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Abstract

We prove that the magnetization is equal to the edge current in the thermodynamic
limit for a large class of models of lattice fermions with finite-range interactions
satisfying local indistinguishability of the Gibbs state, a condition known to hold for
sufficiently high temperatures. Our result implies that edge currents in such systems
are determined by bulk properties and are therefore stable against large perturbations
near the boundaries. Moreover, the equality persists also after taking the derivative with
respect to the chemical potential. We show that this form of bulk-edge correspondence
is essentially a consequence of homogeneity in the bulk and locality of the Gibbs
state. An important intermediate result is a new version of Bloch’s theorem for two-
dimensional systems, stating that persistent currents vanish in the bulk.
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1 Introduction

We show that extended fermion systems subject to homogeneous magnetic fields
exhibit a form of bulk-edge correspondence in the thermodynamic limit, namely exact
equality of magnetization and edge current, at positive temperatures. Roughly speak-
ing, our assumptions are finite-range interactions, homogeneity in the bulk of the
Hamiltonian, and local indistinguishability of the Gibbs state. The first two are explicit
assumptions on the Hamiltonian, the last is known to hold for sufficiently high tem-
peratures [1] and expected to hold much more generally.

In [2] a similar result was established for non-interacting fermion systems. There
it is also shown, how this result relates to the better known bulk-edge correspondence
of the transport coefficients: under the assumption of a gapped ground state and in the
zero temperature limit, the derivative of the magnetization with respect to the chemical
potential converges to the Hall conductivity and the derivative of the edge current with
respect to the chemical potential converges to the edge conductance. In this paper
we establish the differentiability of the magnetization with respect to the chemical
potential also for interacting systems and thus also the equality of the corresponding
derivatives.

Let us now be more specific. We consider a system of interacting fermions
modelled by a sequence of finite-range Hamiltonians (Hy (b)), defined on boxes
Ap ={-L,...,L} x{0,...,2L} and dependent on a homogeneous magnetic field
b perpendicular to the plane. We think of Ay as a subset of the upper half plane of
72 and consider a strip {—L, ..., L} x{0,..., D — 1} of fixed width D as the edge
region and its complement as the bulk. In the bulk we assume translation invariance
of the Hamiltonian with respect to magnetic translations.
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Equality of Magnetization and Edge Current... Page3of39 24

For inverse temperature 8 > 0, chemical potential u € R, and magnetic fieldb € R
the Gibbs, or thermal, state is defined as

e BHLB)—n N1

T e — 1
pL(B, 1, b) EATN (D

where N is the number operator and Z; (8, u, b) = tr(e_ﬂ(HL(b)_“NL)) is the
partition function. In the absence of interactions, pr (8, i, b) is naturally alocal object,
namely it has an integral kernel in which it is possible to identify a bulk and an edge
region, see e.g. [2]. However, in the interacting setting, the locality of pr (8, i, b) is a
delicate issue, which has been investigated e.g. in [ 1, 3—6], see also the more recent [7].
In the present work locality of the Gibbs state in the form of local indistinguishability
is one of the crucial assumptions: Let X C A’ C Ap, then we assume that the
expectation value of an observable A € Ax can be approximated by the Gibbs state
of the Hamiltonian restricted to A’,

tr(pL (B, 1. b) A) =~ tr(pa (B, . b) A),

up to terms that vanish in the distance of X to the boundary d A’ of A’. A subtle point
here is that the definition of 3 A’ depends on whether we consider A’ as a subset of
77 or as a subset Ay . In the first case d A’ could include parts of the physical edge
{—L, ..., L}x{0}and local indistinguishability is only demanded for X in the bulk of
the system. In the second case local indistinguishability is also required for X located at
the edge of the system. For this reason we speak of local indistinguishability in the bulk
for the former case and local indistinguishability everywhere for the latter. Note that
in our setting a sufficient condition implying local indistinguishability everywhere is a
sufficiently high temperature [1]. However, for systems with short-range interactions,
one may generally expect local indistinguishability to hold away from critical points,
i.e. whenever the system has a unique thermal state in the thermodynamic limit. Such
a state has decaying correlations [8, Chap. 4], which implies local indistinguishability,
at least if the decay is sufficiently fast [7].

The magnetization is defined as the derivative of the grand canonical pressure
pL(B,w,b) = —| A7 7! ln(ZL(ﬂ, ", b)) with respect to the magnetic field b,
namely

d
mp(B. w,b) = 55 PLB. b). 2

Our main result states that whenever the family of finite volume Gibbs states satisfies
local indistinguishability in the bulk then the magnetization approximately equals the

bond current Izdge(ﬂ, W, b) through an orthogonal line of length L at the lower edge
of the sample, see Fig. 1 and Eq. (9),

Imp (B, s b) — I (B, . b)| = OL™Y). 3)

Moreover, this current is very well localized near the edge and thus called edge current.
Both statements are contained in Theorem I and depicted in Fig. 1. Furthermore, if the
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Fig. 1 Pictorial representation of our main results: for locally interacting fermions on a two-dimensional
lattice with perpendicular magnetic field b, satisfying local indistinguishability (see details in Sect. 2.1) at

positive temperature, the edge current I[e‘dge’ which is the bond current through the vertical line, is localized
near the boundary and approximately equals the magnetization m j, (Theorem I). The latter is a bulk quantity,
i.e. it converges in the thermodynamic limit L — oo and does not depend on the details near the boundary
(Theorem II). This independence allows for the rough edges in the picture

finite volume Gibbs state satisfies local indistinguishability everywhere, then we show
that the thermodynamic limit m (8, u, b) := limy_, oo m (B, u, b) exists and obtain
an equality between the edge current 71°92°(8, 11, b) and the magnetization m (8, i, b)
in the infinite volume system, see Theorem II. And while the orbital magnetization
mp (B, u, b) and the edge current Izdge(ﬁ, W, b) of the finite systems in principle
depend on the bulk and edge part of the system, we show that the limits m (8, u, b)
and 1°9€¢(B, 11, b) are independent of the specific shape of the interactions at the edge
of the system.

However, since we obtain the infinite volume magnetization m (8, u, b) from a
limit of finite systems with edges converging to a system on the upper half plane with
an infinite edge, one might ask whether m (8, u, b) can be considered a pure bulk
quantity. To answer this question in the affirmative, we show in Theorem IV that the
magnetization obtained from any KMS state at (8, ) for the translation invariant bulk
Hamiltonian defined on the entire plane coincides with m (g, u, b).

Finally, in Theorem III we establish the differentiability of m (8, u, b) with respect
to p. By comparison to the non-interacting setting, one would expect that, in the
presence of a spectral gap and with weak interactions, the zero temperature limit of
9, m(B, u, b) converges to the quantized Hall conductivity. While this result is not
present in the literature and out of the scope of the paper, we show here a preliminary
regularity result of m (B, u, b) with respect to u.
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A crucial ingredient to our proofs is a new version of Bloch’s Theorem for two-
dimensional systems. We show that local indistinguishability together with current
conservation implies that currents decay quickly with the distance to the edge, or, put
differently, that in equilibrium currents can only flow near the edge of a sample. See [9,
10] for recent related results and the discussion below.

Let us end the introduction with a few more comments on the literature. As already
mentioned, analogous mathematical results relating magnetization in the bulk with
edge currents for non-interacting systems were obtained in [2], with predecessors e.g.
in [11-13]. Notice that the equality between edge current and magnetization in two-
dimensional systems can be also interpreted as a quantum mechanical, microscopic
version of Ampere’s law, as it is sometimes addressed in the physics literature, see for
instance [14], where the effect of a time-dependent magnetic field on the magnetization
of localized states is analyzed in a discrete, non-interacting setting. The existence
and properties of edge states of magnetic Schrodinger operators were studied e.g.
in [15, 16]. The mathematical literature on bulk-edge correspondence for transport
coefficients is vast but concerns almost exclusively non-interacting systems at zero
temperature and with a gap in the bulk, e.g. [17, 18]. In [19-21] the authors derive,
starting from the assumption of an incompressible bulk, effective actions for the bulk
and the edge system. While they do not start from a many-body fermion model as
we do, they are able to derive much more far-reaching consequences for quantum
Hall systems from a seemingly innocuous assumption about the bulk. In microscopic
models of interacting fermions the bulk-edge correspondence of transport coefficients
was established at zero-temperature for weakly interacting gapped systems in [22, 23].

2 Mathematical Framework and Main Results
2.1 The Hamiltonian

LetZ. = ZN[0, co) and 72 = 7 x 74, both equipped with the 1-metric dist(x, y) :=
|x1 — yi| + |x2 — y2|. For any finite subset X € Z? let hy := £2(X, C*) be the one-
body space and §y := F~ (hx) the corresponding fermionic Fock space. By Ax we
denote the algebra of all bounded operators in £(Fx) that commute with the number
operator Ny 1= > .yarfa, =) .y Z;‘:l a;"j a, ; and by Atoe = Uxeze Ax
the algebra of all local observables that preserve particle number. Its closure

A = Aoc

is a C*-algebra and called the quasi-local algebra.
We consider sequences (Hp (b))pen of Hamiltonians defined on boxes Ay :=
([—L, L] x [0, 2L]) N Z? that are of the form

Hib)= Y a;TM @ ya,+ Y o™Xx)
xX,yeAL XCAL
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+ Y @y a,+ Y oY)

X, YEAL XCcAp
= Y aiTyx,ya,+ Yy OX). )
x,yEAL XCAp

We sometimes need to restrict this Hamiltonian to other finite sets A’ C A;. In this
case we write Hy (b) W which means that the sums in (4) only run over x, y € A" and
X C A/, respectively.

