για τις μάζες των chargino και neutralino όπως δίνονται

από το πείραμα ATLAS στο CERN μέχρι τον Σεπτέμβριο του 2015 [368].
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Υπόθεση mχ

χ̃±1 , all ∆m
(
χ̃±1 , χ̃

0
1

)
> 92

χ̃±1 ∆m > 5, mν̃ > 300 > 103.5

χ̃±1 , m(l̃,ν̃) =
(
mχ̃±1

+mχ̃0
1

)
/2

mχ̃0
1
≈ 0 103.5− 115, > 550

χ̃±1 , mχ̃0
1
> 150 no LCH limit

χ̃±1 , ml̃ > mχ̃±1
no LCH limit

mχ̃±1
= mχ̃0

2
, ml̃L

=
(
mχ̃±1

+mχ̃0
1

)
/2

mχ̃0
1
≈ 0 > 730

mχ̃0
1
> 350 no LCH limit

mχ̃±1
= mχ̃0

2
, ml̃R

=
(
mχ̃±1

+mχ̃0
1

)
/2

mχ̃0
1
≈ 0 > 350

mχ̃0
1
> 100 no LCH limit

mχ̃±1
= mχ̃0

2
, ml̃ > mχ̃±1

, BF (WZ) = 1

mχ̃0
1
≈ 0 > 300

mχ̃0
1
> 100 no LCH limit

mχ̃±1
= mχ̃0

2
, ml̃ > mχ̃±1

, BF (WH) = 1

mχ̃0
1
≈ 0 > 280

mχ̃0
1
> 50 no LCH limit

Πίνακας 4.9: Περίληψη των ορίων μαζών των ασθενών gaugino θεωρώντας διατήρηση της R-

ομοτιμίας. Οι μάζες στον πίνακα αυτό είναι σε GeV [354].

΄Ορια στις μάζες των s-λεπτονίων

Σε μοντέλα με ενοποίηση των μαζών των s-λεπτονίων και του gaugino στην GUT

κλίμακα, το δεξιόστροφο s-λεπτόνιο, l̃R, θεωρείται πως είναι ελαφρύτερο από το

αριστερόστροφο s-λεπτόνιο l̃L. Για τα tau s-λεπτόνια μπορεί να υπάρχει σημαντική

μίξη μεταξύ των αριστερόστροφων και δεξιόστροφων καταστάσεων που θα οδηγεί σε

μια σημαντική διαφορά μαζών ανάμεσα στο ελαφρύτερο τ̃1 και στο βαρύτερο τ̃2.

Οι πιο “ανεξάρτητες από το μοντέλο” αναζητήσεις για s-ηλεκτρόνια, s-μιόνια και

s-ταυ προέρχονται από τον LEP. ΄Οπως φαίνεται και στο Σχ. 4.20, στον LHC, η δι-

πλή παραγωγή s-λεπτονίων όχι μόνο καταστέλλεται σε σχέση με την διπλή παραγωγή

χρωματιστών υπερσυμμετρικών σωματιδίων αλλά είναι και περίπου δύο τάξεις μικρότε-
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ρη από την διπλή παραγωγή chargino και neutralino. Παρόλα αυτά, τα πειράματα

ATLAS και CMS έχουν αναζητήσει την άμεση παραγωγή ζευγών s-ηλεκτρονίων και

ζευγών s-μιονίων στον LHC, με κάθε s-λεπτόνιο να διασπάται στον αντίστοιχο λε-

πτονικό εταίρο του ΚΠ και στο χ̃0
1 LSP. Τα όρια που έχουν τεθεί σε αυτό το μοντέλο

από τα δύο πειράματα [370,371] είναι: 220GeV για l̃R, και 290GeV για l̃L, για άμαζο

χ̃0
1 και θεωρώντας ίσες μάζες s-ηλεκτρονίων και s-μιονίων, όπως φαίνεται στο Σχ.

4.28. Στον Πίνακα 4.10 βλέπουμε συγκεντρωτικά τα αποτελέσματα από τους δύο

επιταχυντές.

Υπόθεση ml̃

µ̃R,∆m (µ̃R, χ̃
0
1) > 10 > 94

ẽR,∆m (ẽR, χ̃
0
1) > 10 > 94

ẽR, any ∆m > 73

τ̃R,∆m (τ̃R, χ̃
0
1) > 7 > 87

ν̃e,∆m (ẽR, χ̃
0
1) > 10 > 94

mẽR = mµ̃R ,mχ̃0
1
≈ 0 > 220

mχ̃0
1
>≈ 90 no LCH limit

mẽL = mµ̃L ,mχ̃0
1
≈ 0 > 290

mχ̃0
1
>≈ 150 no LCH limit

Πίνακας 4.10: Περίληψη των ορίων μαζών των s-λεπτονίων από τον LHC και τον LEP θεω-

ρώντας διατήρηση της R-ομοτιμίας και 100% “branching fraction” για l̃ → lχ̃0
1. Οι μάζες είναι σε

GeV [354].
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Σχήμα 4.28: ΄Ορια για τις μάζες l̃R και l̃L θεωρώντας ίδιες μάζες s-ηλεκτρονίων και s-μιονίων

[354,368].
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Κεφάλαιο 5

Συμπεράσματα θεωριών

ενοποίησης

΄Οπως είδαμε στα προηγούμενα κεφάλαια, υπάρχει ένα μεγάλο πλήθος από υποψήφιες

θεωρίες οι οποίες προσπαθούν να λύσουν τα υπάρχοντα προβλήματα του ΚΠ (βλέπε

εδάφιο 2.4) με διαφορετικό ποσοστό επιτυχίας κάθε φορά. Οπότε, στο κεφάλαιο αυτό

θα προσπαθήσουμε αφενός να κάνουμε έναν απολογισμό των θεωριών που έχουμε α-

ναπτύξει, δηλαδή των GUT και της υπερσυμμετρίας (βλέπε εδάφιο 5.1), και αφετέρου,

να δούμε επιγραμματικά τι εναλλακτικές επιλογές υπάρχουν καθώς και το βαθμό απο-

τελεσματικότητας τους, όπως και το πλήθος και το είδος των μειονεκτημάτων τους.

΄Ολες οι θεωρίες που έχουμε μέχρι στιγμής αναφέρει έχουν ένα βασικό μειο-

νέκτημα, ότι αγνοούν εντελώς τις βαρυτικές αλληλεπιδράσεις. Μια θεωρία η οποία

θα μπορέσει να ενοποιήσει όλες τις αλληλεπιδράσεις και να εξηγήσει με ακρίβεια όλα

τα φυσικά φαινόμενα αλλά και να λύσει τα υπάρχοντα προβλήματα ονομάζεται γε-

νικά Θεωρία των Πάντων. ΄Οπως θα δούμε (βλέπε εδάφιο 5.2), οι θεωρίες αυτές,

μέχρι στιγμής επικεντρώνονται κυρίως στην ενοποίηση της ΚΘΠ και της ΓΘΣ σε

μια θεωρία ΚΒ, καθώς αυτό είναι το πρώτο βήμα για μια επιτυχημένη ενοποίηση των

αλληλεπιδράσεων. Ο λόγος είναι πως η εισαγωγή της βαρύτητας στην κλασική ΚΘΠ,

την οποία χρησιμοποιούμε για την περιγραφή των υπόλοιπων αλληλεπιδράσεων, είναι

αδύνατη λόγω της φύσης της ΓΘΣ και της ανεξαρτησίας της από το υπόβαθρο. Υπάρ-

χει ένα μεγάλο πλήθος από διαφορετικές προσεγγίσεις (βλέπε εδάφιο 5.2.1), η ακριβής

αναφορά και διατύπωση των οποίων ξεπερνά τους στόχους αυτής της εργασίας. Ω-

στόσο, θα προσπαθήσουμε να σκιαγραφήσουμε τις βασικές από αυτές αναφέροντας

τα βασικά χαρακτηριστικά τους. Παρόλο το μεγάλο πλήθος των πιθανών επιλογών,
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φαίνεται πως μέχρι στιγμής βρισκόμαστε μακριά από μια τελική θεωρία της φύσης.

Επιπρόσθετα, υπάρχει και ένα πλήθος θεωρητικών επιχειρημάτων, κατά της ίδιας της

ύπαρξης μιας τέτοιας θεωρίας (βλέπε εδάφιο 5.2.2).

΄Ετσι, λαμβάνοντας υπόψιν τους πειραματικούς περιορισμούς αλλά και τις θεωρητι-

κές προσεγγίσεις με τα αντίστοιχα προβλήματα που τις διακατέχουν, είναι απαραίτητη

η γνώση των στόχων αλλά και της “απόστασης” που πρέπει να διανύσουμε στην φυ-

σική μέχρι τον τελικό προορισμό της Θεωρίας των Πάντων (βλέπε εδάφιο 5.3). ΄Οπως

και να έχει όμως, η φυσική όπως και κάθε άλλη επιστήμη, προχωράει βήμα βήμα, και

αυτό που προέχει αυτή την στιγμή είναι η επίλυση των προβλημάτων του ΚΠ, γεγο-

νός που φαίνεται πως είναι πολύ πιθανό να πραγματοποιηθεί μέσω της φυσικής της

ενοποίησης.

5.1 Υπερσυμμετρία και μεγαλοενοποιημένες

θεωρίες

5.1.1 Απλές μεγαλοενοποιημένες θεωρίες

Το ελάχιστο Georgi - Glashow SU (5) ενοποιημένο μοντέλο (βλέπε εδάφιο 3.1.1)

έχει ήδη απορριφθεί καθώς προβλέπει λάθος ζεύξεις Yukawa (βλέπε Εξ. 3.43), άμαζα

νετρίνα, ενώ και οι ζεύξεις βαθμίδας δεν ενοποιούνται (βλέπε εδάφιο 3.4 ). Ο αρχικός

λόγος για την απόρριψη του ήταν η αύξηση της ακρίβειας στη μέτρηση της sin2θW

που δεν σύναδε με την θεωρητική πρόβλεψη (βλέπε εδάφιο 3.2.5) αλλά και η μη

παρατήρηση της διάσπασης του πρωτονίου από τα πειράματα IMB και Kamiokande

τα οποία έχουν θέσει κάτω όρια στον χρόνο ζωής του πρωτονίου τα οποία ξεπερνούν

την πρόβλεψη του μοντέλου. Ο δεύτερος λόγος είναι ότι τα πειράματα LEP και

“Stanford Linear Collider” (SLC) τα οποία μέτρησαν τις τρεις σταθερές ζεύξης

βαθμίδας για τις τρεις ομάδες βαθμίδας SU (3), SU (2), U (1) με ακρίβεια, κατέληξαν

σε αποτελέσματα που διαφωνούν με το μοτίβο που προβλεπόταν από το κλασικό μη

υπερσυμμετρικό μοντέλο SU (5).

Παρόλα αυτά, υπάρχουν όπως έχουμε ήδη δει, προεκτάσεις του μοντέλου οι οποίες

μπορούν να λύσουν αυτά τα προβλήματα. Μερικοί τέτοιοι τρόποι χωρίς την χρήση

της υπερσυμμετρίας, είναι:

• Για την ενοποίηση των σταθερών ζεύξεων, μπορεί να γίνει χρήση του επιπλέον

συμμετρικού μιγαδικού βαθμωτού πεδίου 15H και υψηλότερους διαστασιακά
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τελεστές για μάζες φορτισμένων φερμιονίων. Η γενική πρόβλεψη αυτού του

μοντέλου είναι ένα σετ από ελαφριά βαθμωτά λεπτοκουάρκ καθώς και ενδια-

φέρουσα φαινομενολογία. Συγκεκριμένα, ο προβλεπόμενος ρυθμός για την

διάσπαση του πρωτονίου αλλάζει έτσι ώστε τα σημερινά όρια να μη μπορούν να

αποκλείσουν την θεωρία. Το άνω όριο που βρέθηκε για αυτή την θεωρία είναι

τp ≤ 1.4× 1036ys [372].

• Χρήση του επιπλέον φερμιονικού συζυγούς πεδίου 24F [156,157]. Χρειαζόμα-

στε υψηλότερους διαστασιακά τελεστές και για τα φορτισμένα φερμιόνια αλλά

και για ρεαλιστικές ζεύξεις Yukawa νετρίνων Dirac. Η βασική πρόβλεψη αυ-

τού του μοντέλου είναι η ελαφριά φερμιονική SU (2) τριπλέτα με μάζα στην

ηλεκτρασθενή κλίμακα. Στην φαινομενολογία του εντάσσεται, επίσης, η παρα-

βίαση του λεπτονικού αριθμού σε επιταχυντές στην μορφή ίδιου προ-σήματος

διπλεπτονίων (dileptons).

• Χρήση της επιπλέον αναπαράστασης 45H η οποία συνεισφέρει στις φερμιονικές

μάζες, έτσι ώστε να προκύψουν οι σωστές σχέσεις μαζών από την ενοποίηση

Yukawa [78]. Η επιπλέον αυτή αναπαράσταση Higgs μπορεί να κατασκευαστεί

από 10× 10 = 5̄ + 45 + 50 και δίνει τις σχέσεις μαζών:

mµ = 3ms, 3me = md, mτ = mb (5.1)

έτσι ώστε:

ms

md

=
1

9

mµ

me

(5.2)

το οποίο συμφωνεί με τα πειραματικά αποτελέσματα. Το πρόβλημα αυτό μπορεί

να λυθεί και με άλλους τρόπους [79].

Το SU (5) όμως μοντέλο, παρόλες τις αποτυχίες του, παραμένει μια μεγάλη θε-

ωρητική επιτυχία που άνοιξε τον δρόμο για την μελέτη άλλων ομάδων βαθμίδας και

την τεράστια εξέλιξη που θα ερχόταν στις θεωρίες ενοποίησης. Η επόμενη ομάδα, η

SO (10) όπως είδαμε είναι μεγαλύτερη από την SU (5) και πολύ πλουσιότερη όσον

αφορά την δομή αλλά και τις προβλέψεις. Μπορεί να σπάσει σε διάφορες ενδιαφέρου-

σες υποομάδες με βασικές την SU (5)× U (1) που είναι η ομάδα της ανεστραμμένης

(flipped) SU (5) αλλά και η SO (4) × SO (6) των Pati-Salam. Η ενοποίηση μπορεί

να πραγματοποιηθεί και χωρίς την χρήση της υπερσυμμετρίας. Η SO (10) θεωρία

είναι για την ακρίβεια η ελάχιστη GUT θεωρία η οποία ενοποιεί την ύλη με τις αλλη-

λεπιδράσεις και περιέχει φυσικά μικρές μάζες νετρίνων μέσω του μηχανισμού seesaw.
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Η SO (10) μέσω της 16 σπινοριακής αναπαράστασης, μπορεί να ενοποιήσει όλη την

ύλη του ΚΠ μιας γενιάς με την πρόβλεψη του δεξιόστροφου νετρίνου. Η πλούσια

δομή της, αλλά και οι από φυσικού ενδιαφέροντος σημαντικές υποομάδες της, κάνουν

την SO (10) την “κυρίαρχη” υποψήφια GUT θεωρία.

5.1.2 Υπερσυμμετρία και MSSM

Η υπερσυμμετρία, όπως έχουμε δει, είναι μια γενίκευση των χωροχρονικών συμμετρι-

ών της κβαντικής θεωρίας πεδίου η οποία μετασχηματίζει τα μποζόνια σε φερμιόνια

και αντίστροφα (βλέπε εδάφιο 4.1). ΄Οπως έχει ήδη αναφερθεί, ο βασικός σκοπός

της υπερσυμμετρίας ήταν η επίλυση του προβλήματος της ιεραρχίας ανάμεσα στην ε-

νεργειακή κλίμακα που χαρακτηρίζει το σπάσιμο της ηλεκτρασθενής συμμετρίας (της

τάξεως των 100GeV ) και της κλίμακας Planck (βλέπε εδάφιο 4.1.1). ΄Ετσι, με χρήση

της υπερσυμμετρίας μπορεί να διατηρηθεί η μεγάλη ιεραρχία βαθμίδας χωρίς λεπτή

ρύθμιση των παραμέτρων (όπως απαιτεί το ΚΠ) και να δοθεί ένα φυσικό πλαίσιο

για τα στοιχειώδη βαθμωτά σωμάτια με την προϋπόθεση τα υπερσυμμετρικά σωμάτια

να έχουν μάζες ≤ O (1TeV ). Πέρα από αυτό όμως αποδείχθηκε πως η χρήση της

υπερσυμμετρίας έχει και άλλες σημαντικές επιπτώσεις. Για παράδειγμα, μπορεί να

ενοποιήσει τις σταθερές ζεύξης (βλέπε Σχ. 4.2), να παράξει έναν καλό υποψήφιο

της ΣΥ (η οποία αποτελεί περίπου το ένα τέταρτο της ενεργειακής πυκνότητας του

Σύμπαντος) ο οποίος θα είναι ο LSP ο οποίος πρέπει να είναι σταθερός αν διατηρείται

η R-ομοτιμία. Τέλος, μια τοπική υπερσυμμετρία μπορεί να περιλαμβάνει την ΓΘΣ (su-

pergravity) και έτσι να δίνει το θεωρητικό κίνητρο για την ενοποίηση της βαρύτητας

με τις άλλες δυνάμεις της φύσης στην ενεργειακή κλίμακα Planck (MPl ≈ 1019GeV )

όπου οι βαρυτικές αλληλεπιδράσεις γίνονται συγκρίσιμες σε μέγεθος με τις αλληλε-

πιδράσεις βαθμίδας (βλέπε εδάφιο 4.1.1).

Αν η υπερσυμμετρία ήταν ακριβής συμμετρία της φύσης τότε τα συνηθισμένα σω-

μάτια του ΚΠ και οι υπερσυμμετρικοί τους εταίροι θα είχαν τις ίδιες μάζες. ΄Ομως,

το γεγονός ότι η υπερσυμμετρία δεν έχει ακόμα παρατηρηθεί στις χαμηλές ενέργειες,

αυτό σημαίνει ότι πρέπει να είναι μια σπασμένη συμμετρία. Ωστόσο, η σταθερότητα

της ιεραρχίας μπορεί να διατηρηθεί αν το σπάσιμο της υπερσυμμετρίας είναι ήπιο και

οι αντίστοιχοι παράμετροι μάζας είναι στην τάξη του TeV . Η φαινομενολογία της

υπερσυμμετρίας συνδέεται άμεσα με τον μηχανισμό σπασίματος της υπερσυμμετρίας

καθώς και την κλίμακα στην οποία αυτός πραγματοποιείται. Αυτό καθορίζει τις μάζες

των υπερσυμμετρικών σωματιδίων, την ιεραρχία των μαζών, το πεδιακό περιεχόμενο
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των φυσικών σωματιδίων καθώς και τους τρόπους διάσπασης τους. ΄Οπως είδαμε και

στο εδάφιο 4.2.4 υπάρχουν προβλήματα και στο MSSM, τα οποία αφορούν κυρίως τον

τρόπο με τον οποίο καταλαβαίνουμε τις διάφορες παραμέτρους της θεωρίας και προ-

έρχονται κυρίως από τον τομέα του ήπιου σπασίματος της υπερσυμμετρίας. Οι ήπιοι

όροι εισάγουν πολλές νέες παραμέτρους, η δομή των οποίων περιορίζεται από πει-

ράματα κυρίως στη “φυσική γεύσεων”. Τέτοια προβλήματα είναι το υπερσυμμετρικό

FCNC και CP πρόβλημα καθώς και το µ πρόβλημα το οποίο σχετίζεται με την δομή

του τομέα Higgs. Για τα προβλήματα αυτά έχουν προταθεί αρκετές λύσεις αλλά και

θεωρίες που μειώνουν το πλήθος των παραμέτρων κάνοντας έτσι διαφορετικές φαινο-

μενολογικές προβλέψεις οι οποίες πρέπει να ελεγχθούν πειραματικά. Οπότε, παρόλο

το επιτυχημένο θεωρητικό πλαίσιο της υπερσυμμετρίας, αυτό που θα την κρίνει τελικά

ως μια επιτυχημένη θεωρία είναι το πείραμα, καθώς ο μόνος τρόπος για επαλήθευση

της υπερσυμμετρίας είναι η εύρεση της πληθώρας των νέων σωματιδίων αλλά και των

φαινομενολογικών συνεπειών που αυτή προβλέπει.

