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Abstract
We prove that the magnetization is equal to the edge current in the thermodynamic
limit for a large class of models of lattice fermions with finite-range interactions
satisfying local indistinguishability of the Gibbs state, a condition known to hold for
sufficiently high temperatures. Our result implies that edge currents in such systems
are determined by bulk properties and are therefore stable against large perturbations
near the boundaries.Moreover, the equality persists also after taking the derivativewith
respect to the chemical potential. We show that this form of bulk-edge correspondence
is essentially a consequence of homogeneity in the bulk and locality of the Gibbs
state. An important intermediate result is a new version of Bloch’s theorem for two-
dimensional systems, stating that persistent currents vanish in the bulk.
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1 Introduction

We show that extended fermion systems subject to homogeneous magnetic fields
exhibit a form of bulk-edge correspondence in the thermodynamic limit, namely exact
equality of magnetization and edge current, at positive temperatures. Roughly speak-
ing, our assumptions are finite-range interactions, homogeneity in the bulk of the
Hamiltonian, and local indistinguishability of the Gibbs state. The first two are explicit
assumptions on the Hamiltonian, the last is known to hold for sufficiently high tem-
peratures [1] and expected to hold much more generally.

In [2] a similar result was established for non-interacting fermion systems. There
it is also shown, how this result relates to the better known bulk-edge correspondence
of the transport coefficients: under the assumption of a gapped ground state and in the
zero temperature limit, the derivative of themagnetization with respect to the chemical
potential converges to the Hall conductivity and the derivative of the edge current with
respect to the chemical potential converges to the edge conductance. In this paper
we establish the differentiability of the magnetization with respect to the chemical
potential also for interacting systems and thus also the equality of the corresponding
derivatives.

Let us now be more specific. We consider a system of interacting fermions
modelled by a sequence of finite-range Hamiltonians (HL(b))L defined on boxes
ΛL = {−L, . . . , L} × {0, . . . , 2L} and dependent on a homogeneous magnetic field
b perpendicular to the plane. We think of ΛL as a subset of the upper half plane of
Z
2 and consider a strip {−L, . . . , L} × {0, . . . , D − 1} of fixed width D as the edge

region and its complement as the bulk. In the bulk we assume translation invariance
of the Hamiltonian with respect to magnetic translations.
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For inverse temperature β > 0, chemical potentialμ ∈ R, andmagnetic field b ∈ R

the Gibbs, or thermal, state is defined as

ρL(β, μ, b) := e−β(HL (b)−μNL )

ZL(β, μ, b)
, (1)

where NL is the number operator and ZL(β, μ, b) := tr
(
e−β(HL (b)−μNL )

)
is the

partition function. In the absence of interactions,ρL (β, μ, b) is naturally a local object,
namely it has an integral kernel in which it is possible to identify a bulk and an edge
region, see e.g. [2]. However, in the interacting setting, the locality of ρL(β, μ, b) is a
delicate issue, which has been investigated e.g. in [1, 3–6], see also themore recent [7].
In the present work locality of the Gibbs state in the form of local indistinguishability
is one of the crucial assumptions: Let X ⊂ Λ′ ⊂ ΛL , then we assume that the
expectation value of an observable A ∈ AX can be approximated by the Gibbs state
of the Hamiltonian restricted to Λ′,

tr
(
ρL(β, μ, b) A

) ≈ tr
(
ρΛ′(β, μ, b) A

)
,

up to terms that vanish in the distance of X to the boundary ∂Λ′ of Λ′. A subtle point
here is that the definition of ∂Λ′ depends on whether we consider Λ′ as a subset of
Z
2 or as a subset ΛL . In the first case ∂Λ′ could include parts of the physical edge

{−L, . . . , L}×{0} and local indistinguishability is only demanded for X in the bulk of
the system. In the second case local indistinguishability is also required for X located at
the edge of the system. For this reasonwe speak of local indistinguishability in the bulk
for the former case and local indistinguishability everywhere for the latter. Note that
in our setting a sufficient condition implying local indistinguishability everywhere is a
sufficiently high temperature [1]. However, for systems with short-range interactions,
one may generally expect local indistinguishability to hold away from critical points,
i.e. whenever the system has a unique thermal state in the thermodynamic limit. Such
a state has decaying correlations [8, Chap. 4], which implies local indistinguishability,
at least if the decay is sufficiently fast [7].

The magnetization is defined as the derivative of the grand canonical pressure
pL(β, μ, b) := −|ΛL |−1 β−1 ln

(ZL(β, μ, b)
)
with respect to the magnetic field b,

namely

mL(β, μ, b) := ∂

∂b
pL(β, μ, b). (2)

Ourmain result states thatwhenever the family of finite volumeGibbs states satisfies
local indistinguishability in the bulk then the magnetization approximately equals the
bond current I edgeL (β, μ, b) through an orthogonal line of length L at the lower edge
of the sample, see Fig. 1 and Eq. (9),

∣∣mL(β, μ, b) − I edgeL (β, μ, b)
∣∣ = O(L−1). (3)

Moreover, this current is verywell localized near the edge and thus called edge current.
Both statements are contained in Theorem I and depicted in Fig. 1. Furthermore, if the
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Fig. 1 Pictorial representation of our main results: for locally interacting fermions on a two-dimensional
lattice with perpendicular magnetic field b, satisfying local indistinguishability (see details in Sect. 2.1) at

positive temperature, the edge current I edgeL , which is the bond current through the vertical line, is localized
near the boundary and approximately equals themagnetizationmL (Theorem I). The latter is a bulk quantity,
i.e. it converges in the thermodynamic limit L → ∞ and does not depend on the details near the boundary
(Theorem II). This independence allows for the rough edges in the picture

finite volume Gibbs state satisfies local indistinguishability everywhere, then we show
that the thermodynamic limit m(β, μ, b) := limL→∞ mL(β, μ, b) exists and obtain
an equality between the edge current I edge(β, μ, b) and the magnetization m(β, μ, b)
in the infinite volume system, see Theorem II. And while the orbital magnetization
mL(β, μ, b) and the edge current I edgeL (β, μ, b) of the finite systems in principle
depend on the bulk and edge part of the system, we show that the limits m(β, μ, b)
and I edge(β, μ, b) are independent of the specific shape of the interactions at the edge
of the system.

However, since we obtain the infinite volume magnetization m(β, μ, b) from a
limit of finite systems with edges converging to a system on the upper half plane with
an infinite edge, one might ask whether m(β, μ, b) can be considered a pure bulk
quantity. To answer this question in the affirmative, we show in Theorem IV that the
magnetization obtained from any KMS state at (β, μ) for the translation invariant bulk
Hamiltonian defined on the entire plane coincides with m(β, μ, b).

Finally, in Theorem III we establish the differentiability of m(β, μ, b) with respect
to μ. By comparison to the non-interacting setting, one would expect that, in the
presence of a spectral gap and with weak interactions, the zero temperature limit of
∂μ m(β, μ, b) converges to the quantized Hall conductivity. While this result is not
present in the literature and out of the scope of the paper, we show here a preliminary
regularity result of m(β, μ, b) with respect to μ.

123



Equality of Magnetization and Edge Current... Page 5 of 39    24 

A crucial ingredient to our proofs is a new version of Bloch’s Theorem for two-
dimensional systems. We show that local indistinguishability together with current
conservation implies that currents decay quickly with the distance to the edge, or, put
differently, that in equilibrium currents can only flow near the edge of a sample. See [9,
10] for recent related results and the discussion below.

Let us end the introduction with a few more comments on the literature. As already
mentioned, analogous mathematical results relating magnetization in the bulk with
edge currents for non-interacting systems were obtained in [2], with predecessors e.g.
in [11–13]. Notice that the equality between edge current and magnetization in two-
dimensional systems can be also interpreted as a quantum mechanical, microscopic
version of Ampère’s law, as it is sometimes addressed in the physics literature, see for
instance [14], where the effect of a time-dependentmagnetic field on themagnetization
of localized states is analyzed in a discrete, non-interacting setting. The existence
and properties of edge states of magnetic Schrödinger operators were studied e.g.
in [15, 16]. The mathematical literature on bulk-edge correspondence for transport
coefficients is vast but concerns almost exclusively non-interacting systems at zero
temperature and with a gap in the bulk, e.g. [17, 18]. In [19–21] the authors derive,
starting from the assumption of an incompressible bulk, effective actions for the bulk
and the edge system. While they do not start from a many-body fermion model as
we do, they are able to derive much more far-reaching consequences for quantum
Hall systems from a seemingly innocuous assumption about the bulk. In microscopic
models of interacting fermions the bulk-edge correspondence of transport coefficients
was established at zero-temperature for weakly interacting gapped systems in [22, 23].

2 Mathematical Framework andMain Results

2.1 The Hamiltonian

LetZ+ = Z∩[0,∞) andZ2+ = Z×Z+, both equippedwith the 1-metric dist(x, y) :=
|x1 − y1| + |x2 − y2|. For any finite subset X � Z

2 let hX := �2(X ,Cs) be the one-
body space and FX := F−(hX ) the corresponding fermionic Fock space. By AX we
denote the algebra of all bounded operators in L(FX ) that commute with the number
operator NX := ∑

x∈X a∗
x ax := ∑

x∈X
∑s

j=1 a
∗
x, j ax, j and by Aloc := ⋃

X�Z2 AX

the algebra of all local observables that preserve particle number. Its closure

A := Aloc
‖·‖

is a C∗-algebra and called the quasi-local algebra.
We consider sequences (HL(b))L∈N of Hamiltonians defined on boxes ΛL :=([−L, L] × [0, 2L]) ∩ Z

2 that are of the form

HL(b) =
∑

x,y∈ΛL

a∗
x T

bulk
b (x, y) ay +

∑

X⊂ΛL

Φbulk(X)
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+
∑

x,y∈ΛL

a∗
x T

edge
b (x, y) ay +

∑

X⊂ΛL

Φedge(X)

=:
∑

x,y∈ΛL

a∗
x Tb(x, y) ay +

∑

X⊂ΛL

Φ(X). (4)

We sometimes need to restrict this Hamiltonian to other finite sets Λ′ ⊂ ΛL . In this
case we write HL(b)

∣∣
Λ′ which means that the sums in (4) only run over x, y ∈ Λ′ and

X ⊂ Λ′, respectively.
The Hamiltonian is split into a “bulk” part, which is invariant under magnetic

translations and an “edge” part, which lives on the lower edge. Each consists of two
contributions: The kinetic terms

T bulk/edge
b (x, y) := ei

x2+y2
2 b(x1−y1) T bulk/edge(x, y) (5)

are a Peierls phase times a hopping amplitude T bulk/edge : Z2×Z
2 → L(Cs), which is

uniformly bounded supx,y∈Z2

∥∥T bulk/edge(x, y)
∥∥ ≤ C and satisfies T bulk/edge(x, y) =

T bulk/edge(y, x)
∗
. The interactions

Φbulk/edge : {X � Z
2} → Aloc, X �→ Φbulk/edge(X) ∈ AX

are self-adjoint, the terms are uniformly bounded, supX⊂Z2‖Φbulk/edge(X)‖ ≤ C , and
the corresponding operators

∑
X⊂ΛL

Φbulk/edge(X) are assumed to commute with all
local number operators N{z} for z ∈ ΛL . The last condition is satisfied, e.g., for
density–density interactions or external potentials.

