
Analysis of performance improvements for host and

GPU interface of the APENet+ 3D Torus network.

R Ammendola A1, A Biagioni2, O Frezza2, F Lo Cicero2, A Lonardo2,
P S Paolucci2, D Rossetti2, F Simula2, L Tosoratto2 and P Vicini2

1INFN Roma II, Via della Ricerca Scientifica 1 - 00133 Roma, Italy
2INFN Roma I, P.le Aldo Moro 2 - 00185 Roma, Italy

E-mail: piero.vicini@roma1.infn.it

Abstract. APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to
develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-
GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric
is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34
Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and
Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The
minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol
implemented in FPGA with specialized hardware blocks tightly coupled with embedded micro-
processor. This architecture provides a high performance low latency offload engine for both
trasmit and receive side of data transactions: preliminary results are encouraging, showing 50%
of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+
architecture, detailing the hardware implementation and discuss the impact of such RDMA
specialized hardware on host interface latency and bandwidth.

1. Introduction
Scaling towards exaFLOPS systems in HPC requires to select an high performances
interconnection network solution able to also tackle with requirements of low power consumption,
high efficiency and resilience. Most of the newest HPC platforms, as testified by TOP500 [1]
and the Graph500 that enlist world’s current most powerful computing systems, are mainly
large clusters interconnected by a switch-less, multi-dimensional toroidal mesh. This solution
has been proven effective to ensure lower costs in terms of power and equipment compared with
a fat-tree one with comparable interconnect technology. Moreover scaling such mesh is easier,
even while maintaing comparable or better communication latency for computing algorithms
with a good degree of locality.

At the same time, TOP500 shows that GPU accelerators are gaining market in the
supercomputing arena.

On this path we designed and deployed a PCIe network board for tera-scale clusters, the
APEnet+ card [2], based on state-of-the-art FPGA. With its six fully bidirectional, point-to-
point links, the APEnet+ board can effortlessly turn an assembly of off-the-shelf many-core
x86 64 systems into a cluster with a 3D-torus network topology; an overview of the board
architecture is given in Sec. 2.

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

The Network Interface is also able to directly access GPUs memory leveraging upon
the peer-to-peer (P2P) capabilites of Fermi- and Kepler-class NVIDIA GPUs. This is a
first-of-its-kind feature for a non-NVIDIA device that allows unstaged off-board GPU-to-GPU
transfers with unprecedented low latency, as described in Sec. 2.1.

The overall architecture of APEnet+ has been evolutionarily improved by adding or
re-engineering its parts in order to relieve or bypass the bottlenecks. The set of performance
figures that this evolving design allowed to achieve are comparable with those of top offerings
from the commercial world for the same PCIe generation; Sec. 3 describes more in-depth the
areas where most of the work was performed.

Thanks to the reconfigurability of the FPGA platform and the modularity of our architecture,
it has been possible to reuse APEnet+ in different contexts, for example as a low-latency interface
between a read-out board and a GPU farm in the data acquisition system of the low level trigger
of a high-energy-physics experiment (NaNet project)[3, 4].

Short term future roadmap foresees the delivery of a new release of the APEnet+ card relying
on 28nm FPGAs and PCIe Gen3 bus. A glimpse on this work is given in Sec. 4 together with
some conclusions.

2. Architecture Overview
APEnet+ is a point-to-point, low-latency, 3D-torus network controller integrated in a PCIe Gen2
board based on Altera Stratix IV FPGA developed at ”Istituto Nazionale di Fisica Nucleare”
(INFN).

The APEnet+ network architecture has, at its core, the Distributed Network Processor
(DNP), which acts as an off-loading network engine for the computing node, performing
inter-node data transfers.

NxN ports
switch

link
ctrl

link
ctrl

link
ctrl

link
ctrl

link
ctrl

link
ctrl

routing logic

arbiter

PCIe X8 Gen2 core

Network Interface

DNP

TX/RX
Block

32bit Micro
Controller

Collective
comm block

memory
controller

GPU I/O
accelerator

O
n

 B
o

ard

M
em

o
ry

1
G

b
E

p
o

rt

1 … … … N …

Router

Off-board
Interface

DNP
Fault

Manager

Figure 1. Overview of APEnet+. The DNP is the core of the architecture - composed by the
Off-Board Interface, Router and Network Interface macro blocks - implemented on the FPGA.
The system interfaces to the host through the PCIe bus.

The DNP has been developed as a parametric Intellectual Property library, meaning that
some fundamental architectural features can be chosen among the available ones, others can be
customized at design-time and new ones can easily be plugged in.