Οι άμεσες αναζητήσεις για την ύπαρξη υπερσυμμετρίας με επιταχυντές, συνδυα-

ζόμενες με όρια από υψηλής ακρίβειας πειράματα, θέτουν την υπερσυμμετρία σε έναν

ενδελεχή έλεγχο. Συγκεκριμένα, η απουσία παρατηρήσεων νέων φαινομένων στο

πρώτο στάδιο του LHC στα
√
s = 7 και 8TeV τοποθετούν σημαντικούς περιορισμο-

ύς στον παραμετρικό χώρο της υπερσυμμετρίας. Σήμερα, οι αναζητήσεις ερευνούν την

παραγωγή των gluino στα 1.0−1.4TeV , τα πρώτης και δεύτερης γενιάς s-κουάρκ σε

περίπου 1TeV , τα τρίτης γενιάς s-κουάρκ σε κλίμακες των 600GeV , τα ηλεκτρασθε-

νή gaugino σε κλίμακες περίπου 300− 500GeV , και τα s-λεπτόνια περίπου 200GeV .

Ωστόσο, ανάλογα με τις υποθέσεις και τις προσεγγίσεις που πραγματοποιούμε στο

υπερσυμμετρικό φάσμα, τα όρια μπορούν να αλλάξουν ή και να μειωθούν σημαντικά.

Μια επισκόπηση του σημερινού τοπίου στις αναζητήσεις της υπερσυμμετρίας και στα

αντίστοιχα όρια στον LHC φαίνονται στο Σχ. 5.1 που έχουν τεθεί από το πείραμα

ATLAS [368]. Τα αντίστοιχα αποτελέσματα για το πείραμα CMS είναι παρόμοια, και

φαίνονται στο Σχ. 5.2.

Επίσης, η ερμηνεία των αποτελεσμάτων του LHC έχει απομακρυνθεί από το

CMSSM, και έχει επικεντρωθεί κυρίως στα απλοποιημένα μοντέλα ή στο pMSSM.

΄Ενας λόγος αυτής της μετακίνησης, είναι ο μεγάλος περιορισμός του παραμετρικο-

ύ χώρου μοντέλων όπως το CMSSM από τον LHC (βλέπε Σχ. 4.22) αλλά και η

μεγαλύτερη ελευθερία που παρέχουν τα απλοποιημένα μοντέλα στην επιλογή των

παραμέτρων (βλέπε εδάφιο 4.4.4). Ωστόσο, αυτή η επιλογή επεξήγησης των αποτε-
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λεσμάτων μπορεί να μην είναι ολοκληρωμένη. ΄Ετσι, τα διάφορα όρια που προκύπτουν

από τα απλοποιημένα μοντέλα ισχύουν μόνο για συγκεκριμένες παραδοχές που έχουν

γίνει σε κάθε μοντέλο χωριστά. Αν αγνοήσουμε οπότε τις παραδοχές που έχουν γίνει,

μπορούμε να δούμε ότι τα όρια που έχουν τεθεί είναι υπερεκτιμημένα. Οπότε, το όριο

των 1.0 − 1.4TeV για τα “χρωματιστά” υπερσυμμετρικά σωματίδια ισχύει μόνο για

ελαφριά neutralino στο MSSM που διατηρεί την R-ομοτιμία. Επίσης, τα όρια για τα

s-κουάρκ τρίτης γενιάς και για τα gaugino ισχύουν μονό για ελαφριά neutralino και

για συγκεκριμένες παραδοχές για μοτίβα διασπάσεων και s-λεπτονικές μάζες. Γενικά

πάντως, μπορούμε να πούμε πως η υπερσυμμετρία κάτω από 1TeV δεν έχει αποκλει-

στεί εντελώς. Τα νέα αποτελέσματα που θα προκύψουν από το επόμενο στάδιο του

LHC το οποίο ήδη “τρέχει”, στην μεγαλύτερη ενέργεια των
√
s = 13TeV θα μπορεί

να αυξήσει την ενεργό διατομή παραγωγής υπερσυμμετρικών σωματιδίων όπως φα-

ίνεται στο Σχ. 4.20, και έτσι θα μπορέσει να δώσει όρια για υπερσυμμετρικές μάζες

1.5 − 2TeV . Επιπρόσθετα, πέρα από την αύξηση των ορίων για τις υπερσυμμετρι-

κές μάζες μέσω της υψηλότερης ενέργειας και μεγαλύτερης ακρίβειας, το μεγαλύτερο

πλήθος γεγονότων που θα προκύψει, θα μπορέσει να κλείσει ανοιχτά όρια και κενά

που έχουν μείνει στα σημερινά όρια της υπερσυμμετρίας.
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Σχήμα 5.1: Συγκεντρωτικά, τα αποτελέσματα των αναζητήσεων υπερσυμμετρίας με τα αντίστοιχα

όρια μαζών από το πείραμα ATLAS στον LHC μέχρι τον Ιούλιο του 2015 [368].
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Σχήμα 5.2: Συγκεντρωτικά, τα αποτελέσματα των αναζητήσεων υπερσυμμετρίας με τα αντίστοιχα

όρια μαζών από το πείραμα CMS στον LHC [369].
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Εναλλακτικές θεωρίες

Πρέπει να αναφέρουμε πως η υπερσυμμετρία, παρόλο που είναι η πιο διαδεδομένη,

δεν αποτελεί την μοναδική λύση στο πρόβλημα της ιεραρχίας, οπότε ακόμα και αν δεν

βρεθεί κάποιο πειραματικό σήμα, έχουμε διάφορες εναλλακτικές λύσεις που μπορεί να

ισχύουν. Ωστόσο, καθένα από αυτά τα μοντέλα έχει διαφορετική φαινομενολογία η

οποία πρέπει να ελεγχθεί αναλυτικά αλλά και να μελετηθούν οι πειραματικές υπογρα-

φές τους. Στην συνέχεια, θα δούμε επιγραμματικά τις βασικές αυτές εναλλακτικές

θεωρίες.

Τα μοντέλα little Higgs βασίζονται στην ιδέα ότι το μποζόνιο Higgs είναι ένα

ψευδο-Goldstone μποζόνιο το οποίο προκύπτει από το σπάσιμο κάποιας γενικής συμ-

μετρίας στην ενεργειακή κλίμακα των TeV [311,373,374]. Κύριος σκοπός αυτών των

μοντέλων είναι η χρησιμοποίηση του αυθόρμητου σπασίματος τέτοιων προσεγγιστι-

κών γενικών συμμετριών για την σταθεροποίηση της μάζας του μποζονίου Higgs που

είναι υπεύθυνο για το σπάσιμο της ηλεκτρασθενούς συμμετρίας. Η βασική ιδέα πίσω

από τα little Higgs μοντέλα είναι πως η μονού βρόγχου τετραγωνικές αποκλίσεις

στο τετράγωνο της μάζας του Higgs ακυρώνονται από νέα μποζόνια βαθμίδας της

τάξης των TeV , φερμιόνια και βαθμωτά σωματίδια που σχετίζονται με αυτά του ΚΠ.

Συγκεκριμένα, τα βαρέα μποζόνια βαθμίδας ακυρώνουν τις αποκλίσεις του βρόγχου

βαθμίδας του ΚΠ, τα μαζικά βαθμωτά σωματίδια κάνουν το ίδιο για το Higgs όπως

και τα βαρέα φερμιόνια για τις συνεισφορές του βρόγχου top. Υπάρχει μια μεγάλη

ποικιλία μοντέλων, και όλα συνεπάγονται την ύπαρξη βαρέων ουδέτερων και φορτι-

σμένων μποζονίων βαθμίδας τα οποία είναι απαραίτητα για την αφαίρεση των μονού

βρόγχου τετραγωνικών αποκλίσεων στην μάζα του Higgs ΚΠ. Η φύση αυτών των

σωματιδίων καθορίζεται από την αναλυτική ομάδα του κάθε μοντέλου (βλέπε [55,375]

για επισκόπηση). Υπάρχουν τουλάχιστον δύο κατηγορίες little Higgs μοντέλων τα

οποία φαίνεται να περιέχουν και πιθανούς υποψηφίους ΣΥ. Μια από αυτές τις κατη-

γορίες μοντέλων ονομάζεται “theory space” little Higgs μοντέλα, τα οποία παρέχουν

έναν πιθανό σταθερό βαθμωτό σωμάτιο το οποίο μπορεί να παρέχει την μετρούμενη

πυκνότητα ΣΥ [376].

Επίσης, έχουμε έχουμε τουλάχιστον τρεις διαφορετικές λύσεις με την χρήση επι-

πλέον διαστάσεων [377]. Καταρχάς, η πρώτη λύση συμβαίνει με την χρήση n επιπλέον

χωρικών μεγάλων διαστάσεων (Large Extra Dimensions - LED) [378, 379], όπου

όλα τα μαζικά και τα πεδία βαθμίδας είναι περιορισμένα σε μια τετραδιάστατη βράνη

(βλέπε Σχ. 5.3). Ωστόσο, η βαρύτητα μπορεί να διαδίδεται σε όλες τις 3 + n δια-
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στάσεις και άρα εμφανίζεται ασθενέστερη (MP � MW ) αφού διαδίδεται σε έναν

πολύ μεγαλύτερο όγκο συμπαγοποιημένων επιπλέον διαστάσεων γεγονός που δεν ε-

πιτρέπεται στα υπόλοιπα πεδία του ΚΠ. Δηλαδή, ο επιπλέον όγκος μικραίνει την ισχύ

της βαρύτητας. Η θεμελιώδης πολυδιάστατη κλίμακα μάζας της βαρύτητας είναι M∗

και ικανοποιεί την σχέση:

M2
Pl = Mn+2

∗ Rn
(5.3)

όπου n ο αριθμός των επιπλέον διαστάσεων και R η μέση ακτίνα συμπαγοποίησης.

΄Ετσι, η θεμελιώδης κλίμακα της βαρύτητας θα ήταν πολύ μικρότερη από την MPl

αν οι επιπλέον διαστάσεις ήταν αρκετά μεγάλες. Για την λύση του προβλήματος της

ιεραρχίας πρέπει να διαλέξουμε M∗ ' 1TeV , που σημαίνει ότι:

R ∼ 2 · 10−171032/ncm (5.4)

Οπότε, αν διαλέξουμε n = 1 παίρνουμε R ∼ 108
το οποίο προφανώς απορρίπτεται.

Διαλέγοντας στην συνέχεια n = 2, παίρνουμε R ∼ 1mm, κλίμακα η οποία αποτελεί

το όριο μέχρι το οποίο έχει ελεγχθεί η Νευτώνεια βαρύτητα με πειράματα “τύπου

Gavendish”. ΄Ετσι, το πρόβλημα της ιεραρχίας μεταξύ της MPl ∼ 1019GeV και

της κλίμακας του σπασίματος της ηλεκτρασθενής συμμετρίας, MEW ∼ 300GeV , φα-

ίνεται να οφείλεται αποκλειστικά στο μεγάλο μέγεθος των επιπλέον διαστάσεων. Η

Σχήμα 5.3: Η βαρύτητα διαδίδεται στον όγκο των επιπλέον διαστάσεων στην LED περίπτωση.

Τα πεδία βαθμίδας και τα μαζικά πεδία του ΚΠ βρίσκονται περιορισμένα στη δική μας 4-διάστατη

βράνη [377].

δεύτερη περίπτωση είναι με χρήση παγκόσμιων επιπλέων διαστάσεων (universal extra
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dimensions) όπου επιτρέπονται και άλλα πεδία εκτός από το βαρυτόνιο να διαδίδονται

στις επιπλέον διαστάσεις, γεγονός που θέτει ισχυρούς περιορισμούς στο 1/R [380].

Η τρίτη περίπτωση περιλαμβάνει λύση στο πρόβλημα της ιεραρχίας χρησιμοποιώντας

μόνο μια επιπλέον διάσταση [381]. Τα μοντέλα αυτής της κλάσης θεωριών ονομάζο-

νται μοντέλα Randall-Sundrum. Αντίθετα από τις άλλες δύο περιπτώσεις, η επιπλέον

διάσταση δεν έχει επίπεδη μετρική. Συγκεκριμένα, η μετρική είναι Anti-de Sitter σε

5 διαστάσεις:

ds2 = e−2k|y|ηµνdxµdxν + dy2
(5.5)

που είναι λύση των εξισώσεων της ΓΘΣ σε 5 διαστάσεις όπου k ≤ MPl και y η

συντεταγμένη της 5
ης

διάστασης. ΄Ετσι, όταν βρισκόμαστε σε απόσταση y από την

αρχή της επιπλέον διάστασης, όλες οι ενέργειες εκτός από την βαρύτητα μειώνονται

εκθετικά κατά ένα παράγοντα exp (−ky). ΄Αρα, αν όλα τα πεδία του ΚΠ εκτός από

την βαρύτητα ήταν περιορισμένα σε απόσταση L από την αρχή, η τοπική ενέργεια

αποκοπής δεν θα ήταν MPl αλλά

ΛL = MPle
−kL

(5.6)

Αυτό απεικονίζεται στο Σχ. 5.4 όπου η συμπαγοποίηση έχει γίνει στο S1/Z2 orbifold

με L = πR. Οπότε, αν θέλουμε η ενέργεια αποκοπής να είναι στην TeV κλίμακα και

άρα να εξηγεί την ιεραρχία πρέπει να διαλέξουμε:

kR ' O (10) (5.7)

επιλογή η οποία δεν αποτελεί πολύ σημαντική λεπτή ρύθμιση.

Τέλος, μια ακόμα λύση στο πρόβλημα της ιεραρχίας παρέχει η πρόσφατη θεωρία

της χαλάρωσης (relaxation) η οποία παράγει μια ιεραρχικά μικρή VEV Higgs [382].

Η λαγκρατζιανή αυτών των μοντέλων δεν είναι λεπτά ρυθμισμένη και δεν συμπεριλαμ-

βάνει “νέα φυσική” στην ασθενή κλίμακα. Είναι για την ακρίβεια μια δυναμική εξέλιξη

της μάζας του Higgs στο πρώιμο Σύμπαν που επιλέγει την ηλεκτρασθενή κλίμακα να

είναι παραμετρικά μικρότερη από την ενέργεια αποκοπής της θεωρίας [383]. Συγκε-

κριμένα, οι θεωρίες αυτές εκμεταλλεύονται το γεγονός ότι ηm2
H παρόλο που δεν είναι

ένα ιδιαίτερο σημείο σε όρους συμμετριών, ωστόσο είναι ιδιαίτερο σημείο σε όρους

δυναμικής, καθώς είναι το σημείο όπου η ασθενής δύναμη σπάει αυθόρμητα και η

θεωρία μπαίνει σε μια διαφορετική φάση. ΄Ετσι, είναι αυτό το σημείο που επιλέγει

την ασθενή κλίμακα επιτρέποντας την να είναι πολύ κοντά στο μηδέν. Στο πιο απλό

μοντέλο το σωματιδιακό περιεχόμενο κάτω από την ενέργεια αποκοπής είναι το ΚΠ
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Σχήμα 5.4: Σχηματική απεικόνιση περιελιγμένης επιπλέον διάστασης. Η τοπική ενέργεια απο-

κοπής είναι εκθετικά μικρότερη από την MPl [377].

και το QCD αξιόνιο με έναν μη προσδιορισμένο πληθωριστικό τομέα. Φυσικά, το α-

ξιόνιο από μόνο του δεν λύνει το πρόβλημα της ιεραρχίας. Η μόνη αλλαγή που πρέπει

να γίνει είναι να δοθεί στο αξιόνιο μια πολύ μεγάλη (μη συμπαγής) πεδιακή κλίμακα,

και μια ήπια ζεύξη σπασίματος συμμετρίας με το Higgs. Το αξιόνιο αυτό θα έχει το

συνηθισμένο περιοδικό δυναμικό, όμως θα επεκταθεί σε πολλές περιόδους για μια

συνολική πεδιακή κλίμακα η οποία είναι παραμετρικά μεγαλύτερη από την αποκοπή,

παρόμοια με τα πληθωριστικά μοντέλα. Η ακριβής διακριτή συμμετρία του δυναμι-

κού του αξιονίου θα είναι ήπια σπασμένη από μια μικρή ζεύξη με το Higgs. Αυτή η

μικρή ζεύξη θα καθορίσει την ασθενή κλίμακα, κάνοντας την “τεχνικά” φυσική και

θα λύσει το πρόβλημα της ιεραρχίας. Αναφορικά να πούμε ότι στη λαγκρατζιανή του

ΚΠ προστίθενται οι όροι:

(
−M2 + gφ

)
|h|2 + V (gφ) +

1

32π2

φ

f
G̃µνGµν (5.8)

όπου M η αποκοπή της θεωρίας, h η διπλέτα Higgs, Gµν η QCD ένταση του πεδίου

με G̃µν = εµναβGαβ, και g η μη-αδιάστατη σταθερά. Το φ είναι σαν το QCD αξιόνιο

αλλά μπορεί να πάρει τιμές πολύ μεγαλύτερες από το f .

5.1.3 Υπερσυμμετρικές μεγαλοενοποιημένες θεωρίες

΄Οπως έχουμε ήδη δει στην ανωτέρω ανάλυση μας (βλέπε εδάφιο 4.3), οι υπερσυμ-

μετρικές μεγαλοενοποιημένες θεωρίες, είναι μια επέκταση των μη-υπερσυμμετρικών

μεγαλοενοποιημένων θεωριών (βλέπε εδάφιο 3.1) με την χρήση της υπερσυμμετρίας

280



5.1. Υπερσυμμετρία και μεγαλοενοποιημένες θεωρίες Μαρούδας Μάριος

σαν επιπλέον συμμετρία με βασική διαφορά την χαμηλής ενέργειας ενεργή θεωρία

πεδίου.

Το υπερσυμμετρικό SU (5) ενοποιημένο μοντέλο (βλέπε εδάφιο 4.3.1) δεν χαλάει

τις επιτυχημένες προβλέψεις του μη υπερσυμμετρικού SU (5). Επιπρόσθετα, ενοποιεί

τις ζεύξεις βαθμίδας, προβλέπει την κλίμακα της ενοποίησης και οδηγεί σε ένδειξη

για μεγάλη μάζα του top νετρίνου. Επίσης, η προβλεπόμενη τιμή για την γωνία

Weinberg sin2θW ≈ 0.236 είναι σε καλή συμφωνία με την πειραματική τιμή (sin2θW ≈
0.232) γεγονός που αποτελεί σίγουρα καλύτερη πρόβλεψη από το μη-υπερσυμμετρικό

μοντέλο που δίνει sin2θW ≈ 0.375 (βλέπε εδάφιο 3.2.5).