The Hamiltonian is split into a “bulk” part, which is invariant under magnetic
translations and an “edge” part, which lives on the lower edge. Each consists of two
contributions: The kinetic terms

L X0+
T;ulk/edge(x’ V)= 2222 p(x1—y1) bulk/edge (1 (5)

are a Peierls phase times a hopping amplitude 7Puk/edee . 72« 72 s £(C*), which is
uniformly bounded sup, 72 H poulk/edge () H < C and satisfies 7PUk/edge(x y) =

phulk/edgey, y) * . The interactions

bulk/edge . X e Z2} - Ajoe, X — ¢bulk/edge(X) € Ax

are self-adjoint, the terms are uniformly bounded, supy -7 || gbulk/edge (x| < C, and
the corresponding operators )y 4 . @bulk/edge(x) are assumed to commute with all
local number operators N, for z € Ay. The last condition is satisfied, e.g., for
density—density interactions or external potentials.

Furthermore, all terms are assumed to be of finite range R € N, i.e. TPuIk/edge(x )
= 0if dist(x, y) > R and @"Ik/edze(x) = 0 if diam(X) > R. As mentioned above,
the bulk contributions are assumed to be invariant under magnetic translations, i.e.
TPk (x — 7,y —z) = TP¥(x, y) only depends on the difference x — y and @Ik
satisfies (20). And the edge contributions are supported on a strip of fixed width D
along the lower edge, i.e. Tedge(x, y) =0unless x,y € Z x {0,1,...,D — 1} and
@°dee(X) = O unless X C Z x {0, 1,..., D — 1}. Without loss of generality we
choose D > R, since the presence of the boundary already modifies the Hamiltonian
inZx{0,1,...,R—1}.

A canonical example of a magnetic Hamiltonian with interactions is the Hofstadter—
Hubbard model, i.e. the second quantization of the discrete magnetic Lapla-
cian together with an on-site density—density interaction. More precisely, for the
Hofstadter—Hubbard model we have b, = C?,

T (x,y) = idg2 - Sj—yj=1. and O"N(X) =af a, af,a,,  Sx=(x).

which leads to

HH _ 2092 ey —yp) * * *
H by = ), &2 PBRUSTINE 3D DRSTNTSTI

X,yEAL: jef{1,2} xXeAp
lx—y|=1
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Near the edge, one could, for example, add an external potential (Pedge(X) =
¢ (x) Nix) 8x=(x) or effectively remove individual sites by subtracting all hoppings
connected to them.

For a finite subset A € Zﬁ_, a Hamiltonian H € Ay, inverse temperature 8 > 0,
chemical potential 1 € R, and magnetic field » € R we denote the grand canonical
partition function by

ZALHI(B, ) = tr(e PH-1ND),

and the Gibbs state by

o BH=N)
HIB, p) = ———.
PAHI(B, 1) ZATHI B

When we consider truncated Hamiltonians in the proofs, we drop the index and
informally write p[H. (D) ,,](B. ) = pa[HL ()], ](B. ). On the boxes A, we
abbreviate

Ni=Nay. Z0B. . b) = Za,[HL(B)](B. 1) and
pL(ﬂv m, b) = PAL [HL(b)](ﬂ’ H’)

The key hypothesis for our results is that the Gibbs state is locally determined by the
local terms in the Hamiltonian. This property is often called local indistinguishability
and made precise in the following definition.

Definition 1 (Local indistinguishability of the Gibbs state) Let {: Ng — Ry be
non-increasing with lim, o ¢(n) = 0 and g: R4 — R4 non-decreasing with
g(Q2R + 1)* + 1) = 1. The family of Hamiltonians (H (b)) e is said to satisfy
local indistinguishability of the Gibbs state at (B, iu, b) with {-decay,

(a) in the bulk if and only if forall Le N, X C A’ C Apand A € L(Fx) C A

ltr(pr (B, 1. b) A) — tr(p o [HL(B)] 1 ] (B, ) A)| < I1ANl g (1X1) ¢ (dist(X, Z% \ A")),
(6)
(b) everywhere if and only if forall Le N, X Cc A’ C A and A € L(Fx) C A

|tr(oL (B, i, b) A) — tr(pa [HL ()] 4/ ] (B, 1) A)| < IA] g(1X]) ¢ (dist(X, Ap \ A)).
(7

Note the difference between Z?2 \ A"and Ap \ A’ in the distance in (6) and (7), if
A’ includes parts at the boundary of A;, see Fig. 2. In particular dist(X, Z> \ A) =
min{dist(X, Az \ A'), dist(X, Z?\ A7)}, so indistinguishability everywhere implies
the property in the bulk. This distinction is useful, because we expect a better decay
in the bulk and a worse decay at the boundary due to the presence of edge states.
For some of the statements we however need local indistinguishability also near the
boundary and might accept a slower decay. In particular, local indistinguishability
directly implies decay of correlations, see Lemma 13, and we do not expect that to
hold with good decay near the boundary due to edge states, see e.g. [23].

For most of our results, we will require local indistinguishability with decay at
least ¢ € £', but any better decay will yield better results, in particular concerning
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24 Page8of39 J. Lampart et al.

ofle diét(i,zz\.A’i o o o]

Fig.2 Sketch of the two distances used in Definition 1. If the Hamiltonian satisfies local indistinguishability
in the bulk, the bound (6) decays in the distance to the boundary of A’ (in 7%). While local indistinguishability
everywhere also gives a good estimate if X is close to the boundary of A’ as long as the boundaries of A’
and Aj coincide in that region

localization near the boundary. For example, local indistinguishability everywhere
with exponential decay function ¢ is known to hold for sufficiently high temperature
in systems with finite-range interactions [1, Corollaries 2 and 5]. The decay rate and
constants depend on S, but can be chosen uniformly for small 8. As is shown in [7],
decay of correlations at some positive temperature implies local indistinguishability
at the same temperature, and the converse also holds, see Lemma 13.

The normalization in Definition 1 is chosen such that all later bounds, where we
always restrict to sets | X| < (2R + 1)2 + 1 so that g(|X|) < 1, do not depend on g.
We need to allow for larger X only to define the thermodynamic limit pso (8, 1, b).

2.2 The Edge Current and the Magnetization

Denote by Bj (£) :={y € A | dist(x, y) < £} the ball around x in A;, withradius £.
The set B (R) contains all points which have non-vanishing interaction with x. Then
the current operator Jy,(b) has components (k = 1, 2)

Jr(b) :=i[Xe L. HL(D)] =1 [Z wala, Y a; T;,(x,y)ayi|

zEAL X, yEAL

i Z Z (xk — yp) ay Tp(x, y) ay.

XeAr yeB} (R)
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Fig.3 The figure shows a small [ ) [ ) [ ) [ ] [ ) [ )
section of A and two points z Cn
and 7’ € Ay with their dual 22
edges eq ; and € /s () [ () [
respectively. For z, also all lines .\ /. -/

Xy which contribute to J¢ L (b) z =

for R = 2 are drawn. The light e ’ % %—. ® ®
blue lines only intersect the

endpoints of €] ; and thus come €1 »Z

with a prefactor 1/2 in (8). P / \. PY PY P

(Color figure online)

We now rewrite this sum as a sum of currents through edges of the dual lattice. For
that, denote by e;., C R? the dual edge which intersects the edge between lattice
points z and z + & and by ey ; the edge together with the attached vertices (see Fig. 3).
Here, €; denotes the unit vector in k direction, e.g. &, = (1, 0). Moreover, denote by
¥y C R? the line connecting x and y. We define the current through the dual edge ¢,
as

i
JE () = 5( Z sgn(xx — yi) ay Tp(x, y) a,+
JYEAL:
xi)):r){ek,zl;é(a

> sen(x — o) @k Tp(x, y) ay>' ®)
X, yeAL:
Xy Nek  #V

Thus, each hopping term ay T, (x, y) a, is included once in Jk 1 (b) if Xy intersects the
dual edge ey ., or half if Xy intersects only the endpoints e ; \ e, . of the dual edge.
In the latter case it appears for twice as many different z. Since Xy intersects |xx — yx|
vertical lines we can rewrite

L-1 2L L 20L—1
By =Y Y0 and L) = Y Y A
m=—L n=0 m=—L n=0

by summing over all edges. Note, that the L-dependence of J,f’ 1 (b) only stems from
missing hopping terms near the boundary, and we define

JE(b) = I, (b)

forall L > |z1] + R and 2L > z> + R consistently.

Moreover, ford € {1, ..., L}, we define the edge current as
d : d—1
B b) =D (oL (B 1. b) 11" (b)) ©)
n=0
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24 Page 10 0f 39 J. Lampoart et al.

and introduce the shorthand Izdge =1 LL ®d€ for the current along the lower half of the

system Ay . By current conservation it equals the currents through lines connecting
the center of Ay with the midpoints of the other boundaries of Ay, see proof of
Proposition 9, we only choose this edge because it persists in the thermodynamic limit
L — oo in our geometry.

It remains to recall the definition of (orbital) magnetization. For inverse temperature
B > 0, chemical potential © € R, and magnetic field b € R, the grand canonical
pressure is given by

prL(B, 11, b) i= =L+ )72 In(21(B, 1, b)), (10)

and the magnetization by
0
mp (B, ., b) = 35 PLB. b).

2.3 Main Results

Our first main result deals with the magnetization and the edge current at finite volume.
For this type of result only local indistinguishability of the Gibbs state in the bulk is
needed.

