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Abstract. The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known
example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed
in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in
statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid
mixture is affected by the classical thermal fluctuations occurring in the surrounding medium.
The resulting Casimir-like force acquires universal features upon approaching a critical point
of the medium and becomes long-ranged at criticality. In turn, this universality allows one
to investigate theoretically the temperature dependence of the force via representative models
and to stringently test the corresponding predictions in experiments. In contrast to QED, the
Casimir force resulting from critical fluctuations can be easily tuned with respect to strength
and sign by surface treatments and temperature control. We present some recent advances
in the theoretical study of the universal properties of the critical Casimir force arising in thin
films. The corresponding predictions compare very well with the experimental results obtained
for wetting layers of various fluids. We discuss how the Casimir force between a colloidal particle
and a planar wall immersed in a binary liquid mixture has been measured with femto-Newton
accuracy, comparing these experimental results with the corresponding theoretical predictions.

1. Introduction

This contribution focuses on the Casimir effect which arises when one confines fluctuations of a
different nature compared to those originally considered by Casimir in his pioneering work [1].
Indeed we shall be concerned here with the fluctuations of thermal origin which occur close
to a second-order phase transition point (critical point). The resulting critical Casimir effect
is apparently less widely known than the corresponding one within quantum electrodynamics
(QED). Nonetheless, the associated femto-Newton forces at the sub-micrometer scale can be put
to work in soft matter systems and their high degree of tunability might even be exploited for
concrete applications in colloidal suspensions. However, before focusing on the Casimir effect
due to critical fluctuations we first discuss in subsec. 2.1 the effect within QED, following in
spirit the original derivation by Casimir [1]. In subsec. 2.2 we then explain how this effect arises
in statistical physics upon approaching a critical point, highlighting the analogies and differences
between the two. In sec. 3 we present an overview of the available theoretical predictions which
are relevant for the qualitative and quantitative interpretation of the experimental results. A
short summary, with perspectives and applications is presented in sec. 4.

(© 2009 IOP Publishing Ltd 1
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2. The Casimir effect

2.1. The effect in Quantum FElectrodynamics

The Casimir effect is named after Hendrik Casimir who discovered, 60 years ago, that — quite
surprisingly — two parallel, perfectly conducting and uncharged metallic plates in vacuum attract
each other due to the quantum fluctuations of the electromagnetic fields, even at zero temperature
T = 0 [1]. Indeed the plates (assumed to be perfectly conducting) effectively impose boundary
conditions (BCs) on the electromagnetic fields so that, more specifically, E|, B, = 0 where
E| and B, are the components of the electric E and magnetic B fields which are parallel and
transverse to the surfaces of the plates. As a result of these boundary conditions, the fluctuation
modes of the fields in the space within the two plates are allowed to have only a specific set of
L-dependent wave-vectors, where L is the separation between the parallel plates. For example,
in the case of Dirichlet BCs, the component k| of the wave-vector k perpendicular to the
plates assumes only the quantized values k; = 7mn/L with n = 1,2,.... Roughly speaking, the
“unbalance” between the pressure exerted by the allowed modes within the plates and the one
exerted by the modes outside them is at the origin of the Casimir effect. This statement can
be made quantitative by calculating the size-dependent energy £(L) of the fluctuation modes
of the electromagnetic fields which are allowed in the portion of the vacuum within the plates.
According to QED, this is given by

5(L) = Z %hc|kmodes|a (1)

modes

where Kiodes are the corresponding wave-vectors and c is the speed of light. For perfectly
conducting plates of large transverse area S, the expansion of £(L) in decreasing powers of L
takes the form (in three spatial dimensions)

E(L) = Epuic + ELTD gl _T +O((kL)72) (2)
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where E,uk o SL' is the energy associated to the electromagnetic field of the vacuum in the
absence of the plates and within a volume S x L; gt — g + Ss(izf o SL is the sum of the
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energies Ss(fl)rf associated to the introduction of each single plate, separately, in the vacuum; The

next term in the expansion (2), i.e.,
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Ecas(L) = ~ 1440 Sﬁ )

(3)
is proportional to SL~3 and represents the interaction energy between the two plates which is
due to their simultaneous presence in space. This is the Casimir term we are interested in and
which is responsible for the celebrated Casimir force. Further terms in the expansion are of order
O((kL)™2) compared to Ecas, Where x is a material-dependent parameter which describes the
deviations of the plates from the perfectly conducting behavior due to the finite conductivity of
the metal. In the expansion (2) the first term &y is a property of the vacuum, the second one
(5&;;2)) depends on the material properties of the plates, whereas the third one, Ec,s in eq. (3),
is universal in that it does not depend on the specific material which the plates are made of, but
only on geometrical properties (S and L) and on fundamental constants (fic). The relevance of
higher-order terms in the expansion (2) depends on the material parameter .

The Casimir term, the third of the the expansion of the vacuum energy £(L) in decreasing
powers of L, actually gives rise to a measurable effect: a small displacement § L of one of the
two plates results in a change 0€(L) in the energy of the fields within the plates and therefore
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in a force Fi,(L) = —6€/JL (pushing on the inner surface of each single plate). Focusing on
one of the two plates, the contribution to the force Fj,(L) due to the change of Epyy in E(L),
ie, Fpuk = —0&uk/0L, is actually canceled out by the force Foy = Fin(L = o0) = Fhulk
acting from the other side of the plate and due to the fluctuation modes in the corresponding
half-space outside the plate. Eguf does not change upon changing L so that the total force
F(L) = Fin(L) — Fout acting on each single plate is due only to the change in the Casimir

energy: )

F(L w* hc

SS’):_480L4 for L>w"'. (4)
The universal behavior encoded in this equation can only be detected at separations L between
the plates which are much larger than the length scale x~!, being material-specific properties
relevant at smaller distances. In particular, k is related to the typical wave-vector at which
the plates are no longer effective in imposing the boundary conditions on the fields. As
a rough estimate, this scale is set by the plasma frequency w, of the metal (more detailed
calculations support this argument [2]), i.e., ¢k ~ w,, where w, =~ 3-10'Hz for copper, yielding
k=1 ~ 0.3um. Attempts to verify experimentally eq. (4) started already in 1958 [3] but the
first sound experimental confirmation came only 40 years later within the range of separations
0.5um < L < 6pm [2, 4]. Apart from the relevance of this effect for possible technological
applications in micro- and nano-electromechanical systems (MEMS and NEMS, respectively),
in which the associated force is responsible for stiction, its precise measurement could provide a
test of the validity of some fundamental laws down to the nano-meter scale, see, e.g., ref. [5].