Ωστόσο, ένα μεγάλο μειονέκτημα είναι ότι επιτρέπει την ύπαρξη τελεστών δια-

στάσεως 5 μέσω της ανταλλαγής βαρέων τρπλετών χρώματος Higgsino και στην

ουσία ενισχύει την διάσπαση του πρωτονίου. Ακόμα και αν πάρουμε πολύ μεγάλη

μάζα MT ' 1017GeV , παίρνουμε για τον χρόνο ζωής του πρωτονίου [333]:

τp→K+ν̄ ≥ 7.6× 1041ys (5.9)

Πέρα από αυτό, είδαμε πως υπάρχουν επίσης κάποια θεωρητικά προβλήματα όπως η μη

πρόβλεψη υποψηφίου ΣΥ, το DT πρόβλημα που παραμένει από την κλασική περίπτω-

ση, η μη παραγωγή της βαρυονικής ασυμμετρίας, η μη ύπαρξη φυσικού μηχανισμού

παραγωγής μαζών νετρίνων, αλλά και ο εκφυλισμός του κενού στο υπερσυμμετρικό

όριο και φαινόμενα υπερβαρύτητας. Τέλος, κάνει μια άσχημη πρόβλεψη για τις μάζες

των φερμιονίων όπως είδαμε στην Εξ. 4.212. Κάποια από αυτά τα προβλήματα έχουν

ήδη λυθεί με διάφορους τρόπους, όμως η θεωρία αυτή δεν αποτελεί μια ρεαλιστική

θεωρία της φύσης.

Σήμερα, τα όρια της Εξ. 3.146 δεν είναι αρκετά ώστε να αποκλείσουν πλήρως την

ελάχιστα υπερσυμμετρική SU (5) θεωρία αντίθετα με τις αρχικές θεωρήσεις [384].

Αυτό συμβαίνει καθώς λόγω της αύξησης της κλίμακας ενοποίησης και του γεγο-

νότος ότι υπάρχει καινούριο κανάλι διάσπασης του πρωτονίου, ο χρόνος ζωής του

αυξάνεται και βρίσκεται πάνω από το ελάχιστο όριο που δίνουν τα πειράματα, με α-

ποτέλεσμα το μοντέλο αυτό να καθίσταται βιώσιμο. Ταυτόχρονα, οι μη-ελάχιστα

υπερσυμμετρικοί τομείς Higgs των θεωριών SU (5) ή SO (10) επιβιώνουν. Επίσης,

πρέπει να αναφέρουμε ότι τα άνω όρια για την ζωή του πρωτονίου από αυτές τις θε-

ωρίες είναι περίπου κατά παράγοντα 10 μεγαλύτερα από τα πειραματικά όρια, και ήδη

πιέζονται προς τα θεωρητικά όρια. Οπότε, αν οι υπερσυμμετρικές GUT είναι σωστές,

η διάσπαση του πρωτονίου πρέπει σύντομα να βρεθεί σύμφωνα με τα πιο ρεαλιστικά

όρια [19].
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΄Οσον αφορά την θεωρία SO (10) (βλέπε εδάφιο 4.3.2), αυτή έχει ένα πλήθος από

ιδιότητες που την κάνουν πιο επιτυχημένη από την SU (5) θεωρία, όπως η αυτόματη

διατήρηση της R-ομοτιμίας, η ύπαρξη μικρών μη μηδενικών μαζών νετρίνων αλλά και

ενδιαφέρουσες σχέσεις μεταξύ των φερμιονικών μαζών. Εκτός αυτών, από κοσμο-

λογική άποψη τα μοντέλα SO (10) μπορούν να παράξουν μια λεπτονική ασυμμετρία

σε μια κλίμακα της τάξης 1011GeV , όταν τα δεξιόστροφα νετρίνα Majorana έχουν

μάζα και παράγουν την απαιτούμενη λεπτονική ασυμμετρία μέσω των διασπάσεων

τους. Η λεπτονική αυτή ασυμμετρία με την παρουσία διαδικασιών sphaleron μπορεί

να μετατραπεί σε βαρυόνια και στην συνέχεια μπορεί να εξηγήσει τον παρατηρούμενο

λόγο
nB
nγ

[385]. Τέλος, στην περίπτωση του seesaw τύπου II έχουμε μια φυσι-

κή σύνδεση μεταξύ της b − τ ενοποίησης και της μεγάλης ατμοσφαιρικής γωνίας

μίξης νετρίνων [344, 345], ενώ και στην περίπτωση seesaw τύπου I και II οι γωνίες

μίξης λεπτονίων προκύπτουν μεγάλες γεγονός που είναι κοντά στα άνω πειραματικά

όρια [339–341].

Οι υπερσυμμετρικές μεγαλοενοποιημένες θεωρίες παρέχουν ένα πλήθος από πι-

θανές απαντήσεις σε ερωτήματα που τίθενται από το ΚΠ. Εξηγούν την ενοποίηση

των ζεύξεων βαθμίδας, και μπορούν να είναι χρήσιμες στην εξήγηση των σχέσεων

μεταξύ των μαζών των φερμιονίων. Η υπερσυμμετρία λύνει το πρόβλημα της ιεραρ-

χίας και οδηγεί σε μοντέλα με συμμετρικό σωματιδιακό περιεχόμενο σε φερμιονικούς

και μποζονικούς βαθμούς ελευθερίας. Από την άλλη μεριά, τα υπερσυμμετρικά GUT

μοντέλα δημιουργούν νέες προκλήσεις όπως το DT στον τομέα Higgs ή η αποφυγή

μεγάλων ρυθμών διασπάσεων πρωτονίου (βλέπε Πίνακα 5.1). Επίσης, ο αριθμός των

ελεύθερων παραμέτρων δεν έχει μειωθεί σημαντικά σχετικά με το ΚΠ. Το SO (10)

μοντέλο με το ελάχιστο περιεχόμενο Higgs περιέχει 23 πραγματικές παραμέτρους ε-

νώ το ΚΠ με επιπλέον μαζικά νετρίνα Majorana έχει 27. Εκτός αυτών, η βαρύτητα

δεν έχει ενταχθεί ακόμα στην θεωρία και καμία από τις συμμετρίες των οικογενειών

έχει διευθετηθεί. Για την λύση των προβλημάτων που σχετίζονται με τις υπερσυμμε-

τρικές GUT έχουν διατυπωθεί διάφορες προτάσεις, όπως η χρήση επιπλέον ομάδων

συμμετριών (διακριτές και συνεχείς). Επίσης, όπως θα δούμε στην αμέσως επόμενη

ενότητα, έχουν προταθεί θεωρίες με επιπλέον διαστάσεις προκειμένου να αποφευχθεί

το DT αλλά και να εξηγηθεί η ιεραρχία μεταξύ της ασθενής και της Planck κλίμακας.

΄Ομως, όλα αυτά τα μοντέλα περιέχουν νέες αναπάντητες, μέχρι στιγμής ερωτήσεις,

και άρα βρισκόμαστε μακριά από την εύρεση της σωστής θεωρίας.
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Μοντέλο Κανάλι τN (ys)

Ελάχιστο SU (5) [76] p→ e+π0 1030 − 1031

Ελάχιστο SUSY SU (5) [189,243,330]
p→ ν̄K+

1028 − 1032

p→ ν̄K0

SUGRA SU (5) [386,387] p→ ν̄K+ 1032 − 1034

SUSY SO (10) με ανώμαλη γεύση U (1) [388]

p→ ν̄K+

p→ ν̄K0 1032 − 1035

p→ µ+K0

SUSY SO (10) MSSM (d = 5) [389,390]
p→ ν̄K+ 1033 − 1034

p→ ν̄K0 1032 − 1033

SUSY SO (10) ESSM (d = 5) [390] p→ ν̄K+ 1033 − 1034 ≤ 1035

SUSY SO (10) /G (224) MSSM ή ESSM (d = 5) [390–393]
p→ ν̄K+ ≤ 2 · 1034

p→ µ+K0 B ∼ (1− 50) %

SUSY SU (5) ή SO (10) MSSM (d = 6) [390] p→ e+π0 ∼ 1034.9±1

Flipped SU (5) στο CMSSM [394] p→ e/µ+π0 1035 − 1036

Split SU (5) SUSY [395] p→ e+π0 1035 − 1037

SU (5) σε 5 διαστάσεις [396]
p→ µ+K0

1034 − 1035

p→ e+π0

SU (5) σε 5 διαστάσεις (περίπτωση 2) [397] p→ ν̄K+ 1036 − 1039

GUT από χορδές τύπου IIA με D6 βράνες [398] p→ e+π0 ∼ 1036

Πίνακας 5.1: Σύνοψη των αναμενόμενων χρόνων ζωής για τα διάφορα θεωρητικά μοντέλα [138].

Orbifold GUT

Νέες θεωρίες όπως η θεωρία χορδών που θα δούμε στην συνέχεια (βλέπε εδάφιο

5.2.1), προβλέπουν μια “orbifold συμπαγοποίηση” ετεροτικών χορδών [399–410] κα-

θώς και θεωρητικές κατασκευές που ονομάζονται orbifold GUT περιέχουν GUT θε-

ωρίες σε 5 και 6 διαστάσεις [411–417]. Ωστόσο, μετά την συμπαγοποίηση όλων των

επιπλέον διαστάσεων εκτός από τις 4, μόνο το MSSM προκύπτει σαν συμμετρία της

ενεργής 4-διάστατης θεωρίας πεδίου. Αυτές οι θεωρίες μπορούν να περιέχουν πολλά

από τα χαρακτηριστικά των 4-διάστατων υπερσυμμετρικών GUT, όπως η κβάντω-

ση του φορτίου, ενοποίηση των ζεύξεων βαθμίδας, καθώς και Yukawa ενοποίηση,

ενώ ταυτόχρονα λύνουν διάφορες δυσκολίες που είχαν οι 4-διάστατες GUT θεω-

ρίες όπως οι αμετάβλητοι τομείς Higgs που είναι απαραίτητοι για αυθόρμητο σπάσιμο

της GUT συμμετρίας, αλλά και το κλασικό DT πρόβλημα, όπως και η γρήγορη

διάσπαση του πρωτονίου. Πιο συγκεκριμένα, στις orbifold GUT θεωρίες η GUT
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συμμετρία βαθμίδας ζει σε πάνω από τέσσερις χωροχρονικές διαστάσεις και σπάει

στο ΚΠ από συμπαγοποίηση σε ένα orbifold χρησιμοποιώντας συνοριακές συνθήκες

που παραβιάζουν την GUT συμμετρία. Σαν αποτέλεσμα η GUT και η ηλεκτρασθενής

κλίμακα χωρίζονται με έναν “κομψό” τρόπο και οι τελεστές διαστάσεως 5 εξαφανίζο-

νται [418, 419]. Επιπρόσθετα, στην περίπτωση της SO (10) το σπάσιμο στην GSM

μέσω του μηχανισμού Higgs απαιτεί μεγάλες αναπαραστάσεις Higgs και δεν υπάρχει

μοναδικός δρόμος. Στην περίπτωση όμως των orbifold GUT, το orbifold σπάσιμο

της συμμετρίας αποδεικνύεται πως μπορεί να απλοποιήσει το μοτίβο σπασίματος.

5.2 Περί μιας θεωρίας του παντός

Παρόλη την επιτυχία των διαφόρων θεωριών GUT (βλέπε Κεφ. 3) αλλά και της

υπερσυμμετρίας (βλέπε Κεφ. 4) στην λύση ορισμένων προβλημάτων που διακατέχουν

το ΚΠ (βλέπε εδάφιο 2.4), παραμένουν ωστόσο πολλά προβλήματα τα οποία είτε

παραμένουν ανοιχτά, είτε η λύση που έχει δοθεί δεν είναι πειστική από φυσική άποψη

(βλέπε εδάφιο 3.4 και 4.2.4). Για παράδειγμα, δεν έχουμε ακόμα εξηγήσει γιατί

υπάρχουν τρεις οικογένειες φερμιονίων, γιατί οι μάζες και οι γωνίες μίξης τους έχουν

τις τιμές που έχουν, την σύσταση της ΣΥ και ΣΕ, αλλά και το πως ενοποιείται η

βαρύτητα στο σχήμα με τις υπόλοιπες αλληλεπιδράσεις. Οι θεωρίες υπερβαρύτητας

(βλέπε Πίνακα 4.1), αποτελούν μια προσφορά στην κατεύθυνση μιας τέτοιας θεωρίας

ενοποίησης, όμως ακόμα δεν έχει διατυπωθεί πειστικά μια ολοκληρωμένη θεωρία

χωρίς σημαντικά προβλήματα.

Η υποθετική θεωρία η οποία υποτίθεται ότι θα ενοποιεί όλες τις δυνάμεις και

τα σωματίδια σε ένα κοινό πλαίσιο και θα εξηγεί όλες τις φυσικές διαδικασίες που

μας περιβάλουν και όλα τα φαινόμενα σε κάθε επίπεδο του Σύμπαντος έχει το α-

ναγωγιστικό όνομα Θεωρία Των Πάντων - ΘΤΠ (Theory of Everything - TOE).

Στην ουσία, αυτή εγγυάται την ενοποίηση της ΓΘΣ και της Κβαντομηχανικής σε

μία ενιαία θεωρία, καθώς όπως πάμε σε μεγαλύτερες ενέργειες (και άρα μικρότερες

αποστάσεις) κοντά στην κλίμακα Planck, η κβάντωση της βαρύτητας είναι απαραίτητη

(βλέπε Σχ. 5.5). Το γεγονός όμως αυτό μέχρι στιγμής αποτελεί παράδοξο καθώς οι

δύο αυτές θεμελιακές θεωρίες της σύγχρονης φυσικής είναι ασυμβίβαστες. Διάφορες

προσπάθειες ενοποίησης της ΓΘΣ με την υπερσυμμετρία έφεραν στο φως τις θεωρίες

υπερβαρύτητας τις οποίες αναφέραμε στο εδάφιο 4.1.1. ΄Ολες όμως οι τοπικές πε-

διακές θεωρίες της βαρύτητας φαίνεται να είναι καταδικασμένες λόγω των κβαντικών
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(αʹ) (βʹ)

Σχήμα 5.5: Η ενοποίηση των θεμελιωδών δυνάμεων σε μια ενιαία ΘΤΠ σε ενέργειες κοντά στην

κλίμακα Planck.

διακυμάνσεων του κενού, οι οποίες έχουν εμβέλεια ίση με το μήκος Planck, δηλαδή

περίπου 10−35m. Αυτές οι διακυμάνσεις καθιστούν αδύνατη την κατασκευή μιας πε-

διακής θεωρίας της βαρύτητας που να μπορεί να επακανονικοποιηθεί με τις συνήθεις

διαδικασίες. Δηλαδή, η κλασική βαρύτητα δεν είναι δυνατόν να κβαντωθεί με τις
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συνήθεις διαταρακτικές μεθόδους, διότι είναι μη επακανονικοποιήσιμη. ΄Ετσι, είναι

απαραίτητη πέρα από την ενοποίηση των αλληλεπιδράσεων, η επιτυχής ενοποίηση της

ΓΘΣ και της ΚΘΠ σε μια θεωρία ΚΒ.

Για να έχουμε μια τέτοια ολοκληρωμένη τελική θεωρία στην οποία η ενοποίηση θα

φτάσει τον τελικό της στόχο, πρέπει αφ΄ ενός να υπάρχει μια πειστική πλήρης θεωρη-

τική περιγραφή κάτω από ένα ενιαίο μαθηματικό πλαίσιο των θεμελιωδών συστατικών

της φυσικής πραγματικότητας, και αφ΄ εταίρου να βρεθούν αδιαμφισβήτητες πειραμα-

τικές υπογραφές που θα ενισχύουν αυτή μας την πεποίθηση της τελικής θεωρίας

αλλά και θα επιβεβαιώνουν όλες τις φαινομενολογικές της προβλέψεις. Φυσικά, είναι

αυτονόητο πως μια τέτοια θεωρία δεν θα αφήνει ανεξήγητο κανένα από τα υπάρχοντα

προβλήματα του ΚΠ (βλέπε εδάφιο 2.4) αλλά και άλλα που πιθανώς να προκύψουν

στην πορεία.

Σχήμα 5.6: Η εξέλιξη του Σύμπαντος και η ενεργειακή κλίμακα ορισμένων χαρακτηριστικών

γεγονότων. Πάνω από την κλίμακα Planck στα 1019GeV η βαρύτητα γίνεται τόσο ισχυρή, γεγονός

που υποδεικνύει μια ΘΤΠ για την περιγραφή όλων των δυνάμεων. Κάτω από αυτή την ενέργεια η

ισχυρή και η ηλεκτρασθενής δύναμη θεωρούνται πως έχουν την ίδια ισχύ γεγονός που υποδεικνύει

την πιθανότητα ύπαρξης μιας GUT με μόνο μία σταθερά ζεύξης στην κλίμακα ενοποίησης. Μετά

το αυθόρμητο σπάσιμο της συμμετρίας τα μποζόνια βαθμίδας αυτής ενοποιημένης δύναμης γίνονται

βαριά και “παγώνουν”. Οι εναπομείνουσες δυνάμεις αντιστοιχούν στην SU(3)C ×SU(2)L×U(1)Y

συμμετρία του ΚΠ σε χαμηλότερες ενέργειες με τις σταθερές ζεύξης να αλλάζουν από την ενοποι-

ημένη τιμή στην GUT κλίμακα στις τιμές χαμηλών ενεργειών (βλέπε Σχ. 4.2) [97].
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5.2.1 Υποψήφιες θεωρίες

Υπάρχει μια πλειοψηφία από θεωρίες υποψήφιες για ΘΤΠ με βασικές την “Θεωρία

Χορδών” και την “Κβαντική Βαρύτητα Βρόχων” αλλά και άλλες όπως ο “Αιτιώδης

Δυναμικός Τριγωνισμός”, η “Κβαντική Βαρύτητα Einstein”, το “Κβαντικό μοντέλο

Γραφημάτων”, η θεωρία των“Αιτιωδών Φερμιονικών Συστημάτων”, τα “causal sets”

αλλά και η ομάδα συμμετρίας E8. Μέχρι στιγμής όμως καμία από τις θεωρίες αυτές,

στην μορφή που βρίσκονται δεν πείθει ως μια τελική ΘΤΠ καθώς εκτός της έλλειψης

πειραματικής επαλήθευσης, η πολυπόθητη ενοποίηση όλων των δυνάμεων κάτω από

μια ενιαία μαθηματική περιγραφή δεν έχει επιτευχθεί. Πέρα από αυτά, υπάρχουν όπως

θα δούμε μια σειρά μαθηματικών δεδομένων αλλά και επιχειρημάτων κατά της ίδιας

της ύπαρξης μιας ΘΤΠ. Στην συνέχεια, θα δούμε επιγραμματικά κάποια από τα βασικά

χαρακτηριστικά των κυρίαρχων υποψήφιων θεωριών.

Να αναφέρουμε εδώ πως στα επόμενα εδάφια δεν κάνουμε κάποια λεπτομερή α-

νάλυση των αναφερόμενων θεωριών, καθώς αυτός δεν είναι ο σκοπός της παρούσας

εργασίας, αλλά κυρίως μια συνοπτική περιγραφή έτσι ώστε ο αναγνώστης να μπορέσει

να αποκτήσει μια γενική ιδέα των βασικών χαρακτηριστικών τους, τους σκοπούς της

κάθε θεωρίας αλλά και την ποικιλία των διαφορετικών προσεγγίσεων που υπάρχει.

Για περισσότερες λεπτομέρειες ο αναγνώστης μπορεί να ανατρέξει στις εκάστοτε

βιβλιογραφικές αναφορές. Επίσης, λόγω του μεγάλου πλήθους των υποψηφίων θεω-

ριών, κυρίως αυτών της ΚΒ, δεν είναι δυνατή η αναφορά όλων, καθώς είναι και πέρα

από τους στόχους της παρούσας εργασίας, οπότε επιλέξαμε να σκιαγραφήσουμε βι-

βλιογραφικά ορισμένες θεωρίες έτσι ώστε η αναφορά μας στην ενοποίηση γενικότερα,

αλλά και ειδικότερα στην ΚΒ η οποία είναι απαραίτητο να υπάρξει για την ενοποίηση

όλων των στοιχειωδών αλληλεπιδράσεων, να είναι πλήρης.