Furthermore, all terms are assumed to be of finite range R ∈ N, i.e. T bulk/edge(x, y)
= 0 if dist(x, y) > R and Φbulk/edge(X) = 0 if diam(X) > R. As mentioned above,
the bulk contributions are assumed to be invariant under magnetic translations, i.e.
T bulk(x − z, y − z) = T bulk(x, y) only depends on the difference x − y and Φbulk

satisfies (20). And the edge contributions are supported on a strip of fixed width D
along the lower edge, i.e. T edge(x, y) = 0 unless x, y ∈ Z × {0, 1, . . . , D − 1} and
Φedge(X) = 0 unless X ⊂ Z × {0, 1, . . . , D − 1}. Without loss of generality we
choose D ≥ R, since the presence of the boundary already modifies the Hamiltonian
in Z × {0, 1, . . . , R − 1}.

A canonical example of amagneticHamiltonianwith interactions is theHofstadter–
Hubbard model, i.e. the second quantization of the discrete magnetic Lapla-
cian together with an on-site density–density interaction. More precisely, for the
Hofstadter–Hubbard model we have h{x} = C

2,

T bulk(x, y) = idC2 · δ|x−y|=1, and Φbulk(X) = a∗
x,1 ax,1 a

∗
x,2 ax,2 · δX={x},

which leads to

HHH
L (b) =

∑

x,y∈ΛL :
|x−y|=1

ei
x2+y2

2 b(x1−y1)
∑

j∈{1,2}
a∗
x, j ay, j +

∑

x∈ΛL

a∗
x,1 ax,1 a

∗
x,2 ax,2.
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Near the edge, one could, for example, add an external potential Φedge(X) =
φ(x)N{x} δX={x} or effectively remove individual sites by subtracting all hoppings
connected to them.

For a finite subset Λ � Z
2+, a Hamiltonian H ∈ AΛ, inverse temperature β > 0,

chemical potential μ ∈ R, and magnetic field b ∈ R we denote the grand canonical
partition function by

ZΛ[H ](β, μ) := tr
(
e−β(H−μNΛ)

)
,

and the Gibbs state by

ρΛ[H ](β, μ) := e−β(H−μNΛ)

ZΛ[H ](β, μ)
.

When we consider truncated Hamiltonians in the proofs, we drop the index and
informally write ρ

[
HL(b)

∣∣
Λ′

]
(β, μ) ≡ ρΛ′

[
HL(b)

∣∣
Λ′

]
(β, μ). On the boxes ΛL we

abbreviate

NL := NΛL , ZL(β, μ, b) := ZΛL

[
HL(b)

]
(β, μ) and

ρL(β, μ, b) := ρΛL

[
HL(b)

]
(β, μ).

The key hypothesis for our results is that the Gibbs state is locally determined by the
local terms in the Hamiltonian. This property is often called local indistinguishability
and made precise in the following definition.

Definition 1 (Local indistinguishability of the Gibbs state) Let ζ : N0 → R+ be
non-increasing with limn→∞ ζ(n) = 0 and g : R+ → R+ non-decreasing with
g
(
(2R + 1)2 + 1

) = 1. The family of Hamiltonians (HL(b))L∈N is said to satisfy
local indistinguishability of the Gibbs state at (β, μ, b) with ζ -decay,

(a) in the bulk if and only if for all L ∈ N, X ⊂ Λ′ ⊂ ΛL and A ∈ L(FX ) ⊂ A
∣
∣tr

(
ρL (β, μ, b) A

) − tr
(
ρΛ′

[
HL (b)

∣
∣
Λ′

]
(β, μ) A

)∣∣ ≤ ‖A‖ g(|X |) ζ
(
dist(X ,Z2 \ Λ′)

)
,

(6)
(b) everywhere if and only if for all L ∈ N, X ⊂ Λ′ ⊂ ΛL and A ∈ L(FX ) ⊂ A

∣
∣tr

(
ρL (β, μ, b) A

) − tr
(
ρΛ′

[
HL (b)

∣
∣
Λ′

]
(β, μ) A

)∣∣ ≤ ‖A‖ g(|X |) ζ
(
dist(X ,ΛL \ Λ′)

)
.

(7)

Note the difference between Z
2 \ Λ′ and ΛL \ Λ′ in the distance in (6) and (7), if

Λ′ includes parts at the boundary of ΛL , see Fig. 2. In particular dist(X ,Z2 \ Λ′) =
min{dist(X ,ΛL \ Λ′), dist(X ,Z2 \ ΛL)}, so indistinguishability everywhere implies
the property in the bulk. This distinction is useful, because we expect a better decay
in the bulk and a worse decay at the boundary due to the presence of edge states.
For some of the statements we however need local indistinguishability also near the
boundary and might accept a slower decay. In particular, local indistinguishability
directly implies decay of correlations, see Lemma 13, and we do not expect that to
hold with good decay near the boundary due to edge states, see e.g. [23].

For most of our results, we will require local indistinguishability with decay at
least ζ ∈ �1, but any better decay will yield better results, in particular concerning
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Fig. 2 Sketch of the two distances used in Definition 1. If the Hamiltonian satisfies local indistinguishability
in the bulk, the bound (6) decays in the distance to the boundary ofΛ′ (inZ2).While local indistinguishability
everywhere also gives a good estimate if X is close to the boundary of Λ′ as long as the boundaries of Λ′
and ΛL coincide in that region

localization near the boundary. For example, local indistinguishability everywhere
with exponential decay function ζ is known to hold for sufficiently high temperature
in systems with finite-range interactions [1, Corollaries 2 and 5]. The decay rate and
constants depend on β, but can be chosen uniformly for small β. As is shown in [7],
decay of correlations at some positive temperature implies local indistinguishability
at the same temperature, and the converse also holds, see Lemma 13.

The normalization in Definition 1 is chosen such that all later bounds, where we
always restrict to sets |X | ≤ (2R + 1)2 + 1 so that g

(|X |) ≤ 1, do not depend on g.
We need to allow for larger X only to define the thermodynamic limit ρ∞(β, μ, b).

2.2 The Edge Current and theMagnetization

Denote by Bx
L(�) := { y ∈ ΛL | dist(x, y) ≤ � } the ball around x inΛL with radius �.

The set Bx
L(R) contains all points which have non-vanishing interaction with x . Then

the current operator JL(b) has components (k = 1, 2)

Jk,L(b) := i
[
Xk,L , HL(b)

] = i

[ ∑

z∈ΛL

zk a
∗
z az,

∑

x,y∈ΛL

a∗
x Tb(x, y) ay

]

i
∑

x∈ΛL

∑

y∈Bx
L (R)

(xk − yk) a
∗
x Tb(x, y) ay .
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Fig. 3 The figure shows a small
section of ΛL and two points z
and z′ ∈ ΛL with their dual
edges e1,z and e2,z′ ,
respectively. For z, also all lines
xy which contribute to J z1,L (b)
for R = 2 are drawn. The light
blue lines only intersect the
endpoints of e1,z and thus come
with a prefactor 1/2 in (8).
(Color figure online)

We now rewrite this sum as a sum of currents through edges of the dual lattice. For
that, denote by ek,z ⊂ R

2 the dual edge which intersects the edge between lattice
points z and z+ êk and by ek,z the edge together with the attached vertices (see Fig. 3).
Here, êk denotes the unit vector in k direction, e.g. ê1 = (1, 0). Moreover, denote by
xy ⊂ R

2 the line connecting x and y. We define the current through the dual edge ek,z
as

J zk,L(b) := i

2

( ∑

x,y∈ΛL :
xy ∩ ek,z �=∅

sgn(xk − yk) a
∗
x Tb(x, y) ay+

∑

x,y∈ΛL :
xy ∩ ek,z �=∅

sgn(xk − yk) a
∗
x Tb(x, y) ay

)
. (8)

Thus, each hopping term a∗
x Tb(x, y) ay is included once in J zk,L(b) if xy intersects the

dual edge ek,z , or half if xy intersects only the endpoints ek,z \ ek,z of the dual edge.
In the latter case it appears for twice as many different z. Since xy intersects |xk − yk |
vertical lines we can rewrite

J1,L(b) =
L−1∑

m=−L

2L∑

n=0

J (m,n)
1,L (b) and J2,L(b) =

L∑

m=−L

2L−1∑

n=0

J (m,n)
2,L (b)

by summing over all edges. Note, that the L-dependence of J zk,L(b) only stems from
missing hopping terms near the boundary, and we define

J zk (b) := J zk,L(b)

for all L > |z1| + R and 2L > z2 + R consistently.
Moreover, for d ∈ {1, . . . , L}, we define the edge current as

I d edgeL (β, μ, b) :=
d−1∑

n=0

tr
(
ρL(β, μ, b) J (0,n)

1,L (b)
)

(9)
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and introduce the shorthand I edgeL = I L edge
L for the current along the lower half of the

system ΛL . By current conservation it equals the currents through lines connecting
the center of ΛL with the midpoints of the other boundaries of ΛL , see proof of
Proposition 9, we only choose this edge because it persists in the thermodynamic limit
L → ∞ in our geometry.

It remains to recall the definition of (orbital) magnetization. For inverse temperature
β > 0, chemical potential μ ∈ R, and magnetic field b ∈ R, the grand canonical
pressure is given by

pL(β, μ, b) := −(2L + 1)−2β−1 ln
(ZL(β, μ, b)

)
, (10)

and the magnetization by

mL(β, μ, b) := ∂

∂b
pL(β, μ, b).

2.3 Main Results

Our first main result deals with themagnetization and the edge current at finite volume.
For this type of result only local indistinguishability of the Gibbs state in the bulk is
needed.

Theorem I Let ζ bulk ∈ �1 and (HL(b))L∈N be a family of Hamiltonians of the form (4).
Then, there exists a null sequence θ and a constant C > 0 such that the following
holds: if (HL(b))L∈N satisfies local indistinguishability of the Gibbs state in the bulk
at (β, μ, b) with ζ bulk-decay in the sense of Definition 1, then

∣∣mL(β, μ, b) − I edgeL (β, μ, b)
∣∣ ≤ θ(L) for all L ≥ D + R. (11)

Moreover, the edge current is localized near the edge in the sense that for all L ≥
d ≥ R + D

∣∣I d edgeL (β, μ, b) − I edgeL (β, μ, b)
∣∣ ≤ C

∞∑

n=d−R−D

ζ bulk(n). (12)

Remark 2 The sequence θ is given as a function of ζ bulk by (30). If ζ bulk(r) ≤ C ′ (r +
1)−(n+1) with n > 1, then θ(L) ≤ C ′′ L−n/(n+2) and (12) is bounded by C ′′′ (d− R−
D)−n . While (12) scales basically like ζ bulk, the best possible decay in (11) is θ(L) ∼
1/L , which results from the fact that the fraction of the total area occupied by the
boundary scales like 1/L in two dimensions. However, unless both the magnetization
and the edge current vanish, no better decay can be expected even in the non-interacting
case, cf. [2].

Then, if we further assume local indistinguishability of the Gibbs state everywhere
we can also analyze the thermodynamic limit of (12). First, notice that if the family of

123



Equality of Magnetization and Edge Current... Page 11 of 39    24 

Hamiltonians (HL(b))L∈N satisfies local indistinguishability with ζ edge-decay every-
where, then for all finite X ⊂ Z

2+ and all observables A ∈ AX the expectation values
tr
(
ρL(β, μ, b) A

)
, which are defined if ΛL ⊃ X , form a Cauchy sequence in L , and

we define ρ∞(β, μ, b)(A) to be its limit. Thus, there exists a unique thermodynamic
limit state ρ∞(β, μ, b) on Aloc, and we can define the edge current in this state by

I d edge(β, μ, b) := ρ∞(β, μ, b)

( d∑

n=0

J (0,n)
1 (b)

)
. (13)

Theorem II Let ζ bulk ∈ �1 and ζ edge tend to zero. Let (HL(b))L∈N be a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (β, μ, b) with ζ bulk-decay in the bulk and ζ edge-decay everywhere, in the sense of
Definition 1. Then the thermodynamic limit

m(β, μ, b) := lim
L→∞mL(β, μ, b) (14)

exists, and the total edge current

I edge(β, μ, b) := lim
d→∞ I d edge(β, μ, b), (15)

satisfies
m(β, μ, b) = I edge(β, μ, b).

