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Zero-trade-off multiparameter quantum estimation
via simultaneously saturating multiple

Heisenberg uncertainty relations
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Quantum estimation of a single parameter has been studied extensively. Practical applications, however, typically
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involve multiple parameters, for which the ultimate precision is much less understood. Here, by relating the pre-
cision limit directly to the Heisenberg uncertainty relation, we show that to achieve the highest precisions for
multiple parameters at the same time requires the saturation of multiple Heisenberg uncertainty relations simul-
taneously. Guided by this insight, we experimentally demonstrate an optimally controlled multipass scheme, which
saturates three Heisenberg uncertainty relations simultaneously and achieves the highest precisions for the esti-
mation of all three parameters in SU(2) operators. With eight controls, we achieve a 13.27-dB improvement in
terms of the variance (6.63 dB for the SD) over the classical scheme with the same loss. As an experiment demon-
strating the simultaneous achievement of the ultimate precisions for multiple parameters, our work marks an
important step in multiparameter quantum metrology with wide implications.

INTRODUCTION

High-precision measurement and estimation is one of the main
driving forces for science and technology. Quantum metrology,
which uses quantum mechanical effects such as superposition and
entanglement, promises higher precisions than the classical scheme.
A widely used tool that characterizes the ultimate precision in
quantum metrology is the quantum Cramér-Rao bound, a general-
ization of the Cramér-Rao bound in the classical estimation (1-11).
The symmetric logarithm operator (SLD, denoted as L,), which is
the solution to the equation ai: = %(prx + pxLy) with x as the un-
known parameter, plays a particular important role in the quantum
Cramér-Rao bound. Not only can the SLD be used to obtain the
quantum Fisher information as F = Tr(pri), which is a central
quantity in the quantum Cramér-Rao bound, but the SLD can also
be used to identify the optimal measurement as the projective mea-
surement on the eigen-spaces of the SLD (I).

Such characterization of the precision, however, lacks a direct
physical picture. A more fundamental tool related to the ultimate
precision is the Heisenberg uncertainty relation (3, 12), which is also
more physical. The role of the uncertainty relation in quantum me-
trology, however, has only been investigated in the single-parameter
quantum estimation (3). For multiparameter quantum estimation
(13-31), multiple uncertainty relations are involved. The interplay
among multiple uncertainty relations, however, remains a largely
unexplored territory. One motivation of this study is to characterize
the precisions of multiple parameters from the uncertainty princi-
ple, which can, in turn, shed light on the study of the uncertainty
relations and cross-fertilize both fields. The central motivation of

CAS Key Laboratory of Quantum Information, University of Science and Technology
of China, Hefei 230026, P. R. China. 2CAS Center For Excellence in Quantum Infor-
mation and Quantum Physics, University of Science and Technology of China, Hefei
230026, P. R. China. *Department of Mechanical and Automation Engineering, The
Chinese University of Hong Kong, Shatin, Hong Kong.

*These authors contributed equally to this work.

tCorresponding author. Email: hdyuan@mae.cuhk.edu.hk (H.Y.); gyxiang@ustc.
edu.cn (G.-Y.X)

Hou etal., Sci. Adv. 2021; 7 : eabd2986 1 January 2021

this study, however, is experimental. While the theory of quantum
metrology has been developed toward more complex scenarios in-
volving multiple parameters (13-25), the experimental studies are still
largely on the estimation of a single parameter (6-10, 32). There are
only a few experiments on multiparameter estimation (26-31, 33-36),
and these previous experiments cannot achieve the highest preci-
sions for all parameters simultaneously. The improvements are al-
ways hampered by the trade-offs induced by the incompatibility of
the optimal protocols for the estimation of different parameters. Our
study provides the first experimental demonstration of an optimally
controlled multiparameter quantum estimation that achieves the
highest precisions for all parameters simultaneously.