Ανάμεσα στις πολλές διαφορετικές διαδρομές προς την ΚΒ, η περισσότερη κινη-

τικότητα και πρόοδος έχει παρατηρηθεί σε τρεις μεγάλες οδούς. Υπάρχει λοιπόν μια

διαδρομή με αφετηρία την Κβαντική Θεωρία, οι περισσότερες δηλαδή από τις ιδέες και

τις μεθόδους που χρησιμοποιεί είχαν αναπτυχθεί αρχικά στα πλαίσια της Κβαντικής

Θεωρίας. Υπάρχει επίσης η διαδρομή από την σχετικότητα, κατά την οποία ξεκινά

κανείς με τις θεμελιώδεις αρχές της ΓΘΣ και προσπαθεί να τις τροποποιήσει ώστε

να συμπεριλάβουν κβαντικά φαινόμενα. Κάθε μία από τις εν λόγω δύο οδούς έχει

οδηγήσει και σε μια καλά επεξεργασμένη και μερικώς επιτυχημένη θεωρία ΚΒ. Η

πρώτη γέννησε τη Θεωρία Χορδών η δεύτερη μας έδωσε μια φαινομενικά διαφορετική

θεωρία, την επονομαζόμενη Κβαντική Βαρύτητα Βρόγχων. Τόσο η Κβαντική Βα-
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ρύτητα Βρόγχων όσο και η Θεωρία Χορδών συμφωνούν σε ορισμένα βασικά σημεία.

Συμφωνούν ότι υπάρχει μια φυσική κλίμακα στην οποία η φύση του χώρου και του

χρόνου διαφέρει πολύ από εκείνη που παρατηρούμε, η οποία είναι η κλίμακα Planck.

Επίσης, τόσο η Θεωρία Χορδών όσο και η Κβαντική Βαρύτητα Βρόγχων αποτελούν

θεωρίες σχετικά με το πώς συμπεριφέρονται ο χώρος και ο χρόνος στη συγκεκριμένη

μικροσκοπική κλίμακα. Η τρίτη διαδρομή είναι η απόρριψη της Κβαντικής Θεωρίας

και της ΓΘΣ ως εσφαλμένες και ατελείς, και η ενασχόληση κυρίως με τις θεμελιώδεις

αρχές, από τις οποίες μπορεί να συγκροτηθεί απευθείας η νέα θεωρία ΚΒ.

Θεωρία χορδών

Η Θεωρία Χορδών - ΘΧ (String Theory) ανακαλύφθηκε τυχαία όταν το 1968 ο Ιτα-

λός φυσικό Veneziano προσπαθούσε να εξηγήσει τα αποτελέσματα ενός πειράματος

στο CERN [420]. Συνειδητοποίησε ότι αν χρησιμοποιηθεί η συνάρτηση B του Euler

μπορούν να περιγραφούν με ακρίβεια οι ισχυρές αλληλεπιδράσεις, υποθέτοντας ότι τα

σωματίδια δεν είναι σημειακά αλλά μονοδιάστατες ταλαντούμενες χορδές. ΄Ετσι, α-

ναπτύχθηκαν οι ΘΧ ως φυσικά μοντέλα στα οποία τα θεμελιώδη δομικά στοιχεία δεν

είναι σημειακά και αδιάστατα στοιχειώδη σωματίδια, αλλά μονοδιάστατα εκτεταμένα

αντικείμενα (χορδές) οι οποίες ταλαντώνονται με διαφορετικούς τρόπους δημιουρ-

γώντας έτσι σωματίδια με διαφορετικές ιδιότητες (βλέπε Σχ. 5.7). Με αυτόν τον

τρόπο, οι ΘΧ αποφεύγουν τις ανωμαλίες και τα προβλήματα που προκύπτουν στις

φυσικές θεωρίες λόγω της σημειακής φύσης των σωματιδίων, όπως για παράδειγμα

τα προβλήματα τοπικότητας στις θεωρίες βαρύτητας ή το DT πρόβλημα στις θεωρίες

GUT (βλέπε εδάφιο 3.4.1), και έχουν επιπλέον την δυνατότητα να περιγράψουν όλες

τις αλληλεπιδράσεις. Οι χορδές μπορούν να είναι είτε κλειστές είτε ανοικτές με τυπικό

μήκος d = 10−33cm. Μια κλειστή χορδή συνιστά ένα βρόγχο ενώ μια ανοικτή χορδή

είναι γραμμή και άρα έχει καθορισμένα άκρα. Τα άμαζα σωματίδια, όπως τα φωτόνια,

προέρχονται από ταλαντώσεις είτε ανοικτών είτε, πιο σπάνια, κλειστών χορδών. Τα

βαρυτόνια, όμως, προέρχονται μόνο από ταλαντώσεις αποκλειστικά κλειστών χορδών

ή βρόγχων. Επίσης, τα άκρα μιας ανοικτής χορδή μπορούν να θεωρηθούν ως φορτι-

σμένα σωματίδια. Για παράδειγμα, ένα άκρο θα μπορούσε να είναι ένα ηλεκτρόνιο και

το άλλο άκρο θα αποτελούσε το αντισωματίδιό του, το ποζιτρόνιο. Η άμαζη ταλάντω-

ση της χορδής ανάμεσα τους περιγράφει το φωτόνιο. Κατά συνέπεια, με πανομοιότυπο

τρόπο έχουμε σωματίδια και δυνάμεις από ανοικτές χορδές. Συμπεριλαμβάνοντας τις

κλειστές χορδές, έχουμε και την βαρύτητα στο σχήμα [421–424].
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Σχήμα 5.7: Οι ΘΧ προϋποθέτουν την ύπαρξη ανοικτών χορδών (αριστερά) και κλειστών χορδών

(δεξιά).

Επειδή τα βαρυτόνια περιγράφονται από κλειστούς βρόγχους της χορδής, αυτοί οι

βρόχοι είναι εξορισμένοι σε έναν υψηλής διάστασης υπερχώρο που ονομάζεται bulk.

Στη μελέτη των θεωριών χορδών περιλαμβάνονται όχι μόνο μονοδιάστατα αντικείμενα

αλλά και αντικείμενα περισσότερων διαστάσεων που ονομάζονται βράνες (branes).

Συμβολικά, το Σύμπαν μας δεν είναι παρά μια βράνη που ζει σε στον υψηλότερων

διαστάσεων χώρο (bulk). Συγκεκριμένα, ο τετραδιάστατος χώρος στον οποίο ζούμε

δεν είναι παρά ένας υπόχωρος σε ένα χώρο n+ 3 χωρικών διαστάσεων. Δηλαδή, το

bulk είναι ο πλήρης χώρος με τις n+ 3 διαστάσεις, σε αντιδιαστολή με την 3d βράνη

στην οποία ζούμε εμείς και όλα τα σωμάτια του ΚΠ. Είναι δηλαδή ο υπερχώρος που

περιέχει τον δικό μας (βλέπε Σχ. 5.8). ΄Ετσι, μια σημαντική συνέπεια της ΘΧ είναι

ότι απαιτούν την ύπαρξη αρκετών επιπλέον διαστάσεων. Αυτές θεωρείται πως έχουν

συμπαγοποιηθεί (compactified, δηλαδή συρρικνωθεί και περιελιχθεί σε πολύ μικρές

κλίμακες όπως φαίνεται στο Σχ. 5.9, σε αντίθεση με τις 4 διαστάσεις του χωρόχρονου,

και για αυτό δεν μπορούν να παρατηρηθούν. Επιπλέον, ένα βασικό στοιχείο είναι

πως στην ΘΧ επιτρέπονται μόνο δύο θεμελιώδεις σταθερές, η μία είναι η τάση της

χορδής και περιγράφει την ποσότητα ενέργειας που περιέχεται ανά μονάδα μήκους της

χορδής, και η άλλη είναι η σταθερά σύζευξης χορδών η οποία είναι ένας αριθμός που

δηλώνει την πιθανότητα να σπάσει μια χορδή σε δύο χορδές, οδηγώντας έτσι στην

δημιουργία μιας δύναμης καθώς πρόκειται για πιθανότητα, είναι ένας καθαρός αριθμός

χωρίς μονάδες. ΄Ολες οι υπόλοιπες σταθερές στη φύση πρέπει να απορρέουν από

αυτούς τους δύο αριθμούς. Για παράδειγμα, η σταθερά του Νεύτωνα αποδεικνύεται

ότι σχετίζεται με το γινόμενο των τιμών τους. ΄Αρα, το γεγονός ότι η ΘΧ περιέχει

μία μόνο σταθερά ζεύξης, σημαίνει πως μπορεί να θέσει υποψηφιότητα σαν ΘΤΠ.
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Σχήμα 5.8: Τα σωμάτια του ΚΠ είναι περιορισμένα σε μια τρισδιάστατη υποπολλαπλότητα που

ονομάζεται βράνη. Ο υψηλότερης διάστασης υπερχώρος ονομάζεται bulk.

Υπάρχουν δύο κύριες κλάσεις ΘΧ: η μποζονική ΘΧ με 26 διαστάσεις και η υπερ-

συμμετρική ΘΧ ή θεωρία υπερχορδών με 10 διαστάσεις. Σήμερα, όταν αναφερόμαστε

στην ΘΧ εννοούμε την υπερσυμμετρική ΘΧ. Η μποζονική ή τύπου 0 θεωρία ήταν

η πρώτη διατύπωση της ΘΧ και προέβλεπέ την ύπαρξη του βαρυτονίου ως ένα σω-

ματίδιο με σπιν 2 και μηδενική μάζα. ΄Ομως, προέβλεπε μόνο μποζόνια και καθόλου

φερμιόνια, αλλά και την ύπαρξη ταχυονίων (tachyons), δηλαδή σωματίδια κινούμε-

να με ταχύτητα μεγαλύτερη από αυτή του φωτός με αρνητική μάζα στο τετράγωνο.

Στην συνέχεια, εισάχθηκε η υπερσυμμετρία στο προσκήνιο η οποία εξαφανίζει τα

ταχυόνια, και έτσι αναπτύχθηκε η υπερσυμμετρική ΘΧ από τους Green και Schwarz

το 1981 [425] η οποία εξηγούσε τις διαφορετικές ιδιότητες των σωματιδίων με δια-

φορετικούς τρόπους ταλάντωσης μονοδιάστατων χορδών. Η υπερσυμμετρία μπορεί

να μπει με 5 διαφορετικούς τρόπους στην ΘΧ και από τον κάθε έναν προκύπτει μια

διαφορετική ΘΧ. Συγκεκριμένα, έχουμε τις εξής διαφορετικές συνεπείς θεωρίες:

1. Τύπου I:

Οι χορδές μπορούν να είναι είτε ανοιχτές είτε κλειστές, και η ομάδα συμμετρίας

που χρησιμοποιείται είναι η SO (32).

2. Τύπου IIA:

Περιλαμβάνονται μόνο κλειστές χορδές στις οποίες οι ταλαντώσεις είναι συμμε-

τρικές χωρίς να παίζει ρόλο αν ταλαντώνονται προς τα δεξιά ή προς τα αριστερά.

Η ομάδα συμμετρίας που χρησιμοποιείται είναι πάλι η SO (32).

3. Τύπου IIB:

Περιλαμβάνει επίσης μόνο κλειστές χορδές στις οποίες, σε αντίθεση με τις

αντίστοιχες της IIA, παίζει ρόλο το αν ταλαντώνονται δεξιόστροφα ή αριστε-

ρόστροφα. Η ομάδα συμμετρίας είναι η SO (32).

4. Ετεροτική-E:
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Η ομάδα συμμετρίας είναι η E8 × E8. Περιλαμβάνονται μόνο κλειστές χορδές

οι οποίες αν ταλαντώνονται προς τα αριστερά συμπεριφέρονται σαν αυτές της

μποζονικής ΘΧ (έχουν δηλαδή 16 τρόπους κινήσεων παραπάνω, χωρίς όμως να

υπάρχουν 26 διαστάσεις), ενώ αν ταλαντώνονται προς τα δεξιά συμπεριφέρονται

σαν τις χορδές των ΘΧ τύπου II. Η θεωρία αυτή μπορεί να συμπεριλάβει το

ΚΠ αλλά και GUT θεωρίες όπως η SU (5), SO (10) ή E6.

5. Ετεροτική-O:

Οι χορδές αυτής της κλάσης ΘΧ έχουν ίδια συμπεριφορά με αυτή της ετεροτικής-

E, μόνο που εδώ χρησιμοποιείται η ομάδα συμμετρίας SO (32).

Σχήμα 5.9: Η μη παρατήρηση των επιπλέον διαστάσεων έχει ως συνέπεια την γενική παραδοχή

ότι αυτές είναι περιελιγμένες ή συμπαγοποιημένες με τρόπο ώστε να μην μπορούμε να τις παρατη-

ρήσουμε άμεσα. Η γεωμετρία αυτών των συμπαγοποιημένων αντικειμένων είναι πολύ δύσκολο να

απεικονισθεί. Η εικόνα αυτή περιέχει δύο δισδιάστατες προβολές ενός εξαδιάστατου χώρου.

Ο λόγος που όλες οι ΘΧ περιλαμβάνουν κλειστές χορδές ενώ δεν υπάρχει ο-

ύτε μια που να περιλαμβάνει μόνο ανοιχτές είναι, όπως είπαμε πριν, ότι τα άκρα δυο

ανοιχτών χορδών μπορούν να έρθουν σε επαφή παράγοντας μια κλειστή. Οι κλει-

στές, από την άλλη, μπορούν να παράγουν άλλες χορδές με μια διαδικασία η οποία

θυμίζει τη μίτωση των κυττάρων. Στην συνέχεια, αποδείχθηκε ότι αυτές οι 5 ΘΧ

συσχετίζονται μεταξύ τους μέσω των λεγόμενων δυϊκοτήτων (dualities), οι οποίες

επέτρεψαν την μελέτη της μη διαταρακτικής πλευράς της φυσικής αυτών των θεω-

ριών. Οι ΘΧ μπορούν να συσχετίζονται μεταξύ τους είτε μέσω της δυϊκότητας-S

(S-duality), είτε μέσω της δυϊκότητας-T (T-duality). Η δυϊκότητα-T συσχετίζει τη

φυσική που προκύπτει από καμπυλωμένες διαστάσεις με ακτίνα R με την αντίστοιχη
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των καμπυλωμένων διαστάσεων ακτίνας 1/R. Οι χορδές δεν ταλαντώνονται απλά

μέσα στις επιπλέον διαστάσεις, αλλά περιελίσσονται γύρω τους. Για παράδειγμα, αν

σε ένα δισδιάστατο Σύμπαν υπήρχε μια τρίτη διάσταση η οποία ήταν καμπυλωμένη,

μια χορδή θα μπορούσε να τυλιχτεί γύρω της. Η συνολική ενέργεια που θα είχε

η χορδή τότε θα προερχόταν τόσο από την ενέργεια ταλάντωσης όσο και από την

ενέργεια περιέλιξης. Αν είχαμε δύο παράλληλα δισδιάστατα Σύμπαντα, και στο ένα

από τα δύο η καμπυλωμένη διάσταση ήταν 10 φορές το μήκος Planck ενώ στο άλ-

λο 1, οι ενέργειες που θα παρήγαγαν οι χορδές, συνεπώς και τα σωματίδια που θα

δημιουργούνταν από αυτές, αφού εξαρτώνται από την ενέργεια ταλάντωσης, θα ήταν

ίσες. Αυτό συμβαίνει γιατί η ενέργεια περιέλιξης των χορδών του ενός Σύμπαντος

θα ήταν ίσο με την ενέργεια ταλάντωσης του άλλου και αντίστροφα. Ως εκ τούτου,

οι διαφορές των δύο αυτών συμπάντων είναι μη-διακρίσιμες γιατί η φυσική τους είναι

ίδια. Από την άλλη, η δυϊκότητα-S συσχετίζει ΘΧ με μεγάλη σταθερά σύζευξης με

ΘΧ με μικρή σταθερά σύζευξης. Η σταθερά σύζευξης, όπως είδαμε, καθορίζει τη

πιθανότητα μια χορδή να διαχωριστεί σε δυο και να “ξαναενωθεί”. Οι τιμές της στα-

θεράς σύζευξης είναι ανάμεσα στο 0 και στο 1. Αν η σταθερά σύζευξης των χορδών

είναι μεγαλύτερη από 1, η μέθοδος διαταραχών δεν μπορεί να χρησιμοποιηθεί γιατί

σε μια τέτοια περίπτωση οι υπολογισμοί δεν θα μπορούσαν να είναι προσεγγιστικοί.

Αν προσπαθούσαμε να κάνουμε τέτοιους υπολογισμούς προσεγγιστικά το αποτέλε-

σμα δεν θα είχε καμία σχέση με τη πραγματικότητα, οι διαταραχές θα το άλλαζαν σε

μεγάλο βαθμό, και θα έπρεπε να γίνουν και άλλες διορθώσεις και να ληφθούν υπόψιν

παράμετροι που δεν λήφθηκαν υπόψιν πριν, για να βγει τελικά ένα άλλο αποτέλεσμα

το οποίο θα ήταν τελείως διαφορετικό από το προηγούμενο, και ξανά η ίδια διαδι-

κασία. Επίσης, όταν σε μια ΘΧ η σταθερά σύζευξης είναι μεγαλύτερη από 1 πρέπει

να λαμβάνονται υπόψιν όλες οι δυνατές διασπάσεις και συγκρούσεις των χορδών και

κάθε μια θα συνεισέφερε όλο και περισσότερο σε ένα ακριβές αποτέλεσμα. ΄Ομως,

οι δυνατές διασπάσεις και συγκρούσεις των χορδών είναι άπειρες. Αυτό καθιστά

πρακτικά αδύνατο οποιονδήποτε σχετικό υπολογισμό σε μια ΘΧ με μεγάλη σταθερά

σύζευξης. Μια τέτοια ΘΧ ονομάζεται ισχυρά συζευγμένη. ΄Ετσι, η δυϊκότητα-S

συσχετίζει τις ισχυρά συζευγμένες ΘΧ με τις ασθενώς συζευγμένες (αυτές, δηλαδή,

στις οποίες η μέθοδος διαταραχών μπορεί να χρησιμοποιηθεί και δεν χρειάζεται απα-

ραίτητα να ληφθούν υπόψιν όλες οι δυνατές διασπάσεις/συγκρούσεις των χορδών).

Ακριβώς όπως στη δυϊκότητα-T , οι ΘΧ που συσχετίζονται με τη δυϊκότητα-S δίνουν

την ίδια φυσική. ΄Ετσι, αποδείχθηκε μέσω των δυϊκοτήτων, πως ενώ αρχικά οι ΘΧ
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φαίνονταν σαν 5 διαφορετικές ΘΤΠ, ότι πρόκειται για ένα “δίκτυο θεωριών”, που η

καθεμιά είναι διαφορετική όψη μιας άλλης. Συνοπτικά, οι δυϊκότητες των ΘΧ είναι

οι παρακάτω:

• Ετεροτική-O με την ετεροτική-E μέσω της δυϊκότητας-T .

• Τύπου IIA με την τύπου IIB μέσω της δυϊκότητας-T .

• Τύπου I με την ετεροτική-O μέσω της δυϊκότητας-S.

• Ισχυρά συζευγμένη τύπου IIB, με την ασθενώς συζευγμένη τύπου IIB μέσω

της δυϊκότητας-S.