2.2. The effect in Statistical Physics

Thirty years after the seminal paper by Casimir, M. E. Fisher and P. -G. de Gennes published a
note ”On the phenomena at the walls in a critical binary mixture” [6] in which it was shown that
Casimir-like effects (i.e., fluctuation-induced forces) arise also in statistical physics if a medium in
which fluctuations of a certain nature take place is spatially confined [7]. In order to understand
how these effects arise and what their relation is with the Casimir effect described in subsec. 2.1,
we briefly recall here some basic facts about binary mixtures, their critical point and the effect
of confinement. The schematic phase diagram of a liquid binary mixture in the bulk is depicted
in fig. 1. At constant pressure, the relevant thermodynamic variables are the temperature T" and
the mass fraction c4 of one of the two components in the mixture. For a certain concentration
ca, the two components of the mixture are mixed at low temperatures and the resulting liquid
solution looks homogeneous in a test tube (schematically represented on the left of the phase
diagram). Upon increasing the temperature, however, the liquid demixes into an A- and a B-
rich solution and becomes inhomogeneous in the test tube (represented on the right), where the
two solutions are typically separated by an interface. The transition between the mixed and the
demixed phase occurs at the solid first-order transition line. At the lowest point (CP) of this line
the transition becomes critical, i.e., second-order. This point is referred to as the (lower) critical
point. The mixed and demixed phases can be distinguished by monitoring the so-called order
parameter of the transition, which can be identified with the deviation dc4(x) = ca(x)—cy of the
local concentration c4(x) of, say, component A from its average value in the mixture. Indeed, the
thermal average (0c4(x)) of the order parameter is homogeneous in the mixed phase, whereas
it assumes two different values in the A-rich and B-rich solution which coexist in the demixed
phase. The order parameter is characterized by a spatial correlation length £, so that, within
each single phase, (dca(x)dca(X')) — (dea(x)){(dea(x))) o exp{—|x — x'|/£}, where & depends
on T and c4. Upon crossing the first-order transition line, the correlation length stays finite,
whereas it diverges upon approaching the critical point. The physical behavior of the system
at the scale set by & is actually determined by the fluctuations of the order parameter, which
becomes the relevant physical quantity for the description of the system. In terms of it, one can
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Figure 1. Schematic phase diagram of a binary liquid mixture with a lower critical point (CP).
The schematic side views of a test tube filled with the binary liquid mixture in the mixed and
in the demixed phase are shown on the left and on the right of the diagram, respectively.

express the effective free energy F of the system and determine its thermodynamic properties
upon approaching the transition.

In order to understand the consequences of confining such a binary liquid mixture, we have
first to consider the result of inserting a single plate (made up of, say, glass) into the mixture.
In general one expects the plate to show preferential adsorption for one of the two components
of the mixture, say A, due to quantitative differences in the interactions between each of them
and the molecules of the plate. Accordingly, a plate in the mixture induces a local increase of
the average order parameter (dc4(x)) close to it. Upon increasing the correlation length £ (i.e.,
getting closer to the critical point), the plate effectively imposes boundary conditions on the
order parameter [8, 9].

Table 1. Analogies and differences between the Casimir effect in (zero-temperature) QED and
in Statistical Physics (see also footnote 1).

QED ‘ Stat. Phys
fluctuating quantity: E, B order parameter ¢
excitation: Quantum Thermal(classical)
he (T =0) kgT (h=0)
range of fluct.: 00 finite: &
¢ /" oo close to CP
Y U
’ Confinement ‘
U U
long-ranged force range: &
long-ranged at CP
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Now that we have recalled how to describe the binary mixture in terms of a fluctuating order
parameter (generically refereed to as ¢ in what follows) and the effects of inserted plates in terms
of boundary conditions, it is easy to understand in which sense a Casimir-like interaction arises in
these instances. Indeed (see table 1), the Casimir effect in QED emerges because there are some
quantities (the fields E and B) which “fluctuate” in space and time due to the quantum nature
of the “medium” (actually the vacuum) in which their fluctuations take place. Accordingly, the
relevant scale of the phenomenon is set by hic at zero temperature. The two-point correlation
function of the fluctuations of these quantities are characterized by an algebraic decay in space,
i.e., the associated range is infinite (due to the vanishing mass m., = 0 of the photon). When the
spectrum of these fluctuations gets modified by external bodies (metallic plates) which impose
boundary conditions on the fluctuating fields, the associated energy £ becomes a function of
the position of these boundaries and as a result an effective long-ranged Casimir force arises
on them. In statistical physics, close to a critical point, the relevant fluctuating quantity is the
order parameter ¢ of the phase transition (¢(x) = dca(x) in the case of the binary mixture)
and its fluctuations are of thermal nature and due to the coupling between the system and the
thermal bath at temperature T'. Accordingly, the relevant scale of the phenomenon is kg1 and
the fluctuations are of classical nature (i.e., & plays no role). The range of these fluctuations is
given by & and therefore is finite but tunable upon approaching the critical point. As in the case
of QED, external bodies impose boundary conditions on the order parameter ¢ and therefore
they affect the spectrum of its allowed fluctuations and the associated effective free energy F
depends on the positions of these bodies. As a result, a force is expected to act on them, with a
range set by the correlation length £. In table 1 we summarize analogies and differences between
the Casimir effect occurring in QED and in statistical physics'. Even though we have been
referring to the case of a binary liquid mixture, the line of argument presented above extends to
critical phenomena in general. Indeed, consider a medium close to its critical point and confined
between two parallel plates at a distance L (film geometry). The medium might be, e.g., pure
4He or a *He-*He mixture close to the superfluid transition, a binary liquid mixture, a Bose gas
close to the Bose-Einstein condensation, liquid crystals etc. If the correlation length & of the
fluctuations of the order parameter and the thickness L of the film are much larger than the
microscopic length scale £pier (set, say, by the molecular scale of the system), the free energy F
of the confined medium can be decomposed in decreasing powers of L for a fixed value of L/
and large transverse area S, in analogy to eq. (2) [10, 11]