The edge current is localized near the edge in the sense that there is C > 0 so that for
all d ≥ D + R

∣∣I d edge(β, μ, b) − I edge(β, μ, b)
∣∣ ≤ C

∞∑

n=d−R−D

ζ bulk(n).

Moreover, m(β, μ, b) and I edge(β, μ, b) are independent of the specific edge contri-

butions T edge
b and Φedge.

The precise statement on the independence from the edge Hamiltonian is given
in Proposition 12, where we also derive an explicit bound on the difference of the
finite-volume edge currents, see (33).

Note, that local indistinguishability everywhere with ζ edge-decay implies local
indistinguishability in the bulk with decay at most ζ bulk ≤ ζ edge. But we assume
the decay in the bulk separately in order to take into account the possibility that the
localization properties of the edge current might be better than its speed of conver-
gence in the thermodynamic limit, cf. Proposition 10, which is the situation in the
non-interacting setting [2, 24].

Remark 3 We present Theorems I and II with an edge interaction only at the lower
boundary for simplicity. The proofs allow for a more general setting where an inter-
action can be added on all four sides. Moreover, then the magnetization m(β, μ, b)

123



   24 Page 12 of 39 J. Lampart et al.

and the edge current I edge(β, μ, b) are independent of these boundary perturbations.

More precisely, we have the following: For each L ∈ N let Φboundary
L be a finite-range

interaction supported on QL := ΛL \ [−L + D, L − D] × [0, 2L − D], a strip of
width D around the remaining boundaries of ΛL , commuting with all local number
operators N{z} and with interaction terms bounded uniformly in L , and let T boundary

b
be a hopping as in (5) with T boundary supported on QL . Let (HL(b))L∈N be a family
of Hamiltonians of the form (4) and let

H̃L(b) := HL(b) +
∑

x,y∈ΛL

a∗
x T

boundary
b (x, y) ay +

∑

X⊂ΛL

Φ
boundary
L (X).

Then the respective statements of Theorems I and II also hold for the family of
Hamiltonians (H̃L(b))L∈N. Moreover, if both H̃L(b) and HL(b) satisfy local indistin-
guishability, then m̃(β, μ, b) = m(β, μ, b) and Ĩ edge(β, μ, b) = I edge(β, μ, b) are
independent of the boundary terms.

Supposing that the assumptions of Theorem II hold uniformly in some open interval
of chemical potentials aroundμ, we obtain differentiability ofm(β, μ, b)with respect
toμ and thus, as explained in the introduction, a further step in the direction of proving
the equality of transport coefficients.

Theorem III Let n �→ n2 ζ edge(n) ∈ �1. Let (HL(b))L∈N be a family of Hamiltonians
of the form (4) satisfying local indistinguishability of the Gibbs state everywhere
with ζ edge-decay at (β, μ, b), for μ in some open interval. Then m(β, μ, b) and
I edge(β, μ, b) defined in Theorem II are differentiable, and thus

∂μ m(β, μ, b) = ∂μ I edge(β, μ, b).

Remark 4 As we already know from Theorem II that m(β, μ, b) = I edge(β, μ, b),
Theorem III will follow from differentiability of I edge(β, μ, b), see Proposition 17.
Additionally, we prove a quantitative bound for the difference of the two quantities in
finite volume in Propositions 18, and localization near the boundary in Proposition 17.

An important ingredient in the proof of Theorem I is the vanishing of the equilibrium
current in the bulk. This result is known in the literature as Bloch’s theorem (see e.g. [9,
10] and references therein) and has an importance on its own. In our setting with open
boundary conditions, it is just a consequence of current conservation coupled with the
local indistinguishability of the Gibbs state. This allows for better decay rates than in
the setting with periodic boundary conditions.

Proposition 5 (Bloch’s Theorem) Let ζ bulk be a null sequence and (HL(b))L∈N be a
family of Hamiltonian of the form (4). There exists CB > 0 such that the following
holds: if (HL(b))L∈N satisfies local indistinguishability of the at (β, μ, b) with ζ bulk-
decay in the sense of Definition 1, then

∣∣tr
(
ρL(β, μ, b) J zk,L (b)

)∣∣ ≤ CB ζ bulk
([
dist(z,Z2 \ ΛL) − D − R

]
+
)
. (16)
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We have established the equality of the edge current and the magnetization and
proven that the edge current is an edge quantity in the sense, that it is localized near
the edge. Finally, we argue that the magnetization is a bulk quantity by showing
that it can be obtained directly in the infinite volume without any edge. Denote by
BL := [−L, L]2 ∩ Z

2 the boxes centered on the origin and let

Hbulk
L (b) =

∑

x,y∈BL

a∗
x T

bulk
b (x, y) ay +

∑

X⊂BL

Φbulk(X) (17)

be the bulk Hamiltonian and

τ bulkt (A) = lim
L→∞ eit(H

bulk
L (b)−μNBL ) A e−it(Hbulk

L (b)−μNBL ) (18)

be the infinite-volume dynamics generated by the bulk Hamiltonian (adjusted by the
chemical potential). Following the arguments from [25] we will first show that the
pressure of the infinite volume limits of the edge and bulk system agree. Under a
somewhat stronger hypothesis and using ideas similar to Theorem III, the magnetiza-
tion m(β, μ, b) can then also be obtained directly in the infinite-volume system.

To this end, note that the pressure for general states ρ on ABL is defined as

P(ρ) := tr
(
ρ

(
Hbulk
L (b)−μNBL

))−β−1 S(ρ) with S(ρ) := − tr(ρ ln ρ), (19)

which agrees with −β−1 lnZBL

[
Hbulk
L (b)

]
(β, μ) for the Gibbs state of Hbulk

L (b),
compare (10). The following theorem states that the pressure per unit volume,
limL→∞ P(ω|BL )/(2L + 1)2, where ω|BL is the restriction of a bulk equilibrium
state ω to ABL , equals the thermodynamic limit of the pressure in the system with an
edge.

Theorem IV Let (HL(b))L∈N be a family of Hamiltonians of the form (4). For any
β > 0, μ, b ∈ R the thermodynamic limit

p(β, μ, b) := lim
L→∞ pL(β, μ, b)

of the pressure exists and is independent of the boundary terms. Moreover, for any
(τ bulk, β)-KMS state ω the pressure per volume of ω equals p(β, μ, b),

p(β, μ, b) = lim
L→∞

P
(
ω|BL

)

(2L + 1)2
.

Additionally, given ζ bulk ∈ �1 and ζ edge tending to zero, assume that
(
HL(b)

)
L∈N

satisfies local indistinguishability in the bulk with ζ bulk-decay and everywhere with
ζ edge-decay at (β, μ, b), for b in some open interval. Then b �→ p(β, μ, b) is differ-
entiable and its derivative agrees with the magnetization m(β, μ, b) defined in (14),

∂b p(β, μ, b) = m(β, μ, b).
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3 Proofs

3.1 Bloch’s Theorem

This section is devoted to the proof of Bloch’s theorem, namely Proposition 5. The
proof is based on the bulk homogeneity of the system and on the continuity equation
for the current provided by Lemma 6, together with the local indistinguishability
assumption for the Gibbs state. The homogeneity in the bulk of the system is encoded
in the invariance undermagnetic translation, whichwe briefly recall in the next section.

3.1.1 Magnetic Translations

On the one-particle Hilbert space h = �2(Z2) of the full lattice Z2, for y ∈ Z
2 and

b > 0 the magnetic translation Uy(b) is defined by its action on ψ ∈ h as

(
Uy(b) ψ

)
(x) = eiby2x1 ψ(x − y) with adjoint

(
U∗
y (b) ψ

)
(x) = e−iby2(x1+y1) ψ(x + y).

Then, in second quantization, for which we use the same symbol, we obtain

U∗
y (b) a

∗
x Uy(b) = e−iy2bx1 a∗

x−y .

With this definition, the kinetic part of the bulk Hamiltonian (4) is invariant under
magnetic translations since

U∗
z (b) a∗

x T
bulk
b (x, y) ay Uz(b)

= U∗
z (b) a∗

x Uz(b) e
ib x2+y2

2 (x1−y1) T bulk(x, y)U∗
z (b) ay Uz(b)

= a∗
x−z e

ib x2+y2
2 (x1−y1)−ib 2z2x1

2 +ib 2z2 y1
2 T bulk(x − z, y − z) ay−z

= a∗
x−z T

bulk
b (x − z, y − z) ay−z .

Moreover, we assume that the bulk interactionΦbulk is invariant under magnetic trans-
lations, namely

U∗
z (b)Φbulk(X)Uz(b) = Φbulk(X − z). (20)

Hence, the complete bulk part of the Hamiltonian (4) is invariant under magnetic
translations, and

U∗
z (b) HL(b)

∣∣
X Uz(b) = HL(b)

∣∣
X−z

for X ⊂ ΛL and z ∈ Z
2 such that dist(X ,Z2 \ ΛL) and dist(X − z,Z2 \ ΛL) > D.

This property carries over to the local Gibbs state in the sense, that

U∗
z (b) ρ

[
HL(b)

∣∣
X

]
(β, μ)Uz(b) = ρ

[
HL(b)

∣∣
X−z

]
(β, μ).
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Moreover, the above calculation also shows thatU∗
z (b) J y

k (b)Uz(b) = J y−z
k (b) for

all y2, z2 ≥ R + D, due to the simple structure of J y
k (b). Then, it follows that

tr
(
ρ
[
HL(b)

∣∣
X

]
(β, μ) J y

1 (b)
) = tr

(
ρ
[
HL(b)

∣∣
X−z

]
(β, μ) J y−z

1 (b)
)

(21)

if X , y and z fulfill all mentioned conditions.

3.1.2 The Continuity Equation

We prove the continuity equation for the local currents defined in (8) and the resulting
current conservation for stationary states. These two facts play a key role in the proof
of Bloch’s theorem.

For this purpose, let us define the dual edge boundary of a set Z ⊂ ΛL as

∂ΛL Z :=
{

(k, z) ∈ {1, 2}×
( {−L, . . . , L − 1}

×{0, . . . , 2L − 1}
) ∣∣∣∣

z ∈ Z and z + êk ∈ ΛL \ Z or

z ∈ ΛL \ Z and z + êk ∈ Z

}
.

This is exactly the set of labels (k, z), such that the union of the dual edges ek,z is the
boundary of the set

⋃
z∈Z z + [−1/2, 1/2]2 in ⋃

z∈ΛL
z + [−1/2, 1/2]2.