Επίσης, να αναφέρουμε πως μέσω της δυϊκότητας-S προβλέπεται η ύπαρξη μαγνητικών

μονόπολων με τυπική μάζα [71,426]:

M strings
monop ∼

MPl

e
∼ 1020GeV (5.10)

Η περίοδος που έγιναν αυτές οι ανακαλύψεις είναι γνωστή ως “δεύτερη επανάστα-

ση των υπερχορδών” και άνοιξε το δρόμο προς τη θεωρία-Μ (M-Theory), η οποία

προτάθηκε από τον Edward Witten [427] και ενοποιεί όλες αυτές τις ΘΧ σε μια 11
η

διάσταση, αποτελώντας ένα δίκτυο μέσω του οποίου μπορούμε να μεταπηδάμε από

τη μια ΘΧ σε μια άλλη [428]. ΄Ενα από τα κύρια χαρακτηριστικά της είναι ότι, σε

αντίθεση με τις ΘΧ, δεν έχει μόνο χορδές αλλά και μεμβράνες (membranes), από τις

οποίες μπορούν να δημιουργηθούν σωματίδια. Οι μεμβράνες της θεωρίας-Μ μπορούν

να έχουν από 0 έως 10 διαστάσεις. Μια μονοδιάστατη χορδή είναι μια μονοβράνη,

μια δισδιάστατη μεμβράνη είναι μια διβράνη, και ούτω καθεξής. Οι μεμβράνες της

θεωρίας-Μ είναι οι λεγόμενες p-βράνες και οι D-βράνες. Συγκεκριμένα, οι D-βράνες

είναι είδη p-βράνων. Στη θέση του p (ή του D) μπαίνει ο αριθμός των διαστάσεων.

΄Ετσι, μια εννιαδιάσταση p-βράνη είναι μια 9-βράνη, μια τετραδιάστατη D-βράνη είναι

μια 4-βράνη κτλ. Οι βράνες αυτές έχουν ιδιότητες, όπως το φορτίο και η έντασή τους,

οι οποίες καθορίζουν πόσο εύκολα επηρεάζονται από τις διάφορες κβαντικές διεργα-

σίες και το πόσο εύκολα αλληλεπιδρούν. Η θεωρία-Μ, αν και δεν είναι σαφές ακόμα

το τι είδους θεωρία είναι, συσχετίζει μεταξύ τους όλες τις ΘΧ μέσω των δυϊκοτήτων

τους και τις συσχετίζει με τις θεωρίες υπερβαρύτητας. Οι θεωρίες υπερβαρύτητας

ήταν προσπάθειες να συνδυαστούν οι αρχές της υπερσυμμετρίας με της ΓΘΣ σε μια

θεωρία ΚΒ. Η θεωρία-Μ, θεωρείται πως είναι 11-διάστατη καθώς 11 διαστάσεις είναι

ο μέγιστος αριθμός διαστάσεων στον οποίο μια υπερσυμμετρική θεωρία με βαρυτόνια
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είναι συνεπής, ενώ είναι ο ελάχιστος που μπορεί να εισάγει τη βαρύτητα σε μια θεω-

ρία που περιλαμβάνει τις συμμετρίες βαθμίδας των άλλων δυνάμεων του ΚΠ. ΄Οπως

ακριβώς οι θεωρίες υπερβαρύτητας είναι προσεγγίσεις της ΘΧ σε χαμηλές ενέργειες,

έτσι και οι ΘΧ είναι προσεγγίσεις της θεωρίας-Μ. ΄Ετσι, φαίνεται πως η 11-διάστατη

N = 1 θεωρία υπερβαρύτητας είναι η πιο συμμετρική θεωρία που βασίζεται στην

υπερσυμμετρία.

Γενικά, η ΘΧ είχε σημαντικές επιτυχίες καθώς:

1. Ενοποίησε όλα τα στοιχειώδη σωματίδια, ενοποιώντας παράλληλα και τις δυ-

νάμεις μεταξύ τους. ΄Οπως αναφέραμε, όλα προέρχονται από ταλαντώσεις ενός

θεμελιώδους είδους αντικειμένου.

2. ΄Εδωσε αυτομάτως πεδία βαθμίδας, τα οποία ευθύνονται για τον ηλεκτρομα-

γνητισμό και τις πυρηνικές δυνάμεις. Αυτές οι δυνάμεις αναδύονται με φυσικό

τρόπο από τις ταλαντώσεις των ανοιχτών χορδών.

3. Η ΘΧ έδωσε αυτομάτως τα βαρυτόνια, τα οποία προέρχονται από ταλαντώσεις

κλειστών χορδών, ενώ κάθε κβαντική ΘΧ θα πρέπει να περιλαμβάνει κλειστές

χορδές.

4. Η υπερσυμμετρική ΘΧ ενοποίησε τα μποζόνια και τα φερμιόνια, τα οποία απο-

τελούν και τα δυο απλώς ταλαντώσεις των χορδών, ενοποιώντας με τον τρόπο

αυτό όλες τις δυνάμεις με όλα τα σωματίδια.

Το βασικό θεωρητικό πρόβλημα της ΘΧ είναι πως στην παρούσα μορφή της, δεν

σέβεται το βασικό δίδαγμα της ΓΘΣ, ότι δηλαδή ο χωρόχρονος δεν είναι παρά ένα

εξελισσόμενο σύστημα σχέσεων. Δηλαδή η ΘΧ εξαρτάται από το υπόβαθρο ενώ η

ΓΘΣ είναι ανεξάρτητη υποβάθρου. Ταυτόχρονα μοιάζει μάλλον απίθανο η ΘΧ να

βρίσκεται στην τελική της μορφή. Δηλαδή, το πρόβλημα με τη ΘΧ είναι ότι δεν έχει

εκφρασθεί ακόμα υπό μορφή θεμελιώδους θεωρίας. Αυτό που διαθέτουμε είναι ένας

μακροσκελής κατάλογος από παραδείγματα λύσεων της θεωρίας, εξακολουθεί όμως

να μας λείπει η θεωρία της οποία αποτελούν λύσεις. Επιπρόσθετα, παρόλα τα θε-

ωρητικά προβλήματα που επιλύει μέχρι σήμερα, καμία ΘΧ δεν έχει κάνει ποσοτικές

προβλέψεις που θα μπορούσαν να επαληθευτούν πειραματικά, καθώς οι περισσότερες

προβλέψεις είναι στα επίπεδα Planck τα οποία είναι μη προσεγγίσιμα πειραματικά.

Επίσης, έχει αποδειχθεί πως η ΘΧ δεν κάνει ουσιαστικά νέες προβλέψεις εν μέρει

διότι, κατά τα φαινόμενα, απαντά σε ένα άπειρο πλήθος εκδοχών. Ακόμη κι αν περιο-

ριστούμε σε θεωρίες που συμφωνούν με τις βασικές παρατηρήσεις μας σχετικά με το
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Σύμπαν, όπως το αχανές μέγεθος του και η ύπαρξη της ΣΕ, παραμένουν στα χέρια

μας 10500
διαφορετικές ΘΧ [429,430]. Για την ακρίβεια, το νούμερο αυτό αντιστοιχεί

στο πλήθος των διαφορετικών μορφών συμπίεσης των επιπλέον διαστάσεων και είναι

ένα νούμερο μεγαλύτερο και από τον αριθμό των ατόμων στο παρατηρήσιμο Σύμπαν.

Με τέτοιο αχανές πλήθος θεωριών, δεν είναι εύκολο να εντοπίσουμε πειραματικό

αποτέλεσμα που να μην προβλέπεται από κάποια από αυτές. ΄Ετσι, με το μέχρι στιγ-

μής θεωρητικό πλαίσιο που την περιβάλει, ότι κι αν δείξουν τα πειράματα, η ΘΧ δεν

μπορεί να διαψευστεί. Ταυτόχρονα, φαίνεται πως ισχύει και το αντίστροφο, δηλαδή

κανένα πείραμα δεν θα μπορέσει ποτέ να την επαληθεύσει. Πιστεύεται ωστόσο, ότι

μη διαταρακτικά φαινόμενα μπορούν να εξαλείψουν περισσότερες από τις λύσεις και να

διαλέξουν μια μοναδική λύση η οποία περιγράφει το Σύμπαν μας. Αυτό όμως απαιτεί

μια μη διαταρακτική διατύπωση της ΘΧ η οποία δεν είναι μέχρι στιγμής διαθέσιμη. Η

δεύτερη πιθανότητα είναι αυτή του πολυσύμπαντος. Δηλαδή, για κάθε σχήμα συμπίε-

σης των επιπλέον διαστάσεων υπάρχει και ένα διαφορετικό κενό του χωροχρόνου και

άρα ένα διαφορετικό Σύμπαν με την δική του ενέργεια κενού, τα δικά του θεμελιώδη

σωμάτια και νόμους της φυσικής [431,432]. Τίποτα στην ΘΧ δεν προτείνει ότι κάθε

ένα από αυτά τα 10500
Σύμπαντα προτιμάται έναντι ενός άλλου. Αντίθετα, φαίνεται

ότι όλα είναι εξίσου πιθανά. ΄Ετσι, φαίνεται πως ζούμε σε ένα τυχαίο Σύμπαν από τα

10500
διαφορετικά παράλληλα Σύμπαντα, στο οποίο όμως οι συνθήκες ήταν ώριμες

για να σχηματιστεί η ζωή όπως την ξέρουμε με τις φυσικές σταθερές που παρατη-

ρούμε [432–436]. Η αντιπαράθεση σχετικά με το πώς θα χειριστούμε τα νέα αχανή

τοπία χορδών, φαίνεται ότι καταλήγει σε τρεις δυνατότητες:

1. Η ΘΧ είναι σωστή, και το τυχαίο πολυσύμπαν υπάρχει, οπότε, για να το συμπε-

ριλάβουμε στη φυσική χρειάζεται να αλλάξουμε τους κανόνες που διέπουν τον

τρόπο με τον οποίο λειτουργεί η επιστήμη, διότι, σύμφωνα με το συνηθισμένο

σύστημα αξιών της επιστήμης δεν πρέπει να πιστεύουμε σε θεωρίες που δεν

κάνουν μοναδικές προβλέψεις με τις οποίες θα μπορούσαν να επιβεβαιωθούν ή

να διαψευστούν.

2. Κάποιος τρόπος θα ανακαλυφθεί τελικά για να συναχθούν αληθινές, μοναδι-

κές και ελέγξιμες προβλέψεις από την ΘΧ. Αυτό θα μπορούσε να γίνει είτε με

την κατάδειξη ότι πραγματικά υπάρχει μια μοναδική θεωρία είτε με μια διαφο-

ρετική, μη τυχαία θεωρία πολυσύμπαντος που οδηγεί σε αληθινές, ελέγξιμες

προβλέψεις.

3. Η ΘΧ δεν είναι η σωστή θεωρία της φύσης. Η φύση περιγράφεται καλύτερα
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από κάποια άλλη θεωρία, η οποία μένει να ανακαλυφθεί ή να γίνει αποδεκτή,

και η οποία οδηγεί σε αληθινές προβλέψεις, τις οποίες το πείραμα τελικά θα

επιβεβαιώσει.

Κβαντική βαρύτητα βρόγχων

Εκτός από την ΘΧ, υπάρχει και ένα άλλο πρωτοποριακό σύνολο ιδεών που ανήκει

στην οικογένεια της κανονικής κβαντικής βαρύτητας και το οποίο φαίνεται να ενο-

ποιεί τη ΓΘΣ με την Κβαντομηχανική. Το όνομα της θεωρίας αυτής είναι Κβαντική

Βαρύτητα Βρόχων (Loop Quantum Gravity - LQG) ή αλλιώς Κβαντική Γεωμετρία

(βλέπε [437,438] για περίληψη). Η LQG, προέρχεται από την έρευνα του Ashtekar το

1986 [439,440] ο οποίος επαναδιατύπωσε την ΓΘΣ σε έναν νέο κανονικό φορμαλισμό

με όρους μιας “selfdual” σπινοριακής σύνδεσης και της συζυγής ορμής, γνωστά ως

μεταβλητές Ashtekar οι οποίες εξέφρασαν την ΓΘΣ με μια γλώσσα πιο κοντά σε

αυτή των θεωριών βαθμίδας Yang-Mills. Η αλλαγή αυτή από την μετρική στις μετα-

βλητές Ashtekar έδωσε την πιθανότητα εφαρμογής μη διαταρακτικών τεχνικών στις

θεωρίες βαθμίδας, και άνοιξε έναν νέο δρόμο που τελικά οδήγησε στην LQG. Στην

συνέχεια, αποδείχθηκε πως οι βρόγχοι Wilson της σύνδεσης Ashtekar είναι λύσεις

της “εξίσωσης Wheeler-DeWitt” [441] γεγονός που οδήγησε στην αναπαράσταση

με βρόγχους στης κβαντικής ΓΘΣ [442,443].

Στην LQG, η συγχώνευση της ΓΘΣ με την Κβαντομηχανική επιτυγχάνεται με

την ιδέα ότι ο χώρος αποτελείται από μικρούς κινητούς βρόχους. Γνωρίζουμε, πως

σύμφωνα με την ΓΘΣ η βαρυτική δύναμη οφείλεται στην καμπύλωση του χωρο-

χρόνου. Αν αποδείξουμε ότι δεν μπορούμε να χωρίζουμε επ’ άπειρων το χωροχρόνο,

τότε ο χωροχρόνος (και μαζί με αυτόν η βαρυτική δύναμη) θα είναι κβαντισμένος.

Αυτή η υπόθεση αποτελεί τη βασική ιδέα της κβαντικής βαρύτητας βρόχων. Τελικά,

καταλήγουμε στο συμπέρασμα ότι ο χώρος είναι όντως κβαντισμένος και αποτελε-

ίται από μικρούς κύβους (κβάντα χώρου) που έχουν μήκος ακμής το μήκος Planck

lPl ∼ 10−33cm, και όγκο τον όγκο Planck VPl ∼ 10−99cm3
ενώ κάθε κβάντο χρόνου

αντιστοιχεί περίπου σε ένα χρόνο Planck tPl ∼ 10−43s. Σύμφωνα λοιπόν με τη

σημερινή διαμόρφωση της LQG, από το κβάντο του χώρου, δηλαδή τον βρόχο, προ-

κύπτουν τα υποατομικά σωματίδια ανάλογα με τον τρόπο με τον οποίο ο βρόχος αυτός

είτε περιστρέφεται γύρω από τον εαυτό του παραμορφώνοντας το βασικό του σχήμα,

είτε αλληλεπιδρά με άλλους βρόχους. Μέσω της προσέγγισης αυτής, τα σωματίδια

της φύσης αποτελούν ουσιαστικά παραμορφώσεις του βασικού δομικού στοιχείου του
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ίδιου του χώρου αλλά και αποτέλεσμα των αλληλεπιδράσεων μεταξύ αυτών.

Σχήμα 5.10: Ο ιστός του χώρου είναι ένα δίκτυο σπιν με γραμμές και κόμβους. Ο μικρότερος

όγκος VPl αντιστοιχεί σε ένα κόμβο που το φως θέλει χρόνο tPl για να τον διασχίσει. Μεταξύ των

κόμβων και πάνω στις γραμμές τοποθετούνται σύμβολα που αναπαριστούν είτε τις δυνάμεις είτε τα

διάφορα σωματίδια που βρίσκονται εκεί. Η κίνηση σωματιδίων στο χώρο απεικονίζεται με αυτά τα

σύμβολα να μετακινούνται με το μικρότερο δυνατό βήμα. Ο κβαντικός χωρόχρονος περιγράφεται

από αντίστοιχα διαγράμματα, που ονομάζονται αφροί σπιν.

Γύρω στο 1990 έγινε φανερό πως οι διασταυρώσεις των βρόγχων είναι σημαντικές

για την συνέπεια της θεωρίας και έτσι οι κβαντικές καταστάσεις της βαρύτητας πρέπει

να περιγραφούν με όρους “διασταυρώσεων βρόχων” για παράδειγμα με γραφήματα με

συνδέσεις και κόμβους. ΄Ετσι, πάρθηκε μια συγκεκριμένη βάση καταστάσεων που ο-

νομάζονται δίκτυα σπιν (spin networks) τα οποία είναι προσανατολισμένα γραφήματα

που χαρακτηρίζονται από αριθμούς που σχετίζονται με τις αναπαραστάσεις σπιν της

SU (2) σε κάθε σύνδεση και κόμβους [444–446]. Συγκεκριμένα, κάθε μικρό κομ-

μάτι χώρου, για παράδειγμα ένας κύβος, απεικονίζεται σαν μια τελεία, από την οποία

προεξέχουν 6 γραμμές, που συμβολίζουν τις έδρες του. ΄Οταν δύο τέτοιοι κύβοι ε-

φάπτονται, τότε παριστάνονται με δύο τελείες που ενώνονται με μία γραμμή (η οποία

συμβολίζει την κοινή τους έδρα), ενώ άλλες 5 γραμμές προεξέχουν από την κάθε

τελεία. Είναι προφανές το πόσο πολύπλοκοι μπορούν να γίνουν τέτοιοι συνδυασμοί,

οι οποίοι, εκτός από κύβους, μπορεί να περιλαμβάνουν και κάθε άλλο πολυεδρικό

σχήμα. Τα μαθηματικά που περιγράφουν τις διάφορες κβαντικές καταστάσεις του

χώρου προσδιορίζουν τον τρόπο με τον οποίο ενώνονται κάθε φορά μεταξύ τους αυ-

τές οι τελείες και οι γραμμές, και κάθε τέτοιο διάγραμμα αντιπροσωπεύει και μια

διαφορετική κβαντική κατάσταση (βλέπε Σχ. 5.10). Επιπλέον, τα διαγράμματα αυτά

σε δύο διαστάσεις θα πρέπει να τα φανταζόμαστε ως τρισδιάστατα, γιατί αντιπροσω-

πεύουν τον τρισδιάστατο χώρο. ΄Ολο αυτό σχηματίζει ένα τεράστιο δίκτυο, το δίκτυο
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σπιν (spin network). Τα δίκτυα σπιν που περιγράφουν το χώρο στην LQG μπορο-

ύν, ακόμη, να συμπεριλάβουν και την έννοια του χωροχρόνου. Με την προσθήκη

μιας νέας διάστασης (του χρόνου), οι γραμμές των δικτύων σπιν μετατρέπονται σε

δισδιάστατες επιφάνειες, ενώ τα σημεία μεταβάλλονται σε γραμμές, σχηματίζοντας

ένα ακόμη πιο πολύπλοκο μωσαϊκό, το οποίο αποκαλείται αφρός σπιν (spin foam)

[447–449].

Η LQG, παρουσιάζει σημαντικά πλεονεκτήματα σε σχέση με τη ΘΧ. Πρώτον, δεν

εισάγονται επιπλέον διαστάσεις (εκτός των τεσσάρων γνωστών) ούτε και υπερσυμ-

μετρικά σωματίδια. Απλώς, οι τέσσερις διαστάσεις, δεν είναι συνεχείς αλλά κβαντι-

σμένες. Δεύτερον, η LQG μας έχει απαλλάξει από κάποιους απειρισμούς αλλά και

έχει το βασικό χαρακτηριστικό πως είναι ανεξάρτητη από το υπόβαθρο όπως επιτάσ-

σει η ΓΘΣ. Τέλος, μας δίνει την δυνατότητα πειραματικής επαλήθευσης [450, 451].

Για παράδειγμα, προβλέπει ότι όσο μεγαλύτερη ενέργεια έχει η ακτινοβολία γ, τόσο

γρηγορότερα διασχίζει το διάστημα. Δηλαδή, οι φωτεινές ακτίνες φαίνεται σαν να

μην ταξιδεύουν με την ίδια ταχύτητα (βλέπε Σχ. 5.11). Αν και η διαφορά αυτή ε-

ίναι απειροελάχιστη, μπορεί να μετρηθεί με την τεχνολογία που διαθέτουμε σήμερα.