RESULTS
Connecting quantum metrology with Heisenberg
uncertainty relations
We study multiple Heisenberg uncertainty relations with the estima-
tion of the three parameters for operators in the special unitary group
SU(2). This is a fundamental problem in quantum metrology as it
arises frequently in many practical applications, such as quantum gy-
roscope, quantum reference frame alignments, and quantum sensing
(37, 38). The protocol has only been theoretically investigated using
the quantum Fisher information matrix and the quantum Cramér-Rao
bound (19), the statistical tools generalized from classical statistics.
A general operator in SU(2) can be written as U; = e ™*"°, with
n = (sin 0 cos ¢, sin 6 sin ¢, cos 8) and ¢ = (61,6,,03) as the Pauli
operators. The three parameters that characterize the operator are
o € [0, 7/2], 0 € [0, n] and ¢ € [0, 2n), which are the parameters to
be estimated in our dynamically controlled scheme as shown in
Fig. 1A. For each parameter, the Heisenberg uncertainty relation,
independent of the quantum Cramér-Rao bound, puts a fundamen-
tal limit on the achievable precision as (see Materials and Methods)

SUAHE) > i 1)
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Fig. 1. Control-enhanced sequential simultaneous measurement. (A) Sequential scheme with controls. The system qubit is maximally entangled with an ancilla and
operated by N copies of a multiparameter channel sequentially, with controls inserted in between. Projective measurements on the Bell basis are performed on the
system-ancilla to measure all parameters simultaneously. (B) Generators of one operator Us. The Bloch vectors of the three generators, ny with x € {0, 6, ¢}, are plotted,
where the length represents its maximal SD. The width in the other direction of the ellipsoid is the minimum SD for the estimation of the parameter. (C) Generators with
N copies of operators [N = 3 in (C)]. Without the controls, the length of the generators do not always increase linearly with N due to the noncommutativity. With the opti-
mally designed controls, the length of all three generators increase linearly with N, which minimizes the SD of the estimations for all three parameters. (D) SDs of the three
generators with respect to N. While the SD of the generator for o increases linearly with N even without control, the SD of the generators for 6 and ¢ increases linearly with

N only with the optimally designed control.

where x € {a, 8, ¢}, 8% is the variance of the estimator, and (A H2)
(P, Hi |W,)— (W, | He| ¥y)? is the variance of H, with Hy
i(9, U) Ul as the corresponding generator of the parameter (5, 39, 40).

To achieve the best precision for each parameter, one needs to
maximize the variance of the corresponding generator. In the Sup-
plementary Materials, we show that the variance of these generators
are upper bounded as

(AHY) < L(AHg) < sin’o,(AH§) < sin’asin®®  (2)
These upper bounds can be saturated separately with the cor-
responding optimal probe states.

The condition for an observable, denoted as O,, to achieve
the minimal uncertainty in inequality 1 is

(Hy=(Hy)) |Wx) = iy(Ox = (Ox)) |'¥x) (3)

where vy is an arbitrary real scalar (41). For each particular parame-
ter, by performing the projective measurement on the eigenvectors
of such observable, the minimum 8% can be achieved (see Materials
and Methods). Such measurement does not have to be the projec-
tive measurement on the eigen-spaces of Ly = 2( | 0, ¥ )(Px| + | ¥y
(0x¥x|), a widely used SLD for pure state (see the Supplementary
Materials).

If N copies of the operator can be used in each time, the archi-
tecture of arranging the N operators also needs to be optimized.
Besides the control-enhanced sequential scheme in Fig. 1, the N op-
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erators can also be arranged in parallel, as shown in Fig. 2, where the
probe states can be either separated or entangled. For all architec-
tures with N copies of the operator, the variance of the generator
HM is always upper bounded as (42)

(A[HY])?) = N*(aH;) (4)
which leads to the Heisenberg limit
22 > 1
NN D) ®

When the procedure is repeated n times, this gives the ulti-
mate lower bound on the minimal variance of the estimation,

8% > m. For a single parameter, this ultimate lower bound
n X

can always be saturated.

Simultaneous estimation of multiple parameters

with incompatible generators

The generators for the three parameters, denoted as H,, Hp, and Hy,
do not commute with each other. This causes some doubts on
the achievability of the ultimate precision for all three parameters
simultaneously, just as the Heisenberg’s uncertainty principle fun-
damentally constraints the joint measurement. However, the non-
commuting generators do not prohibit the simultaneous optimal
estimation of the three parameters. The minimal variances can be
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Fig. 2. Three other schemes. (A) Classical individual measurement. (B) Entangled individual measurement. (C) Entangled simultaneous measurement. In the two indi-
vidual measurements, (A) and (B), the N copies of the operator are evenly divided into three groups, and one group is used to estimate one parameter. The difference
between (A) and (B) is that (A) only uses separable states and separable measurements, while (B) allows entangled states and collective measurements in each group. The
entangled simultaneous measurement in (C) does not divide the N operators into three groups but uses them together to estimate all three parameters simultaneously.
The precision that can be achieved under these schemes are provided in the Supplementary Materials. None of them can achieve the best precision of all parameters

simultaneously.

achieved simultaneously if the optimal probe states and the optimal
architecture of arranging the N operators are the same, and the op-
timal measurements are compatible. These conditions are generally
very difficult to satisfy. For example, under the parallel scheme as in
Fig. 2C, where N qubits are prepared in a large entangled state with
each qubit going through one operator, it is not possible to achieve
the minimal variance for all three parameters simultaneously (17, 18).
However, these conditions can be satisfied under the optimally con-
trolled sequential scheme.