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

2

A highly modular design has been employed separating the architectural Core from the Off-
board Interface block, connected by a customizable number of ports as shown in Fig. 1.

The Off-Board Interface manages the node-to-node communication flow over links equipped
with a bi-directional Serializer/Deserializer, error checking and DC-balancing; it allows
point-to-point, full-duplex connections for each node.

The Core block structure is split into a Router component, responsible for data routing
and dispatch, and a Network interface, the packet injection/processing logic comprising host
interface, Tx/Rx logic and µC.

The Router establishes dynamic links among the ports of the cross-bar switch, managing
conflicts on shared resources.

The Network Interface block has basically two main tasks: on the transmit data path, it
gathers data coming in from the PCIe port and forwards them to the relevant destination
ports; on the receiving side, it provides hardware support for the Remote Direct Memory Access
(RDMA) protocol, allowing remote data transfer over the network without involvement of the
CPU of the remote node.

The GPU I/O Accelerator in Fig.1 allows to interface to the GPU for direct memory access,
as described in Sec. 2.1.

APEnet+ features has been proved on the field by deploying the 3D toroidal network for
the QUonG HPC platform at INFN Roma, Italy. QUonG is an INFN initiative targeted at
developing a computing system dedicated to Lattice QCD computations; it is a massively parallel
computing platform leveraging on commodity multi-core processors coupled with last generation
GPUs as computing nodes interconnected by a point-to-point, high performance, low-latency 3D
torus network, which is particularly suited to the transmission patterns of the set of algorithms
LQCD belongs to. QUonG installation at the moment counts 16 nodes, each one equipped with
2 M2075 NVidia GPU and one APEnet+ board, and shows an aggregated peak performance of
∼32 TFLOPS [5].

2.1. Peer-to-Peer GPU memory access
A peculiar feature of APEnet+ can be exploited when the cluster nodes are equipped with Fermi-
and Kepler-class NVIDIA GPUs: APEnet+ is the first non-NVIDIA device able to directly
access their memory leveraging upon their peer-to-peer (P2P) capabilites. In this way Remote
GPU-to-GPU data transfers are possible without staging and involving the CPU, resulting in a
very low transfer latency. Figure 2 gives a pictorial view of the data flow on the TX side from
the GPU memory through the Network Interface when the P2P is enabled, compared to what
happens using a device that does not provide P2P access to the GPU memory as in Fig. 3.
Without the P2P a copy is necessary from the GPU memory to the CPU memory to allow the
Network Interface to dispatch the message. The same happens on the receiving side.

All things considered this APEnet+ feature allows to obtain a gain in reduced GPU-to-GPU
transfer latency as shown in Fig. 4. A thorough description of APEnet+ P2P implementation can
be found in [6] together with an example of an accelerated application; we remark that off-board
transfer latency in the GPU-to-GPU case is competitive with current academic research in this
field [7, 8].

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

3

GPU

GPU
Memory

Chipset

CPU

apeNET+

SYSTEM
Memory

apeNET+ FLOW

PCIe

Figure 2. APEnet+’s GPU TX flow
exploiting P2P.

GPU

GPU
Memory

Chipset

CPU

InfiniBand

SYSTEM
Memory

TRADITIONAL FLOW

PCIe

Figure 3. Traditional GPU TX data flow
without the use of P2P: a copy GPU-to-
CPU memory is necessary to complete the
data send.

 0

 20

 40

 60

 80

 100

 120

 140

 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

L
at

en
cy

 (
us

)

Message size (32B-128KB)

APEnet+ VS InfiniBand -- G-G Latency

G-G APEnet+ P2P=ON
G-G IB MVAPICH v1.9a2
G-G APEnet+ P2P=OFF

Figure 4. Plot showing the effect of APEnet+ P2P on GPU-to-GPU data transfer latency.
Results are also compared with latencies of an Infiniband interconnect of the same PCIe
generation, obtained using MVAPICH v1.9a2.

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

4

3. New hardware blocks for performance improvements
The use of FPGAs made possible for the development of APEnet+ a tight design cycle and
modular and reconfigurable architecture. In this way we could evolve the architecture by working
around the critical areas as shown by benchmarks, and remove or reduce the performance
bottlenecks.

In the following section we describe some of this work performed on key areas of the IP.

3.1. Tx speed-up: Double DMA channel
The Tx Block, depicted in Fig. 5, is the DNP logic block in charge of loading data from CPU
memory.

