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Abstract

Conformal symmetry is an essential tool for the study of string theory, critical phenomena
and interacting quantum field theories, among other examples. In this thesis, we focus
on conformal techniques for two theories: Type IIB superstring theory on an AdSs x S°
background, and A = 2 theories in four dimensions.

On the N = 2 theory, we will give a first step towards the computation of superconformal
blocks for mixed operators. For chiral and real half-BPS operators, their superconformal
block expansion can be achieved using chiral or harmonics superspace techniques, respec-
tively. For more general multiplets, no general tool is available. A first step towards this goal
is to obtain the OPE for those general multiplets. In this thesis we show how to compute
mixed OPEs between an N = 2 stress-tensor multiplet, a chiral multiplet and a flavor current
multiplet using superspace techniques. A general bound for the central charge of interacting
theories will be obtained using the N = 2 stress-tensor multiplet OPE.

On the string theory side, we propose a systematic way to compute the logarithmic
divergences of composite operators in the pure spinor description of the AdSs x S® superstring.
The computations of these divergences can be summarized in terms of a dilatation operator
acting on the local operators. We check our results with some important composite operators

of the formalism. Finally, we construct the pure spinor AdS string using supertwistors.
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Chapter 1

Introduction

1.1 Conformal Symmetry

Conformal symmetry plays a major role in several areas of modern physics: it characterises
phase transitions at critical points, such as liquid-vapour and superfluidity phase transitions;
it is the full symmetry of the worldsheet generated by a relativistic string; it is also the
symmetry of QCD at high energy and it provides an extension of the Poincaré algebra without
conflicting with the Coleman-Mandula theorem, just to mention a few examples. It is this
last property that makes conformal symmetry so appealing for the high energy physicist:
as a general rule, the more symmetry a theory possesses, the simpler it is [I]. Thus, when
Poincaré symmetry alone is not enough to solve a relativistic quantum field theory (QFT),
allowing a larger symmetry group than the Poincaré group might be enough to solve the

theory.

Indeed, this is the case in two dimensions, where the conformal symmetry group is de-
scribed by an infinite dimensional Virasoro algebra [2]. This infinite amount of symmetry
was a key point to completely solve and classify a family of two dimensional conformal field
theories (CFTs) called two dimensional minimal models [3]. A key idea behind the solu-

tion of those models was the conformal bootstrap [4, 5l 6]. The conformal bootstrap makes

1



2 CHAPTER 1. INTRODUCTION

use of the full conformal symmetry and consistency conditions, such as unitarityﬂ crossing
symmetry and closure of the operator product expansion (OPE)E| to constrain the theory.
In dimensions higher than two, the conformal group is finite dimensionalﬂ Therefore, it is
natural to ask whether the conformal symmetry is strong enough to solve a CFT in higher

dimensions.

Recently, a huge amount of progress in this direction began since the work of [9] where,
instead of trying to solve a CFT making use of its symmetry, the question the authors
of [9] tried to answer was which conditions are consistent in the CFT. Imposing crossing
symmetry, unitarity and closure of the OPE, they were able to numerically constrain the
possible values of the three-point function coefficients. For a review see [8, 10, 11]. As it
was latter discovered, such consistency conditions severely constrain the theory, imposing
numerical bounds not only to the three-point function coefficient, but also to the conformal

dimension of the possible operators in the CFT [12], 13} 14} [15] 16}, [17].

There is another way to enlarge the Poincaré group: by extending its Lie algebra to
a graded Lie algebra, the super-Poincaré algebra. In four dimensions, the simplest super-
Poincaré algebra consists on the usual Poincaré algebra plus one spinorial generator, which
generates supersymmetry (SUSY), a symmetry between fermionic and bosonic fields. It is
possible to introduce more than one SUSY generator. A theory with N different supercharges
is said to have an N-extended SUSY. The most symmetric theory in four dimensions which
only contains fields with spin no larger than one is N' = 4 Super Yang-Mills (SYM). This
theory is, at the same time, conformal. This is why it is known as a superconformal field
theory (SCFT). A remarkable conjecture relates the N' = 4 SYM theory, which does not

contain gravity (which is mediated by a field of spin two), with a Type IIB superstring

L Although there are many interesting non-unitarity models, such as effective theories, in this thesis we
will focus only on unitarity theories.

2This is a very important difference between a QFT and a CFT. Unlike QFTs, particles states cannot be
defined in a CFT. A two-particle state in a QFT is a non-local operators that can be written as the product
of two local (single particle) operators only locally. No such problem arises in a CFT, where the OPE is an
exact relation. For more on this issue, see [7].

3 Actually, the symmetry group of the conformal group in D dimensions, with D > 2 is the one corre-
sponding to D + 2 Poincaré symmetry group SO(D,2) [8].
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theory in ten dimensions living on a AdSs; x S 5E| target space [18]. This conjecture is known
as the AdS/CFT correspondence. This correspondence relates the strong (weak) coupling
limit of a string theory to the weak (strong) coupling limit of N =4 SYM. This is the reason
why it is called a duality. Other examples of dual theories are the Sine-Gordon, which is
dual to the Thirring model, the Ising model which is dual to itself and, type IIB superstring

is also dual to itself.

String theory started in the 60’s as a theory of Hadrons which was able to reproduce
the Veneziano amplitude from the scattering of four tachyong’} Instead of treating particles
as points in space-time, string theory works with one-dimensional objects (strings.) These
objects span a two-dimensional surface known as the worldsheet, in the same way as a
point particle spans a one dimensional world-line. This two dimensional theory is, as all
the theories discussed so far, a CFT. It was later discovered that string theory contains a
graviton in its spectrum [19], giving the first consistent model of quantum gravityf} the only
force missing in the standard model of particle physics. The standard model successfully
provides a unified framework for the electromagnetic, weak and strong interactions based
on quantum field theory. One of its landmarks is the prediction of the Higgs boson, which
was experimentally discovered in 2013. Despite all of its accomplishments, the Standard
Model fails to include gravity. During the middle of the ’80s, during a period dubbed The
First Superstring Revolution, it was realized that superstring theory could provide a unified
description of not only gravity, but of all particles and their interactions. Around ten years
latter, in a period called the Second Superstring Revolution, not only perturbative effects
were studied. S-Duality, T-Duality and Mirror symmetry started to play an important role,
and all the five superstring theories were related through several dualities [20]. It was also

discovered that string theory is a theory of not only strings, but also of extended objects of

4 AdS,, is the maximally symmetric n-dimensional space with negative curvature. It has the same amount
of symmetry as flat space (Minkowski) and dS,, space (which has positive curvature.) S™ is the sphere in
n + 1 dimensions.

5Latter, QCD was established as the correct theory for Hadrons. Despite of its success, it is still not
known how the Regge trajectories emerge from QCD at long distances.

680 far, string theory is still the only consistent theory of quantum gravity.
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various dimensions, known as branes [2I]. One of the most important ideas of this period
is the already mentioned AdS/CFT correspondence between a string theory which contains
gravity, to N/ = 4 SYM, a CFT with no gravity, living in the boundary of the AdS5 space.
Originally, this conjecture relates the weak (strong) coupling limit of a stack of N D3-branes
which corresponds to a supergravity solution of an AdSs x S® space-time with the strong
(weak) coupling limit of a SU(N) N =4 SYM living in the boundary of the AdSs space for
large M} This correspondence has been extended to several supergravity backgrounds and
to different CFT. For a recent review, see [23]. This conjecture has attracted much attention
and inspired thousands of scientific articles since its discovery. The main focus of this Ph.D.
thesis is the study of both side of the conjecture. Specifically, we will focus on a superstring
string theory with an AdSs x S® target space using the pure spinor formalism and N = 2

SCFTs, from a CFT point of view.

1.2 The String Side

As mentioned before, string theory is the more vivid candidate for quantum gravity. A
drawback of bosonic string theory is the existence of a tachyon, a particle with negative
(mass)?. When SUSY is introduced in the theory, this artefact is solved. There are two ways
to add SUSY in string theory: in its worldsheet or in its target space, both leading to a theory
with a ten dimensional target space. In the Ramond-Nevau-Schwarz (RNS) formulation of
string theory, SUSY is added in the worldsheet. This theory can be quantized in an explicitly
Lorentz covariant way, but consistency requires the use of the GSO projection, which avoids
the scattering between space-time bosons to be mediated by worldsheet fermions. After the
GSO projection is performed, a supersymmetryc spectrum also appears in the ten dimensional
space. Unfortunately, it is not known how to quantize the RNS string in the presence of

Ramond-Ramond fluxes, which are present in AdS backgrounds. In the Green-Schwarz (GS)

It has been known since the seventies that U(IN) gauge theories with large N reproduce the amplitudes
expected from string theory [22].
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formalism, on the other hand, SUSY is introduced in the ten dimensional target space.
Although this theory is explicitly covariant under space-time supersymmetry, it contains the
same spectrum as the RNS superstring and it does not need a GSO projection in order to be
consistent. Due to the mixing of first and second class constraints[] it is not known how to
quantize GS superstring in an explicitly Lorentz covariant way, and quantization is achieved
only in the light-cone gauge. This lack of covariant quantization in the GS superstring makes
harder the computation of amplitudes and there are no explicit computations beyond one

loop.

There is a third known prescription for superstring theory: the pure spinor string theory

[26]. In this theory there is a constrained spinor, A%, which satisfies the constraint
AN =0, (1.1)

where 77’5 are the ten-dimensional 16 x 16 Pauli matrices. (.1)) defines the pure spinor

condition. The OPE for the constraint of the ten dimensional superstring in flat space [27],

1
do = Pa + Vo 0T 0° + 572”‘/3 ’ymWH’B 0" 06", (1.2)
can be shown to be,
2 m
da(2) d5(0) ~ 7551 (2). (1.3)

This OPE can be obtained because in the pure spinor formalism, ™, 6%, p, are treated as a

free system. We can introduce the nilpotent BRST charge,

Q= ]f dz\d,,. (1.4)

8A proposal for quantization of such systems was made in [24} 25].
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The existence of the BRST chargeﬂ allows an explicitly Lorentz covariant quantization, unlike
in the case of GS string, and unlike the RNS string there is no need of a mechanism similar
to the GSO projection in order to obtain the tachyon free supersymmetric spectrum of the
theory. A covariant quantization allows us to compute N-point tree amplitudes [29], for
example. It is also possible to use the PS formalism to quantize other spaces where there
are Ramond-Ramond fluxes and/or the light-cone quantization is not allowed. Although
it is known that the massless spectrum of the superstring is the supergravity spectrum, a

covariant description of this spectrum in the AdSs x S® superstring is not known.

In order to see the complications arising in the AdSs x S° superstring, let us study the
bosonics string on a flat space-time target space. In the case of a flat space-time, the action

for a scalar field is,

1

Shue = 5 / Vit 606, (15)

where dVj, is the measure of the flat space volume. The corresponding EOM for this action

is given by the Klein-Gordon equation for a massless particle,
Lo =0, (1.6)
which admits a plane-wave solution,
Gfiat ~ exp (ik - x). (1.7)

This wave solutions is exactly the form of the tachyonic field of the bosonic string, which
is the lightest state of the bosonic string. Since p? is a Casimir operator in flat-space, it is
easy to find the energy of any state by aplying p?. Thus, it is easy to construct massless

states by just applying a,, OX*O0X" to exp (ik - x), because each pair of X* terms added to

9The flat space-time constraint was written for simplicity. For generic supergravity background of Type
IIB theories, the BRST charge can be constructed in a similar fashion [26] 28]



1.3. THE CFT SIDE 7

the tacyon field will raise the value of the energy of ¢ga¢ by two. The worldsheet conformal
weight restriction of the operator will impose conditions to k%, k* a,, and to a,,, and when
applying p?, we will be able to read off the mass of the stater_a]. The operator exp (ip - x) can
also be regarded as the responsible for the momentum transfer in the string interactions. In
the AdSs x S® case, things are more complicated. Although the action for a scalar field is
similar to Sg.¢, the solution to the EOM is more complicated than ¢g.;. A solution for the
scalar field on a AdS,, x S™ involves hypergeometric functions [30, 31]. A compact exact
solution can be found for the conformally flat space AdS,, x S™ [30], which we will discuss
in more detail in Chapter 3. Even if such simple expression exists, p? is no longer a Casimir
operator in this curved space. This brings two more complications. First, the energy of the
states can no longer be read from applying p? (in this case, the role of the energy is played
by the eigenvalue of the target-space dilatation operator.) This, in turn, implies that we
can no longer just apply an operator like 0X*0X”. Although we can, generally speaking,
find the proper constraints in order to obtain the proper worldsheet conformal weight, the
energy of such state cannot be easily computed. This is the main obstruction when trying
to construct the physical. The second complication arises when trying to study interactions

between strings, because there is no longer a notion for momentum transfer.

1.3 The CFT Side

The original AdS/CFT conjecture related a superstring theory with a N' =4 SYM theory.
The integrability of the latter theory has lead to a great amount of results, ultimately leading
to computation both at strong and weak coupling with great precision, for a review see [32].
However N = 4 SYM is not the only CFT dual to a superstring. There are also dualities for
M-theories on AdS; x S* with a six dimensional A" = (2,0) and on a AdS; x S” with a three
dimensional ABJM theory [33]. For F-theory there are four dimensional dual theories with
N =1,2 SUSY [34].

0The correct answer is already know, and the 9X* 0X" operator was suggested from that knowledge.
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As we mentioned before, the most symmetric theory in four dimensions is NV = 4 SYM.
This is the only theory with 16 supercharges. The next most supersymmetric theories have
N =2 sumerpsymmetry.[:f] Several interesting phenomena arise in N = 2 theories. For ex-
ample, they present concrete examples of S-duality, confinement and monopole condensation
[35, 36]. A remarkable structure of SU(2) N' = 2 theories are the Seiberg-Witten curves
[35, 136], which were latter generalized to other gauge groups in [37, B38]. Latter, a string
origin for those objects was found [34] by proving F-theory with D3-branes. In recent years
the number of N/ = 2 SCFTs has grown considerably [39]. This ample amount of theories
makes impractical the study of A/ = 2 SCFTs one by one. One attempt to study these
N = 2 theories is to classify them [40, 41]. Another option is to obtain information that can
be applied to all of them by using general arguments [42].

In the present thesis, we will develop methods that, we think, are the first step to construct
general conformal blocks for NV = 2 SCFTs. This is a very important step before carrying

out the bootstrap program for aforementioned theories.

1.4 Overview of this Thesis

In Chapters [2 and [3) we will focus on the string part of this thesis. We will first work out the
worldsheet dilatation operator in Chapter , based on [43]. We will generalize the method
developed in [44] to the coset action for the pure spinor string in a AdSs x S° background.
This will allow us to compute the anomalous dimension of several conserved currents by
looking at the logarithmic divergences of composite operators. Those divergences can be
related to the worldsheet dilatation operator. In Chapter [3| we will, following [45], construct
a twistor action for the pure spinor string in the same spirit of [46]. This formalism will help
us to construct a simple vertex operator related to a Noether current.

We will devot the remaining chapters [ and [5] to the construction of the OPEs in N = 2

N A = 3 theories are not CPT invariant. When CPT is asked in ' = 3 theories, they are actually N' = 4
SYM.
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SCFTs. First, we will focus on the stress tensor OPE in Chapter 4| in the same way as
was treated in [47]. This OPE will help us to set a lower bound to the central charge for
any interacting N' = 2 SCFT. We will then generalize the construction of the mixed OPEs
between an N = 2 stress-tensor multiplet, a chiral multiplet and a flavor current multiplet
In Chapter [ This will follow [48]

Each chapter will contain an introduction and conclusion in order to be completely self

contained and therefore they can be read independently.



Chapter 2

Worldsheet dilatation operator for the

AdS superstring

2.1 Introduction

During the last decade there was a great improvement in the understanding of N' = 4
super Yang-Mills theory due to integrability techniques, culminating in a proposal where the
anomalous dimension of any operator can be computed at any coupling [49]. The crucial
point of this advance was the realization that the computations of anomalous dimensions
could be systematically done by studying the dilatation operator of the theory [50, 51]. For a
general review and an extensive list of references, we recommend [32]. An alternative to the
TBA approach not covered in [32], the Quantum Spectral Curve, was developed in [52, [53].

For some of its applications, including high loops computations, see [54] 55, 56, 57, 58], 59]

On the string theory side it is that known the world sheet sigma-model is classically
integrable [60, 61]. However, it is not yet known how to fully quantize the theory, identifying
all physical vertex operators and their correlation functions. In the case of the pure spinor
string it is known that the model is conformally invariant at all orders of perturbation theory

and that the non-local charges found in [61] exist in the quantum theory [62]. In a very

10
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interesting paper, [63] showed how to obtain the Y-system equations from the holonomy

operator.

Another direction in which the pure spinor formalism was used with success was the
quantization around classical configurations. In [64] it was shown that the semi-classical
quantization of a large class of classical backgrounds agrees with the Green-Schwarz formal-
ism. This was later generalized in [65, 66]. Previously, Mazzucato and one of the authors
[67] attempted to use canonical quantization around a massive string solution to calculate
the anomalous dimension of a member of the Konishi multiplet at strong coupling. Although
the result agrees with both the prediction from integrability and Green-Schwarz formalism,

this approach has several issues that make results unreliable [68] E|

An alternative and more desirable approach is to use CFT techniques to study vertex
operators and correlation functions since scattering amplitudes are more easily calculated
using this approach. A first step is to identify physical vertex operators. Since the pure
spinor formalism is based on BRST quantization, physical vertex operators should be in the
cohomology of the BRST charge. For massless states, progress has been made in [69], [70, [7T],
72]. For massive states the computation of the cohomology in a covariant way is a daunting

task even in flat space [73].

A simpler requirement for physical vertices is that they should be primary operators
of dimension zero for the unintegrated vertices and primaries of dimension (1,1) in the
integrated case. Massless unintegrated vertex operators in the pure spinor formalism are
local operators with ghost number (1,1) constructed in terms of zero classical conformal
dimension fields [26]. So for them to remain primary when quantum corrections are taken
into account, their anomalous dimension should vanish. Massless integrated vertices have
zero ghost number and classical conformal dimension (1,1). Therefore they will also be
primaries when their anomalous dimension vanishes. Operators of higher mass level are

constructed using fields with higher classical conformal dimension. For general mass level

!The authors would like to thank Martin Heinze for discussions on the subject.
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n (where n = 1 corresponds to the massless states) the unintegrated vertex operators have
classical conformal dimension (n — 1,n — 1). If such vertex has anomalous dimension =, the
condition for it to be primary is 2n — 2 + v = 0. The case for integrated vertex operators is

o'k?
2

similar. For strings in flat space v is always , which is the anomalous dimension of the
plane wave e”*X. This reproduces the usual mass level formula.

This task of computing v can be made algorithmic in the same spirit as the four dimen-
sional SYM case [50], 51]. However, here we are interested in finding the subset of operators
satisfying the requirements described above. The value of the energy of the corresponding
string state should come as the solution to an algebraic equation obtained from this require-
ment. However we do not expect the energy to be simply one of the parameters in the vertex
operator. The proper way to identify the energy is to compute the conserved charge related
to it and apply it to the vertex operator.

In this paper we intend to systematize the computation of anomalous dimensions in the
worldsheet by computing all one-loop logarithmic short distance singularities in the product
of operators with at most two derivatives. To find the answer for operators with more
derivatives one simply has to compute the higher order expansion in the momentum of our
basic propagator. We used the method applied by Wegner in [44] for the O(n) model, but
modified for the background field method. This was already used with success in [74} [75]
for some Zs-super-coset sigma models. The pure spinor string is a Z4 coset and it has an

interacting ghost system. This makes it more difficult to organize the dilatation operator in

a concise expression and to find a solution to

D-0=0 (2.1)

We can select a set of “letters” {¢?'} among the basic fields of the sigma model, e.g. the
AdS coordinates, ghosts and derivatives of these fields. Unlike the case of N' =4 SYM, the
worldsheet derivative is not one of the elements of the set, so fields with a different number

of derivatives correspond to different letters. Then ® is of the form
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D — EQ)P 0o O (2.2)
2 DPpP PR’ '
Local worldsheet operators are of the form
O =Vpgrsr.¢" 999 ¢ 0" - -, (2.3)

the problem is to find V4pcpE... such that O satisfy . Another important difference
with the usual case is that the order of letters does not matter, so O is not a spin chain.

The problem of finding physical vertices satisfying this condition will be postponed to a
future publication. Here we will compute © and apply it to some local operators in the sigma
model which should have vanishing anomalous dimension. The search for vertex operators
in AdS using this approach was already discussed in [76] but without the contribution from
the superspace variables. The author used the same “pairing” rules computed in [44].

This paper is organized as follows. In section 2 we describe the method used by Wegner
in [44] for the simple case of the principal chiral field. This method consists of solving a
Schwinger-Dyson equation in the background field expansion. In section 3 we explain how to
apply these aforementioned method to the pure spinor AdS string case. The main derivation
and results are presented in the Appendix B. Section 4 contains applications, where we use
our results to compute the anomalous dimension of several conserved currents. Conclusions

and further applications are in section 5.

2.2 Renormalization of operators in the principal chiral
model

The purpose of this section is to review the computation of logarithmic divergences of opera-

tors in principal chiral models using the background field method. Although this is standard
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knowledge, the approach taken here is somewhat unorthodox so we include it for the sake
of completeness. Also, the derivation of the full propagators in the case of AdSs x S° is

analogous to what is done in this section, so we omit their derivations.

Consider a principal model in some group G, with corresponding Lie algebra g, in two

dimensions. The action is given by

1

2ma?

S:

/dzz Tr 0g~'0g, (2.4)

where « is the coupling constant and g € G. Using the left-invariant currents J = g~'dg

and defining v\ = 1/a? we can also write

hY _
S = \2/—_ d*zTr JJ. (2.5)
™

The full one-loop propagator is derived from the Schwinger-Dyson equation

(0:50(y)) = (0:0(y)), (2.6)

where 0, is an arbitrary local variation of the fundamental fields and O(y) is a local operator.
This equation comes from the functional integral definition of (---). In order to be more
explicit, let us consider a parametrization of g in terms of quantum fluctuations and a classical
background g = goe™, where gy is the classical background, X = X%J, and J, € g are the
generators of the algebra. Then a variation of g is given by dg = ¢gd X, and X = 6X*J,
where we have the variation of the independent fields X“. Also, the variation of some general

operator O is 60 = gga 0X* Then we can write the Schwinger-Dyson equation as

<%§;Z>O(y)> = <%> (2.7)

and now it is clear that this is a consequence of the identity
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t/ulﬂéxi@>QfSOQA)—O. (2.8)

In the case that O(y) = X (y) we get the Schwinger-Dyson equation for the propagator

< . )ﬁiz)xb<y>> _ 55y — 2). (2.9)

This is a textbook way to get the equation for the propagator in free field theories and our
goal here is to solve this equation for the interacting case at one loop order. The perturbative
expansion of the action is done using the background field method. A fixed background gq
is chosen and the quantum fluctuation is defined as g = goe’X. The expansion of the current

is given by
J=e*Je* 4 e X 0eX (2.10)

where J = g;'0go is the background current. At one loop order only quadratic terms in
the quantum field expansion contribute and, as usual, linear terms cancel by the use of the
background equation of motion. This means that we can separate the relevant terms action
in two pieces S = S(g) + S(2). Furthermore, Sy contains the kinetic term plus interactions

with the background. So we have

S = S(0) + Skin + Sint- (2.11)

If we insert this into (2.9)) the terms that depend purely on the background cancel and

we are left with

5Skin b 5Sint b b <2
X X =0,0"(y — 2). 2.12
(s X )+ eats X)) = 0%y ) (2.12)
Since 66)?51(2) = —\2/—585)( *(z) and 5(;55?2) is linear in quantum fields we can write
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— \/—Xé?zé;(X“(z)Xb(y)) + /dzw

™

62 S’L’nt

SXe(w)dX4(z) <Xc(w)Xb(y)>77ad = n“b52(y —z). (2.13)

Finally, this is the equation that we have to solve. It is an integral equation for (X(2)X?(y)) =
G(z,y) which is the one-loop corrected propagator. The interacting part of the action is

VA [ o

nt —
2T

S z [—%Tr([@X, X|J) — %Tr([éX, XN, (2.14)

where the boldface fields stand for the background fields.