Here, we experimentally implement the control-enhanced se-
quential scheme (19). In this scheme, the N operators, U, are ar-
ranged sequentially where additional controls, Uy, can be inserted
(see Fig. 1A). Under such scheme, the total evolution is given by
UY with U, = U.U,, and the generators of the parameters can be
obtained as

HY - i(axUﬁi) (Uﬁi)T .y U&H)C<U’és>T

k=0

(6)

where x € {0, 6, o}. We note that the controls, which can be opti-
mized to improve the precision, play an essential role to saturate the
multiple uncertainty relations. Without the controls, the upper
bound in inequality 4 is, in general, not achievable. For example,
without the controls (which corresponds to setting U, = I), the vari-
ance of the generator for 8 cannot saturate the upper bound in in-
equality 4 since U; do not commute with He. This is illustrated in
Fig. 1 (C and D). However, if additional controls are available, one
can use proper controls to make U, commute with H,, then from
Eq. 6, it is easy to see that H™ = NH,, the bound in inequality 4 is
then saturated. To simultaneously achieve the minimal variance of
all three parameters, the same control needs to work for all three
parameters, i.e., the control should make U, commute with all three
generators H,, Hp, and H, s1mu1taneously Such control actually
exists. Specifically, we can choose U, = US, in this case Uy = 1,
which commutes with all generators. However, as the parameters
are not known a priori, this control can only be implemented
adaptively as Ul(@,0,8) with 0,8,$ as the estimators obtained
from previous data. In the asymptotical limit, the upper bound in
inequality 4 can be saturated simultaneously for all three parame-
ters with noncommuting generators. In addition, with an ancillary
qubit, the optimal probe state for each parameter can all be taken as
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the maximally entangled state, and the optimal O, satisfying Eq. 3
for different parameters is compatible (see the Supplementary Ma-
terials). The ultimate precision of all three parameters can thus be
achieved simultaneously without any trade-off.

Experimental results

We design an experiment to achieve the highest precision simulta-
neously for all three parameters of SU(2) operators. The experimen-
tal setup, as shown in Fig. 3, consists of three modules: preparing
the optimal probe state, implementing the optimal control, and per-
forming the optimal measurement (see Materials and Methods for
experimental details). The probe state is first prepared as the maxi-
mally entangled state, ( | H,up) + | V,down)); here, one qubit is
encoded in the polarlzatlon degree of the photon, which uses the
horizontal (H) and vertical (V) polarization as the basis, and the
other qubit is encoded in the path degree of the photon, which uses
the up and down path as the basis. The polarization qubit then goes
through the unknown operator, U;, and the control, U, sequentlally for
N times (7, 10, 32), where the control is designed as U, = U @, 0, )
and updated adaptively with the accumulation of the measurement
data. A projective measurement on the common eigenvectors of
three commuting observables, 630,, 603, and 6,01, which are optimal
for the estimation of 0, 6, and ¢, respectively (see the Supplementary
Materials), is then performed.

We implement two sets of experiments. In the first set of exper-
iments, the parameters are assumed to be within a small neighbor-
hood of known values, and the adaptive controls are designed with
this prior information. A unitary operator is considered with o = 7
and® = ¢ = % (the Supplementary Materials contains the result of
another unitary operator). As shown in Fig. 4, the precision achieved
in the experiment (green dots) is almost the same as the theoretical
optimal precision of the control-enhanced sequential scheme (bot-
tom solid line) for all three parameters (the differences between the
experimental results and the optimal theoretical precision are listed
quantitatively in table S1). Compared to the classical scheme, as
in Fig. 2A, the experimentally achieved precision of the control-
enhanced scheme at N = 8 has a 13.8-dB improvement in terms of
the variance (6.9-dB improvement in terms of the SD). Compared
to the highest precision that can be achieved under the parallel
scheme with entangled probe states, the control-enhanced scheme
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Fig. 3. Experimental setup. There are three modules in the experiment: state preparation, evolution, and measurement. The state preparation prepares probe-ancilla
entangled state in the degree of polarization and path of a heralded single photon. In the evolution module, the probe qubit is operated by the unknown Us and the
adaptive control U, for N times (N = 4 in the figure, and N = 8 is the largest in our experiment). In the measurement module, complete Bell measurements are performed
on the probe and ancilla to extract information of Us;. Key components: polarization beam splitter (PBS), HWP, QWP, beam displacer (BD), and BBO.
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Fig. 4. Experimental results of the precision under the control-enhanced sequential scheme. (A to C) Experimental results for the three parametersina Us witha = %