FT, L) = Foune + FL52 1 5520, (L/¢) + cor. (5)
surf 12 I

We have assumed here that the only relevant thermodynamic variable is the temperature
T, which determines the correlation length & ~ & (T — Ti.)/T.|”V where & is a system-
specific quantity and v a universal exponent, in the sense specified below. Possible additional
thermodynamic variables, such as the concentration c4 of the binary mixture, are assumed to be
tuned to their critical values, i.e., c4 = ca . with reference to fig. 1. In the expansion (5) the first
term Fpy is the free energy of the bulk medium in a volurr%e) S x L, i.e., Fouk x SL, the second
(2

one (F, (1+2)) represents the sums of the free energy costs F_’. o« S for the separate introduction

surf surf
of the two walls in the system, i.e., fi&;?) = s(igf + fng. The third term represents, as in

eq. (2), the interaction (free)energy between the two walls. Compared to the analogous term
in the case of QED we note, as expected, that kg7 replaces hc in providing the scale of the
phenomenon ? and that the interaction between the two walls is no longer long-ranged but its

L In some cases the correspondence illustrated in table 1 goes beyond the mere analogy. Indeed, for the simplest
geometrical settings, such as film geometry, there is a mapping between the Casimir effect in QED in d spatial
dimensions and the effect at the critical point of the so-called Gaussian model in d + 1 dimensions.

2 Due to the different engineering dimensions of [ic] = energy x length and [kgT] = energy, and taking into
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range is set by § via the dependence on L/§ of the scaling function 0 (3). This dependence can
be understood as follows: the perturbation that the wall induces on the order parameter extends
within a distance ~ & far from it, so that the two walls can interact with each other only at
separations L $ ¢ whereas the interaction energy vanishes for L > &, so that ©(z — oo) = 0.

The scaling function O is universal (as the analogous term Ecas (3) in eq. (2)) in the sense
that it depends only on some gross features of:

(a) the system in the bulk, such as the range and symmetries of the interaction and the kind
of order parameter which describes the phase transitions,

(b) the surfaces which provide the confinement, such as the possible symmetries of the bulk
system which they break, e.g., by favoring certain values of the order parameter at the
boundaries. These preferences eventually translate into effective boundary conditions for
the order parameter [8, 9]. In addition, ©| depends on the shape of the boundaries, as we
shall see below.

The general features at points (a) and (b) define the so-called bulk and surface universality classes
of the confined system, respectively. This universality is typical of critical phenomena and allows
one to investigate universal properties such as v and ©) by means of suitable representative
models belonging to the same bulk and surface universality classes of the actual system one is
interested in and which lend themselves for a simpler theoretical analysis. Analogously to what
happens in QED, a small change §L of the distance between the confining surfaces leads to a
change dF in the free energy and therefore to a force —F /0L acting on the displaced wall. The
L-independent contribution to this force due to Fpyk in eq. (5) is counterbalanced by the same
contribution acting from outside the walls when they are immersed in the critical medium, so
that the net force F(L,T) is given by (see eq. (5))

F(T,L) kT
S L3

'L9||(L/§) for L, &> lujicr, (6)

where 9| (u) = —20)(u) + u@il(u) and it shares with ©(u) the properties of universality. The
universal scaling function 9 can be conveniently determined from the analysis of suitable
representative models, either via field-theoretical methods or Monte Carlo simulations. In turn,

the resulting predictions can be very stringently compared with the experimental determination

2.8. The force of quantum and critical fluctuations

In the preceding two sections we have briefly reviewed the origin of the Casimir effects due
to quantum and critical fluctuations, highlighting the analogies and differences between them
and the corresponding scaling and universal properties. In view of possible experimental
investigations, however, it is important to estimate the expected magnitude of these effects.
Assuming (quite unrealistically, indeed) that one is able to realize a system of two parallel
plates of area S = 1cm? at a distance L = 1 um, the zero-temperature Casimir force resulting
from quantum fluctuations is roughly estimated as ~ S x hic/L* ~ 6 - 107" N, whereas the
force due to critical fluctuations possibly occurring at room temperature (7" ~ 300K) can be
estimated as ~ S x kT /L3 ~ 4 - 107" N. Even though these appear to be quite small forces,
their magnitudes are actually comparable with the weight ~ 2 - 1077 N of a water droplet of

account the expected proportionality to S, the two effects are characterized by different powers in their dependence
on L.

3 The scaling function O actually depends also on whether a certain correlation length ¢ is realized above or
below the bulk critical temperature T.. This is made clear later on by expressing the scaling function as a function
of an appropriate scaling variable z, c.f., eq. (7), instead of uw = L/¢, as done here.
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Figure 2. Formation of a complete wetting film of a fluid. Close to the liquid-gas phase transition
(a), a vapor (b) condenses in the presence of a suitably chosen (solid) substrate, forming a liquid
film (c), the thickness L of which diverges upon approaching the bulk condensation pressure P

(d).

half a millimeter in diameter. However, the realization of such a geometrical setting is actually
extremely difficult due to the problem of maintaining the alignment between the two plates
within the required accuracy. This problem is particularly difficult when trying to detect the
Casimir effect in quantum electrodynamics and indeed this has been achieved in the parallel-
plate geometry only quite recently [4]. For the detection of the critical Casimir effect the problem
of alignment can be solved by taking advantage of physical phenomena, such as wetting, which
naturally lead to the formation of confined films of fluids of a certain controllable and well-defined
thickness L, determined by the thermodynamic parameters of the system, such as pressure and
temperature [12, 13].