Now we calculatd?

52 St Vi, o
X )oX(e) ~ am w0 (W = A TH(Te Tl ) + 0,6°(w = 2)Tr([Te, Tl )], (2:15)

which is symmetric under exchange of (a,2) and (c, w), as expected. We define f® = f°nia.

So we get the following equation for the propagator

— s ° J€ a Ci e
0.0.G(z,y) = —ﬁn“b(?(y —2z)+ ? (0.G(2,y) I + 0.G”(z,y)J°) . (2.16)

Performing the Fourier transform
G*(z,k) :/deeik'(Zy)Gac(z,y), (2.17)

we finally get

2Using the equation of motion for the background 0J + 0J = 0.
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b

T _— ryab 9 ab a ab
\/—|k\2+’k’2G (z, k)~|—sz (2, k)+sz (2, k)

a F€ 4 a cb a ge J 5 cb
— fad ( +2|k|2)G (z,k) — fod ( 2|k]2)G (2, k). (2.18)

Gab(z, k) =

The dependence on one of the coordinates remains because the presence of background
fields breaks translation invariance on the worldsheet. We can solve the equation above

iteratively in inverse powers of k. The first few contributions are given by

o I
Gab k :T]_ s _ T cb I J

1 cear 1
cn® JI 4 3TN - =0 eyt
~ RS |k|2 (!kP( I RT T

11 an oJ! 2.19
t AT +k2 (2.19)

With this solution we can finally do the inverse Fourier transform,

2k

G(ey) = [ e

(=0 Gee(z, k), (2.20)

to calculate G(z,y). If we are only interested in the divergent part of the propagator we
can already set z = y. Furthermore, selecting only the divergent terms in the momentum

integrals we get

(X°(:)X7(2)) =™ (2.21)
(X*()OX() = = S T ST (2.22)
(XX = = S T LT (2.23)

(X9(2)08X°(2)) Z%ndb fo e (Je:rf + jle) , (2.24)
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In Im

(X2)00X°(2)) = — Vol n® an6+m n® fo foJeJ’, (2.25)
__ Ir Ir
(X(2)00X°(2)) = — mnd’ 0T + VI n®fe fo T’ (2.26)
where
1 d?Te 6ilc(ac—y)
[=—— =i — 2.2
27e zl—%/ A2 |k|? (227)

in d = 2+¢ dimensions, using the standard dimensional regularization [44]. Since 9(X*0X¢) =

(0X*0X°¢) + (X?0*X°¢) we can further compute

(0X(2)0X"(2)) = 3 \/—( e fgn®Jea?), (2.28)
(0X*(2)0X"(2)) = — %ncb @ 0J¢ — 41\7;_ @y fa(IT + J1ge). (2.29)

From now on (-) will mean only the logarithmically divergent part of the expectation

value. A simple way to extract this information is by defining

©) =3 [ Etys s (X)X ) (2.30)

for any local operator O. Furthermore, we define

00 6O

o Ei gy XX ) (231)

(0,0 = /dzdey

Following [76] we will call it “pairing” rules. For local operators these two definitions always
give two delta functions, effectively setting all fields at the same point. So the computation
of (-) can be summarized as

82

Lxexny—2 _o—mo, (2.32)

0) =3 0Xa9XP



2.3. DILATATION OPERATOR FOR THE ADSs x S°> SUPERSTRING 19

where
1, ouon 02
@ — §<X X >W (233)
is the dilatation operator. We can also define (-, -) as
u 00 00’
(0,0 = (X Xb>aXa G (2.34)

With the above definitions, the divergent part of any product of local operators at the

same point can be computed using.
(00" =(0)0' + 0{0") +(0,0". (2.35)

Several known results can be derived using this simple set of rules. Following this procedure
in the case of the symmetric space SO(N + 1)/SO(N) gives the same results obtained by

Wegner [44] using a different method.

2.3 Dilatation operator for the AdSs; x S° superstring

In this section we will apply the same technique to the case of the pure spinor AdS string. We
begin with a review of the pure spinor description, pointing out the differences between this

model and the principal chiral model, and then describe the main steps of the computation.

2.3.1 Pure spinor AdS string

The pure spinor string [73, 61, [62] in AdS has the same starting point as the Metsaev-Tseyltin
[77]. The maximally supersymmetric type IIB background AdSs x S® is described by the
supercoset

PSU(2,2/4)

SO(1.4) x SO(5)" (2.36)

G _
= =
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The pure spinor action is given by

R? 1 - 1 - 3= _ “ R
Sps :2— dQZSTI" |:§J2J2 + ZJng + Z_IJIJS + wVA + wVA— NN s (237)
T
where
V- =0+, ], N ={w, A}, N ={&, A} (2.38)

There are several difference between the principal chiral model action and . First,
the model is coupled to ghosts. The pure spinor action also contains a Wess-Zumino term,
and the global invariant current J belongs to the psu(2,2|4) algebra, which is a graded
algebra, with grading 4. Thus we split the current as J = A + J; + Jo + J3, where A = Jj
belongs to the algebra of the quotient group H = SO(1,4) x SO(5). The notation that we

use for currents of different grade is
Jo=LT, 3 Ji=J, 3 Jo=J3T, 5 Jz=JiTs. (2.39)

The ghosts fields are defined as

A=MTy 0 w=—wa™T; 1 A=MTy ;& =am""Ts (2.40)
Note that A and A’ indices on the ghosts mean « and &, but we will use a different letter in

order to make it easier to distinguish which terms come from ghosts and which come from

the algebra. The pure spinor condition can be written as
M ={\ A =0 (2.41)

Following the principal chiral model example, we expand g around a classical background

go using the g = goeX parametrization. It is worth noting that X = xg + 1 + z2 + 23
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belongs to the psu(2,2|4) algebra, but we can use the coset property to fix xqg = 0. With this

information the quantum expansion of the left invariant current is

3

3
1
A=A+ Z ([Ju Ty-i] + 5 [sz',Mi]) + Z ([T, 25] 2551,
i=1 ij=1
3

3
1
Jy=J;+Vu + Z ([Ji, Tayi—i] + 3 [V$z‘,$4+l—z‘]> + Z [T, 5] s 1—i—j]

i=1 ij=1

A=A+ 0\, (2.42)
W =w + dw,
X=X+,
W =w + ow.

Where we take ¢y = 0 as mentioned before, and we used go_lago =J=A+J+Jy+Js;.
The boldface terms stand for the background term, both for the currents and for the ghost

fields.

Using all this information inside the action we get

R? 1 _ _ _ -

Sps =5 d*z {ivxg@v:c’;nmn — VatVaineg + 0wa0SA? + 60 ;000 | + Sip. (2.43)
T

The full expansion can be found in the Appendix C. In order to compute the logarithmic

divergences, we need to generalize the method explained in section 2 for a coset model with

ghosts. The following subsection is devoted to explain this generalization.

2.3.2 General coset model coupled to ghosts

In this subsection we generalize the method of Section 2 to the case of a general coset G/H
and then specialize for the pure spinor string case. We will denote the corresponding algebras
g and b, where b should be a subalgebra of g. The generators of g — h will be denoted by

T, where a = 1 to dimy; — dim, and the generators of h will be denoted by T; where i = 1
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to dimy. We also include a pair of first order systems (A, wg) and (M &p) transforming
in two representations (I, T"5)) of h. We will assume that the algebra g has the following

commutation relations

a

[Tm Tb] = beTC + f;sz’: [Tm TZ] = (lz)iTlh [Tw TJ] = i];'Tkv (2'44)

where f& # 0 for a general coset and f& = 0 if there is a Z, symmetry, i.e., G/H is a
symmetric space. As in the usual sigma model ¢ € G/H and the currents J = ¢ 'dg
are invariant by left global transformations in G. We can decompose J = JT, + AT}
where J°T, € g — b and A'T; € h. With this decomposition K transforms in the adjoint
representation of h and A transforms as a connection. We will also allow a quartic interaction
in the first order sector. Defining N' = MTBwg and N = M T8 &g, the interaction will
be BN?N; where [ is a new coupling constant that in principle is not related with the sigma

model coupling.

The total action is given by
S = /d% (Tr (J = A)(J = A) + waVM + 0a VALY 4 @N@‘NO , (2.45)

where (V,V) = (0— ATy} ,0— AT;4) are the covariant derivatives for the first order system

ensuring gauge invariance.

The background field expansion is different if we are in a general coset or a symmetric
space. Since we want to generalize the results to the case of AdSs; x S°, we will use a
notation that keeps both types of interactions. Again, the quantum coset element is written

as g = goe™ where g is the classical background and X = X7, are the quantum fluctuations.
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Up to quadratic terms in the quantum fluctuation the expansion of the action is

S =S, + / d’z (nabvxaﬁxb — T XV X — Zpo T XV X + Ropea T T XX

H0waD0N + 60000 + ANy + AN+ B ({00, w} + (X, dwh)’ ({04, @} + (A, 00}) )

)

(2.46)

where the covariant derivatives on X are (9—[A4, - ],0—[A, - ]). The tensors (Zase, Zape, Rabed)
appearing above are model dependent. In the case of a symmetric space Z = Z = 0 and
Raped = [l fica- In the general coset case Zgp. = 7 b = % fave- If there is a Wess-Zumino
term, the values of Z,,. and Z,. can differ. Since we want to do the general case, we will not
substitute the values of these tensor until the end of the computations. In the action above

the quantum connections have the following expansion
) . . 1 .. .
At = A+ fL T X+ 3 foVXeXb Wi JOXPXE - (2.47)
- -3 - —a 1 PR— . —a
A= A"+ LT X + 3 fRVXeXP Wi XX 4 (2.48)

i 1gd gi : :
where W, = 5 fofq. for a general coset and vanishes for a symmetric space.

To proceed, we have to compute the second order variation of the action with respect
to the quantum fields. The difference this time is that there are many more couplings, so
we expect a system of coupled Schwinger-Dyson equations, corresponding to each possible
corrected propagator. For example, in the free theory approximation there is no propagator
between the sigma model fluctuation and the first order system, but due to the interactions

there we may have corrected propagators between them.

Since a propagator is not a gauge invariant quantity, it can depend on gauge dependent
combinations of the background gauge fields (A%, A?). Furthermore, since we have chiral fields
transforming in two different representations of b it is possible that the quantum theory has

anomalies. In the case of the AdSs x S° string sigma-model it was argued by Berkovits
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[62] that there is no anomaly for all loops. An explicit one loop computation was done
in [78]. Therefore it is safe to assume that the background gauge fields only appear in
physical quantities in a gauge invariant combination. The simplest combination of this type
is Tr[V, V]2, Since the classical conformal dimension of this combination is four and so far
we are interested in operators of classical conformal dimension 0 and 2, we can safely ignore

all interactions with (A7, A?).

We will assume a linear quantum variation of the first order system, e.g., A — A4 4614,
Instead of introducing more notation and a cumbersome interaction Lagrangian, we will
simply compute the variations of these fields in the action and set to their background values

the remaining fields.

With all these simplifications and constraints in mind, let us start constructing the
Schwinger-Dyson equations. First we compute all possible non-vanishing second variations

of the action

0%Sin cy FC 174 i N7 TC(TIS i
5Xa—5)t(b = 52(2 - U)) [J Jd(RCdab + RCdba) + N;J (Wcab + cba) + N;J (Wcab + cba)
— 000%(z — W) [ Zeap I + [L NG| — 0,02 (2 — W) [ Zean T + f1,N], (2.49a)
0°Sint 2 iB R
N own 0% (z —w)pI* 4Ny, (2.49Db)
0°Sint 2 i b
Agxe 0 (z —w)(Tyw)afr,d (2.49¢)
6251'7115 2 ‘ AN
St o S e
52Sint 2 ’L’A B’
B/
525int 2 noA i b
Ssxa 0°(z —w)(Liw) ar fra " (2.49g)
52Sint 2 iNB/T o~
B
52Sint 2 B ri b .
= 0°(z —w)(ALY)7 fod (2.491)

5X“5w3
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(52Smt ) AP \B' pi b j
m = 0°(z —w)(AL)" fp,J”, (2.49))

0 Sint — 5z — w)B(AFi)A(S\fi)B,. (2.49k)
5WA5CDB’

We are going to denote these second order derivatives generically as Is(z,w) where X

and A can be any of the indices (*,4, 5,4, p/). Also, the quantum fields will be denoted by

®*(z). With this notation the Schwinger-Dyson equations are

5Skm (I)E 5QSint

e /de 5D (1) (2) (@Y (w)d(y)) = 0xd(2 —y).  (2.50)

Note that the only non-vanishing components of §} are 7%, §4 and (5,‘_31. Since the type
and the position of the indices completely identity the field, the propagators are going to
be denoted by G¥(z,y) = (®*(2)®*(y)). Since we five different types of fields, we have
fifteen coupled Schwinger-Dyson equations to solve. Again we have to make a simplifica-
tion. Interpreting (A4, M) as left and right moving ghosts and knowing that in the pure
spinor superstring unintegrated vertex operators have ghost number (1,1) with respect to
(G, G), we will concentrate on only four corrected propagators (X(2)X(y)), (X*(2)A\(y)),
(X*(2)AY (y)) and (A*(2)AY (y)). As in the principal chiral model case we are going to solve
the Schwinger-Dyson equations first in momentum space. It is useful to note that since
we will solve this equations in inverse powers of k, the first contributions to the corrected

propagators will have the form

!

55

ca

Ui
XX ~

NG

WPy = A (AP & (2.51)
Regarding (A, A’) as one type of index we can arrange the whole Schwinger-Dyson equa-

tion into a matrix notation with three main blocks. Doing the same Fourier transform as

before we get a matrix equation that can be solved iteratively

GY = [ET + (Fgr + AEF)GFT, (252)
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where
00
E=| o0 o -i% |, (2.53)
0 % 0
o 2+il+i2 00
Fyr = SOESDT Agr = 0 —iZ 0 (2.54)
0 0 i

All elements of the interaction matrix Fxr are shown in Appendix C. As in section 2, the

solution to equation (2.52)) is computed iteratively
GOT =1, GWI=FIT, (2.55)

and so on for higher inverse powers of k.

2.3.3 Pairing rules

As discussed in the introduction and Section 2, the computation of the divergent part of any
local operator can be summarized by the pairing rules of a set of letters {¢”'}. The complete
set of these pairing rules can be found in the Appendix C. If we choose a set of letters such

that (¢*) = 0, then the divergent part of the product of two letters is simply
(676%) = (7, ¢9). (2.56)

We computed the momentum space Green function up to quartic inverse power of mo-
mentum so we must restrict our set of letters to fundamental fields up to classical dimension

one. The convenient set of letter we will use is

(oY = {8, 2, 2§, JS, J&, T Td, o Jo J& T M wa, X“,a)A, Ni N} (2.57)
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If we extend the computation to take into account operators with more than two deriva-
tives the set of letters has to be extended to include them. The matrix elements of the
dilation operator D@ = (¢F ¢?) are the full set of pairings described in Appendix C.4.
To avoid cumbersome notation, the pairing rules are written contracting with the corre-
sponding psu(2,2|4) generator. The computations done in next section are a straightforward
application of the differential operator

o_lore_ &

on a a local operator of the form O = Vpgrgr..¢F p9pRg%pT - - -.

2.4 Applications

In this section we use our results to prove that certain important operators in the pure spinor
sigma model are not renormalized. The operators we choose are stress energy tensor, the
conserved currents related to the global PSU(2,2|4) symmetry and the composite b-ghost.
All these operators are a fundamental part of the formalism and it is a consistency check

that they are indeed not renormalized. All the computations bellow are an application of the

differential operator (2.58). We use the notation (O) =9 - O.

2.4.1 Stress-energy tensor
The holomorphic and anti-holomorphic stress-energy tensor for (2.37)) are given by
1
T =STr (§J2JQ + J1Js +wVA |, (259)

_ 1. = _ .
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For the holomorphic one

(T) =STx (%(Jg, ) + (1 Js) — N(J0)>
ST ([N, LN T™ — [N TN Talge
F5N (N TL T~ (N T T + [N T, 130
0. (2.61)

We used the results in (2.203)/2.228]|) and the identity (2.96)). A similar computations happens
to the antiholomorphic T, where now we use the results in (2.204}2.229) and the identity

2-97).

2.4.2 Conserved currents

The string sigma model is invariant under global left-multiplications by an element of psu(2, 2|4),
0g = Ag. We can calculate the conserved currents related to this symmetry using standard

Noether method. The currents are given by

) 3 1 _ _
] =g (J2 + §J3 + §J1 — 2N) g ' =gAgt, (2.62)
= T N 7\ -1 T.-1
J=g| Jo+ §J3 + §J1 —2N | g =gAg . (2.63)

They should be free of divergences. To see that this is the case, it is easier to compute

by parts:

() =(0)Ags " + {9, A)gy " + (9 A, g7") + go(A, g7 ") + g0 A{g ") + go(A)ge ' (2.64)

We have defined (AB,C) as usual, but taking B as a classical field, thus (AB,C) =
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(A, BC). From (2.202) we get (A) = 0, and using ([2.201]) we obtain

(0)Agy" + (9. g") + g0 Alg ™) =~g0 (LA, X, XT)g5 !

2
=500 (A T) L™ + {[A, 7], T
—{[A, TL), Ta}n™) g5 - (2.65)

For the currents, using the results (2.207H2.212)),

96 9. 1) + (J1. g7 g0 = — {[J2, Ta), Ta3n™ — {[J 3, Ta], Tu 30 + {[N, Ta], Tu 30,

(2.66)
90 (9 Jo) + (T2, g7 ) g0 = = [[T5, T, Tl™ + ([N, Tl To™, (2.67)
90 9, Js) + (Js,9" g0 = — {[N, T], T}, (2.68)
90 {9, N) + (N, g™") g0 =0, (2.69)

but we already know that {[J;3,T,], Ty} g* = 0, for a = {i,m, a, &}, see . Thus,

90 ()90 = — 5 ({[N.Ta] , T} + {[N, T.] , T5}) n*®

{[ T2, Tl , Ty ™ = {[ T2, T , T} 1) - (2.70)

l\:>|>—t[\3|ri

By lowering all the terms in the structure coefficients, we can see that the first term is just
(fin 5 fiag — fiap fja B)naé‘nﬁfé , and the second term is proportional to the dual coxeter number,

see ([2.96) , which is 0. Thus, summing everything, we get
(7) = 0. (2.71)
For the antiholomorphic current we just obtain, using the same results as before,

90 g, J1) + (Ji, g7 go ={[N, Ta), Tu }n, (2.72)
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90_1<g7 j2> + <J_27g_1>90 - - [[jla Tm]aTn]nmn + [[NaTm]’ Tn]nmn’ (273)

90_1<97 j3> + <<]_37 g_1>gO :{[jla Ta]7 Td}nad + {[j27 Ta]a T&}T/ad - {[Nv Ta], Td}nadv (274>

and using {[J13, 7], Ty} g = 0 we see that doing the same as j, we arrive at (j) = 0.

2.4.3 b ghost

The pure spinor formalism does not have fundamental conformal ghosts. However, in a
consistent string theory, the stress-energy tensor must be BRST exact T'= {Q, b}. So there
must exist a composite operator of ghost number —1 and conformal weight 2. The flat
space b-ghost was first computed in [79] and a simplified expression for it in the AdS; x S°
background was derived in [80]. In our notation, the left and right moving b-ghosts can be

written as

b=(\\)"1STr (X[JQ, Ta] + {w, AV, J1]> ST (wh), (2.75)

b =(\\)"1STr (A[jQ, T+ Lo A A, j3]> — STx (@Js) (2.76)

where (M) = My,

Let us first compute the divergent part of the left moving ghost; we will need the results

from ([2.244]) to (2.254):

() =(AN)"ISTe(A[s, Js] + {w, AVA, L)) — (AX)2(AN)STr (X[J2, ]+ {w, A}, Jl])

(AN H(M\N), STr (X[JQ, Js] + {w, A}, Jﬂ)) — STr(w), (2.77)

The (AX) term is easy,

~ ~A A
(AR) = = MR B 78 gy — (2.78)
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where we have used (2.98)). The (wJ;) term is also 0. The other terms are

STe(A o, Jal) = = STr (A T2, 7)), T + [T, [, T ))g )

= —STr ([X,mm, [T, J3]]gij> — _STr ([[5\, :n] T[T 2, Ja]g”') =0,

(2.79)
we used f;, 5 fiapg”n** =0, see . The next term is
STr({e, AYA, 1)) = = STr ({lw, T A TIHA, 01 + {w, AT T 4
o, A TN 0T n) g
= - STr ({w. T i)+ (AT T+ (X [T T D) 6
=0, (2.80)

which comes from the Jacobi identity, see appendix B. The remaining terms are computed

using
AA[;\AyTz‘]UAA = - [)‘ T])\ Naa = {)‘ >‘} Gij, (2-81)
thus

(A\N), STr (X[J% Jg])> —STr ([5\, A, Jg]) 4 ST <5\[[J2, FARSY ;\}]) —

(2.82)
(AR, STr ({o, A, 1] )) =STr ({0, [A AN AYHA J1] = {[w, {0 AN AYA, 1]
+H{ew, A} A AN 1))
—9STy ({w, I A, Jl]) —0, (2.83)

which is true due to the pure spinor condition.
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For (b) one needs to use the same relations from above.

2.5 Conclusions and further directions

In this paper we outlined a general method to compute the logarithmic divergences of local
operators of the pure spinor string in an AdSs x S° background. In the text we derived
in detail the case for operators up to classical dimension two, but the method extends to
any classical dimension. Although the worldsheet anomalous dimension is not related to a
physical observable, as in the case of N=4 SYM, physical vertex operators should not have
quantum corrections to their classical dimension. The main application of our work is to
systematize the search for physical vertex operators. We presented some consistency checks
verifying that some conserved local operators are not renormalized.

The basic example is the radius operator discussed in [80]. It has ghost number (1,1) and

zero classical dimension. In our notation it can be written as
V = Str(A)), (2.84)
If we apply the pairing rules to compute (V') we obtain
(V) = ~1g”Str(\, T\, Ty]) = 0, (2.85)

where in the last equality we replaced the structure constants and used one of the identities
in the Appendix A. This can be generalized to other massless and massive vertex operators.
We plan to return to this problem in the future.

A more interesting direction is to try to organize the dilatation operator including the
higher derivative contributions. As we commented in the introduction, the difficulty here is
that the pure spinor action is not an usual coset action as in [74, [75]. However, it might still

be possible to obtain the complete one loop dilatation operator restricting to some subsector
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of the psu(2,2[4) algebra, in a way similar as it was done for super Yang-Mills dilatation

operator [50].

2.A Notation and conventions

Here we collect the conventions and notation used in this paper. We work with euclidean
world sheet with coordinates (z, Z).

We split the current as J = A+ K. We define K = J; + Jo + J3 € psu(2,2[4) and A = Jp
belongs to the stability group algebra.ﬁ The notation that we use for the different graded

generators is given by
Jo=JT, + Ji=J, ; Jy=J T ; Jz=J{T,. (2.86)
The ghosts fields are defined as
A=MTy 0 w=—wa™T; o A=MT, 1 & =0mPPTs. (2.87)

The only non-zero Str of generators are

Do =STYT, T, (2.89)
Mg =STrT, T, (2.90)

For the raising and lowering of fermionic indices in the structure constants we use

fmaﬁ = nadfgm and fmd@ = _nadfgm, (291)

3 Although we did not use the K term in the main text, it will be useful from now on to use this term in
order to pack several results.
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and for the f,4; the rule is the same. For the bosonic case we use the standard raising/lowering

procedure.