n
3

and 6 = ¢ = Z. The results are plotted together with the theoretical limit that can be achieved under the classical individual scheme (solid line named as “classical
individual”), the entangled individual scheme (solid line named as “entangled individual”), and the entangled simultaneous estimation (solid line named as “entangled
simultaneous”) for comparison. The theoretical solid line (named as “control-enhanced sequential”) of the control-enhanced sequential scheme for each parameter also
represents the best precision that can be achieved in the single-parameter estimation. For the experiments with the optimal controls, each measurement is repeated n =
1000 times to get one estimation. The process is then repeated 1000 times to get 1000 estimations from which the SD of the estimation is obtained. For the experiments
with the adaptive controls, each measurement is repeated 250 times during each step of the four adaptive procedures, an estimation is obtained after 1000 measure-
ments (the estimation is obtained with all measurement results obtained during the four steps). The four-step adaptive process is then similarly repeated for 1000 times
to get 1000 estimation, from which we obtain the SD of the estimation. The analysis of the error bars is given in Materials and Methods.

at N = 8 has a 3.8-dB improvement in terms of the variance (1.9-dB
improvement in terms of the SD). For the given N, this is also the
best one can hope to achieve for the simultaneous estimations of all
three parameters, as the precision of each parameter has reached
the ultimate limit. There are zero trade-offs among the precisions of
different parameters.

The improvement above is based on the detected photons. If we
take the loss into consideration, which includes the transmission
efficiency, ; (in the experiment, n; = 0.984 for one loop), and the
collection efficiency, n;, (in the experiment, 1, = 0.48), the im-
provement is 13.27 dB (in terms of the variance) compared with the
classical scheme that uses the optical components of the same trans-
mission and detection efficiency. The improvement is 10.05 dB if
we compare with the lossless classical scheme (see the Supplemen-
tary Materials for the details).

In the second set of experiments, we do not assume the parame-
ters are within small neighborhoods of known values. We adapt-
ively update the controls after each 250 experiments and carry out
1000 experiments in each round. The controls are randomly chosen
in the first 250 experiments and then updated on the basis of the
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measurement data. In each adaptive step, we use the maximum like-
lihood to update the estimation, which maximizes the posterior
probability on the basis of all previous data. As shown in Fig. 4, the
experiment results (diamonds) are close to the theoretical optimal
values for all three parameters in the cases of N = 1,2,3,4,6, which
indicates that the controls are already close to the optimal one after
four steps of adaptation. In the case of N = 8, the SD of the experi-
ment is slightly larger than the theoretical optimal value due to sys-
tematic errors but still outperforms the theoretical best value of the
parallel scheme with the optimal entangled probe state (approxi-
mately 1.2-dB improvement in experiment, which is about 12.4 dB
compared to the shot noise limit).

We also experimentally test the robustness of the scheme when
the estimated value of the parameters, which are used to design the
controls, is away from the true value. The robustness is tested
against the deviation of each parameter, respectively. When N in-
creases, the measurement scheme becomes more sensitive as ex-
pected, and its robustness against imperfect controls also decreases.
Here, we show the experimental robustness of the most vulnerable
case at N = 8 in Fig. 5. When there are deviations between the true

40f7

G202 ‘6T A2 Al uo BI0"30UB 105" MMM/:SANL WO} PaPE0 JUMOC]



SCIENCE ADVANCES | RESEARCH ARTICLE

A ; B
1
10° ! 10°
< I £
< . <
X 1 X
2 1
£107! % 51 3107
iy %Ii#.;% =,
! A~
1 = %
1072 . 1072
0.5 1 15
o