Lemma 6 (Continuity equation) For any z ∈ ΛL , the currents defined in (8) satisfy
the continuity equation

d

dt
eiHL (b) t N{z} e−iHL (b) t

∣∣∣
t=0

= divz J
z
k,L(b)

:= J z1,L(b) − J z−ê1
1,L (b) + J z2,L(b) − J z−ê2

2,L (b).
(22)

Proof Calculating the derivative, we find

d

dt
eiHL (b) t N{z} e−iHL (b) t

∣∣∣
t=0

= i [HL(b),N{z}]
= i

∑

x,y∈ΛL

[
a∗
x Tb(x, y) ay,N{z}

]

= i
∑

x∈ΛL\{z}
a∗
x Tb(x, z) az − i

∑

y∈ΛL\{z}
a∗
z Tb(z, y) ay

= i
∑

x∈ΛL\{z}
a∗
x Tb(x, z) az − a∗

z Tb(z, x) ax ,

where we used that
[∑

Z⊂ΛL
Φbulk(Z),N{z}

] = [∑
Z⊂ΛL

Φedge(Z),N{z}
] = 0 by

assumption.
It is left to rewrite the sum in terms of J zk,L(b). Each xz in the sum will cross the

rectangle around z formed by the four dual edges e1,z , e1,z−ê1 , e2,z and e2,z−ê2 of the
dual lattice at one point. If this point lies within a dual edge ek,q , the term in the sum
will contribute to Jqk,L(b)withweight 1. Otherwise, xz crosses the rectangle at a corner
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and the contribution is attributed evenly to the two adjacent dual edges with weight
1/2. The sum on the right-hand side of (22) still contains some more terms coming
from elements x, y ∈ ΛL \ {q} such that the line xy intersects two of the four dual
edges. As can be easily checked, the corresponding contributions come with different
signs and cancel each other. For example, the term a∗

x Tb(x, y) ay for x = z + ê2 and
y = z + ê1 appears with negative sign in J z1,L(b), because x1 − y1 < 0, and with
positive sign in J z2,L(b), because x2 − y2 > 0.

As a simple consequence, in a stationary state it follows that the net current into
any set Z ⊂ ΛL is zero. This is an important ingredient for the following proof.

Corollary 7 (Current conservation) For any Z ⊂ ΛL and stationary state1 ρ, current
conservation holds ∑

(k,z)∈∂ΛL Z

(−1)δz∈Z tr
(
ρ J zk,L(b)

) = 0. (23)

Here δz∈Z = 1 if z ∈ Z and 0 otherwise, takes the role of the normal vector in the
continuous analogue.

Proof Taking the expectation value of (22) and summing over z ∈ Z yields

0 = d

dt
tr
(
e−iHL (b) t ρ eiHL (b) t NZ

)∣
∣∣
t=0

=
∑

k∈{1,2}
z∈Z

tr
(
ρ J zk,L(b)

) − tr
(
ρ J z−êk

k,L (b)
)
,

due to stationarity of ρ and cyclicity of the trace. In the sum, the positive term for
z ∈ Z is cancelled by the negative one for z + êk ∈ Z and only (23) remains.

3.1.3 Proof of Proposition 5

Proposition 5 (Bloch’s Theorem) Let ζ bulk be a null sequence and (HL(b))L∈N be a
family of Hamiltonian of the form (4). There exists CB > 0 such that the following
holds: If (HL(b))L∈N satisfies local indistinguishability of the Gibbs state in the bulk
at (β, μ, b) with ζ bulk-decay in the sense of Definition 1, then

∣∣tr
(
ρL(β, μ, b) J zk,L (b)

)∣∣ ≤ CB ζ bulk
([
dist(z,Z2 \ ΛL) − D − R

]
+
)
. (16)

Proof We do the proof for k = 1, i.e. currents in x1-direction, since the case k = 2 is
analogous. Let d > D + R. By current conservation for the rectangle ΛL ∩ {x1 ≥ 0},
whose boundary in ΛL is simply the vertical line at x1 = 0 (see edge set (a) in Fig. 5
for m = 0), we find

1 The statement actually holds for all bounded operators ρ ∈ AΛL but is naturally interesting for states or
similar objects (see Sect. 3.4).
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0 =
2L∑

n=0

tr
(
ρL(β, μ, b) J (0,n)

1,L (b)
)

=
d−1∑

n=0

tr
(
ρL(β, μ, b) J (0,n)

1,L (b)
) + tr

(
ρL(β, μ, b) J (0,2L−n)

1,L (b)
)

+
2L−d∑

n=d

tr
(
ρL(β, μ, b) J (0,n)

1 (b)
) − tr

(
ρ
[
HL(b)

∣∣
B(0,n)(�)

]
(β, μ) J (0,n)

1 (b)
)

+
2L−d∑

n=d

tr
(
ρ
[
HL(b)

∣∣
B(0,n)(�)

]
(β, μ) J (0,n)

1 (b)
)

=: A1 + A2 + A3,

where Bx (�) := { y ∈ Z
2 | dist(x, y) ≤ � } is the ball in Z

2, R < � < d − D and we
replaced J x1,L(b) = J x1 in the last two sums in view of the previous remark that the
L-dependence of J zk,L(b) only stems from missing hopping terms near the bound-

ary. Due to their structure, J (m,n)
1,L (b) are bounded operators with norm bound

‖J (m,n)
1,L (b)‖ < CJ uniform for allm and n. Hence, also

∣
∣∣tr

(
ρL(β, μ, b) J (m,n)

1,L (b)
)∣∣∣ <

CJ and |A1| is bounded by 2d CJ . For the second sum A2 notice that J (m,n)
1,L (b) ∈

AB(m,n)(R). Thus, by using the local indistinguishability of the Gibbs state, see Defi-
nition 1, we have

|A2| ≤
2L−d∑

n=d

CJ ζ bulk(� − R) = (2(L − d) + 1)CJ ζ bulk(� − R).

And by the translation invariance of the Gibbs state, namely (21), we get

(2 (L − d) + 1) tr
(
ρ
[
HL(b)

∣∣
B(0,L)(�)

]
(β, μ) J (0,L)

1 (b)
)

= A3 = −(A1 + A2),

which together with the previous bound on A1 and A2, implies

∣
∣∣tr

(
ρ
[
HL(b)

∣
∣
B(0,L)(�)

]
(β, μ) J (0,L)

1 (b)
)∣
∣∣ ≤ CJ d

L − d
+ CJ ζ bulk(� − R).

As the left-hand side is actually independent of L , it is bounded by the infimum
CJ ζ bulk(� − R) of the right-hand side.

We can now prove the same for every J (m,n)
1,L (b) with z = (m, n) in a finite box by

using (21) together with

ρ
[
HL(b)

∣∣
B(m,n)(�)

]
(β, μ) J (m,n)

1 (b) = ρ
[
HL ′(b)

∣∣
B(m,n)(�)

]
(β, μ) J (m,n)

1 (b)
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if dist
(
(m, n),Z2 \ ΛL

)
> R + D. Indeed, we have

∣∣∣tr
(
ρL(β, μ, b) J (m,n)

1,L (b)
)∣∣∣

≤
∣∣∣tr

(
ρL(β, μ, b) J (m,n)

1 (b)
) − tr

(
ρ
[
HL(b)

∣∣
B(m,n)(�)

]
(β, μ) J (m,n)

1 (b)
)∣∣∣

+
∣
∣∣tr

(
ρ
[
HL(b)

∣
∣
B(0,L)(�)

]
(β, μ) J (0,L)

1 (b)
)∣∣∣

≤ 2CJ ζ bulk(� − R)

by using local indistinguishability and the bound for J (0,L)
1,L (b). We can now choose

� = dist
(
(m, n),Z2 \ ΛL

) − D, which proves the statements for dist
(
(m, n),Z2 \

ΛL
)

> R+D. And since we argued above that the LHS of (16) is in any case bounded
for all z ∈ ΛL , the full statement follows with CB = CJ max{ζ bulk(0)−1, 2}.

3.2 Proof of Theorem I

We split the proof of Theorem I in two parts: we briefly discuss the localization of the
edge current first and then the equality between the magnetization and the current.

3.2.1 Localization of the Current

The localization of the edge current near the edge is a straightforward consequence of
Bloch’s Theorem.

Proposition 8 Let ζ bulk ∈ �1, (HL(b))L∈N be a family of Hamiltonians of the form (4)
and CB be the constant from Bloch’s Theorem. If (HL(b))L∈N satisfies local indistin-
guishability of the Gibbs state in the bulk at (β, μ, b) with ζ bulk-decay in the sense of
Definition 1, then for all L ≥ d ≥ D + R,

∣∣I d edgeL (β, μ, b) − I edgeL (β, μ, b)
∣∣ ≤ CB

∞∑

n=d−D−R

ζ bulk(n).

Proof For the proof we just apply Bloch’s Theorem to obtain

∣∣I d edgeL − I edgeL

∣∣ ≤
L−1∑

n=d

∣∣∣tr
(
ρL(β, μ, b) J (0,n)

1 (b)
)∣∣∣ ≤ CB

∞∑

n=d

ζ bulk(n − D − R).

3.2.2 Magnetization in Finite Systems

Let us compute the magnetic derivative of the Hamiltonian. Notice that for every fixed
L the Hamiltonian HL(b) is a smooth function of b in the operator norm topology.
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Taking into account (5), we find that

H ′
L(b) := ∂

∂b
HL(b) =

∑

x∈ΛL

∑

y∈Bx
L (R)

i
2 (x2 + y2) (x1 − y1) a

∗
x Tb(x, y) ay

=
L−1∑

m=−L

2L∑

n=0

n J (m,n)
1,L (b), (24)

where J (m,n)
1,L (b) has been defined in (8). To see the last equality, we compare the

coefficients in front of a∗
x Tb(x, y) ay . Without loss of generality we only consider

x1 < y1 and x2 ≤ y2. By (8), the coefficient on the right-hand side is

−i
y1−1∑

m=x1

1
2

( ∑

n∈N:
xy ∩ e1,(m,n) �=∅

n +
∑

n∈N:
xy ∩ e1,(m,n) �=∅

n

)
.

By point symmetry around the center (x + y)/2 of xy, whenever xy ∩ e1,(m,n) �= ∅
for m = x1 + k and n ∈ N, then also xy ∩ e1,(m′,n′) �= ∅ for m′ = y1 − k − 1 and
n′ = y2 − (n − x2). The same holds for the edges without the endpoints. Thus, the
coefficient equals

−i 12

y1−x1−1∑

k=0

1
2

( ∑

n∈N:
xy ∩ e1,(x1+k,n) �=∅

n + (
y2 − (n − x2)

)+

∑

n∈N:
xy ∩ e1,(x1+k,n) �=∅

n + (
y2 − (n − x2)

)
)

= i
2 (x1 − y1) (y2 + x2).

This is exactly the coefficient on the left-hand side of (24).
By usingDuhamel’s formula and (24), we can explicitly compute themagnetization

as follows

mL(β, μ, b) = −(2L + 1)−2 β−1 ∂

∂b
ln

(
tr
(
e−β(HL (b)−μNL )

))

= − 1

(2L + 1)2 β ZL(β, μ, b)
tr

(
∂

∂b
e−β(HL (b)−μNL )

)

= 1

(2L + 1)2 ZL(β, μ, b)
tr

(∫ 1

0
ds e−sβ(HL (b)−μNL ) H ′

L(b) e−(1−s)β(HL (b)−μNL )

)
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Fig. 4 Depicted are ΛL for
L = 4 (dots) and the
corresponding dual edges
e1,(m,n) (lines) as defined
above (8). They were used to

define the current J (m,n)
1,L (b)

in (8). Since there are less
vertical dual edges than vertices
in ΛL , the right most vertices
have no corresponding dual
edge. The coloured boxes group
the dual edges into the five
groups of the
decomposition (26) for d = 2.
(Color figure online)

= 1

(2L + 1)2
tr
(
ρL(β, μ, b) H ′

L (b)
)

= 1

(2L + 1)2

L−1∑

m=−L

2L∑

n=0

n tr
(
ρL(β, μ, b) J (m,n)

1,L (b)
)
. (25)

Proposition 9 Let ζ bulk ∈ �1 and (HL(b))L∈N be a family of Hamiltonians of the
form (4) satisfying local indistinguishability of the Gibbs state in the bulk at (β, μ, b)
with ζ bulk-decay in the sense of Definition 1. Then

∣∣∣mL(β, μ, b) − I d edgeL (β, μ, b)
∣∣∣ ≤ CB

(
4 d2

L
+

∞∑

n=d−R−D

ζ bulk(n)

)

for all d > D + R with CB from Bloch’s Theorem.