2.B Some identities for psu(2,2[4)

Let A, B and C be bosons, X, Y and Z fermions, then, the generalized Jacobi Identities are

[A,[B,C]] + [B,[C, A]] + [C, [A, B]] =0, (2.92)

A, [B, X]] + [B. [ X, A]] + [X, [4, B]] =0, (2.93)
{X, [V, A} + {Y, [X, A]} + [A, {X, Y}] =0, (2.94)
XAV, 23]+ [V A2, X} + [Z X, Y} =0. (2.95)

In this theory the dual-coxeter number is 0, this implies

HA7 TZ]? Tj]gij - {[Av Ta]a Td}nad + [[A, Tm]v Tn]nmn + {[A7 Téz]v Ta}nad :07 (296>

X, T3], Tylg" — {X, T}, Taln™® + (X, T, Tul™ + [{X, Ta}, Taln™® =0. (2.97)

The Jacobi identity yields fiasf,.4 Bnm”naé‘ =0and f;,5 fia8g“n>® = 0. This implies that

[[J1,37 EL CZ—“]]gZJ - HJI,?): Tn]7 Tm]nmn - {[J1,37 TO{]7 Td}nad - {[‘]1,37 T&L Ta}nad :Oa (298>

W+ A+&+ANT] g7 = [w+ A+ &+ X, T, Tuly™ =0, (2.99)

Hwo+ A+ + N To} Taln™ = {w+ A+ &+ X Ta}, Taln™® =0, (2.100)

Another useful property of this theory is the pure spinor condition Eq. [2.41] Using it, it

is easy to prove that
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{X, [X,A} i] = LA =o. (2.101)

2.C Complete solution of the SD equation for the AdS;x
S° pure spinor string

In this Appendix we apply the method explained in Section 2, and generalized in Section 3,

to the AdS5 x S% superstring. Step by step, the procedure is as follows:

1. Using an expansion around a classical background, g = goe™, we compute all the

currents up to second order in X,
2. Expand the action (2.37)) up to second order in X,

3. Write down the Schwinger-Dyson equation for the model and compute the interaction

matrix,

4. Compute the Green functions in powers of %,

5. Compute (¢, ¢7).

The expansion of the currents was already done in . The remaining subsections are
devoted, each one, to each of the steps listed above.

We will drop the use of the boldface notation for the background fields in this section.
All the quantum corrections come from either an z-term or a (&u, o\, 0w, 5;\) -term. Thus,
every field in S;,;, the F-terms, the Green’s functions and in the RHS of the pairing rules

should be treated as classical.
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2.C.1 Action

In (2.43]) we showed the kinetic part of the expansion of (2.37) and we promised to show the
interaction part later, here we fulfil our promise. Up to second order in X the interaction
part is

R? 1

m 1 A & 78 i 1 ay
Sint Zg dzz [5 23T I3 fonas + DRIl Vs Jffmafjﬁégj T3 (325025 — 5021 25’) 1 frmas

S (<O foas + (35T + 5T I8 Fiaafimng” + 3 [T 5 = T T5) fuasf et

- —x1x3 ([7075 = T2 s fuaan™ + [F TS + 3T0I s fraps”
: ; e 1
TS [ fmas s = Fuas o] 1P7) + 50080 T8 F s + 5

1 _ _ - _ .
— 58y (05 = T I) s Fuagn® + BT fim ) + 5 (302525

xgxﬁ‘]?jffiadfjﬂﬁgij

50 025) T froas + ém;”mg (=075 frnas
3 [Ty = T2 T3] Fmasfraan® + (3905 4+ 57 J5) Fiaafimn”)
_ (NN g, — a8 (5Nijg + 5]\7"J§> fraa + 2T (5Nijg + 5NU§‘) Form
— 2 <6Nijf‘ + 5NU§) fioa — %x?mf (Nijgﬂ n NiJ;n) o fisan™®
- %x?x? (Nijlﬁ + Nicﬂﬁ) (fipm faag® + ficifmpu?™*)
+ (81'1 :133 x?@x?) Nifiad + %:pg” (5173NZ + ax;LNZ> fimn

2
1 & i 78 | xri 7B Dq pid
5 xg (N J3 + N Jg) <fipqu@3n - fi&/ifmﬁﬂn )

+o xSl (NZJm —|—N’Jm> fmaa L™ + 5 (89611'3 25 0x§) N"fm@l : (2.102)

N[ —

with

Ni = —wa\ByAB gl (2.103)
N —wA)\B Adfi (2.104)

SN* =(6waA? + wadAB)pB fi

BB’

(2.105)
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SN =(804 A8 + @300B ) fi (2.106)

O*(N'NY) =0N'ONT — 8wadNEpB i NI+ N1§G oA PyPAfI (2.107)

The lack of covariant derivatives is, as explained previously, because the pure spinor sigma
model is anomaly free. This means that physical quantities only appear in gauge invariant
expressions, thus the interchange 0 <> V can be done at any moment in our computation. A

more detailed explanation can be found in Subsection 3.2.

2.C.2 Schwinger-Dyson equation and the Interaction Matrix
The Schwinger-Dyson equation in momentum space for (2.37) reads

ah 2T 77o¢A 1 naQ

e W(iké +iko + O)G* — WFEQGZA, (2.108)
mA :%% #(iké + k0 4+ 0)G — %FEQG“, (2.109)
G = — %% + #(iké + k0 + 0)G* + %FEQG“, (2.110)
G :%%53 + %5GAA — %FZAGM, (2.111)
GPN = — %%&BA - %5(}“ + %FEBGEA, (2.112)
Gl Z%%}sg + %aGAA - %FEAGEA, (2.113)
GBN = _ %%%A OGP 4 L RSGH, (2.114)
where A = {a,m,&,A,A,A,A}.
The interaction matrix is given by
5 6Sw
Fra(z,y) :?qﬂ(y) M)Q(;). (2.115)

The directional derivative means that we compute the functional derivative of S;,; with
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respect to ®* acting from right to left. Because we are working in momentum space is useful

to write also F' in momentum space, for that reason the equation we work with is

%
1) 0Si,
Fra(z, k) f(x) :/d29<— -

5 o¥(y) 00%(z) exp(iky) f (y)- (2.116)

Note that the f(y) stands for the previous Green’s function and the exponential came

from the Fourier Transform. The directional derivative has the same meaning as above.

We organize the interaction matrix by the Z, charge of its indices, and in the end we add

the ghosts contributions.

The first we compute the F,, terms of the matrix:

m( 1. 3 1= m 1 & 78 ij
Fog =— J3"(tk + 0) frmap — 5092 fmap = 53 3 (fiadijB - fwdfjag‘) g
+ 3 <sz;n + NzJ?) (fma,ufiﬁﬂ - fmﬁufia;l) nuﬂ’ (2117)

_ _ 1 _ _ 1 . _ .
ik +0) s+ 3 (an + 3&]5) frvas = 5 (3935 + 513 J5) fiaafimng” (2118)

N[ —

Fam :Jlﬁ

—~

w

. . 5 1 . . .
Y (‘];l‘]i? - J;LJ??) fnaﬁfmﬁdnﬁﬁ + 5 (NZJIB - NZJIIB) (fipquozﬁnpq + fia/lfmﬂunuu)

i -7 3 \Ti . L /25 .5 78 mn
Fag == N'fiaa (iF +8) = N fiaa ik +9) + 1 <JfJ§ - ijﬁ) FrasFra

co

1 -3 5 -4 1 .
+ Z <J16J3ﬁ + 3Jf<]§> fi&,@fjaﬁgz] + —J;nJ; (fmaﬁfndﬁ — fnaﬁfmaﬁ> 77/86’ (2119)

4
Fop=—waJdA% o = —Fga, (2.120)
EA=—-\BJSAY &= —F2 (2.121)
FaB :(I)AJ??A‘E, ad — _FBCN (2122)
FA=NBJoAL = _FA (2.123)

The terms of the F,,p kind are

T 1 i T \7i [
Foa =J7 (ik + 0) finap + 3 (N JP+ N Jf) (fipm Lo + fiag frmpun®™)
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b BT ST e fimnd® + % (B — T8I fuapfan”
+ é (5077 = 0.7) Fonas (2.124)
Frn =N figny, (ik + ) + N finp (ik + 0)
— 5 RIS = T 5) s oo + Fras a0 = T8I G Fin + i i)
(2.125)
Fona =T4 frua (i + 0) + % (505 = 05) fruap + g (JoTg =TT} Frasfrasn™  (2.126)
b5 (BITE 45T ) Faaomng? + 5 (NI + N ) (B o™ = Faud g™

Frp = —wady A% = Fpn, (2.127)
EA=-\JgpAg =B, (2.128)
E o 5 =04J3A% 0 =Fp (2.129)
FA=NBJpAd = FA (2.130)

The last contribution from the non-ghost terms is given by the Fj, elements:

. _ . 1 R .
Faa = = N'fiaa (i +0) = N' fuaa ik + 0) = 5 (IO = JLI) Fuas Fraa™

1 -3 5 -4 1 _ .
= (JfJf - 3J{3J§3> Fuao i — TI5 (fmaﬁfn&ﬁ _ fnaﬁfmd5> 0, (2.131)
o ) 1 75 575 3 Vi il aTn 3
de :Jgﬁfmdlg (Zk + 8) + g <38J33 + 8J35> fm&B — g (Jl J2 — Jl JZ) fmaﬁfndgﬁﬁﬁ (2132)

1/ s ;
5 (NZJ:? + NZJ35> (fipquaﬁnpq - fiéc/ﬁfmﬁﬂnuu> )

. 1, -, L= ij
Fig == T 5 +0) g = 5055 Fai — 507 (fina Sy — Fialep) 0

1 _ _ .
— g <3Jfée]; + 51]{)61];) fioadfjmngw -

- % (Nijgn + NZJ;L) <fmécﬂfw[3 - fmgﬂfma> ", (2.133)
Fip = —waJPA% o = —Fa, (2.134)
F, = = NP JPAG o = —F%, (2.135)
Fop =047 A a6 = —Fpas (2.136)

Fap =M J0AL = _FB 2.137)
1“*B aa &
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Finally we compute the pure ghost terms, and we save some trees by not adding the

symmetric terms already listed:

Fy' =N§ = 7, (2.138)
Ft =0, AP AL = P4 (2.139)
Fpp =wad AN = Fpy, (2.140)
FA =)Bo;A40 = F A (2.141)
FAA )\BAPAAL — pAA (2.142)
F5' =Nj = F7, (2.143)
where we have defined

Add =i ACnCAfL fL g, (2.144)
NE =08 Al (2.145)
NE = \PAM (2.146)

2.C.3 Green functions

With all the previous results, we begin the computation of the Green’s Functions as a power
series in 1/k. We follow the prescription given in ([2.52)). The Green functions are presented

order by order, which makes the reading easier.

The only contributions of order 1/k come from the ghosts propagators

27 1
Gi :ﬁié‘]‘f =G 4, (2.147)
A 2T 0 g A
B B B



2.C. COMPLETE SOLUTION OF THE ... 41

For the 1/k? terms, we have a contribution from the non-ghosts propagators

2 1

S TMEKA (2.149)
G e (2.150)
and another from the ghost interactions
B i CrH B 2 1 op B
Gyt =— = (FL°GF) = TV = G, (2.151)
1 A 2 1 . 2
Chad =~ 73 <FACG1CA> = —ﬁwwswgflﬁf = Gyia (2.152)
B__U(pén B\ _ 20 1 Si,BB_ B
Goa == A (FA Gie ) = @WWBA Aga =Gaa (2.153)
B _ 1t B ~C 2 1 4. BB _ ~B
GQ A _E (FOG1 A) - §|k|2)\ BAAA G2A’ (2‘154>
GBB 1 FBCG B\ _ _Q_WL)\AS\AABB _ GBB (2 155)
2 T ¢ ) = R2 |k|? AA T T2 )
B__t(pen B\_201 B B
G, __E<FA Gm) = mENi=G6Y ) (2.156)

At order 1/k3 we have interaction between the non-ghost fields. We organize these terms
in the same order as in the previous section, when Gprqg = cGaqp, with ¢ = +1 we only list

the first term.

Using the given prescription, we find that the G§* terms are

2 i Jm

6 == i (Fa6’) = = G G Fmas™™ ™ 2.157)
Gy =— % (FaGy™) = —%U{%%”Bfnd@nmnm” = =Gy, (2.158)
G5 =— % (F63G5d> - %# <N7 * N?> Fiaan P = G5°, (2.159)
65 =~ 110 (PAGP) = 2 Lk s = i, 2161
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a nad B . 2r 1 ‘]1 R as N
Gya=- BE (FBdG1 A) SRR wpAf 5a1™ = =Gy (2.162)
ak B
oB 1 A BY) _ 2m i Jl YA 4 B ab __ Ba
e (Fic.s) - RRE R Adsall™ = G (2.163)

For the G7"* terms we find

o nmp T 2m 1 N’ NZ n
mn /8
mdé n ad 2 1 J ad mn am
G = — e (FanG5®) = Rk fmﬂn = -G (2.165)
(PGB )——Q—WLﬁw AR = =Gy (2.166)
3A— |]€|2 Bn™~1 A) — R2|k|2 3 BAYL npl - 3A > :
mB nmn A B 27T Z Jp mn __ Bm
m 3 o2 1 Jg ) "
G3 A ’MQ (FBoc 1 A) R2 ‘k‘z k EAA npn G3A ) (2'168)
mB __ 77mn A BY _ 2m 1 ‘]2 A4 B mn __ Bm
G5 = — T (F@GM > = EW?A Ay npll T -Gy (2.169)
The G$* terms computed are
&b 2r 1 JY i
57 = TN - — fmagn 0’ (2.170)
adh : _B
_n B 2 1 Jy B ad &
54= |k|2 (FBdGl A) = —EWTWBAA 3T = —Gsy', (2.171)
4B _77CYCY A 27T Z J3 Ag B L ad _ Bé:
é _77&& B 2m 1 Js N B a& _ b
G3 A _W <FBaG1 A) R2 |k]2 L BAA ﬁan - _G3A ) (2'173)
azp =1 (Fic,F) = 21 i Sig 8 s e (2.174)
TR\ A ) T TR R g Al = 7hs :

(2.175)



2.C. COMPLETE SOLUTION OF THE ...

The G3 with only ghost indices are

2r 1 1 S Aa A A z A
Giac = — ﬁ_\kPZwaD)\AWB [A%Agg - AﬁCBAgﬂ )
o2m 1 - N ~ 2 1 1 LA 5 A A z
B __ D D B CyA A~ DB ABC _ ADC ABB
Gsa RIS <5A8_NA>ND+E_‘M2ZWD>\ Awp [AAC‘ACA Aidce
2r i 1/ p=  op . oaBB 2m i1 5 BB
Gsad =~ 12 k|2 k <5A8 a NA) wspApi ~ T !kI2EwaBNA A
s 2m i 1/ s o ci.pp 2T i1 i . pf
B D D A BB AnrB ABD
34 :EWE <5A5—NA>WB/\ AgA‘ﬁWEWB)‘ NpAua
o2m 1 _ A ~ 27 1 1 S A : : >
B _ B B D CyVA~ DC ABB DB pBC
G5 4y =753 73 <5D3+ND> Ny + 5 omswpA A wp |:AAAACC‘ - AACACA] )
R R kPR
GBD _2m i 1/\A/\0;\AA . | ABC gDB _ gBB 4DC
ST RRPR “B |[“aiftce T factica o
omi 1 - s 2m i1 5 BB
B B B A~ BB A~ D BB
SA:ﬁZW (5D6+ND)/\ WBSAAA‘FﬁWE)\ WB’NAAAf)’
; omi 1 - ci.pp . 2T i 1 uci B o BE
BB B B A\A ABB A\VYAANTB ABD
Gy :_EEW <5D3+ND>/\ A AAA+ﬁW%)\ AN AL
2 i 1 b b . aBB 2m 11 .ph BB
Gyia “RETRER (—‘5,43 + NA) wpwp A7 — R R g sl Apis
o i 1 : : s 2m i1 5 5
B __ D D A~ BB A~ B ACB
T e ATRER® <_5A8+NA) NMosad — et CsNeAai
o i 1. . 5 B 5 (COF
Gyac “RKP EwéwaAwB [Aingg - A?EA%} =
: om i . N g 2w i 1. . N, :
B __ D D B ~ CyA BD 2CB CD
Coi® = - 5 (—5A8+NA>N13 + e Vs [AcAAAé—AAAA
s 2 i 1/ g N cAdamp 2m i1 4. :
B __ B B A ABD Ana7C ABB
GSA _§—|k|2z <5ﬁ6+Nﬁ> CUB)\ AAA + EWZU)B}\ NAACA’
: om i 1/ g N\ Acioamh 2T 01 4cie :
BB __ B B A\VA ABD AYAATB ACB
G = = G (50+ NE) WA o+ i VN AT,
; 2m 1 ; ; L 5 BI 5 OB
B B B D ~ YCHVA CB ABD BB ACB
G i=Tas <5[)8+ND>NA T RWEE pA” A wa [AAC‘ACA —Acé Al
qBb 27 1 1gagena, [40B 48D _ 4BB 40D
3 _ﬁ‘kyzz WB | A i%ce — Acattac |

The 1/k* terms are needed when we compute terms with two derivatives. Si

43

(2.176)
(2.177)
(2.178)
(2.179)
(2.180)
(2.181)
(2.182)
(2.183)
(2.184)
(2.185)

(2.186)

55
cc |’

(2.187)

(2.188)
(2.189)
(2.190)

(2.191)

nce we are
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not computing anything with two derivatives and at least one ghost field, we don’t list those

Green’s functions. The G§* terms are:

" ar 1 ).Jm Jm N i Th 7D mn\ , ad, B3
i TR kPR (&]2 fmap + I N [fwdfmﬂé - fwamﬂd} 0+ I35 fmantogen ) n*n”’
2 1 1,-., Lo =
+ EW <§8J2 fm&B + §J{LJ19J (fiudijB - fiu&fjuﬁ>
LB N B\ pad 66
am 27 —1 5,77 78 nri Pq o mn,_ad&
G :ﬁ ’k|2]_€2 [&73 fndB + 3N (fpagfmqn + fnﬂBfi#dn )] n"™"n
2r 1 |1 -5 =3 1 - . 3 )
+ T [g (3015 +017) fa = 5N + NID) (Fipn o™ = Fianfoan™)

1 - - . 1 - - - .
=5 BT+ 3T fisainpg” — 5 |38 + 57 5] fnaufpd,m“’“‘} 0,

(2.193)
ad _27T 1 aNz R NzN] R i a,@’ Bé
4 _ﬁw%z - fiﬂﬁ_ fmﬁfjﬁﬂn non
2 1 .y Ny 1 i sa
2 k2R [—31\7 figg =N N]fmfjﬁm““] o’
2 1 iN 4 NI pii | L gm i
+ EW B <N N’ + NN > fiuﬁ‘fjﬂﬁn + ZJQ ']2 (gfmuﬁfnﬁﬂ + fnuﬁfm3ﬂ> n
1 T mn ij 12 s mn ij af, Bé
s (Sfm#ﬁfnﬂﬁn - fmgfmw]) - (fmuﬁfnﬂén + 3fw5fmﬁgj)] n*ne.

(2.194)

The GT* Green’s functions are

mn 2m 1 3 NTE i NT] rs| , ng, m
CTY4 :ﬁ |k’|2];32 [aN fipq - N Nj.firpfjsqn ] n q77 P
2m 1 i i N\TJ rs] . ,ng, m
M R2? |k[2k2 [ON" fing = N'NY firp fjsqn”™| ™0™
2 1 mpng i NTJ J ATt rs 1 T TS i
+ ﬁwn n o <N N’ + NN ) firpfjsqn + 5‘]2 J2 (firpfjsq + firqusp)g
(T TS (f Foap + foos ) 0 (2.195)
2 qaBJ paf paBJqap )
de :2_7T 1 —8JB JﬂNz ) Pq 1) mn, ol
4 R? |k|2k? U Jnap + J1 (fwnfqaﬁn + frusfipan ) nom
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2r 1 1/ - _ _ . X
+ R_ZW [—g (3077 + 077) fuas + 5 (N'T? + BN ) (Fipm faasn™ + Fiog Fapun™)

1
2
1 -4 = _A . 1 -3 - A . .
45(&@ﬁ+5gﬁjﬁw@mﬂ—é(a@@+&£ﬁ)ﬁwﬁﬁwﬂnMWW

(2.196)
Finally, we list the Gi‘B term
G = g 0 Fas + PN G ion = L i) W+ T b ™)
+ %ﬁ [%W?fmaﬁ + %J:fj:f (finaios — fingfivag”)
+%QW@%4Wgﬁpmmﬁw—ﬁmJMﬂWﬂnwW@ (2.197)

The reason we don’t compute terms such as G¢™ is that we can deduce their contribution

from the relation (0X0X) = 0(X0X) — (X00X), as explained in section 2.

2.C.4 Pairing rules

We split the current in its gauge part Jy and the vielbein K:

J=Jo+ K, (2.198)

K =Jy+ Jo + Js. (2.199)

We also join the quantum fluctuations into a single term

X = 1+ X9 + 3. (2200)

The following is the list of all divergent parts up to two derivatives. The order of the
results is: first terms with no derivatives, then the currents, then one X with one current, and
finally two currents. Finally, we list the pairing rules involving ghost fields. The definition

of T in this appendix is I = —1/(2R%).
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The non-vanishing terms with no derivatives are the ones given by the first term in the

Schwinger-Dyson equation:

(x1,23) = =T Tan™® and (9, x9) = T Tun™".