Πειράματα που ψάχνουν για αυτή τη διαφορά είναι ο δορυφόρος “Fermi Gamma-ray

Space Telescope” (GLAST) της “National Aeronautics and Space Administration”

(NASA), καθώς και το πείραμα “AUGER” στην Αργεντινή που μελετά την ΚΑΜ.

΄Ετσι, φαίνεται πως η LQG πληροί και τις δύο προϋποθέσεις που απαιτούνται για να

θεωρηθεί μία θεωρία αξιόπιστη.

Σχήμα 5.11: Εικόνα που δείχνει ένα δίκτυο σπιν με γραμμές και κόμβους μέσα στους οποίους

ταξιδεύουν φωτόνια ακτίνων γ σε διαφορετικές διαδρομές.
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΄Αλλες θεωρίες

1. Η θεωρία του Αιτιώδη Δυναμικού Τριγωνισμού (Causal Dynamical Triangu-

lations - CDT) αναπτύχθηκε τα τελευταία χρόνια από την Renate Loll και

τους συνάδελφους της Jan Ambjorn και Jerzy Jurkiewicz. Πρόκειται για μια

πρωτοπόρα προσέγγιση στην ΚΒ, που όπως και η LQG είναι ανεξάρτητη του

υπόβαθρου. Αυτό σημαίνει ότι δεν δέχεται a priori κανένα προϋπάρχοντα χώρο

4 διαστάσεων (όπως είναι ο δικός μας χωρόχρονος), αλλά επιχειρεί να δείξει

πώς εξελίσσεται ο ίδιος ο ιστός του χωρόχρονου και τι διαστάσεις παίρνει με

την εξέλιξη του Σύμπαντος [452–457].

Σε μεγάλες κλίμακες, αναδημιουργεί ένα Σύμπαν με 4 διαστάσεων χωρόχρο-

νο που έχει το σχήμα de Sitter. Η θεωρία δείχνει πως κοντά στην κλίμακα

Planck ο χωρόχρονος είναι 2 διαστάσεων, ενώ αποκαλύπτει μια φράκταλ δομή

με “φέτες” συνεχούς χρόνου. ΄Εχει γίνει αποδεκτό ότι σε πολύ μικρότερες

κλίμακες ο χώρος δεν είναι στατικός, αλλά αντίθετα είναι δυναμικά μεταβαλ-

λόμενος. Κοντά στην κλίμακα Planck, η ίδια η δομή του χωροχρόνου αλλάζει

συνεχώς λόγω των κβαντικών διακυμάνσεων. Αυτά τα ενδιαφέροντα αποτε-

λέσματα της θεωρίας CDT συμφωνούν και με τα ευρήματα των Oliver Lauscher

και Martin Reuter, οι οποίοι χρησιμοποιούν μια προσέγγιση που ονομάζεται

Κβαντική Βαρύτητα Einstein, την οποία θα δούμε στην συνέχεια, καθώς και

με άλλες πρόσφατες θεωρητικές εργασίες.

Τα CDT μοντέλα του χωροχρόνου αποτελούνται από μικροσκοπικά, ταυτόση-

μα δομικά στοιχεία - παρόμοια με τρίγωνα αλλά σε πιο υψηλές διαστάσεις, που

λέγονται τετραπλότητες. Τα τρίγωνα (που διέπονται από την κβαντική μηχα-

νική) συνεχώς αναδιαμορφώνονται σε νέες μορφές, η κάθε μία από τις οποίες

έχει τη δική της καμπυλότητα.

2. Ο Martin Reuter, είχε μια ιδέα, που είχε προταθεί πολύ νωρίτερα από το Steven

Weinberg τη δεκαετία του 1970, ότι σε εξαιρετικά μικρές κλίμακες θα μπορούσε

να υπάρχει ένα “σταθερό σημείο” στο οποίο η ισχύς της βαρύτητας να μην

αυξάνει πια ανεξάρτητα από το πόσο θεμελιακά κοιτάμε. Υπάρχει μια αιτία να

πιστεύουμε πως αυτό θα μπορούσε να δουλέψει. Η QCD μας λέει ότι η ισχυρή

δύναμη μειώνεται σε ολοένα και πιο μικρές κλίμακες έως ότου φθάσει σε ένα

σταθερό σημείο, όπου γίνεται μηδέν. Αν υπάρχει ένα παρόμοιο σημείο και για

την βαρύτητα, αυτό θα σημαίνει ότι η φυσική θα είναι σε θέση να περιγράψει το
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βάρος προς τις μικρότερες αποστάσεις, δηλαδή προς την κβαντική σφαίρα [458].

΄Οταν ο Weinberg βέβαια πρότεινε αυτή την ιδέα, δεν υπήρχαν τα μαθηματικά

εργαλεία για να υπολογιστεί αυτό το σταθερό σημείο στις 4 διαστάσεις του

χωρόχρονου της ΓΘΣ, παρά μόνο σε μικρότερες διαστάσεις. Προς τα τέλη της

δεκαετίας του 1990 ο Reuter ανέπτυξε μια τέτοια μέθοδο. Οι υπολογισμοί που

έκανε ήταν προσεγγιστικοί, αλλά έδειχναν ότι μπορεί, πράγματι, να κρύβεται

ένα τέτοιο σταθερό σημείο για τη βαρύτητα στις εξισώσεις.

Κατά μυστηριώδη τρόπο, στην Κβαντική Βαρύτητα του Einstein (Quantum

Einstein Gravity), ο χωρόχρονος στις μικρότερες κλίμακες είναι φράκταλ και

ο αριθμός των διαστάσεων συρρικνώνεται από τις γνωστές μας 4 σε 2. Αυτό

θυμίζει την θεωρία CDT, γεγονός που σημαίνει ότι οι δύο προσεγγίσεις μπορεί

να είναι ισοδύναμες. Η θεωρία ονομάζεται ΚΒ Einstein επειδή είναι μια άμεση,

κβάντωση της ΓΘΣ λίγο πολύ όπως την έγραψε ο Einstein, με το μετρικό

τανυστή σαν την κύρια μεταβλητή. Εκτός όμως από τα πλεονεκτήματα της,

ότι η βαρύτητα δεν εξαφανίζεται σε μικρές κλίμακες όπως γίνεται στη ΓΘΣ,

η θεωρία αυτή πρέπει να αποδείξει ότι η ισχύς της βαρύτητας γίνεται σταθερή

στις μικρές διαστάσεις.

3. Η Φωτεινή Μαρκοπούλου Καλαμαρά και οι συνεργάτες της, έχουν αναπτύξει

από το 2005 ένα μοντέλο, σχετικά με το πώς θα μπορούσε να αναδυθεί η γε-

ωμετρία του χώρου από μια πιο θεμελιακή θεωρία, που ονομάζεται Κβαντικό

Γράφημα (Quantum Graphity) [459, 460]. Αντί να θέσει το άμεσο ερώτη-

μα κατά πόσο η γεωμετρία του κβαντικού χωροχρόνου μπορεί να αναδυθεί ως

κλασικός χωρόχρονος, πρότεινε μια διαφορετική προσέγγιση βασισμένη στον

προσδιορισμό και τη μελέτη της κίνησης των σωματιδίων στην κβαντική γεω-

μετρία. Η ιδέα ήταν ότι τα σωματίδια πρέπει να αναδύονται από κάποιο είδος

διέγερσης της κβαντικής γεωμετρίας, η οποία θα ταξιδεύει διαμέσου της γεωμε-

τρίας αυτής όπως περίπου ταξιδεύουν τα κύματα μέσα στα στερεά ή στα υγρά.

Ωστόσο, προκειμένου να αναπαραχθεί η φυσική που γνωρίζουμε, πρέπει να

μπορούμε να περιγράψουμε τα αναδυόμενα αυτά σωματίδια ως αμιγώς κβαντικά

σωματίδια, τα οποία φαίνεται να “αγνοούν” την κβαντική γεωμετρία διαμέσου

της οποίας ταξιδεύουν.

Η αρχική ιδέα είναι ότι σε πολύ μικρές κλίμακες και εξαιρετικά υψηλές ενέργειες

(προϋποθέσεις που υπήρχαν κατά την γέννηση του Σύμπαντος) δεν υπάρχει ο
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χώρος. Το μόνο που υπάρχει είναι ένα αφηρημένο δίκτυο κόμβων, που υφίστα-

νται μια μετάβαση φάσης, μια γραφική παράσταση κατασκευασμένη από κόμβους

που συνδέονται μεταξύ τους με ακμές που διέπονται από την Κβαντομηχανική.

Σε αυτή την κατάσταση, κάθε κόμβος συνδέεται με κάθε άλλο κόμβο.

Η ιδέα μιας “προγεωμετρικής” φάσης του Σύμπαντος ξεκίνησε στα τέλη της

δεκαετίας του 1950 από τον John Wheeler. Σύμφωνα με το κβαντικό μοντέλο

γραφημάτων, αυτή η προγεωμετρική φάση δεν διαρκεί για πολύ. ΄Οταν το πρώι-

μο Σύμπαν ψύχθηκε, πέρασε από μια φάση μετάβασης, κατά την διάρκεια της

οποίας πολλοί από τους κόμβους δεν συνδέονταν πια. Ορισμένοι κόμβοι α-

πομακρύνθηκαν από άλλους, και τότε αναδύθηκε η απόσταση, και φυσικά το

διάστημα, ενώ η συλλογή των κόμβων “κρυσταλλώθηκε” σε μια διατεταγμένη

δομή σαν δίκτυο. Η δομή αυτή αποτελεί τον χώρο στην κβαντική κλίμακα και

δημιουργεί μεγάλα κενά στις μεγάλες κλίμακες.

Αυτή η μετάβαση φάσης θα μπορούσε να εξηγήσει το γεγονός ότι υπάρχουν

πολύ απομακρυσμένες περιοχές του Σύμπαντος που έχουν ακριβώς την ίδια θερ-

μοκρασία. Για αυτή την ομοιογένεια της θερμοκρασίας θα πρέπει οι περιοχές

αυτές να ήταν αρκετά κοντά η μία στην άλλη, λίγο μετά τη ΜΕ, οπότε να είναι

σε θέση να ανταλλάσσουν ακτινοβολία, ακόμη και τη θερμοκρασία τους. ΄Ομως,

αν κάνουμε μια αναγωγή στις προηγούμενες θέσεις τους με βάση τις ταχύτητες

με τις οποίες κινούνται μακριά η μία περιοχή με την άλλη, θεωρούμε ότι δεν θα

βρίσκονταν ποτέ αρκετά κοντά ώστε να ανταλλάσσουν θερμοκρασίες. Για να

παρακαμφθεί αυτή η δυσκολία, το γνωστό μοντέλο του πληθωρισμού προτε-

ίνει ότι το πρώιμο Σύμπαν πέρασε από μια πολύ σύντομη περίοδο διαστολής με

μεγαλύτερη ταχύτητα από του φωτός. Το κβαντικό γράφημα, ωστόσο, μπορεί

δυνητικά να λύσει αυτό το αίνιγμα της θερμικής ισορροπίας, χωρίς την ανάγκη

να καταφύγουμε στον πληθωρισμό. Αν όλα τα σημεία στο πρώιμο Σύμπαν

ήταν μεταξύ τους σε επαφή, κατά τη διάρκεια της προγεωμετρικής φάσης, τότε

θα πρέπει να δούμε εντυπωσιακές ομοιότητες (ομοιογένεια) μεταξύ απομακρυ-

σμένων περιοχών του Σύμπαντος.

4. Ο Γερμανός Olaf Dreyer, αναπτύσσει ένα μοντέλο που ονομάζεται Εσωτερική

Σχετικότητα (Internal Relativity) στο οποίο ο χωρόχρονος προκύπτει από μια

προ-γεωμετρική κατάσταση, και από εκεί οι νόμοι της ΓΘΣ [461]. Το μοντέλο

αυτό όπως και το μοντέλο του κβαντικού γραφήματος, είναι μια νέα προσέγγιση

για την κοσμολογία του πρώιμου Σύμπαντος. Ο πληθωρισμός αντικαθίσταται
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από μια φάση μετάβασης κατά την οποία δημιουργούνται ταυτόχρονα τόσο η

ύλη όσο και η γεωμετρία.

Η αφετηρία είναι ένα απλό κβαντικό σύστημα των σπιν, καθένα από τα οποία

μπορεί να είναι είτε πάνω είτε κάτω, σε μια τυχαία κατανομή. Σε μια κρίσιμη

θερμοκρασία, το σύστημα υποβάλλεται σε μια αλλαγή φάσης στην οποία τα

σπιν ευθυγραμμίζονται για να σχηματίσουν ένα οργανωμένο σχήμα. Το θέμα

είναι να σκεφτούμε τι βλέπουν οι παρατηρητές μέσα στο σύστημα (δηλαδή στο

εσωτερικό του) μετά από την αλλαγή της φάσης. Δεν θα δουν ποτέ τα υ-

ποκείμενα σπιν που δρουν ως το φόντο. Αυτό που βλέπουν είναι οι διεγέρσεις

του συστήματος που, αποδεικνύεται ότι, τις αντιλαμβάνονται ως χωρόχρονο και

ύλη. Λαμβάνοντας αυτή την “εσωτερική” προοπτική σοβαρά, τα αποτελέσματα

της ΕΘΣ, όπως η διαστολή του χρόνου και η συρρίκνωση του μήκους, προ-

κύπτουν με φυσικό τρόπο. Και το σπουδαιότερο είναι ότι μπόρεσε να εξαχθεί

η νευτώνεια βαρύτητα δείχνοντας ότι δύο κοντινά σωματίδια του μοντέλου θα

έλκονται αμοιβαία, καθώς αυτή μειώνει τη συνολική ενέργεια του συστήματος.

Στο μοντέλο αυτό ο χωρόχρονος και η μάζα δεν θεωρούνται πλέον ξεχωριστά,

αλλά αναδύονται από κοινού από την ίδια προγεωμετρική κατάσταση και άρα

μπορεί να προκύψει η ΓΘΣ. Αν αυτό επιτευχθεί, τότε ίσως μπορέσει να λυθεί

και το πρόβλημα της κοσμολογικής σταθεράς. Στην εσωτερική σχετικότητα,

δεν υπάρχει χωρόχρονος χωρίς την ύλη, και έτσι η ενέργεια του χωρόχρονου

θα πρέπει να υπολογίζεται με διαφορετικό τρόπο. ΄Αρα, η κοσμολογική σταθερά

θα πρέπει να είναι πολύ μικρή, όπως κι έχει παρατηρηθεί.

΄Οσο για την πειραματική μελέτη του μοντέλου, αν το πρώιμο Σύμπαν πέρασε

από μια περίοδο πληθωρισμού, θα πρέπει να είμαστε σε θέση να ανιχνεύσουμε

τα “λείψανα” των βαρυτικών κυμάτων που “κυματίζουν” στην ΚΑΜ. Εάν,

ωστόσο, το Σύμπαν προέκυψε από μια προγεωμετρική κατάσταση, δεν θα πρέπει

να βρεθούν τέτοια κύματα. Ο δορυφόρος Planck είναι αρκετά ευαίσθητος για

την ανίχνευση αυτών των κυμάτων βαρύτητας, αν υπάρχουν, και έτσι μπορεί είτε

να επιβεβαιωθεί είτε να αποκλειστεί το μοντέλο της εσωτερικής σχετικότητας.

5. Το 2007 αναπτύχθηκε από τον Garrett Lisi μια υποψήφια ΘΤΠ, η οποία προ-

έρχεται από την ομάδα E8 η οποία έχει ανακαλυφθεί από το 1887 από τον

Wilhelm Killing αλλά κατανοήθηκε πλήρως το 2007 [462]. Η ομάδα αυτή σχε-

τίζεται με τις ασυνήθιστες ομάδες Lie (βλέπε εδάφιο 3.1.3) και είναι διάστασης
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248 και τάξης 8. Η άλγεβρα E8 είναι η μεγαλύτερη και πιο περίπλοκη από

τις υπόλοιπες ασυνήθιστες ομάδες. ΄Ετσι, δείχθηκε πως τα διάφορα θεμελι-

ώδη σωμάτια μπορούν να τοποθετηθούν στα διάφορα σημεία του μοτίβου E8

(βλέπε Σχ. 5.12) και στην συνέχεια οι διάφορες αλληλεπιδράσεις συμπεριλαμ-

βανομένης της βαρύτητας προκύπτουν με φυσικό τρόπο περιστρέφοντας την

E8 με συγκεκριμένο τρόπο χρησιμοποιώντας προσομοιώσεις. Περιστρέφοντας

την με έναν συγκεκριμένο τρόπο, ο Lisi διαπίστωσε ότι μπορούσε να αναπα-

ραγάγει τις βασικές δομές που περιέγραφαν τη σχέση κουάρκ-γκλουονίων και

τη “βαρυ-ηλεκτρασθενή” (gravi-electroweak) αλληλεπίδραση. Προχωρώντας

σε άλλες περιστροφές είδε ακόμη πιο ενδιαφέρουσες δομές, όπως τη δομή της

βαρυ-ηλεκτρασθενούς αλληλεπίδρασης περιτριγυρισμένη από κουάρκ και αντι-

κουάρκ συγκεντρωμένα σε ξεχωριστές “χρωματισμένες” ομάδες. Επιπλέον,

τα κουάρκ συγκεντρώνονται σε οικογένειες των τριών με σχεδόν πανομοιότυ-

πες ιδιότητες αλλά διαφορετικές μάζες, γεγονός που εξηγεί με φυσικό τρόπο,

μέσω της γεωμετρίας, την ύπαρξη 3 γενεών. Το μοντέλο προβλέπει επίσης την

ύπαρξη 22 νέων μποζονίων σε ακαθόριστη κλίμακα μάζας.

(αʹ) (βʹ)

Σχήμα 5.12: Η αντιστοίχηση θεμελιωδών σωματίων σε 248 σημεία, στην E8 θεωρία. Τα κόκκινα,

πορτοκαλί, μπλε και μοβ τρίγωνα αναπαριστούν κουάρκ, ενώ τα κίτρινα και γκρι τρίγωνα αναπαρι-

στούν λεπτόνια. Τα σωμάτια που φέρουν δύναμη αναπαρίστανται με κύκλους όπου οι πράσινοι

αναπαριστούν βαρυτόνια, οι κίτρινοι τα ηλεκτρασθενή μποζόνια και τα μπλε τα γκλουόνια [462].

6. Μια πρόσφατη θεωρία είναι αυτή των Αιτιωδών Φερμιονικών Συστημάτων
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Causal (Fermion Systems) η οποία εισάχθηκε από τον Felix Finister και συ-

νεργάτες του, και δίνει την Κβαντομηχανική, την ΓΘΣ και την ΚΘΠ ως οριακές

περιπτώσεις, και άρα είναι υποψήφια ως μια φυσική θεωρία ενοποίησης [463,464].

Η γενική δομή της θεωρίας μπορεί να κατανοηθεί σε αναλογία με την ΓΘΣ.