Proof We decompose the sum from (25) into five regions (see Fig. 4)

1

(2L + 1)2

L−1∑

m=−L

2L∑

n=0

n tr
(
ρL (β, μ, b) J (m,n)

1,L (b)
) = Abulk + Aleft + Aright + Abottom + Atop.

(26)
We will show that Abulk, Aleft and Aright are small and that Atop and Abottom resemble
the edge current. Abbreviating j (m,n)

k,L := tr
(
ρL(β, μ, b) J (m,n)

k,L (b)
)
, the individual

contributions are
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Abulk := 1

(2L + 1)2

L−d−1∑

m=−L+d

2L−d∑

n=d

n j (m,n)
1,L ,

Aleft := 1

(2L + 1)2

−L+d−1∑

m=−L

2L∑

n=0

n j (m,n)
1,L ,

Aright := 1

(2L + 1)2

L−1∑

m=L−d

2L∑

n=0

n j (m,n)
1,L ,

Abottom := 1

(2L + 1)2

L−d−1∑

m=−L+d

d−1∑

n=0

n j (m,n)
1,L , and

Atop := 1

(2L + 1)2

L−d−1∑

m=−L+d

2L∑

n=2L−d+1

n j (m,n)
1,L ,

where Abulk is the bulk part, Aleft and Aright are the sum over the left and right edge
regions, Abottom and Atop are the sum over the upper and lower edge regions. Note
that d > R + D.

By Bloch’s Theorem, | j z1,L | ≤ ζ(dist(z,Z2 \ ΛL)) with ζ(r) := CB ζ bulk(r −
D − R). Thus, we can bound the inner part Abulk by summing over shells { z ∈
ΛL | dist(z,Z2 \ ΛL) = r }

∣∣Abulk
∣∣ ≤ 1

2L + 1

L−d−1∑

m=−L+d

2L−d∑

n=d

∣∣ j (m,n)
1,L

∣∣ ≤ L

2L + 1

L∑

r=d

ζ(r). (27)

Then, let us consider the right and left edge regions, Aleft and Aright. We write only
the case of Aright, since the other one is analogous. First, using a discrete version of
partial integration, we find

L−1∑

m=L−d

2L∑

n=0

n j (m,n)
1,L =

L−1∑

m=L−d

2L∑

n=1

2L∑

n′=n

j (m,n′)
1,L

and by current conservation (see edge set (c) in Fig. 5) and
∣∣ j (m

′,n)
2,L

∣∣ < CB,

∣∣∣∣

2L∑

n′=n

j (m,n′)
1,L

∣∣∣∣ =
∣∣∣∣

L∑

m′=m+1

j (m
′,n−1)

2,L

∣∣∣∣ ≤ (L − m)CB.

Hence,
∣
∣Aright

∣
∣ =

∣∣
∣∣

1

(2L + 1)2

L−1∑

m=L−d

2L∑

n=0

n j (m,n)
1,L

∣∣
∣∣ ≤ d2 CB

2L + 1
.
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Fig. 5 The picture shows ΛL for L = 6 and all dual edges. A few connected sets of dual edges are
highlighted. Together with the boundary all these sets are rectangles, and in the proofs we use current
conservation through the edges as given in the formulas

Let us now consider the contributions coming from the lower and upper edge
regions. The contribution Abottom is small due to the prefactor n ≈ 0:

∣∣
∣∣

1

(2L + 1)2

L−d−1∑

m=−L+d

d−1∑

n=0

n j (m,n)
1,L

∣∣
∣∣ ≤ 1

(2L + 1)2
2(L − d) d d CB ≤ d2 CB

2L + 1
.

We have now proven that all contributions up to Atop are small. In Atop we replace n
with 2L making again an error of

∣∣∣∣
1

(2L + 1)2

L−d−1∑

m=−L+d

2L∑

n=2L−d+1

(
n − 2L

)
j (m,n)
1,L

∣∣∣∣ ≤ d2 CB

2L + 1
.

It now seems, that the magnetization only stems from the top part. That, however, is
only due to our choice of the gauge. Indeed, the top and bottom contributions would

equal in a gauge with Peierls phase ei
x2+y2−2L

2 b(x1−y1) in (5)—which corresponds to
exactly our Hamiltonian but on boxes [−L, L]2 centered around the origin.

However, also with our natural choice of gauge, we can rewrite the magnetization
in terms of the currents near the bottom edge using current conservation (see edge set
(a) in Fig. 5) and vanishing of the currents in the bulk:
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∣∣∣
∣

1

(2L + 1)2

L−d−1∑

m=−L+d

2L∑

n=2L−d+1

2L j (m,n)
1,L − 1

(2L + 1)2

L−d−1∑

m=−L+d

d−1∑

n=0

2L
(− j (m,n)

1,L

)
∣∣∣
∣

≤ 1

2 (2L + 1)

L−d−1∑

m=−L+d

2L−d∑

n=d

∣∣ j (m,n)
1,L

∣∣.

The last step here follows exactly from the calculation (27) for the inner part.
So far, we have proven that

∣∣∣∣mL(β, μ, b) − −2L

(2L + 1)2

L−d−1∑

m=−L+d

d−1∑

n=0

j (m,n)
1,L

∣∣∣∣ ≤ 4 d2 CB

2L + 1
+

∞∑

n=d

ζ(n). (28)

It remains to show that all contributions equal the one at m = 0. Using current
conservation once more (now for edge set (b) in Fig. 5), for any m > 0

∣∣∣∣

d−1∑

n=0

(
j (m,n)
1,L − j (0,n)

1,L

)∣∣∣∣ ≤
L∑

n=d

(∣∣ j (m,n)
1,L

∣∣ + ∣∣ j (0,n)
1,L

∣∣
)

+
m∑

m′=1

∣∣ j (m
′,L)

2,L

∣∣, (29)

and similarly for m < 0. Thus, by using (29) and the analogue estimate for m > 0,
we can estimate the error that we make by replacing j (m,n)

1,L with j (0,n)
1,L in (28). The

error has three terms coming from the estimate (29) and each of them can be bounded
using again the strategy from (27):

2L

(2L + 1)2

L−d−1∑

m=−L+d

L∑

n=d

∣∣ j (m,n)
1,L

∣∣ ≤
∞∑

n=d

ζ(n),

2L

(2L + 1)2

L−d−1∑

m=−L+d

L∑

n=d

∣∣ j (0,n)
1,L

∣∣ ≤
∞∑

n=d

ζ(n),

2L

(2L + 1)2

L−d−1∑

m=−L+d

m∑

m′=1

∣∣ j (m
′,L)

1,L

∣∣ ≤
L−d−1∑

m′=1

ζ(L − m′) ≤
∞∑

n=d

ζ(n).

As a final step, we bound

∣
∣∣∣
(
2L 2(L−d)

(2L+1)2
− 1

) d−1∑

n=0

j (0,n)
1,L

∣
∣∣∣ ≤ 4 d2 CB

2L + 1
.

Hence, altogether we have proven that

∣
∣∣mL(β, μ, b) − I d edgeL (β, μ, b)

∣
∣∣ ≤ CB

(
8 d2

2L + 1
+

∞∑

n=d−R−D

ζ bulk(n)

)
.
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We conclude this section with the proof of Theorem I.

Proof of Theorem I Combining Propositions 8 and 9, gives

∣
∣mL(β, μ, b) − I edgeL (β, μ, b)

∣
∣ ≤ CB

(
4 d2

L
+ 2

∞∑

n=d−R−D

ζ bulk(n)

)

for all d ≥ R + D. Taking the minimum over d gives (11) with

θ(L) = 2CB min
R+D≤d≤L

(
2 d2

L
+

∞∑

n=d−R−D

ζ bulk(n)

)
, (30)

which tends to zero for L → ∞ (choose, e.g., d = L1/4). The bound (12) follows
directly from Proposition 8.

3.3 Proof of Theorem II

Theorem II is basically the thermodynamic limit version of Theorem I plus some
additional remarks. We split the proof into three parts: in the first part we show the
localization of the edge current in the thermodynamic limit, namely Proposition 10,
in the second part we prove the equality with the thermodynamic limit of the magne-
tization, that is Proposition 11, and in the last part we show the independence of the
edge interaction, see Proposition 12.

Let us start with an important remark. In Sect. 2.3 we already discussed that local
indistinguishability everywhere with ζ edge-decay implies existence of a unique ther-
modynamic limit state ρ∞(β, μ, b). More precisely, for finite X ⊂ Z

2+ and A ∈ AX

the convergence is given by

∣∣ρ∞(β, μ, b)(A) − tr
(
ρL(β, μ, b) A

)∣∣ ≤ ‖A‖ g(|X |) ζ edge(dist(X ,Z2+ \ ΛL)
)

(31)

due to local indistinguishability.

3.3.1 Localization of the Current in the Thermodynamic Limit

We first note that Bloch’s Theorem and the localization of the edge current carry over
to the thermodynamic limit.

Proposition 10 Let ζ bulk ∈ �1, ζ edge a null sequence and (HL(b))L∈N be a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (β, μ, b) with ζ bulk-decay in the bulk and ζ edge-decay everywhere, in the sense of
Definition 1. Then the unique thermodynamic limit state ρ∞(β, μ, b) onAloc satisfies

123



Equality of Magnetization and Edge Current... Page 25 of 39    24 

Bloch’s theorem, that is, for all z ∈ Z
2+

∣∣ρ∞(β, μ, b)
(
J z1 (b)

)∣∣ ≤ 2CB ζ bulk
([
dist(z,Z2 \ Z2+) − D − R

]
+
)
,

with CB from Bloch’s Theorem. Hence, also the infinite edge current, defined in (15),
is localized near the boundary in the sense that

∣∣I d edge(β, μ, b) − I edge(β, μ, b)
∣∣ ≤ 2CB

∞∑

n=d−D−R

ζ bulk(n)

for all d ≥ D + R. Moreover, for all L ≥ R and d ≤ L

∣∣I d edgeL (β, μ, b) − I d edge(β, μ, b)
∣∣ ≤ d ζ edge(L − R).

Proof. Combining (31) with Bloch’s Theorem we find for all z ∈ Z
2+ and L such that

z ∈ ΛL−R (remember that then J z1 (b) = J z1,L(b)) that

∣∣ρ∞(β, μ, b)
(
J z1 (b)

)∣∣

≤ ∣∣ρ∞(β, μ, b)
(
J z1,L(b)

) − tr
(
ρL(β, μ, b) J z1,L (b)

)∣∣ + ∣∣tr
(
ρL(β, μ, b) J z1,L (b)

)∣∣

≤ ζ edge(dist(z,Z2+ \ ΛL) − R
) + CB ζ bulk

([
dist(z,Z2 \ ΛL) − D − R

]
+
)
,

where the first quantity converges to zero, and dist(z,Z2 \ΛL) = dist(z,Z2 \Z2+) for
L large enough. The localization of the current now follows exactly as in Proposition 8.
For the convergence in L , we estimate

∣
∣I d edgeL (β, μ, b) − I d edge(β, μ, b)

∣
∣

≤
d−1∑

n=0

∣
∣∣tr

(
ρL(β, μ, b) J (0,n)

1 (b)
)

− ρ∞(β, μ, b)
(
J (0,n)
1 (b)

)∣
∣∣

≤ d ζ edge(L − R).