Now we show the divergent part of the currents:

() ={K) = (N) = (N) =0,
(o) = = 5 (LN, Tal, Tl — {IN, T, T + [N, Tl TJ™)
(o) = — 5 ({18 Tl T — {19, Ta), Tad™® + ¥, T3, Tolo™)

For one X with one current, we find that the simplest current is Jj

(X, Jo) = — I[K, T;]Trg"%,

<X> j0> - - I[Ka T’]]Tkgjka

for the other currents we find

(9517 J1> = - I[JQ;Td]Tanada <9C2, J1> = I[J:),,Ta]Ta??M, (»Ts, J1> :I[N, Td]Tana&a

<x17 jl) :07 <£l:2, jl) = 07 <.7/'3, j1> :I[N7Td]Ta/’7a&7

<.§L’1, J2> = — I[J3, Tm]Tnnmn, <$2, J2> = I[N, Tm]Tnnmn, <SL’3, J2> :O,

<$1, j2> :07 <$27 j2> = I[N7 Tm]Tnnmn7 <fL’3, j2> :I[jla Tm]Tnnmn

(21, J5) = — I[N, T|Tan, (29, J5) =0, (23, J3) =0,

(901, js) = - I[N,Ta]Tdﬁad; <$27 j3> = I[tha]Td??M, <$3, j3> ZI[jmTa]Td??a&-

(2.201)

(2.202)

(2.203)

(2.204)

(2.205)

(2.206)

(2.207)
(2.208)
(2.209)
(2.210)
(2.211)

(2.212)

Now we show the divergent part of two currents. The first group are the (Jy, ) terms:

(Jo, Jo) =1[J1, Ta)[J3, Ta]n®® — 15, Ta) [J1, Ta]n™® + 1[Ja, T [J2, Toln™,

(2.213)
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(Jo, 1) = = I[J1, Ts][N, Taln®® — 1[J3, To][Jo, Taln®® + 1o, Tl [Js, Taly™,  (2.214)

(Jo, 1) = —1[Jy, Ts] [N, To]n™®, (2.215)
(Jo, Jo) = = 1[Js, To][Js, Taln™® = 1[Ja, T[N, T]y™, (2.216)
(Jo, Jo) =1[J1, Ta[Jy, Taln™® = 1[Jo, T [N, Tuln™, (2.217)
(Jo, Js) =1[Js, To][N, Ta]n, (2.218)
(Jo, J3) =I[Js, T[N, Taln®® + I[Jy, Ts)[Jo, Taln™® + 1o, Ton] [J1, To]n™. (2.219)

The (Ji,-) terms are

(Ji, J1) = = 1([Jo, TN, To] = [N, To][ 2, Tal) 0 + [, Tl [ 3, Tln™, (2.220)
(J1, J1) =0, (2.221)
(i, 1) %[3J27 Ta] Ton™ + ([Jl, T ) + [, T, Th) 97 (2.222)
+ % (—[JQ, TA)[N, T.] — [Jo, TAJ[N, To) + 3[N, To) [ 2, Ta] — [N, To][ e, T&]> n°e,
(Ji, 1) = [&72, Ta] Ton™ + ([Ju T ) + [, T, ) 97 (2.223)
+ é (=1 TallN, o] = [, T, Tl 4 38, T, ol = [V, Tall 2, Tl )
(Ji, Ja) =I[N, To][ T2, Taln™® + [ J3, Tl [ S5, Tlf™, (2.224)
(J1, J2) =0, (2.225)
(Jy, Jo) :é[&san—an, T ™ é(11[J2,Td][J1,Ta]+5[J2,Ta][J1,Ta])nad
+ 5 (U T T + 30T T3]) o = 5 (IN U, T + (9, 2] s, Tl )
é (3[j3, T[N, To] — [Js, Tl [NV, Tn]> e, (2.226)
(J1, Jo) = é[:aajg + 03, Tr) Tf™ + %I ([J2, Ta)[J1, To) = [J2, Ta[ 1, Tw])
44 (L TR T 4+ 810 T T 6 — 3 (3N Tl Tl — (9. Tl 7] )
% (15, T[N, ] + [, Tl [N, T ) ™, (2.227)

(Ji, J3) = = 1[N, T.][N, Ta]n?, (2.228)
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(J, J3) = = I[N, T,][N, Ta]n®, (2.229)

+ ! (3[J2, Ta[Js, T,) + 5[ o, Ta|[J2, Tu]) 0

() = = 1IN, TUIN, Ta] 4 [N, T[N, Ta]) 0 +

43 (5L, Tl Tl 4 85, Tl T) ™ 5 (1, T, T3] 4 310, T, ) o,

(2.230)

() = = 1 (1N, TR, Ta] 8 TN Tl ) 0 = 5 (1o, Tl o, ol = L Tal 2 Tl
DT~ D BT 7 4 (T ]+ 800 T ) 6.

(2.231)

We present the (Js, -) terms before the (.Js, -) due to their similarity with the (Jy,-) terms:

(Ja, Jo) =0, (2.232)

(J3, o) = = I[N, Ta][Jy, Ta]n®® — I[Jy, To] [N, To]n™, (2.233)
I - Ry .

(Jo. Ja) =5 (501, = O, T Tr™ ([Jl,Tm] [N, T,] — 3]y, ][V, m) n

b5 (9T, T 1N, Tl o) 0 4 g (30 T, T3] + 515, T, T3) o
— é (5[, Tu][J5, Ta] + 11[ o, T0] [ 5, Ts]) 0, (2.234)
(Jg, Jo) = é[?)&h + 001, T Tn™ + % (70 T[N, ] + [0, Tl [N, T )
5 (BUV Tall, Tl = [Nl Tl ) w7 + (3L, Tl T3] + 515, T T) 6
U T L] — U T Tl (2.935)
(Js, J3) =0, (2.236)
(T, Ja) =1 ([JQ,T I[N, Ta) — [N Tal o, Tl ) 0% + 1L Tl [, Tl ™, (2.237)
(o J5) = = 105, Tl Tan™ + 5 (1 T, T+ 1o, T, T]) o
% (=13, Tall o, o] = [ Tl Tl + 30, T[N, Tal — L, TR, Ta])

(2.238)

(B, Jo) =350, TulTar™® + 5 (195, Tl s, T3 + 1, Tl Ti) o
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I _ N _ N .
+ 3 <—3[N, Tsl[Jo, To) + [N, T4][Jo, To] + [J2, TA][N, T + [J2, To][N, T@]) n-e.
(2.239)
Finally, the remaining (.J,, -) terms:
(Jo, Jo) =I[N, T,,)[N, T, ]n™", (2.240)
(Jy, Jo) =I[N, T, ][N, T,Jn™, (2.241)

(o o) = = 1 (IN. Tl 8 L) 4+ [N, TN L) 0 4 5 (s, T, T + [, T2, T)) o

I _ _ - - .
3 ([J1, Tu)[J3, Ta] — 3[J5, Ta)[J1, Ta] + 3[J1, Tu)[J3, Ta) — [J3, Ta)[J1, Ta]) n°°,
(2.242)
_ o A I - - .
<J27 J2> =—1 ([Na Tm] [N7 Tn] + [N7 Tm][N7 Tn]) 77mn + 5 ([J27 E][J27 1—"7] + [‘]2) 7—‘l][J27 71]]) gZ]
I - _ _ _ )
+ 5 ([J5, Tal[J1, Tu] = [0, Tol[Js, Ta] + 3[J1, Tu)[J3, Ta) — [J1, Tu)[J5, Ta]) n°.
(2.243)
The terms involving ghost fields that have vanishing anomalous dimension are
(X, N) = (X, N) = {w,2) = (@, A) =0, (2.244)
(W, J) = (N J) = (@, J) = (\, J) =0, (2.245)
(w, Jo) = (N, Jo) = (@, Jo) = (A, Jo) =0, (2.246)
(w,N) = (\,N) = (&, N) = (A, N) =0, (2.247)
(J,N) = (J,N) =0. (2.248)
The expressions involving two ghosts and no derivatives are
(w, ) = —Tlw, T[X, Tjlg", (A @) = 1\, T @, T))g”, (2.249)

(w, &) = —Tw, Ti][@, Tj]g”, (A A) = =T\ TN, Tylg”. (2.250)
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For one ghost and one current, including the ghost currents,

(w, K) = —1lw, T [K, Tj]g", (@, K) = —1[&, T[K, T;lg",
(A K) = =1\ T[K, Tj]g", (A K) = =T\, TH[K, Tylg”,
(w, N) = = I, T[N, T}]g", (@, N) = —I[w, T[N, Tj]g"”,
(A N) = =1\ T[N, Ty)g”, (A, N) = =I[\, T[N, T;]g".

Finally, the terms with two currents, with at least one ghost current:

<R7N> = _I[I_(vTi][NaTj]gija
<K7 N> = I[Kv Ti][NaTj]gija

(N,N) = —1[N,T,][N, T;]g".

(2.251)
(2.252)
(2.253)

(2.254)

(2.255)
(2.256)

(2.257)



Chapter 3

Supertwistor description of the AdS

pure spinor string

3.1 Introduction

The superstring sigma model on AdS spaces is usually described in terms of the supergroup
coset PSU(2,2|4)/SO(1,4) x SO(5). The classical Green-Schwarz and pure spinor formu-
lations are both well understood in terms of this coset. However for some applications, the

usual exponential parametrization of the coset elements becomes cumbersome.

In [46] Roiban and Siegel introduced another parametrization for the AdSs x S° coset in
terms of the supergroup GL(4|4). The usefulness of this new formulation is in the fact that
the coordinates can be represented in terms of unconstrained matrices. Furthermore, the
coordinates transform in the fundamental representation of the superconformal group, like
supertwistors.

Depending on the application intended, different sets of coordinates are more useful than
others. In the same way that global AdS coordinates and Poincaré patch are useful for
different applications. This also extends to the full superspace, e.g. chiral vs. nonchiral. The

construction of explicit vertex operators for string states depends heavily on these choices.

o1
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Since the beginning of the formalism vertex operators for AdS have been discussed [81]. The
first nontrivial example was introduced in [69, 82]. Further developments can be found in
[70, [72]. The most complete description in the case of supergravity states was given in [71].
In this work the authors show that the ghost number two cohomology can be written in
terms of harmonic superspace and a direct dictionary to the dual CF'T single trace operators
was obtained. The derivation is very lengthy due to the usual exponential parametrization
of the coset elements. As advocated by Siegel [83], those results could be simplified using the
GL(4]4) description. This is one of the motivations to adapt the pure spinor formalism for

this new coset. In this paper we will describe in detail how to achieve this.

This paper is organized as follows. In Section 2 we describe the coset and its basic
properties. In Section 3 the symmetries of AdS are discussed in terms of the new coset.
The full pure spinor superstring action is constructed in Section 4. In Section 5 we make a
few comments on the construction of the vertex operator related to the S-deformations. In

Section 6 we conclude the paper and discuss future lines of investigation.

3.2 The GL(4]4)/(GL(1) x Sp(2))* coset

Roiban and Siegel proposed a description of the AdSsx S® sigma model in terms of a coset that
can be described by standard matrices [46]. The observation is that the PSU(2,2[4) group
is a coset by itself (not caring about reality conditions) GL(4]|4)/(GL(1) x GL(1)), where the
two GL(1) groups are defined by scalar multiplication in the upper and lower blocks. Note
that the super-determinant is invariant under the action of both GL(1)’s combined. Up to
reality conditions (i.e. signature) AdSs x S® can be described byE]

GL(4]4)
(GL(1) x Sp(2))*

(3.1)

In our notation Sp(n) describes 2n x 2n matrices, e.g. Sp(1) ~ SU(2).
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Note that Sp(2) = Spin(5) (under Wick rotation, Sp(1,1) = Spin(1,4).) Since we have a
model with spinors, it is much more natural to work with groups where the spinors transform

in the fundamental representation.

The coset elements are denoted by Zy,“ where the local A4® (GL(1)x Sp(2))? transforma-
tions act on the right by simple matrix multiplication. The index M is a global GL(4|4) index.
We divide both indices under bosonic and fermionic elements M = (m,m) and A = (a,a).
The Sp(2) invariant matrices will be denoted by €, and €,;. There are analog matrices
with indices up, which will be denoted by the same symbol. They all satisfy (22 = —I where
I is the identity matrix with appropriate indices. We will omit explicit indices most of the

time, only making them explicit when necessary.

The left-invariant currents (invariant under global transformations) are defined by

JuP = 2,Md 7,7, (3.2)

where Z,M = (Zy )7L

A variation of the group element Z around a background Z; is given by

602y = ZyB X, (3.3)
where X 5?4 is given by
Xp* 0,
N (3.4)
@Ba Y;;a
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Since these conditions do not imply that X and Y are traceless, we further impose

TrX =TrY =0. (3.6)

Doing this, we ensure that we work only with variations that are orthogonal to the gauge
group.

We want to relate the elements described with the Roiban-Siegel formulation and the
ones in the description using the PSU(2,2|4)/(SO(5) x SO(1,4)) coset for the pure spinors.
Our notation is closely related to the one adopted in [28]. By construction, it is not hard to

see the equivalence between Z and the element g € PSU(2,2|4)/(SO(5) x SO(1,4)),

NS
I
N

(3.7)

In order to establish the equivalence between the content of the current in both formalism,

we first identify the gauge content in our matrix formalism. Writing the block components

of J as

Ix K
J= , (3.8)
K3 JY

we split the diagonal elements into three irreducible components using the Sp(2) metric €.

Define for a matrix M,’ its three irreducible components,

(M) :% (M —QM™Q] - }lﬂTrM, (3.9)
(M) :% [M +QM™Q] | (3.10)
Tr M. (3.11)

Usually, for any matrix, one can split it in its antisymmetric, its symmetric traceless and its

trace part. Here (M) is the Q-antisymmetric, Q-traceless part of M, (M) is the Q-symmetric
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part of M, and of course TrM is the (2-trace of M. Using those independent structures, we

can separate the element of J (3.2) that are pure gauge. we will define

1

KX = <Jx>, AX: (Jx), aXZZ_LTrJX7 (312)
1

Ky == <Jy> s Ay = (Jy) s ay — ZTTJY . (313)

Ay and ax are Sp(2) and GL(1) connections respectively. By definition,
JX:Kx+Ax+I[ax. (314)

By checking its transformation property, we can now relate the diagonal elements in ({3.8])

with the gauge part of current in the psu(2,2[4) algebra,

. Ax +lax 0
Jy = : (3.15)

0 Ay —+ I[ay

The rest of the bosonic components are related as,

J3t = : (3.16)

Before we continue, we have to make clear that the (-) and (-) operations need to be
treated with care when there is a product of fermionic matrices. Take two fermionic matrices

A and B, is easy to see that

Tr (% [AB — QBTATQ] — i]lTrAB) = -TrAB #0, (3.17)

Tr G [AB + QBTATQ]) =TrAB #0. (3.18)

The solution to this problem is to add a (—) sign when transposing fermionic matrices. Thus,
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for a product of two fermionic matrices A and B, our three irreducible components read

(AB) :% [AB + QBTATQ] — }l]ITrAB, (3.19)
(AB) :% [AB—QB"ATQ] and TrAB. (3.20)

It is not so obvious how to relate the fermionic part of PSU(2,2|4), J& and J¢, with the
nondiagonal terms in (3.8)), K7 and K3, because they do not have the right Z4 charge. The

matrices which do have the right Z, charge are F} and F3 which define K; and K3 as

1 1
Kl = E (Fl — F;) E_1/4 and Kg = E (Fl* + Fg) E1/4, (321)

where
Fr=QFQ,  F;=QFQ, (3.22)
and F = SdetZ. Now the identification is

Jr=F J)=F;. (3.23)

Following the same idea, we define the Os as functions of elements with the right Z,

charge,

1
V2

1

© NG

(0, — ) E7V* and ©' = — (67 +65) V4. (3.24)

In the same way as we related the components of the currents generated by g and Z, we

can relate variations of g and Z by

m = , (3.25)
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xy =0y, (3.26)

ry =05 (3.27)

It is easy to check that there are the correct number of bosonic and fermionic variations.

Finally, we need to define the ghosts fields that are essential for the construction of the
BRST operator. We define the right and left ghost, along with their conjugated momenta,

as \ @

a )

W, A%, @,%. The indices in the ghost terms are such that A has the same indices
as Fy and X the same as F3. The crucial point to construct the right BRST operator is the
pure spinor condition for A and \. Originally, the pure spinor condition was written in term

of gamma matrices [20],

(AN = (MA)" =0, (3.28)
which in turns implies
)‘a/\ﬁ :m’ygjwpq ()\,Ymnopq)\) ) j\oc/_\ﬁ = m’yggwpq (vanoqu\) : (329)

These constraints reduce the elements of A (\) from 16 to 11.

The pure spinor constraints in this matrix formulation read

AN =0,  (A"A) =0, (3.30)

OX) =0, (VA =0. (3.31)

One can check that there are actually 5 constraints for A(A). Therefore,, our ghosts have 11

independent components, as expected. In a similar way to (3.29)), (3.30) implies

- 1 . o L
AN = — 1—69aanbtr AT+ A" A" + Ay (3.32)
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and a similar condition for the As. Note that

A = AT = A OAY (3.33)
and the same is true for ().

The ghost Lorentz currents are defined as

(Aw — w* "), Ny = = (@A = X'@") | (3.34)

(WA — XN'w") | Ny == (Aw —0*\") . (3.35)

These definitions ensure that the N and N terms transform as a gauge term.

Now we can make the identification between the ghost fields in the two descriptions:

We =W, Ws =, =D A=A, (3.36)
. Nx 0O . Nx 0
N' = and N'= B . (3.37)
0 Ny O NY

3.3 Symmetries of the AdS Space

The main aim of this article is to write a BRST-invariant superstring action embedded on a
AdSs x S° target space in this formalism of unconstrained matrices. Since such action has to
be invariant under the symmetries of a AdSs x S® space, we first proceed to understand how
those symmetries act in this formalism and then we find the structures that are invariant

under such symmetries.
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3.3.1 Local

A local (gauge) transformation is given by

IXx o

oZ=2L+7| * , (3.38)
l
0 Ik
where
Ly 0
L= . (3.39)
0 Ly

and (Lx;y) = Lx/y. The constraints for the L matrices restrict them to be in Sp(2) x Sp(2),
and the [x and [y are the remaining terms of the stability group.
Thus, a local transformation on the current reads,
Jy K [Jx,Lx] +0Lx + 125 KLy — Ly K, — K%~

or = . (3.40)
Ky Jy K3Lyx — Ly K3 + K325 [y, Ly] + 0Ly + 12

Using that Ly Kx = QLY KO we find

5. Kx = [Kx, Ly] | 51Ky = [Ky, Ly] , (3.41)
0pAx = [Ax,Lx]+ 0Lx, Ay = [Ay, Ly + 0Ly , (3.42)
opax = Olx, oray = Oly , (3.43)
S F, = —LxF, + Ly F,, 5. Fy = —LyFy — FyLy, (3.44)

which is expected due to the coset properties.

The first invariant structures that we find are

5Ltr [Kxffx} = (5Lt1‘ [Kyf(y] == (5Lt1" [Klf(g} =0. (345)
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The first attempt to construct a Wess-Zumino term will be to use [K1K7j] and [K3Kj].
Note that the trace acts on two different spaces. It turns out that those structures are not

invariants:
5L InTr [Klkf] = _5L InTr [Kg[_(;:] = -2 (ZX - ly) . (346)

To solve this issue we note that 6, E = (Ix —ly) E. Therefore the right local invariant

structures are

optr [ K{E'Y?] = optr [KK5E7'?] = 0. (3.47)

Since we are equipped with a gauge transformations we can define a covariant derivative,

VZ =07 —ZA— Za/4, (3.48)
where, as expected,
A 0 la 0
A=| " . oa=| , (3.49)
0 Ay 0 Hay

and (Ax/y) = Ax/y.

Since [I, A] = [l,a] = 0, is straightforward to show
0.VZ =VZ (L +1/4) . (3.50)

This is the expected property for the covariant derivative. Finally, just to make everything

explicit

VZ1'=0Z"+AZ +aZ/4, (3.51)
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VE=0. (3.52)

The covariant derivative of the global invariant current is

VJ =0J - [J,A + %a}

d0Jx 0K
0K; 0Ky (3.53)
N [Ax, Jx] AXKl_KlAY‘Fi(aX_aY)Kl
AxKg—KgA —}l(ax—ay) Kg [Ay,Jy]

Thus, for the F's matrices we obtain

VFl :3F1 + AXFl - FlAy, (354)

VFg :3F3 + Ang — FgAX . (355)

For the ghosts we require that \, @ behave as Fy, and )\, w as F3. The local invariance of

tr [w?)\} and tr [@Vﬂ requires that

(5L)\:—Lx)\+)\Ly, 5Lw:—Lyw+wLX, (356)

SpA =— LyA+ ALy, S =— Lx@+@Ly . (3.57)

3.3.2 Global

As stated above, the currents J are invariant under global transformations

5aZ =MZ, (3.58)
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where M is any global matrix. The ghosts fields are, by construction, invariant under global

transformation, i.e.

dc(Ghosts) = 0. (3.59)

If we compute the global transformation under all the terms constructed above, we find

that neither [K;K;EY?] nor [K3K;E~"/?] are invariants for a general M:
_ _ 1
%mTquﬁWﬂ:—@mﬁpg@E%ﬂzimmm (3.60)
Therefore, we require

STrM = 0. (3.61)

3.4 BRST transformation and BRST invariant action

In [46] the relation between the G L-formalism with the PSU-formalism constructed in [77]
of the Green-Schwarz superstring was established. So far we have established a relation
between the elements of the pure spinor string [26] in both the G L-formalism and the PSU-
formalism. We have also found all structures invariant under the global and local symmetries
of the AdSs x S° space. In order to construct an action for the pure spinor superstring, we
are missing one important ingredient the BRST operator. Below, we will establish the BRST
symmetry and then find a BRST invariant action. Before doing so, we will review the BRST
symmetry in the PSU-formalism. Then we will construct the BRST symmetry for the GL-
formalism and construct the BRST invariant action, using the previous construction as a

guide.



3.4. BRST TRANSFORMATION AND BRST INVARIANT ACTION
3.4.1 PSU-formalism
The BRST transformation for the group element is given by
edpg = ge ()\—l-;\) )
When acting on the global invariant current we obtain,

eéBJzae()\—i-;\)—i- [J,e()\—i-;\ﬂ :

It is useful to write the transformation for the different Z,-elements of the current,

Oy = [Jl, e;\] 4 [Js,eN]
SpJy =Ve + [JQ,EX} ,
edpdo =[J1, €] + [J3,65\] ,

dpJs =Ve+ [Ja, €N ,

63

(3.62)

(3.63)

(3.64)
(3.65)
(3.66)

(3.67)

where, as usual, the covariant derivative is defined as V = @ + [Jy,]. The X and A ghosts

are invariants under the BRST transformation, but not the w and @. Thus the BRST

transformation for the ghosts is given by,

€dpw = —J3¢€, eopA =0,

edpw = —Ji€, 6(535\ =0.

The ghosts currents were already defined ag’]

N ={w, \} and N = {@,5\} :

2There is a minus sign of difference between our definition and the definition in [28].

(3.68)

(3.69)

(3.70)
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Their BRST transformation are

edpN = — [J5,€)] and dpN = — [jl,ES\] . (3.71)

In order to prove the BRST invariance of the action we will use the Maurer-Cartan

equations. They read

&70 - 5]0 + [Jo, jo} + [Jl, jg] + [JQ, 2] + [Jg, 1] = 0, (372&)
Vi = Vi + [ o, J5] + [, 1] =0, (3.72Db)
VJQ - ng + [Jl, 71] + [Jg, 73] = 0, (372C)
VJ; = Vs + [, o] + [, 1] =0. (3.72d)
Now we can show that the action
o [1. - 1 - 3. _ .
SPSU = /d 2tr §J2J2+ZJ1J3+ZJ1J3+MV)\+WV)\_NN s (373)

is BRST invariant.

Applying the BRST transformation given by (3.64)-(3.69)) to (3.73]) we obtain,

€0pSpsu _/dQ,ztr {% ([Jl,G/\] + [Jg,(—:j\D Jo +% ([jl,G/\} + [jg,e;\D Jo
+ i (VE)\ + |:J2,€5\:|> Js + ijl (?ES\ + [J_g, 6)\]> + Z <?6)\ + |:j2, 65\]) Js

/)

TN ] +6 ([, ed] 13 X A] 4 [, X W 4+ N [T, 6h]}

>

F20 (VA Lo, e]) — J5eVA — VA +w[[ 1.

= [z {% (Vs — Vo + [T 1] — [0, B))
+% (Vj1 ~VJ + [JQ, jg} + [Jg, jQD — €A [N, j3j| Y []\Af, Jl] } .

(3.74)
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Using the pure spinor condition ({3.28)) and the Maurer-Cartan equations (3.72)) in the

second equality, we can easily show,

€6BSusua1 =0. (375)

Before ending this section, we note that (3.62]) is not actually nilpotent,

€6pe'dpg = ge AN+ AN+ {\, A}) . (3.76)

Using the pure spinor condition (3.28) we can see that d4 ~ {\,A}. Therefore the BRST
transformation is nilpotent up to a gauge transformation. The reason for this is that we are
ignoring the BRST transformation for the ghosts. It was shown by Chandia in [84] that in
a general curved space the pure spinor ghosts acquire a nonvanishing BRST transformation.
The case of AdS background was discussed in more detail in [85]. It is straightforward to

adapt these results to the present case.