Theorem | Let :P% e ¢! and (Hy (b)) en be afamily of Hamiltonians of the form (4).
Then, there exists a null sequence 6 and a constant C > 0 such that the following
holds: if (Hy, (b)) en satisfies local indistinguishability of the Gibbs state in the bulk
at (B, i, b) with £ X-decay in the sense of Definition 1, then

lmp(B, p, b) — 158, p, b)| <6(L) forallL> D+ R. (11)

Moreover, the edge current is localized near the edge in the sense that for all L >
d>R+D

G~ G p|<c 3 M. a2
n=d—R—D

Remark 2 The sequence 6 is given as a function of ¢* by (30). If ™% (r) < C" (r +
1)~*D withn > 1,then (L) < C” L™/®+2) and (12) is bounded by C"” (d — R —
D)~". While (12) scales basically like £™¥, the best possible decay in (11) is O (L) ~
1/L, which results from the fact that the fraction of the total area occupied by the
boundary scales like 1/L in two dimensions. However, unless both the magnetization
and the edge current vanish, no better decay can be expected even in the non-interacting
case, cf. [2].

Then, if we further assume local indistinguishability of the Gibbs state everywhere
we can also analyze the thermodynamic limit of (12). First, notice that if the family of
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Hamiltonians (Hy (b)) ey satisfies local indistinguishability with £°42°-decay every-
where, then for all finite X C Zi and all observables A € Ay the expectation values
tr(pL (B, i, b) A), which are defined if A; D X, form a Cauchy sequence in L, and
we define po (B8, u, b)(A) to be its limit. Thus, there exists a unique thermodynamic
limit state poo (B, 1, b) on Ajoc, and we can define the edge current in this state by

d
J42 (8 1 by poa (B b)(z Jl(O,n)(b)>. (13)

n=0

Theorem Il Ler ¢PK e ¢! and ¢°9€ tend to zero. Let (Hy (b))ren be a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (B, i, b) with t®%_decay in the bulk and ;%€ -decay everywhere, in the sense of
Definition 1. Then the thermodynamic limit

m(B, u,b) := lim mp(B, u,b) (14)
L—o0
exists, and the total edge current

I%¥6(B, 1, b) 1= Jim I°%E(B, 1, ), (15)

satisfies
m(B. . b) = I°*(B, 1. b).

The edge current is localized near the edge in the sense that there is C > 0 so that for
alld > D+ R

|17 (B, . b) — 1B . D) < > PR,
n=d—R—D

Moreover, m(B, i, b) and 1°9(B, 1, b) are independent of the specific edge contri-
butions T; ¢ ing pedee,

The precise statement on the independence from the edge Hamiltonian is given
in Proposition 12, where we also derive an explicit bound on the difference of the
finite-volume edge currents, see (33).

Note, that local indistinguishability everywhere with ¢{®€°-decay implies local
indistinguishability in the bulk with decay at most ¢PUK < redee But we assume
the decay in the bulk separately in order to take into account the possibility that the
localization properties of the edge current might be better than its speed of conver-
gence in the thermodynamic limit, cf. Proposition 10, which is the situation in the
non-interacting setting [2, 24].

edge

Remark 3 We present Theorems I and II with an edge interaction only at the lower
boundary for simplicity. The proofs allow for a more general setting where an inter-
action can be added on all four sides. Moreover, then the magnetization m (8, w, b)
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24 Page 12 0f 39 J. Lampart et al.

and the edge current 7°9¢(8, 1, b) are independent of these boundary perturbations.

More precisely, we have the following: For each L € N let ®2°undary be a finite-range
interaction supported on Qy := Ap \ [-L + D, L — D] x [0,2L — D], a strip of
width D around the remaining boundaries of Az, commuting with all local number
operators Ny and with interaction terms bounded uniformly in L, and let T; oundary
be a hopping as in (5) with 7P°"Y supported on Q. Let (Hy (b)) be a family

of Hamiltonians of the form (4) and let

ALy :=H )+ Y aT," Y ya,+ Y @ (x).
X, yeA]L XCAL

Then the respective statements of Theorems I and II also hold for the family of
Hamiltonians (ﬁ 1.(b)) Len. Moreover, if both FIL (b) and Hp, (b) satisfy local indistin-
guishability, then (B, i, b) = m(B, ju, b) and I°9€(B, wu, b) = I°92¢(B, u, b) are
independent of the boundary terms.

Supposing that the assumptions of Theorem II hold uniformly in some open interval
of chemical potentials around ., we obtain differentiability of m (8, w, b) with respect
to wu and thus, as explained in the introduction, a further step in the direction of proving
the equality of transport coefficients.

Theorem Il Let n — n? £ (n) € £'. Let (Hy (b)) 1en be a family of Hamiltonians
of the form (4) satisfying local indistinguishability of the Gibbs state everywhere
with ¢ decay at (B, u, b), for w in some open interval. Then m(B, v, b) and
Jedge (B, u, b) defined in Theorem 11 are differentiable, and thus

3 m(B, w, b) = 8, I°*(B, w, b).

Remark 4 As we already know from Theorem II that m(8, u,b) = 1 edge(ﬁ, uw, b),
Theorem III will follow from differentiability of 7 edge (B, u, b), see Proposition 17.
Additionally, we prove a quantitative bound for the difference of the two quantities in
finite volume in Propositions 18, and localization near the boundary in Proposition 17.

Animportant ingredient in the proof of Theorem I is the vanishing of the equilibrium
current in the bulk. This result is known in the literature as Bloch’s theorem (see e.g. [9,
10] and references therein) and has an importance on its own. In our setting with open
boundary conditions, it is just a consequence of current conservation coupled with the
local indistinguishability of the Gibbs state. This allows for better decay rates than in
the setting with periodic boundary conditions.

Proposition 5 (Bloch’s Theorem) Let £*"% be a null sequence and (Hy (b)) ey be a
family of Hamiltonian of the form (4). There exists Cg > 0 such that the following
holds: if (Hy, (b)) Len satisfies local indistinguishability of the at (B, i, b) with ¢P"-
decay in the sense of Definition 1, then

|tr(pL (B, 1. b) JE (D)) < CB g"““‘([dist(z, 72\ AL) — D — R]+). (16)
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We have established the equality of the edge current and the magnetization and
proven that the edge current is an edge quantity in the sense, that it is localized near
the edge. Finally, we argue that the magnetization is a bulk quantity by showing
that it can be obtained directly in the infinite volume without any edge. Denote by
Bj = [—L, L1* N Z? the boxes centered on the origin and let

HM )= Y af 1M (x yya, + Y o™ (x) (17)
Xx,yEBL XCBg,

be the bulk Hamiltonian and

Pk (4) = lim ol (HP™ 0) =N p o=it (HP"™ (0)—puNp, ) (18)
L—o0

be the infinite-volume dynamics generated by the bulk Hamiltonian (adjusted by the
chemical potential). Following the arguments from [25] we will first show that the
pressure of the infinite volume limits of the edge and bulk system agree. Under a
somewhat stronger hypothesis and using ideas similar to Theorem III, the magnetiza-
tion m(B, , b) can then also be obtained directly in the infinite-volume system.

To this end, note that the pressure for general states p on Ap, is defined as

P(p) = tw(p (HP™®) ~ i Np,)) = B7' S(p) with S(p) i= —tr(pIn p), (19)

which agrees with —B~! In Zg, [H(5)](B, 1) for the Gibbs state of HM¥(b),
compare (10). The following theorem states that the pressure per unit volume,
lim; o0 P(wlp, )/ (2L + 1)2, where o B, 1is the restriction of a bulk equilibrium
state w to Ap, , equals the thermodynamic limit of the pressure in the system with an
edge.

Theorem IV Let (Hp (b))ren be a family of Hamiltonians of the form (4). For any
B > 0, u, b € R the thermodynamic limit

p(B, u,b) := Lli_>moo pL(B, u, b)

of the pressure exists and is independent of the boundary terms. Moreover, for any
(zPUIk | B)-KMS state w the pressure per volume of w equals p(B, i, b),

(“’|BL)

pB,u,b) = 1 m

Additionally, given £*"% € ¢! and ¢°9€ tending to zero, assume that (HL (b))LEN
satisfies local indistinguishability in the bulk with ¢®%-decay and everywhere with
c%9¢e_decay at (B, w, b), for b in some open interval. Then b — p(B, w, b) is differ-
entiable and its derivative agrees with the magnetization m(B, i, b) defined in (14),

o p(B, n, b) = m(B, i, b).

@ Springer



24 Page 14 0f 39 J. Lampart et al.

3 Proofs
3.1 Bloch’s Theorem

This section is devoted to the proof of Bloch’s theorem, namely Proposition 5. The
proof is based on the bulk homogeneity of the system and on the continuity equation
for the current provided by Lemma 6, together with the local indistinguishability
assumption for the Gibbs state. The homogeneity in the bulk of the system is encoded
in the invariance under magnetic translation, which we briefly recall in the next section.

3.1.1 Magnetic Translations

On the one-particle Hilbert space h = ¢2(Z?) of the full lattice Z?, for y € Z? and
b > 0 the magnetic translation Uy, (b) is defined by its action on ¥ € b as

(Uy(b) ¥) (x) = P2y (x — y) withadjoint (U} (b) ¥)(x) = e 7?2000y (x 4 ).
Then, in second quantization, for which we use the same symbol, we obtain
* * _ a—iyabxy %
U; (b) a; Uy(b) = e~ 2P ay_y.