Στην ΓΘΣ, το Σύμπαν μας περιγράφεται από έναν 4-δάστατο χωρόχρονο (λο-

ρεντζιανή πολλαπλότητα) μαζί με σωματίδια και πεδία. Ωστόσο, δεν θεωρείται

φυσική (με την έννοια ότι υπάρχει στο Σύμπαν) κάθε διαμόρφωση της λορεν-

τζιανής μετρικής, σωματιδίων και πεδίων. Για να είναι κάθε διαμόρφωση φυσικά

πραγματοποιήσιμη πρέπει να ισχύουν οι εξισώσεις Einstein. Επίσης, τα σωμάτια

πρέπει να ικανοποιούν τις εξισώσεις κίνησης και τα επιπλέον πεδία πρέπει να

υπακούν τις εξισώσεις πεδίου. Αυτό σημαίνει ότι στην ΓΘΣ υπάρχουν δύο

εννοιολογικά μέρη. Από την μία πλευρά υπάρχουν τα μαθηματικά αντικείμε-

να που περιγράφουν τις πιθανές διαμορφώσεις, και από την άλλη, υπάρχει μια

αρχή που ξεχωρίζει τις φυσικές διαμορφώσεις. ΄Ετσι, η θεωρία των αιτιωδών

φερμιονικών συστημάτων έχει την ίδια εννοιολογική δομή με την ΓΘΣ, δηλαδή

αποτελείται από μαθηματικά αντικείμενα και μια αρχή που ξεχωρίζει τις φυσι-

κές διαμορφώσεις. Συγκεκριμένα, αντί να εισάγει φυσικά αντικείμενα σε μια

προϋπάρχουσα χωροχρονική πολλαπλότητα, η γενική ιδέα είναι να αναδυθούν

ο χωρόχρονος καθώς και όλα τα αντικείμενα ως δευτερεύοντα αντικείμενα από

τις δομές του υποκείμενου αιτιώδους συστήματος φερμιονίων. Αυτή η έννοια

καθιστά επίσης δυνατή τη γενίκευση εννοιών της διαφορικής γεωμετρίας σε

“μη-ομαλή ρύθμιση”. Ειδικότερα, μπορούν να περιγραφούν καταστάσεις όπου

ο χωρόχρονος δεν έχει μια δομή πολλαπλότητας στην μικροσκοπική κλίμακα.

Σαν συνέπεια, η θεωρία αυτή είναι προτεινόμενη για κβαντική γεωμετρία και

σαν προσεγγιστική ΚΒ.

7. Μια ακόμα θεωρία η οποία αποτελεί μια πρόταση προσέγγισης στην ΚΒ είναι τα

causal sets [465–467]. Οι θεμελιακές αρχές αυτής της θεωρίας βασίζονται στην

διακριτότητα του χωρόχρονου και στην σημασία της αιτιακής δομής, δηλαδή

ότι τα γεγονότα του χωρόχρονου σχετίζονται με μια “μερική διάταξη” (partial

order) [468]. Αυτή η μερική διάταξη έχει την φυσική σημασία των αιτιακών

σχέσεων ανάμεσα σε γεγονότα στον χωρόχρονο.

Η όλη ιδέα βασίζεται στο θεώρημα του David Malament πως δηλώνει πως αν

υπάρχει ένας αμφιμονοσήμαντος χάρτης μεταξύ δύο παρελθοντικών και μελ-

λοντικών διακριτών χωρόχρονων που διατηρεί την αιτιακή δομή τους, τότε ο
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χάρτης αυτός είναι ένας σύμμορφος ισομορφισμός [469]. Ο συμμορφικός πα-

ράγοντας ο οποίος δεν προσδιορίζεται προκύπτει σχετίζεται με τον όγκο πε-

ριοχών στον χωρόχρονου. Ο παράγοντας όγκου με την σειρά του μπορεί να

προκύψει από ένα στοιχείο όγκου για κάθε σημείο του χωρόχρονου. ΄Ετσι μπο-

ρεί να προκύψει ο όγκος μιας περιοχής χωροχρόνου μετρώντας τον αριθμό των

σημείων σε αυτή την περιοχή. Η θεωρία αυτή μπορεί να επηρεάσει και άλλες

προσεγγίσεις στην ΚΒ όπως ο φορμαλισμός των δικτύων σπιν που είδαμε στην

LQG. Επίσης, είχε σαν σημαντική φαινομενολογική πρόβλεψη την ύπαρξη μη

μηδενικής κοσμολογικής σταθεράς [470], γεγονός που μπορεί να αποτελεί την

μόνη μέχρι στιγμής πρόβλεψη που προκύπτει από την έρευνα της ΚΒ και η

οποία μπορεί να ελεγχθεί στο εγγύς μέλλον. ΄Ομως, δυστυχώς, μέχρι στιγμής

δεν υπάρχει μια τελική πειστική θεωρία causal sets.

8. Μερικές ακόμα θεωρίες οι οποίες αποτελούν εναλλακτικές προσεγγίσεις στην

ΚΒ [471], που δεν περιγράψαμε, αλλά τις αναφέρουμε ονομαστικά χάριν βιβλιο-

γραφικής πληρότητας, είναι η Ευκλείδια ΚΒ [472–475], η θεωρία των Twistors

[476–479], Shape Dynamics [480–483] η Βαρύτητα Hořava–Lifshitz [484–486],

οι θεωρίες Γεωμετροδυναμικής (Geometrodynamics) [487–490], ο Κβαντικός

Λογισμός Regee [491–494], η Μη Αντιμεταθετική Γεωμετρία (Noncommu-

tative Geometry) [495–497], η Κανονική ΚΒ (Canonical Quantum Grav-

ity) [498–500], η Εξίσωση Wheeler-DeWitt [501–505], και η Διπλή Σχετι-

κότητα (Doubly Special Relativity) [506–509].

5.2.2 Αντεπιχειρηματολογία

Παρά την ύπαρξη των ανωτέρων θεωριών αλλά και πολλών άλλων που δεν αναφέρ-

θηκαν, οι περισσότερες προσπάθειες να ανακαλυφθεί η ΘΤΠ ή έστω να δοθεί μια

πειστική θεωρία ΚΒ, έχουν αποτύχει. Το πρόβλημα με τη ΘΤΠ έγκειται στο ότι

η Κβαντομηχανική και η ΓΘΣ είναι ασύμβατες, και η βασική προϋπόθεση της ΘΤΠ

είναι να τις συνδυάζει. Πέρα από αυτό, παράλληλα με την έντονη ερευνητική προ-

σπάθεια για την εύρεση μια ΘΤΠ ή ορισμένων βασικών χαρακτηριστικών της, υπάρχει

μια πληθώρα από φιλοσοφικά αλλά και μαθηματικά επιχειρήματα κατά της ίδιας της

ύπαρξης μιας τέτοιας θεωρίας. Στην συνέχεια, θα σκιαγραφήσουμε τα βασικά από

αυτά τα επιχειρήματα.
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Θεωρήματα μη πληρότητας του Gödel

Πολλοί ερευνητές υποστηρίζουν πως το θεώρημα μη πληρότητας του Gödel δείχνει

ότι οποιαδήποτε προσπάθεια να κατασκευαστεί μια ΘΤΠ είναι καταδικασμένη να απο-

τύχει [510]. Το θεώρημα του Gödel μας λέει πως για κάθε τυπικό σύστημα θα υπάρ-

χουν αλήθειες που, ενώ θα μπορούν να εκφραστούν εντός αυτού του συστήματος,

δεν θα είναι αποδείξιμες. Και μια από τις σημαντικότερες αλήθειες ενός συστήματος,

η συνέπεια του, δεν θα είναι αποδείξιμη εντός του συστήματος. Με άλλα λόγια, και

παίρνοντας ένα μαθηματικό παράδειγμα, λέει πως για κάθε υπολογίσιμο σύστημα λο-

γικών αξιωμάτων το οποίο είναι τουλάχιστον επαρκές για να περιγράψει την βασική

αριθμητική των φυσικών αριθμών:

1. Εάν το σύστημα είναι συνεπές τότε δεν μπορεί να είναι πλήρες (Πρώτο θεώρημα

μη πληρότητας).

2. Η συνέπεια των αξιωμάτων δεν μπορεί να αποδειχθεί μέσω του συστήματος.

Δηλαδή, θα υπάρχουν πάντα προτάσεις (τουλάχιστον μια) για τις οποίες δεν θα μπο-

ρούμε να αποφανθούμε αν είναι αληθείς ή ψευδείς. Ο Stanley Jaki, [511] επεσήμανε

πως επειδή κάθε ΘΤΠ θα είναι μια συνεπής μη τετριμμένη μαθηματική θεωρία, θα

πρέπει να είναι ατελής καθώς θα είναι μαθηματικά ασυνεπής λόγω των θεωρημάτων

μη πληρότητας. ΄Ετσι, οι αναζητήσεις για μια ντετερμινιστική ΘΤΠ είναι καταδικα-

σμένες σε αποτυχία. Στην συνέχεια όμως, ο Jaki δήλωσε πως είναι λάθος να πούμε

πως μια ΘΤΠ είναι αδύνατη, αλλά μπορούμε να πούμε ότι όταν την έχουμε δεν θα

μπορούμε να γνωρίζουμε αυστηρά πως αυτή θα είναι μια τελική θεωρία [512].

΄Οπως έχει δηλώσει ο Freeman Dyson, το θεώρημα του Gödel συνεπάγεται πως

τα καθαρά μαθηματικά είναι ανεξάντλητα. Δεν έχει σημασία πόσα πολλά προβλήματα

μπορούμε να λύσουμε, καθώς θα υπάρχουν πάντα και άλλα προβλήματα που δεν θα

μπορούν να επιλυθούν στο πλαίσιο των υφιστάμενων κανόνων. Λόγω του θεωρήμα-

τος του Gödel η φυσική είναι επίσης ανεξάντλητη. Οι νόμοι της φύσης είναι ένα

πεπερασμένο σύνολο κανόνων, που συμπεριλαμβάνουν τους κανόνες για τα μαθημα-

τικά, έτσι ώστε το θεώρημα του Gödel να ισχύει και για αυτούς [513].

Το 1997 ο Jürgen Schmidhuber υποστήριξε πως τα θεωρήματα του Gödel ε-

ίναι άσχετα με την υπολογίσιμη φυσική [514]. Το 2000 ο Schmidhuber κατασκεύα-

σε συγκεκριμένα υπολογιστικά-περιορίσιμα, ντετερμινιστικά Σύμπαντα των οποίων η

ψευδο-τυχαιότητα βασιζόταν στην αναποφασιστικότητα. ΄Ετσι, έδειξε πως τα περιο-

ριστικά προβλήματα τύπου Gödel είναι εξαιρετικά δύσκολο να ανιχνευθούν αλλά δεν
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εμποδίζουν καθόλου μια επίσημη ΘΤΠ που περιγράφεται από μερικά μπιτ πληροφο-

ρίας [515].

Κριτική σχετικά με την ύπαρξη μιας ΘΤΠ έχει γίνει και από τους Steven Hawk-

ing, Solomon Feferman [516], και Douglas S. Robertson [517]. ΄Ετσι, η ανάλογη

επιχειρηματολογία δηλώνει πως μπορεί να είναι δυνατόν να καθορίσουμε επακριβώς

τους βασικούς κανόνες της φυσικής με έναν πεπερασμένο αριθμό καλά καθορισμένων

νόμων, όμως θα υπάρχουν ταυτόχρονα ερωτήματα σχετικά με την συμπεριφορά φυσι-

κών συστημάτων τα οποία θα μένουν αναπάντητα στην βάση των υποκείμενων νόμων.

΄Ομως, ο καθορισμός των υποκείμενων κανόνων μπορεί να αρκεί για τον καθορισμό

μιας ΘΤΠ, και άρα τα θεωρήματα του Gödel δεν σημαίνουν ότι μια ΘΤΠ δεν μπορεί

να υπάρξει. ΄Ετσι, μπορούμε να δούμε πως το θεώρημα μη πληρότητας μπορεί να

μην αναφέρεται στους υποκείμενους κανόνες αλλά στην κατανόηση της συμπεριφο-

ράς όλων των φυσικών συστημάτων γεγονός που μπορεί εξηγήσει ορισμένες από τις

διαφωνίες μέσω αυτής της αλλαγής του ορισμού.

Θεμελιώδη όρια στην ακρίβεια

Καμία φυσική θεωρία μέχρι σήμερα δεν πιστεύεται πως είναι 100% ακριβής. Δηλαδή,

η φυσική αποτελείται από μια σειρά επιτυχημένων προσεγγίσεων επιτρέποντας όλο

και πιο ακριβείς προβλέψεις πάνω σε ένα όλο και πιο ευρύ φάσμα φαινομένων. ΄Ετσι,

πιστεύεται πως είναι λάθος να συγχέονται τα θεωρητικά μοντέλα με την αληθινή φύση

της πραγματικότητας και έτσι η σειρά των προσεγγίσεων δεν θα φτάσει ποτέ την

πραγματική αλήθεια. ΄Ετσι, αν αυτό ισχύει, μπορούμε να ελπίζουμε για μια ΘΤΠ που

αυτοσυνεπώς ενσωματώνει όλες τις γνωστές δυνάμεις αλλά δεν πρέπει να περιμένουμε

πως αυτή θα είναι η τελική απάντηση.

Από την άλλη πλευρά, υπάρχει ο ισχυρισμός πως πάρα την φαινομενικά αυξα-

νόμενη πολυπλοκότητα των μαθηματικών κάθε νέας θεωρίας, σε μια βαθιά αίσθηση

που συνδέεται με την υποκείμενη συμμετρία βαθμίδας και των αριθμό των φυσικών

σταθερών των θεωριών, οι θεωρίες γίνονται απλούστερες. Αν ισχύει αυτό τότε η

διαδικασία αυτή της απλοποίησης δεν μπορεί να συνεχιστεί επ́v αόριστων.

΄Ελλειψη θεμελιωδών νόμων

Υπάρχει μια φιλοσοφική διαμάχη για το αν μια ΘΤΠ πρέπει να καλείται ο θεμελι-

ώδης νόμος του Σύμπαντος [518]. Μια άποψη είναι πως η ΘΤΠ είναι ο “θεμελιώδης”

νόμος και ότι όλες οι άλλες θεωρίες που ισχύουν μέσα στο Σύμπαν είναι συνέπεια της
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ΘΤΠ. Μια άλλη άποψη είναι ότι οι αναδυόμενοι νόμοι που διέπουν τη συμπεριφορά

πολύπλοκων συστημάτων, πρέπει να θεωρούνται ως εξίσου θεμελιώδεις. Παραδείγ-

ματα τέτοιων αναδυόμενων νόμων είναι ο δεύτερος νόμος της θερμοδυναμικής και η

θεωρία της φυσικής επιλογής. Οι υποστηρικτές αυτής της άποψης δηλώνουν πως οι

αναδυόμενοι νόμοι, κυρίως εκείνοι που περιγράφουν σύνθετα ή ζωντανά συστήματα,

είναι ανεξάρτητοι από τους χαμηλού επιπέδου μικροσκοπικούς νόμους. Σε αυτή την

περίπτωση, οι αναδυόμενοι νόμοι είναι τόσο θεμελιώδεις όσο και η ΘΤΠ.

Πιθανότητα να μην είναι των πάντων

Παρόλο που το όνομα ΘΤΠ υποδηλώνει τον ντετερμινισμό όπως των εισήγαγε ο

Laplace, αυτό δίνει μια παραπλανητική εντύπωση. Ο ντετερμινισμός μπερδεύεται με

την πιθανοκρατική φύση των κβαντομηχανικών προβλέψεων, με την τεράστια ακρίβεια

των αρχικών συνθηκών που οδηγούν στο μαθηματικό χάος, από τους περιορισμούς

από τους ορίζοντες γεγονότων και από την ακραία μαθηματική δυσκολία εφαρμογής

των θεωριών. Ωστόσο, παρόλο που το ΚΠ προβλέπει σχεδόν όλα τα μη βαρυτικά φαι-

νόμενα, στην πράξη μόνο λίγα ποσοτικά αποτελέσματα προέρχονται από την πλήρη

θεωρία (για παράδειγμα οι μάζες κάποιων από τα απλούστερα αδρόνια). Και αυτά

όμως τα αποτελέσματα (κυρίως οι σωματιδιακές μάζες οι οποίες έχουν και την με-

γαλύτερη σημασία για την φυσική χαμηλών ενεργειών) είναι λιγότερο ακριβή από τις

υπάρχουσες πειραματικές μετρήσεις. Η ΘΤΠ είναι σχεδόν βέβαιο πως θα είναι ακόμα

πιο δύσκολο να εφαρμοστεί για την πρόβλεψη των πειραματικών αποτελεσμάτων και

ως εκ τούτου θα μπορούσε να είναι περιορισμένης χρήσης.

΄Απειρο πλήθος “στρώσεων κρεμμυδιού”

΄Οπως αναφέρει συχνά και ο Lee Smolin, οι στρώσεις της φύσης μπορεί να είναι όπως

οι “στρώσεις ενός κρεμμυδιού”, και ότι ο αριθμός των στρώσεων μπορεί να είναι

άπειρος. Αυτό θα είχε ως συνέπεια μια άπειρη ακολουθία φυσικών θεωριών. Αυτό το

επιχείρημα δεν είναι γενικά αποδεκτό, καθώς δεν είναι προφανές πως το άπειρο είναι

μια έννοια που υπάρχει στη θεμελιώδη μορφή της φύσης.

Αδυναμία υπολογισμών

΄Οπως υποδεικνύει ο Weinberg ο υπολογισμός της ακριβής κίνησης ενός πραγματικού

βλήματος στην ατμόσφαιρα της Γης είναι αδύνατος [518]. Ο λόγος είναι πως γνω-

ρίζουμε τις αρχές, όπως η Νευτώνεια θεωρία για την βαρύτητα, που δουλεύουν αρκετά
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καλά για απλά παραδείγματα όπως η κίνηση των πλανητών στον άδειο χώρο, που ε-

ίναι λογικό να είμαστε πεπεισμένοι πως ισχύουν και σε πιο πολύπλοκα παραδείγματα.

Για παράδειγμα, παρόλο που η ΓΘΣ περιλαμβάνει εξισώσεις που δεν έχουν ακριβείς

λύσεις, είναι γενικά αποδεκτή σαν θεωρία επειδή οι εξισώσεις της που έχουν ακριβής

λύσεις έχουν επιβεβαιωθεί πειραματικά. Με παρόμοιο τρόπο, η ΘΤΠ πρέπει να ισχύει

για ένα μεγάλο εύρος απλών παραδειγμάτων με τέτοιο τρόπο που να μπορούμε να

είμαστε πεπεισμένοι ότι θα ισχύει για κάθε περίπτωση στην φυσική.

5.3 Πειραματικοί περιορισμοί και μελλοντικά

βήματα

5.3.1 ΄Ορια της φυσικής

Τα όρια για την ύπαρξη “νέας φυσικής” περιορίζονται συνήθως από τα εκάστοτε

πειραματικά όρια που τίθενται από τις διάφορες πειραματικές διατάξεις. Ωστόσο, τα

λεγόμενα τεχνικά όρια “νέας φυσικής” είναι τα ασθενέστερα από τα όρια που μπορεί

να υπάρξουν στη φυσική γενικότερα, καθώς έχουν την τάση να ξεπερνιούνται είτε

μέσω κάποιας αργής αλλά σταθερής διαδικασίας όπως η αναβάθμιση της ακρίβειας

των μετρήσεων, είτε μέσω μιας διαφορετικής προσέγγισης όπως με την εκτέλεση

μιας νέας εναλλακτικής μέτρησης. Δηλαδή, τα τεχνικά όρια είναι συνήθως παροδικά,

καθώς με την εξέλιξη της τεχνολογίας αλλά και με την δυνατότητα διαφορετικών

προσεγγίσεων αργά ή γρήγορα ξεπερνιόνται.