3.4.2 (G L-formalism

Now that we are familiar with the original BRST procedure, we can construct the right BRST

. ) . . . GL(4]4)
transformation and the BRST invariant action using a CLO)<Sp@) coset. Our ansatz for
the BRST transformation of Z is

€5BZMA == ZMBGABB E5BZAM = —EAABZBM . (377)
At first one would expect a A of the form
0 A
A= ) (3.78)
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But a quick computation shows that ¢% is not 0, nor even proportional to a gauge term. A

correct form for A is

0 A
A= . (3.79)
A3 0
1 _
AN =——(\=\)EY, 3.80
(=X (350
1 _
A3 =—— (N + \) EV*. 3.81
3 \/5( ) (3.81)

This is of the right form since we want that edgIn E = STreA = 0, and also that 6% ~ gauge,
as discussed at the end of the previous subsection. Also, the form of A; and A3 are such that

X and A transform as Fy and Fj, respectively.

The transformation for the global invariant currents are

e6pKx =(FLeX" + eN*F3) (3.82)

€0pAx = (Flej\ - €>\F3) , (3.83)

e0pKy =(Fye) + eAFy) (3.84)

e0pAy = (Fge)\ — ES\Fl) , (3.85)

E(SBF1 =VeA + EE\*KY - Kx€5\* y (386)

edpFy =Vel — eN*Kx + Kye\*, (3.87)

and for the ghosts

edpw = —ely, edpA =0, (3.88)

edpw =€, F, edph=0. (3.89)
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Finally, we are able to show that

~ |1 — 1 _ 1 = 3~ - - _ _
Sar, = /dzTr {ﬁKXKX - EKyKy + é_lFlF3 + é_lFlF3 +wVA+wVA+ NxNx — Ny Ny

(3.90)

is BRST invariant. Before we do that, a few comments are in order. Tr is defined in such
a way to avoid confusion on which space the trace acts on. Since tr acts in either a or a
indices, we cannot write a term like tr ()\w + 5@). To avoid further confusion, we define an
operation Tr such that Tr ()\w + 5@) means \,%w,® + A\ %0%. Note that the trace of Ky has
a minus sign, that is because STrM = My — My . Also, while e)pw has a minus sign, edpw
does not. That is because F3 is related to —J¢, and we did that only for aesthetic reasons.
Finally, in Susua the ghost current term is tr — N N , and here is TrNN. The difference in
sign is because @ is equivalent to —ws. In both actions we want that the kinetic term of the
ghost to be positive defined. To obtain that, we need to define & = —@gn**T,, and this in

turn implies that tr — N N = NiNi gi; which is equivalent to STrN N,

We are going to need the following Maurer-Cartan equation:

VF, —VF — KxFy + KxFy — F;Ky + F; Ky =0, (3.91)

VE—VF+ KyF) — Ky Ff + FfKx — FfKx =0. (3.92)

We now check that
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Applying the BRST transformation to (3.90)),

= |1 < _ 1 _ o
€0gSps = /szTr {5 (Fle)\* + e)\*Fg) Kx + §KX (Fle)\* + E)\*Fg)

(FYeX + eAFy) Ky — %KY (FTeX+ eAFy) + i (VEX + eX' Ky — Kxe\) Fy

+

N R

Fi (06 — X Kx + Kyel') + 5 (VeA + X" Ky — Kxel') Fy

1- - _ _ _ _
+ —F1 (86)\ — GA*KX + KyG)\*) — €F3V)\ + €F1V)\ + (F1€/\ — E/\Fg) NX

(3.93)

W

— <F165\ - €>\F3) NX - (FgE)\ — Ej\pl) NY + (FgE)\ — ES\Fl) Ny

—eAF3Nx + NxeFi\ + eF3ANy — Ny AeFy } .

The pure spinor condition ensures that NyA — ANy = 0 and Ny A — ANx = 0. The only

terms that survive are

1 - _ _ _ _ _ _
€03 Srs = / dQZZTr [eA(VFy — VE, — KxFy + KxFy — F{Ky + F;Ky) (3.94)

+eX (VFy — VFs + Ky FY — Ky FY + FfKx — F{Kx)] | (3.95)
which are identically 0 because of the Maurer-Cartan equation,
1 _ _ 1 _ _
SWZ = _z_l /dzztr [K;KgEil/Q - KlKikEl/Q} = _Z /dQZtr |:F1F3 - F1F3:| . (396)

As we saw in the previous section, (3.90) is both local and global invariant if and only if

the global transformation is generated by a supertraceless matrix.

3.4.3 Vectors

In [75] [74] a systematic construction of vertex operators for a supersphere sigma model was
developed. An important ingredient for such construction was vectors describing the target
spaced. The existence of such vectors describing the bosonic coordinates of the Adss x S°

superspace was discussed in [46]. It is an interesting question whether we can construct all
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the matter part of (3.90) with such vectors. We will now discuss how to obtain this. The

first set of vectors we can construct are

WMN = Zz Mo Z,N BV, Wy = Zu*QuZy"E~*, (3.97)

WMN _ g MQab g N /1. Wi,y = Zu"Qa Zn BV (3.98)

Being careful with the indices and product of fermionic matrices, the only terms that we can

construct are,

VWYMNY Wy =tr [AKxKx + 2K, K3] | (3.99)

VWMNGWy =tr [4AKy Ky + 2K3K] . (3.100)

Now we are able to construct part of the matter part of (3.90)),

_ _ I R B I
[VWYNY Wiy — VWMWY, ] =Tr K Fx = SRy Ky + 1K1Ky + 7 Ko Ky

1
8
(3.101)

In order to obtain the right factor for the K-terms, we need to introduce another group

of vectors,

UMN = Z M Z,NEYA Unin = Zni® Q0 ¥ Zy B~V (3.102)

UMY = Z MO N Uliw = Zu Qs ¥ 2 BV, (3.103)

We define AV B = AVB — VAB , and V is the covariant derivative defined in (3.48)). A
direct computation shows that the product (in this case, the STr) of any two different vectors

is always 0.
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Using (3.99) and (3.100)) we can construct,

UYN Uy =tr [-2K1K3] (3.104)

UMNU Y =tr [-2K3K,] . (3.105)

With all those ingredients, we can construct the matter part of (3.90) without the Wess-

Zumino term:

1 _ _ _ _
3 [VWMNTWrr — UMNUpas — VWMNSWL 4+ UMY O] (3.106)

1~ _ _ _ _
= §TI' [KXKX —KyKy—FKlKg—{—KlKg} . (3107)
The question now is how can we write the Wess-Zumino term of the action. First we
remember that the Wess-Zumino term is
Lwz == gt [FiFy — FIR) = St [KGKTEY? — K Ra B~ (3.108)
A quick glance to list of vectors shows that the only possible way is a product between
Ws and Us. Indeed

(—)MVWMNOL, =t [-2K, K EV?] (3.109)

(=) MVWMNT oy =tr [-2K K5 B2 (3.110)

Before we continue, a comment should be made: The product between vector is a STr between

supermatrices,

WMNW iy = STIWW. (3.111)
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The product between W and U’ should also be a STr. The product VWMN U}, - is not, since
VWMNTL L 7 Uy VWM (3.112)
The solution to this problem is the addition of the (=)™ term. Now

(MYWMNDL L, = STEVIWT (3.113)

We finally have all the ingredients to construct the matter part of Sgp, and choosing k = %,

we get

1 _ _ _ _
Lrs =g [VWHIVWiny = UMY Uy = ()WY, = VIWHETIV,

+UMNU 4+ (5)MVW MY T ] (3.114)

1= - _ 1. - 3.

3.5 An application: vertex operator construction

Following [69, [82] we will construct an operator V' such that eV = 0. To achieve this, we
will construct the conserved current j related to global symmetries of the action . Then
we will construct V' by applied the BRST transformation to j, g7 = 0V. This will be our
first vertex operator in this formalism. In future works we will try to apply the procedure

explained in sections 4.3 to the construction of vertex operators, as in [75].
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3.5.1 Equation of Motions

As usual, in order to construct a conserved current, we need the equation of motions (EOM).

To obtains such equations we will vary Z around a background field,

Z = ZyeX | (3.116)

where the components of X have been defined in (3.4]). This leads to

5] =0X +[J,X] . (3.117)
Writing this in components
5JX :aX+[JX,X]+K1@3—@1K3, (3118&)
5Jy zﬁY + [JY7 Y] —|— Kg@l - @3K1 y (3118]:))
5K1 =V®1+KX@1—@1KY+K1Y—XK1, (3118C)
5K3 :v®3 + Ky@g - @3KX + KgX - YKg . (3118(1)

Since we have written (3.90)) in terms of F} and Fj, we write the variation of those, using the

above equations:

OF, =V0, — Kx0; + 05Ky — F}Y + X Fy | (3.119)

0F; =V03+ Ky0] —O0iKx + FY X —YF}, (3.120)
and the same for the Ks and As:

1 I

1 i
5Ky =VY + 3 (F{0y — 6;Fy + 63F; — Fyf3) — Jtr (R} + 05+ F) (3.122)
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1

0Ax =[Kx, X]+ 5 (Fif + 0317 — 01 Fy — F7607) (3.123)
1

0Ay =Ky, Y]+ 5 (F3b) + 01F5 — O35 — Fi63) . (3.124)

Using the variation of the action and the Maurer-Cartan equations we obtain,

VEx + 5 (RF; — RF) - %tr FiF; + [Nx, K] — [Nx, Kx] =0, (3.1250)

VKy + % (F3Fs — F5F3) — %tr F3Fy + [Nx, Kx] — [Nx, Kx] =0, (3.125b)

VEy 3 (F R~ FF) - %tr FiFs + [Ny Ky] — [Ny, Ky] =0, (3.1250)

VEy 4 (BE - BE) - S BE 4 [Ny Ky - [Ny By] =0, (31250)

VE — KxF; + KxFy + F; Ky — F{ Ky — NxFy + NxFy + FiNy — FiNy =0, (3.125¢)
VF, — NxF, + NxF, + F{Ny — F;Ny =0, (3.125f)

VE — Ky Fy+ Ky By + FYKx — FfKx — Ny F3 + Ny F3 + Ny Fs — F3Nyx =0, (3.125g)
VF; — Ny Fs + Ny Fs+ F3Nx — F3Nx =0, (3.125h)

Vw+wNx — Nyw =0, (3.1251)

VA+ NxX— ANy =0, (3.125))

Vw — Nxw + wNy =0, (3.125k)

VA+ ANy — NyA=0. (3.125])

To obtain these equations we used the fact tr [X H]| = tr [(X)H]| = tr [X(H)]|. Thus, the right
EOM for X is given by (H) = 0.

3.5.2 Construction of V

In order to compute the Noether current we first make a few observations. The first of them
is noting that trKxKx = trKxJx, thus, instead of taking trKx(Z,MOM N Zx®), we just

take tr K x Z,MOM N Zn®. The same can be done for the ghost current, since Nx = (\w).
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Using the EOM ([3.125)) and the global transformation studied in section 3.2, we find the left

and right conserved currents,

Kx + 2N L (F, —3F})E~Y/4
= A zvs (F1 = 355) , (3.126)
55 (Fr +3F5) EY! Ky + 2Ny
) Ry —2N L (3F, — Fy) B/
= e v ( B 3_) (3.127)
55 (3Fy + Fy) BV Ky — 2Ny
Since €dpdaSrs = 0 one would expect edgj = OV and edpj = —IV as in the usual

description. But here STrM = 0, thus, edgj = OV + 1A and edgj = —0V + 1B is the most
general form, for any A and B. For the same reason, one would expect that edge’dpdgS = 0
yields edgV = 0, but the most general possibility is edgV = IC, for any C'. Now, this IC
term should be expected from the gauge group (GL(1))?, since a the condition A = QATQ,
imposed to gauge terms, does not apply to the term proportional to the tracdﬂ thus, it seems
that we have eliminated those term. But this is not true, we did eliminated the ax, ay gauge
terms: we did it when writing the action proportional to the tr. Therefore, the correct BRST

invariant vector is STrV.

After a long calculation, for BRST transformation of the left current we find that

. 1 I * 3\ *
€dpj :ﬁaev — L—ltr (FieX" + eX"F3) | (3.128)
0 e(A+ A7) B4
eV =7 ) 7V =ZeNZ 7. (3.129)
e(\=X)EVA 0

For the right current we find, as expected,

- 1 o) I[ n * \ kT
ebpj = — 2—\/5861/ — Ztr (Fle)\ + €A Fg) ) (3.130)

3Note that I = —QITQ.
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Finally, we check that edgSTrV = 0:

opeV =Z [N, eN1Z7 = Zde (NN} Z7! (3.131)
AN 4 A 0
=2¢'eZ |z (3.132)
0 A+ AN
1 -
=5 € elltr (AN +A*A) (3.133)

therefore 6gSTrV = 0. The vertex operator corresponding to the S-deformation discussed in

[69, B2] can now be described as the tensor product of two V.

3.6 Conclusion and further directions

We have described the pure spinor superstring in AdSs x S° using the GL(4]4)/(Sp(2) x
GL(1))? coset first used by Roiban and Siegel for the Green-Schwarz superstring in [46]. This
formulation provides additional choices for the parametrization of the AdS coordinates. This
additional choices have been shown to be useful in formulations different superspaces relevant
to the AdS/CFT conjecture [83]. Recently, Schwarz described another parametrization for
the GS string in AdSs x S® [86]. As was shown by Siegel [87], this new formulation can also
be used in the present case.

Furthermore, the complete superspace propagator for the entire tower of Kaluza-Klein
modes was calculated in [30] using this new coset. This propagator was shown to be invari-
ant under sk-symmetry. Since there is a close relation between s-symmetry and the BRST
transformations of the pure spinor formalism |7_f] it is likely that this propagator can be used
to construct a BRST invariant ghost number two superspace function. Such function would
be related to the unintegrated vertex operators of the supergravity modes in the pure spinor

formulation. We are presently working in this direction. The ultimate goal is to have a

4For example, demanding invariance under x-symmetry of the GS action in a general curved supergravity
background puts the background on-shell. The same is achieved in pure spinor formalism demanding BRST
invariance [88].
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systematic way to construct vertex operators at any mass level using the world sheet di-
latation operator [43] to derive physical state conditions. Although BRST invariance should
also be imposed, vanishing world sheet anomalous dimension may be enough to calculate the

spacetime energy of the string states.



Chapter 4

Stress-tensor OPE in N =2

superconformal theories

4.1 Introduction

Four-dimensional superconformal field theories (SCFTs) with A/ = 2 supersymmetry play a
prominent role in theoretical physics. Originally studied using standard field theoretic tools,
by building Lagrangians out of fundamental fields with appropriately chosen matter content,
the list of theories has grown considerable in recent years [39, 40], and now there seems to be
an extensive library of N' = 2 systems, related by an intricate web of dualities. Having found
such an ample catalog, there has been a shift in perspective, instead of analyzing specific
models one by one, it seems more natural to ask whether a classification program is possible.
Efforts in this direction include a classification of Lagrangian models [41], a procedure for
classifying class S theories [89], and a systematic analysis of Coulomb branch geometries
[90, [O1].

Among the most important tools for constraining the space of CFTs is the conformal
bootstrap approach [5, [4] [6]. Originally very successful in two dimensions, where the con-

formal algebra is enhanced to the infinite dimensional Virasoro algebra, it has seen renewed

7
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interest in light of the work of [9] where, starting from basic principles like crossing symmetry
and unitarity, numerical techniques were developed that allow to obtain rigorous bounds on
several CFT quantities. Influenced by this revival of the bootstrap philosophy, the N' = 2
superconformal bootstrap program was initiated in [92] 42], with the goal of serving as an
organizing principle, relying only on the operator algebra of a theory, as defined by the OPE.

The N = 2 superconformal bootstrap program can be thought of as a two-step process.
First, it was observed in [02] that any N' = 2 SCFT contains a protected subsector of
observables described by a two-dimensional chiral algebra. In order to bootstrap a full-fledged
SCF'T, one must first have an understanding of the operators described by the chiral algebra.
Once this is achieved, the second step entails tackling the harder task of bootstrapping the
full theory, in particular, unprotected operators with unconstrained conformal dimensions.
This second step was explored in [42] using the numerical techniques of [9], and bounds were
obtained by looking at four-point correlators of several superconformal multiplets. Though
a comprehensive effort toward bootstrapping the landscape of N' = 2 theories, there was an
important omission, the multiplet in which the stress-tensor sits was absent from the analysis.
The universal nature of the stress-tensor makes it a natural target for bootstrap studies, and
the reason it was not included in [42] was technical: the requisite crossing symmetry equation
is not known.

Let us be a bit more specific. The conserved stress-tensor of an N' = 2 theory sits in a

multiplet that can be represented by a superfield 7 with a schematic #-expansion,

j(:B?Q?e)’ = J(x)’ j([E, 9,9) 00 — J;Z]($)7 j({B,Q, é)’929_2 = T,ul/(x)- (41)

J is a scalar superconformal primary of dimension two, Jff is the conserved SU(2)g x U(1),
R-symmetry current, and T}, is the stress-tensor. Correlators of this multiplet also contain
information about two fundamental quantities present in any four-dimensional CFT, the a
and ¢ anomaly coefficients. These can be defined as the anomalous trace of the stress-tensor

when the theory is considered in a curved background.
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Our first goal will be to obtain the supersymmetric selection rules

TIXT ~..., (4.2)

namely, the N’ = 2 multiplets that are allowed to appear in the super OPE of two stress-
tensor multiplets. This result will be relevant for both the two-dimensional chiral algebra
description and the numerical bounds program.

On the chiral algebra side, as observed in [92], the two-dimensional stress-tensor can
be associated to the four-dimensional SU(2)g current. In particular, correlators of the
four-dimensional current have a solvable truncation described by correlators of the two-
dimensional holomorphic stress-tensor. The holomorphic correlator only depends on the
central charge ¢ and, as we will see in this work, unitarity of the four-dimensional theory
implies an analytic bound on ¢. The a anomaly coefficient plays no role in the chiral algebra
construction.

On the numerical side, the super OPE selection rules are the first step toward writing the
crossing symmetry equation for the stress-tensor multiplet. To have a better understanding
of how this can be accomplished, let us recall how the numerical bootstrap is implemented.
The starting point is the four-point function of a real scalar operator ¢. This correlator can
be expanded using a conformal block expansion, where each conformal block captures the
contribution of a specific conformal family appearing in the ¢ x ¢ OPE. Explicit expressions for
scalar conformal blocks were obtained in [93] [94]. Having obtained such an expansion, using
the restrictions imposed by crossing symmetry and unitarity, it is possible to obtain numerical
bounds on scaling dimensions and three-point couplings. In A/ = 2 theories, the highest
weight of the stress-tensor multiplet is a scalar of dimension A; = 2, and is therefore well
suited for the numerical bootstrap program. Because of supersymmetry, several conformal
families are related by the action of supercharges, and this implies that a finite number of
conformal blocks appearing in a correlator can be grouped together in a superconformal block,

which encodes the contribution of the corresponding superconformal family. We can now state



80 CHAPTER 4. STRESS-TENSOR OPE INN =2 ...

more precisely why the stress-tensor correlator was not included in [42]: the superconformal
block expansion of the (J.JJJ) correlator has not been worked out. To fill this gap in the

N = 2 literature was one of the motivations for this work.

Conformal and superconformal block expansions are a common obstacle in any attempt
to write bootstrap equations. In the bosonic case, things get very complicated when one
considers operators in non-trivial Lorentz representations. With supersymmetry, many com-
plications arise for correlators of generic multiplets. There is no unifying framework and a
wide variety of approaches have been tried with varying degrees of success [95], 96], 97, O8],
99, 100, 1011, 102, 103} 104} 105l 106} 107, 108]. The full superconformal block expression
for the J correlator is still elusive, and it is not clear which of all the methods available in
the literature is the most efficient. Nevertheless, our calculation encodes the allowed N = 2
multiplets that contribute to the expansion, which is the first step toward writing the crossing
symmetry equation.

The outline of the paper is as follows. In section 2 we review the conformal algebra and
its shortening conditions. Section 3 presents a detailed superspace analysis that allows us
to write the super OPE selection rules for two stress-tensor multiplets. In section 4 we use
our selection rules together with the two-dimensional chiral algebra construction to obtain
an analytic bound on ¢. This bound is valid for any N' = 2 superconformal theory regardless
of its matter content and flavor symmetries. In section 5 we present a partial analysis of the

superconformal block expansion of the J correlator.

4.2 Preliminaries

The N = 2 superconformal algebra is the algebra of the supergroup SU(2,2/2). It contains
the conformal algebra SU(2,2) ~ SO(4,2) with generators {Paq, K, M, .A;lé‘B, D},
where a = #+ and & = 4 are Lorentz indices, and an SU(2)r x U(1), R-symmetry al-

gebra with generators {R';, 7}, where i = 1,2 are SU(2)g indices. In addition to the
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bosonic generators there are fermionic supercharges, the Poincaré and conformal super-
charges, {Q!, Q,4,S, S84}

A general supermultiplet of SU(2,2|2) contains a highest weight or superconformal pri-
mary with quantum number (A, j,7, R,7), where (A, j,7) are the Dynkin labels of the con-
formal group and (R,r) the Dynkin labels of the R-symmetry. The highest weight is, by
definition, annihilated by the supercharges S and S and the multiplet is then constructed
by successive action of the Poincaré supercharges. Generic supermultiplets are called long
multiplets and we will denote them by A%,r( i7) following the conventions of [109]. Unitarity
imposes restrictions on the conformal dimension of A known as unitarity bounds. For generic

long multiplets the bounds read,
A>2+2j+2R+7r,2+2]+2R—1r. (4.3)

If the highest weight is annihilated by some combination of the supercharges Q and Q the
multiplet shortens. There are several types of shortening conditions depending on the Lorentz
and SU(2)r quantum numbers of the charges that kill the highest weight, we denote them

B-type and C-type shortening conditions.

B : Q.U =0, (4.4)

Bi : QiU =0, (4.5)
(

. ePQiWs =0, j#0

c o a (4.6)

QLU =0, j=0

(

6dBQia‘I’5 =0, 7#0
Qi Qup¥ =0, 7=0

A

(4.7)

\

B-type conditions are sometimes called short while C-type are sometimes called semi-short.
In table we present all possible shortening conditions for the N' = 2 superconformal

algebra following the notation of [I09]. Among the most important short multiplets are the
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’ Shortening \ Quantum Number Relations \ Multiplet ‘
B! A=2R+r j=0 BR,T(OJ)
Bs A=2R-r 7=0 BR,r(j,O)
BN B? A=r R=0 ST(O,]_)
BiN By A=—r R=0 57"(]',0)
Blﬂgg A =2R j=7=r=0| Bg
ct A=2+2j+2R—|-7‘ CR,r(j,j)
Cy A=2+2j+2R—r Cryr(j.3)
% A=2+2j+r R=0 Cor(j.7)
CiNCsy A=2427—r R=0 CO,r(j,j)
c'ne, A=24+2R+j+] r=7—j Cr(j)
B'NC,y A=1+7+2R r=7+1 Dro,7)
ByNct A=1+4+j+2R -r=j+1 ﬁR(j,O)
B'NnB2NCy, | A=r=1+7 R=0 Do(0,7)
C'NnBiNBy | A=—r=1+j R=0 Do(j.0)

Table 4.1: Shortening conditions for the unitary irreducible representations of the N' = 2
superconformal algebra.

so-called chiral multiplets &, which obey two B-type shortening conditions and are associated
with the physics of the Coulomb branch of N/ = 2 theories. Also prominent are 1/2 BPS
multiplets, denoted by Bg, which obey two B-type shortening conditions but of different

chirality, these multiplets are associated with Higgs branch physics.

We will be mostly interested in the multiplet CAO(O,O). Multiplets of the type CAR(M) obey
semi-shortening conditions and the anti-commutation relation of the supercharges combine
to give a generalized conservation equation. The special case CAO((),O) contains a spin two
conserved current and we therefore identify it as the stress-tensor multiplet. In this work we
will not consider theories that can be factorized as the product of two local theories, we will
therefore assume a unique CAO((LO) multiplet. The multiplet also contains a conserved spin one

operator which corresponds to the SU(2)g x U(1), R-symmetry current.