Fig. 5. Robustness of the experimental scheme with imperfect controls for N = 8. (A to C) Robustness for three parameters o, 6, and ¢. The eight controls are designed
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=g indicated by the green lines. The true values of o changes from 0 to %n, 6 changes from 0 to w, and ¢ changes from 0 to 2x. Measurements

for each dot are repeated with n = 1000 times to give an estimate, and this process is repeated 30 times to measure the SD of the estimate. The plotted error bars are

analyzed in Materials and Methods.

values of 0, 6, and ¢ and the values used in the control, the uncer-
tainties of all three parameters are still close to their minimum (the
intersection with the vertical dotted line, where the true value i is
equal to the value used in the control, which are taken as & = 3 6 =

and § = %)- Even at N = 8, the experimental results show a hlgh
level of robustness against the imperfections in the controls caused
by the deviation between the estimated value and the true value.
This robustness is inherent for the optimal control, as at the optimal
point, the first-order derivative, which quantifies the effect of the
deviation, is zero.

DISCUSSION

We showed that the zero-trade-off multiparameter quantum esti-
mation is fundamentally equivalent to the saturation of multiple
Heisenberg uncertainty relations simultaneously, which can be
achieved if the same optimal probe state, the same optimal control,
and commuting optimal observables can be identified. Guided by
these conditions, we experimentally realized a scalable optimally
controlled sequential scheme, which, for the first time, achieves the
highest precisions with zero trade-off for the estimation of all three
parameters in SU(2) operators. This opens the door for the explora-
tion of multiple uncertainty relations in quantum metrology, which
is also expected to play an important role in various other fields. We
note that in our experiment, the control-enhanced scheme is demon-
strated with single photons, which, however, is not a prerequisite.
The scheme can also be implemented with more bright laser sources
(43) as the photons are not required to be entangled with each other
in the control-enhanced sequential scheme. This is different from
the entangled parallel scheme where the brightness of the source
decays quickly with the number of entangled photons, which limits
the entangled parallel scheme to applications with delicate samples
(33, 44-46) that are sensitive to deleterious thermal effects (47).

MATERIALS AND METHODS

Parameter-based uncertainty relation from the general
Heisenberg uncertainty principle

The precision limit is fundamentally related to the Heisenberg
uncertainty principle (3, 40). As given an observable Oy on the
state | W,), the variance of the estimation is

5% = — 20

ox

Hou etal., Sci. Adv. 2021; 7 : eabd2986 1 January 2021

where AO, = (A Oﬁ), (Oy) = (x| Ox| ¥,), and it is easy to get
9( Oy
) (L [Ho Ol | 92)
From the Heisenberg uncertainty relation,
2 2 1 2
(AO)AH:) > 2([HwO:]) )

we can immediately get §2*(AH2) > e 1 Tt needs to be emphasized
that this parameter-based uncertainty relation for characterizing
estimation precision is completely derived using Heisenberg’s un-
certainty principle without using any results from statistical inference,
which is not only more fundamental but also more accessible to the
general physics community. The optimal observable that achieves
the minimal uncertainty in Eq. 7 should satisfy (H, — (Hy)) | ¥x) =
IY(Ox - <Ox>) | lPx>

Probe state preparation

To prepare the probe state, 1-mm-long B-barium borate (BBO)
crystal, cut for type I phase-matched spontaneous parametric down-
conversion (SPDC) process, is pumped by a 40-mW H-polarized
continuous wave beam at 404 nm to generate a heralded single
photon at the rate of 6000 per second (48), and then, a combination
of half-wave plate (HWP) and quarter-wave plate (QWP) steers
the photon to the state \/—_( | H) + | V)). After passing through the
beam displacer, the probe in the polarization degree of the photon
is maximally entangled with the path degree of the photon as \15
(1 H,up) + | V,down)).

Realization of the N controls

In the module of the evolution, as shown in Fig. 3, the operator Ui is
implemented by a combination of two QWPs and an HWP, which
is capable of generating arbitrary unitary operation on the polariza-
tion qubit. The control is realized by another set of two QWPs and
an HWP, which are installed on three electric-motorized stages and
can be rotated by feedback signals. Multiple passes of the qubit are
realized by a cavity loop made of four mirrors. By carefully con-
trolling the position of one mirror, we can control the number of
passes (N) from 1 to 8 deterministically. For N = 8, there are eight
beams in the up and down plane, which makes 16 beams in total,
and the separation between two adjacent beams in the same layer is
about 2.3 mm, and the separation between the adjacent beams in
the up and down layers is about 2.0 mm. In the current setup, the
main obstacle to increase N is the geometrical size of the optical
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devices [see detailed discussion in the supplementary materials of
(32)]. The scalability can be improved by putting the loop into a
cavity with a low-loss polarization-independent optical switch (49).