The host data buffer transmission is completely handled by the APEnet+ Kernel driver: PCIe
data read transactions (Tx) are issued after the information contained in command-packets,
each one composed by four 128bit-words: Header, Footer, Cmd0 and Cmd1. The Tx Block uses
the first two command words (Header and Footer) to encapsulate data coming from the host
memory, creating data-packets that will be sent to the network, while Cmd0 and Cmd1 contain
information used respectively to program the PCIe DMA data read – i.e. packet size and address
– and to communicate the end of the transaction. Even commands are read in DMA mode, so
the Host communicates to the reading logic the number N of incoming command packets and
notifies when they are ready. Command-packets are placed in the host memory in a circular
buffer; the read logic read and consume them through the Multi Packet Instantiator, possibly
gathering more than one command in a single PCIe DMA read transaction.

In the first implementation these DMA read operations on the PCIe were completely
sequential. In order to reduce the latency between two consecutive reading processes, we
introduced a mechanism able to switch between two DMA channels (DMA0 and DMA1) popping
alternatively new commands from the Tx Cmd Fifo.

Fig. 6 compares the read bandwidth measured using one or two DMA channel
implementation, showing the bandwidth improvement equal to a gain ∼ 40% on the TX side
bandwidth.

P
C

Ie
 I
n

te
rf

a
c
e

Multi Packet
Instantiator

Tx Cmd FIFO

CPU Tx Hdr

 FIFO

CPU-Tx-Data

 FIFO

DMA0
Tx DMA Ctrl

Header+Footer

Tx fsm0

Ram Write
fsm0

Ram Read
fsm

Read Enable

Page 0

Page 1

Page 2

Page 3

DMA RAM

Read
Address

DMA1

W
ri

te
 E

n
a
b

le

Tx Block

P
C

Ie

Header+Footer+Cmd0+Cmd1

Cmd0+Cmd1

Ram Write
fsm1

Tx fsm1

Figure 5. APEnet+’s CPU TX flow.

 0

 500

 1000

 1500

 2000

 2500

 3000

 32 128 512 2K 8K 32K 128K 512K 2M

B
an

dw
id

th
 (

M
B

/s
)

Message size (32B-4MB)

APEnet+ Read (TX) Bandwidth - Single DMA Channel vs Double DMA Channel

TX host - double DMA channel
TX host - single DMA channel

Figure 6. APEnet+ Tx single vs. double
DMA results.

3.2. Rx speed-up: on-board memory management
The RDMA protocol implementation requires that the virtual memory management task has to
be performed by the APEnet+ hardware on the receive side. Each packet header contains the
virtual address of the destination buffer and once the packet reaches the remote destination, a

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

5

virtual to physical address translation is needed to execute the DMA write in the host memory.
So, the impact of this highly demanding task has to be limited to lower the latency of packet
data transfer.

In the first implementation we delegated the complete task of memory management to the
soft-core Altera Nios2 µC clocked at 200 MHz. At run-time, a table with user registered buffers
and pages is loaded into the µC on-chip RAM by the APEnet+ device driver. A queue of in-
coming message requests is built upon packet arrivals: for each packet in queue the registration
of the destination buffer is checked, and buffer information is gathered, including the buffer
decomposition into pages and V2P address translation.

Such a µC implementation has shown a severe performance penalty with an average of 600
clock cycles to perform a single virtual address processing. To speed up the execution of these
tasks we designed a specialized Translation Lookaside Buffer (TLB), similar to a modern CPU’s
Memory Management Units. A TLB is an associative cache where a limited amount of entries
can be stored in order to perform memory management tasks, significantly reducing Nios2 pro-
cessing time in case of a cached translation — a ’hit’ — or forwarding the operation to the µC
in case of a ’miss’. In Fig. 7 is depicted how the TLB interacts with the rest of the design. The
current hardware TLB implementation takes 31 clock cycles (logic is running at 250 MHz) to
perform the complete task of buffer look-up and address translation.

With a simple inter-node bandwidth test it is possible to measure the advantage given by

Buffer
Search

Address
Translation

Buffer
found

Device driver

Buffer not found

Page not found

RX DMA
ControllerPage

found

Nios Firmware Custom Logic

Software

Packet Queue

User Lever APIs

PCIe interface

RX Data
Flow

Page Table Register

TLB

Register Page

Register Buffer

Hit

Prepare PCI
Command

Miss

Figure 7. Schematic representation of memory management tasks. Three areas are interested:
Software, with Page Table Registration; µC Firmware, interacting with the Device Driver for
Registration and error handling (Buffer or Page not found events); Custom Logic, with the TLB
in charge of packet processing and instructing the DMA engine logic.

the use the TLB. Results are shown in Fig. 8 for a TLB with 32 cacheable entries, where a
comparison is made with the same test with the TLB disabled. Both Host- and GPU-bound
data transfer are plotted, showing a performance benefit for message size up to 128 kB in the
Host case and to 2 MB in the GPU case, due to the limited number of entries in this test (32)
and to the memory paging size (4 kB for host memory, 64 kB for GPU memory).