Our goal is to study the super OPE of CAO(QO) X CAO(QO). In order to accomplish this we will
carry out a detailed superspace analysis of three-point functions. Using N = 2 superspace
language the stress-tensor multiplet can be represented by a superfield J that satisfies the

conservation equation,

D¥DIJ =0, DLD*J =0, (4.8)
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where D!, and Dy; are N' = 2 covariant derivatives and,

T (2,0,0) = J(x) + Joy 0207 + ... . (4.9)

771

Both the scalar J(z) and current JC(YZ) (x) will be of particular importance to us.

2d chiral algebra and analytic bound on c¢. As we will see below, the super OPE
expansion of 60(070) will allow us to obtain an analytic bound on the central charge c¢. Of
prime importance in this analysis will be the existence of a protected subsector of observables
present in any N’ = 2 SCFT, whose correlation functions are described by a 2d chiral algebra.
We will review this construction with some detail in section 3, for now let us just give a short
outline of the calculation. Four-dimensional operators described by the chiral algebra sit in

multiplets of the type,

A ~

Br Dr(o) » Do) ; Cojig) - (4.10)

The 2d operator associated with the CA'O(O,O) multiplet is the 2d holomorphic stress-tensor, and
it can be built using the SU(2)g current Jo(z)(:c),

J9 () = T(2). (4.11)

ad

The 2d stress-tensor correlator constitutes a solvable truncation of the full four-point function
of four currents JC(YZ) (x), and can be completely fixed by symmetry. This correlator can be
expanded in conformal blocks associated with the multiplets listed in (4.10]), and unitarity of
the four-dimensional theory implies an analytic bound on ¢ valid for any interacting N' = 2

SCFT.

Crossing symmetry and numerical bounds on a/c. The supersymmetric selection

rules are also relevant for the crossing symmetry equation of the superconformal primary
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J(x). This is a more challenging calculation and we will only present some partial results.
The motivation for this is that using numerical bootstrap techniques we would then have
access to the a-anomaly coefficient. This coefficient plays no role in the 2d chiral algebra,
and cannot be bounded analytically, at least not with the techniques used in this paper.
To obtain bounds on a one has to resort to numerics. In order to write crossing symmetry
a fundamental ingredient is the conformal block expansion of the (J(z1)J(x2)J(x3)J(x4))
correlator. An attractive challenge for the AV = 2 bootstrap program would be to recover or

even improve on the bounds found in [IT0] whose supersymmetric version reads,

(4.12)

NSRS
IN
ole
IN
| Ot

In section 5 the super OPE selection rules will help us understand how the different N’ = 2
multiplets contribute to the J correlator, a necessary first step before a crossing symmetry

equation can be written.

4.3 Three-point functions

We will now study all possible three point functions (7 JO) between two stress-tensor multi-
plets and a third arbitrary operator. The correlator for three stress-tensor multiplets (777 )
was studied by Kuzenko and Theisen in [ITT]. We will use their notation and borrow some of
their results. The starting point is the general expression for three-point functions in N' = 2

superspace [112], 113]

H*(Zs), (4.13)




4.3. THREE-POINT FUNCTIONS 85

where Z = (o, &, R, ) is a collective index that labels the irreducible representation to which

O belongs. The (anti-)chiral combinations of coordinates are,

Vi = —off — 2% — a2 — 4103 7 (114
912 - 01 - 927 512 - 9_1 - 52 ) (415>

with 2§% = 2% F 2?0, The argument of H is given by three superconformally covariant

coordinates Zs = (X3, O3, 03),

BB, BB,
Xy = L310pT12 T23 o Xyos = XI = _ T33apT Y130 (4.16)
(231)%(703)* Jaa (z32)*(213)*
i | T2Bad pai  Fl3ad pai A - pa T32ai a T3lac
@:m_l( 503 _7931) ; @3di_1(932i—2_931i 2 ) : (4.17)
23 13 T3 31
An important relation which will play a key role in our computations is
X3ad - X3ao'z - 41 @éaé3di . (418)
In addition, the function H satisfies the scaling condition,
HE(AX3, \O3, A03) = A\ HE(X3,03,03), (4.19)

with a —2a =2 — g and a — 2a = 2 — ¢, where A = ¢+ ¢ and r = ¢ — q. Extra restrictions

are obtained by imposing the conservation equations of 7, these imply,

0? ?
———H%(Z3) =0, —  H%(Z5)=0, 4.20
005 0057 (Z5) 065,00, ; (Zs) (4.20)
DD, ; HY(Z3) =0, DYD! HY(Z3) =0, (4.21)
where
Dgi = 0 + 4163 0 DY 9 _sei Y (4.22)

T <O BECT T
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In order to see how these restrictions are imposed, let us work out an example in detail. For
an operator @ which is a scalar under Lorentz and SU(2)g x U(1), equations (4.20]) imply

that H can be at most quadratic in ©5 and ©5. Thus, we will consider the following ansatz:
H(Z3) = f(X5) + gaa(X5)0505 + hysq5(X3)05705", (4.23)

where

0y —egele,, 0 —0505 . (4.24)
This is the most general expression consistent with SU(2)g x U(1), invariance quadratic in
the ©s. Next, we impose the scaling condition (4.19)),

H(MX35, 03, \03) = A\ 422\ 422 [1(X 3, 03,03) . (4.25)

Hence, the functions f, g, and h are known up to an overall constant:

1 05X50508  O%X;305X, ;0%

=t T T

(4.26)

Our correlator should also be invariant under the exchange z; <+ 25 which implies
(X3,03,03) — (—X3, —O3, —O3), as can be checked from . We will call this symmetry
Zo for short. Then,

H(X3,03,0;) = H(—X3,—03,—03). (4.27)

This condition turns out to be very restrictive. In particular, if a function satisfies and
the Zs condition, it also satisfies equations . Fixing the correlator is now a standard
exercise in Grassmann algebra, we Taylor expand in powers of the Grassmann variables
and equate coefficients in both sides in order to fix (aj,as,asz). Details of our calculations

along with some superspace identities are presented in appendix B.
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For arbitrary A there is a unique solution given by
(a1,a2,a3) = cgzo(1, i(A —4), —3(A —4)(A - 6)). (4.28)

This solution is our generalization of the (JJJ) correlator for the case in which the third

operator is a long multiplet A()Ao(o 0) with unrestricted conformal dimension A.

For the special case A = 2 the long multiplet hits its unitarity bound and splits according

to,

A

A(Q),O(O,O) = éo(o,o) + Di0,0) + 251(0,0) +B;. (4.29)
The results of this section imply that D and B multiplets are not allowed. Then, for A =2
the only surviving term in (4.29)) is CAO(QO), and we just recover the (77 J) correlator solution:

(a1, a9,a3) = 7 ,(1,-21,0) + 7, ,(0,0,1). (4.30)

That is, there are two independent structures. These two structures can be associated to the

a and ¢ anomaly coefficients, the exact relations were worked out in [I11],

o _ 3 @ _ 1
CJJJ_%(ZLCL_C)? cj]j_w<4a_5c)' (431)
The presence of two parameters is due to the fact that the last term in (4.26]) is automatically

symmetric under z; <> zo when A = 2E|

07X 16X 5,07 _ @aﬁxa_dxw-@dﬁ
(X2)3 (X2>3

(4.32)

Another way to phrase this, is that there is a “nilpotent invariant”, namely, a purely fermionic

term that satisfies all the symmetry requirements. It implies that we can not reconstruct the

We refer the reader to (4.52)) where we have collected in a single equation the super OPE selections rules
obtained in this section. -
2From now on we will ignore the subindex 3 in (X3, ©3,03).
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full superspace three-point function starting from the three-point function of the supercon-
formal primaries [I12]. This is a generic property of superconformal field theories, unlike the
pure conformal case in which three-point functions of descendants can always be obtained
from that of primaries by taking derivatives. Although nilpotent invariants are to be ex-
pected, for some special cases it is impossible to build three-point invariants that satisfy all
the symmetries of the correlator. Well known cases are 1/2 BPS operators in A/ = 2 and
N = 4 theories [114, 115, 116], 117] and (anti)chiral operators in N' = 2 and N = 1 theories
[T18, 10T]. As we will see below, nilpotent invariants will also be present when we consider
operators with spin.

N =1 check: As a check on our result, let us reduce it to A/ = 1 superspace language and

compared it the known solutions of [102] 119) 120]. Using the coefficients (4.28) in (4.23))

and rewriting in denominators in terms of X - X. Setting the i = 2 components to zero we
obtain,

@aizl — @a, @C”‘ZQ — 0, (433)

where ©, is the analogous N/ = 1 coordinate. Our solution reduces to,

1 1 CHCE
H(Z) :m (1—Z(A—4)(A—6)(X.X)> , (4.34)

in perfect agreement with the A" =1 result of [120] 119, [T02].

The procedure is now clear:

e Write the most general ansatz consistent with .

e Fix the X-dependence using the scaling condition (4.19))

e Fix the arbitrary coefficients by imposing the Z, symmetry .

We now apply this strategy to all possible combinations of Lorentz and SU(2)r x U(1),
quantum numbers in order to find the N = 2 selection rules for the OPE of two stress-tensor

multiplets.
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4.3.1 Solutions

AA

0,0(£,%)

The most general ansatz for arbitrary ¢ consistent with the conditions discussed above is

XCZQ)Z%_XQMZ <a4 @iléalz‘ +as 'édlB})(ng@Bal ) (4.35)
OB
where it is understood that the indices (aq,...,ay) and (&, ..., d,) are symmetrized with

weight one. Imposing the Zy symmetry we find, for the odd case,

a=cgg0 (0’ 2(A1— 0) i(ﬁ(; S)@’ A —14 — 0 i(QA(; 3;)@’ (Ai(: f) e)) (4:36)
For ¢ =1 the last structure in can not contribute.
For the ¢ even case we find two different solutions
i=cl, (0, 0, %(A —6—10),(3A+(—6),0, (3(A<_A2_)24__2§)_ 62))
+c20 (12% _a _;é —0 e+l 22);(§A_f E__g)é)A —6-9 , (4.37)
A-=3)(A—-2+¢
Lo, -2i (32)8r = 6;r ))

The two-parameter solution is due to the existence of three-point “nilpotent invariant” that

can only be constructed when the spin is even. Indeed, the object

Xaras - - Xaya vl Xasas - - - Xayay
¢

1 (824824 « e} i A
S(A=6-10) X 0" X 05X 530% + (3A + ¢ - 6) ppe= i B
(3(A —2)2 — 20 — 12) Xpsars - - - Xavgery _
(A — 4 — g) (X2)2 A ‘ @amz@amz ) (4.38)
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satisfies all the constraints imposed by A = 2 superconformal symmetry. As a consequence,
the superconformal block will have an undetermined parameter. In [I02] superconformal
blocks for general scalar operators were obtained where the same happens, the block has a
number of free parameters, in that case things can be improved if one imposes conservation
or chirality conditions. Our result implies that in /' = 2 theories, even imposing the conser-
vation condition is not enough, and there will be an unfixed parameter in the superconformal
block expression. It would be interesting to understand whether this parameter has some
physical meaning, like in the A = 2, ¢ = 0 case, where they are identified with anomaly

coeflicients.

At the unitarity bound we have the splitting,

4 +C%(e71 ¢ +C%(§7871) +Cl( SIS (4.39)

2

The multiplets CA% (L1, and C 1(L o1y are not allowed by the selection rules (see (4.52))). The
éo( £ 1y multiplets contain higher spin currents and are not expected to appear in interacting

theories, with the exception of ¢ = 0.

A2,
0,0(42,%)

We also found solutions for complex long multiplets,

Qo1

Xards - Xava ;
H(Z)= — 5 <a1@ X2

. 099X ;6%
Xaz+2 d®i + a €y OéXOéz-m & ~9
(4.40)

0161 &f
C) XaHQdE B@

Qp Qg1

(X2)3—T“’ Gy B

For ¢ even we have (ay, as,a3) = c770 (0, (A — 6 — £),2(A — 2)), while for £ odd (a1, as, as) =

c770 (2,i(A — 6 — (), —2if). For ¢ = 0 there is no solution.
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At the unitarity bound we have,

4
.A3+ :CO’O(E 2%)—1—6%’%(271’%). (4.41)

0,0(552,%)

The multiplet Cy 1( i1 ¢y is not allowed by the selection rules (see (4.52).

11
272

A
Aot

O,O(T,é)

Finally, there is another long multiplet

cgg0 A\l
H(Z) = WXMM e XaedlXal+1ang+QB@aé+3ae+4@ B , (442)
with c¢770 # 0 only for ¢ even.
At the unitarity bound we have,

The multiplet C%é (52 £y is not allowed by the selection rules (see (4.52))).

£
2

We also found solutions that fix the conformal dimension A,

Cgg0
H(Z) = — 5= Xaa  Xawa,©

: (4.44)
(X2)2 "2

Qp410042 )

has nonzero a for A =5+ ¢, and ¢ > 0 even. This is precisely the unitarity bound for this

quantum numbers and corresponds to a semi-short multiplet of the C-type.
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We can also have multiplets that transform non-trivially under SU(2)g representations,

H(Z) =

[e5Res] Z{;lae71 (CLlXaZoQ@Z +(l2 (824874

(XQ)%_T Qg X2 @@Hlﬁ@g + a3®aea€+1 @Zm> :

(4.45)

H is nonvanishing only for A = %—1—6 which is the unitarity bound for these quantum numbers.
The solution is (ay,as,a3) = c770(1,0,i¢) for ¢ odd and (ay,as,a3) = c770(0,1,0) for ¢

even.

For SU(2)g triplets we find the following family,

H:CJ—jOXaldl---X

A—L
2= 2

oo, O ED 4.46
(X2) A—t 0—100—1 oy Gy ( )

This structure is nonvanishing only for A = 4 + ¢, which is again the unitarity bound. Now,
the flavor current sits in B; multiplet which is a triplet under SU(2)g and has £ = 0. Its
superspace field was denoted by L% in [I11] and it was found that (J 7 L”) = 0. Our solution

is consistent with their result.

For SU(2)g representations higher than R = 1 no solutions exist due to the condition

that the correlator be at most quadratic in © and ©.

4.3.2 Extra solutions

In addition to the multiplets described above we found extra solutions.
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Non-unitary (R,r,j,7) = (%, —%, g, ”Tl) solution
The following structure is also allowed,
Xa dp " Xa —10— ai Xaédéxade 1X65@a566i
H = 1(1X-2)TAA€22 —1 alxagdeXOééée+1® + as %2

(4.47)

Qo1

+ (13)(0@1Z @aae @Z )

H is nonvanishing only for A = % —{ for (ay,as,a3) = cg70(1,21,0) for £ =0, (ay,as,a3) =
c770(0,0+2,0) for £ odd, and (a1, az,a3) = c770(1,1(€+ 2),i¥) for £ even. This solution is
below the unitarity bound and therefore of no interest to us. Similar non-unitary solutions

were found in [I19].

Non-unitary (R,7,j,7) = (3, -3, %, 53) solution

We also found

— & Xao'z4+1 Xﬂdz+2 @aﬁéi_ : (448)

Q43

H is nonvanishing only for A = % — ¢ and only for £ > 1 odd. As the case above, this is

below the unitarity bound and has no relevance for this work.

St
'Af 5(@ £)
2 2 2
Finally, we found a strange solution that corresponds to a long multiplet with fixed conformal
dimension:

H(Z) = Qj—jOXaldl o X, X )

13_A—¢

o, (4.49)
(X2)4 2

Qi1 oapyo0yps

The only restriction for this long multiplet is that the conformal dimension be above the
N = 2 unitarity bound A = % + ¢, it is then puzzling that our solution fixes its dimension to
A= % +/¢. Because it sits above the unitarity bound we can not interpret it as a contribution
from a short multiplet. One possible explanation is that this multiplet corresponds to a theory

that has enhanced N' = 4 symmetry. A = 2 long multiplets with fixed conformal dimension
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appear if one decomposes N' = 4 multiplets. The OPE of two N’ = 4 stress-tensors is well

known [115], 116],

Bio,2,00 X Bo,2,00 ~ Bjo2,00 + Bjo,a,0) + Bjio,1) + Bji2,) + B2z (4.50)

+ Cpo,0,0,,¢ + Cpoaye +Cozoe + -+ -,

where the ... stand for long multiplets with unrestricted conformal dimension. In the de-
composition of the N = 4 stress-tensor multiplet we find, among other things, the N' = 2
stress-tensor multiplet,

A

Bz = -+ Cop0)+ - (4.51)

Our curious multiplet could appear in the decomposition of one of the multiplets in the RHS
of . The By p,0 decompositions were worked out in [I09] and our multiplet does not
appear there, our guess is that is hiding somewhere in the C multiplets. In principle one could
use the character techniques of [121] to confirm this suspicion, although straightforward, this
type of calculation can still become quite involved. In the remainder, we will ignore this

solution considering it an accident with no relevance to N’ = 2 dynamics.

4.4 2d chiral algebra and central charge bound

The superspace analysis of the previous section allows us to write the super OPE selection

rules for the A/ = 2 stress-tensor multiplet [’

272 2
+Coag ) +Contgz gy + Coosst ) 452)
A A A
+ Ao,()(g,g) + AQO(@TQ@ + Ao,o<£74,5>

3To avoid cluttering we do not write the conjugate multiplets.
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We will now use this information to obtain an analytic bound on the central charge ¢ valid
for any N' = 2 superconformal field theory. To accomplish this, we will rely on the ob-
servation that any N' = 2 SCFTs contains a closed subsector of operators isomorphic to
a two-dimensional chiral algebra. Let us then start reviewing how chiral algebras appear
in N/ = 2 SCFTs, for more details we refer the reader to the original paper [92] (see also
[122, [123] 124, 125]).

It is possible to define a map that associates to any N' = 2 SCFTs a two-dimensional

chiral algebra:

4d SCFT — 2d Chiral Algebra

whose correlation functions describe a protected subsector of the original four-dimensional
theory. The construction of the two dimensional chiral algebra is obtained by going to the

cohomology of a certain nilpotent supercharge
Q=0 +8, (4.53)

where Q! and S'¢ are the standard supercharges of the N’ = 2 superconformal algebra.
Fixing a plane R? € R* and defining complex coordinates (z, Z) on it, the conformal symmetry
restricted to the plane acts as SL(2) x SL(2). The supercharge Q can be used to define

holomorphic translations that are Q-closed and anti-holomorphic translations that are Q-

exact:

—

[@,SL(2)] =0, {Q, something} = SL(2), (4.54)
where S/L(\Q) = diag <SL(2) x SL(2) R> and SL(2)g is the complexification of the compact
SU(2)g R-symmetry. Operators that belong to the cohomology of Q transform in chiral
representations of the SL(2) x S/L@ subalgebra. This implies that they have meromorphic

OPEs (module Q-exact terms) and their correlation functions are meromorphic functions of

their positions when restricted to the plane.

In order to identify the cohomology of Q we will consider operators at the origin, and
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—

then we will translate them across the plane using the SL(2) x SL(2) generators. As shown

in [92], a necessary and sufficient condition for an operator to be in the cohomology of Q is,
1 L .
JA—(G+))-RB=0. r+(j-))=0. (4.55)

We call this operators Schur operators, because they contribute to the Schur limit of the
superconformal index [126]. It can be shown that Schur operators occupy the highest weight
of their respective SU(2)g and Lorentz representations,

Ol (0). (4.56)

+otbtot

—

Having identified the operator at the origin, we proceed to translate it using the SL(2)xSL(2)
generators. Equation (4.54) implies that the anti-holomorphic dependence gets entangled

with the SU(2) g structure due to the twisted nature of the SL(2) generators. The coordinate

dependence after translation is,
O(2,2) = ug, (2) ... u, ()00 (2, %) where ui(z) = (1,2). (4.57)

By construction, these operators define cohomology classes with meromorphic correlators.

For each cohomology class we define,
O(z) = [0(2,7)]e- (4.58)

That is, to any 4d Schur operator there is an associated 2d dimensional holomorphic operator.
Schur operators have protected conformal dimension and therefore sit in shortened multiplets
of the superconformal algebra. In table [4.2] we present the list of multiplets that contain
a Schur operator and the holomorphic dimension h of the corresponding two-dimensional

operator.
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Multiplet | Oschur h r

BR Pl R 0
Drogy | QLW Rj+1 i+
Dhryjo) QL wil- R+j+1 —j—1
Crop | QLQIWNL. I R+j+7+2 7

Table 4.2: Four-dimensional superconformal multiplets that contain Schur operators, we
denote the superconformal by W. The second column indicates where in the multiplet the
Schur operator sits. The third and fourth column give the two-dimensional quantum numbers

in terms of (R, j,7)

4.4.1 Enhanced Virasoro symmetry

Among the list of multiplets in table is the stress-tensor multiplet CAO(O,O) and its Schur
operator is the SU(2)g conserved current J_&r Its corresponding holomorphic operator is

defined as T'(z) = [J, (2, Z)]g, and the four-dimensional J, ; (z).J,;(0) OPE implies,

+.... (4.59)

We can therefore identify 7'(z) as the 2d stress-tensor. The 2d central charge is,

Coq = —12 Cqqd - (460)

Unitarity of the four-dimensional theory implies that the two-dimensional theory is non-
unitary. The holomorphic correlator of the stress-tensor can be completely fixed in terms of
the central charge, and its relation to the parent theory in four dimensions will allow us to

obtain an analytic bound on ¢. The holomorphic correlator of the stress-tensor is,

4

8 ,
g(z) =1+2*+ +—(z2—|—z3+ SR ), (4.61)

(I —=2)* " cyy
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and admits the following expansion in SL(2) blocks,

g(z) = Z ag2* o Fy (0, 0,20, 2) ¢ even, (4.62)
=0

where 5 F} is the standard hypergeometric function. Thanks to the 4d/2d correspondence we
can interpret the SL(2) blocks as contributions from four-dimensional multiplets containing
Schur operators. Looking at the super OPE selection rules in (4.52)) there are only two
possible choices,

Co(

Nl

£
29

N~

The éo( ¢ ¢y multiplets contain higher spin currents and we do not expect them in an interact-
272

ing theory [127, [128]. The only candidate then is é1( )» the exact proportionality constant

£
2

£
2
a between the OPE coefficients /\2 ., and the SL(2) coefficients a, can be carefully worked
1(5,3)

out, but we will not need it. The explicit expansion of (4.61]) in terms of SL(2) blocks was

worked out in [129], in particular,

11
=a (2 - ) . (4.64)
11 15¢4q

Unitarity of the four dimensional theory implies )\(23 >0 then,ﬂ
1

(3:3)

11

> —. 4.65
Cad = 30 ( )

Let us note that in order to obtain this bound we only assumed A = 2 superconformal
symmetry, existence of a stress-tensor, and absence of higher spin currents. Bounds of this
type were obtained in [92] using the B; four-point function, in that case however, it is
necessary to assume the existence of flavor symmetries whose conserved currents sit in B,

multiplets. In the present case, our assumptions are weaker. A similar bound was also

4Because we have not calculated the exact proportionality constant, one could complain that an overall
minus sign will invalidate our bound. However, common sense dictates that the sign should be positive,
otherwise we will rule out every known interacting A = 2 SCFT.
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obtained for N' = 4 theories in [I30], where absence of higher spin currents imply ¢ > %.

Going through the A/ = 2 literature one can check that the simplest rank one Argyres-
Douglas fixed point (sometimes denoted as Hy due to its construction in F-theory) has central
charge ¢ = % [37, 38, [34) [131], which precisely saturates our bound. The analytic bounds of
[92] turned out to have interesting consequences for four-dimensional physics: the saturation
of a bound was identified as a relation in the Higgs branch chiral ring due to the decoupling
of the associated multiplet. It would be interesting to explore whether the absence of the

CAl(%é) multiplet is associated with some intrinsic structure that characterizes the Hy theory.