With this definition, the kinetic part of the bulk Hamiltonian (4) is invariant under
magnetic translations since

Uz (b)al T (x, y)a, U, (b)

X4y

= Ul (b)a} U (b)e” ™2~ (1= 12K (x ) U¥(b)a, U, (b)

pX2tyy g 220X g 220)]
=a* zelb 5= (x1—y1)—ib=5—"+ib=5 Tbulk(x_Z

Yy —2ay

—
* bulk
=ay_ I, " (x—z,y—2a,_.

Moreover, we assume that the bulk interaction ®°“!¥ is invariant under magnetic trans-

lations, namely
Uz (b) @™ (X) U, (b) = ™5 (X — 7). (20)

Hence, the complete bulk part of the Hamiltonian (4) is invariant under magnetic
translations, and

UZ(b) HL(b)|y, U (b) = HL(D) |, _,

for X C Az and z € Z? such that dist(X, Z> \ A7) and dist(X — z, Z*> \ Az) > D.
This property carries over to the local Gibbs state in the sense, that

U; (b) p[HL()| ] (B, 10) Uz (b) = p[HL(B)|_, (B, 10).
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Moreover, the above calculation also shows that U (b) J; (b) U, (b) = J;*(b) for
all y, z2 > R + D, due to the simple structure of Jky (b). Then, it follows that

w(p[HL ()| ](B. 1) J{ 0)) = w(p[HL )|y _ ](B, 1) J{“(B)) (1)

if X, y and z fulfill all mentioned conditions.

3.1.2 The Continuity Equation

We prove the continuity equation for the local currents defined in (8) and the resulting
current conservation for stationary states. These two facts play a key role in the proof
of Bloch’s theorem.

For this purpose, let us define the dual edge boundary of aset Z C Ay as

zeZandz—i—ékeAL\Zor}

. {(k e ({—L,...,L—l})
= y [S s N
A ¢ x ce€A\Zandz 48 € Z

x{0,...,2L — 1}

This is exactly the set of labels (k, z), such that the union of the dual edges e ; is the
boundary of the set (., z + [—1/2, 1/2]* in .4, =+ [—1/2,1/2]%.

Lemma 6 (Continuity equation) For any z € Ay, the currents defined in (8) satisfy
the continuity equation

d . .
— el -/\[{z} e LN 0 = div, JkZ,L(b)

dr 1= ) ) (22)
= U5 (b)) = IS (b)) 4 T (b) — Iy [P (D).
Proof Calculating the derivative, we find
d . _ .
aelHL(b)’/\/{z}e HL(b)1 _=1[HL(b), Niy]
=i Y [ai Th(x,y)a,. Nig]
X, yEAL
=i Y aT.oa —i Y aTyzya,
xeAr\{z} yeAr\{z}
. * k
=i Y  alTyx.2)a, —a Ty(z.x)a,,
xeAr\{z}

where we used that [}, 4, @"™(2), Niy] = [Xzca, P°U(2). Niyy] = 0 by
assumption.

It is left to rewrite the sum in terms of J,f’ 1 (b). Each X7 in the sum will cross the
rectangle around z formed by the four dual edges ez, ej ;_¢,, €27 and e; ;_, of the
dual lattice at one point. If this point lies within a dual edge ey 4, the term in the sum
will contribute to J, ,? 1 (b) with weight 1. Otherwise, Xz crosses the rectangle at a corner
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and the contribution is attributed evenly to the two adjacent dual edges with weight
1/2. The sum on the right-hand side of (22) still contains some more terms coming
from elements x, y € Ay \ {g} such that the line Xy intersects two of the four dual
edges. As can be easily checked, the corresponding contributions come with different
signs and cancel each other. For example, the term a} T (x, y) a, forx =z + €, and
y = z + & appears with negative sign in J; ; (b), because x; — y; < 0, and with
positive sign in JzzyL(b), because xp — y» > 0. O

As a simple consequence, in a stationary state it follows that the net current into
any set Z C Ay is zero. This is an important ingredient for the following proof.

Corollary 7 (Current conservation) For any Z C Ay and stationary state' p, current
conservation holds

> (=17 w(p JE (b)) = 0. (23)

(k.z)€ds, Z

Here §,c7 = 1 if z € Z and 0 otherwise, takes the role of the normal vector in the
continuous analogue.

Proof Taking the expectation value of (22) and summing over z € Z yields

d . . .
0= g u(e™ PPN )| = 3 ulp I ®) —ulp L @)
B kef1,2}
zeZ

due to stationarity of p and cyclicity of the trace. In the sum, the positive term for
z € Z is cancelled by the negative one for z + & € Z and only (23) remains. O

3.1.3 Proof of Proposition 5

Proposition 5 (Bloch’s Theorem) Let {b““‘ be a null sequence and (Hy (b)) reN be a
family of Hamiltonian of the form (4). There exists Cg > 0 such that the following
holds: If (Hr (b)) en satisfies local indistinguishability of the Gibbs state in the bulk
at (B, u, b) with ¢ bulk-decay in the sense of Definition 1, then

|tr(pL(B. 1. b) JE (D)) < CB {b““‘([dist(z, Z*\ Ap)— D — R]+). (16)

Proof We do the proof for k = 1, i.e. currents in x-direction, since the case k = 2 is
analogous. Let d > D + R. By current conservation for the rectangle Ay N {x; > 0},
whose boundary in Ay is simply the vertical line at x; = 0 (see edge set (a) in Fig. 5
for m = 0), we find

! The statement actually holds for all bounded operators p € A4, but is naturally interesting for states or
similar objects (see Sect. 3.4).
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oL
0= th(,OL(,Ba ., b) Jl(?Ln)(b))
n=0
d—1

= > tw(pL(B. . ) 1% 1)) + te(pL (B . b) 15T (b))
n=0
2L—d

+ 2 (oL (B b) I B) — w(p[HLB)] gy (B 1) 11" )
n=d
2L—d

+ 3 w(p[HLB)| o ] 1) 1" (1))

n=d
=: A1 + Ay + A3z,

where B*(£) := {y € Z?| dist(x, y) < £}istheballin Z>, R < £ < d — D and we
replaced J f‘ 1 (b) = J{" in the last two sums in view of the previous remark that the
L-dependence of ]kz, 1 (b) only stems from missing hopping terms near the bound-

ary. Due to their structure, Jl("z'”)(b) are bounded operators with norm bound
||J1(fri’")(b)|| < Cy uniform for all m and n. Hence, also )tr(,oL (B, i, b) Jl(f'z’") (b))‘ <

C; and |A1| is bounded by 2d C;. For the second sum Aj notice that Jl(f'i’") b) €
A pimm (r)- Thus, by using the local indistinguishability of the Gibbs state, see Defi-
nition 1, we have
2L—d
A2l = ) Coe™ME~R) = QUL —d) + 1) Cs ™M~ R).
n=d

And by the translation invariance of the Gibbs state, namely (21), we get

QL =)+ D) t(p[H0)| g [ (B ) 1P 1)) = 43 = (A1 + Az,
which together with the previous bound on A; and A;, implies

: Csd u
e (P[HL®)| o[ (B. 10 P )| = 55+ Co e~ R).

As the left-hand side is actually independent of L, it is bounded by the infimum
Cy ™k (¢ — R) of the right-hand side.

We can now prove the same for every J 1("2") (b) with z = (m, n) in a finite box by
using (21) together with

PLHLB)| o JBs 1) I (b) = p[HL (D) iy ] (Bs 1) I ()
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if dist((m, n), Z* \ A) > R + D. Indeed, we have

(oL (B 1. b) I 0))|
< | (oL (. 11,5 (" ®)) = ([ HL D) iy [ (B, ) 17 0)|

+ ([ HL®) o0 1B, 1) 1P )|
<2C; "M@~ R)

by using local indistinguishability and the bound for Jl(?iL) (b). We can now choose

¢ = dist((m,n), Z* \ Ar) — D, which proves the statements for dist((m, n), Z* \
A L) > R+ D. And ssince we argued above that the LHS of (16) is in any case bounded
for all z € Ay, the full statement follows with Cg = C; max{¢""%(0)~!, 2}. O

3.2 Proof of Theorem |

We split the proof of Theorem I in two parts: we briefly discuss the localization of the
edge current first and then the equality between the magnetization and the current.

3.2.1 Localization of the Current

The localization of the edge current near the edge is a straightforward consequence of
Bloch’s Theorem.