3.3.2 Magnetization in the Thermodynamic Limit

Proposition 11 Let ζ bulk ∈ �1 and ζ edge tend to zero. If (HL(b))L∈N is a family of
Hamiltonians of the form (4) satisfying local indistinguishability of the Gibbs state
at (β, μ, b) with ζ bulk-decay in the bulk and ζ edge-decay everywhere, in the sense of
Definition 1, then

lim
L→∞mL(β, μ, b) = I edge(β, μ, b).
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Proof We combine Propositions 9 and 10 to obtain

∣∣mL(β, μ, b)− I edge(β, μ, b)
∣∣ ≤ CB

(
4 d2

L
+

∞∑

n=d−R−D

ζ bulk(n)

)
+ d ζ edge(L− R),

(32)
which will tend to zero as L → ∞ for an appropriate choice of d, depending on L .

3.3.3 Independence of the Specific Edge Hamiltonian Tedgeb andΦedge

In order to complete the proof of Theorem II it remains to show that the thermody-
namic limit of the magnetization and the current does not depend on the specific edge
contributions T edge

b and Φedge. We prove this by showing that the edge currents of
two finite systems with different edge Hamiltonians are asymptotically equivalent and
then taking the thermodynamic limit.

Taking into account the differentiability result with respect to μ of Theorem III,
this also implies the insensitivity to boundary perturbations of the μ-derivatives in the
thermodynamic limit.

Proposition 12 Let ζ bulk ∈ �1, ζ edge tend to zero, and let (HL (b))L∈N and (H̃L(b))L∈N
be two families of Hamiltonians of the form (4) that only differ in the definition of the
edge contributions T edge

b , Φedge and T̃ edge
b , Φ̃edge. Assume that both satisfy local

indistinguishability of the Gibbs state at (β, μ, b) with ζ bulk-decay in the bulk and
ζ edge-decay everywhere in the sense of Definition 1. Then, denoting the quantities of
H̃L(b) with an additional tilde,

I edge(β, μ, b) = Ĩ edge(β, μ, b).

This result shows, that a local perturbation near the edge might change, where
exactly the edge current flows, but it does not change the total net current near the
boundary. In this sense, the edge current I edge(β, μ, b) is dictated by the bulk.

Proof The idea of the proof is to use current conservation and Bloch’s Theorem to
show that the current along the lower and upper edge are the same up to a sign (for
both interactions). Using local indistinguishability we can then prove that the currents
along the upper edge are almost the same for both edge interactions. Thus, also the
currents along the lower edge almost agree.

As in Sect. 3.2.2, we abbreviate j (m,n)
k,L := tr

(
ρL(β, μ, b) J (m,n)

k,L (b)
)
. And for better

readability, we drop the arguments (β, μ, b) in the following. The current flowing in
the upper edge of the box can be written as

I d up. edgeL :=
d−1∑

n=0

j (0,2L−n)
1,L .
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By current conservation (see edge set (a) in Fig. 5) and Bloch’s Theorem we find

∣∣∣I d edgeL + I d up. edgeL

∣∣∣ ≤
2L−d∑

n=d

∣∣ j (0,n)
1,L

∣∣ ≤ 2CB

∞∑

n=d−R−D

ζ bulk(n)

for all L ≥ d ≥ D+R. Then, using local indistinguishability forΛ′ = B(0,2L−n)
L (2L−

n − D), with 0 < n < d − 1, which is chosen such that T edge
b and Φedge vanish on

Λ′, we find
∣∣
∣ j (0,2L−n)
1,L − tr

(
ρ
[
HL

∣
∣
Λ′

]
J (0,2L−n)
1,L

)∣∣
∣ ≤ ζ edge(2L − n − R − D).

And the same also holds for the corresponding properties of H̃L denoted by an
additional tilde. Due to the choice of Λ′, HL

∣∣
Λ′ = H̃L

∣∣
Λ′ , and we also have

J (0,2L−n)
1,L = J̃ (0,2L−n)

1,L for 2L − n > D + R. Hence,

∣∣I d edgeL − Ĩ d edgeL

∣∣ ≤ ∣∣I d up. edgeL − Ĩ d up. edgeL

∣∣ + ∣∣I d edgeL + I d up. edgeL

∣∣

+ ∣∣ Ĩ d up. edgeL + Ĩ d edgeL

∣∣

≤
d−1∑

n=0

∣
∣∣ j (0,2L−n)
1,L − j̃

(0,2L−n)
1,L

∣
∣∣ + 4CB

∞∑

n=d−R−D

ζ bulk(n)

≤ 2 d ζ edge(2L + 1 − d − D − R) + 4CB

∞∑

n=d−R−D

ζ bulk(n).

(33)

The statement now follows from Proposition 10.

3.4 Proof of Theorem III

In this section, we discuss the μ-derivative of the edge current. Defining

FL(β, μ, b) := ∂μ ρL(β, μ, b) = β
(NL − 〈NL〉ρL (β,μ,b)

)
ρL(β, μ, b), (34)

we find
∂μ tr

(
ρL(β, μ, b) J z1,L (b)

) = tr
(FL(β, μ, b) J z1,L (b)

)
(35)

because J z1,L(b) does not depend on μ.
To prove Theorem III we use the same strategy of the proofs of Theorems I and II,

whose main ingredient is Bloch’s Theorem. Therefore, we start by proving a similar
statement to Bloch’s Theorem for the “state” FL(β, μ, b). A key point in the proof of
Bloch’s Theorem is the use of local indistinguishability for the Gibbs state. However,
since it is not clear whether FL(β, μ, b) satisfies local indistinguishability, we need
to adapt the strategy a bit.
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Let us start by showing that FL(β, μ, b) has a thermodynamic limit. As a starting
point, note that local indistinguishability everywhere implies decay of correlations, a
property needed in the following.

Lemma 13 Let (HL(b))L∈N be a family of Hamiltonians of the form (4) satisfying
local indistinguishability of the Gibbs state everywhere at (β, μ, b) with ζ edge-decay
in the sense of Definition 1.

Then the Gibbs state satisfies decay of correlations, that is for all X ,Y ⊂ ΛL , with
dist(X ,Y ) > R, A ∈ AX and B ∈ AY the covariance

CovρL (β,μ,b)(A, B) := tr
(
ρL(β, μ, b) A B

) − tr
(
ρL(β, μ, b) A

)
tr
(
ρL(β, μ, b) B

)

is bounded by

∣∣CovρL (β,μ,b)(A, B)
∣∣ ≤ 3 g

(|X | + |Y |) ‖A‖ ‖B‖ ζ edge
(⌊

dist(X ,Y ) − R − 1

2

⌋)
.

Proof Let � = ⌊(
dist(X ,Y )−R−1

)
/2

⌋
andΛ′ = X�∪Y�, with the �-neighbourhoods

X� := {
z ∈ ΛL

∣∣ dist(z, X) ≤ �
}
and Y�. For better readability we again drop the

arguments (β, μ, b). Then, for all Q ∈ AX∪Y
∣∣∣tr

(
ρL Q

) − tr
(
ρ
[
HL |Λ′

]
Q

)∣∣∣ ≤ g
(|X | + |Y |) ‖Q‖ ζ edge(�).

Moreover, ρ
[
HL |Λ′

] = ρ
[
HL |X�

] ⊗ ρ
[
HL |Y�

]
, since dist(X�,Y�) > R, and thus

tr
(
ρ
[
HL |Λ′

]
A B

) = tr
(
ρ
[
HL |Λ′

]
A
)
tr
(
ρ
[
HL |Λ′

]
B

)
. The statement then follows

from the triangle inequality.

This allows us to prove convergence in the thermodynamic limit of the expectation
value in the stateFL(β, μ, b) of observables that may be supported near the boundary.
We denote by

Bx+(�) := {
y ∈ Z

2+ | dist(x, y) ≤ �
}

the ball in Z
2+, similar to how we denoted with Bx

L(�) and Bx (�) the balls in ΛL and
Z
2, respectively.

Lemma 14 Let n �→ n2 ζ edge(n) ∈ �1 and (HL(b))L∈N be a family of Hamiltonians
of the form (4). There exists a non-increasing ξ ∈ �1, explicitly given in (38), such
that the following holds: if (HL(b))L∈N satisfies local indistinguishability of the Gibbs
state everywhere at (β, μ, b) with ζ edge-decay in the sense of Definition 1, then, for
all x ∈ Z

2+, A ∈ ABx+(R) and L ′ < L such that Bx+(R) ⊂ ΛL ′ , it holds that

∣∣∣tr
(FL(β, μ, b) A

) − tr
(FL ′(β, μ, b) A

)∣∣∣ ≤ β ‖A‖ ξ
(
dist(x,ΛL \ ΛL ′) − R

)
.

(36)

Proof For the proof let X = Bx+(R), � = �dist(X ,ΛL \ ΛL ′)/3� and Z = Bx+(R +
2�) ⊂ ΛL ′ . The main idea of the proof is to write the number operators as sums
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of single-site operators. Then we can use local indistinguishability (for the single-
site operators supported in Z ) and decay of correlations (for the single-site operators
supported outside Z ) of the Gibbs state to conclude the result. For better readability
we drop the arguments (β, μ, b). Then

(
tr
(FL A

) − tr
(FL ′ A

))
/β

=
∑

z∈Z
tr
(
ρL ANz

) − tr
(
ρL ′ ANz

)

−
∑

z∈Z
tr
(
ρL A

)
tr
(
ρL Nz

) − tr
(
ρL A

)
tr
(
ρL ′ Nz

)

+
∑

z∈Z
tr
(
ρL ′ A

)
tr
(
ρL ′ Nz

) − tr
(
ρL A

)
tr
(
ρL ′ Nz

)

+
∑

z∈ΛL\Z
tr
(
ρL ANz

) − tr
(
ρL A

)
tr
(
ρL Nz

)

−
∑

z∈ΛL′ \Z
tr
(
ρL ′ ANz

) − tr
(
ρL ′ A

)
tr
(
ρL ′ Nz

)
. (37)

Since A has bounded support, the first three sums can now be bounded using local
indistinguishability of the Gibbs state because ρL ′ = ρ

[
HL |ΛL′

]
, while the last two

can be bounded using decay of correlations in the form of Lemma 13. Using ‖Nz‖ = 1
and g(|X | + 1) ≤ 1, we find

∣∣∣tr
(FL A

) − tr
(FL ′ A

)∣∣∣
/(

β ‖A‖)

≤ 3
∑

z∈Z
ζ edge(dist(X ∪ {z},ΛL \ ΛL ′)

)

+
∑

z∈ΛL\Z
3 ζ edge

(⌊
dist(X , z) − R − 1

2

⌋)

+
∑

z∈ΛL′ \Z
3 ζ edge

(⌊
dist(X , z) − R − 1

2

⌋)
.