Implementation of the measurement

The optimal measurement is the projective measurement on the
common eigenvectors of three commuting observables, 636,, 6103,
and 6,61, which can be realized by the complete Bell measurement
with a local operation, e’55(°*%*%_ acting on the polarization qu-
bit. This is because the Bell states are the common eigenvectors of
0303, 0203, and 6,0}, which can be transferred to the optimal ob-
servables via the local operation (see the Supplementary Materials
for details). Such measurement can be realized deterministically
without any postselection. The quality of the experimentally real-
ized Bell measurements is quantified by the interference visibility
when the input states are taken as the Bell states. With N up to 8, the
interference visibility is as high as 0.998.

Estimation algorithm and error analysis

We use the maximum likelihood to estimate the three parameters.
To experimentally obtain the SD of the estimation, we repeat the
process K times and obtain K estimations. The SD for the estima-
tion of each parameter, 6%, is then obtained from the distribution of
the K realizations. The error for this experimentally obtained 8%,

8%

2(K-1)
(50). The error bar in Figs. 4 and 5 are drawn according to this A(8X)
obtained with K = 1000 and 30, respectively.

which we denote as A(8%), is well approximated by A(8%) =

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/1/eabd2986/DC1

REFERENCES AND NOTES

1. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, 1976).

2. A.S.Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, 1982).

3. S.L.Braunstein, C. M. Caves, G. J. Milburn, Generalized uncertainty relations: Theory,
examples, and Lorentz invariance. Ann. Phys. 247, 135-173 (1996).

4. V.Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: Beating the
standard quantum limit. Science 306, 1330-1336 (2004).

5. V.Giovannetti, S. Lloyd, L. Maccone, Quantum metrology. Phys. Rev. Lett. 96, 010401
(2006).

6. T.Nagata, R. Okamoto, J. L. O'Brien, K. Sasaki, S. Takeuchi, Beating the standard quantum
limit with four-entangled photons. Science 316, 726-729 (2007).

7. B.L.Higgins, D. W.Berry, S. D. Bartlett, H. M. Wiseman, G. J. Pryde, Entanglement-free
Heisenberg-limited phase estimation. Nature 450, 393-396 (2007).

8. G.Y.Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, G. J. Pryde, Entanglement-enhanced
measurement of a completely unknown optical phase. Nat. Photonics 5, 43-47 (2011).

9. S.Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam,
G. J. Pryde, Unconditional violation of the shot-noise limit in photonic quantum
metrology. Nat. Photonics 11,700-703 (2017).

10. S.Daryanoosh, S. Slussarenko, D. W. Berry, H. M. Wiseman, G. J. Pryde, Experimental
optical phase measurement approaching the exact heisenberg limit. Nat. Commun. 9,
4606 (2018).

11. H.Yuan, C-H. F. Fung, Quantum parameter estimation with general dynamics.

NPJ Quantum Inf. 3,14 (2017).

12. W.Heisenberg, Uber den anschaulichen inhalt der quantentheoretischen kinematik und
mechanik. Z. Phys. 43,172-198 (1927).

13. J. Kahn, Fast rate estimation of a unitary operation in SU(d). Phys. Rev. A 75, 022326
(2007).

14. H.Imai, A. Fujiwara, Geometry of optimal estimation scheme for SU (D) channels.

J. Phys. A Math. Theor. 40, 4391-4400 (2007).

15. P.C.Humphreys, M. Barbieri, A. Datta, |. A. Walmsley, Quantum enhanced multiple phase

estimation. Phys. Rev. Lett. 111, 070403 (2013).

Hou etal., Sci. Adv. 2021; 7 : eabd2986 1 January 2021

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

. T.Baumgratz, A. Datta, Quantum enhanced estimation of a multidimensional field.

Phys. Rev. Lett. 116, 030801 (2016).

. M. Szczykulska, T. Baumgratz, A. Datta, Multi-parameter quantum metrology. Adv. Phys. X

1,621-639 (2016).

. Z.Hou, Z. Zhang, G.-Y. Xiang, C.-F. Li, G.-C. Guo, H. Chen, L. Liu, H. Yuan, Minimal tradeoff

and ultimate precision limit of multiparameter quantum magnetometry under the
parallel scheme. Phys. Rev. Lett. 125, 020501 (2020).