Proposition 8 Let % € ¢!, (Hy (b)) en be a family of Hamiltonians of the form (4)
and Cg be the constant from Bloch’s Theorem. If (Hy, (b)) eN satisfies local indistin-
guishability of the Gibbs state in the bulk at (B, i, b) with {®%-decay in the sense of
Definition 1, then forall L > d > D + R,

o0
17 B by — 1 B ) < Cs Y ™).

n=d—D—R

Proof For the proof we just apply Bloch’s Theorem to obtain

L—1 00
ded d
1o = 1 < 3 (o0 (B, ) )| = € D0 K — D = ).
n=d n=d

3.2.2 Magnetization in Finite Systems

Let us compute the magnetic derivative of the Hamiltonian. Notice that for every fixed
L the Hamiltonian Hyp (b) is a smooth function of b in the operator norm topology.
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Taking into account (5), we find that

d .
HL () = o HLb) = 30 3 3 (o+y) =y a Th(x, y)a,
x€AL yeB] (R)

L-1 2L
= > Y na o), (24)
m=—L n=0

where J 1("2") (b) has been defined in (8). To see the last equality, we compare the

coefficients in front of ai Tp(x, y) a,. Without loss of generality we only consider
x1 < y1 and x2 < y;. By (8), the coefficient on the right-hand side is

yi—1

—12%( >ooon o+ > n>

m=xy ~ nelN: _ nelN:
xynew, on.n#9 Xy Ner gn.n 79

By point symmetry around the center (x 4 y)/2 of Xy, whenever Xy N €1 (u.n) 7 ¥
form = x1 + kand n € N, then also Xy N ey /) # ¥ form’ = y; —k — 1 and
n’ = y» — (n — x3). The same holds for the edges without the endpoints. Thus, the
coefficient equals

yi—x1—1

—i4 Z %( Z n+(y2— (n—x2)+

k=0 . neN:
x}’mel,(xlﬂc,n)?'£®

Z n+(Y2—(n—X2))) =3 (1 — y1) (2 + x2).
neN:
Wmel.(.\'lﬁ—k,n)#“

This is exactly the coefficient on the left-hand side of (24).
By using Duhamel’s formula and (24), we can explicitly compute the magnetization
as follows

mp(B, w,b) = —Q2L+1)2 ! aa_b ]n(tr(e_ﬁ(HL(b)—uNL))>

— ! ol 2 o BHL B -u N
QL+ 1?BZL(B,u,b) \0b

= ! tr
QL+ 12 Z1(B. 1 b)

1
( / ds e SPHLO—1ND 1 (1) e_(l_s)ﬂ(HL(b)—ll.NL)>
0
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Fig.4 Depicted are Ay, for

L = 4 (dots) and the ° | ° ° | ° ° | ° °
corresponding dual edges top

e1,(m,n) (lines) as defined o | . . . | . | o . | . .
above (8). They were used to

define the current J ](7'2’") (b) . | . . . | . | . . | . .
in (8). Since there are less

vertical dual edges than vertices . | . . | . . | . .

in Ay, the right most vertices | | | |
have no corresponding dual

edge. The coloured boxes group o |eft | 3 | * bulk | . | . right | .
the dual edges into the five

groups of the | | | |
decomposition (26) for d = 2.

(Color figure online) | | | |

1
= QLT 12 tr(pL (B, i, b) Hy (b))

L-1 2L
1

=G X ntlenBu ) LV ®). (25)

m=—L n=0

Proposition 9 Let c™% e ¢! and (Hp(b))ren be a family of Hamiltonians of the
form (4) satisfying local indistinguishability of the Gibbs state in the bulk at (8, |1, b)
with ¢P%_decay in the sense of Definition 1. Then

dedge

44? o
(B, b) — 11 (B, . b)| < G (T+ 3 gbulk(n))

n=d—R—-D

foralld > D + R with Cg from Bloch’s Theorem.

Proof We decompose the sum from (25) into five regions (see Fig. 4)

L-1 2L
1 .
TR Z Zntr(PL(ﬂ, 1, b) Jl(,nzn)(b)) — Abulk | gleft | yright | 4bottom | 4top
m=—Ln=0

(26)
We will show that APUK Aleft 3nq ATight are small and that AP and APOUOM regemble
the edge current. Abbreviating j,g'z’”) = tr(pL (B, . b) J,C(f'i’") (b)), the individual
contributions are
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L—d—1 2L—-d
Abulk . Z Z n ](m )
=T Ta s
(ZL + 1) —L+d n=d
1 —L+d—1 2L
Aleft = .(m, ")’
(2L + 1)2 Z Zn ]
m=—L n=0
L—-1 2L
Aright . _ (m n)’
1 L—d—1 d-1
Abottom — Z Z n J (m,n) and
2 LL >
QL+1) m=—L+d n=0
L—d—1

top . )
AT (2L+1)2 Z Z L

—L+d n=2L—d+1

where APK is the bulk part, A" and A" are the sum over the left and right edge
regions, AP°"™ and AP are the sum over the upper and lower edge regions. Note
thatd > R + D.

By Bloch’s Theorem, |j{,| < ¢(dist(z, Z? \ Ap)) with ¢(r) := Cg ™% —
D — R). Thus, we can bound the inner part A% by summing over shells {z €
Ap | dist(z, Z*\ Ap) =r}

L—d—1 2L—d
bulk (m,n)
A" = L+1m——ZL+dy;1|hL |_2L+IZ§() 27)

Then, let us consider the right and left edge regions, A'® and A"€h'. We write only
the case of A"M since the other one is analogous. First, using a discrete version of
partial integration, we find

L—1 L-1 2L 2L
S WTCEED o 3 o8
m=L—d n=0 m=L—d n=1n'=n

and by current conservation (see edge set (c) in Fig. 5) and | jz(f'g’")} < Cg,

<(L—m)Cg.

Z](mn) Z ](mn 1)

n'=n m'=m+1

Hence,
d*c d-Cp
<

right (m,n)
4 |_‘(2L+1)2 Z Z’” 2L+ 1

m=L—d n=0
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(©)
R R S L R K
Sl e @ Do =0
° ° . . . . . I . I . . . n=0
oIl —l—l—l-(m,n)—l— —
N I N I I Y I A
;I;;_'(E)'IJ)'_I'I'l'|;;(b) Z( JiL TIiL )
. ’. .I ° I °
|

; ©) Zjl(mn)+zj(m n—1) -0

o n’=n m'=m+1

Fig. 5 The picture shows Ay for L = 6 and all dual edges. A few connected sets of dual edges are
highlighted. Together with the boundary all these sets are rectangles, and in the proofs we use current
conservation through the edges as given in the formulas

Let us now consider the contributions coming from the lower and upper edge
regions. The contribution AP°™ is small due to the prefactor n & 0:

L—d—1 d—1 ] & Cp
o)
n . 2L -d)ddCy < .
'(2L+1)2 ZL:M,;) W = grynp 2 —dddCs = 5=

We have now proven that all contributions up to A'°P are small. In AP we replace n
with 2L making again an error of

‘ L—d—1

d*c
2L+ 12 Z Z (n=21) jip" =3 B1
( + ) —L+4+d n=2L—d+1 +

It now seems, that the magnetization only stems from the top part. That, however, is

only due to our choice of the gauge. Indeed, the top and bottom contributions would

. Xxp+yy—2.
equal in a gauge with Peierls phase e’ by (5)—which corresponds to

exactly our Hamiltonian but on boxes [—L, L]? centered around the origin.

However, also with our natural choice of gauge, we can rewrite the magnetization
in terms of the currents near the bottom edge using current conservation (see edge set
(a) in Fig. 5) and vanishing of the currents in the bulk:
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’ 1 L—d—1 1 L—d—-1 d-1
(m,n) (m, n)
D S S Dl A
QL+1) m=—L+d n=2L—d+1 QL+1) m=—L+d n=0
L—d—1 2L—d
(m,n)
< Pl
2(2L + 1) A R

The last step here follows exactly from the calculation (27) for the inner part.
So far, we have proven that

m(B. . b) - o Y. @)
2L+ 1)2 —L+d n= 0 1 n=d

It remains to show that all contributions equal the one at m = 0. Using current
conservation once more (now for edge set (b) in Fig. 5), for any m > 0

d—1

L
Z(Jl(nin) ](On)) Z<|J1(mn)|+|](0n)> Z|J(m L)

n=0 n=d m'=1

. (29

and similarly for m < 0. Thus, by using (29) and the analogue estimate for m > 0,
we can estimate the error that we make by replacing ]l L ) with ](O " in (28). The
error has three terms coming from the estimate (29) and each of them can be bounded
using again the strategy from (27):

L—d-1 L ~
Z S = Y e,
(2L + 1)2 —L+d n=d b n=d
L—d—1 N -~
Z Z|J ”)}<Z¢(n),
(2L+1)2 —L+d n=d —d
2L L-d-1 m L—d—1
m Z Z|Jl(mLL)|< Z (L — m)<Z§(n)
—L+d m'=1

As a final step, we bound

d—1 2
4d-C
2L2(L—d) .(0,n) B
( QL+1)? _1>ZJI,L =21
n=0

Hence, altogether we have proven that

2 o0
d edge 8d bulk
s, b) —1 b)) <C .
mL (B, i, b) — 1 5B, 1, b)| B<2L it X e (n))
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We conclude this section with the proof of Theorem I.
Proof of Theorem | Combining Propositions 8 and 9, gives

9]

Z é’bulk(l’l))

442
|mL(ﬁ1 M, b) - Izdge(ﬂﬂ M, b)| =< CB (T + 2
n=d—R—-D

for all d > R + D. Taking the minimum over d gives (11) with

. (2d2 - bulk )
O(L)=2Cg min (——+ > ™Mm)), (30)

R+D<d<L\ L
+h=d= n=d—R—D

which tends to zero for L — oo (choose, e.g., d = LY*). The bound (12) follows
directly from Proposition 8. O

3.3 Proof of Theorem Il

Theorem II is basically the thermodynamic limit version of Theorem I plus some
additional remarks. We split the proof into three parts: in the first part we show the
localization of the edge current in the thermodynamic limit, namely Proposition 10,
in the second part we prove the equality with the thermodynamic limit of the magne-
tization, that is Proposition 11, and in the last part we show the independence of the
edge interaction, see Proposition 12.

Let us start with an important remark. In Sect. 2.3 we already discussed that local
indistinguishability everywhere with ¢°4€°-decay implies existence of a unique ther-
modynamic limit state pso (8, £, b). More precisely, for finite X C Zi_ and A € Ay
the convergence is given by

(0.9) ’ ’ ‘k tr ICL ﬂ? Msb ‘\ S A g ‘( g dlSt ‘<7Z+ I‘L

due to local indistinguishability.

3.3.1 Localization of the Current in the Thermodynamic Limit

We first note that Bloch’s Theorem and the localization of the edge current carry over
to the thermodynamic limit.