From the two-dimensional point of view, the 2d chiral algebra that describes the H
theory has been conjectured to be the Yang-Lee minimal model [132]. Indeed, the 2d value
of the central charge is caq = —%. Saturation of the bound implies the absence of the é1( 11
multiplet, from table the associated 2d operator has holomorphic dimension 4. Hence,
absence of (fl( 11y translate to the existence of a null state of dimension 4. Remarkably, one
of the hallmarks of the Yang-Lee minimal a model is a level 4 null descendant of the identity,
(L2, — 2L_4) |0). Our results are then consistent with the conjectured correspondence. The
Schur index of Argyres-Douglas fixed points and its relation to 2d chiral algebras was recently

studied in [133] [134].

The vanishing of certain OPE coefficients has also been instrumental in characterizing the
3d critical Ising model using numerical bootstrap techniques [I3] [I5] [I6]. One can then label
the rank one Hj theory as the “Ising model” of N' = 2 superconformal theories, in the sense
that it shares two of its most prominent features: minimum value of the central charge, and
vanishing of certain OPE coefficients. Both features indicate that this superconformal fixed
point sits in a very special place in the parameter space of N' = 2 theories and a numerical

treatment seems feasible [135].
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4.5 Superconformal block analysis

The super selection rules are a necessary first step toward writing the conformal block expan-
sion of the J correlator. The results of section 3 give a clearer picture of how this expansion
works in the case of N/ = 2 theories. Superconformal block expansions for 1/2 BPS and
chiral operators for several combinations of supersymmetry and spacetime dimension have
been worked out [I18|, [T0T], 115, 116, 117, 136]. There has been more success studying chiral
and 1/2 BPS operators because one can construct superspaces in which they are naturally
defined, and the analysis simplifies. Semi-short and long multiplets in general are harder to

study, the work of [102] and [107] attempts to tackle the more general cases.

4.5.1 Quick review of conformal blocks

Given the four-point function of a scalar J one can use the OPE in order to write the four-

point correlator as a sum of conformal blocks (also called conformal partial waves),

J(2)J(0) = D AsoCaulz, P)Oa(0). (4.66)

OeJxJ

Plugging the OPE into the four-function,

() (@) (1) T (@) = —— 3 Xy gaelu, ), (4.67)

TioT
12734 ocgxJ

where u = % and v = % The function ¢ is a known function of A and ¢. The
dynamical information of the theory being studied is encoded in the As and the three-point
couplings A. The collection of {A, ¢} is called the CFT data. The conformal blocks in four
dimensions can be written explicitly in terms of hypergeometric functions [93], 94],

gae(z,2) = ZZ_ZE(kAH(Z)/fAzﬂZ) — 24 2), (4.68)
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where u = 2z, v = (1—2)(1—2), and kog(2) = 2%, F1(B, 5,28, 2). In the superconformal case
a finite number of conformal families are related by supersymmetry transformations with
known coefficients. This allows a rewriting of (4.67) in terms of a “superconformal block

expansion”,

)T (@) I @) I @) = 3 N0 Gar(u ), (4.69)

L1234 ocIxJ
where the function G(u, v) is a superconformal block capturing the contributions of the super-
conformal multiplets appearing in (4.52)), and it can be written as a finite sum of conformal

blocks with coefficients fixed by supersymmetry

4.5.2 Toward the superconformal block

The contributions to the scalar four-point function (JJ.JJ) are quite limited, the operators
have to be SU(2)r x U(1), singlets and have even spin ¢. We will now study the consequences
of our selection rules . By scanning through the operator content of the different
multiplets we can read which operators contribute to the expansion (4.69)). Below we list our

findings (the ranges for ¢ are given in section 3).

Ao,o(g,g) : gae + b1 gayoero + b gator + b3 gatoe—2 + ba gataye ¢ even
Aoo,ty 1 garrerr T higasie1 +b2gasser + b3 gasse t odd
AO,O(%,%) : a2, + b1 gareere ¢ even
AO,O(“T?,g) : gas1,e41 + b1 gaga et ¢ odd
AO,O(”T‘*,g) : IA+2,042 ¢ even
Coa4.8) -

C%,_g(HTl,g)i 96+, ¢ even
C%,,%(HT{%)- 9740041 ¢ odd

¢ C Gsree—1 + b1 gsinen + b2 grinen ¢ odd
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From this list we see that not all multiplets have a an associated superconformal block.
Some of them contain several conformal families that contribute to the J correlator, others
have one single family and the associated block is just bosonic, while one multiplet does not
contribute at all. For the ones that do have superconformal blocks, the b; coefficients need

to be calculated.

One way to proceed would be a brute force calculation where the b; couplings are extracted
from our three-point functions. This procedure has been used for N' = 1 theories and its
implementation for the N' = 2 case is just a straightforward generalization. However, due

to the higher number of supercharges the calculation can become very cumbersome. Let us

A

give an schematic outline of how the calculation goes for the A2 o block, for more details
TTN272

we refer the reader to [I1§]. The starting point is the superspace expansion,

A . J apdi
Oa1--~ae,a1-~~ae - Aocr--oce,al--w + Biaalu-aé,ddl-”dg ‘9j 0

| | (4.70)
+c 096%°070°" + ...

ik aBal-ay,afardy I

where a7 -+ - ay and @ - - - &y are symmetrized as usual. There are also terms proportional to
(69)> and (#9)* that contribute to this correlator but we will ignore them to avoid cluttering.

Using the superconformal algebra (see appendix A) we can write:

. 1_.

Bz‘]oza1-~~oze7déz1~-de = 5:'?@@14011---04[,@1---02@ ) <471)
Jt — i:j =l A L léj(glp P.A L (4.72)
ikaﬁa1-~-a5,d5d1-~-d5 - 16‘—%&0“_‘]656 1O, Qg 4 iUkl ool gL tag oy,a g :

(4.73)

where =/ _. = [, Q4.

The next step is to build the conformal primaries associated to B, C) ... in order to obtain

the three-point couplings that relate the different conformal families inside a multiplet. Once
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this is accomplished we can write,

(JJO) ~ (JJA) + X118y (T T Bprim )00 + A y1cyimn (I T Corim) (00)* + . .. (4.74)
and the coefficients b; can be calculated from,
NoB Moo
I Bprim , I Cprim , (4.75)
Bprim Cprim

where Nx = (X]|X) is the norm of X. Although straightforward, the process becomes
increasingly complicated the deeper one goes into the multiplet, i.e. the (60)% and (06)*

terms.

N =1 decomposition

Another way to organize the calculation is by splitting the A" = 2 long multiplet in several
N = 1 multiplets]’] The idea is to organize the calculation in several A" = 1 contributions
and make full use of the N/ = 1 results already present in the literature. Let us start by
decomposing an N/ = 2 multiplet in terms of N' = 1 multiplets. The most efficient way to
do this kind of decomposition is using superconformal characters [121], [I37]. The expansion

works as follows,

AA NAA +AA+1 ~ o A+1
00(3.3) T Tn=0G3) T =0t 5h T =00t A (4.76)
A+1 A+1 A+2
tA ey tA e ey T AT

where r; = %(r + 2RY) is the N = 1 r-charge after the decomposition. We have only
written the A/ = 1 multiplets that have zero ri-charge. Non-zero ri-charge multiplets can
not contribute to this correlator. From this expansion we conclude that only six NV = 1
multiplets contribute to the OPE. Moreover, the highest dimension primary has A + 2,
which means that the remaining (60)® and (69)* terms in are N/ = 1 descendants, and

SWe are indebted to Andy Stergiou for this idea.
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therefore their contributions will be encoded in the N/ = 1 results.

The superconformal blocks for N’ = 1 conserved currents were worked out in [120] 119,

102]. Their results read,

L (A —2)2(A+6)(A—(—2)

Car=gact 16A2(A + 0+ 1)(A — 0 — )57 (4.77)
_ (C+2*(A+L+1)(A-0-2)

GA,( = gA+1,-1 + PA—I—D(AL0) JA+1,6—1 5 (4.78)

where +(—) stands for ¢ even(odd). These results and the character identities imply that

the N = 2 superconformal block can be written as,

Gre=Grrtc1Gap g +aGay o + 3G+ cagarae, (4.79)

g&,e = GZ,@ ta GZ+1,£-1 + GX+1,12+1 tc3 GK+2,4 . (4.80)

The extra term in the even block represents the contributions of the A~ and

o0 )
A+1

n=0(%4 5

multiplets, which can not contribute to the ¢ odd block due to the scalar
J x J selection rules. This decomposition simplifies significantly the analysis: the number
of coefficients remains the same, but now we need to find primaries with dimensions up to

A + 2 instead of A + 4.

The procedure sketched above is the same, but now we have to organize the calculation in
superconformal primaries annihilated by the supercharges Sl’8 and S'# instead of conformal

primaries annihilated by KCP8. Once this is accomplished we can write

(JJO) ~ (JJA) + )\JJBsprimUJBSprimW@_ + )\chsprim(JJC’SpﬂmX@é)Q , (4.81)
and the coefficients ¢; can be calculated from,
by . A2 _
JJ Beprim 7 I Coprim (4.82)

Bsprim C’sprim
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This is certainly a vast simplification of the problem, but still quite involved. Also, the N =1
decomposition (4.76)) works nicely for the Ap_o.r—o ¢ multiplet but is not so efficient for

the others. For example, it is significantly more complicated for the é1( £ 1y multiplet.

4.A N =2 superconformal algebra

In this appendix we collect our conventions for the SU(2,2|2) algebra, we only list the non-

vanishing commutators.

The conformal generators are {Pnq, K%, M ?, M 5 D}. Lorentz indices transform

canonically according to

M5 X =20 X, + 65X, M5, X7 =261 X7 — 6P X7, (4.83)

(M5, X5] = 265X — 65X, (M5, X7] = —28] X* + 557 (4.84)
The remaining SO(4,2) commutators are,
[D7 Pad] - Pada [D, ,Cda] = _Kda (485)

and

[, Py ) = 205 M g™ — 205 M5 — 46505D . (4.86)

The SU(2)g x U(1), R-symmetry generators are denoted by {R';, r}. SU(2)g indices trans-

form according to,

J

) ) 1 .. ) . 1 ..
Ry X = =00X; + 503X, [RY, XM =X - 55;.)(’“. (4.87)

The fermionic generators are the Poincaré and conformal supercharges are { Q! , Q, 4, S, 8¢}



106 CHAPTER 4. STRESS-TENSOR OPE INN =2 ...

and their anticommutators are,

{Q,.Qja} = —2i6iPas, {84 S;}=2i5iK* (4.88)
{QL. 8]} = —26iM,P + 26168 (D —r) — 465R; (4.89)
{8995} = —200M° ;5 —28565 (D + 1) — 405R’;. (4.90)

Finally, the commutators between bosonic and fermion generators,

K72, Q1] = 205877, K7, Qya] = 200587 (4.91)
[Pag S5l = —2i05Q, 5, [Pys, S'%)= 21659, (4.92)

and

< 1 .. 1 - 1= _ 1.

[D,Q) =5, [D:85]=-35" [D,Qa =5, [D,S=-587 (493
; 1 1 - 1~ . 1 ...

[Ta onc] = 59317 [T7 Sza] = _Equa [Ta Qiéé] = _EQidv [’I", Szoz} = 581& . (494>

4.B Superspace identities

Here we collect some superspace identities necessary for the three-point functions calculations
of Section 3. Let us start proving that if equations (4.20)) and the Z symmetry condition are
satisfied, then equations (4.21)) are also satisfied. In general the function H will always be

expressible as sum of the form

H(Z3) = fu(X3)ga(Os,03) (4.95)

where the functions g, satisfy the conditions,

02 02

—a@,é :O, = - =~ a(-)a(:) :Oa 496
a@gaa@gﬂg( 3 Os) 39?1‘8@3@9( ) ( )
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and g,(—O3, —03) = (=1)Fg, (O3, 03) where (—1)F counts the number of ©s and Os. From

(4.22) it follows,
DypiXs0a =0, D! X306 =0, (4.97)

and,

DoiD§ H(X3,03,03) = Do DI Y _ fu(X3) 9a(O3, O3)

=" fo(—X3)Da /DY gua(—O3, —O3)

82
o g Je
905 0057

(4.98)

=D ful=Xs)(=D)" (©3,6;)

=0

as promised. Thanks to this property imposing the conservation constraint is now an al-
gebraic exercise, Taylor expanding both sides of the Zy equation and equating coefficients

solves the problem. For the expansion of the denominators we use the following identity,

aiy G Y G2 08X . X ,,0%8
NS SN XO‘QQZ)—SA(A—D(@ Xaa67)? o\l 39"
<X2)A (XQ)A (X2)A+l (XQ)A+2 (X2>A+2
32, (09X ,,6%)2 32 (0%X ,,6%)

which for the special case A = 1 becomes eq. (3.27) in [I1I]. After Taylor expanding what
remains is to write all terms in our equation using the same basis of Grassmann objects.
As usual with fermions, high powers of Grassmann variables are not all independent, for

example,

(07X s 05)? = (07X 14X 550%%) (077X 5 6]) . (4.100)

Several identities of this type were needed for the calculations of section 3, we implemented

them in Mathematica using the grassmannOps.m package by J. Michelson and M. Headrick.



Chapter 5

Mixed OPEs in N = 2 superconformal

theories

5.1 Introduction

Lagrangian methods seem to be insufficient when studying /' = 2 SCFTs. Although a large
class of them are Lagrangian theories [41], there are many strongly coupled fixed points which
seem to not allow a Lagrangian description [39,[40]. With the goal of developing a Lagrangian-
free framework based only on the operator algebra, in [42] the conformal bootstrap program
for N/ = 2 theories was initiated. The conformal bootstrap [4, 5l [6] has received renewed
attention after the work of [9]. The idea behind this approach is simple: imposing only
unitarity and crossing symmetry for the four-point function, several CFT quantities can be

obtained.

As pointed out in [42], there are three classes of short representations which are directly
related to physical characteristics of N' = 2 theories, and thus can be regarded as a natural
first step in the bootstrap program: the stress-tensor multiplet, the N = 2 chiral multiplets
and the flavor current multiplet. By bootstrapping them, we expect to obtain relevant

information about the a and ¢ anomalies, the Coulomb branch, the Higgs branch and the

108



5.1. INTRODUCTION 109

flavor central charge k, among other relations. Following this election of multiplets, they
studied the four-point function of chiral operators and the four-point function of flavor current
multiplets, obtaining several numerical bounds. There was a technical reason why the stress-
tensor four point function was not studied in [42]: its conformal block expansion is not known.

The block expansion for mixed operators is even more elusive.

Although the conformal block (or partial wave) decomposition of the four-point function
is an essential ingredient in the conformal bootstrap program, there is no unified framework
to compute the conformal blocks for different types of operators. Harmonic superspace tech-
niques have proved useful to obtain the superconformal block expansion of %—BPS operators
[117, [106], such as the flavor current multiplet. For the four-point function of two chiral and
two anti-chiral operators, instead of harmonic superspace, chiral superspace has proven more
useful [I0I]. The stress-tensor multiplet is not $-BPS nor chiral, but rather “semi-short”
according to the classification of [I09]. A first step towards its block decomposition was
taken in [47], where, using standard Minkowski superspace techniques, the complete OPE of
two stress-tensor multiplets was obtained. Due to the different nature of the three multiplets
which we want to study in this article, N' = 2 Minkowski superspace seems suitable when
dealing with a mixed combination of them. We denote the corresponding operators of the

stress-tensor, the chiral and the flavor current multiplets as J, ® and L;;, respectively.

Another source of information used in [42] was the existence of a protected subsector of
operators, present in every N/ = 2 theory, that are isomorphic to a two-dimensional chiral
algebra [92]. Using this correspondence between N/ = 2 theories and chiral algebras, along
with the block decomposition of the flavor current four-point function, bounds involving the
central charge ¢ and the flavor central charge k were obtained [92]. Following the same
spirit, and using the J x J OPE, bounds to the central ¢ were obtained [I35]. Furthermore,
studying mixed correlators in the chiral algebra setup, yet another bound relating ¢ and £k was
obtained [138]. As pointed out in [13§], an interesting result is obtained when combining the

aforementioned analytical bounds involving both ¢ and k: all the canonical rank one SCFTs
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associated to maximal mass deformations of the Kodaira singularities with flavor symmetry
G = Ay, Ay, Dy, Eg, E7, Ex [38,[139], 140, T41] live at the intersection of the analytical bounds.
It was also shown that the predicted theories with flavor symmetry G = Gsq, Fy [42], which
have no known corresponding SCF'T), live at the intersection of the bounds as well.

Those previous results entice us to keep studying systems of mixed correlators. While
the single correlator bootstrap has already given interesting results, the addition of mixed
correlators will give us access to the canonical rank one CFTs that live at the intersection of
the analytical bounds. With the numerical bootstrap for the mixed system we will be able to
explore CFT data inaccessible from the chiral algebra. Here we take a first step towards the
construction of the superconformal blocks by obtaining the system of mixed OPE containing
the three multiplets mentioned above: the stress-tensor multiplet, the chiral multiplets and
the flavor current multiplet.

The outline of this article is as follows. In Section 2 we review AN/ = 2 superconformal
three-point function, presenting all the ingredients needed to solve the OPE. In Section 3,
after introducing the EOMs and conservation equations of the 7, ® and £;; superfields we

show how to solve,
(®TJO0), (®L;;0), (JL;; 0y, (5.1)

for every O operator. This information allows us to write down the ® x J, ® x £;; and
J x L;; mixed OPEs. We end in Section 4 with conclusions. We also provide two appendices

for notations and convention, plus solutions to the O operators not listed in the OPEs.

5.2 The three-point function of N'=2 SCFT

It is well known that conformal symmetry fixes, up to an overall constant, the two- and
three-point function for any operator. For a recent review see [§]. Superconformal symmetry

also imposes restrictions to the form of the two- and three-point functions [112] 113]. The
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general expression for three-point functions in N' = 2 superspace is,E|

T 7 (@(215)) TD 7 (i(205))

(213)%0 (131)%0 (233)%92 (252)%92

(O (21)O2) () O (2)) = Hynr, (Zs) ., (5.2)

where 24 = (29,0, 0'%) is the supercoordinate, ¢ and ¢ are given by A = ¢g+gand r = ¢—q, r
being the U(1),-charge. The Z = (a, &, R, ) is a collective index that labels all the irreducible
representation to which O belongs, it can also contain flavor indices. Hz, 7,7, transforms as

a tensor at z3 in such a way that (5.2)) is covariant. The chiral and anti-chiral coordinates

are,

with 3% = 2% F 2i0*0%?. The @ matrices are defined as,

' _ o2\ 1/2 ' 0101 e_j
i (21) = (?3) (5{ —41%3”) . (5.5)

T12 T2

The argument of H is given by three superconformally covariant coordinates Zs = (X3, O3, 03),

which are defined as,

X o L31 a,@x?QBng Ba X _ XT _ L33 aﬁxglﬂxlgﬁd (5 6)
3o = S = L= — , .
o (z31)2(223)* ’ o Jad (z52)%(713)?

i . T23aa 545 Til3ad féd = . o T32aa o T3laa

30 =1 <7932 — 7931) , Oz4;=1 (€32i—2 - 9312'—2) : (5.7)

L33 Ii3 39 31
An important relation which will play a key role in our computations is,
X304 = X304 — 4105 ,034i - (5.8)

1We will follow the notation and conventions of [I11], and we will also borrow some results from there.
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In addition, the function H satisfies the scaling condition,
HY(A\X3,\05,\03) = AN\ HE (X 3,03, 03), (5.9)

with a —2a = 2 — ¢ and a — 2a = 2 — ¢. This last piece of information will help us identify
the operator O® by comparing its quantum numbers with all the possible representations

listed in Tab. [5.AL

The conformally covariant operators Dy = (0/8X§, Do, 755”') and Q4 = (8/8X§, Quni Q‘j‘i),

given by,
0 _. 0 _ 0
Dy = - + 4103 ) D' = — )
005" 4 S oX g 00934
o ' 9 P (5.10)
= — —4i0% ,—— at ™ A~ed )
T 06, MPeax, % dey
appear naturally when applying the superderivatives on H (Z):
i ~ . (mgl)a/g" ~ *Bj =
DlaH (Xg, @3 @3) :lmuj (Zgl)D H (Xg, @3 @3) >
137731
= = . (II3)a 3 ~ o ~
D, ;,;H (X3,0503) zlm% (213)DH (X3,05 03)
137731
(5.11)
Dy (Xs, 03 05) —i\230ad o i ot (x, 0,6
20 ( 3, I3 3) —1m% (232)Q ( 3, I3 3) )
237732
_ . (was)ag o -
DQBjH (Xg, @3 @3) ZITQB)WU]‘ (ZQB)QZ‘ H (Xg, @3 @3) .
23°%32
There are similar relations for quadratic derivatives. A quick computation shows,
‘ _ (0,0 0,7 . _
D,*'DJ H (X3,0305) = — % (;132? (2213) DEDYH (X3,0303) (5.12)
137731

and similar relations for Dy, Dy'/ and Dy, ;. These relations will be very important when
we impose the EOM /conservation equations of the superfields on the three-point function,

restricting the form of all possible O in ([5.2)).
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For a general CFT, the conformal symmetry is strong enough to to fix the OPE coef-
ficients of the descendants in terms of that of the primary operator. This is not the case
in supersymmetric theories, where nilpotent structures which contribute to the superdescen-
dants can appear in the three-point function, see for example equation (3.23) in [I11], and
also equations (3.18) and (3.25) in [47]. In the cases studied here, the EOM /conservation
equations will impose restrictions strong enough to fix the form of the three-point function

completely, but this is not necessarily true for general operators.

5.3 Mixed OPE

We mentioned in the introduction that we are interested in the mixed OPEs of three multi-
plets: the stress-tensor multiplet, the N' = 2 chiral multiplets and the flavor current multiplet,
because of their close relation with physical properties of A" = 2 theories:

e The semi-short multiplet CAO(()’O) contains a conserved current of spin 2 and the spin 1
R-symmetry currents. It is well known that such spin 2 conserved current is the stress-tensor,
which is present in every local theory, therefore, the study of this multiplet will give us general
information about N = 2 theories. Its higher spin generalization CAO(MQ) will contain higher
spin conserved currents, which are not expected to appear in interacting theories [127, 12§].

e The vacuum expectation value of chiral multiplets, SqE| parametrizes the Coulomb
branch of the moduli space of N' = 2 theories. The complex dimension of this branch defines
the rank of the AN/ = 2 theory. For a systematic study of rank one theories using their
Coulomb branch geometries see [90, [143].

e The B; multiplet plays an important role in theories with flavor symmetry. Global
symmetries currents can only appear in the B, or the éo( 1) multiplets. We already argued
why this last multiplet must be absent. Therefore, for the study of NV = 2 theories with

flavor symmetries the B, multiplet is fundamental. In analogy with the relation between

2We will mostly follow the conventions of [I09], see also Tab. for a summary.
3We define &, := (0,0)- Although chiral operator with higher spin, &;; o) are allowed by representation
theory, see Tab. it was shown that such multiplets are absent in every known A = 2 theory [142].
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chiral multiplets and the Coulomb branch, information about the Higgs branch is encoded

in the By multiplets.