. H.Yuan, Sequential feedback scheme outperforms the parallel scheme for hamiltonian

parameter estimation. Phys. Rev. Lett. 117, 160801 (2016).

Y. Chen, H. Yuan, Maximal quantum fisher information matrix. New J. Phys. 19, 063023
(2017).

S. Ragy, M. Jarzyna, R. Demkowicz-Dobrzanski, Compatibility in multiparameter quantum
metrology. Phys. Rev. A 94, 052108 (2016).

M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S. Kolthammer, M. S. Kim, A. Datta,
M. Barbieri, I. A. Walmsley, Joint estimation of phase and phase diffusion for quantum
metrology. Nat. Commun. 5, 3532 (2014).

E. Bagan, M. A. Ballester, R. D. Gill, R. Muioz Tapia, O. Romero-Isart, Separable
measurement estimation of density matrices and its fidelity gap with collective protocols.
Phys. Rev. Lett. 97, 130501 (2006).

N. Li, C. Ferrie, J. A. Gross, A. Kalev, C. M. Caves, Fisher-symmetric informationally
complete measurements for pure states. Phys. Rev. Lett. 116, 180402 (2016).

H. Zhu, M. Hayashi, Universally fisher-symmetric informationally complete
measurements. Phys. Rev. Lett. 120, 030404 (2018).

X.-Q. Zhou, H. Cable, R. Whittaker, P. Shadbolt, J. L. O'Brien, J. C. Matthews,
Quantum-enhanced tomography of unitary processes. Optica 2, 510-516 (2015).

M. A. Ciampini, N. Spagnolo, C. Vitelli, L. Pezze, A. Smerzi, F. Sciarrino,
Quantum-enhanced multiparameter estimation in multiarm interferometers. Sci. Rep. 6,
28881 (2016).

E. Roccia, I. Gianani, L. Mancino, M. Sbroscia, F. Somma, M. G. Genoni, M. Barbieri,
Entangling measurements for multiparameter estimation with two qubits. Quantum Sci.
Technol. 3,01LT01 (2018).

Z.Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D. Wu, G.-Y. Xiang, C.-F. Li, G.-C. Guo,
Deterministic realization of collective measurements via photonic quantum walks.

Nat. Commun. 9, 1414 (2018).

E. Polino, M. Riva, M. Valeri, R. Silvestri, G. Corrielli, A. Crespi, N. Spagnolo, R. Osellame,

F. Sciarrino, Experimental multiphase estimation on a chip. Optica 6, 288-295 (2019).
J.-F.Tang, Z. Hou, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Experimental optimal
orienteering via parallel and antiparallel spins. Phys. Rev. Lett. 124, 060502 (2020).
Z.Hou, R-J. Wang, J.-F. Tang, H. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Control-enhanced
sequential scheme for general quantum parameter estimation at the heisenberg limit.
Phys. Rev. Lett. 123, 040501 (2019).

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W. P. Bowen, Biological
measurement beyond the quantum limit. Nat. Photonics 7, 229-233 (2013).

Y. Israel, S. Rosen, Y. Silberberg, Supersensitive polarization microscopy using noon
states of light. Phys. Rev. Lett. 112, 103604 (2014).

Z.Hou, H. Zhu, G--Y. Xiang, C.-F. Li, G.-C. Guo, Achieving quantum precision limit

in adaptive qubit state tomography. npj Quantum Inf. 2, 16001 (2016).

P. M. Birchall, E. J. Allen, T. M. Stace, J. L. O'Brien, J. C. F. Matthews, H. Cable, Quantum
optical metrology of correlated phase and loss. Phys. Rev. Lett. 124, 140501 (2020).

S.D. Bartlett, T. Rudolph, R. W. Spekkens, Reference frames, superselection rules,

and quantum information. Rev. Mod. Phys. 79, 555 (2007).

C. L. Degen, F. Reinhard, P. Cappellaro, Quantum sensing. Rev. Mod. Phys. 89, 035002
(2017).

D. Brody, E.-M. Graefe, Information geometry of complex hamiltonians and exceptional
points. Entropy 15, 3361-3378 (2013).

S.Pang, T. A. Brun, Quantum metrology for a general hamiltonian parameter. Phys. Rev. A
90,022117 (2014).