Proposition 10 Ler ¢PK e ¢, 292 g null sequence and (Hy (b)) pen be a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (B, i, b) with {®%_decay in the bulk and ;%€ -decay everywhere, in the sense of
Definition 1. Then the unique thermodynamic limit state poo (B, L, b) on A\ satisfies
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Bloch’s theorem, that is, for all 7 € Z_%_

oo 11, 0) (7 )| = 2.C ¢ ([dist(z, 22\ Z3) - D = R],),

with Cg from Bloch’s Theorem. Hence, also the infinite edge current, defined in (15),
is localized near the boundary in the sense that

o0
199 (B, . b) — I°8°(B, . )| <2C Y~ ™K
n=d—D—R
foralld > D + R. Moreover, forall L > Randd < L

|1 (B, . b) — 17°9°(B, 11, b)| < d ¢*%°(L — R).

Proof. Combining (31) with Bloch’s Theorem we find for all z € Zi and L such that
z € Ap_p (remember that then J{ (b) = Jf’ 1 (b)) that

| poo (B, 11, b) (JF (D))
< [poo(B. 1. b)Y (I | (B)) — tr(pL(B. 1. b) Jf | ()| + [t (pL (B, . b) Jf | ()]
< %% (dist(z, Z2 \ Ar) — R) + Cs {bulk([dist(z, Z*\ AL)— D — R]+),

where the first quantity converges to zero, and dist(z, Z>\ Ar) = dist(z, Z*\ Zi) for
L large enough. The localization of the current now follows exactly as in Proposition 8.
For the convergence in L, we estimate

1799 (B, 0, by — 19998, 1, b)|

= % (028,10 IO ®)) = ps(B, 1, 0 (1" )|
n=0

<d¢o(L —R). O

3.3.2 Magnetization in the Thermodynamic Limit

Proposition 11 Ler ¢P% e ¢! and ¢°%2° tend to zero. If (Hy (b)) e is a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (B, i, b) with t®%_decay in the bulk and ¢ -decay everywhere, in the sense of
Definition 1, then

lim mp (B, w,b) = I°€°(B, 1, b).
L—o0
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Proof We combine Propositions 9 and 10 to obtain

o0

442
lmp (B, . b) —I1°€(B, 11, b)| < Cg (T + ;bulk(n)) +d (L —R),
n=d—R—-D
(32)
which will tend to zero as L — oo for an appropriate choice of d, depending on L.
|

3.3.3 Independence of the Specific Edge Hamiltonian T:dge and ¢edoe

In order to complete the proof of Theorem II it remains to show that the thermody-
namic limit of the magnetization and the current does not depend on the specific edge
contributions Tbe €€ and @odee, We prove this by showing that the edge currents of
two finite systems with different edge Hamiltonians are asymptotically equivalent and
then taking the thermodynamic limit.

Taking into account the differentiability result with respect to u of Theorem III,
this also implies the insensitivity to boundary perturbations of the p-derivatives in the
thermodynamic limit.

Proposition 12 Let £k e ¢!, £°92¢ tend to zero, and let (Hy (b)) e and (Hp (b)) Len
be two families of Hamiltonians of the form (4) that only differ in the definition of the
edge contributions T; dge, @cdee gnd T; dge, dedge Assume that both satisfy local
indistinguishability of the Gibbs state at (B, it, b) with cPK _decay in the bulk and
c%98¢_decay everywhere in the sense of Definition 1. Then, denoting the quantities of
Hy (b) with an additional tilde,

19 (B, 1, b) = T°98°(B, u, b).

This result shows, that a local perturbation near the edge might change, where
exactly the edge current flows, but it does not change the total net current near the
boundary. In this sense, the edge current / edge (B, 1, b) is dictated by the bulk.

Proof The idea of the proof is to use current conservation and Bloch’s Theorem to
show that the current along the lower and upper edge are the same up to a sign (for
both interactions). Using local indistinguishability we can then prove that the currents
along the upper edge are almost the same for both edge interactions. Thus, also the
currents along the lower edge almost agree.

Asin Sect. 3.2.2, we abbreviate j,f!"z’n) := tr(pL (B, w, b) Jk(fqli’")(b)). And for better
readability, we drop the arguments (8, u, b) in the following. The current flowing in
the upper edge of the box can be written as

d—1
dup.edge | .(0,2L—n)
I; = Ji.L .
n=0
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By current conservation (see edge set (a) in Fig. 5) and Bloch’s Theorem we find

2L—d

Z |J(0 n)| <203 Z é.bulk(n)

n=d—R—-D

Id edge d up. edge

+1;

forall L > d > D+ R. Then, using local indistinguishability for A" = Béo’szn)(ZL—
n — D), with0 < n < d — 1, which is chosen such that Tbedge and @€ vanish on
A’, we find

.(0,2L— 0,2L—
GO = w(o[HLl ] 1) < e @L —n - R - D).

And the same also holds for the corresponding properties of H; denoted by an

additional tilde. Due to the choice of A’, HL| o= I:IL] " and we also have
J(O 2L=n) J](OLZL " for2L —n > D + R. Hence,
Izledge . iz’edge| < | dup.edge - idup.edge| + |Idedge + Idup edge|
+ ‘Idup edge + Idedge‘

+ 4CB Z é.bulk(n)

n=d—R—-D

<Z‘](02L n ~(02L n)

oo
<2d¢*%QL+1—-d—D—R)+4Cs Z K ().
n=d—R—D
(33)

The statement now follows from Proposition 10. O

3.4 Proof of Theorem lll

In this section, we discuss the p-derivative of the edge current. Defining

Fr(B, i, b) =8, pr(B, 1, b) = B(NL — NL)py(piy) LB, 1, ), (34)

we find
0 tr(pL (B . b) Ji L () = te(FL(Bo . b) JF (b)) (35)

because J f’ 1 (b) does not depend on p.

To prove Theorem III we use the same strategy of the proofs of Theorems I and I,
whose main ingredient is Bloch’s Theorem. Therefore, we start by proving a similar
statement to Bloch’s Theorem for the “state” Fr (8, i, b). A key point in the proof of
Bloch’s Theorem is the use of local indistinguishability for the Gibbs state. However,
since it is not clear whether F (8, u, b) satisfies local indistinguishability, we need
to adapt the strategy a bit.
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Let us start by showing that F7,(B, i, b) has a thermodynamic limit. As a starting
point, note that local indistinguishability everywhere implies decay of correlations, a
property needed in the following.

Lemma 13 Let (Hp (b))peN be a family of Hamiltonians of the form (4) satisfying
local indistinguishability of the Gibbs state everywhere at (B, i, b) with ¢3¢ -decay
in the sense of Definition 1.

Then the Gibbs state satisfies decay of correlations, that is forall X, Y C Ay, with
dist(X,Y) > R, A € Ax and B € Ay the covariance

COV,DL(ﬂ,lL,b)(Av B) = tr(,OL(,B, M, b) A B) - tr(pL(IBs M, b) A) tr(pL(ﬁs M, b) B)

is bounded by

dist(X,Y)— R —1
ICOVpy 4y (A, BY| < 3 (X1 + Y1) I A] Bl £ Q X7 J) .

2

Proof Letl = L(dist(X, Y)—R—l)/ZJ and A" = X,UY,, with the £-neighbourhoods
Xy :={z € A | dist(z, X) < €} and Y;. For better readability we again drop the
arguments (B, i, b). Then, for all Q € Axuy

(o1 ©) = tr(p[Hela] Q)| = g(IXI + Y1) Q1 == O).

Moreover, ,o[HLlA/] = p|HLlx, | ® p[HL|y£], since dist(Xy, Y¢) > R, and thus
tr(p[HL|A/] A B) = tr(p Hy|a A) tr(p[HL|A/] B). The statement then follows
from the triangle inequality. O

This allows us to prove convergence in the thermodynamic limit of the expectation
value in the state 77, (8, i, b) of observables that may be supported near the boundary.
We denote by

BY(0) :={y e Z% | dist(x, y) < ¢}

the ball in Zi, similar to how we denoted with Bj (£) and B* (¢) the balls in A7 and

72, respectively.

Lemma 14 Let n — n? % (n) € £' and (Hy (b)) Len be a family of Hamiltonians
of the form (4). There exists a non-increasing & € €', explicitly given in (38), such
that the following holds: if (Hy, (b)) en satisfies local indistinguishability of the Gibbs
state everywhere at (B, w, b) with £°%¢-decay in the sense of Definition 1, then, for
all x € Zi, A€ Agi(R) and L' < L such that B{(R) C Ay, it holds that

[(FL B b) A) = w(FL (B a b) A)| = BIIAIE(dist(x, AL\ AL) = R).
(36)

Proof For the proof let X = BY (R), £ = [dist(X, Ay \ Ay/)/3] and Z = B} (R +
2¢) C Aps. The main idea of the proof is to write the number operators as sums
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of single-site operators. Then we can use local indistinguishability (for the single-
site operators supported in Z) and decay of correlations (for the single-site operators
supported outside Z) of the Gibbs state to conclude the result. For better readability
we drop the arguments (8, u, b). Then

(w(Fr 4) — u(Fr 4)) /8
= Z tr(pL A./\/}) - tr(PL’ A/\/Z)

z€Z
- Ztr(pL A)tr(pr N2) — tr(pr A) tr(pp N2)
z€Z
—}—Ztr o A tr pL/./\/) tr(,oL A) tr(pL/j\/'Z)
z€Z
+ Z LAN tr(pL A) tr(pL/\/Z)
zeAIN\Z
— Y (o AN:) —tr(pp A) tr(pp N2). 37)
€A N\Z