2.4. Wetting films and critical endpoints
In fig. 2(a) we depict schematically the phase diagram of a substance, as a function of the
pressure P and temperature 7', showing the generic solid (sol), liquid (lig), and gas phases. In
order to obtain a liquid wetting film of this substance, the temperature Ty and pressure P have
to be chosen in such a way that the bulk system is in the vapor phase (fig. 2(b)) but close to
the condensation transition, occurring at P = Py(7p). If the vapor is taken in contact with a
suitably chosen (solid) substrate (hatched grey area in fig. 2(c)), also at temperature Tp, a fluid
film will condense on it as a consequence of the interaction of the substance with the substrate
which makes the formation of a liquid layer thermodynamically favorable. The thickness L
of the resulting film can be controlled acting on the undersaturation 0P = P — Py(Tp) and is
determined by van-der-Waals and dispersion forces. Depending on the choice of the substrate, L
diverges smoothly upon approaching the bulk condensation pressure, i.e., for P — 0. This case
is referred to as complete wetting and is characterized by the formation of a liquid film which can
be made macroscopically thick, so that L > f,ic;. The phenomenon of wetting leads naturally
to the formation of a liquid film of constant thickness L, in which the liquid is confined between
the surface of the solid substrate and the liquid-vapor interface. The latter is macroscopically
well defined sufficiently far from the liquid-vapor critical point. Even though the problem of
the alignment between the confining surfaces is seemingly solved by wetting films, one has to
be aware of the fact that the liquid-vapor interface actually fluctuates (capillary fluctuations)
around its average position.

A possible indirect evidence of critical Casimir forces can be obtained by monitoring the
thickness L of the wetting layer upon approaching a critical point which, in the bulk, occurs
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within the liquid phase, is close to the liquid-vapor first-order transition but is far enough from
the liquid-vapor critical point. This is the case for critical endpoints (cep), which are located
where a line of critical points (within the liquid phase, see, c.f., fig. 3(a)) meets the liquid-vapor
transition line. Indeed, upon approaching a critical endpoint, the critical fluctuations of the
associated order parameter, confined within the liquid wetting film of thickness L, give rise
to the critical Casimir effect. The associated force adds up to the previously acting (van-der-
Waals) forces in determining the equilibrium distance L of the liquid-vapor interface from the
substrate and consequently it affects the thickness of the wetting film. The dependence of L
on the thermodynamic control parameters such as pressure and temperature is the basis for the
determination of the Casimir force within this approach, which was proposed and discussed in
detail in ref. [13] (see also ref. [14]) and provided the theoretical motivation for the experimental
investigations summarized in subsec. 3.1.

3. The critical Casimir effect at work

In this section we summarize the theoretical predictions for the scaling function of the critical
Casimir force in thin films and we compare them with the available experimental results based on
wetting films (subsec. 3.1). Then we discuss a more direct measurement of this force (subsec. 3.2).

3.1. Wetting films

In subsec. 2.4 we argued that it is possible to exploit critical endpoints in order to infer the
critical Casimir force from the thickness of a complete wetting film. One of the most studied
fluids with such a critical endpoint is pure *He, the phase diagram of which is sketched in fig. 3(a).
Within the fluid phase “He undergoes a second-order phase transition between a superfluid (also
refereed to as Hell) and a normal (Hel) behavior upon increasing the temperature across the
so-called A-line. The order parameter ¢ of this phase transition is physically provided by the
wave-function of the superfluid. The A-line terminates at the critical endpoint (cep) on the
fluid-vapor first-order transition line (which ends on the right at the liquid-vapor critical point)
located at low pressure, as indicated by the closer view of fig. 3(a). As previously described, in
order to detect critical Casimir forces one prepares the system in the vapor phase corresponding
to the point P in the closer view of fig. 3(a) and exposes this vapor to a suitable substrate
(e.g., Cu) in order to obtain a complete wetting film of thickness L. Then one changes the
thermodynamic parameters in such a way to follow the thermodynamic path indicated as -y
in fig. 3(a), along which the film thickness L would not change in the absence of the critical
endpoint. The actual changes are therefore due to the action of the critical Casimir force on
the liquid-vapor interface and from these changes it is possible to determine experimentally the
scaling function 9| of the force (see eq. (6)) [13]. In order to predict theoretically the scaling
function ¥ one has to single out a theoretical model which belongs to the same bulk and surface
universality class as the confined “*He. It is well known that the universal aspects of the bulk
critical behavior of He are properly captured, upon approaching the A-line, by the lattice XY
model [15], which lends itself, e.g., for Monte Carlo simulations. Accordingly, the behavior of
a film of “He close to the A-line is captured by the XY model with film geometry, where the
boundary conditions on the lattice are chosen to be in the same surface universality class (i.e., to
lead to the same effective boundary conditions for the order parameter) as the actual confining
boundaries, represented by the substrate-liquid and liquid-vapor interfaces. As anticipated, the
order parameter ¢ of the superfluid transition is related to the wave-function of the superfluid
component and therefore, as a wave-function, it has to be continuous in space and to vanish
both inside the substrate and within the vapor, where no superfluid is present. As a result, ¢
vanishes at the boundaries, i.e., ¢ satisfies Dirichlet BCs at both surfaces (DD). On the lattice
model these BCs are realized via free boundary conditions for the degrees of freedom. Having
identified a model which belongs to the same bulk and surface universality class as the film of
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Figure 3. (a) Phase diagram of pure “He. The closer view highlights the presence of the critical
endpoint (cep). (b) Universal scaling function ¥ of the critical Casimir force within the three-
dimensional XY universality class and Dirichlet-Dirichlet (DD) BCs, as a function of the scaling
variable z = (T/Ty — 1)(L/&)*/*. The data points were obtained by Monte Carlo simulation
of the XY model on the lattice in ref. [16], whereas the solid line represents the experimental
results of ref. [20].