Summing over shells as in (27), the sum over z ∈ Z is bounded by

∑

z∈Z
ζ edge(dist(X ∪{z},ΛL \ΛL ′)

) ≤ 4 (R+ 2�)
2�∑

n=�

ζ edge(n)+ (2R+ 1)2 ζ edge(2�),

and each of the other sums can be bounded by

12
∞∑

n=2�+1

(n+R) ζ edge(⌊(n−R−1)/2
⌋) ≤ 12

∞∑

m=�

(2m+2+R) ζ edge(m−⌊
(R−1)/2

⌋)
.
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Defining

ξ(r) = 3
(
12

∞∑

m=�

(2m+2+R) ζ edge(m−⌊
(R−1)/2

⌋)+(2R+1)2 ζ edge(2�)
)∣∣∣

�=�r/3�,

(38)
which is in �1 since n �→ n2 ζ edge(n) ∈ �1, yields the claim.

We will use this Lemma later to prove differentiability of I edge. But first, we adjust
the proof to show that also the μ-derivative of the local bond currents decay in the
bulk, i.e. a Bloch’s Theorem for FL(β, μ, b). However, the two simplest approaches
to adjust the proof of Bloch’s Theorem do not work. At first, one might want to
use local indistinguishability of the Gibbs state and view NL − 〈NL 〉 as part of the
operator in (7). This fails, sinceNL −〈NL 〉 is supported over all ΛL and not bounded
uniformly in L . Alternatively, one could try to use local indistinguishability of the
“state” FL(β, μ, b) and follow the proof of the Bloch’s Theorem afterwards. And
while Lemma 14 already looks similar to local indistinguishability, it can only be
used to compare ∂μ ρL(β, μ, b) with F[

HL(b)
∣∣
Λ′

]
(β, μ) := ∂μ ρ

[
HL(b)

∣∣
Λ′

]
(β, μ)

for Λ′ = ΛL ′ . But within the proof of Bloch’s Theorem we also need to compare to
more general sets Λ′ ⊂ ΛL , in particular to sets that include an edge of ΛL (not only
the lower one).

One might hope to adapt the proof of Lemma 14 to prove local indistinguisha-
bility. However, that needs decay of correlations in F[

HL(b)
∣∣
Λ′

]
(β, μ) which we

could not prove. It would follow from local indistinguishability everywhere of
ρ
[
HL(b)

∣∣
Λ′

]
(β, μ), which might be a viable assumption since the Hamiltonian is

translation invariant. To avoid these more general assumptions, we take a different
approach for which we introduce

F Z [
HL(b)

∣∣
Λ′

]
(β, μ) := β

(NZ − 〈NZ 〉ρ[HL (b)|Λ′ ](β,μ)

)
ρ
[
HL(b)

∣∣
Λ′

]
(β, μ) (39)

for Z ⊂ Λ′ ⊂ ΛL . These “states” can be handled easily since the problematic sum is
not present. We prove the following statement which is similar to local indistinguisha-
bility in the state FL(β, μ, b).

Lemma 15 Let n �→ n2 ζ edge(n) ∈ �1, (HL(b))L∈N be a family of Hamiltonians of the
form (4) and ξ ∈ �1 as in Lemma 14. If (HL(b))L∈N satisfies local indistinguishability
of the Gibbs state everywhere at (β, μ, b)with ζ edge-decay in the sense of Definition 1,
then, for all x ∈ ΛL , � ∈ N0, Z = Bx

L(R + 2�), Λ′ = Bx
L(R + 3�) and A ∈ ABx

L (R)

∣
∣∣tr

(FL(β, μ, b) A
) − tr

(F Z [
HL(b)

∣∣
Λ′

]
(β, μ) A

)∣∣∣ ≤ β ‖A‖ ξ(3�).

Proof The proof is exactly the same as the proof of Lemma 14 but with ρL ′ replaced by
ρ
[
HL

∣∣
Λ′

]
and without the last sum in (37). Hence, we only need decay of correlations

in ρL , which is provided by Lemma 13.

Lemma 15 allows us to prove an analogous statement to Bloch’s Theorem for the
“state” FL(β, μ, b), namely that

∣∣tr
(FL(β, μ, b) J (m,n)

k,L (b)
)∣∣ decays rapidly inside
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the bulk. In particular, we also prove boundedness of the μ-derivative of local bond
currents, which is not clear a priori because NL − 〈NL〉 is not uniformly bounded
in L .

Proposition 16 Let n �→ n2 ζ edge(n) ∈ �1, (HL(b))L∈N be a family of Hamiltonians
of the form (4) and ξ ∈ �1 as in Lemma 14. There exists CF > 0 such that the following
holds: if (HL(b))L∈N satisfies local indistinguishability of the Gibbs state everywhere
at (β, μ, b) with ζ edge-decay in the sense of Definition 1, then

∣∣tr
(FL(β, μ, b) J zk,L (b)

)∣∣ ≤ CF β ξ
([
dist(z,Z2 \ ΛL) − D − R

]
+
)
.

Proof For better readability, we drop the arguments (β, μ, b) in the proof. And as
in the proof of Bloch’s Theorem in Sect. 3.1.3 we only do the proof for k = 1, i.e.
currents in x1-direction.

Wefirst prove uniformboundedness of the left-hand side. Recall that J zk,L ∈ ABz
L (R)

and ‖J zk,L‖ ≤ CJ . For � = 0, Lemma 15 with Bz
L(R) = Z = Λ′ yields

∣∣tr
(FL J zk,L

)∣∣ ≤
∣∣
∣tr

(FL J zk,L
) − tr

(F Z [
HL

∣∣
Z

]
J zk,L

)∣∣
∣ + ∣∣tr

(F Z [
HL

∣∣
Z

]
J zk,L

)∣∣

≤ β CJ ξ(0) + β (2R + 1)2 CJ

=: β C0.

To prove decay in the bulk, note that FL is stationary due to stationarity of the
Gibbs state and since HL commutes with the full number operator NL appearing
in the definition of FL . Hence, we have current conservation in the “state” FL , see
Corollary 7, which we apply for the rectangle ΛL ∩ { x1 ≥ 0 }. Then we choose
d > D + R and 0 < � < (d − D − R)/3 to obtain

0 =
2L∑

n=0

tr
(FL J (0,n)

1,L

) d−1∑

n=0

tr
(FL J (0,n)

1,L

) + tr
(FL J (0,2L−n)

1,L

)

+
2L−d∑

n=d

tr
(FL J (0,n)

1

) − tr
(F B(0,n)(R+2�)[HL

∣∣
B(0,n)(R+3�)

]
J (0,n)
1

)

+
2L−d∑

n=d

tr
(F B(0,n)(R+2�)[HL

∣∣
B(0,n)(R+3�)

]
J (0,n)
1

)
,

which is the same decomposition as in the proof of Bloch’s Theorem. The first sum is
bounded by 2 d β C0. With Lemma 15, the second sum is bounded by

(
2(L − d) + 1

)
β CJ ξ(3�).
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All terms in the third sum equal the one at (0, L) due to translation invariance of the
Hamiltonian. Thus,

∣∣
∣tr

(F B(0,L)(R+2�)[HL
∣∣
B(0,L)(R+3�)

]
J (0,L)
1

)∣∣
∣ ≤ C0 β d

L − d
+ β CJ ξ(3�) → β CJ ξ(3�)

for L → ∞.
We can now relate this result back to any point x ∈ ΛL . Choosing d = dist(x,Z2 \

ΛL), � = ⌊
(d − D − R)/3

⌋
we find

∣∣∣tr
(FL J x1

)∣∣∣ ≤
∣∣∣tr

(FL J x1
) − tr

(F Bx (R+2�)[HL
∣∣
Bx (R+3�)

]
J x1

)∣∣∣

+
∣∣∣tr

(F B(0,L)(R+2�)[HL
∣∣
B(0,L)(R+3�)

]
J (0,L)
1

)∣∣∣

≤ 2 β CJ ξ(3�),

which proves the claim with CF = max
{
C0 ξ(0)−1, 2CJ

}
, using ξ(k) = ξ

(
3 �k/3�)

due to the explicit form (38).

We can now prove differentiability of I edge.

Proposition 17 Let n �→ n2 ζ edge(n) ∈ �1, (HL(b))L∈N be a family of Hamiltoni-
ans of the form (4). If (HL(b))L∈N satisfies local indistinguishability of the Gibbs
state everywhere with ζ edge-decay at (β, μ, b) for all μ in an open interval M , then
I edge(β, μ, b), I d edge(β, μ, b) are differentiable functions of μ ∈ M. Moreover, the
derivative of I edge(β, μ, b) is localized near the boundary, with the decay estimate

∣∣∂μ I edge(β, μ, b) − ∂μ I d edge(β, μ, b)
∣∣ ≤ β CF

∞∑

n=d−R−D

ξ(n), (40)

where CF , ξ are as in Proposition 16.

Proof In finite volume, it is clear that I d edgeL is differentiable in μ. We will thus use
local indistinguishability, respectively Proposition 16, to take the limit L → ∞ and
then d → ∞ uniformly in μ.

We abbreviate j (0,n)
1,L (μ) = tr

(
ρL(β, μ, b) J (0,n)

1,L (b)
)

and j (0,n)
1 (μ) =

ρ∞(β, μ, b)
(
J (0,n)
1 (b)

)
as before (the first will only be used for n ≤ L so that

J (0,n)
1,L (b) = J (0,n)

1 (b)). First, by Lemma 14,

∂μ j (0,n)
1,L (μ) = tr

(
FL(β, μ, b) J (0,n)

1 (b)
)

is a Cauchy sequence in L . Denoting its limit by c(0,n)
1 (μ), we have

∣∣c(0,n)
1 (μ) − ∂μ j (0,n)

1,L (μ)
∣∣ ≤ β CJ ξ(L − R).
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By local indistinguishability we know that j (0,n)
1,L (μ) converges to its limit j (0,n)

1 (μ),

and this convergence is uniform since ζ edge is independent of μ. Hence, by complete-
ness of C1(M), j (0,n)

1 (μ) is differentiable in μ and ∂μ j (0,n)
1 (μ) = c(0,n)

1 (μ). Thus,
I d edge(β, μ, b) is differentiable and satisfies

∣∣∂μ I d edge(β, μ, b) − ∂μ I d edgeL (β, μ, b)
∣∣ ≤ β d CJ ξ(L − R).

To take d → ∞, observe that by Proposition 16

|∂μ j (0,n)
1 (μ)| ≤ ∣∣∂μ j (0,n)

1 (μ) − ∂μ j (0,n)
1,L (μ)

∣∣ + ∣∣∂μ j (0,n)
1,L (μ)

∣∣

≤ β CJ ξ(L − R) + CF β ξ(n − D − R),

which converges to β CF ξ(n − D − R) as L → ∞. Summation over n shows that
I edge(β, μ, b) is differentiable and satisfies (40).

Note that Proposition 17 together with the equality m(β, μ, b) = I edge(β, μ, b)
from Theorem II proves Theorem III. Additionally, we provide a bound on the differ-
ence of ∂μ mL(β, μ, b) and ∂μ I edgeL (β, μ, b) in finite volume, which is analogous to
the bound from Theorem I.

Proposition 18 Let n �→ n2 ζ edge(n) ∈ �1, (HL(b))L∈N be a family ofHamiltonians of
the form (4). There exists a null sequence η so that the following holds: if (HL(b))L∈N
satisfies local indistinguishability of the Gibbs state everywhere with ζ edge-decay at
(β, μ, b) for μ in some open interval, then

∣∣∣∂μ mL(β, μ, b) − ∂μ I edgeL (β, μ, b)
∣∣∣ ≤ β η(L).