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

6

 0

 500

 1000

 1500

 2000

 2500

 32 128 512 2K 8K 32K 128K 512K 2M

B
an

dw
id

th
 (

M
B

/s
)

Message size (32B-4MB)

APEnet+ Bandwidth (PCIe Gen2 X8, Link 30Gbps)

Host-destined with TLB
Host-destined without TLB
GPU-destined with TLB
GPU-destined without TLB

Figure 8. Bandwidth comparison in inter-node communication with (continuous lines) and
without TLB (dashed lines). Use of TLB allows to reach a maximum bandwith of ∼ 2240MB/s,
instead of ∼ 1520MB/s in the host case and ∼ 1380MB/s in the GPU case when the TLB
is disabled. The performance penalty for host-bound message size larger than 128 kB can be
overcome by building a larger TLB.

4. Conclusion
APEnet+ is our custom Network Interface that can be used to implement high performance,
low latency multidimensional toroidal networks for HPC clusters. A custom NIC for the QUonG
cluster would have been impossibly lengthy and costly to build without the resources offered
by FPGAs, which allow a tighter design cycle (prototyping, benchmarking and re-engineering
for faster logic or bug fixes) and the fast development of a more reliable product. In this paper
we described a couple of the iteration on this design cycle, that definitely helped to make the
APEnet+ card the first P2P-enabled non-NVIDIA device, guaranteeing off-board GPU-to-GPU
data transfers with with unprecedented low latency performances.

At the moment we are working to accommodate in our design the new features of next-gen
FPGA: the all-round improvement coming from the 28 nm technology push, a PCIe Gen3
interface with upgraded encoding (from 8b/10b to 128b/130b) for doubled host bandwidth,
acceleration from 8.5 Gb/s to 14.1 Gb/s for the transceivers, a more performing µC and an
embedded 10GbE interface. While the 10GbE interface is mostly of interest for the evolution
of the NaNet board [4], the resulting increased throughput will greatly benefit a new revision of
the APEnet+ card, together with more resources to investigate application-specific acceleration
methods or routing strategies.

Acknowledgments
This work was partially supported by the EU Framework Programme 7 project EURETILE
under grant number 247846.

References
[1] http://www.top500.org

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

7

[2] Ammendola R, Biagioni A, Frezza O, Lo Cicero F, Lonardo A, Paolucci P.S, Rossetti D, Simula F, Tosoratto
L and P Vicini 2012 J. Phys. Conf. Ser. 396 042059

[3] Lonardo A et al. ”Building a Low-Latency Real-time GPU-based stream processing system”, http://on-
demand.gputechconf.com/gtc/2013/presentations/S3286-Low-Latency-RT-Stream-Processing-System.pdf

[4] Lamanna G et al. 2013 to appear in Proceedings of 15th International Workshop on Advanced Computing and
Analysis techniques in Physics (ACAT)

[5] Ammendola R, Biagioni A, Frezza O, Lo Cicero F, Lonardo A, Paolucci P S, Rossetti D, Simula F, Tosoratto L
and Vicini P 2011 Application Accelerators in High-Performance Computing (SAAHPC), 2011 Symposium
113−122

[6] Ammendola R, Bernaschi M, Biagioni A, Bisson M, Fatica M, Frezza O, Lo Cicero F, Lonardo A, Mastrostefano
E, Paolucci P S, Rossetti D, Simula F, Tosoratto L and Vicini P 2013 to appear in Proceedings of 2013
IEEE International Symposium on Parallel and Distributed Processing Workshops (IPDPSW)

[7] Hanawa T, Kodama Y, Boku T and M Sato 2013 ”Interconnection network for tightly coupled accelerators
architecture”, in 2013 IEEE 21st Annual Symposium on High-Performance Interconnects (HOTI), San
Jose, CA, U.S.A. 79−82

[8] Bittner R, Ruf E and Forin A 2013 Cluster Computing 1−10 ISSN 138−7857
(http://dx.doi.org/10.1007/s10586-013-0280-9)

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012013 doi:10.1088/1742-6596/523/1/012013

8