Στην συνέχεια, έχουμε τα θεμελιώδη όρια, τα οποία είναι εξαρτώνται από τους

περιορισμούς που παρέχουν διάφοροι οι νόμοι της φύσης όπως η αρχή της απροσδιο-

ριστίας του Heisenberg (βλέπε εδάφιο 2.2.7 ή το θεώρημα μη πληρότητας του Gödel

(βλέπε εδάφιο 5.2.2). Επίσης, υπάρχει το θεώρημα αδυναμίας διακλάδωσης ή θε-

ώρημα μη-κλωνοποίησης (no-cloning theorem) το οποίο μας λέει ότι μια κβαντική

κατάσταση δεν είναι δυνατόν να αντιγραφεί. Ανάμεσα στα θεμελιώδη και στα τεχνικά

όρια υπάρχει ένα είδος “γκρι ζώνης” που είναι η κλίμακα Planck. ΄Ετσι, κατασκευ-

άζουμε τις μονάδες Planck οι οποίες είναι κατά μία έννοια θεμελιώδεις στην φυσική

όπως την κατανοούμε, και άρα θεωρούμε πως η η κλίμακα Planck είναι ένα είδος θε-

μελιώδους ορίου, πέρα από το οποίο δεν έχει νόημα να πάμε. Αυτό φυσικά μπορεί να

είναι ένα είδους τεχνικό όριο, καθώς η κλίμακα Planck είναι απλά το σημείο στο οποίο

η φυσική που γνωρίζουμε πρέπει να αντικατασταθεί από μια βαθύτερη θεωρία, αλλά
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μόλις αυτή ανακαλυφθεί, θα μπορούμε να συνεχίσουμε να μιλάμε για αυθαίρετα μικρά

μήκη ή αυθαίρετα υψηλές ενέργειες, τα οποία θα μπορούμε και να διερευνήσουμε με

αντίστοιχες πειραματικές διατάξεις.

Τέλος, έχουμε την κατηγορία των φιλοσοφικών ορίων που επιβάλλονται από τον

τρόπο με τον οποίο λειτουργεί η επιστήμη, καθώς και το πρόβλημα του προσδιορισμού

της φύσης της πραγματικότητας μέσα από το Σύμπαν μέσω της μαθηματικής δομής.

Τα όρια αυτά μπορούν να είναι είτε τα περισσότερο είτε τα λιγότερο ενδιαφέροντα

ανάλογα με την αίσθηση μας για την φιλοσοφία. Κατά μία έννοια τα θεμελιώδη όρια

εξαρτώνται από την μαθηματική δομή του Σύμπαντος, υποθέτοντας ότι υπάρχει μια

τέτοια θεμελιακή δομή. Εμπειρικά, κάθε φυσικό φαινόμενο που μπορούμε να επαληθε-

ύσουμε στηρίζεται σε απλούς μαθηματικούς κανόνες, όμως αυτό δεν είναι απαραίτητο

να ισχύει. Από την πειραματική πλευρά, το πρόβλημα έχει να κάνει με την μοναδι-

κότητα, καθώς η επιστήμη βασίζεται στην επαναληψιμότητα των γεγονότων, χωρίς

να μπορούμε να κάνουμε τίποτα για μοναδικά γεγονότα όπως το σήμα του Αγίου Βα-

λεντίνου για τα μαγνητικά μονόπολα. Δίχως την δυνατότητα να μελετήσουμε πολλές

εμφανίσεις ενός συγκεκριμένου γεγονότος ή ενός είδους γεγονότος, δεν υπάρχει λο-

γικός τρόπος να οικοδομήσουμε μια επιστημονική θεωρία που να το εξηγεί. Και στις

δύο περιπτώσεις, το σημαντικό θέμα είναι πως η δομή της επιστήμης βασίζεται στην

παραδοχή ότι το Σύμπαν θα συμπεριφέρεται με έναν επαναλαμβανόμενο και λογικό

τρόπο, αλλά δεν υπάρχει κανένας προφανής λόγος που να υποδηλώνει πως το Σύμπαν

πρέπει να λειτουργεί με αυτό τον τρόπο.

Ωστόσο, σε κάθε περίπτωση, αυτό που μπορούμε να εμπιστευτούμε αυτή την στιγ-

μή είναι οι πειραματικές ενδείξεις, και για αυτό στις περισσότερες των περιπτώσεων

περιοριζόμαστε στα τεχνικά όρια τα οποία και προσπαθούμε να ξεπεράσουμε. Τα

υπόλοιπα όρια περιορίζονται κυρίως στην έρευνα μας για την ύπαρξη μιας ΘΤΠ και

συνδυάζονται με τα επιχειρήματα περί ύπαρξης ή μη μιας ΘΤΠ (βλέπε εδάφιο 5.2.2).

Στην συνέχεια, θα δούμε τα βασικά πειράματα, τρέχοντα και μελλοντικά, που αναζη-

τούν ενδείξεις εξωτικών φαινομένων και φυσικής πέρα από το ΚΠ της σωματιδιακής

φυσικής και της Κοσμολογίας.

5.3.2 LHC και άλλα πειράματα

Από τα πιο υποσχόμενα πειράματα αυτά την στιγμή είναι ο LHC, η ενέργεια του

οποίου την στιγμή αυτή φτάνει τα 13TeV . Ο LHC μπορεί να βρήκε πρόσφατα το

μποζόνιο Higgs που ήταν και ο βασικός σκοπός του, ωστόσο υπάρχουν πλάνα για
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αναβάθμιση της υπάρχουσας εγκατάστασης με τον “High Luminosity LCH” (HL-

LHC) ο οποίος θα αυξήσει δραματικά την ενέργεια σύγκρουσης των πρωτονίου μέχρι

τα 30TeV έτσι ώστε να αυξηθεί ο παραμετρικός χώρος αλλά και το πλήθος των

θεωριών που μπορεί να μελετήσει. Επιπλέον, οι δέσμες πρωτονίων θα είναι πολύ

πιο πυκνές αυξάνοντας την φωτεινότητα έχοντας έτσι πολύ περισσότερες και πιο

επιτυχημένες συγκρούσεις. Ακόμα, οι υπάρχοντες ανιχνευτές θα αναβαθμιστούν σε

“superCMS” [519] και “superATLAS” [520] ώστε να έχουν μεγαλύτερη ακρίβεια

στην πιθανότητα ανίχνευσης νέων σωματιδίων. Επίσης, υπάρχει ένα πλάνο για την

κατασκευή ενός νέου επιταχυντή στην Ιαπωνία, του “International Linear Collider”

(ILC) ο οποίος θα είναι πολύ πιο ισχυρός από τον LHC [521]. Συγκεκριμένα, ο ILC

θα είναι ένας γραμμικός επιταχυντής με ενέργεια σύγκρουσης στα 500GeV αρχικά,

και σε 1000GeV με μετέπειτα αναβάθμιση, ενώ η κατασκευή του θα διαρκέσει περίπου

10 χρόνια. Εκτός από αυτούς, έχουν προταθεί και άλλοι επιταχυντές οι οποίοι όμως

δεν έχουν εγκριθεί ακόμα [522].

Επίσης, υπάρχουν και άλλα πειράματα τα οποία θα αναζητήσουν περισσότερες

λεπτομέρειες για τα προβλήματα που απασχολούν το ΚΠ όπως η ΣΥ και ΣΕ, αλλά

και τα νετρίνα. ΄Οσον αφορά τα νετρίνα, υπάρχει μεγάλη πειραματική δραστηριότη-

τα αυτή τη στιγμή με τα πειράματα, τους ανιχνευτές και τα τηλεσκόπια να φτάνουν

κοντά στον αριθμό 50. Για παράδειγμα, έχουμε το πείραμα “NuMI Off-Axis νe Ap-

pearance” (NOvA) [523] το οποίο προσπαθεί να βρει τις μάζες και την αντίστοιχη

ιεραρχία των νετρίνων, όπως και το T2K [524–526] το οποίο στέλνει νετρίνα σε

απόσταση 295km τα οποία ταλαντώνονται καθώς περνούν από την Γη. Με αυτόν

τον τρόπο, συγκρίνοντας το πως φαίνονται τα νετρίνα όταν εστάλησαν και πως όταν

εμφανίστηκαν στον απομακρυσμένο ανιχνευτή, τα πειράματα NOvA και T2K θα μπο-

ρέσουν να καθορίσουν τις ιδιότητες τους με μεγάλη ακρίβεια. Παρόμοιο πείραμα είναι

και το “MINOS+” [527] το οποίο αποτελεί συνέχεια των ανιχνευτών MINOS με

βελτιωμένα ηλεκτρονικά. Για την απόφανση αν τα νετρίνα είναι Dirac ή Majorana

υπάρχουν τα πειράματα “GERmanium Detector Array” (GERDA) [528] το οπο-

ίο ήδη έχει θέσει πιο ακριβή όρια στην πιθανότητα μιας διπλής διάσπασης β χωρίς

νετρίνα αλλά και το Καναδέζικο “Sudbury Neutrino Observatory” (SNO+) [529]

πείραμα από την αμερικάνικη συνεργασία MAJORANA [530] τα οποία θα προσπα-

θήσουν την επόμενη δεκαετία να ξεκαθαρίσουν το τοπίο σχετικά με την προανα-

φερθείσα διαδικασία. Για την πιθανή ύπαρξη των στείρων νετρίνων υπάρχουν τα

πειράματα “CeLAND” [531,532] στην Ιαπωνία και το “Short distance neutrino Os-
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cillations with BoreXino” (SOX) [533,534] στην Ευρώπη τα οποία θα προσπαθήσουν

να δώσουν μια λύση στο πρόβλημα της ανωμαλίας νετρίνων στους πυρηνικούς αντι-

δραστήρες, όπου ένα μέρος των παραγόμενων νετρίνων δεν ανιχνεύονται. Ακόμα,

υπάρχει και το “Mini Booster Neutrino Experiment” (MiniBooNE) [535] το οποίο

επίσης προσπαθεί να λύσει πολλά από τα μυστήρια των νετρίνων. ΄Οσον αφορά νετρίνα

που προέρχονται έξω από το ηλιακό μας σύστημα και έξω από τον γαλαξία μας υπάρ-

χει το “IceCube Neutrino Telescope” [536] το οποίο ξεκίνησε να λειτουργεί το 2010

και μέχρι στιγμής έχει δει μόνο 3 γεγονότα υψηλής ενέργειας νετρίνων. Παρόμοιο

προτεινόμενο πείραμα είναι το παρατηρητήριο “Antarctic Ross Ice-Shelf ANtenna

Neutrino Array” (ARIANNA) [537] το οποίο θα μπορεί να καλύψει μέχρι 1000 πε-

ρίπου κυβικά χιλιόμετρα πάγου στην Ανταρκτική. Τέλος, υπάρχει το “Long-Baseline

Neutrino Experiment” (LBNE) [538] στην Νότια Ντακότα το οποίο ανιχνεύει νετρίνα

από μια δέσμη στο Fermilab σε απόσταση 1300km και μπορεί να δώσει απαντήσεις

και για τις μάζες των νετρίνων αλλά και για τα στείρα νετρίνα.

Για την ΣΥ εκτός των πειραμάτων που ανιχνεύουν μαγνητικά μονόπολα τα οπο-

ία έχουμε ήδη αναφέρει, υπάρχει ο πολύ ακριβής Αμερικάνικος ανιχνευτής “Large

Underground Xenon” (LUX) [539, 540] αλλά και Ευρωπαϊκά προγράμματα όπως το

“XENON” [541] που χρησιμοποιεί έναν διπλής φάσης TPC, και το “European Un-

derground Rare Event Calorimeter Array” (EURECA) [542,543] τα οποία θα προ-

σπαθήσουν να ανιχνεύσουν τα σωματίδια που αποτελούν την ΣΥ (WIMPs). ΄Οσο για

την ΣΕ, οι περισσότερες προσπάθειες επικεντρώνονται στην χαρτογράφηση εκατο-

ντάδων γαλαξιών και υπερκαινοφανών με πειράματα όπως το “Dark Energy Survey”

(DES) [544, 545] το οποίο θα πάρει εικόνες από 300 χιλιάδες γαλαξίες και 100 χιλι-

άδες σμήνη γαλαξιών. Επίσης, υπάρχει το “Hobby-Eberly Telescope Dark Energy

Experiment” (HET-DEX) [546] πείραμα το οποίο προσπαθεί να καθορίσει πως έχει

εξελιχθεί η ΣΕ με το πέρασμα του χρόνου παρατηρώντας πολύ μακρινούς γαλαξίες

στο πρώιμο Σύμπαν. Τέλος, έχουμε το διαστημικό τηλεσκόπιο “Joint Dark Energy

Mission” (JDEM) [547] της NASA, το οποίο θα μελετήσει τη ΣΕ παρατηρώντας

υπερκαινοφανείς με πολύ υψηλή ερυθρή μετατόπιση αλλά και με άλλες μεθόδους. Πα-

ρόμοιο πρόγραμμα είναι το “Dark Universe Explorer” (DUNE) [548] της “European

Space Agency” (ESA).

Να αναφέρουμε επίσης, πως το παρατηρητήριο βαρυτικών κυμάτων “Laser Inter-

ferometer Gravitational wave Observatory” (LIGO) το οποίο ήδη λειτουργεί [549],

αλλά και το “Laser Interferometer Space Antenna” (LISA) [550, 551] το οποίο θα

312



5.3. Πειραματικοί περιορισμοί και μελλοντικά βήματα Μαρούδας Μάριος

εκτοξευθεί στο διάστημα το 2034, θα προσπαθήσουν να ανιχνεύσουν ωστικά κύματα

του χωροχρόνου τα οποία απελευθερώθηκαν τη στιγμή της ΜΕ, δηλαδή βαρυτικά

κύματα [552]. Υπάρχουν ελπίδες ότι το LISA αλλά και άλλα προτεινόμενα πειράματα

της ίδιας λογικής, θα είναι αρκετά ευαίσθητο ώστε να εξετάσει αρκετές “προ της ΜΕ”

θεωρίες και μεταξύ αυτών και διάφορες εκδοχές της ΘΧ [553,554], αλλά και θεωρίες

που εξηγούν την σκοτεινή ενέργεια όπως αυτή των περιοχών τοίχων που αναφέραμε

στο εδάφιο 4.2.4.

Τα πειράματα αυτά σε συνεργασία με τα πειράματα για την εύρεση ενδείξεων της

υπερσυμμετρίας (βλέπε εδάφιο 4.4), τα πειράματα για την ανίχνευση μαγνητικών μο-

νόπολων (βλέπε εδάφιο 3.3.2) αλλά και διάσπασης πρωτονίων (βλέπε εδάφιο 3.3.1),

προσπαθούν να αναζητήσουν ενδείξεις “νέας φυσικής” και να ανακαλύψουν νέα φαι-

νόμενα που είτε προβλέπονται από τις διάφορες θεωρίες ενοποίησης που έχουμε ήδη

αναφέρει, είτε δεν έχουν προβλεφθεί από καμία υπάρχουσα θεωρία. Ακόμα και στην

χειρότερη περίπτωση που δεν βρεθεί κάποια “συμπαγής” πειραματική ένδειξη “νέας

φυσικής” πέρα από το ΚΠ θα δοθούν καλύτερα όρια που θα καθορίσουν τις μελλο-

ντικές θεωρητικές και πειραματικές προσπάθειες.

5.3.3 Μελλοντικοί στόχοι

Μέχρι στιγμής όπως είδαμε έχουν γίνει πολλές προσπάθειες για μια ενοποιημένη περι-

γραφή όλων των παρατηρούμενων δυνάμεων στην φύση καθώς και για κατανόηση της

φυσικής πέρα από το ΚΠ. Διαφορετικές προσπάθειες είχαν και διαφορετικό επίπεδο

επιτυχίας. Ανάμεσα σε αυτές, οι υπερσυμμετρικές GUT θεωρίες φαίνεται πως είναι

τα πιο υποσχόμενα φαινομενολογικά μοντέλα τα οποία δίνουν μια επιτυχημένη ενο-

ποιημένη περιγραφή της ηλεκτρομαγνητικής της ισχυρής και της ασθενής πυρηνικής

δύναμης αλλά και παρέχουν ένα πλήθος από πειραματικά ελέγξιμες φαινομενολογικές

προβλέψεις. ΄Ετσι, έχει γίνει μια μεγάλη πειραματική προσπάθεια για την ανίχνευση

είτε υπερσωματιδίων (βλέπε εδάφιο 4.4), είτε σπάνιων φαινομένων όπως η διάσπαση

του πρωτονίου (βλέπε εδάφιο 3.2.1) και τα μαγνητικά μονόπολα (βλέπε εδάφιο 3.2.3)

που προβλέπονται από τις GUT θεωρίες. Πολλές από αυτές τις προβλέψεις είναι

μέσα στα όρια των σημερινών αλλά και των μελλοντικών πειραμάτων, οπότε ανα-

μένουμε πως τα ερχόμενα έτη θα έχουμε αρκετές πληροφορίες ώστε να μπορέσουμε

να καταλήξουμε σχετικά με την ισχύ ή όχι των περισσότερων ενοποιημένων θεωριών.

Οι κοσμολογικές συνέπειες των μοντέλων για στοιχειώδη σωμάτια αλλά και η

Κοσμολογία αυτή καθεαυτή είναι βασικά στοιχεία τα οποία θα πρέπει να ενσωμα-
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τώνονται στη ΘΤΠ. Μπορούμε να δούμε έτσι, πως πέρα από πολλά κοσμολογικά

προβλήματα που μπορεί να λύνονται από την σωματιδιακή φυσική όπως η βαρυονική

ασυμμετρία (βλέπε εδάφιο 3.2.2) ή η ΣΥ και ΣΕ (βλέπε εδάφιο 2.4.5 και 4.1.1), και η

ίδια η Κοσμολογία μπορεί να μας οδηγήσει ένα βήμα παραπέρα στην προσπάθειά μας

για ενοποίηση, δίνοντάς μας σημαντικά στοιχεία τα οποία μπορούν να μας βοηθήσουν

στην επιλογή των χαρακτηριστικών που αναζητούμε σε μια θεωρία ενοποίησης. ΄Ε-

τσι, η σχέση αυτή είναι αμφίδρομη, και άρα οι κοσμολογικές επιπτώσεις - προβλέψεις

αλλά και παρατηρήσεις, πρέπει να μελετώνται και να προβλέπονται αντίστοιχα σε κάθε

υποψήφια ΘΤΠ.

Η συμπερίληψη, ωστόσο, της βαρύτητας στο σχήμα της ενοποίησης απαιτεί την

δημιουργία μια θεωρίας ΚΒ, γεγονός που αυτή την στιγμή είναι αδύνατο στην καθιε-

ρωμένη ΚΘΠ. Οπότε, πρέπει να κατασκευαστούν νέες θεωρίες, οι οποίες όμως θα

έχουν ως φαινομενολογία χαμηλών ενεργειών το ΚΠ. Οι πιο υποσχόμενοι υποψήφιοι

είναι αυτή τη στιγμή είναι η ΘΧ και η LQG, ωστόσο, η μη διαταρακτική δυναμική

κυρίως της πρώτης θεωρίας έχει μόλις αρχίσει να κατανοείται. Οπότε, “συμπαγείς”

φαινομενολογικές προβλέψεις για την ισχύ ή την απόρριψη αυτών των θεωριών πρέπει

να δημιουργηθούν, πριν αποφανθούμε για την επιλογή τους ως ΘΤΠ. ΄Οπως και να

έχει όμως, και από πειραματικής άποψης καθώς και από θεωρητικής δημιουργίας, τα

επόμενα χρόνια αναμένονται να είναι καθοριστικά για την κατανόηση ενός μεγάλου

μέρους του τρόπου με τον οποίο λειτουργεί η φύση γεγονός που θα μας φέρει ένα

βήμα πιο κοντά στην πολυπόθητη ΘΤΠ.

“Μοιάζω με ένα μικρό αγόρι που παίζει και περιφέρεται στην ακρογιαλιά, ψάχνοντας

να βρω ένα ακόμη πιο λείο βότσαλο εδώ ή ένα ομορφότερο κοχύλι εκεί, ενώ ο

απέραντος ωκεανός της αλήθειας απλώνεται ανεξιχνίαστος μπροστά μου.”

- Ισαάκ Νεύτων
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