Since A has bounded support, the first three sums can now be bounded using local
indistinguishability of the Gibbs state because p;r = p[HL|4,, ], while the last two
can be bounded using decay of correlations in the form of Lemma 13. Using ||| = 1
and g(|X|+ 1) <1, we find

(2 4) = w(FA)| / (B1141)
<3) ¢ (dist(X U {2}, AL\ Ap)

z€Z
dist(X,z) — R —1
B
ZGAL\Z 2
dist(X,z) — R —1
- X (| )
€A \Z 2

Summing over shells as in (27), the sum over z € Z is bounded by
20
D E(distX Uz}, AL\ Ar)) S 4(R+20) ) % () + 2R+ 1)7 ¢4 (20),
zeZ n=~(
and each of the other sums can be bounded by
o o
12 )" +R) ¢ ([(n—R=1)/2]) < 12> @m+2+R) £°* (m—| (R—1)/2]).
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Defining

£(r) =3 (12 3 @mA2+R) ¢4 (m— | (R—1)/2 )+ (2R+1)? ;edge(ze))’

e=1r/3)"
m=>~{
(38)
which is in £! since n — n? ¢%9€¢(n) € ¢!, yields the claim. O

We will use this Lemma later to prove differentiability of 7°92¢. But first, we adjust
the proof to show that also the p-derivative of the local bond currents decay in the
bulk, i.e. a Bloch’s Theorem for F (8, i, b). However, the two simplest approaches
to adjust the proof of Bloch’s Theorem do not work. At first, one might want to
use local indistinguishability of the Gibbs state and view N7 — (N7} as part of the
operator in (7). This fails, since N7 — (N7 ) is supported over all A and not bounded
uniformly in L. Alternatively, one could try to use local indistinguishability of the
“state” Fr (B, i, b) and follow the proof of the Bloch’s Theorem afterwards. And
while Lemma 14 already looks similar to local indistinguishability, it can only be
used to compare 9, pr. (B, w. b) with F[Hr(b)| ,,](B. ) == 8, p[HL (D) , ] (B. 1)
for A’ = Ay/. But within the proof of Bloch’s Theorem we also need to compare to
more general sets A’ C Ay, in particular to sets that include an edge of A, (not only
the lower one).

One might hope to adapt the proof of Lemma 14 to prove local indistinguisha-
bility. However, that needs decay of correlations in F [H (D) A,](ﬂ , ) which we
could not prove. It would follow from local indistinguishability everywhere of
p[HL (b)‘A/](,B, ), which might be a viable assumption since the Hamiltonian is
translation invariant. To avoid these more general assumptions, we take a different
approach for which we introduce

F%[Hy(b)

2B 1) = BNz — NZ) o, )1y 18.0) P[HL(D)

2B (39

for Z C A’ C Ar. These “states” can be handled easily since the problematic sum is
not present. We prove the following statement which is similar to local indistinguisha-
bility in the state Fr. (8, u, b).

Lemma 15 Letn — n? %9 (n) € €', (H (b)) Len be a family of Hamiltonians of the

form (4) and & € £" as in Lemma 14. If (Hy (b)) L en satisfies local indistinguishability
of the Gibbs state everywhere at (B, i, b) with £°4€¢-decay in the sense of Definition 1,
then, forall x € Ap, £ € No,Z = Bj (R+2), A" = B (R+3¢) and A € -AB{(R)

‘tr(]—'L (B. 11 b) A) — tr(FZ[ Hp.(b)

A)B. 1w A)) = BIAIEBO.

Proof The proofis exactly the same as the proof of Lemma 14 but with p;+ replaced by
p[H I A,] and without the last sum in (37). Hence, we only need decay of correlations
in pr, which is provided by Lemma 13.

Lemma 15 allows us to prove an analogous statement to Bloch’s Theorem for the
“state” JFr (B, i, b), namely that |tr(FL (B, i, b) J,Ef'z"l) (b))| decays rapidly inside
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the bulk. In particular, we also prove boundedness of the p-derivative of local bond
currents, which is not clear a priori because Az, — (N7) is not uniformly bounded
in L.

Proposition 16 Let n — n? %92 (n) € €', (Hy (b)) en be a family of Hamiltonians
of the form (4) and & € £ as in Lemma 14. There exists Cx > 0 such that the following
holds: if (Hy, (b)) LeN satisfies local indistinguishability of the Gibbs state everywhere
at (B, i, b) with £%%-decay in the sense of Definition 1, then

|tr(FL(B. 1, b) JE L (D)) < C]:,Bé([dist(z, 72\ A — D — R]+).

Proof For better readability, we drop the arguments (8, i, b) in the proof. And as
in the proof of Bloch’s Theorem in Sect. 3.1.3 we only do the proof for k = 1, i.e.
currents in x| -direction.

We first prove uniform boundedness of the left-hand side. Recall that J, kz L €A B (R)

and || J | < C. For € = 0, Lemma 15 with Bf (R) = Z = A’ yields

(1 JE )| = [w(FL IE ) = w(FPLHL ) )| + e (FP[HL| ) 56 )|
<BCrEO0)+BQRR+1*Cy
=: B Cyp.

To prove decay in the bulk, note that F, is stationary due to stationarity of the
Gibbs state and since H; commutes with the full number operator A/, appearing
in the definition of F; . Hence, we have current conservation in the ‘“state” ¥, see
Corollary 7, which we apply for the rectangle A7 N {x; > 0}. Then we choose
d>D+Rand0 < £ < (d — D — R)/3 to obtain

2L d—1
0= Ztrf J(On) Ztr J(0n> +tr(]—" J(02L n))
n=0 n=0

2L—d
+ ) w(F 5O) - u(FEO R0y
n=d

2L—d
+ Z tr(]:B(OYn)(RJ’_ZZ)[HL|B(O<”)(R+3K)] Jl(o,n)),
n=d

‘B(Ov”)(R+3E)] Jl(o’n))

which is the same decomposition as in the proof of Bloch’s Theorem. The first sum is
bounded by 2d B Cp. With Lemma 15, the second sum is bounded by

L —-ad)+1)BCyEQBL.
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All terms in the third sum equal the one at (0, L) due to translation invariance of the
Hamiltonian. Thus,

) CoBd
‘tr(fB(O L)(R+2€) [HL|B(0.L)(R+3Z)] JI(O,L))‘ < LO__ﬂd 4 ﬂ Cj $(3£) — :3 C]E(:SE)

for L — oo.
We can now relate this result back to any point x € Ay . Choosing d = dist(x, Z> \
Ap), £ =|(d—D—R)/3| we find

(2 )

< |e(F2 1) — (P E20 [,

Ii)

B~ (R+3l)]
i )tr(]:B(O’”(R“D[HL}B<0,L>(R+3e)] JI(O,L))‘

=2pC;8030),

which proves the claim with Cz = max{Co £(0)~',2C,}, using & (k) = £(3 | k/3])
due to the explicit form (38). O

We can now prove differentiability of 792¢,

Proposition 17 Let n — n? %€ (n) € ¢!, (Hp(b))ren be a family of Hamiltoni-
ans of the form (4). If (Hp(b))LeN satisfies local indistinguishability of the Gibbs
state everywhere with ¢®%-decay at (B, w, b) for all (v in an open interval M, then
1892 (8. 1, b), 19°9€(B, 1, b) are differentiable functions of i € M. Moreover, the
derivative of 1°9¢¢(B, ., b) is localized near the boundary, with the decay estimate

o0
|0, 19 (B, 11 b) — 0, 19°°°(B. . )| < BCr Y (). (40)
n=d—R—D
where Cr, & are as in Proposition 16.
Proof In finite volume, it is clear that IZI edee s differentiable in w. We will thus use

local indistinguishability, respectively Proposition 16, to take the limit L — oo and

then d — oo uniformly in w.

We abbreviate ji;"(w) = tw(pr(Bp.0) GV ®) and j*V () =

Poo (B, 1, b)(]l(o’")(b)) as before (the first will only be used for n < L so that
TP (k) = 7™ (b)). First, by Lemma 14,
01" 0 = (L . 0) 1" )

is a Cauchy sequence in L. Denoting its limit by cgo’”)(u), we have

’cgo’n)(ﬂ) — Oy jf?in)(ﬂ)’ <BC ;&L —R).
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By local indistinguishability we know that jl(oi")(,u) converges to its limit jl(o’") (n),

and this convergence is uniform since ¢°%2° is independent of 1. Hence, by complete-
ness of C1(M), j{®" () is differentiable in 1 and 9, j*" (1) = ¢\*" (). Thus,
19¢92¢(B 1. b) is differentiable and satisfies

|8, 1998, 11, b) — 8, I} “*°(B, 1, b)| < Bd Cy E(L — R).

To take d — o0, observe that by Proposition 16

.0, .(0, .(0, -0,
10, 7" (1 < 0 707 () = 8 3157 )| + [0, 755 ()]

=BCjEL-R)+CrpE(nn—D—R),

which converges to B Cr&(n — D — R) as L — oo. Summation over n shows that
Jedge (B, u, b) is differentiable and satisfies (40). O

Note that Proposition 17 together with the equality m(8, u, b) = I°9€¢(B, u, b)
from Theorem II proves Theorem III. Additionally, we provide a bound on the differ-
ence of 0, my (B, u, b) and 9, Izdge (B, 1, b) in finite volume, which is analogous to
the bound from Theorem I.