Proof. Differentiating (25) by using (35), we obtain

∂μ mL(β, μ, b) = 1

(2L + 1)2

L−1∑

m=−L

2L∑

n=0

n tr
(FL(β, μ, b) J (m,n)

1,L (b)
)
.

Following the proof of Proposition 9,wherewe only usedBloch’s Theorem and current
conservation in ρL(β, μ, b), whose analogues here are Proposition 16 and current
conservation in FL(β, μ, b) (the latter holds, because FL(β, μ, b) is stationary), we
obtain

∣
∣∣∂μ mL(β, μ, b) − ∂μ I d edgeL (β, μ, b)

∣
∣∣ ≤ β CF

(
4 d2

L
+

∞∑

n=d−R−D

ξ(n)

)
.
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Combining this with Proposition 16 to compare ∂μ I d edgeL (β, μ, b) and

∂μ I edgeL (β, μ, b), proves the claim with

η(L) = 2CF min
D+R≤d≤L

(
2 d2

L
+

∞∑

n=d−R−D

ξ(n)

)
.

3.5 Proof of Theorem IV

We first prove that the limit of the finite volume pressures pL(μ, β, b) defined in (10)
exists and is independent of the edge Hamiltonian. Therefore, let

ρbulk
L (β, μ, b) = ρBL

[
Hbulk
L (b)

]
(β, μ), and Zbulk

L = ZBL

[
Hbulk
L (b)

]
(β, μ)

(41)

be the Gibbs state and partition function of the bulk Hamiltonian on the centered
boxes BL . For the statement we introduce

C bulk/edge
H := sup

x∈Z2

(
2

∑

y∈Z2

∥∥a∗
x T

bulk/edge
b (x, y) ay

∥∥ +
∑

X⊂Z
2:

x∈X

∥∥Φbulk/edge(X)
∥∥
)

+ μ,

(42)
which bounds the norm of all hoppings and interactions which include a particular
site.

Proposition 19 Let
(
HL(b)

)
L∈N be a family of Hamiltonians of the form (4) and let

Hbulk
L (b) be the corresponding bulk Hamiltonian defined in (17). Then

∣
∣∣∣pL(β, μ, b) − P

(
ρbulk
L (β, μ, b)

)

(2L + 1)2

∣
∣∣∣ ≤ C edge

H D

2L + 1
(43)

for all β > 0, μ, b ∈ R. Moreover, the thermodynamic limit p(β, μ, b) :=
limL→∞ pL(β, μ, b) of the pressure exists and

∣∣∣
∣p(β, μ, b) − P

(
ρbulk
L (β, μ, b)

)

(2L + 1)2

∣∣∣
∣ ≤ 4 R C bulk

H

2L + 1
. (44)

The proof is based on [25, Sect. 9.2], where the convergence for translation invariant
interactions is discussed. Instead, here we have a bulk part which is invariant under
magnetic translations and an additional edge contribution.

Proof Within the proof we fix β, μ and denote P(H) = β−1 ln tr
(
e−βH

)
for self-

adjoint operators H such that (2L+1)2 pL(β, μ, b) = P
(
ρL(β, μ, b)

) = P
(
HL(b)−

μNL
)
, i.e. we write the pressure of the Gibbs state by just specifying the exponent.

We begin with the important observation, that the pressure is continuous and
bounded in the Hamiltonian, i.e.

∣∣P(H1) − P(H2)
∣∣ ≤ ‖H1 − H2‖ and

∣∣P(H1)
∣∣ ≤
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‖H1‖, for all self-adjoint H1 and H2. To see this, consider self-adjoint A1 and A2 and
A(λ) := λ A1 + (1 − λ) A2. Then

∣∣ln tr
(
e−A1

) − ln tr
(
e−A2

)∣∣ =
∣∣∣
∣

∫ 1

0

d

dλ
ln tr

(
e−A(λ)

)
dλ

∣∣∣
∣

=
∣∣∣∣

∫ 1

0

tr
(
(A1 − A2) e−A(λ)

)

tr
(
e−A(λ)

) dλ

∣∣∣∣ ≤ ‖A1 − A2‖,

where we used that e−A(λ)
/
tr
(
e−A(λ)

)
is a normalized state in the last step. The result

for P follows immediately because the factors of β cancel.
We first show that the pressure in finite volume is almost independent of the edge

terms. Therefore, let W := ∑
x,y∈ΛL

a∗
x T

edge
b (x, y) ay + ∑

X⊂ΛL
Φedge(X) be the

edge contribution to the Hamiltonian HL(b) such that HL(b) −W is the Hamiltonian
from (4) without any additional edge terms. Then,

∣∣P
(
HL − μNL

) − P
(
HL(b) − W − μNL

)∣∣ ≤ ‖W‖ ≤ C edge
H D (2L + 1).

Thus, the per volume pressure pL(β, μ, b) is independent of the edge terms up to an
error C edge

H D
/
(2L + 1) → 0 as L → ∞ and we only consider the Hamiltonian

without edge terms in the following.
To shorten notation in the following we denote Hbulk

Λ := Hbulk
L

∣
∣
Λ
for Λ ⊂ BL .

As discussed in Sect. 3.1.1, Hbulk
Λ+x = U−x (b) Hbulk

Λ U∗−x (b) and thus the partition
function and the pressure of the respective states agree, P(Hbulk

Λ+x ) = P(Hbulk
Λ ). This

in particular proves that P
(
HL(b)−μNΛL

) = P
(
Hbulk
L (b)−μNBL

)
, i.e. the pressure

of the systemonΛL without edge contribution exactly agreeswith that on BL . Together
with the above estimate, (43) follows.

We now prove convergence of pbulkL := P
(
ρbulk
L (β, μ, b)

)/
(2L + 1)2 as L → ∞.

For L ′ < L one can fit n = ⌊ 2L+1
2L ′+1

⌋2 disjoint boxes BL ′ + x j in BL . By the estimate
on the pressure, we find

∣∣∣∣P
(
Hbulk
BL

− μNBL

) − P
(
Hbulk⋃

j BL′+x j
− μN⋃

j BL′+x j

)
∣∣∣∣

≤ C bulk
H

(|BL | − n |BL ′ |) ≤ 2C bulk
H (2L ′ + 1) (2L + 1).

In the second step we used
∣∣�q�2 − q2

∣∣ ≤ 2 q for q > 0. In the next step we remove
the hoppings and interactions between the individual boxes

∣∣
∣∣P

(
Hbulk⋃

j BL′+x j
− μN⋃

j BL′+x j

) − P
( n∑

j=1

Hbulk
BL′+x j − μNBL′+x j

)∣∣
∣∣

≤ 4C bulk
H R (2L ′ + 1) n ≤ 4C bulk

H R (2L + 1)2 (2L ′ + 1)−1.
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Then, we observe that the trace of the non-interacting parts factors

P
( n∑

j=1

Hbulk
BL′+x j − μNBL′+x j

)
= β−1 ln

n∏

j=1

tr
(
β Hbulk

BL′+x j − β μNBL′+x j

)

=
n∑

j=1

P
(
Hbulk
BL′+x j − μNBL′+x j

)

= n P
(
Hbulk
BL′ − μNBL′

)
,

where we used that the pressures of the individual boxes all agree. As a last step we
bound

∣
∣∣∣

(
n − |BL |

|BL ′ |
)
P

(
Hbulk
BL′ − μNBL′

)
∣
∣∣∣ ≤ 2C bulk

H (2L ′ + 1) (2L + 1).

Using triangle inequality and dividing everything by |BL |, we obtain an estimate for
the per volume pressures

∣∣∣pbulkL − pbulkL ′
∣∣∣ ≤ 4C bulk

H

(
2L ′ + 1

2L + 1
+ R

2L ′ + 1

)
. (45)

Equation (45) shows that {pbulkL }L∈N is a Cauchy sequence and thus it is convergent.
Together with (43) also pL(β, μ, b) converges to the same limit p(β, μ, b). The con-
vergence in (44) follows from (45) after taking the limit L → ∞.

Next we show that the limit of the pressures of the finite volume boxes agrees with
the pressure of any infinite volume KMS state of the system without an edge.

Proposition 20 Let
(
Hbulk
L (b)

)
L∈N be a family of Hamiltonians of the form (17) sat-

isfying the assumptions from Sect. 2.1, and let τ bulk be the corresponding dynamics
defined in (18). For every (τ bulk, β)-KMS state ω the pressure per volume of the
restriction of ω to BL defined by (19), satisfies

∣∣∣
∣
P

(
ρbulk
L (β, μ, b)

)

(2L + 1)2
− P

(
ω|BL

)

(2L + 1)2

∣∣∣
∣ ≤ 8C bulk

H R

2L + 1
.

Proof. We follow the ideas of [25, Proposition 12.1]. Let ω be a KMS state, denote its
restriction ωL := ω|BL and abbreviate ρbulk

L = ρbulk
L (β, μ, b). The difference

β P(ωL) − β P
(
ρbulk
L

) = tr(ωL lnωL) − tr
(
ωL ln ρbulk

L

)

equals the relative entropy S(ωL |ρbulk
L ) ≥ 0. Since the relative entropy is monotone

under restrictions (see [26, Theorem 6.2.33]), we have

S(ωL |ρbulk
L ) ≤ S(ω|ρ)
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for any extension ρ of ρbulk
L from ABL to A. By [25, Theorem 7.5], ω satisfies the

Gibbs condition and a natural choice for this extension is given by the perturbation ofω
where all interactions between BL and the rest of the system are deleted (compare [25,
Corollary 7.8]). To be precise, let

WL =
∑

x,y∈Z2 :
{x,y}∩BL �=∅,

{x,y}∩Z2\BL �=∅

a∗
x T

bulk(x, y) ay +
∑

X⊂Z
2 :

X∩BL �=∅,

X∩Z2\BL �=∅

Φbulk(X)

be the surface interaction, which is an element of A with norm bounded by
4C bulk

H R (2L + 1) since all interactions are of finite range R. The state corresponding
to subtraction ofWL from theHamiltonian can be expressed in the GNS representation
(hω, πω,�) for ω by

ρ(A) =
〈
e−β(Hω−πω(WL ))/2 eβHω/2 �,πω(A) e−β(Hω−πω(WL ))/2 eβHω/2 �

〉/
ZWL ,

where Hω is the generator of the dynamics induced by τ bulk in hω andZWL the normal-
izing factor (see [26, Theorem 5.4.4] and note that eβHω/2 acts trivially on the cyclic
vector � since ω is invariant). With this, we have (cf. [26, below Definition 6.2.29])

S(ω|ρ) ≤ −ω(β WL) + ρ(β WL) ≤ 2 β ‖WL‖,

and thus

0 ≤ P(ρbulk
L ) + P(ωL)

(2L + 1)2
≤ 8C bulk

H R

2L + 1
.

Now we are able to prove Theorem IV.

Proof of Theorem IV The convergence of pL(β, μ, b) and independence of boundary
terms follows from Proposition 19. Equality of the pressure with the per volume
pressure of any (τ bulk, β)-KMS state follows from Propositions 19 and 20.

Now assume that
(
HL(b)

)
L∈N satisfies local indistinguishability uniformly in b. By

Theorem II, mL(β, μ, b) = ∂b pL(β, μ, b) converges to m(β, μ, b) as L → ∞, and
in view of the estimate (32) this convergence is uniform in b. Then, the convergence
of the primitives pL(β, μ, b), which converge pointwise by Proposition 19, must also
be uniform and p(β, μ, b) is differentiable with derivative m(β, μ, b).
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