4He, one can proceed to the determination of the scaling function J). In fig. 3(b) the data points
refer to the scaling function ¥ as inferred from Monte Carlo simulations of the XY model in
film geometry of various thicknesses and DD boundary conditions [16] (see also ref. [17]). The
scaling function is plotted as a function of the proper scaling variable

= t(L/&)"" (7)

where t = (T'— T»)/T\, T is the temperature at which the lattice model is simulated and T} is
the associated bulk critical value (corresponding to the A-line in the actual system). L is the
thickness of the film, & the non-universal amplitude which controls the divergence of the bulk
correlation length ¢ and which can be determined independently via Monte Carlo simulation,
and v ~ 0.66 [15] is the universal critical exponent of the correlation length. The scaling
variable z in eq. (7) is related to u = L/€ in eq. (6) by x = u!/* for t > 0. As a confirmation
of the scaling behavior in eq. (6), the scaling function ¥ in fig. 3(b) does not depend on the
thickness L of the film in which it has been numerically determined (as long as L is large enough
compared to the lattice spacing) and the data sets corresponding to different sizes actually fall
onto the same master curve. The predicted critical Casimir force turns out to be attractive in
the whole range of temperatures () < 0), as expected it decays to zero for L > &, i.e., for
x > 1, whereas it saturates to a non-vanishing value for z — —oo due to the low-temperature
long-range correlations maintained by Goldstone modes. Some of the qualitative features of the
present force, such as the occurrence of a deep minimum below T), can be understood within a
simple mean-field approximation (see, e.g., refs. [18, 19]).

The very delicate experimental determination of the critical Casimir force acting on wetting
films of *He on a Cu-substrate has been done in ref. [20], where the thickness L ~ 200...300 A of
the film as a function of the distance from the critical point has been determined by capacitance
measurements. The corresponding experimental data are indicated by a solid line in fig. 3(b)
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and show a remarkably good agreement with the corresponding theoretical predictions based
on Monte Carlo simulations of the lattice model. In determining the value of the abscissa z
corresponding to a certain experimental point one has to use for & the system-specific value
which has been determined independently in the experiment on the basis of the behavior of the
bulk correlation length. If this is properly done, then there are no free parameters which can be
adjusted in the comparison. In this sense the test of the theoretical predictions is remarkably
stringent.

Based on the values of the experimental parameters of ref. [20] one can estimate the critical
Casimir pressure to be of the order of 2 Pa which, however, is still of quite difficult detection
in those experimental conditions. In order to increase the magnitude of the critical Casimir
force, which is proportional to the temperature T, it is convenient to look for critical endpoints
occurring at higher temperatures compared to the one of *He, for example by considering wetting
films of classical binary liquid mixture. It turns out that in these cases the boundary conditions
can be tuned such that the resulting forces are repulsive. These forces could find application for
compensating the attractive electrodynamic Casimir force (the sign of which cannot be easily
controlled) and therefore avoid stiction in micro- and nano-machines (MEMS and NEMS).

The phase diagram of a binary liquid mixture is depicted in fig. 1 for a fixed value of the
pressure P (i.e., fig. 1 is a cut of the phase diagram in the (c4, T, P)-space). Upon decreasing
the pressure the location of the critical point CP changes in the (c4,T)-plane and eventually
it meets at the critical endpoint the sheet corresponding to the transition between the liquid
and the vapor of the mixture. This critical endpoint can be exploited in order to create a
wetting film of the binary mixture [13], similarly to the case of “He. The scaling function
U can therefore be inferred by monitoring the equilibrium thickness of the wetting layer as a
function of the thermodynamic parameters. Also in this case, theoretical predictions for the
scaling function 9| can be obtained by studying a suitable model which belongs to the same
bulk and surface universality class as the confined classical binary mixture. It is well-known that
the bulk critical behavior close to the demixing critical point in a binary mixture is properly
captured by the lattice Ising model [15], which lends itself, e.g., for numerical studies via Monte
Carlo simulations. The universal behavior of the binary mixture confined in the film is therefore
captured by the Ising model in a film geometry, in which the boundaries are chosen to be in
the same surface universality class as the actual confining surfaces constituted by the substrate-
liquid and liquid-vapor interfaces. In subsec. 2.2 we have already mentioned the fact that the
boundaries generically show preferential adsorption for one of the two components of the mixture.
As a result, the order parameter dc4(x) of the binary mixture (see the discussion in subsec. 2.2)
either increases (+) or decreases (—) upon approaching the boundaries and this tendency turns
into effective boundary conditions close enough to the critical point [8, 9]. We shall refer to
the case in which both boundaries preferentially adsorb the same component of the mixture as
(++) and to the case of opposite preferences as (+—). Additional details of the strength of this
preferences etc. turn out to be irrelevant sufficiently close to the critical point. In the lattice
Ising model, these boundary conditions are realized by fixing the lattice degrees of freedom (£1
spins) on the two opposing boundaries either to the same [(++)] or to opposite [(+—)] values.
The resulting numerical prediction of the scaling function 9| is reported in fig. 4 as a function
of the scaling variable x in eq. (7), where L is the thickness of the film, v ~ 0.63 [15] is the
universal critical exponent of the correlation length, ¢t = (T'—T,) /T, where T is the temperature
at which the lattice model is simulated and T, its critical value. As it was the case for *He,
the value of the non-universal amplitude &y for this lattice model is measured independently via
Monte Carlo simulations. The collapse of data points referring to lattices of different thicknesses
onto the same master curve is again a confirmation of the scaling behavior expected on the basis
of eq. (6)*. The sign of the resulting Casimir force depends on the boundary conditions and