Proposition 18 Lern — n? %4 (n) e ¢!, (Hy (b)) Len be a family of Hamiltonians of
the form (4). There exists a null sequence n so that the following holds: if (Hy (b)) .eN
satisfies local indistinguishability of the Gibbs state everywhere with ¢ -decay at
(B, 1, b) for w in some open interval, then

B mr(B, 11, b) — 3, IS5 (B, 1, b)| < Bn(L).

Proof. Differentiating (25) by using (35), we obtain

1 L-1 2L o
Qumi (B b) = 5 20 D nw(FL(wb) 1 B)).

m=—L n=0

Following the proof of Proposition 9, where we only used Bloch’s Theorem and current
conservation in pr (8, i, b), whose analogues here are Proposition 16 and current
conservation in Fr (8, u, b) (the latter holds, because Fr, (8, i, b) is stationary), we
obtain

edge 4d° .
B mL (B b) = 0, 1] (B, b)| < BCr (T* > s<n>).

n=d—R—-D
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Combining this with Proposition 16 to compare 9, IZ edge(,B, u,b) and
n Izdge (B, 1, b), proves the claim with

2d? ad
n(L)=2Cr D+I?é%5L<T + ) g(n)>. O
n=d—R—D

3.5 Proof of Theorem IV

We first prove that the limit of the finite volume pressures py (i, 8, b) defined in (10)
exists and is independent of the edge Hamiltonian. Therefore, let

PPN (B, 11, b) = p, [HP™(B)](B. 1), and 2P = Zp, [HP"™(5)](B. )
(41)

be the Gibbs state and partition function of the bulk Hamiltonian on the centered
boxes By . For the statement we introduce

Cpy /o = sup (2 2l M a4 3 @ II) +
YN yer Xczx:
xeX
(42)
which bounds the norm of all hoppings and interactions which include a particular
site.

Proposition 19 Let (HL (b))LEN be a family of Hamiltonians of the form (4) and let
H}"ulk (b) be the corresponding bulk Hamiltonian defined in (17). Then

pL(ﬂ’ M?b) -

P(,OEUIk(,B, W, b))' - C;;lge D (43)

Q2L + 1)? ~ 2L +1

for all B > 0, u, b € R. Moreover, the thermodynamic limit p(B, u,b) =
limy 00 pr(B, 14, b) of the pressure exists and

P bulk S, b 4R Cbulk
(PL (B, ))‘S H (44)

'p(ﬁ’“’b)_ QL+ 1) 2L+1

The proof is based on [25, Sect. 9.2], where the convergence for translation invariant
interactions is discussed. Instead, here we have a bulk part which is invariant under
magnetic translations and an additional edge contribution.

Proof Within the proof we fix 8, u and denote P(H) = ™! In tr(e_ﬁH ) for self-
adjoint operators H such that QL+ pr(B, u,b) = P(pL(,B, W, b)) = P(HL(b)—
wN L), i.e. we write the pressure of the Gibbs state by just specifying the exponent.
We begin with the important observation, that the pressure is continuous and
bounded in the Hamiltonian, i.e. |P(H)) — P(H»)| < |Hi — H,| and |P(H))| <
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|| H1]|, for all self-adjoint H; and H,. To see this, consider self-adjoint A; and A, and
A(A) ;= A A1+ (1 — 1) Ap. Then

1
|1n tr (e_Al) —Intr (e_A2)| = ’/0 c%; In tr(e_A()‘)) da

Lir((A) — Ap)e™4®)
,/0 tr(e—A(’\))

da

<A1 — Az,

where we used that e=4*) / tr (e‘AO‘)) is a normalized state in the last step. The result
for P follows immediately because the factors of 8 cancel.
We first show that the pressure in finite volume is almost independent of the edge

terms. Therefore, let W := nyyeAL ay Thedge(x, ya, + ZXCAL @edee(X) be the
edge contribution to the Hamiltonian Hy (b) such that Hy, (b) — W is the Hamiltonian

from (4) without any additional edge terms. Then,
d
|P(Hp — uNL) = P(HL(b) =W — p NL)| < W] < C* D 2L + ).

Thus, the per volume pressure pr (8, i, b) is independent of the edge terms up to an

error ngge D / (2L + 1) — 0 as L — oo and we only consider the Hamiltonian
without edge terms in the following.
To shorten notation in the following we denote ng"‘ = HE“"‘| 4 for A C Bg.

As discussed in Sect. 3.1.1, Hg‘f; = U_,(b) nglk U*,(b) and thus the partition

function and the pressure of the respective states agree, P(Hg‘f;) = P(Hl"“lk). This
in particular proves that P (Hy, (b)) —w Nx, ) = P(H"™ (b)—pn Ng, ). i.e. the pressure
of the system on A without edge contribution exactly agrees with that on By . Together
with the above estimate, (43) follows.

We now prove convergence of pl,i““‘ = P(,ozu“‘ B, u, b))/(2L +1)?as L — oo.

2 . . .
For L' < L one can fitn = Lzzf/i” disjoint boxes By + x; in By. By the estimate

on the pressure, we find

PO —10Ni) ~ POy 0N )

<CY™(IBLl—n|Byl) =2CP™ 2L + 1) QL + 1).

In the second step we used ‘ lg|? — q2| < 2gq for g > 0. In the next step we remove
the hoppings and interactions between the individual boxes

n
bulk bulk
P(Hqu By +x;j - /"LNU] BL/+)C]') - P(Z HB;I/-HC]' - /J'NBL/+XJ')‘
j=1
<4CPRRQL 4+ Hn<4CP*RQL+ 1> QL +1)7.
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Then, we observe that the trace of the non-interacting parts factors

n n
E : bulk —1 bulk

P( HB:/-‘,-XJ- _MNBL/-FX/') :ﬁ 1nl_[tr(13 HB‘Z-{—X] _ﬁl’LNBL/-HCj)
j=1 j=1

n

bulk
= 3 P(H N

j=1
=n P(Hglzl/k - /LNBL,),

where we used that the pressures of the individual boxes all agree. As a last step we
bound

<20 2L + 1) 2L +1).

|BL] bulk
n— P(H  — uNg,
‘( By1) P~ m N

Using triangle inequality and dividing everything by | B |, we obtain an estimate for
the per volume pressures

bulk bulk
)PL — P

2L +1 R
<4cp™ : 45
- H 2L+1+2L/+1 “5)

Equation (45) shows that { pE“lk} LeN 1s a Cauchy sequence and thus it is convergent.

Together with (43) also pr (8, i, b) converges to the same limit p(8, u, b). The con-
vergence in (44) follows from (45) after taking the limit L — oo. O

Next we show that the limit of the pressures of the finite volume boxes agrees with
the pressure of any infinite volume KMS state of the system without an edge.

Proposition 20 Let (HEulk (b))LeN be a family of Hamiltonians of the form (17) sat-
isfying the assumptions from Sect. 2.1, and let T®% be the corresponding dynamics
defined in (18). For every (t® X, B)-KMS state w the pressure per volume of the
restriction of w to By, defined by (19), satisfies

P(p2 (B, n. b))  P(wlp,) <8c2,““<R

(2L + 1)? QL+ D2~ 2L+1°

Proof. We follow the ideas of [25, Proposition 12.1]. Let w be a KMS state, denote its
restriction wr, := w|p, and abbreviate p}i“lk = pzulk (B, u, b). The difference

B P(wr) — B P(pp"*) = tr(wr Inwr) — tr (wr, In pp'¥)

equals the relative entropy S(wr, |p2“1k) > 0. Since the relative entropy is monotone
under restrictions (see [26, Theorem 6.2.33]), we have

S(wr|p®) < S(wlp)
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for any extension p of ,02“"‘ from Ap, to A. By [25, Theorem 7.5],  satisfies the
Gibbs condition and a natural choice for this extension is given by the perturbation of w
where all interactions between By, and the rest of the system are deleted (compare [25,
Corollary 7.8]). To be precise, let

Wy = Z ar Tk (x, Va, + Z o™k (x)
x,yeZzz Xc72:
{x, y}NBL#D, XNBL#Y,
{x,YINZ2\ B #0 XNZ2\BL#0

be the surface interaction, which is an element of A with norm bounded by
4C E,“lk R (2L + 1) since all interactions are of finite range R. The state corresponding
to subtraction of W, from the Hamiltonian can be expressed in the GNS representation
(B, 7y, ) for by

p(A) = <e—/3(Hw—nw(WL))/2 P2 Q 1 (A) e PHo=T0(WL)/2 ofHu/2 Q>/ZWL’

where H,, is the generator of the dynamics induced by t?* in b, and Z"* the normal-
izing factor (see [26, Theorem 5.4.4] and note that ef /2 acts trivially on the cyclic
vector 2 since w is invariant). With this, we have (cf. [26, below Definition 6.2.29])

Slp) = —w(BWL) +p(BWL) =2B[IWL],

and thus
o< P(pp™) + P(wr) _ 8CH™ R -
- (2L +1)2 ~ 2L+1°

Now we are able to prove Theorem IV.

Proof of Theorem IV The convergence of py (8, u, b) and independence of boundary
terms follows from Proposition 19. Equality of the pressure with the per volume
pressure of any (zPX, 8)-KMS state follows from Propositions 19 and 20.

Now assume that (H L (b)) Len satisfies local indistinguishability uniformly in b. By
Theorem II, my (B, u, b) = 9, pr(B, i, b) converges to m(p, i, b) as L — oo, and
in view of the estimate (32) this convergence is uniform in b. Then, the convergence
of the primitives py (8, i, b), which converge pointwise by Proposition 19, must also
be uniform and p(B, u, b) is differentiable with derivative m (8, u, b). O
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