As already noted, all of these multiplets are described by an A/ = 2 superfield with a
well known EOM /conservation equation. Indeed, the N' = 2 superspace conserved current
associated to the stress-tensor, which we denote as 7, satisfies the conservation equations

1),

D" J(z) =0, (5.13a)

D J(z) =0. (5.13b)

The chiral multiplets &, are described by an N' = 2 chiral superfield, denoted here by P,

satisfying a linear equation,

D*'®(z2) =0, (5.14)

which is the same for every r-charge. Unitarity implies ¢ > 1. Because &; is free, we will
only consider the ¢ > 1 cases. Finally, just as with the stress-tensor multiplet, the N = 2

flavor current superfield, which we call L; ;), satisfies the conservation equations,

DLk (2) =0, (5.15a)
DLjk(z) =0. (5.15b)

Below, we solve the three-point function in order to obtain the OPE. We will first solve
the OPE &, x CAO(O,O). The reason is twofold: first, it has been shown that a chiral field imposes
a very strong constraint to the form of the three-point function, see for example [118], 142, 135];
second, since J carries no indices, possible solutions to the three-point function are, a priori,
simpler than solutions with £;;. The solutions of H (Z)* tell us the quantum numbers of

Of. Knowledge of the quantum numbers allows us to identify the OF multiplet with the
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corresponding long, short or semi-short multiplet, see Tab. [5.A] Following this logic we next
solve the OPE &, x B,. We end this section with the 60(070) x B; OPE.

5.3.1 gq X 80(070)

The three-point function (5.2)) for a chiral operator and the stress tensor multiplet is,

(@ (1) T (22) O (23)) = %H%zg). (5.16)

The EOM of @ (5.14]) and the conservation equation of J (5.13|) will imply restrictions

in the form of conformally covariant operators acting on H (Z),

DY H®(2)) T (22) O (23)) =0 = D,.; H(Z3) =0, (5.17)
DI (®(z1) T (22) O (23)) =0 = oh ot l(zs) =0, (5.18)
D {(®(21) T (22) O (23)) =0 = QF ol ml(Zs) =0, (5.19)

see (B.11). The D and Q operators were defined in (5.10)).

The first constraint, (5.17)), implies H(X,0,0) = H(X +2i000,0) = H(X,0) (we
omit the subscript 3 from now on.) Since QX = 0, implies that H (X, @) can have
at most a quadratic term in © in the form of O% 0" = @8 [I11]. Thus our solutions are
of the form H(X,0) = f(X) + ¢(X)a: 0% + h(X), 4 ©%F. At this point is good to note
that it is not possible, using only X, to construct functions f, ¢ and h with any SU(2)z-

nor U(1),-charges. Therefore, we can, and will, study the solutions of the f, g and h terms

separately. The constraint (5.19)) implies,

0 = = % Aok | P 568\ @k a.
mH(Z)-—4<Df(X)+Dg(X)ak@ +Oh(X),56°7) 06, =0, (5.20)

A quick computation shows that (:)f (:)ﬂ j(:)dB is always van-

_
where we defined [l = 5z X

ishing. This will generate solutions to (5.16)) with arbitrary conformal dimension. We will
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identify those solutions with long supermultiplets. Furthermore, (:)f S i ©%* does not impose

any new condition, thus, the solutions to [1f (X) = 0 are also solutions to (g (X) = 0. The

physical solutions to ([5.20)) are,

Multiplet H(Z)

3
A 2\t %
Ao’g,q(g ZTQ) (X ) Xa1 é Xae de@dz+1 G2
_ 3, A—fl—q _ _ _ 5 —
A . 2\ —32t=— ... . BB .
A0,3—q,(§,%) . (X ) XOél (e %1 (o7 ) ,ae—1Xa£M€ @dgﬁ”
_ 5, A—4—q _ _ _ _
A 2 _§+ 2
A0,3—q (% %) (X ) Xal , 01 e Xag,d[Xal+l ﬂXag+2 v

Crotpory: (X960
Bys o) (X0)7 Xy,
Eqoo s (X))

~ i
e,

(5.21a)
(5.21b)
(5.21c)
(5.21d)
(5.21e)
(5.21f)
(5.21g)

(5.21h)

There are also extra solutions to (5.16]) which we have discarded, see ((5.50]) and (5.51]).

When a long multiplet hits its unitarity bound, it decomposes into different (semi-)short

multiplets [109]. The unitarity bounds of our three long multiplets (5.21a), (5.21b)) and

(5.21c|) depend on the value of g. There are three distinctive ranges in every case. For

(5.21a)) its decomposition is,

) 5—q+t
qg<2: Ao,g(iq(g,ﬁ) NCO73_q(§7u)+C%’%_q(2;1’ﬂ),
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For ([5.21b)) the decomposition is,

. 5—q+¢ ~

I GO CO

_ 9. 240 F 5 . .

=31 Ao~y O T Fhegy,  (623)
. —14q+¢ "~ _

123 A~ Caa(ss) TG a5

Finally, (5.21c|) decomposes as,

. T—q+¢
q<4: "40,3—(;(%, ) NCO’g_q(u §)+C%7%_q<% £y

A

_ 4. 340
qg=4: Ao,—1(%,§) NCO<u

. —1+q+£ 2l 2l
q>4: A0’3iq(%7%)wc 2 >+ —q(852,51) -

Since our selection rules do not give any of the terms in the decomposition of the longs, we

will follow the same procedure as in [47] and only take the first term of each decomposition in

the OPE. The reason is simple: let us take, for example, the (5.21a)) when ¢ < 2. As we can

272
When we solve ((5.16)) imposing all the constraints (5.17)), (5.18) and (5.19) we do not obtain

any solution with the quantum numbers of C; - g(5h,52); therefore, our selection rules do
272 27 2

see in ([5.22)), it decomposes into two semi-short multiplet: CO,qu( ¢ ) and C, 7 a(5,552)¢

not allow such multiplet as a solution to (5.16). The other multiplet in the expansion,
CO,3—q( L2y, is nothing but a special limit of , which is allowed by our selection rules.
The reader might wonder if the selection rules ever allow a term in the decomposition of the
long multiplet besides the first term, or maybe we are omitting valid solutions. Later, when
studying the CA'O(QO) x By case, we will obtain a solution, (5.38j)) and , which appear in
the decomposition of a long multiplet .
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Finally, we list the OPE between an AV = 2 chiral and an N = 2 stress-tensor multiplet,

g A
Eq00,0) X Co(0,0) ~&4 +Co,q(§,§) —i—C%’q_%(%,g) —G—B% a-3(0.1) +A07q_3(§ 143) 5.25)
A A
+ Ao,q_3(%17%1> + Ao,q_?)(%zé) + Fq,
where F is,
.
oa-a(5,42) T Coas(442) + Coams(142.) 1<
Comi(s ) () Ty T O 172
_Oq_g(é %)+éoq_3(%’%>+coq_3(%,%) 3>q>2
=3 C > — 5.26
Fq CO,O(% e?z)—i-co(u% 2%1)4-6070(@72 ) q=3 ) ( )
oa-a(s.52) () Thaaizy) 47023
Cofz.2) + Coa(egt )+ Coa129) 1=
| Coaa(3.52) T Coama(egt ) T Coama(ig2 g) 7>4
and ¢ > 0.
5.3.2 &, x B
The three-point function ([5.2]) whith O = & and O = L;; is given by,
;" (223) 0 (225)
<(I)(Zl) ﬁij(Zg) 01(23» = )\q)ﬁ(f) :Eg ) ngj 3;'2— Hél(Z), (527)
31/ 12323

where the @ matrices were defined in (5.5). The symmetry £;; = £;; must also appear in

H(Z), implying H},, = Hy,.



5.3. MIXED OPE 119

Just as with J, the conservation equations for £;; (5.15)) imply constraints to H (Z),

%’C(z)j k) =0 = Qd (3 Hmn) =0 y (528&)
Dg ‘CJk)<Z) =0 = Qa(i Hmn) =0. (528b)

Beside these conditions, we have the one that comes from the chiral supermultiplet (5.14]),
but we already know from (5.17)) that it implies H(Z)Z,, = H(X,0)Z, .
Since Q4; X, = 0, we only need to expand H(X,©) in powers of © and find which ©

structures satisfy ([5.28al). There are only three of those structures,

emlGiehin) olichm. Q) (5.29)

Finally, we use X to construct all possible solutions to (5.28b]). The solutions to (5.27) are,

Multiplet H (Z)

A 72\ "3t % Ai
A0,3—q(g,g) : (X ) Xorar * Xaya, 0", (5.30a)
Bi g0 : "M, (5.30b)
é%v%_q(é7%) : Xal Gt XCVZ diégg+1€j)m * (5300)

For the only unphysical solution to ((5.27)) see (5.52))

The unitarity bound of our long multiplet (5.30a) depends on the U(1),-charge, in a

similar fashion to the &, x éo(o’(]) case. Its decomposition is,

. 5—q+4 ~
q<3: A073_q(%,%) CO,S—q(%,%)+C%,%—q(l*1,§)’

R R CORTE
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nor (fl(g;l &1y, therefore, we do not take them into account in the OPE, as explained before.
272

Finally, we list the OPE of £yo,0) X 81,

(C/'q X Bl NBl,q(Qp) + C%J]*%(%,

With ¢ > 0. Just as with the &, x CAO(()’O) OPE, the &£y(0,0) X B, OPE has a dependency on the

value of q.

A

5.3.3 CA()(O’()) X Bl

Our final mixed correlation function is between a stress-tensor multiplet and the flavor cur-

rent. In this case, (5.2)) reads,

0 (223) 0} (z23)
(T (21) Lij(22) O (23)) = Agro—5——2—5HU(Z), (5.33)
L31T53L53T53

where the 4 matrices where defined in ([5.5]).
We already saw the implications of the conservation equations of J (5.13)) and £ ((5.15])
when we studied the &, x 60(070) and &, x l’;’l OPE. The change of position of J from the

second point to the first point only interchanges the Qs for Ds,

Dij<;7(21) Lij(z2) 02(23» =0 = ﬁg@leiZj(zif) =0, (5.34a)

DT (21) Lij(z2) OF(23)) =0 = DED*'H}(Z3) =0, (5.34D)
The ((5.34a]) condition constraints Hy(Z) to be of the form [ITT] 47],

HE(2) = f(X.O)f +9(X. 0)5,, 46" + h(X,0)7 ;67 (5:35)

ik,
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The next step is to find the f, g and h functions. Since ((5.28b]) does not mix the X with the

O, it is natural to use this equation to construct the f, g and h terms as a © expansion,

4

f<X’ @)67') - Z fk(X):éj)vml”'mkval“'ak @1 ... @Mk (5'36)
k=0

and similar for g and h. The following are the only terms satisfying (5.28b)),

cmlehln) — gmigia  (mllighingola  @a(men) (igha _ @aagml(igin)
(5.37)

Qaligi)m ’ Oalici)a 7 OiJ) , Oii)e¢ma

Note that contains the three structures in plus five additional structures. The
structures in ((5.37) not only tell us the SU(2)g-charge of the O operator in , but they
also fix its U(2),-charge thanks to the scaling condition . The final step is to find the
suitable functions of X in ([5.36|) satisfying both and . The physical solutions

are,

Multiplet H (Z)

A(?O(%’%) : — % (4+0—=A) X .Xw)de)@u(ixw(:)ﬂj) (X2)—3+¥

F1(2 == D) Xiaron  Kap_rapy €)Xy pO" OV (X2)—3+¥

+ (A = 2) KXoy (6 Xy a,,00,07, (x2) 7% (5.38a)
Aozzz) i Xt Xae (% (2—€—A)O4y,,40,1)0”

. » i

O X, O, ) (X3 T (5.38b)
AOA,O(% £y’ Xar@n - Xaae (6 +0—A)Xa,, 1 Xap, 0707

210, X, ) (X2) 7 (5.38¢)

Coo00,1) : @”’(iXu(aléQQ) (5(2)_2 , (5.38d)

10yt Xaa®UM (X) T — 4iX04X, 500 0™ (X2) 7 (5.38¢)
2\2?
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Cis(ony: O Xugem (x2)7%, (5.38f)

C15(01) eliem (5.38g)
Cro(eemy: = 2% (o Koy rir Oy, O €

+ KXoy (@ Xaya, 05, ™ (X2) (5.38h)

syt K D SRR Z (5.381)

él(0,0) : (Ml iin) : (5.38))

Cl(%é) : X(O‘l(‘j‘l o 'Xaé—lde_l (Xaz)de)e(mw

~4il (OOl + 61,040 I) ) 1) (5.38K)
B, - — 4iX,,;, (01EF 4 @ra@enliy (lm) (x2) 72y (G ehlm) (x2) 7
(5.381)

The discarded solutions to (5.33)) are listed in (5.53]), (5.54) and ({5.55))

The solution ([5.38d)) is exactly ([5.38b)) when it hits its unitarity bound, Ayp = 2. It is

also the only physical solution between a family of unphysical ones (5.53d)). (5.38f)) is also

the only physical solution of a larger family (5.53a)). (5.38h)) is valid only for ¢ > 1, the case

¢ =0 being (5.38g). A similar situation happens with (5.38k]): it is only valid for £ > 1, the
special case ¢ = 0 reduces to (5.38j), which is discarded.

Unlike the previous cases, the decomposition at the unitarity bound of the long multiplets

in (5.38) are unique,

244 NG 5 5 5

Aun(ss) ~(8) O 9 TG T (5:39)
2+¢ N
Aoa(s2) ~Con(s.42) T Ey( ) (540)
244 C 5
Asn(e) ~Coa(52.9) TEL-y () (5.41)

Since we do not find any Cie—1 w2y, Cies2 =1y, C1 17e-1 ex2y nor C 1 1/e42 -1y solutions,
2( 2 0 2 ) 2( 2 ) 2’2( ) _2’_2( 2 )

’ 2

we discard them from the OPE. Note that the decomposition of ((5.38al), (5.39)), contains the
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(15.38j45.38k]) solution, as discussed earlier.

Finally, we write down the CAO(O’O) x B, OPE,

with ¢ > 0. Since this OPE is real, we do not write the conjugate multiplets.

5.4 Discussion

Using only N = 2 superconformal symmetry and Minkowski superspace techniques, we have
computed the mixed OPE between a chiral multiplet &,, a stress-tensor multiplet (30(0,0), and
a flavor current multiplet B,. Those mixed OPEs were obtained by analyzing all possible
three-point functions between two of the superfields corresponding to the multiplet listed
before and an arbitrary third operator. The solutions were categorized as physical, which we
listed in the OPEs , and , and extra solutions listed in the Appendix B.
The mixed OPEs involving an &, multiplet have an explicit dependence on its U(1),-charge.
This is not an unexpected result. Computation of two (anti-)chiral multiplets with different
U(1),-charge also shows this behavior [135].

Our results are in complete agreement with the CAO((),O) X éo(gyo), &y X 5__,1 and [5’1 X [5’1 OPEs
previously found. Our mixed OPEs &, x CAO(O,O) and CAO(07O) x B; do not contain any CAO((),O)
multiplet. This is in agreement with the CAO(O,O) X CAO(()’O) OPE [47], which does not contain any
B, nor &, operators. From the OPE between a chiral and an anti-chiral multiplet [I17], it
was expected to obtain a chiral multiplet &, from the &, X CAO((),O) OPE, and neither a B; nor
&, in the &, x B, OPE. Finally, our CAO(O,O) x B; OPE contains a By multiplet in the expansion,
which agrees with the B; x B; OPE [101].

An interesting generalization of this work is to find the OPEs between different Br multi-

plet, with R > 1 and the CAO(O,O) multiplet . As mentioned early, bounds for the central charge
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and the flavor central charge were obtained using the,

A ~ A A A A

(Co(o,o)éo(o,o)Co(o,o)éo(o,o)) ) <Bl 318161> and <éo(0,0)éo(0,0) [3’1[;’1> ) (543)

correlators and the chiral algebra correspondence [92] 47, [138]. When those bounds are

saturated, the OPE coefficients of certain allowed operators also vanish. For example, the

11

35 18 saturated only if the

bound that comes from the stress-tensor four-point function, ¢ >
OPE coefficient of the CAl(QO) multiplet that appear in the CAO((),O) X CAO(O,O) is 0. The theory with
c= % corresponds to the simplest Argyres-Douglas fixed point Hy. Using the superconformal
index, it was confirmed that this multiplet does not appear in the CAO(()’O) X CAO(O,O) OPE in the
Hy theory [145]. By studying the OPEs involving a B multiplet with higher SU(2)z-charge,
the chiral algebra correspondence should yield stronger bounds for the theory. Furthermore,
the saturation of the bounds will imply the vanishing of certain OPE coefficient, as in the H,

case. This vanishing of OPE coefficients can be given as input in the numerical bootstrap in

order to single out a particular theory.

5.A Long, short and semi-short multiplets

Representation theory of the N/ = 2 superconformal algebra has been extensively used dur-
ing this work. We follow the notation of [I09], where all unitary irreducible representa-
tions of the extended superconformal algebra were constructed. The N = 2 superconformal
algebra SU(2,2|2) contains as a subalgebra the conformal algebra SU(2,2) generated by
{Pad,/Cad,M“,./\;léé,D}, where o = + and & = &+ are the Lorentz indices. SU(2,2|2)
also contains an R-symmetry algebra SU(2)g x U(1), with generators {R’;,7}, where the
i,j = 1,2 are the SU(2)g indices. Along with the bosonic charges, there are fermionic
supercharges, the Poincaré and conformal supercharges, {Q¢,, Q4, S, S¥¢}.

The spectrum of operators of SU(2,2|2) is constructed from its highest weight, or super-

conformal primary. Acting with the Poincaré supercharges on the superconformal primary,
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superconformal descendants are generated. A general superconformal primary is denoted by

Aﬁ o and is referred to as long multiplet. The only restriction for such multiplet is to

3:3)°

satisfy a unitary bound [146],
A>2+2j+2R+7r,2+2j+2R—r. (5.44)

If the multiplet is annihilated by a certain combination of {QF, Q4;} is referred to as short

or semi-short and it saturates the unitarity bound. These combinations are,

B:  QWU=0, (5.45)

B: Q.U =0, (5.46)

(

| QLU j#O,
i (5.47)

A ePQLW,  jAO,
C': (5.48)
QLQIT 0.

B-type conditions are called short while C-type are called semi-short, because the former are

stronger conditions. In Tab. we list all possible shortening conditions.

The decomposition of a long multiplet Aﬁ () when it hits its unitarity bound is given

by,

24+2j+2R+r ~

AR7T(j73) NCRJ‘(]J) + CR‘F%,’ILF%(]*%’;) ,
2+2j+2j+2R 5 4 ) R ) . )

Arstis CrG3) + Cris(i-33) T Cris(i5-1) T Crua(i-15-1) (5.49)
24-2j4+2R—r A& B -

AR;]‘(Z;) NCR77‘(]7_]) + CR‘F%,T*%(],Ef%) .
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Shortening Unitarity bounds Multiplet
A>2+2j+2R+r | A>2+2j+2R—1 | AR .~
B! A=2R+r j=0 Br0.)
B, A=2R—r j=0 Br.r(j.0)
BN B? A=r R=j=0 Er(0)
B N B, A=—r R=j=0 Eri0)
BN B, A =2R j=j=r=0 Br
cl A=2+42j+2R+r Crr()
s A=2+2j+2R—r Craij)
clne? A=2+2j+r R= Cor(id)
C1NCy A=2+4+2j—r R = Co.r(i3)
C' N e, A=2+j+j+2R |r=j—j Crij)
B'NC, A=1+7+2R r=j+1 Dro,j)
BN A=2+j+2R —r=j+1 Dhr(j)
B'NB*NC |A=r=1+ R=0 Doo,5)
BiNB,NC' | A=—r=1+ R=0 Do(j0)

Table 5.1: All possible short and semi-short representations for the A/ = 2 superconformal
algebra.
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5.B Discarded solutions

127

Several solutions to (5.16), (5.27) and (5.33) were not listed in the corresponding OPE,

because we regarded them as unphysical. We categorize them in three types,

e Non-unitary solutions. Those solutions have a conformal dimension below the unitarity

bound corresponding to their quantum numbers.

e Long multiplets with fixed dimension.

Long multiplets with fixed dimensions were

argued to come from a theory with extended N' = 4 symmetry [47]. We are only

interested in theories with N/ = 2, thus, we will consider such multiplets as being

irrelevant to A/ = 2 dynamics.

e Solutions with a vanishing overall coefficient. We also find a case where the solution to

the three-point function corresponds to a physical multiplet, a stress-tensor multiplet.

Uniqueness of the stress-tensor implies another symmetry of the three-point function,

which is only satisfied if the overall coefficient vanishes.

gq X 60(070)

There are two types of discarded solutions to ((5.16) which are not listed in (5.25)): non-

unitary and solution corresponding to a long multiplet with fixed dimension. The non-unitary

solutions are,

(5.50a)

Koy ay (5.50b)

c+ Koy ay X 1M (5.50¢)
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Although it is puzzling to find solutions with a conformal dimension that decreases with the
spin, this kind of solutions are not new. They have already appeared in N/ = 1 theories when
computing the three-point function with two flavor currents [119] and in N' = 2 theories

when studying the three-point function with two stress-tensor multiplets [47].

The only long multiplet with fixed dimension is,

4 _ _ _ _ .
A%tq+e 0+1 2 : X()fl dl Tt Xa’g d/Xd1+1 ﬂ@’uZ . (551)
575—‘1(7’5) ] ]
gq X Bl
The only unphysical solution to ([5.27)) is,
3 13 (+1 ¢ ) o\ —2—f o _ _ ~ 4 j)m
(—§+q—£,§,§ —q7T,§) : (X ) Xﬂéldl ”'XC"ZC.VIZXag_HB@ ¢’ . (552)

Since the conformal dimension of ((5.52)) is below the unitarity bound for its quantum num-
bers, Ayp = %—q—i—éforél >q>1and Ay = %—i—q—i—ﬁforq > 4, we regard it as a

non-unitarity solution.

A A

CO(O,O) x By

The non-unitary solutions to (5.33) are,

(A R,rj,5)  H(Z)

3 1 3/0+41¢ B i (22—
(5 4555 5) b Ko Xagae (Xam)Xamﬁ‘@ﬁ( e (X?)

— 202+ 0) Xy Xo,, )5 X0 PO ™ (X2) 77
il X0 10O, (X2) ) (5.53a)

(¢ i Aj -1
<1 — 67 07 07 57 5) : X(al(o'q T Xaeqdeq (66(()4)9.(]1)5) (X2)

(14 0)X i 90X, 679 (X2) ") (5.53b)
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00 .
(2, 0, O, 5, 5) : X(al(dl ce Xaefldzfl (Xal)de)@'u( Xﬂﬂ@uj)

—100Y 5, X0, ,017) (X2) T2 (5.53¢)
0 0+2 ; —2-¢
(2 ¢, 0,0, 1y T) : Xai(én " 'Xaz)de)(a“( Xudzﬂ@ig) ( ) ) (5.53d)

(2 —£,1,0, g g) L Xmar Koy ar s (Xapane™ieln (X2)
— (0 + 1) X X (0MmOHE 1 @raglieml) ¢in)
40 (OO + 0%, By ™) N1 (x2) ) (X2) "
(5.53e)

3 1 37 /7+1 i ym —0-2
(5 - g, 5, —5, 57 ) : X(Oéldl A Xaﬂ)é%@ X“a£+1 (XZ) . (553f)

We also find a solution to ([5.33)) which corresponds to a long multiplet with fixed dimen-
sion,

4 .
Ayt X Xaan©F,, X

Q10U 2)f

L (5.54)

As explained before, we regard this solution as coming from a theory with enhanced N = 4

symmetry.

Finally, there is a very special solution to ([5.33]),
H(Z) = 00X ,,6%) (X*) 7 (5.55)

which has conformal dimension A = 2. This solution belongs to a (?0(070) multiplet, corre-
sponding to a stress-tensor multiplet. Studying the CxC [1111,147] we know that a é—multiplet
cannot appear in the OPE of C x B. It seems puzzling that we obtain such a solution. But it
is already known that this solution, although satisfies , it is not symmetric under
21 <> 23, which comes from the uniqueness of the stress-tensor. Thus, the proportionality

constant of ([5.55)) has to be 0 (see section 3.3.3 of [I11].) This is the only case where there
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is another condition besides the constraints that comes from the EOM of the J and L

multiplets that is not satisfied.
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