4 Tn order to extract in this case the asymptotic scaling behavior from Monte Carlo data it is necessary to account



60 Years of the Casimir Effect IOP Publishing

Journal of Physics: Conference Series 161 (2009) 012037 doi:10.1088/1742-6596/161/1/012037
0 [t e L=13
I i s L=16
~0.4 ¥ ra 6 L=20 ————
__ 08¢ t £ Tt = 4 -
D ' : >
-ter E l; 1
g * L=13 1 ot .
167 pE L=16 |
I  Tar L=20 —— ] e S
2L— : 0 : : : : S —
-10 0 10 20 30 40 -30 -20 -10 0 10 20 30
T T

Figure 4. Universal scaling function 9| of the critical Casimir force within the three-dimensional

Ising universality class and (++)/(+—) BCs, as a function of the scaling variable 2 = t(L/&y)"/".
The data points were obtained in ref. [16] by Monte Carlo simulation of the Ising model on the
lattice, whereas experimental data for the case of (+—) BCs were obtained in ref. [22].

is attractive for (++) and repulsive for (+—), corresponding, respectively, to ¥|(r) < 0 and
J) () > 0 in the whole range of temperatures. As expected, these scaling functions decay
to zero for x — 400 due to the fact that away from the critical point the correlation length
becomes much smaller than the film thickness L both in the mixed (disordered in terms of the
Ising model) and demixed (ordered) phase. In addition, the typical magnitude of the repulsive
force for (+—) BCs is larger than the one of the attractive force for (++) boundary conditions.
This is due to the fact that in the former case also the fluctuations of the position of the interface
between the region with positive and negative values of (dc4(x)) contribute to the force acting
on the confining surfaces. As in the case of “He some of the qualitative features of the force are
already properly captured by a mean-field approximation [21]

The critical Casimir effect in wetting films of classical binary mixtures has been investigated
in refs. [22, 23] where either ellipsometry [23] or X-ray scattering [22] techniques have been
employed in order to determine the equilibrium thickness L of the wetting film. In particular in
ref. [22] a binary mixture of methylcyclohexane (MC) and perfluoromethylcyclohexane (PFMC)
has been used as the critical medium, with an upper critical point at temperature T, = 42.6°C
and molar fraction of PEMC cppmc, = 0.36. The investigated wetting films were formed on a
Si04/Si substrate and they had a typical thickness L ~ 100 A with the PFMC and MC preferring
to be close to the liquid-vapor (+) and the liquid-substrate (—) interface, respectively. The
corresponding experimental data for the inferred scaling function of the critical Casimir force are
reported on the right panel of fig. 4. As in the comparison between theoretical and experimental
predictions for “He, the value of the abscissa z corresponding to a certain experimental point has
to be calculated according to eq. (7) taking into account the experimentally determined value of
&o and the fact that t = (T' — T,) /T, for an upper critical point. Note that, again, there are no
adjustable parameters for the comparison. The agreement with the corresponding theoretical
predictions is rather good (for a more detailed discussion, see ref. [16]).

All the evidence previously discussed for critical Casimir forces relies on the use of wetting
films of (classical and quantum) fluids, a rather indirect way of detecting the effects of these

for corrections to scaling, see ref. [16] for details.
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forces. In addition, the reliable quantitative interpretation of the observed variations of the
thickness of these films in terms of the action of Casimir forces requires an independent and quite
detailed knowledge of some material-dependent parameters which determine the van-der-Waals
forces acting within the system. In view of these potential limitations, it would be desirable to
measure directly the critical Casimir forces, e.g., by determining the associated potentials.

3.2. Brownian motion of colloids

The experimental evidence summarized in the previous subsection suggests that critical Casimir
forces become relevant at the submicrometer scale, so that, on dimensional ground and for
critical points at room temperature T, ~ 300K one estimates the typical scale of force as
~ kpT./(0.1 yum) ~ 40fN. These tiny forces are hardly detectable even with very sensitive
methods such as atomic force microscopy but nonetheless they are still strong enough to affect
the Brownian motion of particles of micrometer size immersed in a fluid (i.e., colloids) which can
be used as detectors. Indeed, under the effect of external forces (such as critical Casimir forces,
gravity, buoyancy, etc., see below) a colloidal particle tends to stay at the equilibrium position
Xeq Which corresponds to the minimum of the potential ®(x) associated with the acting forces.
However, due to the random collisions with the molecules of the surrounding fluid (in thermal
equilibrium at temperature T'), the particle actually fluctuates around x.q, with a probability
density p(x) o< exp{—®(x)/(kT)}. Accordingly, the forces acting on a colloid can be inferred
from the measurement of p(x). This possibility suggests the study of a geometrical arrangement
in which the critical fluctuations of the medium are restricted in the space between a spherical
colloid and a planar surface rather than between two parallel surfaces, as considered so far. On
the basis of the discussion of subsec. 2.2, one actually expects a Casimir force F' to act on the
sphere. If the minimal distance z between the surface of the sphere and the planar substrate is
much smaller than the radius R of the sphere itself, the spherical surface can be approximated
by a set of circular rings parallel to the opposing planar substrate (Derjaguin approximation)
and therefore the force in this geometrical setting can be related to the one for parallel plates.
Within this approximation, the z-dependent critical Casimir force F' at temperature T acting
on the sphere is given by (see ref. [25] for details)

F(z2)= k‘BTZ—]zﬁ‘o(z/f) for z < R, (8)

where the universal scaling function |, can be calculated in terms of a suitable integral of the
scaling function ¥ in a film [26] and it retains the qualitative features of 9. The theoretical
prediction for the scaling form of the Casimir potential ®¢(z) = [ d2'F(2') = ksT(R/2)E(z/€)
immediately follows from the integration of eq. (8).