D. J. Griffiths, D. F. Schroeter, Introduction to Quantum Mechanics (Cambridge Univ. Press,
2018).

H. Yuan, C.-H. F. Fung, Fidelity and fisher information on quantum channels. New J. Phys.
19, 113039 (2017).

T. Juffmann, B. B. Klopfer, T. L. Frankort, P. Haslinger, M. A. Kasevich, Multi-pass
microscopy. Nat. Commun. 7, 12858 (2016).

. P.M. Carlton, J. Boulanger, C. Kervrann, J.-B. Sibarita, J. Salamero, S. Gordon-Messer,

D. Bressan, J. E. Haber, S. Haase, L. Shao, L. Winoto, A. Matsuda, P. Kner, S. Uzawa,

M. Gustafsson, Z. Kam, D. A. Agard, J. W. Sedat, Fast live simultaneous multiwavelength
four-dimensional optical microscopy. Proc. Natl. Acad. Sci. U.S.A. 107, 16016-16022 (2010).
M. A. Taylor, W. P. Bowen, Quantum metrology and its application in biology. Phys. Rep.
615, 1-59 (2016).

V. Cimini, M. Mellini, G. Rampioni, M. Sbroscia, L. Leoni, M. Barbieri, |. Gianani, Adaptive
tracking of enzymatic reactions with quantum light. Opt. Express 27, 35245-35256 (2019).

6 of 7

G202 ‘6T A2 Al uo BI0"30UB 105" MMM/:SANL WO} PaPE0 JUMOC]


http://advances.sciencemag.org/cgi/content/full/7/1/eabd2986/DC1
http://advances.sciencemag.org/cgi/content/full/7/1/eabd2986/DC1

SCIENCE ADVANCES | RESEARCH ARTICLE

47. The LIGO Scientific Collaboration, A gravitational wave observatory operating beyond
the quantum shot-noise limit. Nat. Phys. 7, 962-965 (2011).

48. P.G. Kwiat, E. Waks, A. G. White, |. Appelbaum, P. H. Eberhard, Ultrabright source of
polarization-entangled photons. Phys. Rev. A 60, R773 (1999).

49. J.-F.Tang, Z.Hou, Q.-F. Xu, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Polarization-independent
coherent spatial-temporal interface with low loss. Phys. Rev. Appl. 12, 064058 (2019).

50. S.Ahn, J. A. Fessler, Standard Errors of Mean, Variance, and Standard Deviation Estimators
(EECS Department, The University of Michigan, 2003), pp. 1-2.

Acknowledgments

Funding: The work at USTC is supported by the National Natural Science Foundation of China
(grant nos. 11574291, 11774334, 61905234, and 11974335), the National Key Research and
Development Program of China (nos. 2017YFA0304100 and 2018YFA0306400), the Key
Research Program of Frontier Sciences, CAS (no. QYZDY-SSW-SLH003), the Fundamental
Research Funds for the Central Universities (no. WK2470000026), and China Postdoctoral
Science Foundation (grant nos. 2016 M602012 and 2018 T110618). The work at CUHK is
supported by RGC of Hong Kong (GRF no. 14308019). Author contributions: G.-Y.X. and H.Y.
proposed the project. G.-Y.X. conceived and supervised the experiment. H.Y., Z.H., and H.C.

Hou etal., Sci. Adv. 2021; 7 : eabd2986 1 January 2021

developed the theoretical framework. ZH., J.-F.T. and G.-Y.X. designed the experiment and the
measurement apparatus. J.-F.T. constructed the setup, performed the experiment, and
collected the data with assistance from Z.H. and G.-Y.X. J-F.T,, ZH., H.Y,, and G.-Y.X. performed
numerical simulations and analyzed the experimental data with assistance from C.-F.L. and
G.-C.G.ZH, HY, G-YX, HC, and J-F.T. developed the interpretation from uncertainty
principle and wrote the manuscript. Competing interests: The authors declare that they have
no competing interests. Data and materials availability: All data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary Materials.
Additional data related to this paper may be requested from the authors.

Submitted 12 June 2020
Accepted 6 November 2020
Published 1 January 2021
10.1126/sciadv.abd2986

Citation: Z. Hou, J.-F. Tang, H. Chen, H. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Zero-trade-off

multiparameter quantum estimation via simultaneously saturating multiple Heisenberg
uncertainty relations. Sci. Adv. 7, eabd2986 (2021).

7of 7

G202 ‘6T A2 Al uo BI0"30UB 105" MMM/:SANL WO} PaPE0 JUMOC]