In order to measure tiny forces acting on a single colloid, one can take advantage of the Total
Internal Reflection Microscopy (TIRM) [24], a very sensitive technique that is widely employed
in the study of soft-matter systems [24]. With TIRM one monitors the Brownian motion of
the colloid floating in a fluid and, as anticipated, from the associated statistics one infers the
potential of the forces acting on the particle. The scheme of the experimental setup is depicted
in fig. 5(a): an incoming visible laser beam is totally reflected at the substrate (glass)-fluid
interface, so that an evanescent field of intensity Io.(x ) penetrates the liquid with a typical
exponential decay as a function of the distance z; from the interface, see fig. 5(b). The colloidal
particle, of suitable refractive index and at a surface-to-surface distance z from the substrate,
scatters light out of this evanescent field. The intensity I, of the scattered light is measured by a
photomultiplier (PM) and turns out to be proportional to the intensity Io,(z) of the evanescent
field. ;From the time dependence of the scattered intensity Is.(t) o< Ioy(z(t)), represented in
fig. 5(c), one can therefore calculate the time dependence of the particle-wall separation, i.e.,
z(t). This dependence, depicted in fig. 5(d), reflects the Brownian motion of the particle under
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Figure 5. Determination of the potential ®(z) of the forces acting on a single colloidal particle
by means of the Total Internal Reflection Microscopy.

the effect of thermal fluctuations and possible additional forces. The probability distribution
P(z), as extracted from the histogram of {2(t)}o<t<t..m, for sufficiently large sampling time
tsamp (fig. 5(e)), is proportional to the Boltzmann factor exp{—p®(z)} (with 3 = (kgT)™!),
where ®(z) is the potential of the total force acting on the particle. Accordingly, ®(z) can be
calculated up to an irrelevant constant on the basis of the P(z) inferred from the experimental
data.

In order to provide a direct evidence of critical Casimir forces one can study a single colloidal
particle immersed in a binary liquid mixture of water (W) and lutidine (L), close to a glass
substrate [26]. In ref. [26] TIRM has been employed for the determination of the potential ®(z)
of the forces acting on the particle and for studying how ® changes when the binary mixture
is driven towards the critical point. The W-L mixture has a bulk phase diagram such as the
one presented in fig. 1, with a lower critical point at T, = 34°C and lutidine mass fraction
cLe ~ 0.29. The local excess concentration of lutidine dcy,(x) is a suitable order parameter for
this demixing transition. In what follows we illustrate the experimental results in the case of a
mixture at the critical concentration cr, . (the case ¢y, # cr, is discussed in refs. [25, 26]).

At a temperature T far below the critical value T, fluctuations of the order parameter
are irrelevant and the potential ®(z) of the forces acting on the particle is basically the
sum of two contributions: (a) a screened electrostatic repulsion (®¢(2) o< e™%*) between the
colloid and the glass substrate, relevant in our experimental conditions for z < 0.1 um and
(b) a linearly increasing potential due to the combined effect of buoyancy, gravity and optical
pressures generated by the optical tweezer employed in the actual experimental setup®. This
latter contribution has been subtracted from the curves presented in fig. 6, which show the
dependence of the measured potential ®(z) on the distance from the critical point. Panel (a)
and (b) in fig. 6 refer to (colloid, substrate) = (——) and (+—) BCs, respectively. As expected,
few hundreds mK far from the experimentally estimated critical temperature, the potential ®(z)
consists only of the electrostatic repulsion, which is negligible on this scale for z = 0.12 ym in
(a) and z 2 0.1 ym in (b). Upon increasing the temperature by few tens mK significant changes

5 A third possible contribution, due to van-der-Waals forces turned out to be negligible in the experiment reported
in refs. [26, 25].
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Figure 6. Temperature dependence of the potential ®(z) of the forces acting on a single
polystyrene colloidal particle at distance z of closest approach from a glass substrate. The
particle and the substrate are immersed in a water-lutidine liquid mixture with critical
composition and temperature T smaller than the critical one T,. Data points refer to the
experimental results (where gravity and buoyancy have been subtracted, see the main text)
obtained for a substrate treated with NaOH in order to make it hydrophilic [(—) BC for the
order parameter] and (a) a colloid of diameter 2R = 2.4 um absorbing preferentially water (—)
(b) a colloid of diameter 2R = 3.7 um with preferential adsorption for lutidine (+). The solid
lines in (a) and (b) are the corresponding theoretical predictions for the critical Casimir potential
with (colloid, substrate) = (——) and (+—) BCs, respectively. (From ref. [26].)

occur in the measured potentials: a strong attractive and repulsive force develops, respectively,
in (a) and (b). In particular, in both cases one observes a change in the total potential of
the order of 10 kpT', which is really significant on the scale of kT which characterizes the
physics of colloids. The maximum value of the attractive force acting in case (a) is estimated
at 600 fN. The strong temperature dependence of the measured potentials is a clear indication
of the involvement of critical Casimir forces. This evidence is supported by the comparison
with the corresponding theoretical predictions for ®¢(z), shown as solid lines in fig. 6. In order
to focus only on the contribution to ®(z) due to the critical Casimir force, this comparison is
presented only within the range of distances where the electrostatic contribution is negligible.
The limited accuracy with which the critical temperature T, has been experimentally determined
in ref. [26] does not allow a reliable calculation of the correlation length & on the basis of the

theoretical relation ¢ = & (1 — T/T.)~%% and of the value fée)(p ) of & measured for the W-
L mixture in the bulk by independent experiments [27]. Instead, for each single temperature
T, the correlation length £(7T") can be determined in order to optimize the agreement between

theory and experimental data. Then, separately for the two experiments, the value :S(()ﬁt) of &
and T of T. are determined in such a way to yield the best fit of the determined £(7") with

the expected algebraic behavior. In both cases the fact that §(()ﬁt) = éeXp ) within errorbars is
a check of the significant agreement between theory and experiments. (See refs. [25, 26] for a
more detailed discussion.) Interestingly enough, via a suitable chemical surface treatment, it
is possible to change quite easily the substrate from hydrophilic (—) to hydrophobic (+) and
therefore switch the Casimir force acting on the colloids in fig. 6(a) and (b), respectively, from

attractive to repulsive and vice-versa (see refs. [25, 26]).
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Summing up, by measuring their effect on the Brownian motion of a colloidal particle, direct
evidence of both attractive and repulsive critical Casimir forces has been provided. Based on
the general arguments presented in subsec. 2.2 we expect such forces to act also between two
or more colloids immersed in a near-critical mixture. Due to the strong non-additivity of these
fluctuation-induced forces we expect interesting many-body effects.

4. Conclusions, perspectives and applications

4.1. Conclusions

In the previous sections we presented an overview of the Casimir effect due to critical fluctuations,
highlighting its relation with the analogous effect in QED. We focused on the theoretical
predictions which are relevant for the interpretation of the available and possibly forthcoming
experiments, especially involving wetting films and colloidal particles. The comparison between
the available theoretical and experimental results turns out to be very good. We did not attempt,
however, to review of all the currently available relevant theoretical results and approaches, a
task which is well beyond the scope of the present contribution. In what follows we mention
only some of them.

The discussion in subsec. 2.2 clearly shows that Casimir-like effects are expected whenever
the spectrum of fluctuations of a certain nature is changed by the presence of confining bodies,
which consequently experience fluctuation-induced forces. The range of such forces is typically
set by the correlation length £ of the relevant fluctuations and a universal behavior has generally
to be expected whenever &, L > f,i.r where L is the typical distance between the boundaries
and /i a microscopic, system-dependent scale.

4.2. Perspectives

In view of the quite general conditions under which such Casimir forces arise, several examples
can be found in statistical physics. They occur not only at the critical points previously
discussed, or in systems belonging to other bulk and surface universality classes (e.g., liquid
crystals or complex fluids [7, 28]), but also close to tricritical points. This instance has been
studied both experimentally and theoretically [29, 18]. Due to the fact that the upper critical
spatial dimensionality for a tricritical point is three, a mean-field approximation of suitable
models captures rather well the features observed in experiments. Casimir-like forces result also
from (long-ranged) fluctuations occurring in non-equilibrium steady states of different nature,
from chemical reactions to granular matter, see, e.g., ref. [30], or from quantum fluctuations of
the order parameter of a quantum phase transition [11]. However, at present, it is not clear how
these predictions can be experimentally tested. On the other hand, there are experimentally
relevant systems, such as Bose gases close to the Bose-Einstein condensation, which have not yet
been studied with the aim of detecting critical Casimir forces, even though some quantitative
theoretical predictions (see fig. 3(b)) are available beyond the case of ideal gases [31]. Thermal
capillary fluctuations of the interface between two different liquids give rise to a Casimir force
acting on two or more colloidal particles trapped at that interface [32]. In this case, the presence
of the colloids alters the spectrum of these surface fluctuations, with the additional feature that
the boundaries themselves at which the boundary conditions are imposed, represented by the
contact line of the interface at the surface of the colloids, fluctuate (see ref. [32] for details). The
resulting forces might be of relevance for understanding the topical problem of the interaction
among colloids trapped at interfaces.

So far we have only considered homogeneous substrates and particles. However, in the
presence of chemical or topographical modulations, such as the one depicted in fig. 7, novel
phenomena are expected, including the emergence of lateral critical Casimir forces Fj| and torques
TCas, Still characterized by a universal scaling behavior. Some of the features of these forces have
been studied in ref. [33] and might form the basis for the quantitative understanding of recent
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Figure 7. Possible chemically [(a), (d)] and topographically [(b)] patterned substrates in which
a lateral critical Casimir force Fj arises in addition to the normal force F';. A critical Casimir
torque 7Tc,s is expected to act on non-spherical particles [(c)].

experimental investigation of the behavior of a single colloidal particle immersed in a binary
mixture and exposed to a patterned substrate [34].

In addition to the equilibrium static behavior of the critical Casimir effect, its equilibrium
and non-equilibrium dynamics pose both theoretical and experimental challenges. Indeed, it
is not even obvious how to define theoretically such forces when their definition based on the
decomposition of the effective free energy F (see eq. (5)) is no longer viable due to the lack of
a proper notion of free energy for dynamical phenomena. A rich dynamical behavior is actually
emerging already in quite simple theoretical relaxational models [35]. In order to make contact
with the dynamical information which might come from TIRM experiments, it remains to be
seen how the time-dependence of the critical Casimir force affects the Brownian motion of the
colloidal particle in conjunction with hydrodynamic and adsorption phenomena.

4.8. Applications?

In contrast with the interactions typically acting among colloids (e.g., electrostatic), critical
Casimir forces show a striking temperature dependence, as we have reported in subsec. 3.2.
This fact can possibly be exploited in order to control via minute temperature changes the
phase behavior and aggregation phenomena in systems with dispersed colloids. In addition, not
only the range of interaction can be easily controlled but also the sign of the resulting force.
This can be achieved by surface treatments and does not require (as it does for the quantum
mechanical Casimir effect) substantial changes or tuning of the properties of the bulk materials
which constitute the immersed objects. This property might be exploited in order to neutralize
the attractive quantum mechanical Casimir force responsible for the stiction which brings micro-
electromechanical systems to a standstill. If these machines would work not in a vacuum but in
a liquid mixture close to the critical point, the stiction could be prevented by tuning the critical
Casimir force to be repulsive via a suitable coating of the various machine parts. In principle,
by using optically removable or controllable coatings, one could very conveniently control the
functioning of the microdevice without acting directly on it.
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